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HAIRER’S RECONSTRUCTION THEOREM
WITHOUT REGULARITY STRUCTURES

FRANCESCO CARAVENNA AND LORENZO ZAMBOTTI

Abstract. This survey is devoted to Martin Hairer’s Reconstruction Theorem,
which is one of the cornerstones of his theory of Regularity Structures [Hai14]. Our
aim is to give a new self-contained and elementary proof of this Theorem, together
with some applications, including a characterization, based on a single arbitrary
test function, of negative Hölder spaces. We present the Reconstruction Theorem
as a general result in the theory of distributions that can be understood without
any knowledge of Regularity Structures themselves, which we do not even need to
define.

1. Introduction

Consider the following problem: if at each point x P Rd we are given a distribu-
tion (generalized function) Fx on Rd, is there a distribution f on Rd which is well
approximated by Fx around each point x P Rd?

A classical example is when f : Rd Ñ R is a smooth function and Fx is the Taylor
polynomial of f based at x, of some fixed order r P N; then we know that fpyq´Fxpyq
is of order |y ´ x|r`1 for y P Rd close to x. Of course, in this example Fx is built
from f , which is known in advance. We are rather interested in the reverse problem
of finding f given a (suitable) family of Fx’s, as in Whitney’s Extension Theorem
[Whi34]. However if we allow the local descriptions Fx to be non-smooth and even
distributions, then existence and uniqueness of such f become non-trivial.

Martin Hairer’s Reconstruction Theorem [Hai14] provides a complete and elegant
solution to this problem. We present here an enhanced version of this result which
allows to prove existence and uniqueness of f under an optimal assumption on the
family of distributions pFxqxPRd, that we call coherence. We also present some ap-
plications of independent interest, including a characterization of negative Hölder
spaces based on a single arbitrary test function.

The Reconstruction Theorem was originally formulated in the framework of Hairer’s
theory of regularity structures [Hai14]. In this survey we state and prove this result
without any reference to regularity structures, which we do not even define. The
original motivation for this theory was stochastic analysis, but here we present the
Reconstruction Theorem in a completely analytical and deterministic framework.
Our approach contains novel ideas and techniques which may be generalized to other
settings, e.g. to distributions on manifolds.
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Although regularity structures have already attracted a lot of attention, we hope
that this survey will give the opportunity to an even larger audience to become
familiar with some of the ideas of this theory, which may still find applications
outside the area which motivated it first.

A look at the literature. With his theory of Rough Paths [Lyo98], Terry
Lyons introduced the idea of a local description of the solution to a stochastic dif-
ferential equation as a generalized Taylor expansion, where classical monomials are
replaced by iterated integrals of the driving Brownian motion. This idea led Mas-
similiano Gubinelli to introduce his Sewing Lemma [Gub04], which is a version of
the Reconstruction Theorem in R1 (the name “Sewing Lemma” is actually due to
Feyel and de La Pradelle [FdLP06], who gave the proof which is now commonly
used). With his theory of regularity structures [Hai14], Martin Hairer translated
these techniques in the context of stochastic partial differential equations (SPDEs),
whose solutions are defined on Rd with d ą 1 (see [Zam21] for a history of SPDEs).

The first proof of the Reconstruction Theorem was based on wavelets [Hai14].
Later Otto-Weber [OW19] proposed a self-contained approach based on semigroup
methods. The core of our proof is based on elementary multiscale arguments, which
allow to characterize the regularity of a distribution via scaling of a single arbitrary
test function. The second edition of Friz-Hairer’s book [FH20] contains a proof close
in spirit to the one presented here. For other proofs of versions of the Reconstruction
Theorem, see [GIP15, HL17, MW18, ST18].

Outline of the paper. In Section 2 we set the notation used throughout this
survey and in Section 3 we recall basic facts on test functions and distributions.

In Section 4 we define the key notion of germs of distributions and the property
of coherence. This leads directly to the Reconstruction Theorem in Section 5, see
Theorem 5.1. We then show in Section 6 that the coherence condition is optimal.

The core of the paper, from Section 7 to Section 11, is devoted to the proof of the
Reconstruction Theorem (see Section 5.1 for a guide).

The last sections are devoted to applications of the Reconstruction Theorem. In
Section 12 we study negative Hölder spaces, providing criteria based on a single arbi-
trary test function, see Theorem 12.4. In Section 13 we investigate more closely the
coherence condition. In Section 14 we construct a suitable product between distri-
butions and non smooth functions, see Theorem 14.1, which is a multi-dimensional
analogue of Young integration.

Acknowledgements. We are very grateful to Massimiliano Gubinelli for many
inspiring discussions and for suggesting the name coherence. We also thank Malek
Abdesselam, Florian Bechtold, Carlo Bellingeri, Lucas Broux, Tommaso Cornelis
Rosati, Henri Elad-Altman, Peter Friz, Martin Hairer, Cyril Labbé, David Lee, Sylvie
Paycha, Nicolas Perkowski, Hendrik Weber for precious feedback on earlier versions
of this manuscript.
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2. Notation

We work on the domain Rd, equipped with the Euclidean norm | ¨ |. We denote
by Bpx, rq “ tz P Rd : |z ´ x| ď ru the closed ball centered at x of radius r. The
R-enlargement of a set K Ď Rd is denoted by

K̄R :“ K ` Bp0, Rq “ tz P Rd : |z ´ x| ď R for some x P Ku . (2.1)

Partial derivatives of a differentiable function ϕ : Rd Ñ R are denoted by

Bkϕ “ Bk1x1 ¨ ¨ ¨ Bkdxdϕ for a multi-index k “ pk1, . . . , kdq P Nd
0
,

where N0 “ t0, 1, 2, . . .u and we set |k| :“ k1 ` . . .` kd. If ki “ 0 then Bkixiϕ :“ ϕ.

For functions ϕ : Rd Ñ R we use the standard notation

}ϕ}8 :“ sup
xPRd

|ϕpxq| .

We denote by Cr, for r P N0 Y t8u, the space of functions ϕ : Rd Ñ R which
admit continuous derivatives Bkϕ for every multi-index k with |k| ď r. We set

}ϕ}Cr :“ max
|k|ďr

}Bkϕ}8 . (2.2)

We denote by Cα, for α ą 0, the space of locally α-Hölder functions ϕ : Rd Ñ R.
More explicitly, ϕ P Cα means that:

(1) ϕ is of class Cr, where r “ rpαq :“ maxtn P N0 : n ă αu;
(2) uniformly for x, y in compact sets we have

|ϕpyq ´ Fxpyq| À |y ´ x|α (2.3)

where Fxp¨q is the Taylor polynomial of ϕ of order r based at x, namely

Fxpyq :“
ÿ

|k|ăα

Bkϕpxq py ´ xqk
k!

, y P Rd . (2.4)

Remark 2.1. The meaning of À in (2.3) is that for any compact set K Ď Rd there
is a constant C “ CK ă 8 such that |ϕpyq ´ Fxpyq| ď C|y ´ x|α for all x, y P K.
This notation will be used extensively throughout the paper.

Remark 2.2. For r P N and α ă r ď α1 we have the (strict) inclusions Cα
1 Ă Cr Ă

Cα. We stress that for r P N the space Cr is strictly larger than Cr (for instance, C1

is the space of locally Lipschitz functions, and similarly Cr is the space of functions
in Cr´1 whose derivatives of order r ´ 1 are locally Lipschitz). Incidentally, we note
that other definitions of the space Cr for r P N are possible, see e.g. [HL17]. The one
that we give here is convenient for our goals.

Remark 2.3. We will later extend the definition of Cα to negative exponents α ď 0:
this will no longer be a space of functions, but rather of distributions.
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3. Test functions, distributions, and scaling

We introduce the fundamental notions of test functions and distributions on Rd.

Definition 3.1 (Test functions). We denote by D :“ DpRdq the space of C8

functions ϕ : Rd Ñ R with compact support, called test functions. We denote by
DpKq the subspace of functions in D supported on a set K Ď Rd.

Definition 3.2 (Distributions). A linear functional T : DpRdq Ñ R is called a
distribution on Rd (or simply a distribution, or generalized function), if for every
compact set K Ď Rd there exist r “ rK P N0 and C “ CK ă 8 such that

|T pϕq| ď C}ϕ}Cr , @ϕ P DpKq. (3.1)

The space of distributions on Rd is denoted by D1 :“ D1pRdq.
Given K Ď Rd, any linear functional T : DpKq Ñ R which satisfies (3.1) for

some r P N, C ă 8 is called a distribution on K. Their space is denoted by
D1pKq.

Remark 3.3. When relation (3.1) holds, we say that T is a distribution of order r
on the set K. If one can choose r independently of K, we say that T is a distribution
of finite order r on Rd (the constant C in (3.1) is allowed to depend on K). Note
that a distribution of order r on the set K is also of order r1 ě r on K.

Remark 3.4. Here are some basic examples of distributions.

‚ Any locally integrable function f P L1
loc (hence any continuous function) can

be canonically identified with the distribution fpϕq :“
ş

fpzqϕpzq dz.
‚ More generally, any Borel measure µ on Rd which is finite on compact sets can

be identified with the distribution µpϕq :“
ş

ϕ dµ.

Both fpϕq and µpϕq are distributions of finite order r “ 0 on Rd.

Scaling. We next introduce the key notion of scaling. Given a function ϕ : Rd Ñ
R, we denote by ϕλx : Rd Ñ R the scaled version of ϕ that is centered at x and
localised at scale λ ą 0, defined as follows:

ϕλxpzq :“ λ´dϕpλ´1pz ´ xqq . (3.2)

When x “ 0 we write ϕλ “ ϕλ0 , when λ “ 1 we write ϕx “ ϕ1
x.

Note that if ϕ is supported in Bp0, 1q, then ϕλx is supported in Bpx, λq. The scaling
factor λ´d in (3.2) is chosen to preserve the integral:

ż

ϕλxpzq dz “
ż

ϕpzq dz , }ϕλx}L1 “ }ϕ}L1 .

We will use scaled functions ϕλx extensively. The basic intuition is that given
a distribution T P D1 and a test function ϕ P D, the map λ ÞÑ T pϕλxq for small λ ą 0

tells us something useful about the behavior of T close to x P Rd.
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Remark 3.5. We can bound the Cr norm of a scaled test function ϕλx as follows:

}ϕλx}Cr ď λ´d´r }ϕ}Cr , (3.3)

simply because }Bkϕλx}8 “ λ´|k|´d}Bkϕ}8, see (2.2) and (3.2).
As a consequence, given a distribution T P D1, a compact set K Ď Rd and a test

function ϕ P D, we have the following bound, for a suitable r P N:

|T pϕλxq| À λ´r´d , (3.4)

uniformly for x P K and λ P p0, 1s. Indeed, it suffices to take r “ rK̄1
in (3.1) for the

compact set K̄1 (the 1-enlargement of K, see (2.1)) and to apply (3.3).

In some cases it can be useful to consider non-Euclidean scalings (like in the theory
of regularity structures for applications to parabolic SPDEs, see [Hai14, Section 2]).
Our approach could be easily adapted to such scalings, but for simplicity of presen-
tation we refrain from doing so in this survey.

4. Germs of distributions and coherence

The following definition is crucial to our approach.

Definition 4.1 (Germs). We call germ a family F “ pFxqxPRd of distributions
Fx P D1pRdq indexed by x P Rd, or equivalently a map F : Rd Ñ D1pRdq, such that
for all ψ P D the map x ÞÑ Fxpψq is measurable.

We think of a germ F “ pFxqxPRd as a collection of candidate local approximations
for an unknown distribution. More precisely, the problem is to find a distribution
f P D1pRdq which in the proximity of any point x P Rd is well-approximated by Fx,
in the sense that “f ´ Fx is small close to x”. This can be made precise by requiring
that for some given test function ϕ P D with

ş

ϕ ‰ 0 we have

lim
λÓ0

|pf ´ Fxqpϕλxq| “ 0 uniformly for x in compact sets . (4.1)

Remarkably, this property is enough to guarantee uniqueness. The simple proof of
the next result is given in Section 7 below.

Lemma 4.2 (Uniqueness). Given any germ F “ pFxqxPRd and any test function
ϕ P D with

ş

ϕ ‰ 0, there is at most one distribution f P D1 which satisfies (4.1).
More precisely, given a compact set K Ď Rd and two distributions f1, f2 P D1

such that limλÓ0 |pfi ´ Fxqpϕλxq| “ 0 uniformly for x P K, then f1 and f2 must
“coincide on K”, in the sense that f1pψq “ f2pψq for any ψ P DpKq.

Coherence. Given a germ F “ pFxqxPRd, we now investigate the existence of a
distribution f P D1 which satisfies (4.1). The key to solving this problem is the
following condition, that we call coherence.
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Definition 4.3 (Coherent germ). Fix γ P R. A germ F “ pFxqxPRd is called
γ-coherent if there is a test function ϕ P D with

ş

ϕ ‰ 0 with the following property:
for any compact set K Ď Rd there is a real number αK ď mint0, γu such that

|pFz ´ Fyqpϕεyq| À εαK p|z ´ y| ` εqγ´αK

uniformly for z, y P K and for ε P p0, 1s . (4.2)

If α “ pαKq is the family of exponents in (4.2), we say that F is pα, γq-coherent.
If αK “ α for every K, we say that F is pα, γq-coherent.

We can already state a preliminary version of the Reconstruction Theorem.

Theorem 4.4 (Reconstruction Theorem, preliminary version). Let γ P R

and F “ pFxqxPRd a γ-coherent germ as in Definition 4.3. Then there exists a
distribution f “ RF P D1pRdq such that, for any given test function ξ P D, we
have

|pf ´ Fxqpξλxq| À
#

λγ if γ ‰ 0

1 ` | log λ| if γ “ 0

uniformly for x in compact sets and λ P p0, 1s .
(4.3)

If γ ą 0, the distribution f is unique and we call it the reconstruction of F .

The Reconstruction Theorem will be stated in full in Section 5 below, with a
strengthened version of relation (4.3) which holds uniformly over a suitable class of
test functions ξ. We first need to investigate the notion of coherence.

Remark 4.5. The coherence condition (4.2) is a strong constraint on the germ.
Indeed, we can equivalently rewrite this condition as follows

|pFz ´ Fyqpϕεyq| À
#

εγ if 0 ď |z ´ y| ď ε

εαK |z ´ y|γ´αK if |z ´ y| ą ε .

In particular, as |z ´ y| decreases from 1 to ε, the right hand side improves from
εαK to εγ, since αK ď γ. In the case αK ă 0 ă γ this improvement is particularly
dramatic, since, as ε Ó 0, εαK diverges while εγ vanishes.

