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A resampling technique for probability-proportional-to size sampling designs is proposed. It 
is essentially based on a special form of variable probability, without replacement sampling 
applied directly to the sample data, yet according to the pseudo-population approach. 
From a theoretical point of view, it is asymptotically correct: as both the sample size and 
the population size increase, under mild regularity conditions the proposed resampling 
design tends to coincide with the original sampling design under which sample data 
were collected. From a computational point of view, the proposed methodology is easy 
to be implemented and efficient, because it neither requires the actual construction of the 
pseudo-population nor any form of randomization to ensure integer weights and sizes. 
Empirical evidence based on a simulation study1 indicates that the proposed resampling 
technique outperforms its two main competitors for confidence interval construction of 
various population parameters including quantiles.

© 2021 Published by Elsevier B.V.

1. Introduction

The use of resampling methodologies in sampling from finite populations is of considerable interest. The basic starting 
point consists in observing that the popular bootstrap technique, originally proposed by Efron (1979), does not work in 
sampling from finite populations, because of the dependence among sample units due to the sampling design. Several 
techniques have been proposed to overcome this problem; a nice, recent review is the paper of Mashreghi et al. (2016); cfr. 
also Chen et al. (2019), Rao and Wu (1988), Antal and Tillé (2011).

Among the resampling techniques for sampling designs with pre-fixed first order inclusion probabilities, πps sampling 
designs, for short, a special role is played by methodologies based on pseudo-populations; cfr. Mashreghi et al. (2016), 
Quatember (2015) for general aspects, and Conti et al. (2020) for recent theoretical contributions and a simulation study. A 
common feature of several resampling techniques based on pseudo-populations is their computational burden, that could 
be high. This motivates the study of resampling methods for πps sampling designs that share with methods based on 
pseudo-populations good properties in terms of variance estimation and coverage probability of confidence intervals and 
have a moderate computational burden. The above points are thoroughly discussed in Ranalli and Mecatti (2012), where 

* Corresponding author.
E-mail address: federica.nicolussi@unimi.it (F. Nicolussi).

1 R code is available as a supplementary material to the electronic version of the paper.
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the problem of resampling for finite populations is addressed as a problem of sampling with replacement directly from the 
sample data, the original sample henceforth, with different drawing probabilities.

Interesting steps forward are in Quatember (2014), Quatember (2015). In particular, in Quatember (2015) an approach 
to resampling based on pseudo-populations with non-integer replications is proposed: Horvitz-Thompson based Boostrap, 
HTB, for short. HTB is still based on the physical construction of the pseudo-population, although, through the considera-
tion of “fractions” of units, corresponding to non-integer replications of sample units, the auxiliary randomization used, for 
instance, in Holmberg (1998) is avoided. Essentially along the same path, in Quatember (2014) the physical construction 
of the pseudo-population is (implicitly) avoided. Unfortunately, as it will be seen in the sequel, Quatember’s proposal does 
not reproduce, neither exactly nor asymptotically, as both the sample size and the population size increase, the first order 
inclusion probabilities of the sampling design under which sample data were collected, the original sampling design, hence-
forth. As a matter of fact, an intuitive requirement is that a resampling design, as both the sample size and the population 
size become large, should become closer and closer to the original sampling design. From a more formal point of view, as 
shown in Conti et al. (2020), the key property for the asymptotic correctness of a resampling design is that its first order 
inclusion probabilities should asymptotically coincide with the first order inclusion probabilities of the original sampling 
design. In the present paper, a new resampling technique, essentially based on sampling with replacement from the original 
sample, is proposed. The basic idea is to use appropriate drawing probabilities in order to reproduce, at least approximately, 
pre-fixed first order inclusion probabilities. Its relationships with resampling based on pseudo-populations will be discussed. 
The relative merits of the proposed resampling technique will be evaluated through a simulation study.

The paper is organized as follows. In Section 2, basic preliminary aspects are exposed. Section 3 deals with a general 
approach to resampling based on drawing of “types” from the observed sample through a ppswor-based technique. In Section
4 relationships with pseudo-populations are clarified; they are particularly useful to provide a sound theoretical justification 
of the proposed resampling technique. In Section 5 various approximations to construct drawing probabilities are exploited, 
and in Section 6 theoretical justifications are provided. The merits of the proposed resampling scheme are evaluated in 
Section 7 through a simulation study. Finally, Section 8 is devoted to conclusions.

2. Preliminary aspects and notation

Let UN be a finite population of size N . A sample s is a subset of UN . For each unit i ∈ UN , let Di be a Bernoulli random 
variable (r.v.), such that i is (is not) in the sample s whenever Di = 1 (Di = 0), so that s = {i ∈ UN : Di = 1}. Denote further 
by DN the N-dimensional r.v. of components D1, . . . , DN . A (unordered, without replacement) sampling design P is the 
probability distribution of the random vector D N . From now on, the symbols E P , V P , C P will denote expectation, variance 
and covariance w.r.t. the sampling design P . From now on, the suffix P will denote the sampling design used to select the 
sample s.

The expectations πi = E P [Di] and πi j = E P [Di D j] are the first and second order inclusion probabilities, respectively. The 
sample size is ns = D1 + · · · + D N .

In the sequel, the character of interest is denoted by Y , and yi is its value for unit i of the population. The population 
total of character Y is denoted by

tY =
N∑

i=1

yi,

and the corresponding population mean by

Y N = N−1tY .

The first order inclusion probabilities are frequently chosen to be proportional to an auxiliary variable X . In symbols: 
πi ∝ xi , where xi is the value of X for unit i (i = 1, . . . , N). The rationale of this choice is simple: if the values of the 
variable of interest are positively correlated with, or, even better, approximately proportional to, the values of the auxiliary 
variable, then the Horvitz-Thompson estimator of the population mean will be highly efficient.

From now on, the population total of X and the corresponding mean will be denoted by

t X =
N∑

i=1

xi, X N = N−1t X ,

respectively. With this notation, the first order inclusion probabilities are equal to:

πi = nxi/t X , i = 1, . . . N. (1)

2.1. ppswr Sampling design

Let p1, . . . , pN be N positive numbers, with p1 + · · · + pN = 1.
2
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The probability proportional to size with replacement (ppswr, for short) sampling design of size n, with drawing proba-
bilities p1, . . . , pN , is a sampling design where n consecutive drawings are performed. Drawings are independent, and the 
probability of selecting unit i at each drawing is equal to pi . An ordered sample composed by units i1, . . . , in , not necessarily 
distinct, has selection probability:

n∏
j=1

pi j .

