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Abstract. We present new algorithms for computing the union and in-
tersection of all justifications for a given ontological consequence without
first computing the set of all justifications. Our goal is to use these sets
to explain the consequences and, if needed, repair them. Through an em-
pirical evaluation, we show that our approach behaves well in practice
for expressive description logics. In particular, the union of all justifi-
cations can be computed much faster than with existing justification-
enumeration approaches.
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1 Introduction

It is well known that ontology engineering is a delicate and error-prone task,
which requires automated tools to avoid introducing unexpected or unwanted
consequences. Indeed, as an ontology grows in size it becomes difficult to predict
a priori what effect would introducing or modifying an axiom have over the
represented notions. In these settings, it is not rare for a knowledge engineer to
encounter unexpected consequences from the explicitly stated knowledge. In this
case, the knowledge engineer should try to understand why is this a consequence,
and perhaps how to get rid of it. To achieve this, it is helpful to focus exclusively
on the axioms that are relevant for this consequence.

Axiom pinpointing [35] is the task of identifying the axioms in an ontology
that are required for a consequence to follow. Primarily, its focus is on comput-
ing the class of all justifications: subset-minimal subontologies that entail the
consequence. A dual notion is that of a repair : a subset-maximal subontology
which does not entail the consequence. Justifications provide a way to under-
stand the causes for a consequence, while repairs suggest a way to get rid of it.
Axiom pinpointing methods can be separated into two main classes, commonly
known as black-box and glass-box.
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Black-box approaches [24, 25, 34] use existing reasoners as an oracle, and
require no further modification of the reasoning method. Therefore, these ap-
proaches work for ontologies written in any monotonic logical language (includ-
ing expressive DLs such as SROIQ [21]), as long as a reasoner supporting it
exists. In their most näıve form, black-box methods check all possible subsets
of the ontology for the desired entailment and compute the justifications from
these results. In reality, many optimisations have been developed to reduce the
number of calls needed, and avoid irrelevant work. Glass-box approaches, on
the other hand, modify a reasoning algorithm to output one or all justifications
directly, from only one call. While the theory for developing glass-box meth-
ods has been developed for different reasoners [6–9,32], in practice not many of
these methods have been implemented, as they require new coding efforts and
(often) deactivating the optimisation techniques that make reasoners practical.
A promising approach, first proposed in [42] is to reduce, through a reasoning
simulation, the axiom pinpointing problem to a related enumeration problem
from a propositional formula, and use state-of-the-art SAT-solving methods to
enumerate all the justifications. This idea has led to effective axiom pinpointing
systems developed primarily for the lightweight DL EL [4]; see [1–3,26,30,31].

The interest of axiom pinpointing goes beyond enumerating justifications.
When the scope is to get rid of an unwanted consequence, one may be interested
in the repairs, or their complement, commonly called diagnoses. Diagnoses can
be derived from justifications via a hitting set computation, and viceversa [8].
Moreover, as there might exist exponentially many justifications (or repairs,
or diagnoses) for a given entailment w.r.t. an ontology, even for ontologies in
an inexpressive language such as the DL EL, finding all justifications is not
feasible in general. To alleviate this issue, one may approximate the information
through the union and the intersection of all justifications. Every element in
the intersection is a diagnosis by itself. From the union, a knowledge engineer
has a more precise view on the problematic instances, and can make a detailed
analysis.

Although much work has focused on methods for computing one or all justifi-
cations efficiently, to the best of our knowledge there is little work on computing
their intersection or union without enumerating them first, beyond the approxi-
mations presented in [36,37]. Here, we first propose an algorithm for computing
the intersection of all justifications. This algorithm has the same worst-case be-
haviour as the black-box algorithm of computing one justification, avoiding the
worst-case exponential enumeration. Additionally, we present two approaches to
compute the union of all justifications: one is based on the black-box algorithm
for finding all justifications and the other approach uses the SAT-based tool
cmMUS. An extended abstract of our paper was published on [16].

The paper is structured as follows. In Section 2 we recall relevant definitions
of description logics and propositional logic. Section 3 presents the algorithm
for computing the intersection of all justifications without computing any single
justification, followed by two methods of computing the union of all justifications
in Section 4. Afterwards, we explain how to use the union and intersection of



all justifications to repair ontologies. Before concluding, an evaluation of our
methods on real-world ontologies is presented in Section 6.

2 Preliminaries

We briefly recall the description logic ALCH [5] and the notions of justifications,
repairs and ontology modules.