Remark 4.6 (Monotonicity of αK). Without any real loss of generality, we will
always assume that the family of exponents α “ pαKq in (4.2) is monotone:

@K Ď K 1 : αK ě αK 1 . (4.4)

This is natural, because the right hand side of (4.2) is non-increasing in αK . Indeed,
starting from an arbitrary family α “ pαKq for which (4.2) holds, we can easily build
a monotone family α̃ “ pα̃Kq for which (4.2) still holds, e.g. as follows:

‚ for balls Bp0, nq of radius n P N we define α̃Bp0,nq :“ mintαBp0,iq : i “ 1, . . . , nu;
‚ for general compact sets K we first define nK :“ mintn P N : K Ď Bp0, nqu

and then α̃K :“ α̃Bp0,nK q.
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Remark 4.7 (Vector space). We stress that the coherence condition (4.2) is
required to hold for a single arbitrary test function ϕ P D with

ş

ϕ ‰ 0. We will
show in Proposition 13.1 the non obvious fact that ϕ in (4.2) can be replaced by any
test function ξ P D, provided we also replace αK by α1

K :“ αK̄2
, where K̄R denotes

the R-enlargement of the set K, see (2.1). It follows that, for any given γ P R, the
family of γ-coherent germs is a vector space.

Remark 4.8 (Cutoffs). In the coherence condition (4.2) we could require that the
base points z, y are at bounded distance. Indeed, if (4.2) holds when |z ´ y| ď R for
some fixed R ą 0, then the constraint |z ´ y| ď R can be dropped and (4.2) still
holds (possibly with a different multiplicative constant). Similarly, the constraint
ε P p0, 1s can be replaced by ε P p0, ηs, for any fixed η ą 0. The proof is left as an
exercise.

It is convenient to introduce a semi-norm which quantifies the coherence of a germ.
Fix a compact set K Ď Rd, a test function ϕ P D and two real numbers αK ď 0,
γ ě αK . Given an arbitrary germ F “ pFxqxPRd, we denote by |||F |||cohK,ϕ,αK ,γ

the best

(possibly infinite) constant for which the inequality (4.2) holds for y, z P K with
|z ´ y| ď 2 (this last restriction is immaterial, by Remark 4.8):

|||F |||cohK,ϕ,αK ,γ
:“ sup

y,zPK, |z´y|ď2, εPp0,1s

|pFz ´ Fyqpϕεyq|
εαK p|z ´ y| ` εqγ´αK

. (4.5)

Then, given γ P R and α “ pαKq, a germ F is pα, γq-coherent if and only if for some

ϕ P D with
ş

ϕ ‰ 0 we have |||F |||cohK,ϕ,αK ,γ
ă 8 for every compact set K.

Examples. We now present a few concrete examples of germs.

Example 4.9 (Constant germ). Let us fix any distribution T P D1 and set
Fx :“ T for all x P Rd. Then F “ pFxqxPRd is a pα, γq-coherent germ for any pα, γq,
since Fz ´ Fy “ 0 for all z, y P Rd. Although this example may look trivial, it does
occur in regularity structures, in particular for some notable elements of negative
homogeneity (see Lemma 4.12 below).

Example 4.10 (A link with Regularity Structures). Let ϕ P D be a fixed
test function with

ş

ϕ ‰ 0. Let A Ă R be a finite set and set α :“ minA. Let
F “ pFxqxPRd be a germ such that, for some γ ą α, we have

|pFz ´ Fyqpϕεyq| À
ÿ

aPA: aăγ

εa |z ´ y|γ´a

uniformly for z, y in compact sets and for ε P p0, 1s .
(4.6)

Then the germ F is pα, γq-coherent. Indeed, it suffices to note that for α ď a ă γ

εa |z ´ y|γ´a “ εα pεa´α |z ´ y|γ´aq ď εα pε` |z ´ y|qγ´α ,

simply because vβwδ ď pv ` wqβ`δ for any v, w, β, δ ě 0.
All germs which appear in Regularity Structures satisfy (4.6). For readers who

are familiar with this theory, the precise link is the following: given a Regularity
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Structure pA, T , Gq, if pΠx,Γxyqx,yPRd is a model and f P Dγ is a modelled distribution,
then the germ pFx :“ ΠxfpxqqxPRd satisfies (4.6) since one can write

pΠzfpzq ´ Πyfpyqqpϕεyq “ ´Πypfpyq ´ Γyzfpzqqpϕεyq “
ÿ

|τ |ăγ

gτzy Πyτpϕεyq

with |Πyτpϕεyq| À ε|τ |, which holds for all models, and |gτzy| À |z´y|γ´|τ |, which holds
for all modelled distributions.

Example 4.11 (Taylor polynomials). Let γ ą 0 and fix a function f P CγpRdq.
We recall that by (2.3) we have |fpwq ´ Fypwq| À |w ´ y|γ for w, y in compact sets,
where for all y P Rd the function Fy P C8pRdq given by

Fypwq :“
ÿ

|k|ăγ

Bkfpyq pw ´ yqk
k!

, w P Rd ,

is the Taylor polynomial of f centered at y of order rpγq :“ maxtn P N0 : n ă γu
defined in (2.4). Let us now show that F “ pFxqxPRd is a p0, γq-coherent germ.

Fix a compact set K Ă Rd. Note that for every k P Nd
0 such that |k| ă γ we have

Bkf P Cγ´|k|. By Taylor expanding Bkfpyq around z, we obtain

Fypwq “
ÿ

|k|ăγ

¨

˝

ÿ

|ℓ|ăγ´|k|

Bk`ℓfpzq py ´ zqℓ
ℓ!

` Rkpy, zq

˛

‚

pw ´ yqk
k!

with |Rkpy, zq| À |y ´ z|γ´|k| uniformly for y, z P K. We change variable in the
inner sum from ℓ to k1 :“ k ` ℓ and note that the constraint |ℓ| ă γ ´ |k| becomes
t|k1| ă γu X tk1 ě ku, where k1 ě k means k1

i ě ki @i “ 1, . . . , d. If we interchange
the two sums we then get, by the binomial theorem,

Fypwq “
ÿ

|k1|ăγ

Bk1

fpzq
˜

ÿ

kďk1

py ´ zqk1´k

pk1 ´ kq!
pw ´ yqk

k!

¸

`
ÿ

|k|ăγ

Rkpy, zq pw ´ yqk
k!

“ Fzpwq `
ÿ

|k|ăγ

Rkpy, zq pw ´ yqk
k!

.

Therefore

Fzpwq ´ Fypwq “ ´
ÿ

|k|ăγ

Rkpy, zq pw ´ yqk
k!

(4.7)

and since |Rkpz, yq| À |y ´ z|γ´|k| we get

|Fzpwq ´ Fypwq| À
ÿ

|k|ăγ

|w ´ y||k| |y ´ z|γ´|k| .

Therefore, for any ϕ P D we have, uniformly for y, z P K,
ˇ

ˇ

ˇ

ˇ

ż

Rd

pFzpwq ´ Fypwqqϕεypwq dw
ˇ

ˇ

ˇ

ˇ

À
ÿ

năγ

|z ´ y|γ´n εn .
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This is a particular case of the class studied in Example 4.10, with α “ 0 and
A “ tn P N0 : n ă γu, therefore the germ F is p0, γq-coherent. General germs are
meant to be a generalisation of local Taylor expansions.

Homogeneity. For a coherent germ F “ pFxqxPRd, we can bound |Fxpϕεxq| as
ε Ó 0.

Lemma 4.12 (Homogeneity). Let F “ pFxqxPRd be a γ-coherent germ. For any
compact set K Ď Rd, there is a real number βK ă γ such that

|Fxpϕεxq| À εβK uniformly for x P K and ε P p0, 1s , (4.8)

with ϕ as in Definition 4.3. We say that F has local homogeneity bounds β “ pβKq.
If βK “ β for all K, we say that F has global homogeneity bound β.

The request βK ă γ is to rule out trivialities.

Proof. Let pFxqxPRd be γ-coherent. Given a compact set K Ď Rd, fix a point z P K.
By Remark 3.5 applied to T “ Fz, see (3.4), there is r P N0 such that

|Fzpϕεxq| À ε´r´d uniformly for x P K and ε P p0, 1s .
If we denote by diampKq :“ supt|x ´ z| : x, z P Ku, by (4.2) we can bound

|pFx ´ Fzqpϕεxq| À εαK p|x´ z| ` εqγ´αK ď εαK pdiampKq ` 1qγ´αK À εαK ,

always uniformly for x P K and ε P p0, 1s. This yields

|Fxpϕεxq| ď |pFx ´ Fzqpϕεxq| ` |Fzpϕεxq| À εαK ` ε´r´d ,

hence (4.8) holds with βK “ mintαK ,´r´du (which, of course, might not be the best
value of βK). By further decreasing βK , if needed, we may ensure that βK ă γ. �

Remark 4.13 (Monotonicity of βK). In analogy with Remark 4.6, we will always
assume that the homogeneity bounds β “ pβKq in (4.8) are monotone:

@K Ď K 1 : βK ě βK 1 . (4.9)

Note that the right hand side of (4.8) is non-increasing in βK .

Remark 4.14 (Vector space). We will show in Proposition 13.2 that in (4.8) we
can replace ϕ by any test function ξ P D, provided we also replace βK by β 1

K :“ βK̄2
.

As a consequence (recall also Remark 4.7), for any given α ď 0 and γ ě α, the family
of pα, γq-coherent germs with global homogeneity bound β is a vector space.

Remark 4.15 (Positive homogeneity bounds). In concrete applications, we
typically have βK ď 0 in (4.8), because the case βK ą 0 is somewhat trivial. Indeed,
we recall that given a γ-coherent germ F , our problem is to find a distribution f P D1

that satisfies (4.1). If βK ą 0 for some compact set K Ď Rd, then f “ 0 satisfies
(4.1) on K and, by Lemma 4.2, any solution f of (4.1) must therefore vanish on K.
In particular, if βK ą 0 for all K, the only solution to (4.1) is f “ 0. Using the
notation of the Reconstruction Theorem, we can write RF “ 0.
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Example 4.16. For a coherent germ there is in general no fixed order between the
lower bound βK of the homogeneity in (4.8) and the exponent αK appearing in the
coherence definition (4.2).

‚ In Regularity Structures, see Example 4.10, it is usually assumed that βK “
αK “ α for all K.

‚ A constant germ Fx “ T with T P D1, see Example 4.9, is pα, γq-coherent for
any α and γ. It is possible that βK ă 0, e.g. for the function T pyq :“ |y|´1{2

we have βK “ ´1

2
for K “ Bp0, 1q. Since we can choose αK “ 0 here, we might

have βK ă αK .

‚ If F is a pα, γq-coherent germ, then for any fixed distribution f P D1 the
germ G “ pGx :“ f ´ FxqxPRd is still pα, γq-coherent. By the Reconstruction
Theorem that we are about to state, it is possible to choose f “ RF such that
for the germ G we have that βK ě γ (see (4.3) below), hence βK ě αK .

5. The Reconstruction Theorem

We are ready to state the full version of Hairer’s Reconstruction Theorem [Hai14,
Th. 3.10] in our context (see also [Hai14, Prop. 3.25]). Recalling the definition (2.2)
of } ¨ }Cr , for r P N0 we define the following family of test functions:

Br :“ tψ P DpBp0, 1qq : }ψ}Cr ď 1u . (5.1)

We also recall that K̄R denotes the R-enlargement of the set K, see (2.1).

Theorem 5.1 (Reconstruction Theorem). Let γ P R and F “ pFxqxPRd be
a pα, γq-coherent germ as in Definition 4.3 with local homogeneity bounds β, see
Lemma 4.12. Then there exists a distribution f P D1pRdq such that for any compact
set K Ă Rd and any integer r ą maxt´αK̄2

,´βK̄2
u we have, for α :“ αK̄2

,

|pf ´ Fxqpψλxq| ď cα,γ,r,d,ϕ |||F |||cohK̄2,ϕ,α,γ
¨
#

λγ if γ ‰ 0
`

1 ` | log λ|
˘

if γ “ 0

uniformly for ψ P Br, x P K, λ P p0, 1s ,
(5.2)

where the semi-norm |||F |||cohK̄2,ϕ,α,γ
is defined in (4.5), ϕ is as in Definition 4.3, and

cα,γ,r,d,ϕ is an explicit constant, see (10.39)-(11.14)-(11.15).
If γ ą 0, such a distribution f “ RF is unique and we call it the reconstruction

of F . Moreover the map F ÞÑ RF is linear.
If γ ď 0 the distribution f is not unique but, for any fixed α ď 0 and γ ě α,

one can choose f in such a way that the map F ÞÑ f “ RF is linear on the vector
space of pα, γq-coherent germs with global homogeneity bound β.

The strategy of our proof of the Reconstruction Theorem is close in spirit to the
original proof by Hairer: given a germ F , we “paste together” the distributions Fx
on smaller and smaller scales, in order to build RF . The existing proofs exploit
test functions possessing special multi-scale properties, such as wavelets (by Hairer
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[Hai14]) or the heat kernel (by Otto-Weber [OW19]). Our proof is based on the single
arbitrary test function ϕ P D with

ş

ϕ ‰ 0 which appears in the coherence condition
(4.2), that we will suitably tweak in order to perform multi-scale arguments.

Remark 5.2. Theorem 4.4 is a special case of Theorem 5.1, because equation (4.3)
is a consequence of (5.2). This is obvious if ξ P Br, while for generic ξ P D it suffices
to note that ψ :“ c ξη P Br for suitable c, η ą 0, recall the notation (3.2). As a
consequence, we can write ξλx “ c´1 ψη

´1λ
x with ψ P Br, hence (5.2) yields (4.3) for

ε ą 0 small enough, which is enough (exercise).

Example 5.3 (Constant germ, reprise). If we consider the constant germ Fx “ T

of Example 4.9 then for f “ T we have f ´Fx “ 0 and therefore we can set RF “ T .

If we view a germ as a generalised local Taylor expansion, the Reconstruction
Theorem associates to a coherent germ F “ pFxq a global distribution f which
is approximated by the germ Fx locally around every x P Rd. If the germ is a
classical Taylor expansion of a function in Cγ, as discussed in Example 4.11, then the
Reconstruction Theorem yields the function itself, as shown in the next example.

Example 5.4 (Taylor polynomial, reprise). Consider the germ given by the
Taylor expansion of a function f P Cγ , see Example 4.11. Then by the Taylor
theorem

|fpyq ´ Fxpyq| À |y ´ x|γ

uniformly for x, y in compact sets. If ψ is supported in Bp0, 1q, then ψλx is supported
in Bpx, λq, therefore uniformly for λ P p0, 1s we can bound

ˇ

ˇ

ˇ

ˇ

ż

Rd

pfpyq ´ Fxpyqqψλxpyq dy
ˇ

ˇ

ˇ

ˇ

À λγ
ż

|ψλxpyq| dy “ λγ
ż

|ψpyq| dy . (5.3)

This shows that f satisfies (4.1), therefore by uniqueness we have RF “ f . As a
matter of fact, relation (5.3) holds uniformly for ψ P B0 because

ş

|ψ| À }ψ}8 ď 1

(recall that ψ P B0 are supported in Bp0, 1q).

Example 5.5 (On the case γ “ 0). If F “ pFxqxPRd is a pα, 0q-coherent germ, i.e.
γ “ 0, the estimate (5.2) in the Reconstruction Theorem reads as follows:

|pf ´ Fxqpψλxq| À logp1 ` 1

λ
q (5.4)

uniformly for x in compact sets, ψ P Br and λ P p0, 1s. We now show by an example
that the logarithmic rate in the right hand side of (5.4) is optimal.