The first order inclusion probability of unit i is equal to πi = 1 − (1 − pi)
n . Hence, in order to have pre-fixed inclusion 

probabilities equal to πi s, the drawing probabilities must be equal to

pi = 1 − (1 − πi)
1/n, i = 1, . . . , N. (2)

2.2. ppswor Sampling design

The probability proportional to size without replacement (ppswor, for short) sampling design of size n, with initial 
drawing probabilities p1, . . . , pN is a sampling design where n consecutive drawings are performed. The probability of 
selecting unit i in the final sample is proportional to pi , and sampled units are not replaced in the population. Hence, an 
ordered sample composed by units i1, . . . , in has selection probability:

n∏
j=1

pi j

1 − pi1 − · · · − pi j−1

.

First order inclusion probabilities for ppswor design are not proportional to pi s, and do not have an expression in closed 
form; see Hájek (1981), p. 95, where this design is termed successive sampling. Useful approximations are given in Hájek 
(1981), Rosén (1997), Rosén (2000), and described below.

Approximation R-1 cfr. (Rosén, 1997)

pi ≈ log(1 − πi)

/
N∑

k=1

log(1 − πk) , i = 1, . . . , N. (3)

Approximation R-2 cfr. (Rosén, 2000) Let ξn be the (unique) root of the equation (w.r.t. t):

N∑
i=1

(1 − exp {−pit}) = n.

Then, the approximate relationship for inclusion probabilities

πi ≈ 1 − exp {−ξn pi} , i = 1, . . . , N (4)

holds. From (4), the following approximate relationship is obtained:

pi ≈ − 1

ξn
log(1 − πi), i = 1, . . . , N. (5)

Approximation H cfr. (Hájek, 1981)

pi ≈ πi

n

(
1 + 1

2

n − 1

n
(πi − π2),

)

where

π2 = 1

n

N∑
π2

i . (6)

i=1

3
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3. Resampling for finite populations based on drawings of types from the sample

In the literature, there are several different methods for resampling from finite populations. An excellent review is in 
Mashreghi et al. (2016). A basic principle in finite population resampling is that the first two moments of a resampled 
linear statistic should match, at least approximately, the corresponding moments of the statistic w.r.t. the sample design. 
This principle has been first stated in Rao and Wu (1988) dubbed scaling problem. A detailed discussion and theoretical 
justifications will be given in Section 6.

In the resampling process, unit i in the original sample s will be considered as a “unit of type i”.
As mentioned in the Introduction, here a simple principle is used: resampling a sample s∗ of size n from the original 

sample s is essentially equivalent to draw with replacement a sample s∗ of size n of types from s.
This principle can be implemented in a conceptually simple way. Let s∗ = (i1, i2, . . . , in) be an ordered sequence of 

non-necessarily distinct types in s, and let s∗
j = (i1, i2, . . . , i j), j = 1, . . . , n − 1. Consider next an arbitrary array of n × n

positive numbers

p∗
j (i ; i1, . . . , i j−1); i ∈ s, j = 1, . . . , n, (7)

such that∑
i∈s

p∗
j (i ; i1, . . . , i j−1) = 1, j = 1, . . . , n.

The probability in (7) is the probability of selecting type i at drawing j conditionally on having selected types i1, . . . , i j−1

in the first j − 1 drawings. Then, the probability of selecting s∗ is taken equal to:

p(s∗) = p1(i1)p2(i2 ; ii) · · · pn(in ; ii, . . . , in−1). (8)

The scheme defined by (8) is completely general. To be concrete, in the sequel a special but important case will be 
focused, namely a sequential drawing scheme, similar to ppswor. Let N∗

i ≥ 1, i ∈ s, be the size, not necessarily integer, of 
type i, and let

N∗ =
∑
i∈s

N∗
i

be the total size of all types in sample s. Note that N∗ ≥ n. For each type i ∈ s, define further an initial drawing probability 
p∗

i , i ∈ s, such that

p∗
i > 0 ∀i ∈ s,

∑
i∈s

p∗
i = 1. (9)

The ppswor resampling scheme consists in drawing a sample s∗ of n types, not necessarily distinct, with drawing proba-
bilities:

p j(Type i|s∗
j−1) = max(0, (N∗

i − hi, j−1)p∗
i )∑

l∈s max(0, (N∗
l − hl, j−1)p∗

l )
, j = 1, . . . , n, (10)

where hi, j−1 is the number of times type i appears in s∗
j−1. From (10) it is seen that the relationships

0 ≤ hi, j ≤ N∗
i ∀i ∈ s,

∑
i∈s

hi, j = j ∀ j = 1, . . . , n

hold.
As a special case, a ppswr resampling scheme can be obtained. Assume that N∗

i = K ∗ for all types i ∈ s. Then, (10)

reduces to

p j(Type i|s∗
j−1) = max(0, (1 − hi, j−1/K ∗)p∗

i )∑
l∈s max(0, (1 − hl, j−1/K ∗)p∗

l )
, j = 1, . . . , n,

and hence, by letting K ∗ tend to infinity and taking into account (9),

lim
K ∗→∞ p j(Type i|s∗

j−1) = p∗
i , j = 1, . . . , n,

which corresponds to drawing types according to a ppswr scheme with drawing probabilities p∗
i s.

Of course, there are different key points to be clarified, namely the choice of the sizes N∗
i s and the choice of the initial 

drawing probabilities p∗s. They will be addressed in the subsequent Sections.
i

4
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4. Relationships with pseudo-populations

The scheme of resampling types, introduced in Section 3, has clear connections with the notion of pseudo-population; 
cfr. Mashreghi et al. (2016), Quatember (2015), and, for large sample properties, Conti et al. (2020). A pseudo-population is 
essentially a prediction, based on sample data, of the actual population. Each unit k of the pseudo-population takes values 
(x∗

k , y∗
k ) equal to one of the (xi, yi) sample pairs. Furthermore, exactly N∗

i units of the pseudo-population take the same 
values (xi, yi), with i ∈ s; equivalently, unit i of the sample is replicated N∗

i times in the pseudo-population. More formally, 
a pseudo-population is represented as the set U∗ = {(xi, yi, N∗

i ); i ∈ s}. A unit k of the pseudo-population such that x∗
k = xi

and y∗
k = yi is said to be of type i.