Let NC and NR disjoint sets of concept-, and role names respectively. The
set of ALC-concepts is built through the grammar rule

C ::= > | ⊥ | A | C u C | C t C | ¬C | ∃r.C | ∀r.C,

where A ∈ NC and r ∈ NR. An ALCH TBox T is a finite set of general concept
inclusions (GCIs) of the form C v D and role inclusions r v s, where C and
D are ALC concepts and r, s ∈ NR. From now on, we will call the TBox an
ontology, and its elements (GCIs and role inclusions) will be called axioms in
general. The DL EL is the restriction of ALC that does not allow for bottom ⊥,
negations ¬, nor value restrictions ∀.

The semantics of this logic is defined in terms of interpretations. An inter-
pretation is a pair I = (∆I , ·I) where ∆I is a non-empty domain, and ·I is
the interpretation function, which maps each concept name A ∈ NC to a sub-
set AI ⊆ ∆I , and each role name r ∈ NR to a binary relation rI ⊆ ∆I×∆I .
The interpretation function is extended to ALC-concepts as usual: (>)I := ∆I ,
(⊥)I := ∅, (¬C)I := ∆I\CI , (C u D)I := CI ∩ DI , (C t D)I := CI ∪ DI ,
(∃r.C)I := {x ∈ ∆I | ∃y ∈ CI : (x, y) ∈ rI}, and (∀r.C)I := {x ∈ ∆I | ∀y ∈
∆I : (x, y) ∈ rI ⇒ y ∈ CI}.

The interpretation I satisfies C v D iff CI ⊆ DI and it satisfies r v s iff
rI ⊆ sI . We write I |= α if I satisfies the axiom α. The interpretation I is a
model of an ontology O if I satisfies all axioms in O. An axiom α is entailed by
O, denoted as O |= α, if I |= α for all models I of O. We use |O| to denote the
size of O, i.e., the number of axioms in O. sig(α) is a function that extracts a
set of concept and role names that occur in the GCI α.

We are interested in the notions of justification and repair.

Definition 1 (Justification, repair). Let O be an ontology and α a GCI.

– A justification for O |= α is a subset M ⊆ O such that M |= α and for
any M′ (M, M′ 6|= α. Just(O, α) denotes the set of all justifications of α
w.r.t. O.

– A repair for O |= α is a subontology R ⊆ O such that R 6|= α, but O′ |= α
for any R ( O′ ⊆ O. We denote the set of all repairs as Rep(O, α).

Briefly, a justification is a minimal subset of an ontology that preserves the
conclusion, while a repair is a maximal sub-ontology that does not entail the
consequence.

In the context of error-tolerant reasoning, where the goal is to derive mean-
ingful consequences while avoiding known errors from the ontology, three main
entailment relations have been considered.



Definition 2 (Brave, cautious and IAR entailments). Let α be a conse-
quence of O and Rep(O, α) be the set of all repairs. A consequence β is:

– bravely entailed by O w.r.t. α if R |= β for some R ∈ Rep(O, α);
– cautiously entailed by O w.r.t. α if R |= β for all R ∈ Rep(O, α);
– IAR entailed by by O w.r.t. α if

⋂
R∈Rep(O,α)R |= β.

In other words, a brave entailment is one which could still hold after repairing
the ontology. Cautious entailment is a stronger notion, requiring that the con-
sequence holds regardless of how the ontology is repaired; thus every cautious
entailment is also a brave one, but the converse is not true. IAR entailments
are those that follow from the intersection of all repairs. Importantly, note that
the intersection of all repairs and the union of all justifications complement each
other. Hence, studying one yields the results for the other.

When dealing with large ontologies, it is useful to consider only a subset
of axioms, which preserves all information about the entailments under consid-
eration. A module is a sub-ontology that preserves some syntactic or semantic
properties w.r.t. a restricted signature Σ. In general, it is hard to compute
minimal modules for expressive ontologies. Still, there exists the notion of a syn-
tactic locality module which can be computed efficiently, even for very expressive
DLs [40]. Lean kernels [27,37] for the DL ALC, and minimal deductive modules
for the DL EL [13,14] usually define a smaller module. An important property of
those modules (syntactic locality modules, lean kernels and minimal deductive
modules) is that they are justification-preserving ; i.e., all the justifications for a
given consequence are contained in them. Due to this property, when computing
justifications, their union, and their intersection, we will first compute such a
module. As it is better understood, and well defined for expressive DLs, in the
following we consider computing only locality-based modules. However, it should
be considered that any justification-preserving module would suffice.