Consider the germ of functions F “ pFxpyq :“ logp1 ` 1

|y´x|
qqxPRd. If ϕ P D is a

non-negative test function supported in Bp0, 1q with
ş

ϕ ą 0, we can bound

|pFz ´ Fyqpϕεyq| ď |Fzpϕεyq| ` |Fypϕεyq| À logp1 ` 1

ε
q À εα for any given α ă 0 .

This shows that the germ F is pα, 0q-coherent, hence by the Reconstruction Theorem
there is f P D1 such that (5.4) holds (e.g. f ” 0). We claim that this bound cannot
be improved, i.e. there is no f P D1 such that |pf ´ Fxqpψλxq| ! logp1 ` 1

λ
q.
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By contradiction, assume that such f P D1 exists. Given a test function ψ ě 0

with ψp0q ą 0 and
ş

ψ “ 1, we can bound Fxpψλxq Á logp1 ` 1

λ
q and by triangle

inequality

fpψλxq ě Fxpψλxq ´ |pFx ´ fqpψλxq| Á logp1 ` 1

λ
q

uniformly for x in compact sets. In particular, there is a constant c ą 0 such that

fpψλxq ě c logp1 ` 1

λ
q @x P Bp0, 2q .

This is impossible, for the following reason. Since pψλq are mollifiers as λ Ó 0 (recall
that we have fixed

ş

ψ “ 1), for any given test function ξ P D we can write

fpξq “ lim
λÓ0

fpξ ˚ ψλq “ lim
λÓ0

ż

Rd

fpψλxq ξpxq dx .

If we fix ξ ě 0 supported in Bp0, 1q with
ş

ξ “ 1, we finally get

fpξq ě lim
λÓ0

ż

Rd

c logp1 ` 1

λ
q ξpxq dx “ lim

λÓ0
c logp1 ` 1

λ
q “ 8

which is clearly a contradiction.

Remark 5.6. In the original formulation of the Reconstruction Theorem [Hai14,
Thm. 3.10], the estimate in the right-hand side of (5.2) for γ “ 0 contains a factor
λγ instead of p1 ` | log λ|q. This is not correct, as we showed in Example 5.5. The
mistake in [Hai14] is in the very last display of the proof on page 324: in this formula
we have }x´ y}s À δ` 2´n and 2´n ą δ, so that the factor δγ´β in the left-hand side
must be replaced by 2´pγ´βqn. For γ ă 0 the result does not change, but for γ “ 0

one obtains 1 ` | log δ| instead of δ0.

5.1. Guide to the proof of the Reconstruction Theorem. The next
sections are devoted to the proof of Theorem 5.1.

‚ In Section 6 we show the necessity of coherence for the Reconstruction Theo-
rem.

‚ In Section 7 we recall basic results on test functions (such as convergence,
convolutions and mollifiers) and we prove Lemma 4.2.

‚ In Section 8 we show how to “tweak” an arbitrary test function, in order to
ensure that it annihilates all monomials up to a given degree. This is a key
ingredient in the proof of the Reconstruction Theorem because it will allow us
to perform efficiently multi-scale arguments.

‚ In Section 9 we present some elementary but crucial estimates on convolutions.

‚ Finally, in Sections 10 and 11 we give the proof of the Reconstruction Theorem,
first when γ ą 0 and then when γ ď 0.

6. Necessity of coherence

If a germ F “ pFxqxPRd is γ-coherent, by the Reconstruction Theorem there is a
distribution f P D1 which is locally well approximated by F , see (5.2). In case γ ‰ 0,
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this means the following:

@ compact set K Ď Rd D r “ rpKq P N such that

|pf ´ Fxqpψλxq| À λγ

uniformly for x P K, λ P p0, 1s and ψ P Br .

(6.1)

Remarkably, coherence is also necessary for (6.1), as we now show.

Theorem 6.1 (Coherence is necessary). If a germ pFxqxPRd satisfies (6.1) for
some γ P R, then it is γ-coherent, i.e. it satisfies the coherence condition (4.2), for
any function ϕ P D and for a suitable family of exponents α “ pαKq.

If furthermore (6.1) holds with rpKq “ r for every K, for a fixed r P N, then
the germ F is pα, γq-coherent for a suitable α ď 0, i.e. we can take αK “ α for all
K.

This is a direct corollary of the next quantitative result.

Proposition 6.2. Let pFxqxPRd be a germ with the following property: there exist
a distribution f P D1, numbers γ P R, r P N, C ă 8 and a set K Ď Rd such that

|pf ´ Fxqpψλxq| ď C λγ

for all x P K, λ P p0, 1s and ψ P Br ,
(6.2)

with Br defined in (5.1). Then for α :“ mint´r ´ d, γu we have

|pFz ´ Fyqpψλy q| ď 2C λα p|z ´ y| ` λqγ´α

for all y, z P K with |z ´ y| ď 1

2
, λ P p0, 1

2
s and ψ P Br .

(6.3)

Proof. For y, z P K, λ P p0, 1s and ψ P Br. By (6.2) we can estimate

|pFz ´ Fyqpψλy q| “ |pf ´ Fyqpψλy q ´ pf ´ Fzqpψλy q|
ď |pf ´ Fyqpψλy q| ` |pf ´ Fzqpψλy q|
ď C λγ ` |pf ´ Fzqpψλy q| .

We claim that for |z ´ y| ď 1

2
and λ P p0, 1

2
s we can bound

|pf ´ Fzqpψλy q| ď C
`

λ
|z´y|`λ

˘´r´d p|z ´ y| ` λqγ . (6.4)

Note that for any α ď γ we can estimate λγ “ λα λγ´α ď λα p|z´y|`λqγ´α, therefore
if we set α :“ mint´r ´ d, γu we obtain (6.3).

It remains to prove (6.4). Estimating |pf ´ Fzqpψλy q| is non obvious because ψλy is
centered at y rather than z. However, we claim that we can write

ψλy “ ξλ1z where ξ :“ ψλ2w , (6.5)

where λ1, λ2 P p0, 1s and w P Bp0, 1q are defined as follows:

λ1 :“ |z ´ y| ` λ , λ2 :“ λ
|z´y|`λ

, w :“ y´z
|z´y|`λ

.
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To prove (6.5), recall that ξλ1z pxq “ λ´d
1 ξpλ´1

1 px ´ zqq, hence for ξ “ ψλ2w we get

ξλ1z pxq “ λ´d
1 ψλ2w pλ´1

1 px´ zqq “ λ´d
1 λ´d

2 ψpλ´1

2 tλ´1

1 px ´ zq ´ wuq
“ pλ1λ2q´d ψppλ1λ2q´1tpx ´ zq ´ λ1wuq “ λ´d ψpλ´1tx ´ yuq “ ψλy pxq .

Note that ξ “ ψλ2w is supported in Bpw, λ2q Ď Bp0, 1q, because |w| ` λ2 ď 1 and ψ

is supported in Bp0, 1q. Since ξ is supported in Bp0, 1q, we have ξ{}ξ}Cr P Br, hence
we can apply equation (6.2) with the replacements

x ù z , ψ ù ξ{}ξ}Cr , λ ù λ1

(note that λ1 P p0, 1s if |z ´ y| ď 1

2
and λ P p0, 1

2
s). This yields

|pf ´ Fzqpξλ1z q| ď C pλ1qγ }ξ}Cr . (6.6)

It remains to bound

}ξ}Cr “ }ψλ2w }Cr “ max
|k|ďr

}Bkψλ2w }8 “ max
|k|ďr

}λ´|k|´d
2 Bkψ}8 ď λ´r´d

2 ,

because max|k|ďr }Bkψ}8 “ }ψ}Cr ď 1 for ψ P Br. By (6.5) and (6.6), we get (6.4). �

7. Convergence of test functions, convolutions

and mollifiers

The space of test functions D is equipped with a strong notion of convergence.

Definition 7.1 (Convergence of test functions). We say that ϕn Ñ ϕ in D

if and only if the following two conditions hold:

(1) all ϕn’s are supported in some fixed compact set K, i.e. ϕn P DpKq @n;
(2) ϕn converges to ϕ uniformly with all derivatives:

@r P N0 : }ϕn ´ ϕ}Cr Ñ 0 .

We typically consider sequences indexed by n P N, with convergence as n Ñ 8, or
continuous families indexed by n “ λ P p0, 1s, with convergence as λ Ó 0.

Remark 7.2. This notion of convergence is induced by a natural topology on D,
called locally convex inductive limit topology. It is quite subtle – non metrizable, not
even first countable – but we will not need to use it directly.

We now show that the “continuity property” (3.1) in the definition of a distribution
corresponds to “sequential continuity” with respect to convergence in D.†

Lemma 7.3. A linear functional T : DpRdq Ñ R is a distribution if and only if

ϕn Ñ ϕ in D implies T pϕnq Ñ T pϕq . (7.1)

†If a map T : D Ñ R is sequentially continuous, i.e. it satisfies (7.1), this does not imply that T

is a continuous map, because the topology on D is not first countable (recall Remark 7.2). However,
if T is a linear map, then sequential continuity implies continuity.
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Proof. By the definition of convergence in D, it is clear that (3.1) implies (7.1). Vice
versa, if (3.1) fails for some compact K, then for every r “ n P N and C “ n P N we
can find ϕn P DpKq such that |T pϕnq| ą n}ϕn}Cn; if we define ψn :“ n´1ϕn{}ϕn}Cn ,
we have |T pψnq| ą 1 for every n P N, which contradicts (7.1) because ψn Ñ 0 in D

(indeed, for any fixed r P N we have }ψn}Cr ď n´1 as soon as n ě r). �

We recall that the convolution of two measurable functions f, g : Rd Ñ R is the
function f ˚ g “ g ˚ f : Rd Ñ R defined by

pf ˚ gqpxq :“
ż

Rd

fpx´ yq gpyq dy “
ż

Rd

fpzq gpx´ zq dz , (7.2)

provided the integral makes sense for almost every x P Rd. This holds, in particular,
when f “ ϕ P D is a test function and g is locally integrable and compactly supported :
in this case the convolution ϕ ˚ g P D is a test function too, and we have

Bkpϕ ˚ gq “ pBkϕq ˚ g . (7.3)

Given any distribution T P D1, we can compute

T pϕ ˚ gq “
ż

Rd

T pϕp¨ ´ yqq gpyq dy ,

as one can deduce from (7.2) (e.g. by linearity and Riemann sum approximations).
If we set ϕypxq :“ ϕpx´ yq “ ϕ1

ypxq, recall (3.2), we obtain the basic formula

T pϕ ˚ gq “
ż

Rd

T pϕyq gpyq dy , (7.4)

that will be used repeatedly in the sequel.
We next state a classical result that will be used frequently.

Lemma 7.4 (Mollifiers). Let ρ : Rd Ñ R, with
ş

ρ “ 1 be compactly supported
and integrable. Then ρεpzq :“ ρε0pzq :“ ε´dρpε´1zq are mollifiers as ε Ó 0, i.e.

@ϕ P D : ϕ ˚ ρε Ñ ϕ in D as ε Ó 0 .

Proof. By (7.3) and
ş

ρε “
ş

ρ “ 1 we can write, for any multi-index k,

Bkpϕ ˚ ρεqpxq ´ Bkϕpxq “
ż

Rd

pBkϕpx´ yq ´ Bkϕpxqqρεpyq dy ,

hence, by the change of variables y “ εz,

|Bkpϕ ˚ ρεqpxq ´ Bkϕpxq| ď
ż

Rd

|Bkϕpx ´ yq ´ Bkϕpxq| |ρεpyq| dy

“
ż

Rd

|Bkϕpx ´ εzq ´ Bkϕpxq| |ρpzq| dz .
(7.5)

Fix a compact set K Ď Rd and take x P K. Since ρ is compactly supported, say on
the ball Bp0, Rq, for ε P p0, 1q the variable x´ εz belongs to the compact set KR, the
R-neighborhood of K. Then we can bound |Bkϕpx ´ εzq ´ Bkϕpxq| À ε|z|, because
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Bkϕ is of class C1 (in fact C8). Since
ş

|z| |ρpzq| dz ă 8, it follows by (7.5) that
supxPK |Bkpϕ ˚ ρεqpxq ´ Bkϕpxq| À ε Ñ 0. This shows that ϕ ˚ ρε Ñ ϕ in D. �

We finally give the easy proof of Lemma 4.2 (Uniqueness).

Proof of Lemma 4.2. Let γ ą 0. We fix a germ pFxqxPRd, a test function ϕ P D

with
ş

ϕ ‰ 0, a compact set K Ď Rd and two distributions f, g P D1 which satisfy,
uniformly for x P K,

lim
λÓ0

|pf ´ Fxqpϕλxq| “ lim
λÓ0

|pg ´ Fxqpϕλxq| “ 0 . (7.6)

Our goal is to show that fpψq “ gpψq for every test function ψ supported in K, i.e.
ψ P DpKq. We may assume that c :“

ş

ϕ “ 1 (otherwise just replace ϕ by c´1 ϕ).
We set T :“ f ´ g, we fix a test function ψ P DpKq and we show that T pψq “ 0.

We have T pψq “ limλÓ0 T pψ ˚ ϕλq by Lemma 7.3, because limλÓ0 ψ ˚ ϕλ “ ψ in D by
Lemma 7.4. Recalling (7.4), we can write

|T pψ ˚ ϕλq| “
ˇ

ˇ

ˇ

ˇ

ż

Rd

T pϕλxqψpxq dx
ˇ

ˇ

ˇ

ˇ

ď }ψ}L1 sup
xPK

|T pϕλxq| ,

where the last inequality holds for any λ ą 0 since ψ is supported in K. It remains
to show that limλÓ0 T pϕλxq “ 0 uniformly for x P K, for which it is enough to observe
that

|T pϕλxq| “ |fpϕλxq ´ gpϕλxq| ď |pf ´ Fxqpϕλxq| ` |pg ´ Fxqpϕλxq|
and these terms vanish as λ Ó 0 uniformly for x P K, by (7.6). �

8. Tweaking a test function

Given an arbitrary test function ϕ and an integer r P N, we build a “tweaked” test
function ϕ̂ which annihilates monomials of degree from 1 to r ´ 1. Recall that ϕλ

denotes the function ϕλpxq :“ λ´dϕpλ´1xq.

Lemma 8.1 (Tweaking). Fix r P N “ t1, 2, . . .u and distinct λ0, λ1, . . . , λr´1 P
p0,8q. Define the constants c0, c1, . . . , cr´1 P R as follows:

ci “
ź

kPt0,...,r´1u: k‰i

λk

λk ´ λi
(8.1)

(when r “ 1 we agree that c0 :“ 1). Then, for any measurable and compactly
supported ϕ : Rd Ñ R and any a P R, the “tweaked” function ϕ̂ defined by

ϕ̂ :“ a

r´1
ÿ

i“0

ci ϕ
λi (8.2)

has integral equal to a
ş

ϕ and annihilates monomials of degree from 1 to r ´ 1:
ż

ϕ̂ “ a

ż

ϕ and

ż

Rd

yk ϕ̂pyq dy “ 0 , @ k P Nd
0
: 1 ď |k| ď r ´ 1 . (8.3)
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Remark 8.2. For fixed a P R, equation (8.3) is a set of conditions, one for each k P
pN0qd with |k| ď r ´ 1 (where k “ 0 corresponds to

ş

ϕ̂ “ a
ş

ϕ). The number of such
conditions equals r for d “ 1, while it is strictly larger than r for d ě 2. Nevertheless,
we can fulfill these conditions by choosing only r variables c0, c1, . . . , cr´1 as in (8.1).
This is due to the scaling properties of monomials.