If the size N∗
i of a type i, as introduced in Section 3, is integer, then it is equivalent to a pseudo-population where each 

sample unit i is replicated N∗
i times. This remark opens the road to different criteria for choosing N∗

i s; cfr. Conti et al. 
(2020).

For πps design a popular choice is the Holmberg size (Holmberg, 1998).

The Holmberg size is essentially a randomized integer-valued choice based on taking

N∗
i =

⌊
1

πi

⌋
+ εi, i ∈ s,

where � � denotes the integer part (floor) and εi s are independent Bernoulli r.v.s. with

P (εi = u|s) = ru
i (1 − ri)

1−u, u ∈ {0, 1}, i ∈ s

with

ri = 1

πi
−

⌊
1

πi

⌋
, i ∈ s.

Notice that integer-valued N∗
i s are mandatory in order to actually build up the pseudo-population. According to the 

principle of resampling types illustrated in the previous Section, such a request may be relaxed by removing the additional 
uncertainty due to the randomization.

The Horvitz-Thompson size is essentially a non-randomized version of the Holmberg size; it is based on taking:

N∗
i = 1

πi
= t X

nxi
, i ∈ s.

The values N∗
i s are not necessarily integer, which is often the case in practice. Moreover, the Horvitz-Thompson size has the 

important property

∑
i∈s

N∗
i xi =

N∑
i=1

xi,

namely it is calibrated w.r.t. the total of the auxiliary variable X .

The combination of the proposed ppswor resampling of types and the HT size allows an asymptotically correct resam-
pling based on a pseudo-population without requiring neither its actual construction, nor the constraint of integer sizes. As 
a consequence, both computational and precision advantages can be expected.

5. Drawing probabilities for resampling

The drawing probabilities p∗
i s used in resampling should be chosen in order to ensure, at least approximately, inclusion 

probabilities proportional to xi s. In this way, the resampling scheme becomes asymptotically correct. Hence, the target first 
order inclusion probability of unit k of type i of the pseudo population is

π∗
k = π∗

(i)

= nx∗
k/

N∗∑
k=1

x∗
k

= nxi/
∑
i∈s

xi N
∗
i

= nxi/t∗ . (11)
X

5
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As a consequence of Rosén (1997), Rosén (2000), if both the population size N and the sample size n increase, the first order 
inclusion probabilities of the corresponding resampling scheme are asymptotically linear in xi s, and then asymptotically 
equivalent to the first order inclusion probabilities of the original sampling design. In the sequel, various approximations for 
p∗

i s, based on those listed in Section 2.2, are examined.

1. Approximation R-1
Using the notation introduced in (3) and based on (11), the relationship

p∗
i,R1 ≈ log

(
1 − nxi

t∗
X

)/∑
l∈s

N∗
l log

(
1 − nxl

t∗
X

)
(12)

holds for all the N∗
i pseudo-population units of type i.

2. Approximation R-2
A second solution, computationally heavier than R-1, can be based on approximation R-2 (5). The major difficulty is that 

the term ξ∗
n , which is the (unique) solution of the equation∑

i∈s

N∗
i

(
1 − exp

{−p∗
i t

}) = n

cannot be directly computed on the basis of target first order inclusion probabilities. To this purpose, the following iterative 
algorithm can be used.

0. Set m = 0, π∗
(i)(m) = π∗

(i) , i ∈ s, and take a (small) threshold δ > 0. Go to Step 1.
1. Compute

p∗
i (m) = log

(
1 − π∗

(i)(m)
)/∑

l∈s

N∗
l log

(
1 − π∗

(l)(m)
)

, i ∈ s.

Go to Step 2.
2. Compute ξ∗

n (m) as the solution of the equation:∑
i∈s

N∗
i

(
1 − exp

{−p∗
i (m)t

}) = n.

Go to Step 3.
3. Compute

π∗
i (m + 1) = 1 − exp

{−ξ∗
n (m)p∗

i (m)
}
, i ∈ s. (13)

Go to Step 4.
4. Set m → m + 1. If |π∗

i (m + 1) − π∗
i | < δ for every i ∈ s, then go to Step 5. Otherwise, go to Step 1.

5. Stop. Set

p∗
i,R2 = p∗

i (m), i ∈ s. (14)

The functions fm = ∑
i∈s N∗

i

(
1 − e−p∗

i (m)t
)

are concave, twice differentiable, and satisfy the Lipschitz condition w.r.t. t

for each fixed set of p∗
i (m)s. Furthermore, viewed as a function of p∗

i (m)s, fm is Lipschitz w.r.t. p∗
i (m), i ∈ s, for each fixed 

t on each compact subset [0, K ] of the non-negative real half-line. As a consequence, if the starting values p∗
i (0) are close 

to p∗
i s, the same holds p∗

i (m), m ≥ 1, generated at each iteration. In addition, the same reasoning holds for ξ∗
n (m)s. More 

formally, cfr. Kelley (1995), the sequences (p∗
i (m); m ≥ 1), (ξ∗

i (m); m ≥ 1) are Picard sequences, and hence convergent. This 
is a local property, in the sense that it holds true provided that the initial values p∗

i (0)s are sufficiently close to p∗
i s. It is 

suggested to set the initial values p∗
i (0)s via R-1 approximation, so that they are in principle close to p∗

i s. The simulation 
study in Section 7 empirically confirms the convergence of the algorithm.

3. Approximation H
The starting point consists in using (11), which implies

π∗
2 = 1

n

∑
k

π∗2
k

= 1

n

∑
N∗

i

(
nxi

t∗
X

)2

.

i∈s

6
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Hence, the drawing probabilities that approximate the target inclusion probabilities (11) are equal to

p∗
i,H = xi

t∗
X

{
1 + 1

2

n − 1

n

(
nxi

t∗
X

− π∗
2

)}
, (15)

for all N∗
i units of type i, with∑

i∈s

N∗
i p∗

i,H = 1.

