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Abstract 

Plastic debris is thought to be widespread in freshwater ecosystems globally. We sample 

surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position 

and limnological attributes, with the aim to identify factors associated with an increased 

observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting 

that these ecosystems play a key role in the plastic pollution cycle. Our results indicate that two 

types of lakes are particularly vulnerable to plastic contamination; lakes and reservoirs in 

densely populated and urbanized areas; and large lakes and reservoirs with elevated deposition 

areas, long water retention times, and high levels of anthropogenic influence. Plastic 

concentrations vary widely among lakes; in the most polluted concentrations reach or even 

exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts 

of debris1. Our findings highlight the importance of including lakes and reservoirs when 

addressing plastic pollution, in the context of pollution management and for the continued 

provision of lake ecosystem services.  
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Main 

Plastic pollution is among the major challenges of our time2,3. Marine environments are 

considered to be the final receptors and sinks of plastic debris4, with most research focusing on 

the impacts of plastics in these systems. However, the spotlight on marine ecosystems has 

overshadowed the role of freshwaters, particularly lakes and reservoirs, as key components in 

global plastic pathways. Freshwaters may accumulate plastics at rates similar to, or higher than 

those in marine systems5–7. Nonetheless, global research on plastic debris in freshwaters has 

been hindered by two main challenges. First, studies have focused on a limited number of 

freshwater systems in restricted geographical regions8. Second, a lack of standardised sampling 

methods has prevented direct quantitative comparisons across studies9. So far, results from 

plastic research in lakes and reservoirs have been compared and synthesised through meta-

analyses and reviews, which have acknowledged that comparability is limited due to the 

different methods used across studies10,11. No single study has yet been extended to a global 

scale, nor has there been any attempt to identify and quantify the drivers of plastic pollution in 

lentic systems at this scale. 

We addressed these fundamental gaps by conducting a globally coordinated study aimed at (1) 

assessing the occurrence and abundance of plastic debris in surface waters of freshwater lakes 

and reservoirs, and (2) identifying natural and anthropogenic landscape factors associated with 

the occurrence of plastic debris. Specifically, we evaluated the ‘signature’ (i.e., abundance and 

types) of plastics in lakes and reservoirs as a function of potential sources of contamination, 

and of the hydro-morphological and watershed features that can affect plastic distribution. We 

performed standardised sampling and analysis of plastics (>250 µm) in surface waters from 38 

lakes and reservoirs (hereafter lakes) in 23 countries, covering a wide range of hydro-

morphological and anthropogenic impact features.  
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The study sites, albeit concentrated in the northern hemisphere, are spread out geographically 

and encompass a wide gradient of lake features and catchment characteristics (Extended Data 

Fig. 1). As a result, the sample of study sites is representative of global lake variability in 

several key characteristics12 (Extended Data Fig. 1). In the absence of any concerted effort or 

feasible method to obtain a globally representative sample of >100 million lakes, this gradient 

approach was considered to be the most suitable for this coordinated international effort to 

study microplastics in lentic systems. We included lakes spanning 0.04 to 32,600 km2 in size 

and 1 to 1,470 m in depth, with population densities of 0 to 3,411 inhabitants km-2 and urban 

land cover of 0 to 98% in their watersheds. As we performed a snapshot sampling, the temporal 

and spatial variation of plastic abundance was not included. However, snapshot sampling 

events such as this provide valuable information, covering environmental gradients across 

space13. All samples were collected by horizontal trawls of a plankton net perpendicular to the 

lake outflow, following the same protocol. The concentrated sample was subsequently treated 

with hydrogen peroxide (concentration 15% for 24 h at 60°C) to reduce adhered substances 

and organisms on the plastic particles. A total of 9,425 plastic particles were identified and 

classified based on shape, colour, and size. Polymer composition was identified on a subset of 

2,295 (~25%) particles using micro-Raman spectroscopy following Kedzierski et al.14 (see 

Methods). We related the occurrence, abundance, and features of plastics to variables 

describing hydro-morphology (e.g., area, depth, shoreline length, and residence time) and 

anthropogenic impact (e.g., land cover, presence of wastewater treatment facilities, and 

population density) affecting each lake. We used a geographical information system to 

delineate the watershed of each lake and derive information about human impact. Regression 

tree and redundancy analyses (RDA) were used to identify the predictors of concentration and 

features of plastics. 