We now show that in the coherence condition (4.2) we can replace ϕ P D by a
suitable ϕ̂ as in Lemma 8.1. Assume that for some Rϕ ă 8 we have that

ż

ϕ ‰ 0, ϕ is supported in Bp0, Rϕq .

Then, given r P N, we define ϕ̂ “ ϕ̂rrs by (8.2) for a “ 1{
ş

ϕ and for suitable λi’s:

ϕ̂ :“ 1
ş

ϕ

r´1
ÿ

i“0

ci ϕ
λi where λi :“

2´i´1

1 ` Rϕ

and ci as in (8.1) . (8.4)

Lemma 8.3. Let F “ pFxqxPRd be a pα, γq-coherent germ as in Definition 4.3.
For any r P N, the coherence condition (4.2) still holds if ϕ is replaced by ϕ̂ “ ϕ̂rrs

defined in (8.4). Such a test function ϕ̂ has the following properties:

ϕ̂ is supported in Bp0, 1
2
q , (8.5)

ż

Rd

ϕ̂pyq dy “ 1 ,

ż

Rd

yk ϕ̂pyq dy “ 0 for 1 ď |k| ď r ´ 1 , (8.6)

}ϕ̂}L1 ď e2 r

|
ş

ϕ| }ϕ}L1 . (8.7)

Proof. The function ϕ̂ is supported in Bp0, 1{2q because λi ď 1

2Rϕ
. Relation (8.6)

holds by (8.3). To prove (8.7), note that by (8.1) we can bound

|ci| “
ź

kPt0,...,r´1u: k‰i

1

|1 ´ 2k´i| ď
8
ź

m“1

1

1 ´ 2´m
ď

8
ź

m“1

p1 ` 2´mq ď e2 , (8.8)

because |1 ´ 2k´i| ě 1 for k ą i and p1 ´ xq´1 ď 1 ` 2x ď e2x for 0 ď x ď 1

2
. This

bound proves (8.7), by (8.4) and the fact that }ϕλi}L1 “ }ϕ}L1. �

Proof of Lemma 8.1. If r “ 1 equation (8.3) reduces to
ş

ϕ̂ “
ş

ϕ, which holds be-
cause ϕ̂ “ ϕλ0 (recall that c0 “ 1 when r “ 1). Henceforth we fix r P N with
r ě 2.

Fix distinct λ0, λ1, . . . , λr´1 P p0,8q and define c0, c1, . . . , cr´1 by (8.1). Define ϕ̂

by (8.2). For any multi-index k P Nd
0
, since yk :“ yk1

1
yk2
2

¨ ¨ ¨ ykdd , we can compute

ż

Rd

yk ϕ̂pyq dy “
r´1
ÿ

i“0

ci

ż

Rd

yk λ´d
i ϕpλ´1

i yq dy “
ˆ r´1
ÿ

i“0

ci λ
|k|
i

˙
ż

Rd

xk ϕpxq dx ,
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using the change of variables y “ λix. Therefore ϕ̂ fulfills the conditions in (8.3) if

r´1
ÿ

i“0

ci “ 1 and
r´1
ÿ

i“0

ci λ
|k|
i “ 0 for 1 ď |k| ď r ´ 1 .

This is a linear system of r equations, namely

A

¨

˚

˚

˚

˚

˝

c0
c1
c2
...

cr´1

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1

0

0
...
0

˛

‹

‹

‹

‹

‚

where A :“

¨

˚

˚

˚

˚

˝

1 1 . . . 1

λ0 λ1 . . . λd
λ20 λ21 . . . λ2d
...

...
...

...
λr´1

0 λr´1

1 . . . λr´1

d

˛

‹

‹

‹

‹

‚

.

Note that A is a Vandermonde matrix with detpAq “ ś

0ďiăjďdpλj ´λiq ‰ 0, because

λ0, λ1, . . . , λr´1 are all distinct. The inverse matrix A´1 is explicit, see equation (7)
(where a transpose is missing) in [Kli67]:†

pA´1qij “ p´1qj

ÿ

KĎt0,...,r´1uztiu
|K|“r´1´j

ź

kPK

λk

ź

kPt0,...,r´1uztiu

pλk ´ λiq
@0 ď i, j ď r ´ 1 .

In particular, if we set j “ 0, we see that ci “ pA´1qi0 is given by

ci “

ź

kPt0,...,r´1uztiu

λk

ź

kPt0,...,r´1uztiu

pλk ´ λiq
“

ź

kPt0,...,r´1u: k‰i

λk

λk ´ λi
,

which matches (8.1). �

9. Basic estimates on convolutions

In this section we give two elementary but important Lemmas on convolutions. We
fix r P N “ t1, 2, . . .u and a test function ϕ̂ “ ϕ̂rrs P D with the following properties:

ϕ̂ is supported in Bp0, 1
2
q , (9.1)

ż

Rd

yk ϕ̂pyq dy “ 0 for 1 ď |k| ď r ´ 1 . (9.2)

We stress that (9.2) is not required for k “ 0 (indeed, we typically want
ş

ϕ̂ “ 1).

Remark 9.1. Starting from an arbitrary test function ϕ P D, we can define ϕ̂ as in
Lemma 8.1, for any choice of distinct pλiqi“0,...,r´1 and a P R. Then (9.2) holds by
(8.3), while (9.1) holds provided we choose the λi’s small enough.

†See also https://proofwiki.org/wiki/Inverse_of_Vandermonde_Matrix

https://proofwiki.org/wiki/Inverse_of_Vandermonde_Matrix
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Next we define

ϕ̌ :“ ϕ̂
1

2 ´ ϕ̂2, (9.3)

where by ϕ̂
1

2 , ϕ̂2 we mean ϕ̂λpzq “ λ´dϕ̂pλ´1zq for λ “ 1

2
, 2, respectively. The function

ϕ̌ will play an important role in the sequel. It follows by (9.1) and (9.2) that

ϕ̌ is supported in Bp0, 1q , (9.4)
ż

Rd

yk ϕ̌pyq dy “ 0 for 0 ď |k| ď r ´ 1 . (9.5)

We stress that (9.5) holds also for k “ 0, because
ş

ϕ̂
1

2 “
ş

ϕ̂2 “
ş

ϕ̂λ for any λ.
Our first Lemma concerns the convolution of a test function η with ϕ̌.

Lemma 9.2. Fix a test function η P DpHq supported in a compact set H Ď Rd.
Let ϕ̌ P D satisfy (9.4) and (9.5). For any ε ą 0, the function ϕ̌ε ˚ η is supported
in the ε-enlargement H̄ε of H, see (2.1), and

}ϕ̌ε ˚ η}L1 ď VolpH̄εq }η}Cr }ϕ̌}L1 εr . (9.6)

Proof. Since η is supported inH and ϕ̌ is supported in Bp0, 1q, then ϕ̌ε˚η is supported

in H̄ε. Fix y P H̄ε and denote by pyp¨q :“ ř

|k|ďr´1

Bkηpyq
k!

p¨´yqk the Taylor polynomial

of η of order r ´ 1 based at y, which satisfies for all z P Rd

|ηpzq ´ pypzq| ď }η}Cr |z ´ y|r . (9.7)

It follows by (9.5) that
ş

Rd ϕ̌
εpy ´ zq pypzq dz “ 0, hence we can write

pϕ̌ε ˚ ηqpyq “
ż

Rd

ϕ̌εpy ´ zq
 

ηpzq ´ pypzq
(

dz .

Since ϕ̌ε is supported in Bp0, εq, by (9.7)

|pϕ̌ε ˚ ηqpyq| ď }η}Cr

ż

Rd

|ϕ̌εpy ´ zq| |z ´ y|r dz ď }η}Cr }ϕ̌}L1 εr .

This completes the proof of (9.6). �

Our second Lemmas concerns convolutions of (scaled versions of) a test function
ψ with either ϕ̂ or ϕ̌, integrated against an arbitrary function G.

Lemma 9.3. Let λ, ε ą 0, K Ă Rd a compact set and G : Rd Ñ R a measurable
function. Let ϕ̂, ϕ̌ P D satisfy (9.1), (9.2) and (9.4), (9.5), respectively. Then for
all x P K and ψ P Br, see (5.1),

ˇ

ˇ

ˇ

ˇ

ż

Rd

Gpyq pϕ̂2ε ˚ ψλxqpyq dy

ˇ

ˇ

ˇ

ˇ

ď 2d }ϕ̂}L1 sup
Bpx,λ`εq

|G| , (9.8)

ˇ

ˇ

ˇ

ˇ

ż

Rd

Gpyq pϕ̌ε ˚ ψλxqpyq dy
ˇ

ˇ

ˇ

ˇ

ď 4d }ϕ̌}L1 min
 

ε{λ, 1
(r

sup
Bpx,λ`εq

|G| . (9.9)
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Proof. Since ϕ̂ and ψ are supported in Bp0, 1{2q and Bp0, 1q respectively, the function
ϕ̂2ε ˚ ψλx is supported in Bpx, λ ` εq. Then we can bound

ˇ

ˇ

ˇ

ˇ

ż

Rd

Gpyq pϕ̂2ε ˚ ψλxqpyq dy
ˇ

ˇ

ˇ

ˇ

ď }ϕ̂2ε ˚ ψλx}L1 sup
Bpx,λ`εq

|G| .

Now

}ϕ̂2ε ˚ ψλx}L1 ď }ϕ̂2ε}L1}ψλx}L1 ď 2d }ϕ̂}L1 ,

because }ϕ̂2ε}L1 “ }ϕ̂}L1 and (9.8) is proved, because

sup
ψPBr

}ψλx}L1 “ sup
ψPBr

}ψ}L1 ď 2d sup
ψPBr

}ψ}8 ď 2d , (9.10)

since the volume of the unit ball in Rd is bounded above by 2d. Analogously
ˇ

ˇ

ˇ

ˇ

ż

Rd

Gpyq pϕ̌2ε ˚ ψλxqpyq dy
ˇ

ˇ

ˇ

ˇ

ď }ϕ̌2ε ˚ ψλx}L1 sup
Bpx,λ`εq

|G| .

As in (9.10) we can bound

}ϕ̌2ε ˚ ψλx}L1 ď }ϕ̌2ε}L1 }ψλx}L1 “ }ϕ̌}L1 }ψ}L1 ď 2d }ϕ̌}L1 ,

which proves (9.9) for λ ď ε. When λ ą ε, we apply (9.6) to get

}ϕ̌2ε ˚ ψλx}L1 ď VolpBpx, λ ` εqq }ψλx}Cr εr }ϕ̌}L1.

Note that VolpBpx, λ ` εqq ď p2pλ ` εqqd ď 4d λd for λ ą ε. Since ψ P Br, see (5.1),
we can easily bound }ψλx}Cr by (3.2):

}ψλx}Cr “ max
|k|ďr

}Bkpψλxq}8 “ max
|k|ďr

}λ´|k|´dpBkψq}8 ď λ´r´d .

The proof of (9.9) is complete. �

10. Proof of the Reconstruction Theorem for γ ą 0

In this section we prove Theorem 5.1 when γ ą 0. Given any γ-coherent germ
F “ pFxqxPRd, we show the existence of a distribution f P D1 which satisfies (5.2).
Uniqueness of f follows by Lemma 4.2, because the right hand side of (5.2) vanishes
for γ ą 0. Then linearity of the map F ÞÑ RF is a consequence of uniqueness.

We now turn to existence. A large part of the proof actually holds for any γ P R,
only in the last steps we specialize to γ ą 0.

Step 0. Setup. We fix a pα, γq-coherent germ pFxqxPRd as in Definition 4.3, for some
α “ pαKq, with local homogeneity bounds β “ pβKq as in Lemma 4.12. Without
loss of generality, we suppose that with K ÞÑ αK and K ÞÑ βK are monotone as in
(4.4) and (4.9). We will specify when we need to assume γ ą 0.

We fix a compact setK Ă Rd and define its 3{2-fattening K̄3{2 as in (2.1). Through-
out the proof we set

α :“ αK̄3{2
, β :“ βK̄3{2

, (10.1)
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so that (4.2) and (4.8) hold on the compact set K̄3{2. More explicitly, there are finite
constants C1, C2 such that for all y, z P K̄3{2 with |z ´ y| ď 2 and ε P p0, 1s we have

|pFz ´ Fyqpϕεyq| ď C1 ε
α p|z ´ y| ` εqγ´α , |Fypϕεyq| ď C2 ε

β , (10.2)

and in fact we can choose C1 :“ |||F |||cohK̄3{2,ϕ,α,γ
. We also fix an integer r P N such that

r “ rK̄3{2
ą maxt´α,´βu . (10.3)

By Lemma 8.3, we can build a “tweaked” test function ϕ̂ “ ϕ̂rrs which fulfills
properties (8.5) and (8.6), namely the support of ϕ̂ is included in Bp0, 1{2q and

ż

Rd

ϕ̂pyq dy “ 1 ,

ż

Rd

yk ϕ̂pyq dy “ 0 for 1 ď |k| ď r ´ 1 .

We claim that we can replace ϕ by ϕ̂ in (10.2) and obtain, for all y, z P K̄3{2 with
|z ´ y| ď 2 and ε P p0, 1s,

|pFz ´ Fyqpϕ̂εyq| ď Ĉ1 ε
α p|z ´ y| ` εqγ´α , (10.4)

|Fypϕ̂εyq| ď Ĉ2 ε
β , (10.5)

where the constants Ĉ1, Ĉ2 are given by

Ĉ1 :“ e2

|
ş

ϕ|
r
`

2´r´1

1`Rϕ

˘α |||F |||cohK̄3{2,ϕ,α,γ
, Ĉ2 :“ e2

|
ş

ϕ|
r
`

2´r´1

1`Rϕ

˘β^0
C2 , (10.6)

and Rϕ is such that ϕ is supported in Bp0, Rϕq.
Indeed, for every ε P p0, 1s and i “ 0, . . . , r ´ 1 we can estimate by (8.4)

pελiqα p|z ´ y| ` ελiqγ´α ď
`

2´r´1

1`Rϕ

˘α
εα p|z ´ y| ` εqγ´α ,

because 2´r´1

1`Rϕ
ă λi ď 1 (recall that α ď 0 and γ ě α, see Definition 4.3). Similarly

pελiqβ ď
`

2´r´1

1`Rϕ

˘β^0
εβ .

Plugging these bounds into (10.2), by (8.4) and (8.8) we obtain (10.4)-(10.5)-(10.6).

Step 1. Strategy. We can now outline our strategy. We use the mollifiers

ρεpzq “ ε´dρpε´1zq
where ρ is defined as follows (recall that ϕ̂2 means ϕ̂λpzq “ λ´dϕ̂pλ´1zq for λ “ 2):

ρ :“ ϕ̂2 ˚ ϕ̂ and ε “ εn :“ 2´n, n P N0 . (10.7)

Note that
ş

ρ “
ş

ϕ̂2
ş

ϕ̂ “ 1.