6. Theoretical justifications

The goal of the present section is to provide a few theoretical justifications to the resampling scheme developed so 
far. As shown in Conti et al. (2020), if the sampling design possesses asymptotically maximal entropy, and if N∗

i s satisfy 
appropriate regularity conditions (the most important one being that their expectations are asymptotically equivalent to 
π−1

i s), then the resampling design based on (normalized) Conditional Poisson design, also known as Maximum Entropy 
design or rejection sampling, is fully justified from an asymptotic viewpoint. As a consequence, it is also justified on the 
basis of Rao’s scaling problem mentioned in Section 3, namely the principle of matching the first two moments of linear 
statistics. In the sequel, the first and second order inclusion probabilities for the normalized Conditional Poisson design will 
be denoted by π∗R

(i) , π∗R
(i j) for all pairs of distinct units in the pseudo population U∗ , of type i and type j, respectively, with 

j 
= i. Of course, π∗R
(i) is equal to nxi/t∗

X for all units of type i.
Resampling design based on ppswor does not possess the same asymptotic justification, although it possesses good 

asymptotic properties: cfr. Rosén (1972). Moreover, it possesses good properties in terms of Rao’s principle cited above, as 
it will be now illustrated.

Denote by π∗S
(i) , π∗S

(i j) the first and second order inclusion probabilities for units of type i, j 
= i, let f ∗
N = n/N∗ be the 

resampling fraction, and X
∗ = t∗

X/N∗ . Note that the target first order inclusion probabilities (11) are also equal to

π∗
(i) = f ∗

N
xi

X̄∗ . (16)

When approximation R-1 (or R-2) is used:

p∗
(i) = log

(
1 − π∗R

(i)

)
/
∑
i∈s

N∗
i log

(
1 − π∗R

(i)

)

= log

(
1 − f ∗

N
xi

X
∗
)

/
∑
i∈s

N∗
i log

(
1 − f ∗

N
xi

X
∗
)

, (17)

then the resampling design based on ppswor possesses not only first order inclusion probabilities proportional to xi s, π∗S
(i) �

nxi/t∗
X , but also second order inclusion probabilities that are close to π∗R

(i j)s. As a consequence, the proposed resampling 
based on ppswor it is fully justified on the basis of Rao principle for the first moment of linear statistics, and approximately 
justified for the second moment of linear statistics. This point is clarified in the subsequent Proposition 1.

Define first

�∗R
(i j) = π∗R

(i j) − π∗R
(i) π∗R

(i) , �∗S
(i j) = π∗S

(i j) − π∗S
(i) π

∗S
(i) , i 
= j.

As a consequence of (1.9), (1.10) in Hájek (1973), and taking into account that, up to a term asymptotically negligible,

π∗S
i = π∗R

i = n
xi

t∗
X

, (18)

hence

�∗R
i j ∼ π∗R

i (1 − π∗R
i )π∗R

j (1 − π∗R
j )∑

i∈s N∗
i π

∗R
i (1 − π∗R

i )
i 
= j ∈ s, (19)

and, in view of (18),

�∗S
i j ∼ π∗S

i (1 − π∗S
i )π∗S

j (1 − π∗S
j )∑

i∈s N∗
i π

∗S
i (1 − π∗S

i )

{
1 −

(
1 − π∗S p∗

i

p∗π∗S
i

)(
1 − π∗S p∗

j

p∗π∗S
j

)}

= �∗R
i j

{
1 −

(
1 − π∗ p∗

i

p∗π∗R

)(
1 − π∗p∗

j

p∗π∗R

)}
, (20)
i j

7
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where ∼ means that the ratio of both sides converges to 1 as both the sample size and the population size increase, and

π∗ =
∑
i∈s

N∗
i π

∗S
i (1 − π∗S

i ) =
∑
i∈s

N∗
i f ∗

N
xi

X
∗

(
1 − f ∗

N
xi

X
∗
)

, (21)

p∗ =
∑
i∈s

N∗
i p∗

i (1 − π∗S
i )

=
∑
i∈s

N∗
i

(
1 − f ∗

N
xi

X
∗
)

log

(
1 − f ∗

N
xi

X
∗
)

/
∑
i∈s

N∗
i log

(
1 − f ∗

N
xi

X
∗
)

. (22)

Proposition 1. Consider the normalized Conditional Poisson resampling design with π∗
(i) = f ∗

N xi/X
∗

, and ppswor resampling design 

with drawing probabilities p∗
i proportional to log

(
1 − f ∗

N
xi

X
∗
)

. Then:

�∗R
i j − �∗S

i j

�∗R
i j

= O ( f ∗2
N ). (23)

Result (23) is interesting essentially for one reason. The resampling variance of linear statistics depends on the terms 
�i j = πi j −πiπ j . If the sampling design possesses high entropy, then the normalized Conditional Poisson resampling design 
is asymptotically correct; as a consequence, the resampling variance of linear statistics is asymptotically equivalent to their 
sampling variance. Proposition 1 tells us that, up to a term O  

(
f ∗2

N

)
, the same holds for ppswor resampling design, provided 

that the corresponding first-order inclusion probabilities are, at least asymptotically, equal to f ∗
N xi/X

∗
. Since the square

of the resampling fraction, f ∗2
N , is usually very small, on one hand ppswor resampling design possesses properties that are 

close to that of normalized Conditional Poisson resampling design. On the other hand, it offers a considerable computational 
advantage. This remark is made it stronger by a simple consideration: under mild regularity conditions, N∗/N tends in 
probability to 1, and hence the resampling fraction f ∗

N tends to be asymptotically equivalent, in probability, to the sampling 
fraction f N = n/N .

7. Simulation study

In order to test the empirical performance of the proposed ppswor resampling of types procedure, as illustrated in 
Section 3, a simulation exercise has been conducted, based on the Horvitz-Thompson size pseudo-population (see Section 4) 
and under each of the three alternative options described in Section 5 to approximate the resampling (drawing) probabilities. 
Three further bootstrap methods available in the literature have been considered in the present simulation study as main 
competitors of our proposal, namely:

1) Quatember’s algorithm (Quatember, 2014), dubbed Q , that is comparable both in terms of being based on a pseudo-
population and, at the same time, being simplified by resampling directly from the (original) sample under a ppswor
design, as mentioned in Section 1;

2) Holmberg’s method (Holmberg, 1998), dubbed Holm, that involves a resampling based on a pseudo-population under 
a randomized version of the Horvitz-Thompson’s size, see Section 4. However Holmberg’s method requires the actual 
construction of the pseudo-population and then to re-sample in it by mimicking the original sampling design. Thus, in 
a sense, it acts as a benchmark w.r.t. computational efficiency of our proposed bootstrap algorithm; and

3) HTB technique (Quatember, 2015), illustrated in Section 1 that, similarly to the Holmberg’s method above, requires the 
actual construction of a pseudo-population although by allowing non-integer replications of sample units.