We now consider a propositional language with a finite set of propositional
variables L = {p1, p2, · · · , pn}. A literal is a variable pi or its negation ¬pi. A
clause l1 ∨ l2 ∨ · · · ∨ lk is a disjunction of literals, denoted by ω [11]. A Boolean
formula in conjunctive normal form (CNF) is a conjunction of clauses. A CNF
formula φ is satisfiable iff there exists a truth assignment µL : L → {0, 1} such
that µL satisfies all clauses in φ. We can also consider a CNF formula as a set
of clauses. A subformula φ′ ⊆ φ is a minimally unsatisfiable subformula (MUS)
iff φ′ is unsatisfiable, but for every φ′1 ( φ′ is satisfiable. Note that the notion
of a MUS corresponds to that of a justification where the ontology language is
propositional logic and the consequence under consideration is unsatisfiability.

3 Computing the Intersection of all Justifications

We first study the problem of computing the intersection of all justifications,
which we call the core. Algorithm 1 provides a method for finding this core.



The algorithm is inspired by the known black-box approach for finding justifi-
cations [9, 23]. Starting from a justification-preserving module M (in this case,
the locality-based module, Line 2), we try to remove one axiom β (Line 4). If
the removal of the axiom β removes the entailment (Line 5), then β belongs to
all justifications (β is sine qua non required for the entailment within M), and
is thus added to the core C (Line 6). It can be shown that Algorithm 1 correctly
computes the intersection of all justifications.

Theorem 3. Let O be an ontology and α a GCI. Algorithm 1 computes the
intersection of all justifications (core) of O w.r.t. α.

Proof. Let S be the set computed by Algorithm 1, so S = {β | O \ {β} 6|= α}
(Line 5-6). Additionally, let C be the core. First, we prove that S ⊆ C. We assume
towards a contradiction that there exists an axiom β such that β ∈ S, but β 6∈ C.
As β 6∈ C, there exists a justification J of O w.r.t. α such that β 6∈ J . According
to Definition 1, O \ {β} |= α, which contradicts to our assumption that β ∈ S.
The other direction C ⊆ S is analogous. Therefore, C = S, that is, Algorithm 1
computes the core of all justifications of O w.r.t. α.

Algorithm 2, on the other hand, generalises the known algorithm for computing a
single justification, by considering a (fixed) set C that is known to be contained in
all justifications. If C = ∅, the approach works as usual; otherwise, the algorithm
avoids trying to remove any axiom from C. This reduces the number of calls to
the black-box reasoner, potentially decreasing the overall execution time.

The choice for a locality-based module in these algorithms is arbitrary, and
any justification-preserving module would suffice. In particular, we could com-
pute lean kernel [27, 37] for ALC ontologies, and minimal subsumption mod-
ules [12, 15] for EL ontologies instead, which is typically smaller thus reducing
the number of iterations within the algorithms. However, as it could be quite
expensive to compute such modules, it might not be worthwhile in some cases.

Algorithm 1, like all black-box methods for computing justifications, calls a
standard reasoner |M| times. In terms of computational complexity, computing
the core requires as many computational resources as computing a single jus-
tification. However, computing one justification might be faster in practice, as
the size ofM decreases throughout the execution of Algorithm 2. Clearly, if the
core coincides with one justification M, then M is the only justification.

Algorithm 1 Computing the intersection of all justifications of O w.r.t. α

INPUT: an Ontology O, a conclusion α
1: function Compute-Justification-Core(O, α)
2: C := ∅
3: M := Compute-Locality-Based-Module(O, sig(α))
4: for every axiom β ∈M do
5: if M\ {β} 6|= α then
6: C := C ∪ {β}
7: return C



Algorithm 2 Using core to compute a single justification of O w.r.t. an conclusion

INPUT: an ontology O, a conclusion α, the core C
1: function Single-Justification(O, α, C)
2: M := Compute-Locality-Based-Module(O, sig(α))
3: for every axiom β ∈M and β 6∈ C do
4: if M\ {β} |= α then
5: M :=M\ {β}
6: returnM

Corollary 4. Let O be an ontology, α a GCI; and let C be the core and J a
justification for O |= α. If C = J , J is the only justification for O |= α.