 7 

Plastic debris occurred in all 38 lakes; however, the plastic signature differed greatly among 

systems15. Concentration of plastics spanned four orders of magnitude, from 10-3 to 101 

particles m-3 (mean ± standard error, S.E. = 1.82 ± 0.37 particles m-3; median = 0.85 particles 

m-3; Fig. 1a-b). Most of the study sites (55%, 21 lakes) had concentrations below 1 particle m-

3, whereas 14 (37%) had concentrations between 1 and 5 particles m-3, and three (8%) had 

concentrations higher than 5 particles m-3.  

The results for the latter three lakes are remarkable because they show that plastic 

concentrations in lentic systems can even exceed those detected in some of the ocean’s most 

impacted locations. The greatest concentrations in our study (i.e., Lake Lugano with 11.5 

particles m-3, Lake Maggiore with 8.2 particles m-3, and Lake Tahoe with 5.4 particles m-3) are 

higher than those observed in the subtropical oceanic gyres, which are currently considered 

some of the greatest plastic accumulation zones in the world1. Maximum concentrations 

detected in ocean gyres using a similar sampling protocol to this study (trawl nets with a 333 

μm mesh) were 1.62 particles m-3 in the North Atlantic subtropical gyre16. It should be noted 

that we focused on particles larger than 250 µm; if we included plastics with lower size limits, 

the concentrations would have been greater than the maximum observed here. Previous studies 

have identified even higher plastic concentration in some lakes (e.g., Lake Poyang, China: 

5,000–34,000 particles m-3 17). However, samples with such high concentrations are usually 

collected using a grab method. While this grab method has the advantage of capturing micro- 

and nano-scale plastics, the small sample volume may result in higher variability in plastic 

concentrations, and therefore, unrepresentative characterisation of the diversity of plastics 

compared to methods similar to ours, where nets were used to filter an average of 140 m3 of 

lake water per site18. 

The variability among the three replicates (i.e., trawls) collected within each lake was generally 

low (mean S.E. value = 0.47 particles m-3), especially for lakes with a low average plastic 
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concentration (mean S.E. value = 0.14 particles m-3, see Extended Data Fig. 2). Small scale 

(among-replicate) variation in plastic distribution may arise from hydrodynamic processes19, 

lake morphology, and topography20. Within-lake variability may cause uncertainty when 

estimating the overall plastic concentration, but the substantial lakewater volume filtered at 

each site enabled us to obtain reliable average concentrations and capture spatial differences of 

interest. 

Plastic signatures differed depending on the morphometric characteristics of lakes. As shown 

by cluster analysis (Extended Data Fig. 3), we observed a higher percentage of fibres (mean ± 

S.E. = 77 ± 0.6%), mainly black or blue and composed of polyester (mean ± S.E. = 39 ± 1.6%), 

in lakes with comparatively small surface area, volume, maximum depth, and shoreline length. 

In large, deep lakes with more extensive shorelines, the plastic signature was dominated by 

fragments (mean ± S.E. = 53 ± 0.9%), mainly transparent and white, with a polymer 

composition of polypropylene (mean ± S.E. = 35 ± 1.5%) and polyethylene (mean ± S.E. = 31 

± 1.8%). The difference between the two clusters of lakes was statistically significant for 

surface area, volume, maximum depth, and shoreline length (Wilcoxon test p-values all <0.01).  

Most plastics from all sites were classified as microplastics (<5 mm, 93.8%). Only 4.7% were 

mesoplastics (5-10 mm), and we observed very few macroplastics (>10 mm, 1.5%). More than 

90% of the plastic particles belonged to two shape categories (Fig. 1c), fibres (49.4%) and 

fragments (41.0%). Fibres, which were widespread, dominated mainly where the total plastic 

concentration was low (<1 particle m-3). We found textile fibres even in lakes and reservoirs 

located in remote areas with limited human presence, such as Avery Lake in Michigan, USA. 