Six scenarios composed by populations of increasing size N from 200 to 5, 000 are explored. For the sake of compara-
bility, they are generated as in Antal and Tillé (2011), Conti et al. (2020). In detail, the study variable Y has been generated 
according to the model yi = (

12.5 + 3w1.2
i + σεi

)2 + 4, 000 where wi ∼ |N(0, 7)|, εi ∼ N(0, 1) and σ = 15. Selection prob-
abilities are taken proportional to values xi generated from X = Y0.2 · LogN(0, 0.025) where LogN denotes a Log-normal 
probability distribution. The choice of a relation of approximate proportionality between the study variable and the auxil-
iary variable leads to selection probabilities approximately proportional to Y , which is the rationale behind a πps sampling. 
The correlation coefficient between Y and X is fairly moderate, about 0.8 uniformly across all simulated scenarios. For 
each population, 1, 000 samples are simulated under a Pareto sampling design. The latter choice has two main motivations. 
First of all, Pareto sampling design is very simple to be implemented and computationally inexpensive. In the second place, 
it possesses good properties because of its high entropy, and because it is heuristically considered as almost equivalent 
to the asymptotically maximum entropy Rao-Sampford design (Bondesson et al., 2006). Two sampling fractions n/N have 
been used, namely 0.04 and 0.20, with the twofold aim of evaluating small to large finite sample sizes and to enhance the 
simulation of the Hájek asymptotic setup, see (Hájek, 1981, Chapter 3).
8
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Table 1
Simulated scenarios.

Scenarios
Population size N 200 400 800 1200 2400 5,000
Sampling fraction n/N 0.04 0.20
Sample size n 8 40 16 80 32 160 48 240 96 480 200 1,000

The estimation of three population parameters is investigated:

- Population mean Ȳ = N−1 ∑N
i=1 yi ;

- Population median MeY = MeY = inf{y : F N(y) ≥ 0.5};
- Population third quartile Q 3Y = inf{y : F N (y) ≥ 0.75}

where F N(y) = N−1 ∑N
i=1 I(yi≤y) is the population distribution function, I(yi≤y) being equal to 1 whenever yi ≤ y, and 0

otherwise. As estimators of the above parameters, the Hájek estimators

- ˆ̄Y H = ∑N
i=1 Diπ

−1
i yi/ 

∑N
i=1 Diπ

−1
i ;

- M̂eY = inf{y : F̂ H (y) ≥ 0.5}, y ∈R;
- Q̂ 3Y = inf{y : F̂ H (y) ≥ 0.75}, y ∈R

have been considered, where F̂ H (y) = ∑N
i=1 Diπ

−1
i I(yi≤y)/ 

∑N
i=1 Diπ

−1
i is the Hájek estimator of F N (y). In addition, for the 

population mean also the Horvitz-Thompson (HT) estimator is considered

ˆ̄Y H T = N−1
N∑

i=1

Diπ
−1
i yi .

HT estimator is popular in practice because of its unbiasedness, although it is frequently less efficient than the asymptoti-
cally unbiased Hájek estimator.

The simulated scenarios, are summarized in Table 1.
For each simulated sample, 1, 000 bootstrap runs are performed under the six resampling methods mentioned above and 

dubbed R-1, R-2, H, Q, Holm and HTB respectively.
The methods are compared in terms of both Empirical Coverage (EC) and Average Length (AL) of resampling-based 

Confidence Interval (CI). Two popular bootstrap methods have been used: 1) the bootstrap-percentile method, i.e. by the 
direct use of the quantiles of the bootstrap replicates; and 2) the method based on the standard Normal quantiles coupled 
with the bootstrap estimate of the standard error, dubbed bootstrap-stdN.

Complete simulation results are reported in Tables 2–5. As additional information that complement EC and AL, simulated 
relative bias (RB) and relative root mean squared error (RRMSE) of the point bootstrap variance estimates, are reported in 
Appendix B, Table 6.

As a general remark, for small sample fraction and small sizes all resampling simulated tend to perform similarly for 
all estimators and for both types of bootstrap CIs. In particular it is noticeable how simulation results for HTB are quite 
uniformly close to Holm results. This effect is also noted in (Quatember, 2015, p.82) and it is somehow expected as a 
consequence of the similarity between the two pseudo-populations actually constructed under the two methods, that in 
fact differ at most for a subset of n units. However, such differences also reflect on the re-sampling inclusion probabilities, 
so that the HTB pseudo-population includes a fraction n/N of units whose π∗

i , with probability 1, are not proportional to 
xi asymptotically. This latter can be the reason for the relatively growing differences between HTB and Holm as population 
and sample sizes increase.

It is also noticeable the superiority of H against HT for estimating the population mean. This is apparent for the 
bootstrap-stdN CIs in Table 4, where H estimation systematically provides better EC, and it is also shown by the bootstrap-
percentile CIs in Table 2 where, as the population size increases, HT estimation tends to produce too conservative CIs and 
larger ALs.

For the higher sampling fraction and sizes, namely when the Hájek asymptotic setup is simulated more effectively, 
differences are more evident.

Focusing on H estimation and large sample sizes (Tables 2, 4), simulation results reveal some general pattern. Our new 
resampling method is associated with the best results, quite uniformly for the three estimated parameters and both types 
of CIs. Such empirical evidence is consistent with the theoretical properties illustrated in Section 6. Our proposed bootstrap 
algorithm seems to be able to improve upon all simulated competitors. In particular it provides CIs with smaller AL than 
HTB method for comparable ECs. Our proposed resampling scheme also gives results better than Quatember’s method (Q), 
which seems likely to bear the worst ECs and a tendency to shrinking ALs as N increases. This effect is more enhanced in 
case of bootstrap-percentile CIs while less evident for bootstrap-stdN CIs. Finally, the proposed bootstrap based on directly 
JID:COMSTA AID:107366 /FLA [m3G; v1.310] P.9 (1-15)

P.L. Conti, F. Mecatti and F. Nicolussi Computational Statistics and Data Analysis ••• (••••) ••••••
9



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
JID:COMSTA AID:107366 /FLA [m3G; v1.310] P.10 (1-15)

P.L. Conti, F. Mecatti and F. Nicolussi Computational Statistics and Data Analysis ••• (••••) ••••••

Table 2
Empirical Coverage (EC) and Average Length (AL) of CIs bootstrap-percentile method for the population mean, for 
increasing population sizes, two sample fractions 4% 20% and two point estimates Horvitz-Thompson and Hájek.