4 Computing the Union of all Justifications

We now present two algorithms of computing the union of all justifications. The
first algorithm follows a black-box approach that calls a standard reasoner as ora-
cle using the core of justifications computed in the previous section. Importantly,
it is known that no black-box method for computing the union of all justifica-
tions can call an oracle only a polynomial number of times, unless P = NP [38].
Our method is inspired by Reiter’s Hitting Set Tree algorithm [39] and partially
follows the approach originally developed in [23,45] for enumerating all justifica-
tions. For the second algorithm, we reduce the problem of computing the union
of all justifications to the problem of computing the union of MUSes of a proposi-
tional formula. Note that the second algorithm works only for ALCH ontologies,
while the first algorithm can be applied to ontologies with any expressivity, as
long as a reasoner is available.

4.1 Black-box Algorithm

The black-box algorithm for computing all justifications from [45] was inspired
by the algorithm of computing all minimal hitting sets [39]. Some of the improve-
ments to prune the search space were already proposed in [39]. Our method for
computing the union of all justifications (Algorithm 3) works in a similar man-
ner, but with a few key differences. To avoid computing all justifications, we
prune the search space when all remaining justifications are fully contained in
the union computed so far. In addition, we use the core to speed the search.
As the axioms in the core must appear in every justification, we can reduce the
number of calls made to the reasoner, and optimise the single justification com-
putation. Finally, when we organise our search space, we do not need to consider
the axioms in the core.

We now explain Algorithm 3 in detail. Given an ontology O, a conclusion α,
and the core C ⊆ O of O w.r.t. α as input, a justification-preserving module M
ofO w.r.t. α is extracted fromO (Line 2). The justification search tree Ψ is a four-
tuple (V, E ,L, ρ), where V is a finite set of nodes, E ⊆ V×V is a set of edges, L is



Algorithm 3 Computing the Union of All Justifications w.r.t. a Conclusion α

INPUT: an Ontology O, a conclusion α, the intersection of all Justifications C ⊆ O
1: function Union-of-All-Justifications(O, α, C)
2: M := Compute-Locality-Based-Module(O, sig(α))
3: U := C; Ψ := ({ρ}, ∅, ∅, ρ); Q := [ρ]; P := ∅; M := {∅}
4: while Q 6= [ ] do
5: v := Head(Q), Q := RemoveFirstElement(Q), P := P ∪ {v}
6: Mex := Labels(Path(Ψ, ρ, v))
7: if Is-Path-Redundant(Ψ, ρ,Mex,P) then
8: continue
9: if M\Mex 6|= α then

10: continue
11: if M\Mex ⊆ U then
12: continue
13: M := ∅
14: if there exists M′ ∈ M such that Mex ∩M′ = ∅ then
15: M :=M′
16: else
17: M := Single-Justification(M\Mex, α, C)
18: if M = C then
19: return {C}
20: M := M ∪ {M}
21: U := U ∪M
22: for every β ∈M \ C do
23: vβ := AddChild(Ψ, v, β)
24: Q := vβ :: Q
25: return U

an edge labelling function, mapping every edge to an axiom α ∈M, and ρ ∈ V is
the root node. We initialise the variable Ψ to represent a justification search tree
for O having only root node ρ. Besides, the variables M ⊆ 2M, containing the
justifications that have been computed so far, and P ⊆ V, containing the already
explored nodes of Ψ , are both initialised with the empty set. The queue Q of
nodes in Ψ that still has to be explored is also set to contain the node ρ as its
only element.

The algorithm then enters a loop (Lines 4–24) that runs while Q is not
empty. The loop extracts the first element v from Q and adds it to P (Line 5).
The axioms that label the edges of the path πv from ρ to v in Ψ are collected in
the setMex (Line 6). After that, the algorithm checks whether πv is redundant
via the function Is-Path-Redundant(Ψ, ρ,Oex,P). The path πv is redundant iff
there exists an explored node w ∈ P such that (a) the axioms in Oex are exactly
the axioms labelling the edges of the path πw from ρ to w in Ψ , or (b) w is a leaf
node of Ψ and the edges of πw are only labelled with axioms from Oex. Case (a)
corresponds to early path termination in [23,39]: the existence of πw implies that
all possible extensions of πv have already been considered. Case (b) implies that
the axioms labelling the edges of πw lead to the fact that α can not be entailed be



the remaining TBox when removed from M. Therefore, by monotonicity of |=,
we infer that removing Oex from M also has the same consequence implying
that we do not need to explore πv and all its extensions.