This peculiar choice of ρ ensures that the difference ρ
1

2 ´ ρ is a convolution:

ρ
1

2 ´ ρ “ ϕ̂ ˚ ϕ̌ where we define ϕ̌ :“ ϕ̂
1

2 ´ ϕ̂2 , (10.8)

because pfλqλ1 “ fλλ
1
and pf ˚ gqλ “ fλ ˚ gλ, see (3.2) and (9.3). It follows that

ρεn`1 ´ ρεn “ pρ 1

2 ´ ρqεn “ ϕ̂εn ˚ ϕ̌εn . (10.9)

This will allow us to compare efficiently convolutions with ρεn`1 and ρεn .
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We are ready to define a sequence of distributions that will be shown to converge
to a limiting distribution f P D1 which fulfills (5.2). To motivate the definition, note
that for any distribution ξ P D1 and test function ψ P D, by Lemma 7.3, we have

ξpψq “ lim
nÑ8

ξpρεn ˚ ψq “ lim
nÑ8

ż

Rd

ξpρεnz qψ pzq dz ,

where we applied (7.4). When we have a germ F “ pFxqxPRd instead of a fixed
distribution ξ, a natural idea is to replace ξpρεnz q by Fzpρεnz q. This leads to:

Definition 10.1 (Approximating distributions). Given a germ F “ pFxqxPRd,
for n P N we define fn P D1 as follows:

fnpψq :“
ż

Rd

Fzpρεnz qψ pzq dz , ψ P D . (10.10)

Remark 10.2. We recall that, by Definition 4.1, the map z ÞÑ Fzpρεq is measurable.
Since the map z ÞÑ ρεz P D is continuous, it follows that the map pz, yq ÞÑ Fzpρεyq is
jointly measurable as pointwise limit of measurable maps: Fzpρεyq “ limnÑ8 Fzpρεtnyu{nq,
where txu :“ ptx1u, . . . , txduq and tau :“ maxtn P Z : z ď au is the integer part of
a P R. In particular, z ÞÑ Fzpρεnz q is measurable.

Step 2. Decomposition. Let us look closer at fnpψq in (10.10). We start with a
telescopic sum:

fnpψq “ f1pψq `
n´1
ÿ

k“1

gkpψq where gkpψq :“ fk`1pψq ´ fkpψq . (10.11)

We can write gkpψq “
ş

Rd Fzpρεk`1

z ´ρεkz qψpzq dz by (10.10) and then Fzpρεk`1

z ´ρεkz q “
ş

Rd Fzpϕ̂εky q ϕ̌εkz pyq dy, by (10.9) and (7.4), which leads to the fundamental expression

gkpψq “
ż

Rd

ż

Rd

Fzpϕ̂εky q ϕ̌εkpy ´ zqψpzq dy dz .

If we write Fz “ Fy ` pFz ´ Fyq inside the last integral, we can decompose

gkpψq “
ż

Rd

ż

Rd

Fypϕ̂εky q ϕ̌εkpy ´ zqψpzq dy dz
looooooooooooooooooooooomooooooooooooooooooooooon

g1
k

pψq

`
ż

Rd

ż

Rd

pFz ´ Fyqpϕ̂εky q ϕ̌εkpy ´ zqψpzq dy dz
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

g2
k

pψq

.

(10.12)

When we plug this into (10.11), we can write

fnpψq “ f1pψq ` f 1
npψq ` f 2

npψq , (10.13)

where f 1
npψq :“

n´1
ÿ

k“1

g1
kpψq , f 2

npψq :“
n´1
ÿ

k“1

g2
kpψq . (10.14)
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In the next steps we proceed as follows. Recall that we fixed a compact set K Ď Rd.

‚ In Step 3 we show that

@γ P R : f 1pψq :“ lim
nÑ8

f 1
npψq exists @ψ P DpK̄1q . (10.15)

‚ In Step 4 we show that

@γ ą 0 : f 2pψq :“ lim
nÑ8

f 2
npψq exists @ψ P DpK̄1q . (10.16)

Then if γ ą 0 the limit fKpψq :“ limnÑ8 fnpψq exists for ψ P DpK̄1q and
equals

fKpψq “ f1pψq ` f 1pψq ` f 2pψq , ψ P DpK̄1q . (10.17)

‚ In Step 5 we show that fK is a distribution on K̄1 which satisfies

@γ ą 0 : |pfK ´ Fxqpψλxq| ď c |||F |||cohK̄3{2,ϕ,α,γ
λγ

uniformly for ψ P Br, x P K, λ P p0, 1s ,
(10.18)

where the constant c “ cα,γ,r,d,ϕ is given in (10.39) below.
We stress that in principle fKpψq depends on the chosen compact set K,

because fnpψq depends on ϕ̂ “ ϕ̂rrs, see (10.10) and (10.7), and the value of
r depends on K through α “ αK̄3{2

, β “ βK̄3{2
, see (10.3) and (10.1). In the

special case when αK “ α and βK “ β for every K (i.e. the germ F is pα, γq-
coherent with global homogeneity bound β), then fKpψq “ fpψq does not
depend on K and the proof is completed, because f satisfies (5.2) in virtue of
(10.18). In the general case, a small extra step is needed to complete the proof.

‚ In Step 6 we show that for γ ą 0 the distributions fK are consistent, i.e.

for K Ď K 1: fKpψq “ fK
1pψq @ψ P DpK̄1q . (10.19)

This property lets us define a global distribution f P D1 which satisfies (5.2),
thanks to (10.18). This concludes the proof for γ ą 0.

Step 3. Proof of (10.15) for γ P R. By (10.14), to prove (10.15) it suffices to
show that

for all γ P R :

8
ÿ

k“1

|g1
kpψq| ă 8 , @ψ P DpK̄1q . (10.20)

Recall that

g1
kpψq “

ż

Rd

ż

Rd

Fypϕ̂εky q ϕ̌εkpy ´ zqψpzq dy dz “
ż

Rd

Fypϕ̂εky q ϕ̌εk ˚ ψpyq dy .

Note that ϕ̌ “ ϕ̂
1

2 ´ ϕ̂2 is supported in Bp0, 1q, because ϕ̂ is supported in Bp0, 1
2
q.

Since ψ is supported by K̄1 and ϕ̌εk by Bp0, εkq with εk ď 1{2, then ϕ̌εk ˚ ψ is
supported by K̄3{2. Then

|g1
kpψq| ď }ϕ̌εk ˚ ψ}L1 sup

yPK̄3{2

|Fypϕ̂εky q| .
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By (9.6) we have the bound

}ϕ̌εk ˚ ψ}L1 ď VolpK̄3{2q }ψ}Cr εrk }ϕ̌}L1 .

By (10.5), for all y P K̄3{2 we have the bound |Fypϕ̂εyq| ď Ĉ2 ε
β. Then we obtain

|g1
kpψq| ď

 

Ĉ2VolpK̄3{2q }ϕ̌}L1 }ψ}Cr

(

ε
β`r
k . (10.21)

Since εk “ 2´k and β ` r ą 0 by assumption, see (10.3), we have
ř8
k“1

|g1
kpψq| ă 8

which completes the proof of (10.20).

Step 4. Proof of (10.16) for γ ą 0. By (10.14), to prove (10.16) it suffices to
show that

if γ ą 0 :

8
ÿ

k“1

|g2
kpψq| ă 8 , @ψ P DpK̄1q . (10.22)

Recall that

g2
kpψq “

ż

Rd

ż

Rd

pFz ´ Fyqpϕ̂εky q ϕ̌εkpy ´ zqψpzq dy dz . (10.23)

We recall that ϕ̌εk is supported in Bp0, εkq, so that

|g2
kpψq| ď }ϕ̌εk}L1 }ψ}L1 sup

zPK̄1,|y´z|ďεk

|pFz ´ Fyqpϕ̂εky q| ,

with εk ď 1{2 since k ě 1. Then (10.4) gives

sup
zPK̄1,|y´z|ďεk

|pFz ´ Fyqpϕ̂εky q| ď Ĉ1 ε
α
k p2εkqγ´α ,

hence from (10.23) we obtain |g2
kpψq| ď 2γ´α Ĉ1 ε

γ
k }ϕ̌εk}L1 }ψ}L1. We finally observe

that }ϕ̌εk}L1 “ }ϕ̌}L1 by (3.2). This gives the bound

|g2
kpψq| ď

 

2γ´α Ĉ1 }ϕ̌}L1 }ψ}L1

(

ε
γ
k . (10.24)

Since γ ą 0 and εk “ 2´k, we obtain
ř8
k“1

|g2
kpψq| ă 8, proving (10.22).

Step 5. Proof of (10.18). We showed in the previous steps that both f 1
npψq and

f 2
npψq converge for γ ą 0. Recalling (10.13), we have that fnpψq converges to fKpψq

given by (10.17), i.e.

fKpψq “ f1pψq `
8
ÿ

k“1

g1
kpψq `

8
ÿ

k“1

g2
kpψq .

Remark 10.3. By (10.21) and (10.24) there is C “ CK,γ,β,r,ϕ̂ ă 8 such that

|fKpψq| ď C
 

}ψ}L1 ` }ψ}Cr

(

ď CtVolpK̄3{2q ` 1u }ψ}Cr for ψ P DpK̄1q .
This shows that fK P D1pK̄1q is indeed a distribution on K̄1, see (3.1).

We now prove that fKp¨q satisfies (10.18). We fix a point x P K and define

f̃pψq :“ fKpψq ´ Fxpψq , ψ P DpK̄1q.
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We also define f̃npψq similarly to fnpψq in (10.10), just replacing Fz by Fz ´ Fx:

f̃npψq :“
ż

Rd

pFz ´ Fxqpρεnz qψ pzq dz “ fnpψq ´ Fxpρεn ˚ ψq , (10.25)

having used (7.4). Since Fxpρεn ˚ ψq Ñ Fxpψq by Lemma 7.4 and Lemma 7.3, we
have

f̃pψq “ lim
nÑ8

f̃npψq . (10.26)

We now fix λ P p0, 1s and define

N “ Nλ :“ mintk P N : εk ď λu, (10.27)

so that N ě 1 and in particular

εN ď λ ă εN´1 “ 2εN . (10.28)

Let us now fix ψ P Br, see (5.1). By the triangle inequality we can bound

|f̃pψλxq| ď |f̃Npψλxq| ` |pf̃ ´ f̃N qpψλxq| . (10.29)

We will estimate separately the two terms in the right-hand side.

First term in (10.29). By (10.25), recalling (10.7) and (7.4), we can write

f̃Npψλxq “
ż

Rd

ż

Rd

pFz ´ Fxqpϕ̂εNy q ϕ̂2εN py ´ zqψλxpzq dy dz . (10.30)

This integral is similar to (10.23) and we argue as in the proof of (10.24). Recall that
ϕ̂ has support in Bp0, 1

2
q. Then ϕ̂2εN has support in Bp0, εNq and we may assume

that |y ´ z| ď εN ď 1

2
in the right-hand side of (10.30). Since ψλx is supported in

Bpx, λq Ă K̄1, we can assume that |z ´ x| ď λ, hence z P K̄1 and y P K̄3{2. Then

|f̃Npψλxq| ď }ϕ̂2εN }L1 }ψλx}L1 sup
zPBpx,λq,|y´z|ďεN

|pFz ´ Fxqpϕ̂εNy q|.

By the triangle inequality |pFz ´ Fxqpϕ̂εNy q| ď |pFz ´ Fyqpϕ̂εNy q| ` |pFy ´ Fxqpϕ̂εNy q|,
and since (10.4) and (10.28) give

sup
zPBpx,λq,|y´z|ďεN

|pFz ´ Fyqpϕ̂εNy q| ď Ĉ1 ε
α
N p2εNqγ´α ď Ĉ1 2

γ´α λγ ,

sup
zPBpx,λq,|y´z|ďεN

|pFy ´ Fxqpϕ̂εNy q| ď Ĉ1 ε
α
N pλ ` 2εNqγ´α ď Ĉ1 4

γ´α λγ ,

we obtain
|f̃Npψλxq| ď 2 ¨ 4γ´α Ĉ1 λ

γ }ϕ̂2εN }L1 }ψλx}L1 .

We can easily bound }ψλx}L1 ď 2d for ψ P Br, see (9.10), and }ϕ̂2εN }L1 “ }ϕ̂}L1. All

this yields the following estimate for the first term |f̃N pψλxq| in (10.29)

|f̃Npψλxq| ď t4γ´α 2d`1u }ϕ̂}L1 Ĉ1 λ
γ . (10.31)

Second term in (10.29). Next we bound, by (10.26),

|pf̃ ´ f̃Nqpψλxq| ď
ÿ

kěN

|pf̃k`1 ´ f̃kqpψλxq| . (10.32)
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Recalling (10.25) and (10.13)-(10.14), we can write

pf̃k`1 ´ f̃kqpψλxq “ pfk`1 ´ fkqpψλxq ´ Fx
`

pρεk`1 ´ ρεkq ˚ ψλx
˘

“ g1
kpψλxq ´ Fx

`

pρεk`1 ´ ρεkq ˚ ψλx
˘

loooooooooooooooooooomoooooooooooooooooooon

Aλ
k

` g2
kpψλxq

loomoon

Bλ
k

. (10.33)

We now look at Aλk and Bλ
k . The estimates for Aλk hold for any γ P R and will be

useful in Section 11 for the case γ ď 0, hence we state them as a separate result.

Lemma 10.4. Define Aλk as in (10.33). For any γ P R we have

|Aλk | ď 4d`γ´α Ĉ1 }ϕ̌}L1 ¨
#

λγ´α´r εα`r
k if εk ă λ

ε
γ
k if εk ě λ

, (10.34)

and for N “ Nλ in (10.27) we have

ÿ

kěN

|Aλk | ď 4d`γ´α

1 ´ 2´α´r
Ĉ1 }ϕ̌}L1 λγ . (10.35)

Proof. By (7.4), together with the crucial property (10.9) of ρεk`1 ´ρεk , we can write

Fx
`

pρεk`1 ´ ρεkq ˚ ψλx
˘

“
ż

Rd

Fxpρεk`1

z ´ ρεkz qψλxpzq dz

“
ż

Rd

ż

Rd

Fxpϕ̂εky q ϕ̌εkpy ´ zqψλxpzq dy dz .

Recalling the definition (10.12) of g1
k, we obtain

Aλk :“
ż

Rd

ż

Rd

pFy ´ Fxqpϕ̂εky q ϕ̌εkpy ´ zqψλxpzq dy dz

“
ż

Rd

pFy ´ Fxqpϕ̂εky q pϕ̌εk ˚ ψλxqpyq dy .

If we define Gpyq :“ pFy ´ Fxqpϕ̂εyq, we see that |Aλk | can be estimated as in (9.9),
which yields

|Aλk | ď 4d }ϕ̌}L1 min
 

εk{λ, 1
(r

sup
yPBpx,λ`εkq

|pFy ´ Fxqpϕ̂εky q| .