N 200 400 800 1200 2400 5000

EC AL EC AL EC AL EC AL EC AL EC AL

ˆ̄Y H T

HTB 0.78 0.61 0.84 0.60 0.92 0.47 0.92 0.44 0.93 0.35 0.96 0.26
0.92 0.59 0.92 0.49 0.89 0.37 0.93 0.29 0.91 0.23 0.84 0.18

Holm 0.74 0.53 0.84 0.51 0.91 0.43 0.93 0.40 0.93 0.32 0.97 0.24
0.9 0.41 0.95 0.31 0.97 0.26 0.97 0.22 0.98 0.17 0.99 0.13

Q 0.74 0.52 0.84 0.50 0.91 0.42 0.92 0.40 0.93 0.32 0.97 0.24
0.93 0.44 0.97 0.33 0.99 0.28 0.99 0.24 0.9 0.18 0.98 0.14

R-1 0.74 0.53 0.83 0.50 0.91 0.42 0.92 0.40 0.93 0.31 0.97 0.24
0.9 0.40 0.94 0.31 0.97 0.26 0.97 0.21 0.98 0.17 0.99 0.13

R-2 0.74 0.53 0.83 0.50 0.91 0.42 0.92 0.40 0.93 0.31 0.97 0.24
0.9 0.40 0.94 0.31 0.97 0.26 0.97 0.22 0.98 0.17 0.99 0.13

H 0.74 0.53 0.83 0.50 0.91 0.42 0.92 0.40 0.93 0.31 0.97 0.24
0.91 0.41 0.95 0.31 0.98 0.26 0.98 0.22 0.99 0.17 0.99 0.13

ˆ̄Y H

HTB 0.86 0.56 0.89 0.42 0.9 0.29 0.91 0.25 0.89 0.19 0.95 0.14
0.88 0.26 0.91 0.22 0.91 0.15 0.86 0.13 0.81 0.10 0.82 0.08

Holm 0.86 0.55 0.89 0.40 0.9 0.28 0.91 0.24 0.9 0.18 0.93 0.13
0.87 0.23 0.9 0.17 0.92 0.13 0.91 0.11 0.92 0.08 0.93 0.06

Q 0.86 0.56 0.88 0.40 0.9 0.28 0.91 0.24 0.89 0.18 0.92 0.13
0.84 0.22 0.81 0.16 0.77 0.12 0.71 0.10 0.62 0.08 0.46 0.06

R-1 0.85 0.55 0.89 0.41 0.9 0.28 0.9 0.24 0.9 0.18 0.92 0.13
0.88 0.24 0.91 0.17 0.93 0.13 0.92 0.11 0.93 0.09 0.95 0.06

R-2 0.85 0.55 0.89 0.41 0.9 0.29 0.9 0.24 0.9 0.18 0.93 0.13
0.88 0.24 0.91 0.17 0.93 0.13 0.92 0.11 0.93 0.08 0.95 0.06

H 0.86 0.55 0.89 0.41 0.9 0.28 0.9 0.24 0.89 0.18 0.93 0.13
0.88 0.23 0.9 0.17 0.91 0.13 0.88 0.11 0.88 0.08 0.88 0.06

Table 3
Empirical Coverage (EC) and Average Length (AL) of CIs bootstrap-percentile method for the population median 
(Me) and 0.75 percentile (Q3), for increasing population sizes, and two sample fractions 4% 20%.

N 200 400 800 1200 2400 5000

EC AL EC AL EC AL EC AL EC AL EC AL

M̂eY

HTB 0.77 0.80 0.78 0.57 0.79 0.38 0.73 0.34 0.80 0.25 0.88 0.20
0.71 0.42 0.78 0.29 0.78 0.21 0.77 0.20 0.72 0.15 0.71 0.12

Holm 0.76 0.79 0.77 0.44 0.79 0.36 0.78 0.33 0.83 0.24 0.86 0.19
0.78 0.34 0.83 0.23 0.83 0.17 0.85 0.16 0.87 0.12 0.92 0.09

Q 0.78 0.83 0.78 0.55 0.79 0.36 0.77 0.33 0.81 0.24 0.85 0.18
0.73 0.30 0.74 0.19 0.75 0.15 0.76 0.13 0.7 0.09 0.69 0.06

R-1 0.75 0.79 0.79 0.57 0.8 0.37 0.78 0.33 0.82 0.24 0.88 0.19
0.79 0.35 0.84 0.23 0.84 0.18 0.85 0.16 0.88 0.12 0.92 0.09

R-2 0.75 0.79 0.79 0.57 0.8 0.37 0.78 0.34 0.82 0.24 0.87 0.19
0.79 0.35 0.84 0.23 0.84 0.18 0.85 0.16 0.87 0.12 0.91 0.09

H 0.75 0.78 0.79 0.56 0.8 0.37 0.79 0.33 0.82 0.24 0.87 0.19
0.78 0.34 0.82 0.22 0.82 0.17 0.83 0.16 0.85 0.11 0.88 0.09

Q̂ 3Y

HTB 0.78 0.03 0.78 0.70 0.82 0.50 0.85 0.41 0.86 0.33 0.85 0.22
0.76 0.49 0.75 0.43 0.75 0.32 0.74 0.25 0.81 0.21 0.64 0.15

Holm 0.77 0.90 0.77 0.66 0.81 0.47 0.86 0.39 0.86 0.30 0.87 0.20
0.85 0.38 0.82 0.29 0.82 0.23 0.82 0.18 0.92 0.13 0.89 0.10

Q 0.79 0.94 0.77 0.67 0.81 0.47 0.86 0.38 0.86 0.29 0.85 0.19
0.75 0.32 0.73 0.23 0.72 0.17 0.68 0.13 0.66 0.08 0.52 0.06

R-1 0.77 0.90 0.78 0.68 0.81 0.48 0.88 0.40 0.86 0.30 0.87 0.20
0.86 0.39 0.84 0.29 0.83 0.23 0.83 0.18 0.93 0.14 0.91 0.10

R-2 0.72 0.90 0.55 0.68 0.41 0.48 0.35 0.40 0.26 0.30 0.18 0.20
0.86 0.39 0.84 0.29 0.83 0.23 0.83 0.18 0.93 0.14 0.91 0.10

H 0.77 0.90 0.78 0.68 0.81 0.48 0.88 0.40 0.86 0.30 0.87 0.20
0.82 0.37 0.8 0.27 0.8 0.21 0.78 0.17 0.89 0.12 0.84 0.09
10
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Table 4
Empirical Coverage (EC) and Average Length (AL) of CIs bootstrap-stdN method for the population mean, for 
increasing population sizes, two sample fractions 4% 20% and two point estimates Horvitz-Thompson and Hájek.