IfM\Mex 6|= α (Lines 9–10), the current iteration can be terminated imme-
diately as no subset ofM\Mex can be a justification ofM w.r.t. α. In contrast
to other black-box algorithms for computing justifications, we additionally check
whetherM\Mex is a subset of U . If it is the case, no new axioms belonging to
the union of all justifications can appear in this sub-tree. Hence, the algorithm
does not need to explore it any further. Subsequently, the variable M that will
hold a justification of M\Mex is initialised with ∅. At this point we can check
if a justification M′ ∈ M has already been computed for which Oex ∩M′ = ∅
(Lines 14–15) holds, in which case we set M to M′. This optimisation step can
also be found in [23, 39] and it allows us to avoid a costly call to the Single-
Justification procedure. Otherwise, in Line 17 we call Single-Justification
onM\Oex to obtain a justification of α w.r.t.M\Oex. We then check whether
M is equal to C (Lines 18–19), in which case the search for additional justifica-
tions can be terminated (recall Corollary 4). Otherwise, the justification M is
added to M in Line 20 and the union of all justifications is updated in Line 21.
Finally, for every β ∈ M \ C, the algorithm extends the tree Ψ in Lines 22–24
by adding a child vα to v, connected by an edge labelled with β. Note that it is
sufficient to take β 6∈ C as a set M with C 6⊆ M cannot be a justification of O
w.r.t. α. The procedure finishes by returning the set U .

Note that this algorithm only adds justifications to M. For completeness,
one can show that the locality-based module M of O w.r.t. sig(α) contains
all justifications of O w.r.t. α. Moreover, it is easy to see that the proposed
optimisations do not lead to a justification not being computed. Overall, we
obtain the following result.

Theorem 5. Let O be an ontology, α a GCI, and C ⊆ O the core of α w.r.t.
O. The procedure Union-of-All-Justifications computes the union of all
justifications of O w.r.t. α.

Algorithm 3 terminates on any input as the paths in the module search tree Ψ
for O constructed during the execution represent all the permutations of the
axioms in O that are relevant for finding all minimal modules. It is easy to see
that the procedure Union-of-All-Justifications runs in exponential time in
size of O in the worst case.

4.2 MUS Membership Algorithm (MUS-MEM)

It has been well-investigated that one can encode the problem of computing
justifications to the problem of computing MUSes of CNF formula. One first
needs to transfer all axioms and a given conclusion to CNF formulae and then
uses a SAT-solver to compute a MUS. Finally, the corresponding axioms of MUS
is a justification for a given conclusion. For a general overview on how this process
works see [30].
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Table 1: Inference rules of condor

We now show how to compute the union of all justifications of a GCI by
a membership approach. The idea is to check the membership of each axiom,
i.e., whether it is a member of some justification. We further encode it to the
problem of checking each CNF-formula whether it is a member of some MUS.

The MUS-MEM approach first, as a pre-processing step, computes a CNF
formula φ using the consequence-based reasoner condor [43].4 Afterwards, it
computes the union of all justifications of α ∈ O by checking the membership
for each axiom using the SAT-tool cmMUS [22] over φ. The two steps of our
method is detailed below:

1. Compute CNF formula φ. LetH,K denote (possibly empty) conjunctions
of concepts, and M,N (possibly empty) disjunctions of concepts; condor
classifies the TBox through the inference rules in Table 1. Each inference
rule can be rewritten as a clause. For example, the R⊥

∃ rule can be rewritten
to the clause ¬p1 ∨ ¬p2 ∨ p3 if we denote the GCIs H v M t ∃r.K,K v⊥,
and H v M as literals p1, p2, p3, respectively. The CNF formula φ is the
conjunction of all the clauses corresponding to all the applied inference rules
during the classification process [37,42].

2. Check membership of each axiom using cmMUS. Given a CNF for-
mula φ and a subformula φ′ ⊆ φ, the algorithm cmMUS is used to decide
whether there is a MUS φ′′ ⊆ φ with φ′ ∩ φ′′ 6= ∅. We set cmMUS(φ, φ′) = 1
if there exists such MUS φ′′ and 0 otherwise. To check membership, we need
to define two objects:

(a) a CNF-formula φO = ∧β∈Opβ , where each literal pβ corresponds to an
axiom β ∈ O, and φα = ¬pα, where α is the given conclusion;

(b) ψα = φ ∧ φO ∧ φα.

4 We restrict to ALCH in this section as condor only accepts ALCH-TBoxes.



Then we can see the following facts hold: Firstly, ψα is unsatisfiable. More-
over, each MUS ψ′ ⊆ ψα corresponds to a justification of α. Finally, ∀β ∈ O,
cmMUS(ψα, pβ) = 1 iff β belongs to some justifications of α.