While atmospheric deposition may be a relatively important source of fibres for pristine 

systems21, inputs from tributaries are likely to be more important for lakes and reservoirs with 

a greater human presence in their catchments. It is well established that fibres from textile 

materials are a major source of plastic contamination22; more than 700,000 fibres can be 
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released into the water system from the washing of 6 kg of laundry23. Moreover, recreational 

activities such as swimming can increase direct input of fibres into aquatic systems24. 

The fact that fibres and fragments were the most abundant types of microplastics is consistent 

with field evidence suggesting that secondary microplastics (i.e., particles that result from the 

fragmentation of larger plastic items) are common in the aquatic environment25. Pellets and 

spheres, whose shape suggests a primary origin, accounted for less than 1% of plastics (Fig. 

1c). Indeed, primary microplastics, which are produced either for indirect use as precursors 

(nurdles or virgin resin pellets) or for direct use, such as in cosmetics, scrubs and abrasives, are 

generally less abundant in aquatic systems and are expected to decrease in concentration, at 

least in some countries, as a result of regulatory measures on single-use plastics26. The 

relevance of secondary plastic pollution emphasises the need to focus mitigation on preventing 

plastics from entering waterways or removing them before degradation occurs27. 

Recording the shape and other characteristics of plastics helps not only to identify the possible 

sources of pollution, but also to characterise the impact of plastic pollution. Different shape-

dependent impacts are reported in the literature28,29. For instance, up to 10-fold greater adverse 

effects of fibres compared to beads have been observed on the freshwater zooplankton 

Ceriodaphnia dubia Richard, 1894, with reduced reproductive output at fibre concentrations 

higher than environmental levels30. Particle size is even more critical in influencing both the 

toxicokinetics and toxicodynamics of plastics, highlighting the importance of considering size 

when evaluating the potential risks associated with microplastic exposure31. Colour can also 

affect the toxicity of plastics, and selective feeding on different colours of microplastics has 

been observed in fish and other organisms because plastics can be mistaken for food of similar 

coloration32. Manual colour assignment during sample analysis can be difficult due to 

weathering of particles, and different colour perception among researchers33. Nonetheless, it is 

still recommended to record particle colour during visual assessments. Whilst source derivation 
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is not likely possible based on colour alone, recording colour may help to identify broad trends, 

such as ingestion preference. In our study, the most common colour was black (30%), followed 

by transparent (24%), blue (18%), and white (13%). The remaining colours were present in 

lower abundances (<5%). We found a considerable number of bluish plastics, contrasting with 

the very low number of reddish ones (i.e., red, orange). Similarly, Martí et al.34, analysing 

marine plastic items collected in the five subtropical gyres and semi-enclosed regions, reported 

that white, transparent/translucent, black/grey, and blue particles were particularly common 

(31%, 16%, 12%, and 11% of the total, respectively), with a very low number of red particles. 

A proposed explanation for the difference in colour prevalence, apart from different 

proportions in the waste stream cycle, is that blue is a camouflage colour in aquatic systems 

(i.e., crypsis mechanisms). Non-blue items (e.g., red items) would have a higher probability of 

detection and ingestion by visual predators resulting in a progressive enrichment in blue plastic 

debris34. 

Polyester (PES), polypropylene (PP), and polyethylene (PE) constituted the majority of 

polymers identified, with a mean percentage (± S.E.) of 30.4 ± 3.3%, 20.3 ± 2.9% and 15.7 ± 

2.9%, respectively (Fig. 1e). This is not surprising as PE and PP account for more than half of 

global plastic production (36% and 21%, respectively), while PES, most of which is 

polyethylene terephthalate (PET), accounts for 70% of all polyester, polyamide, and acrylic 

fibres production35. The dominance of these polymers is in agreement with previous 

observations in marine36 and freshwater ecosystems37,38 and likely reflects their use in short 

life-cycle and mass produced products. 