N 200 400 800 1200 2400 5000

EC AL EC AL EC AL EC AL EC AL EC AL

ˆ̄Y H T

HTB 0.65 0.74 0.74 0.72 0.78 0.65 0.79 0.54 0.81 0.41 0.85 0.30
0.77 0.73 0.8 0.65 0.85 0.43 0.85 0.34 0.87 0.31 0.9 0.21

Holm 0.66 0.56 0.73 0.53 0.77 0.44 0.8 0.42 0.82 0.33 0.86 0.25
0.77 0.43 0.8 0.32 0.84 0.27 0.83 0.22 0.87 0.17 0.91 0.13

Q 0.65 0.54 0.73 0.52 0.78 0.44 0.8 0.42 0.82 0.33 0.87 0.25
0.79 0.45 0.82 0.34 0.86 0.29 0.85 0.24 0.89 0.19 0.92 0.15

R-1 0.65 0.55 0.73 0.52 0.77 0.43 0.79 0.42 0.81 0.32 0.86 0.24
0.77 0.42 0.8 0.32 0.84 0.27 0.83 0.22 0.87 0.17 0.91 0.13

R-2 0.65 0.55 0.73 0.52 0.77 0.43 0.79 0.42 0.81 0.32 0.86 0.24
0.77 0.42 0.8 0.32 0.84 0.27 0.83 0.22 0.87 0.17 0.91 0.13

H 0.65 0.55 0.73 0.52 0.77 0.44 0.8 0.42 0.81 0.32 0.86 0.24
0.77 0.43 0.81 0.32 0.85 0.27 0.83 0.23 0.87 0.17 0.23 0.14

ˆ̄Y H

HTB 0.9 0.57 0.9 0.43 0.92 0.30 0.93 0.25 0.92 0.20 0.93 0.14
0.91 0.26 0.9 0.23 0.91 0.16 0.88 0.13 0.9 0.11 0.92 0.08

Holm 0.89 0.57 0.91 0.41 0.92 0.29 0.93 0.24 0.92 0.19 0.93 0.13
0.9 0.24 0.91 0.17 0.93 0.13 0.91 0.11 0.91 0.08 0.94 0.06

Q 0.89 0.58 0.91 0.41 0.92 0.29 0.93 0.24 0.91 0.18 0.93 0.13
0.89 0.22 0.9 0.16 0.92 0.12 0.89 0.10 0.9 0.08 0.92 0.06

R-1 0.89 0.56 0.92 0.42 0.92 0.29 0.94 0.25 0.91 0.18 0.94 0.13
0.91 0.24 0.93 0.17 0.93 0.13 0.92 0.11 0.92 0.09 0.94 0.06

R-2 0.89 0.56 0.92 0.42 0.92 0.29 0.94 0.25 0.91 0.18 0.94 0.13
0.91 0.24 0.93 0.17 0.93 0.13 0.92 0.11 0.92 0.09 0.94 0.06

H 0.89 0.56 0.92 0.42 0.92 0.29 0.94 0.25 0.91 0.18 0.93 0.13
0.9 0.24 0.92 0.17 0.93 0.13 0.91 0.11 0.91 0.08 0.94 0.06

Table 5
Empirical Coverage (EC) and Average Length (AL) of CIs bootstrap-stdN method for the population median (Me) 
and 0.75 percentile (Q3), for increasing population sizes, and two sample fractions 4% 20%.

N 200 400 800 1200 2400 5000

EC AL EC AL EC AL EC AL EC AL EC AL

M̂eY

HTB 0.93 0.88 0.93 0.61 0.91 0.40 0.9 0.35 0.91 0.26 0.92 0.20
0.9 0.41 0.90 0.31 0.9 0.20 0.91 0.19 0.89 0.16 0.91 0.11

Holm 0. 92 0.86 0.92 0.57 0.91 0.38 0.89 0.34 0.91 0.25 0.93 0.19
0.9 0.36 0.92 0.24 0.9 0.18 0.9 0.16 0.92 0.12 0.93 0.09

Q 0.92 0.89 0.92 0.58 0.91 0.37 0.89 0.34 0.91 0.24 0.92 0.19
0.88 0.33 0.89 0.22 0.88 0.17 0.88 0.15 0.88 0.11 0.9 0.08

R1 0.92 0.86 0.92 0.59 0.92 0.38 0.90 0.34 0.91 0.24 0.93 0.19
0.9 0.36 0.91 0.24 0.91 0.18 0.9 0.16 0.92 0.12 0.94 0.09

R2 0.92 0.86 0.92 0.59 0.92 0.38 0.9 0.34 0.91 0.24 0.92 0.19
0.9 0.36 0.91 0.24 0.91 0.18 0.9 0.16 0.92 0.12 0.93 0.09

H 0.91 0.86 0.92 0.59 0.91 0.38 0.9 0.34 0.91 0.24 0.92 0.19
0.9 0.35 0.91 0.24 0.9 0.18 0.89 0.16 0.92 0.12 0.93 0.09

Q̂ 3Y

HTB 0.93 1.00 0.9 0.76 0.93 0.53 0.93 0.43 0.92 0.33 0.91 0.22
0.93 0.47 0.91 0.43 0.88 0.29 0.9 0.22 0.92 0.19 0.9 0.12

Holm 0.93 0.98 0.91 0.70 0.92 0.49 0.93 0.40 0.91 0.30 0.92 0.21
0.93 0.40 0.93 0.30 0.9 0.23 0.9 0.18 0.94 0.13 0.92 0.10

Q 0.93 1.01 0.9 0.70 0.92 0.49 0.93 0.40 0.91 0.30 0.92 0.20
0.91 0.38 0.90 0.28 0.87 0.21 0.91 0.16 0.92 0.12 0.91 0.09

R1 0.93 0.98 0.91 0.71 0.92 0.50 0.93 0.40 0.91 0.30 0.92 0.21
0.94 0.40 0.93 0.30 0.9 0.23 0.9 0.18 0.94 0.14 0.92 0.10

R2 0.93 0.98 0.91 0.71 0.92 0.50 0.93 0.40 0.91 0.30 0.91 0.21
0.94 0.40 0.93 0.30 0.9 0.23 0.9 0.18 0.94 0.14 0.92 0.10

H 0.93 0.98 0.91 0.71 0.92 0.50 0.93 0.40 0.91 0.30 0.91 0.21
0.93 0.40 0.92 0.29 0.9 0.233 0.9 0.18 0.93 0.13 0.93 0.10
11
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resampling into the n (original) sample data, offers results noticeable close to the Holm method that is based on the actual 
construction of the pseudo-population into which to resample.