An important optimization is based on the fact that only a small number
of clauses in φ are related to the derivation of α. In practice, (i) φ′ ⊆ φ is the
subformula contributing to the derivation of α obtained by tracing back from
α, (ii) φ′O ⊆ φO is the subformula including only β ∈ O that appears in φ′.
Using ψ′

α = φ′ ∧ φ′O ∧ φα instead of ψα as the input of algorithm cmMUS can
significantly accelerate the cmMUS algorithm.

Theorem 6. Let O be an ontology and α a GCI. The procedure MUS-MEM
algorithm computes the union of all justifications of O w.r.t. α.

Regarding to the computational complexity of the MUS-MEM algorithm, in
general, the classification of an ALC TBox requires exponential time. Since the
MUS-membership problem is ΣP

2 -complete [28], it follows that this method runs
in exponential time overall.

5 Repairing Ontologies

Similar to justifications, it is common to have multiple repairs for an unwanted
consequence. Instead of treating all the repairs equally, in this section we propose
a notion of optimal repair and provide a method for computing all such optimal
repairs. Therefore, knowledge engineers can be better guided while repairing
erroneous conclusions.

Definition 7 (Optimal Repair). Let O be an ontology, α be a GCI, and
Rep(O, α) be the set of all repairs for O |= α. R ∈ Rep(O, α) is an optimal
repair for O |= α, if |R| ≥ |R′| holds for every R′ ∈ Rep(O, α).

That is, an optimal repair is a repair with the largest cardinality. It is also
important to recall the notion of a hitting set. Given a set of sets S, S is a
minimal hitting set for S if S ∩ s 6= ∅ for every s ∈ S. S is a smallest minimal
hitting set if it is of minimal cardinality among all hitting sets. We can compute
the set of all optimal repairs through a hitting set computation [8, 29,41].

Proposition 8. Let Just(O, α) be the set of all justifications for the GCI α
w.r.t. the ontology O. If S is the set of all smallest minimal hitting sets for
Just(O, α), then {O \ S | S ∈ S} is the set of all optimal repairs for O |= α.

When the core is not empty, a set consisting of single axiom from this core
is a smallest hitting set for all justifications. We get the following corollary of
Proposition 8, stating how to compute all optimal repairs faster in this case.

Corollary 9. Let O be an ontology, α be a GCI and C be the core for O |= α.
If C 6= ∅, then {O\{β} | β ∈ C} is the set of all optimal repairs for O |= α.

It is easy to see that removing the union of all justifications from the given
ontology results in the intersection of all repairs. Therefore, the union of all
justifications can be used as a step towards deducing IAR entailments [36].



6 Evaluation

To evaluate the performance of our algorithms in real-world ontologies, we built a
prototypical implementation.5 The black-box algorithm is implemented in Java
and uses the OWLAPI [20] to access ontologies and HermiT [19] as a stan-
dard reasoner. The MUS-membership algorithm (MUS-MEM) is implemented
in Python and calls cmMUS [22] to detect whether a clause is a member of
MUSes. The ontologies used in the evaluation come from the classification task
at the 2014 ORE competition [33]. We selected the ontologies that have less than
10,000 axioms, for a total of 95 ontologies. In the experiments, we computed a
single justification, the core, and the union of all justifications for all atomic con-
cept inclusions that are entailed by the ontologies.An atomic concept inclusion
is the inclusion of the form of A v B, with A,B ∈ NC. All experiments ran on
two processors Intel R© Xeon R© E5-2609v2 2.5GHz, 8 cores, 64Go, Ubuntu 18.04.

J C
mean 0.400 0.456
std 3.649 4.273
min 0.001 0.001
25% 0.004 0.001
50% 0.009 0.002
75% 0.023 0.005
max 226.608 341.560

Table 2: Statistics of com-
putation time (s) of core (C)
vs. single justification (J )

Computation time of the core vs. a single jus-
tification. In terms of computational complexity,
as discussed in Section 3, computing the core and
a single justification are equally hard problems. But
the size of the remaining ontology reduces during
the latter process. Intuitively, if O′ ⊆ O, checking
whether a subsumption is satisfied by O′ would be
faster than checking it onO. Therefore, theoretically,
the computation time of the core and a single jus-
tification should be comparable and computing the
core should be slightly easier than computing a sin-
gle justification. In practice, our evaluation justifies
it. Table 2 provides some basic statistics for compar-
ing the time to compute the core against computing
a single justification. We can see from Table 2 that
the mean computation time of the core and a single
justification are very similar, around 0.4s. Generally speaking, computing the
core is usually faster than computing one justification as expected.