Population density and surface area of lakes were the most important predictors of plastic 

signature, as highlighted by our regression tree analysis (Fig. 2a). The tree with the lowest 

cross-validated relative error had two splits and three terminal nodes. The first split 
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differentiated lentic systems with surface area greater than 213 km2 (terminal node 1). Lakes 

with lower surface area were not split further, and the mean plastic concentration for these 

systems was 4.1 particles m-3. Sites with higher surface area were then split based on watershed 

population density, giving terminal node 2 (lakes > 25 inhabitants km-2, mean plastic 

concentration = 1.6 particles m-3) and terminal node 3 (lakes < 25 inhabitants km-2, mean plastic 

concentration = 0.4 particles m-3). 

The positive association between urban-related watershed attributes and abundance of plastic 

debris has been widely observed39,40. In studies where this correlation has not been identified, 

it has been hypothesised that the study design encompassed a limited number of sites or 

included sites representing only population density extremes5,41. Lakes were divided based on 

surface area, highlighting that high concentrations of plastic were found in sites with larger 

surface area. There may be several explanations for this observation. Larger lakes and 

reservoirs are usually associated with larger watersheds, greater water inflows, greater 

shoreline length, and more shoreline development42, which implies a larger deposition area and 

a greater number of point and nonpoint (including atmospheric deposition) sources of 

contamination. Large lakes are particularly exposed to anthropogenic stressors, as cities and 

other urban developments are usually widespread on the shores of large lakes, and they may 

receive inputs from larger and more polluted rivers42. In addition, larger lakes have longer 

residence times than smaller, shallower systems43. For instance, in Lake Tahoe, which has a 

hydraulic residence time of approximately 650 years44, we recorded one of the highest 

concentrations of plastics (i.e., 5.4 particles m-3). Lakes have the potential to act as “traps” and 

accumulate substantial amounts of plastic debris over time45. Additional research is warranted 

that addresses how the landscape position of lakes and lake characteristics affect microplastic 

abundance, their fate within lakes due to sedimentation, or transport within from nearshore to 

offshore habitats, and out of the ecosystem through outflows. 
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Concentration and features of plastics varied based on environmental factors representing the 

impact of human activity and morphometric lake characteristics. Based on redundancy 

analysis, these environmental variables explained 55.9% of the variation in plastic 

concentration across sampling sites. Lakes with lower plastic concentration were clustered, 

while lakes with high plastic concentration were more spread out in ordination space (scaling 

1, Extended Data Fig. 4), suggesting plastic features were more similar in less polluted lakes. 

There were two categories of lakes with high plastic concentration (scaling 2, Fig. 2b). The 

first group was characterised by a high number of wastewater treatment plants and high surface 

area, depth, volume and shoreline length, and a high abundance of fragments. The second group 

was characterised by high human impact (human footprint, population density, and urban land 

cover), and high abundance of fibres. The remaining sites with lower plastic concentrations (<1 

particle m-3) had negative relationships with measured anthropogenic variables and seemed 

weakly related to presence of cropland, which in turn was negatively related to urban land 

cover and population density. 

Our analysis indicated that two types of lakes are particularly vulnerable to plastic 

contamination: (1) those located within highly urbanised and populated watersheds, and (2) 

those with high surface area, where we found high surface concentrations of plastic fragments, 

due to their elevated drainage area and long retention time. This result is particularly relevant 

because the elevated concentration of plastics in lakes with large water volumes implies high 

plastic loading, which could impact their ecosystem services locally, regionally and globally42. 

Given the relatively high concentration of plastic debris, particularly in large lakes and 

reservoirs, lakes may be 'sentinels of plastic pollution' because they act as collectors and 

integrators of different sources of plastics from the watersheds and atmosphere, and 'active 

pipes' as they may retain, process and transport plastics through watersheds to the oceans. We 

find that plastic concentrations in freshwater ecosystems can be higher than those in marine 
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ecosystems, which are generally considered final receptors of plastic debris. This underpins the 

relevance of lakes as key components in the global ‘plastic cycle’. Optimising management 

policies to mitigate plastic pollution in upstream freshwater lakes is therefore essential to 

prevent plastics from entering waterways27, and ending up in marine systems. 