For y P Bpx, λ ` εkq, by (10.4) we have

|pFx ´ Fyqpϕ̂εky q| ď Ĉ1 ε
α
k p|x ´ y| ` εkqγ´α ď Ĉ1 pλ ` 2εkqγ´α

εαk ,

which proves (10.34) because pλ ` 2εkqγ´α ď 3γ´α maxtεk, λuγ´α.
We next turn to (10.35). For k ě N we have εk ď λ, see (10.28), hence we can

apply the first line in (10.34). Since α ` r ą 0 by assumption, we have

ÿ

kěN

εα`r
k “ εα`r

N

1 ´ 2´α´r
ď λα`r

1 ´ 2´α´r
,

therefore from (10.34) we obtain (10.35). �
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We next focus on Bλ
k “ g2

kpψλxq in (10.33). Recalling the definition (10.12) of g2
k,

we can write

Bλ
k :“

ż

Rd

ż

Rd

pFz ´ Fyqpϕ̂εky q ϕ̌εkpy ´ zqψλxpzq dy dz .

Since ψ and ϕ̌ are both supported in Bp0, 1q, we can suppose that |z ´ x| ď λ and
|y ´ z| ď εk ď 1{2 and therefore z P K̄1, y P K̄3{2. Then

|Bλ
k | ď }ϕ̌εk}L1 }ψλx}L1 sup

zPK̄1,|y´z|ďεk

|pFz ´ Fyqpϕ̂εky q| .

By (10.4) we have the bound

sup
zPK̄1,|y´z|ďεk

|pFz ´ Fyqpϕ̂εky q| ď Ĉ1 ε
α
k p2εkqγ´α ,

and therefore, since }ψλx}L1 ď 2d for ψ P Br by (9.10),

|Bλ
k | ď 2γ´α 2d Ĉ1 }ϕ̌}L1 ε

γ
k .

Note now that γ ą 0 here, so that

ÿ

kěN

ε
γ
k “ ε

γ
N

1 ´ 2´γ
ď λγ

1 ´ 2´γ
,

which yields
ÿ

kěN

|Bλ
k | ď 2γ´α 2d

1 ´ 2´γ
Ĉ1 }ϕ̌}L1 λγ . (10.36)

Recalling (10.32) and (10.33), we obtain from (10.35) and (10.36) the desired
estimate for the second term in (10.29):

|
`

f̃ ´ f̃N
˘

pψλxq| ď 2 ¨ 4d`γ´α

1 ´ 2´γ^pα`rq
Ĉ1 }ϕ̌}L1 λγ . (10.37)

Conclusion. At last, we can gather (10.29), (10.31) and (10.37). We estimate }ϕ̌}L1 ď
2 }ϕ̂}L1 by (10.8), to get

|pfK ´ Fxqpψλxq| ď 2 ¨ 4d`1`γ´α

1 ´ 2´γ^pα`rq
Ĉ1 }ϕ̂}L1 λγ .

If we estimate }ϕ̂}L1 using (8.7) and Ĉ1 using (10.6), we obtain

Ĉ1 }ϕ̂}L1 ď
`

e2

|
ş

ϕ|
r
˘2`2´r´1

1`Rϕ

˘α }ϕ}L1 |||F |||cohK̄3{2,ϕ,α,γ
. (10.38)

If we bound e ď 4 for simplicity, we obtain finally (10.18) with

c “ cα,γ,r,d,ϕ “ r2 2pr`1qα 4d`γ´α`6

1 ´ 2´γ^pα`rq

}ϕ}L1 p1 ` Rϕq´α

|
ş

ϕ|2 (for γ ą 0) (10.39)

where Rϕ is the radius of a ball Bp0, Rϕq which contains the support of ϕ.
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Step 6. Proof of (10.19). We finally show that the distributions fK built in
the previous steps are consistent, namely for K Ď K 1 and for all test functions
ψ P DpK̄1q that are supported in K̄1 we have fK

1pψq “ fKpψq. This is an immediate
consequence of Lemma 4.2, because if we fix any ξ P DpK̄1q with

ş

ξ ‰ 0 it follows

by (10.18) with ψ “ ξ that both fK and fK
1
satisfy (4.1) with ϕ “ ξ on the compact

set K̄1.
We can finally define a global distribution f P D1: given any test function ψ P D, we

pick a compact set K large enough so that ψ P DpK̄1q and we define fpψq :“ fKpψq
(this is well-posed thanks to the consistency relation (10.19) that we have just proved).
Then, for any compact set K, we can replace fK by f in (10.18), which shows that
f satisfies (5.2). This completes the proof of Theorem 5.1 for γ ą 0. �

11. Proof of the Reconstruction Theorem for γ ď 0

In this section we prove Theorem 5.1 when γ ď 0. We stress that we do not have
a unique choice for the reconstruction RF , because relation (5.2) for γ ď 0 does not
characterize f uniquely, see Lemma 4.2 above and Remark 12.9 below.

Henceforth we fix a germ F “ pFxqxPRd which is γ-coherent with γ ď 0. In order
to find a correct choice of RF , we start following the proof of the case γ ą 0, see
Section 10. We fix a compact set K Ď Rd and we fix α, β, r as in (10.1)-(10.3).
The key problem when γ ď 0 is that the sequence of approximating distributions fn
that we defined in (10.10) will typically not converge, hence we can no longer define
fK :“ limnÑ8 fn. More precisely, if we recall the decomposition

fnpψq “ f1pψq ` f 1
npψq ` f 2

npψq , ψ P DpK̄1q ,
see (10.11)-(10.14), then it is the term f 2

npψq which can fail to converge for γ ď 0,
since the proof in Step 4 was based on (10.24) and exploited γ ą 0. On the other
hand, we showed that f 1pψq :“ limnÑ8 f

1
npψq exists for every γ P R, see (10.15).

Therefore, for γ ď 0 the idea is to suppress f 2
npψq. Recalling (10.14), we thus set

fKpψq “ f1pψq ` f 1
1pψq “ f1pψq `

8
ÿ

k“1

g1
kpψq , ψ P DpK̄1q . (11.1)

We complete the proof in two steps, that we now describe.

‚ In Step I we show that fK P D1pK̄1q is a distribution on K̄1 which satisfies

|pfK ´ Fxqpψλxq| ď C |||F |||cohK̄3{2,ϕ,α,γ
¨
#

λγ if γ ă 0
`

1 ` | log λ|
˘

if γ “ 0

uniformly for ψ P Br, x P K, λ P p0, 1s ,
(11.2)

for a suitable C given below, see (11.11) for γ ă 0 and (11.12) for γ “ 0.

Remark 11.1. We stress that in general fKpψq depends on the compact set K.
Indeed, f1pψq and g1

kpψq depend on ϕ̂ “ ϕ̂rrs and the value of r ą maxt´α,´βu :“
maxt´αK̄3{2

,´βK̄3{2
u is a function of K, see (10.3) and (10.1).
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We first consider the special case when the germ F is pα, γq-coherent with global
homogeneity bound β, that is when αK “ α and βK “ β for every compact set K.
Then we can choose a fixed r ą maxt´α,´βu and fKpψq “ fpψq does not depend
on K, hence replacing fK by f in (11.2) we obtain precisely (5.2).

It remains to show that the map F ÞÑ f “: RF is linear (we recall that the family
of pα, γq-coherent germs with global homogeneity bound β is a vector space, see
Remark 4.14). This follows easily by the definition (11.1) of fK “ f , because both
f1 and g1

k are linear functions of F , see (10.10) and (10.12). We have thus completed
the proof of Theorem 5.1 for γ ď 0 in this special case.

We finally go back to the general case when αK and βK may depend on K, hence
fK also depends on K. We complete the proof of Theorem 5.1 for γ ď 0 as follows.

‚ In Step II we build a global distribution f P D1 out of the fK ’s, by a localisation
argument based on a partition of unity, and we show that f satisfies (5.2).

It only remains to prove Steps I and II.

Step I. Proof of (11.2). Let us outline the strategy we are going to follow.
We have fixed a compact set K Ď Rd. We now fix a point x P K. By Lemma 7.3

and Lemma 7.4 we have Fxpψq “ limnÑ8 Fxpρεn ˚ ψq. In view of (11.1), we define

f̄npψq :“
˜

f1pψq `
n´1
ÿ

k“1

g1
kpψq

¸

´ Fxpρεn ˚ ψq (11.3)

so that we can write

f̄pψq :“ pfK ´ Fxqpψq “ lim
nÑ8

f̄npψq .

We now fix λ P p0, 1s and replace ψ by ψλx . By the triangle inequality, we get

|f̄pψλxq| ď |pf̄ ´ f̄N qpψλxq| ` |f̄Npψλxq| , (11.4)

where N ě 1, defined in (10.27), is such that (we recall that εk “ 2´k)

εN ď λ ă εN´1 “ 2 εN .

We estimate the two terms in the right hand side of (11.4) separately.

First term in (11.4). We bound

|pf̄ ´ f̄Nqpψλxq| ď
ÿ

kěN

|pf̄k`1 ´ f̄kqpψλxq| .

By (11.3) we can write

pf̄k`1 ´ f̄kqpψλxq “ g1
kpψλxq ´ Fx

`

pρεk`1 ´ ρεkq ˚ ψλx
˘

“ Aλk ,

where the term Aλk was defined in (10.33). We can then apply Lemma 10.4, which
holds also for γ ď 0: in particular, by relation (10.35) we obtain

|pf̄ ´ f̄Nqpψλxq| ď 4d`γ´α

1 ´ 2´α´r
Ĉ1 }ϕ̌}L1 λγ . (11.5)



30 F. CARAVENNA AND L. ZAMBOTTI

Second term in (11.4). Since N ě 1, we can bound

|f̄N pψλxq| ď |f̄1pψλxq| `
N´1
ÿ

k“1

|pf̄k`1 ´ f̄kqpψλxq| . (11.6)

For k ď N ´ 1 we have εk ě εN´1 ě λ, therefore by the second line in (10.34)

|pf̄k`1 ´ f̄kqpψλxq| ď 4d`γ´α Ĉ1 }ϕ̌}L1 ε
γ
k . (11.7)

Next we estimate |f̄1pψλxq|. By (7.4) we have Fxpρε1 ˚ ψq “
ş

Rd Fxpρε1z qψpzq dz.
Recalling (11.3) and the definitions (10.10), (10.7) of f1 and ρ, we obtain

f̄1pψλxq “ f1pψq ´ Fxpρεn ˚ ψq “
ż

Rd

pFy ´ Fxqpρε1y qψλxpyq dy

“
ż

Rd

ż

Rd

pFz ´ Fxqpϕ̂ε1y q ϕ̂2ε1py ´ zqψλxpzq dy dz .

Since εk “ 2´k and ϕ̂ has support in Bp0, 1
2
q, then ϕ̂2ε1 has support in Bp0, ε1q “

Bp0, 1
2
q and we may assume that |y´ z| ď 1

2
. Since ψλx is supported in Bpx, λq Ă K̄1,

we can assume that |z ´ x| ď λ and z P K̄1, y P K̄3{2. Then

|f̄1pψλxq| ď }ϕ̂2ε1}L1 }ψλx}L1 sup
zPBpx,λq, |y´z|ď 1

2

|pFz ´ Fxqpϕ̂yq|.

Moreover (10.4) for ε “ 1 gives

sup
zPBpx,λq, |y´z|ď 1

2

|pFz ´ Fyqpϕ̂yq| ď Ĉ1 p|y ´ z| ` 1qγ´α ď Ĉ1 2
γ´α ,

sup
zPBpx,λq, |y´z|ď 1

2

|pFy ´ Fxqpϕ̂yq| ď Ĉ1 p|y ´ x| ` 1qγ´α ď Ĉ1 3
γ´α ,

therefore by the triangular inequality

|f̄1pψλxq| ď 2 Ĉ1 3
γ´α }ψλx}L1 }ϕ̂2ε1}L1 ď Ĉ1 3

γ´α 2d`1 }ϕ̂}L1 , (11.8)

since }ψλx}L1 ď 2d for ψ P Br, by (9.10), and }ϕ̂2ε1}L1 “ }ϕ̂}L1 . We can finally
estimate |f̄N pψλxq| by (11.6). We get by (11.7) and (11.8)

|f̄Npψλxq| ď 4d`γ´α Ĉ1 }ϕ̌}L1

N´1
ÿ

k“0

ε
γ
k . (11.9)

Recalling that εk “ 2´k and εN “ 2´N ě λ{2, we obtain for γ ď 0

N´1
ÿ

k“0

ε
γ
k “

N´1
ÿ

k“0

2´γk ď

$

’

’

’

&

’

’

’

%

pλ{2qγ ´ 1

2´γ ´ 1
ď λγ

1 ´ 2γ
if γ ă 0

log 2

λ

log 2
if γ “ 0 .

(11.10)

Conclusion. At last, we can gather (11.4), (11.5) and (11.9)-(11.10). For γ ă 0, since
}ϕ̌}L1 ď 2 }ϕ̂}L1 by (10.8), we obtain

|pfK ´ Fxqpψλxq| ď 4d`γ´α`1

1 ´ 2´pα`rq^p´γq
}ϕ̂}L1 Ĉ1 λ

γ .
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By (10.38), if we bound e ď 4 for simplicity, we obtain for all λ P p0, 1s

|pfK ´ Fxqpψλxq| ď r2 2´pr`1qα 4d`γ´α`6

1 ´ 2´pα`rq^p´γq

}ϕ}L1 p1 ` Rϕq´α

|
ş

ϕ|2
loooooooooooooooooooooooomoooooooooooooooooooooooon

C

|||F |||cohK̄3{2,ϕ,α,γ
λγ . (11.11)

For γ “ 0, since logp2{λq{ log 2 ď 2p1 ` | log λ|q, we obtain by (11.9)

|pfK ´ Fxqpψλxq| ď r2 2´pr`1qα 4d´α`6

1 ´ 2´α´r

}ϕ}L1 p1 ` Rϕq´α

|
ş

ϕ|2
loooooooooooooooooooooomoooooooooooooooooooooon

C

|||F |||cohK̄3{2,ϕ,α,γ
p1 ` | log λ|q .

(11.12)
This completes the proof of (11.2).

Step II. Localization. In Step I we constructed for every compact set K Ă Rd

a distribution fK P D1pK̄1q which satisfies (11.2). We now exploit this construction
only when K is a ball. Indeed, we use a partition of unity subordinated to a cover
made by balls, to construct a global distribution f P D1 which satisfies (5.2).

Fix η P DpBp0, 1
4
qq such that η ě 0 on Bp0, 1

4
q and η ě 1 on Bp0, 1

8
q and set

E :“ 1

4
?
d
Zd , ξpxq :“ ηpxq

ř

zPE ηpx´ zq , x P Rd.

For every y P E we set ξypxq :“ ξpx ´ yq, x P Rd. Then ξy is supported in Bpy, 1
4
q

and note that
ř

yPE ξypxq “ 1, for all x P Rd, that is pξyqyPE is a partition of unity

subordinated to the cover pBpy, 1
4
qqyPE . We finally define a distribution f P D1pRdq

by

f :“
ÿ

yPE

fBy ¨ ξy , where By :“ Bpy, 1
4
q ,

or more explicitly

fpψq “
ÿ

yPE

fBypξy ψq , @ψ P DpRdq .