To best of our knowledge, there is no existing tools to compute the intersec-
tion of all justifications directly. A näıve algorithm is to compute the intersection
of finding all justifications. Thus, the näıve algorithm is as hard as computing all
justifications, i.e., runs in exponential time in size of O in the worst case. How-
ever, our algorithm runs only in polynomial time in |O| in all cases. Therefore,
we do not compare our algorithm with the näıve algorithm in the evaluation.

Computation time of the union of all justifications. As a benchmark, we
compute all justifications and their union via the OWL API. As the MUS-MEM
algorithm can compute the union of all justifications only for ALCH ontologies,

5 The implementation is vailable at https://github.com/JieyingChenChen/

IntersectionAndUnionOfAllJust.



Fig. 1: Computation time (s) of the union
for ALCH-ontologies when there exist sev-
eral justifications

Fig. 2: Computation time (s) of the union
for ALCH-ontologies when there exists
one justification

Fig. 3: Computation time (s) of the union
for more expressive ontologies when there
exist several justifications

Fig. 4: Computation time (s) of the union
for more expressive ontologies when there
exists one justification

we divide the ontologies into two categories: (i) ALCH ontologies and (ii) with
expressivity beyond ALCH. The computation times for the union of all justifica-
tions for ALCH ontologies are shown in Figs. 1 and 2 for ALCH ontologies with
several, or one justification, respectively. Figs. 3 and 4 show the same informa-
tion for the class of more expressive ontologies. Figs. 1–4 plot the logarithmic
computation time (in the Y-axis) of each test instance (in the X-axis). Each dot
corresponds to computation time of the union by one of the methods tested.
Note that the dots are much denser in Fig. 2 and 4 than Fig. 1 and 3 due to the
fact that there exist more cases that have only one justification.

We order the conclusions along the X-axis by increasing order of computa-
tion time of MUS-MEM algorithms in Figs. 1 and Fig. 2, and by the black-box
performance in the latter two figures. We observe from these plots that, gen-
erally, the green spots are located lower than the red and blue spots, which
indicates that it took less time for black-box algorithm to compute the union



Black-box MUS-MEM OWL API

mean 0.322 0.261 2.781
std 13.707 0.597 26.312
min 0.002 0.017 0.009
25% 0.004 0.069 0.123
50% 0.007 0.113 0.442
75% 0.016 0.259 1.726
max 970.834 10.255 1628.930

Table 3: Statistics of computation time
(s) of the union when there exist several
justifications for ALCH ontologies

#JUST | C | | J | | U |
mean 3.0 2.3 4.0 4.1
std 3.2 1.7 1.9 3.2
min 2.0 0.0 1.0 1.0
25% 2.0 1.0 1.0 1.0
50% 2.0 2.0 2.0 3.0
75% 3.0 3.0 5.0 6.0
max 92.0 20.0 28.0 32.0

Table 4: Statistics of justification num-
ber, size of core (C), a random justifica-
tion (J ), and union of justifications (U)

Fig. 5: Relation between #JUST and
computation time of black-box/OWLAPI

Fig. 6: Relation between |C|/|U| and com-
putation time of black-box/OWLAPI

of all justifications. When there exist several justifications, for more than 78%
cases, MUS-MEM algorithm is faster than the OWLAPI. Detailed statistics of
computation time of the union of all justifications when there exist several justi-
fications for ALCH ontologies can be found in Table 3. We noticed that relatively
large size of CNF-formulae (compared with the size of axioms) were generated
in the cases that MUS-MEM algorithm is slower than the OWLAPI. Note that
various numbers of CNF-formulae will be generated when we transform an ax-
iom to CNF-formulae. Only less than 2% cases that MUS-MEM algorithm is
faster than black-box algorithm.

Interestingly, we can see from Table 3 that the maximum computation time
of the MUS-MEM algorithm is only 10.255s; much lower than the black-box
algorithm and OWLAPI. Additionally, according to the Table 3, the standard
deviation of computation time of the MUS-MEM algorithm for all cases in Fig. 2
is only 0.597, which is much lower than the Black-box algorithm and OWLAPI.
When we plot the data and visualize the relationship between the number of
all justifications (#JUST) and computation time of the union, we found that it
tends to take longer for black-box algorithm, especially OWLAPI to compute the



Fig. 7: Ratio of |C| to a random |J | (left) and ratio of |C| to |U| (right).

union of all justifications when #JUST increases. But the MUS-MEM algorithm
seems to be less sensitive to this factor compared with other approaches.