Some of the lakes most contaminated with plastic debris, including lakes Maggiore (IT), 

Lugano (CH-IT), Tahoe (USA), and Neagh (UK), are important sources of drinking water for 

local populations and support important recreational based economies. The proportion of 

plastic debris that ends up in the water supply is unknown, but we suggest that the potential 

contamination of microplastics in drinking water should become a global management and 

research priority. 

In addition to contaminating the water supply for human needs, plastic pollution has 

detrimental effects on aquatic organisms and ecosystem functioning. Detecting the 

concentration of plastics is possible through the methods employed in this study but 

understanding their fate and ecological impacts remains an important and novel area of 

research. For instance, plastics at the surface of aquatic systems can aid the release of methane 

and other greenhouse gases, demonstrating that the effects of plastics can span across 

ecosystem boundaries46,47. Plastics can go beyond the hydrosphere and interact with the 

atmosphere, biosphere and lithosphere, potentially affecting biogeochemical cycles through 

mechanisms that still need to be understood. These multiple and potentially synergistic effects 

call for a holistic assessment of plastic pollution in lentic systems. 

Furthermore, our findings indicate that microplastics occur even in lakes that are not subjected 

to direct anthropogenic impacts. Microplastics, therefore, add a new stressor to these lakes and 

the organisms that live within them, which already face a range of pressures, including climate 

change48, salinization49, increased nutrient deposition, and nearshore filamentous algal 

blooms50, to name a few. Therefore, even in remote areas away from direct human pressure, 
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no lake can be considered to be truly 'pristine' with respect to plastic pollution. These results 

demonstrate the global reach of plastic pollution and serve as yet another reminder of the 

unfortunate and indelible signature of humanity on lakes.  
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Figure  

 

Fig. 1: Concentration and features of plastics identified in the 38 lakes and reservoirs. 

a, Map showing distribution and concentration of plastics in the 38 lakes and reservoirs included in the 

study. The dots are coloured based on the concentration of plastics (particles m-3) detected. b, Boxplot 

showing the concentration of plastic (particles m-3) in the 38 lakes and reservoirs. Boxplot statistics: the 

lower and upper hinges correspond to the first and third quartiles. The upper (lower) whisker extends 

from the hinge to the largest (smallest) value no further than 1.5 x IQR (Inter Quartile Range) from the 

hinge. Data beyond the end of the whiskers are outlying points and are plotted with triangular shape. c, 

Donut pie chart with percentage abundances of the different shapes and relative colours for all the 

plastic particles analysed. d, Width distribution (from 0 to 10 mm) of the different particle shapes. e, 

Average percentage ± standard error (S.E.) of polymer composition for all the plastic particles analysed. 
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Fig. 2: Relationship of plastic concentration and features with environmental and anthropogenic 

drivers. 

a, Results of regression tree analysis based on the total concentration of plastics in the studied lakes, 

with three terminal nodes. b, Redundancy analysis between plastic concentration in lakes, features of 

plastics, and environmental and anthropogenic drivers potentially able to explain the distribution and 

characteristics of plastic contamination (scaling 2). The dots are coloured based on the concentration of 

plastics (particles m-3) detected.  
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Methods 

Study sites and sample collection 

The samples were collected from 38 lakes and reservoirs located in 23 countries distributed in 

both hemispheres, but with a higher density in the northern hemisphere. The sampled sites 

represent a wide assortment of limnological conditions (Supplementary Table 1). Surface area 

ranged from 0.04 to 32,600 km2 (median = 19.50 km2), mean depth from 0.5 to 580 m (median 

= 9.7 m), and volume from 1.8 x 10-5 to 18,980 km3 (median = 0.18 km3). The lakes spanned 

different mixing regimes (i.e., polymictic, 11; monomictic, 12; dimictic, 8; and meromictic, 5) 

and trophic states (i.e., ultra-oligotrophic, 3; oligotrophic, 10; mesotrophic, 12; eutrophic, 11; 

and hyper-eutrophic, 2). 