We fix an arbitrary compact set K Ă Rd and we redefine α, β and r as follows:

α :“ αK̄2
, β :“ βK̄2

, r ą maxt´αK̄2
,´βK̄2

u , (11.13)

i.e. we replace K̄3{2 by K̄2, as in the statement of Theorem 5.1. It remains to show
that f satisfies (5.2) on K with these values of r and α.

We select the finite family of points y1, . . . , yn P E for which the balls Byi have
non-empty intersection with K. Since each ball Byi has diameter 1

2
, we have

K Ď
ď

i“1,...,n

Byi Ď K̄1{2 .

Note that the 3{2-enlargement of each Byi is contained in K̄2, the 2-enlargement of
K. Then, by Step I and by the monotonicity properties (4.4)-(4.9) of K ÞÑ αK and
K ÞÑ βK , each distribution fByi satisfies (11.2) for K “ Byi and for r and α chosen
as in (11.13). For any test function ψ supported in Bp0, 1q we can write

ξypzqψλxpzq “ ζλx pzq where ζpzq “ ζ rx,y,λspzq :“ ξypx ` λzqψpzq .
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If we apply (11.2) for K “ By to ζ{}ζ}Cr P Br, we obtain for γ ă 0

|pfBy ´ Fxqpξy ψλxq| “ |pfBy ´ Fxqpζλx q| ď C }ζ}Cr |||F |||cohK̄2,ϕ,α,γ
λγ ,

where C is as in (11.11). Note that, by Leibniz’s rule,

}ζ}Cr ď 2r }ξ}Cr }ψ}Cr .

Then, by definition of f and by
ř

yPE ξy ” 1,

|pf ´ Fxqpψλxq| “
ˇ

ˇ

ˇ

ˇ

ÿ

yPE

pfBy ´ Fxqpξy ψλxq
ˇ

ˇ

ˇ

ˇ

ď
ÿ

yPE

|pfBy ´ Fxqpξy ψλxq|

ď p11
?
dqd C 2r }ξ}Cr }ψ}Cr |||F |||cohK̄2,ϕ,α,γ

λγ .

The last inequality holds because ξy ψ
λ
x ” 0 unless |x ´ y| ď 1

4
` λ ď 5

4
and this can

be satisfied by at most p2 ¨ 5

4
¨ 4

?
d ` 1qd ď p11

?
dqd many y P E. Therefore f P D1

satisfies (5.2) for γ ă 0, with c “ cα,γ,r,d,ϕ given as follows (recall (11.11)):

cα,γ,r,d,ϕ “ 2r }ξ}Cr p11
?
dqd r

2 2´pr`1qα 4d`γ´α`6

1 ´ 2´pα`rq^p´γq

}ϕ}L1 p1 ` Rϕq´α

|
ş

ϕ|2 (for γ ă 0)

(11.14)

where Rϕ is the radius of a ball Bp0, Rϕq which contains the support of ϕ. With
similar arguments, using (11.12), for γ “ 0 we obtain that f P D1 satisfies (5.2), with

cα,γ,r,d,ϕ “ 2r }ξ}Cr p11
?
dqd r

2 2´pr`1qα 4d´α`6

1 ´ 2´α´r

}ϕ}L1 p1 ` Rϕq´α

|
ş

ϕ|2 (for γ “ 0)

(11.15)

The proof is complete. �

In the next sections we introduce the spaces of distributions with negative Hölder
regularity and we discuss some consequences of the Reconstruction Theorem.

12. Negative Hölder spaces

We generalize the classical Hölder spaces Cα, by allowing the index α to be negative.
We recall that the family Br of test functions was defined in (5.1).

Definition 12.1 (Negative Hölder spaces). Given α P p´8, 0s, we define
Cα “ CαpRdq as the space of distributions T P D1 such that

|T pψεxq| À εα

uniformly for x in compact sets, for ε P p0, 1s and for ψ P Brα ,
(12.1)

where we define rα as the smallest integer r P N such that r ą ´α.

Remark 12.2. Other definitions of the space C0 are possible, see e.g. [HL17]. The
one that we give here is convenient for our goals.
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For any distribution T P D1 and α ď 0, we define }T }CαpKq as the best constant in
(12.1):

}T }CαpKq :“ sup
xPK, λPp0,1s, ψPBrα

|T pψλxq|
λα

. (12.2)

Then T P Cα if and only if }T }CαpKq ă 8, for all compact sets K Ď Rd.

Remark 12.3. The quantity } ¨ }CαpKq is a semi-norm on Cα. It is actually a true
norm for distributions T which are supported in K, i.e. such that T pξq “ 0 for all
test functions ξ P D which are supported in Kc.

Remarkably, in order for a distribution T P D1 to belong to Cα, it is enough that
(12.1) holds for a single, arbitrary test function ψ “ ϕ with

ş

ϕ ‰ 0, rather than
uniformly for ψ P Brα. This is ensured by our next results, that we prove below
using the same ideas as in the proof of the Reconstruction Theorem.

Theorem 12.4 (Characterization of negative Hölder spaces). Given a
distribution T P D1 and α P p´8, 0s, the following conditions are equivalent.

(1) T is in Cα

(2) There is an integer r ą ´α such that (12.1) holds with Brα replaced by Br.

(3) There is a test function ϕ P D with
ş

ϕ ‰ 0 such that

|T pϕεxq| À εα

uniformly for x in compact sets and for ε P t2´kukPN Ď p0, 1s .
Moreover, the semi-norm }T }CαpKq defined in (12.2) can be estimated explicitly

using an arbitrary test function ϕ P D with
ş

ϕ ‰ 0:

}T }CαpKq ď bϕ,α,rα,d sup
xPK̄2, εPp0,1s

|T pϕεxq|
εα

(12.3)

where bϕ,α,r,d is an explicit constant, defined in (12.19) below.

We deduce a simple countable criterion for a distribution T P D1 to belong to Cα.

Theorem 12.5 (Countable criterion for negative Hölder spaces). Let
α ď 0 and T P D1. Then T P Cα if (and only if) there is a test function ϕ P D

with
ş

ϕ ‰ 0 such that, for every fixed n P N, we have

|T pϕεxq| À εα

uniformly for x P Qd X Bp0, nq and ε P t2´kukPN .
(12.4)

Proof. The map x ÞÑ ϕεx P D is continuous, hence x ÞÑ T pϕεxq is a continuous function.
It follows that (12.4) holds for all x P Bp0, nq, so Theorem 12.4 applies. �

We finally turn to the proof of Theorem 12.4, that we obtain as a corollary of the
following more general result, proved at the end of this section.
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Proposition 12.6. Let T P D1pRdq be a distribution with the following property:
there are a subset K Ď Rd and a test function ϕ P D with

ş

ϕ ‰ 0 such that

@x P K̄2, @ ε P t2´kukPN : |T pϕεxq| ď εα fpε, xq , (12.5)

for some exponent α ď 0 and some arbitrary function f : p0, 1s ˆ K̄2 Ñ r0,8q.
Then we can upgrade relation (12.5) as follows: for any integer r ą ´α,

@x P K, @λ P p0, 1s, @ψ P Br : |T pψλxq| ď bϕ,α,r,d λ
α f̄pλ, xq , (12.6)

where bϕ,α,r,d is the constant in (12.19) below, and f̄ : p0, 1s ˆ K Ñ r0,8q equals

f̄pλ, xq :“ sup
λ1Pp0,λs, x1PBpx,2λq

fpλ1, x1q . (12.7)

Proof of Theorem 12.4. Clearly 1. implies 2., because Br Ď Brα for r ě rα, and 2.
implies 3., because we can choose any ϕ “ ψ P Br with

ş

ψ ‰ 0.
To prove that 3. implies 1., it suffices to apply Proposition 12.6 on every compact

set with a constant function fpλ, xq ” C. Equation (12.3) then follows by (12.6). �

We next show that the reconstruction f “ RF of a coherent germ F provided by
the Reconstruction Theorem belongs to a negative Hölder space and it is a continuous
function of the germ, in a suitable sense.

We recall that the coherence of a germ is quantified by the semi-norm |||F |||cohK̄1,ϕ,α,γ

defined in (4.5). We introduce a second semi-norm which quantifies the homogeneity
of a coherent germ: for any compact set K Ă Rd we define, recalling Lemma 4.12,

|||F |||homK,ϕ,β :“ sup
xPK, εPp0,1s

|Fxpϕεxq|
εβ

, (12.8)

where ϕ is as in Definition 4.3. We can now state the following result.

Theorem 12.7 (Reconstruction Theorem and Hölder spaces). Let pFxqxPRd

be a pα, γq-coherent germ with local homogeneity bound β ă γ. If β ą 0, then
RF “ 0. If β ď 0, then RF belongs to Cβ and for every compact set K Ď Rd

}RF }CβpKq ď C

´

|||F |||cohK̄4,ϕ,α,γ
` |||F |||homK̄2,ϕ,β

¯

, (12.9)

where ϕ be the test function in the coherence condition (4.2) and C “ Cα,γ,β,d,ϕ ă 8
is a constant which depends neither on F nor on K.

Remark 12.8. The bound (12.9) holds for any test function ϕ P D with
ş

ϕ ‰ 0,
as for the coherence condition (4.2). This will be shown in Proposition 13.1.

Proof. When β ą 0 we already observed in Remark 4.15 that RF “ 0. Henceforth
we fix β ď 0. Let ϕ be the test function in the coherence condition (4.2). Let f “ RF

by a reconstruction of F . Fix a compact set K: if we show that

sup
xPK̄2, λPp0,1s

|fpϕλxq|
λβ

ď C
1
´

|||F |||cohK̄4,ϕ,α,γ
` |||F |||homK̄2,ϕ,β

¯

(12.10)
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for some C
1 “ C

1
α,γ,β,d,ϕ ă 8, then we obtain (12.9) by (12.3) with C “ bϕ,β,rβ ,d C

1.
It remains to prove (12.10). Let us set r̄ :“ mintr P N : r ą maxt´α,´βuu. We

observed in Remark 5.2 that ξ :“ c ϕη P Br̄ for suitable c, η ą 0 (which depend on ϕ
and r̄). Then by (5.2) for r “ r̄ we have, uniformly for x P K̄2 and λ P p0, 1s,

|pf ´ Fxqpϕλxq| “ c´1 |pf ´ Fxqpψη´1λ
x q| ď c

1 |||F |||cohK̄4,ϕ,α,γ
¨
#

λγ if γ ‰ 0

p1 ` | log λ|q if γ “ 0

for a suitable c1 “ c
1
α,γ,β,d,ϕ. Since β ă γ, we bound λγ ď λβ for γ ‰ 0 and 1`| log λ| ď

cβ λ
β for γ “ 0, for all λ P p0, 1s (by direct computation cβ “ ´β´1 e´1´β). Recalling

(12.8), by the triangle inequality we obtain

sup
xPK̄2, λPp0,1s

|fpϕλxq|
λβ

ď sup
xPK̄2, λPp0,1s

|pf ´ Fxqpϕλxq| ` |Fxpϕλxq|
λβ

ď p1 ` cβq c1 |||F |||cohK̄4,ϕ,α,γ
` |||F |||homK̄2,ϕ,β

,

which completes the proof of (12.10). �

Remark 12.9 (Non uniqueness). Let pFxqxPRd be a pα, γq-coherent germ with
γ ă 0 and let f1 and f2 be two distributions which both satisfy (5.2). Then

|pf1 ´ f2qpψλxq| ď |pf1 ´ Fxqpψλxq| ` |pf2 ´ Fxqpψλxq| À λγ

uniformly for x in compact sets and λ P p0, 1s and therefore f1 ´ f2 P Cγ , by Theo-
rem 12.4. Viceversa, if f P D1 satisfies (5.2) and D P Cγ , then f ` D also satisfies
(5.2). Therefore, the reconstruction f “ RF of a pα, γq-coherent germ F with γ ă 0

is not unique, but it is well-defined up to an element of Cγ .

We conclude this section with the proof of Proposition 12.6.

Proof of Proposition 12.6. Fix ϕ P D with
ş

ϕ ‰ 0 which satisfies (12.5) and r P N

with r ą ´α. We define the test function ϕ̂ “ ϕ̂rrs by (8.4) and we claim that

@x P K̄2, @ ε P t2´kukPN : |T pϕ̂εxq| ď C εα f̃pε, xq , (12.11)

where

f̃pε, xq :“ sup
ε1Pp0,εs

fpε1, xq , C :“ e2 r
|
ş

ϕ|

`

2´r´1

1`Rϕ

˘α
. (12.12)

To prove this claim, it suffices to write T pϕ̂εxq “ 1
ş

ϕ

řr´1

i“0
ci T pϕελix q and to apply

(12.5) to T pϕελix q, noting that 2´r´1

1`Rϕ
ă λi ď 1 by (8.4) and |ci| ď e2 by (8.8).

We recall that ϕ̂ satisfies (8.5)-(8.6) as well as (8.7). Next we define

ρ :“ ϕ̂2 ˚ ϕ̂ , εk “ 2´k ,

as in (10.7) above. Then, see (10.9),

ρεk`1 ´ ρεk “ ϕ̂εk ˚ ϕ̌εk where ϕ̌ :“ ϕ̂
1

2 ´ ϕ̂2 . (12.13)
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Note that pρεnqnPN are mollifiers, because
ş

ρ “
ş

ϕ̂ ¨
ş

ϕ̂2 “ 1 (recall that
ş

ϕ̂ “ 1),
therefore for any test function ψ we have

T pψλxq “ lim
nÑ8

T pρεn ˚ ψλxq (12.14)

hence for every N P N we can write

T pψλxq “ T pρεN ˚ ψλxq
looooomooooon

A

`
`

T pψλxq ´ T pρεN ˚ ψλxq
˘

looooooooooooomooooooooooooon

B

. (12.15)

Henceforth we fix ψ P Br and we set N :“ mintk P N : εk ď λu so that N ě 1 and
1

2
λ ă εN ď λ . (12.16)

We estimate separately the two terms A and B in (12.15).

Estimate of A. We can write

A “ T pρεN ˚ ψλxq “
ż

Rd

T pρεNz qψλxpzq dz

“
ż

Rd

ż

Rd

T pϕ̂εNy q ϕ̂2εN py ´ zqψλxpzq dy dz

“
ż

Rd

T pϕ̂εNy q pϕ̂2εN ˚ ψλxqpyq dy .

We now apply Lemma 9.3 with Gpyq :“ T pϕ̂εyq: by (9.8) we obtain

|A| ď 2d }ϕ̂}L1 sup
yPBpx,λ`εN q

|T pϕ̂εNy q| .

By (12.16) we have λ ` εN ď 2λ and εN ě λ{2. Since α ď 0, we obtain by (12.11)

sup
yPBpx,λ`εN q

|T pϕ̂εNy q| ď C εαN sup
yPBpx,2λq

f̃pεN , yq ď C pλ{2qα sup
λ1Pp0,λs, x1PBpx,2λq

fpλ1, x1q ,

and finally, recalling (12.7),

|A| ď
 

2d´αC }ϕ̂}L1

(

λα f̄pλ, xq . (12.17)

Estimate of B. Let us fix k P N with k ě N . We can write, by (12.13),

bk :“ T pρεk`1 ˚ ψλxq ´ T pρεk ˚ ψλxq “
ż

Rd

T pρεk`1

z ´ ρεkz qψλxpzq dz

“
ż

Rd

ż

Rd

T pϕ̂εky q ϕ̌εkpy ´ zqψλxpzq dy dz

“
ż

Rd

T pϕ̂εky q pϕ̌εk ˚ ψλxqpyq dy .