We consider two factors that influence the performance difference of the
black-box algorithm and OWLAPI: the number of justifications and the ratio
of |C|/|U|. The main difference between these two approaches is that the black-
box algorithm uses several strategies to reduce search space. If there exists a
large number of justifications, the search space of OWLAPI approach becomes
very large and the black-box approach may have to traverse several uninfor-
mative branches. Our black-box algorithm only considers the axioms that are
not included in the union and terminates earlier if there are no axioms that
will be included in it, which significantly prunes the search space. Additionally,
the black-box algorithm also uses core to optimise the algorithm. If the ratio
of |C|/|U| is larger, there are less axioms left for checking. In order to further
investigate it, we plot the relations between these two factors and the ratio of
computation time of the black-box algorithm and OWLAPI in Fig. 5 and Fig. 6.
Y-axis represents the ratio of computation time of the black-box algorithm and
OWLAPI in both figures. X-axis represents the number of justifications in Fig. 5
and, in Fig. 6, it represents the ratio of |C|/|U|. We can see that when the num-
ber of justifications increases, in Fig. 5, the ratio of computation time of the
black-box algorithm and OWLAPI decreases, which means that black-box al-
gorithm become much faster than OWLAPI. Similarly, in Fig. 6, the ratio of
computation time of the two approaches also reduced when the ratio of |C|/|U|
increases, which means that the black-box algorithm has better performance
than OWLAPI when the intersection of the core and the union is larger.

In general, we can conclude that, when available, MUS-MEM tends to per-
form better than a direct use of the OWLAPI. Although in most cases in our
experiments, the MUS-MEM algorithm is slower than black-box algorithm, its
time difference when computing justifications various less. The black-box algo-
rithm can be used for more expressive ontologies and outperforms OWLAPI,
especially when there exists a large number of justifications and the size of the
core is relatively small compared with the union.



Size comparisons for justifications, cores, and unions of justifications.
Fig. 7 illustrates the ratio of the size of the core to the size of a random justifi-
cation and to the size of the union of all justifications. In our experiments, the
core for only 2.35% conclusions is empty (magenta part of the charts), which
means that we could use Corollary 9 to compute optimal repairs for 97.65%
(100%-2.35%) of the cases. Moreover, for more than 85% cases, the size of a
justification (|J |) equals to the size of the core (|C|), which indicates that there
exists only one justification (blue part of the charts). When several justifications
exist (the second chart from the left of Fig. 7), the ratio of |C| to a random |J |
falls between 0.5 to 0.75 (yellow part of the charts) for almost half of the cases.
The right-most chart displays the distribution of the ratio of |C| to the size of the
union of all justifications |U| when there exist multiple justifications. The ratio
distributes quite evenly between 0 (not including) to 0.75. Additionally, the core
is empty for only 16% subsumptions even when several justifications exist. See
to Table 4 for the statistics information of the size of the core, the union and a
single justification when multiple justifications exist.

7 Conclusions

We presented algorithms for computing the core (that is, the intersection of all
justifications) and the union of all justifications for a given DL consequence. Our
black-box algorithm is based on repeated calls to a reasoner, and hence apply
for ontologies and consequences of any expressivity, as long as a reasoner exists.
Whilst our MUS-based approach for computing the union of all justifications
depends on the properties of the ALCH consequence-based method implemented
by condor. Still, the approach should be generalisable without major problems
to any language for which consequence-based reasoning methods exists like, for
instance, SROIQ [17,18]. As an application of our work, we study how to find
optimal repairs effectively, through the information provided by the core and the
union of all justifications.

Through an empirical analysis, run over more than 100,000 consequences
from almost a hundred ontologies from the 2014 ORE competition we observe
that our methods behave better in practice than the usual approach through the
OWLAPI. Our experiments also confirm the observation that has already been
made for light-weight ontologies [44], and to a smaller degree in the ontologies
from the BioPortal corpus [10]; namely, that consequences tend to have one,
or only a few, overlapping justifications. We also explored the fact that, in our
experiments, the efficient core computation algorithm could find the optimal
repairs in more than 97% of the test instances: those with non-empty core,
where removing any axiom from it leads to an optimal repair.

It remains to be seen how these results change in the presence of larger
ontologies. In particular, the instances considered had a limited number of jus-
tifications. We expect that the improvements observed would increase as more
justifications are encountered.
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