During 2020–2021, samples of plastic debris were collected following a standardised protocol. 

The samples were collected from a boat using horizontal net trawls (mesh sizes ranging from 

50 to 300 µm) and three replicates were obtained from each lake. Sampling occurred in the 

pelagic zone, near the main lake outlet, on a calm day to minimise the risk of missing an 

unknown portion of the sample area, because rough water may cause nets to rise above or 

below the water's surface. The three trawl transects were oriented perpendicular to the outflow. 

The net was placed at the port side and the boat speed was maintained at around 1–1.5 m s-1, 

following GESAMP51. At least 50 m3 of water was filtered for each trawl and GPS tracks were 

recorded to estimate the exact volume filtered. In case of net clogging, the trawls were divided 

into different sub-trawls to allow net cleaning. 

 

Sample analysis 

All the samples were analysed at the Laboratory of Freshwater Ecology and Management of 

the University of Milano-Bicocca (Italy) following a common standardised procedure. The 

samples were wet-sieved on a 250 µm mesh to align the lower limit size across samples, 
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because nets with different mesh sizes were used for the sampling work. Then, the samples 

were treated with 15% H2O2 for 24 h at 60°C to eliminate organic matter and organisms 

adhering to the plastic particles. This procedure was selected to reduce potential damage to 

plastic particles52–54. The samples were then filtered onto 0.45 µm glass microfibre filters 

(GF/F, 47 mm Ø, Whatman), which were stored in clean glass Petri dishes. The filters were 

examined under a dissecting microscope (40x, Heerbrugg WILD M3Z) and particles 

recognized as plastics were transferred to glass slides for the subsequent spectroscopic analysis. 

Particles were either accepted or rejected as microplastics based on a catalogue of 

morphological criteria. Visual classification was considered reliable as a first step since we 

focused on the larger size fraction of microplastics (>250 µm). If the morphological 

classification was uncertain, Raman spectra were acquired to confirm or reject the hypothesised 

classification (for more details see ‘Micro-spectroscopy analyses’ section). Pictures of all 

plastic particles were taken using a high-resolution camera (Leica ICC50). All particles were 

counted, and their Feret’s diameter was measured using the software ImageJ (version 1.52q). 

The largest plastic that we found had a Feret’s diameter equal to 8.6 cm. Based on their 

dimensions, plastics were assigned to three different size categories: microplastics (250 µm to 

5 mm)55,56, mesoplastics (5 to 10 mm), and macroplastics (>10 mm; Extended Data Fig. 5). For 

shape categorization, we adopted a modified version of the classification proposed by 

Hartmann et al.9. In particular, plastics were classified as fibres, fragments, films, 

spheres/pellets, or lines. A lines class was added to identify those plastics that have a shape 

similar to fibres (longer in one dimension), but have a larger diameter, to differentiate them 

from fibres derived from textiles (Extended Data Fig. 6). Moreover, plastic particles were 

classified based on colour (i.e., red, orange, yellow, green, blue, violet, black, white, 

transparent, or multi-coloured), following a RAL standard colour scale, according to Lusher et 

al.33. 
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Micro-spectroscopy analyses 

Raman micro-spectroscopy was used to provide reliable data on the total number of plastics 

identified in each sample, because visual classification alone is insufficient to determine 

microplastic abundance33. The particles for which the result of the visual classification was 

uncertain were subjected to Raman analysis to decide whether to include or exclude them. 

Then, to estimate the percent occurrence of the different polymers of plastics collected, Raman 

micro-spectroscopy was performed on a random subsample of the visually identified 

microplastic particles, as widely suggested in the literature57–59. In particular, a robust 

procedure was adopted to first determine the minimum number of particles to be studied to 

reach a certain confidence level in the estimated proportion of different polymers in the sample, 

following Kedzierski et al.14. The size of the subsample, n, for each lake was derived as follows: 

𝑛 =

1
4 +

𝜀!
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with ε being the desired accuracy; u1-α/2 the fractal of order α of the standardised normal law; 

and N the total number of plastics counted in each sample. We chose a degree of confidence of 

95% (i.e., α = 0.05; u1-α/2 = 1.96) and ε = 0.1.  