Note that ϕ̌ is supported in Bp0, 1q (because ϕ̂ is supported in Bp0, 1
2
q, recall (8.5))

and εk ď εN ď λ for k ě N . Then ϕ̌εk ˚ ψλx is supported in Bpw, λ` εkq Ď Bpw, 2λq.
We apply again Lemma 9.3 with Gpyq :“ T pϕ̂εky q: by (12.11) and (12.7) we can bound

supyPBpw,λ`εkq |Gpyq| ď C εαk f̄pεk, wq ď C εαk f̄pλ, wq which yields, by (9.9),

|bk| ď C 4d }ϕ̌}L1 λ´r εα`r
k f̄pλ, wq .
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Since α` r ą 0 by assumption, we obtain
ř

kěN |bk| ă `8 and, recalling (12.14), we

can write B “ T pψλxq ´ T pρεN ˚ ψλxq as the converging sequence B “ ř8
k“N bk. Since

ř8
k“N ε

α`r
k “ p1 ´ 2´α´rq´1 εα`r

N , this yields

|B| ď
8
ÿ

k“N

|bk| ď C 4d }ϕ̌}L1

1 ´ 2´α´r
λ´r εα`r

N f̄pλ, wq . (12.18)

Conclusion. By (12.15), (12.17) and (12.18), since }ϕ̌}L1 ď 2}ϕ̂}L1 and εN ď λ, we
get

|T pψλxq| ď 4d´α`1

1 ´ 2´α´r
}ϕ̂}L1 C λα f̄pλ, wq .

If we plug the bound (8.7) and the definition (12.12) of C, we get

|T pψλxq| ď
"

4d´α`1

1 ´ 2´α´r

ˆ

e2 r

|
ş

ϕ|

˙2ˆ

2´r´1

1 ` Rϕ

˙α

}ϕ}L1

*

λα f̄pλ, wq .

Therefore we have proved (12.6), with the explicit constant

bϕ,α,r,d :“
4d´α`1 e4 2´αpr`1q r2

1 ´ 2´α´r

p1 ` Rϕq´α }ϕ}L1

|
ş

ϕ| (12.19)

The proof is complete. �

13. More on coherent germs

As an application of Proposition 12.6, we show that the coherence condition (4.2)
can be strengthened, replacing the test function ϕ by an arbitrary test function,
provided we slightly adjust the exponent αK .

Proposition 13.1 (Enhanced coherence). Let F “ pFxqxPRd be a γ-coherent
germ, i.e. (4.2) holds for some ϕ P D and some family α “ pαKq. If we define

α1 “ pα1
Kq where α1

K :“ αK̄2
, (13.1)

then we can replace ϕ in (4.2) by an arbitrary test function, provided we replace
αK by α1

K . More precisely, for any compact set K Ď Rd and any r ą ´α1
K we

have
|pFz ´ Fyqpψεyq| À εα

1
K p|z ´ y| ` εqγ´α1

K

uniformly for z, y P K, ε P p0, 1s and ψ P Br .
(13.2)

It follows that the family of γ-coherent germs is a vector space.

Proof. Assume that (13.2) has been proved. Given an arbitrary test function ξ P D,
we can write ξ “ c ψλ for suitable c P R, λ P p0, 1s and ψ P Br (exercise), hence
ξεy “ c ψλεy . Then it follows by (13.2) that we can replace ϕ by ξ in (4.2).

It remains to prove (13.2). It is convenient to center the test function at a third
point x, i.e. to replace ψεy by ψεx. By the triangle inequality we can bound

|pFz ´ Fyqpϕεxq| ď |pFz ´ Fxqpϕεxq| ` |pFy ´ Fxqpϕεxq| . (13.3)
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Let us fix a compact set K Ď Rd. Both terms in the right hand side of (13.3) can be
estimated by the coherence condition (4.2) for the enlarged set K̄2. Recalling (13.1),
we see that there is cK ă 8 such that

@z, y P K, @x P K̄2, @ε P p0, 1s :
|pFz ´ Fyqpϕεxq| ď cK ε

α1
K p|z ´ x| ` |y ´ x| ` εqγ´α1

K .

For fixed y, z P K we can apply Proposition 12.6, with T “ Fz ´ Fy and fpε, xq “
p|z ´ x| ` |y ´ x| ` εqγ´α1

K . Given any r P N with r ą ´α1
K , relation (12.6) yields

@z, y, x P K, @λ P p0, 1s , @ψ P Br :

|pFz ´ Fyqpψλxq| ď bϕ,α1
K
,r,d λ

α1
K p|z ´ x| ` |y ´ x| ` 5λqγ´α1

K

À λα
1
K p|z ´ x| ` |y ´ x| ` λqγ´α1

K .

If we plug x “ y we obtain (13.2). �

We now show that also the local homogeneity relation (4.8) can be strengthened,
replacing ϕ by an arbitrary test function, provided we slightly adjust βK .

Proposition 13.2 (Enhanced local homogeneity). Let F “ pFxqxPRd be a
γ-coherent germ with local homogeneity bounds β “ pβKq, see (4.8). If we set

β1 “ pβ 1
Kq where β 1

K :“ βK̄2
,

then we can replace ϕ in (4.8) by an arbitrary test function, provided we replace βK
by β 1

K . More precisely, for any compact set K Ď Rd and any r ą maxt´α1
K ,´β 1

Ku,
with α1

K defined in (13.1), we have

|Fxpψεxq| À εβ
1
K

uniformly for x P K, ε P p0, 1s and ψ P Br .
(13.4)

Proof. We apply the Reconstruction Theorem: let f “ RF is a reconstruction of F .
Fix a compact set K Ď Rd and r ą maxt´αK̄2

,´βK̄2
u. Then, by (5.2),

|pf ´ Fxqpψεxq| À
#

εγ if γ ‰ 0
`

1 ` | log ε|
˘

if γ “ 0

uniformly for x P K, ε P p0, 1s and ψ P Br. Since f P Cβ by Theorem 12.7, we have

|fpψεxq| À εβ

uniformly for x P K, ε P p0, 1s and ψ P Br. Since β ă γ, we finally get

|Fxpψεxq| ď |pFx ´ fqpψεxq| ` |fpψεxq| À εβ,

uniformly for x P K, ε P p0, 1s and ψ P Br. This proves (13.4). �
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14. Young product of functions and distributions

As an application of the Reconstruction Theorem, we prove that there is a canoni-
cal definition of product between a Hölder function f P Cα, with α ą 0, and a Hölder
distribution g P Cβ , with β ď 0, provided α ` β ą 0. This classical result has been
obtained with wavelets analysis or Bony’s paraproducts, see e.g. [RS96, Theorem 1
in Section 4.4.3], [BCD11, Theorem 2.52] and [Hai14, Proposition 4.14]. Our proof of
the Reconstruction Theorem provides a new approach to this result, which bypasses
Fourier analysis and applies to general (non tempered) distributions. In the case
α ` β ď 0, a non-unique and non-canonical “product” can still be constructed.

We start with some general considerations. Given any distribution g P D1 and any
smooth function f P C8, their product P “ g ¨ f is canonically defined by

P pϕq “ pg ¨ fqpϕq :“ gpϕ fq , @ϕ P D .

If f P Cα with α ą 0 this no longer makes sense, as ϕ f might not be a test function.
However we can still give a local definition of g ¨ f close to a point x P Rd, replacing
f by its Taylor polynomial Fx of order rpαq :“ maxtn P N0 : n ă αu based at x:

Fxp¨q :“
ÿ

0ď|k|ăα

Bkfpxq p¨ ´ xqk
k!

. (14.1)

This leads us to define the germ P “ pPx :“ g ¨ FxqxPRd, that is

Pxpϕq “ pg ¨ Fxqpϕq :“ gpϕFxq, ϕ P D . (14.2)

We can now state the following result.

Theorem 14.1 (Young product). Fix α ą 0 and β ď 0.

‚ If α ` β ą 0, there exists a bilinear continuous map M : Cα ˆ Cβ Ñ Cβ

which extends the usual product Mpf, gq “ f ¨ g when f P C8. This map is
characterized by the following property: for any r P N with r ą ´β

ˇ

ˇpMpf, gq ´ g ¨ Fxqpψλxq
ˇ

ˇ À
#

λα`β if α ` β ‰ 0
`

1 ` | log λ|
˘

if α ` β “ 0

uniformly for x in compact sets, λ P p0, 1s and ψ P Br ,

(14.3)

where Fx is the Taylor polynomial of f based at x, see (14.1).

‚ If α ` β ď 0, there exists a bilinear continuous map M : Cα ˆ Cβ Ñ Cβ

which satisfies property (14.3). This map is neither unique nor canonical.
However, for α ` β ă 0 any two maps M,M1 which satisfy property (14.3)
must differ by a map in Cα`β, i.e. we must have M´M1 : Cα ˆ Cβ Ñ Cα`β.

Remark 14.2. For fixed α ą 0 and β ď 0 with α ` β ą 0, we cannot claim that
M : Cα ˆ Cβ Ñ Cβ is the unique continuous map which extends the usual product
Mpf, gq “ f ¨ g when f P C8, simply because C8 is not dense in Cα. On the other
hand, given any β ď 0, we can state that M :

Ť

αą´β C
α ˆ Cβ Ñ Cβ is indeed the
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unique continuous map which extends the usual product, because C8 is dense in Cα

with respect to the topology of Cα
1
, for any α1 ă α.

Remark 14.3. For α ` β ď 0 the “product” M that we construct is non-local, as
can be inferred from the proof of the Reconstruction Theorem. This is reminiscent
of the para-products studied by Gubinelli-Imkeller-Perkowski [GIP15].

Before proving Theorem 14.1 we need some preparation. We recall that the nega-
tive Hölder space Cβ with β ď 0 is equipped with the family of semi-norms } ¨ }CβpKq

defined in (12.2), for compact sets K Ď Rd. We now introduce a corresponding
family of semi-norms }ϕ}CαpKq for positive Hölder spaces Cα with α ą 0. Recall that

rpαq :“ maxtn P N0 : n ă αu .
Then, given a compact set K Ď Rd, we define } ¨ }CαpKq by taking the maximum
between between }f}CrpKq and the best implicit constant in (2.3) when x, y P K:

}f}CαpKq :“ max

"

}f}CrpKq, sup
x,yPK

|fpyq ´ Fxpyq|
|y ´ x|α

*

. (14.4)

We can now formulate more precisely the continuity of M stated in Theorem 14.1:
we are going to prove that for every compact set K Ď Rd

}Mpf, gq}CβpKq À }f}CαpK̄4q }g}CβpK̄4q . (14.5)

To prove Theorem 14.1, we first quantify the coherence of the germ P in (14.2).

Proposition 14.4. If f P Cα and g P Cβ, with α ą 0 and β ď 0, then the germ
P “ pPxqxPRd is pβ, α` βq-coherent and has homogeneity bounded below by β.

Proof. We are going to show that there is a test function ϕ P DpBp0, 1qq with
ş

ϕ ‰ 0

such that, for every compact set K Ă Rd, the following relations hold:

|pPz ´ Pyqpϕεyq| À }f}CαpKq }g}CβpKq ε
β p|z ´ y| ` εqα , (14.6)

|Pxpϕεxq| À }f}CαpKq }g}CβpKq ε
β , (14.7)

uniformly for x, y, z P K and ε P p0, 1s. Throughout this proof, all implicit constants
hidden in the notation À may depend on the parameters α, β, but but not on K, f, g.

We first prove (14.6). Let us fix a compact set K Ă Rd and we set r “ rβ :“
mintr P N : r ą ´βu. By (12.1) applied to ψ{}ψ}Cr we can bound, recalling (12.2),

ˇ

ˇgpψεyq
ˇ

ˇ ď }g}CβpKq }ψ}Cr εβ for all ε P p0, 1s , ψ P DpBp0, 1qq , y P K . (14.8)

Fix now any ϕ P DpBp0, 1qq with
ş

ϕ ‰ 0 and }ϕ}Cr ď 1. By (4.7), for any y, z P K

pPz ´ Pyqpϕεyq “ ´
ÿ

0ď|k|ăα

g
`

p¨ ´ yqk ϕεy
˘ Rkpy, zq

k!

where |Rkpy, zq| À }f}CαpKq |z ´ y|α´|k|. We have for fixed y P Rd, k P Nd
0 and ε ą 0

pw ´ yqk ϕεypwq “ ε|k| ψεypwq , where ψpwq :“ wk ϕpwq .
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Then ψ P DpBp0, 1qq and }ψ}Cr À }ϕ}Cr ď 1, hence it follows by (14.8) that

|g
`

p¨ ´ yqk ϕεy
˘

| “ ε|k| g
`

ψεy
˘

À }g}CβpKq ε
β`|k| . (14.9)

We thus obtain, uniformly for z, y P K and ε P p0, 1s,
|pPz ´ Pyqpϕεyq| À }f}CαpKq }g}CβpKq

ÿ

0ď|k|ăα

εβ`|k| |z ´ y|α´|k|

À }f}CαpKq }g}CβpKq ε
βp|z ´ y| ` εqα,

which completes the proof of (14.6).
We next prove (14.7). By (14.1) and (14.2), recalling (14.4) and (14.9), we obtain

|Pxpϕεxq| ď
ÿ

0ď|k|ăγ

ˇ

ˇg
`

p¨ ´ xqk ϕεx
˘ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bkfpxq
k!

ˇ

ˇ

ˇ

ˇ

À }g}CβpKq

ÿ

0ď|k|ăγ

εβ`|k|

ˇ

ˇ

ˇ

ˇ

Bkfpxq
k!

ˇ

ˇ

ˇ

ˇ

À }f}CαpKq }g}CβpKq

ÿ

0ď|k|ăγ

εβ`|k| À }f}CαpKq }g}CβpKq ε
β ,

uniformly for x in compact sets and ε P p0, 1s. This completes the proof. �

We can finally give the proof of Theorem 14.1.

Proof of Theorem 14.1. We know that the germ P in (14.2) is pα, α`βq-coherent and
has local homogeneity bound β, by Proposition 14.4. We also know by Theorem 12.7
that RP belongs to Cβ (note that β ă α`β). Since the map P ÞÑ RP is linear, and
since P is a bilinear function of pf, gq, it follows that we can define a bilinear map

M : Cα ˆ C
β Ñ C

β, Mpf, gq :“ RP .

Property (14.3) is a translation of (5.2), which characterizes M if and only if α`β ą
0.

Note that by (12.9)

}Mpf, gq}CβpKq À
´

|||P |||cohK̄4,ϕ,α,γ
` |||P |||homK̄2,ϕ,β

¯

.

It follows by the estimates (14.6)-(14.7) in the proof of Proposition 14.4 that

|||P |||cohK̄4,ϕ,α,γ
` |||P |||homK̄2,ϕ,β

À }g}CβpK̄4q }f}CαpK̄4q ,

which proves (14.5), hence M is a continuous map. �
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