Misidentification at this stage (after visual analysis and Raman pre-checking) was infrequent 

(< 3% ± 2% on average among samples). Any particles found to be non-plastic at this stage 

were removed from the total count, and, when this happened, additional particles equal to the 

amount removed have been analysed spectroscopically to increase the confidence of the 

estimate. For textile fibres, anthropogenic fibres (i.e., fibres containing a mixture of dyes and 

cellulose) were included in the total count in agreement with previously published papers that 
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highlights their relevance for aquatic toxicity60. The category ‘anthropogenic’ was also 

assigned to fibres when the dye masked the polymer and no information other than the 

colourants could be obtained. Also in these cases, to improve the accuracy of the estimate, an 

equal number of extra particles was examined using Raman micro-spectroscopy. 

Raman spectra were acquired using a Horiba Jobin Yvon LabRAM HR Evolution Raman 

System at the Department of Earth and Environmental Sciences, University of Milano – 

Bicocca (Italy), characterised with 800 mm of focal distance coupled with an air-cooled 

1024×256 px CCD detector. The spectra were obtained by using an attenuated green Nd 532.06 

nm laser source (300 mW) with a 50× magnification (Olympus BXFM). The grating was 600 

g mm-1 and the spectral per pixel resolution was about 1.6 cm-1. Two spectra were acquired for 

each particle with a spectral interval from 222.86 to 1,899.01 cm-1 and from 1,762.24 to 

3,177.02 cm-1. Depending on the particles analysed, the acquisition parameters were changed: 

accumulation ranged between 1–3, integration time between 20–60 s, and power between 0.3–

300 mW. Instrument calibration was performed daily based on the auto-calibration process 

performed by the Raman System Service with respect to the zero line and the silicon standard 

(520.7 cm-1), according to the ASTM 1840–96 prescription61,62. Raman spectra were baseline 

corrected and processed using the Fityk software63,64. Further analyses on polymer spectra were 

performed in R (4.0.3), using the package ‘RamanMP65. The final identification of 

microplastics was based on individual assessment of each spectrum, by identifying the 

characteristic bands of the suspected polymer in the sample spectrum. 

 

Quality controls (QA/QC) of plastic abundance data 

Prior to sampling, the nets were thoroughly cleaned using ultrapure water and then 5 L of 

ultrapure water was filtered through the net. This volume was collected to account for possible 

contamination of the sampling equipment. Laboratory-based quality assurance and quality 
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control (QA/QC) included procedural blanks. To assess potential contamination from 

laboratory materials or air, laboratory blanks were also collected. Moreover, all laboratory 

equipment was rinsed three times with ultrapure water. Glassware equipment was used where 

possible, and all the surfaces were cleaned before use. In addition, the samples were covered 

with aluminium foil, and cotton laboratory coats were worn. Plastic particles observed on the 

blanks were subtracted from the total values in environmental samples by randomly removing 

particles that matched the colour, shape, and polymeric composition of the blank particles 

(Extended Data Table 1).  

 

Watershed and lake attributes 

Sixteen variables were extracted to characterise the level of anthropogenic impact across the 

different lakes. We delineated the watershed boundary of all lakes (i.e., the land and water areas 

that drain toward the lake) using ArcMap 10.7 (Spatial Analyst tool) Geographic Information 

Systems (GIS) software, and the ASTER Global Digital Elevation Model (GDEM) Version 3 

(ASTGTM), which provides a spatial resolution of 1 arc second (approximately 30 m 

horizontal spacing at the equator)66. 

Land cover in each watershed was obtained by clipping the 100 m resolution land cover map 

provided by the Copernicus Global Land Service67. Data on watershed population were 

obtained from the UN WPP-adjusted population estimates for the year 202068. Information 

about wastewater treatment plants (WWTPs) was retrieved using the HydroWASTE dataset, a 

spatially explicit global database of 58,502 WWTPs and their characteristics20. Additionally, 

the mean Global Human Footprint Index was derived for each system. This index is the Human 

Influence Index (HII) normalised by biome and realm. The HII is a global dataset of 1 km grid 

cells, created from nine global data layers of human population pressure (population density), 

human land use and infrastructure (built-up areas, night time lights, and land use/land cover), 
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and human access (coastlines, roads, railroads, and navigable rivers). A HII value of zero 

represents the least influenced part of the biome with a value of 100 representing the most 

influenced69.  

 

Data analyses 

To identify coherent groups of lakes based on the percentage of occurrence of the different 

plastic features (shape, colour, and polymer composition), we performed K-means clustering. 

The optimal number of clusters (2) was determined using the Elbow Method70. Statistical 

differences among lake attributes within the two clusters were evaluated using Wilcoxon rank-

sum tests. 

We evaluated the association among the 16 explanatory variables through Pearson product-

moment correlation tests and variables that were highly correlated (r > 0.85, p<0.001) were 

removed from subsequent analyses to avoid collinearity. Moreover, we used the Variance 

Inflation Factor technique to remove further variables that were highly correlated71. 

To determine which candidate explanatory variables were associated with variation in the 

concentration of plastics, we used univariate regression trees72. Regression trees use recursive 

partitioning algorithms to reveal the structure in the data, by successive binary partitions based 

on the different predictors, in a way that minimises the sum of squares in the concentration of 

plastic within each group (node). The algorithm functioned by maximising the between-node 

sum of squares (minimising the within-node sum of squares) and then repeating the procedure 

until an overly large regression tree was constructed. The dataset was divided into training data 

(80%) and testing data (20%), and the mean squared error was calculated. The tree was then 

pruned to avoid overfitting based on the complexity parameter, which is the amount by which 

splitting a node improved the relative error73.  
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Redundancy Analysis was then performed to explicitly model response variables (i.e., 

concentration of the shapes of plastics: fibres, fragments, film and others) as a function of 

explanatory variables. We reported values based on both scaling 1 and 2: scaling 1 shows 

similarities between objects in the response matrix, while scaling 2 shows the effects of 

explanatory variables74. 

All statistical analyses were completed in R (version 4.2.2), using the packages ‘corrplot’75, 

‘factoextra’76, ‘ggplot2’77, ‘rpart’78, and ‘vegan’79. 

 

 

Data availability statement 

The datasets generated during and/or analysed during the current study are available in the 

Zenodo repository, 10.5281/zenodo.782488215  
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Extended data figure/table legends  

Extended Table 1. Blank levels for laboratory-based QA/QC, reporting the absolute number of fibres 

detected in the blank filters used as control for each replicated sample (i.e., trawl). 

Extended Data Fig. 1. Comparison of the density distribution of the features of our study lakes and 

reservoirs (in yellow) to the boxplot of freshwater systems included in the ‘HydroLAKES’ global 

dataset. The features being compared are: a) lake area in km2; b) mean depth in m; c) lake volume in 

km3; d) residence time of lakes in years. 

Extended Data Fig. 2. Means and standard errors of plastic concentration (particles m-3) resulting from 

the three trawls collected in each lake. The lakes are ranked in descending order based on their particle 

concentration, from highest to lowest. 

Extended Data Fig. 3. Clusters of lakes based on the percentage occurrence of the different plastic 

shapes, colours, and polymeric compositions. 

Extended Data Fig. 4. Scaling 1 of redundancy analysis between plastic concentration in lakes, features 

of plastics, and environmental and anthropogenic drivers. The dots are coloured based on the 

concentration of plastics (particles m-3) detected. 

Extended Data Fig. 5. Density plots and histogram of the Feret’s diameter (width, mm) of the 9,425 

particles identified in the 38 lakes analysed. The median trend is indicated by the vertical blue and 

dashed line. 

Extended Data Fig. 6. Images of different shapes of plastic fragments collected in water samples: a, b, 

c) fragment; d, e, f) fibre; g, h, i) filament; j, k) film; l) sphere/pellet. 