Among the three proposed probability approximations R-1, R-2 and H, the latter shows more erratic and rather weaker 
performances than both R-1 and R-2 which, in their turn, appear mostly equivalent. In addition, it is worth notice that 
our proposed resampling method tends to provide good CIs for quantiles, which are population quantities usually tricky to 
estimate and yet relevant in practice, for instance in studies on household income distribution and social inequalities.

8. Concluding remarks

In the present paper, a resampling technique for πps sampling designs is presented. Following the classification in 
Mashreghi et al. (2016), it represents a unified approach to resampling from finite population. On the theoretical ground, 
due to its relationships with pseudo-population based resampling (cfr. Section 4), it is “asymptotically correct” according to 
Conti et al. (2020). However, it does not require an explicit construction of a pseudo-population, because bootstrap samples 
are directly drawn from the original sample on the basis of an appropriate weighting system, so that it is computationally 
efficient. Real applications of finite population resampling usually involve a form of rounding or re-scaling, either deter-
ministic or based on randomization, that would affect the bootstrap performance and ultimately the expected properties 
of the released bootstrap estimates. The resampling proposed in this paper does not need any rounding, because it admits 
an underlying pseudo-population possibly of non-integer size, along with any real value for the bootstrap weights. As a 
consequence, efficiency gains are expected. Finally, our resampling is very simple to be implemented, since it requires, as a 
resampling design, a unique basic ppswor-type design that is easily implemented in practice.

To be implemented, the resampling scheme here introduced requires the choice of two quantities, namely (i) the number 
N∗

i , not necessarily integer, of replicates of each sample unit i, and (ii) the drawing probabilities p∗
i . As far as the choice of 

N∗
i s is concerned, the most natural choice appears to be N∗

i = π−1
i , that can be implemented even if N∗

i s are not integer. 
When attention is paid to drawing probabilities, approximations R −1 and R −2 offer good results, although R −2 is slightly 
heavier from a computational point of view.

The simulation results of Section 7 also add numerical evidence to the theoretical justifications of Section 6, and explain 
why our methodology outperform Quatember (2014) original proposal as its main competitor.

Appendix A. Proofs

Proof of Proposition 1. Define, as k ≥ 1,

m∗
kX = 1

N∗
∑
i∈s

N∗
i xk

i , (24)

(note that m∗
1X = X

∗
).

Next, let us examine first the ratio p∗
i /p∗ . From (17), (22) and (24), it follows that

p∗
(i)
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1

N∗ log
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N
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X
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1
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Similarly from (16), (17) and (21) it is seen that

π∗

π∗
(i)

=
∑

i∈s N∗
i

(
f ∗

N
xi

X
∗ − f ∗2

N
x2

i

X
∗2

)
f ∗

N
xi

X
∗

= N∗
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(
X

∗ − f ∗
N

m∗
2X

X
∗

)
. (26)

Now, as a consequence of (25) and (26), it follows
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Finally, from (20), (27) it is not difficult to conclude that

�∗R
i j − �∗S

i j

�∗R
i j

∼
(

1 − π∗ p∗
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from which (23) follows. �
Appendix B. Additional simulation results

Let v̂∗ be the (point) bootstrap variance estimate of a given estimator among the four simulated (see Section 7), and let 
V be the actual estimator’s variance. Thus, the simulation metrics R B and R RM S E are computed as R B = E MC

[
v̂∗ − V

]
/V

and R RM S E =
√

E MC
[
v̂∗ − V

]2
/V where E MC indicates average over the 1,000 simulated samples (Monte Carlo runs) for 

each scenario in Table 1.

Table 6
Relative Bias (RB) and Relative Root Mean Squared Error (RRMSE) of the point bootstrap estimate of the standard error of all estimators simulated, for 
increasing population sizes and two sample fractions 4% 20%.

N 200 400 800 1200 2400 5000

RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE

ˆ̄Y H T

HTB 0.18 1.11 -0.26 0.96 0.22 1.1 0.21 1.11 0.13 0.71 -0.07 0.79
0.15 0.93 -0.19 0.87 0.19 0.93 -0.16 0.89 -0.1 0.66 -0.06 0.68

Holm 0.09 1.04 -0.13 1.09 -0.09 1.08 -0.1 0.98 -0.09 0.79 -0.05 0.57
-0.07 0.89 -0.11 0.84 -0.08 0.93 -0.09 0.89 -0.06 0.66 -0.05 0.45

Q 0.22 1.03 -0.24 1.2 0.31 1.36 -0.96 1.15 -0.93 1.37 -1.26 1.06
-0.19 1.01 -0.17 0.99 0.25 1.09 -0.69 0.99 0.74 0.99 -1 1

R-1 0.11 0.99 -0.2 1 0.13 1.06 0.14 0.95 -0.12 0.96 0.06 0.5
-0.09 0.89 -0.18 0.86 -0.12 0.97 0.11 0.91 0.08 0.69 0.05 0.46

R-2 0.13 1.05 0.23 0.94 -0.13 1.17 0.11 0.98 0.1 0.76 0.07 0.53
-0.11 0.89 -0.18 0.83 -0.11 0.97 0.09 0.91 -0.08 0.7 -0.06 0.46

H -0.13 1.04 0.2 1.08 -0.18 0.99 0.1 1 -0.06 0.83 -0.06 0.48
-0.11 0.9 0.15 0.87 0.18 0.97 -0.09 0.91 -0.07 0.7 -0.06 0.46

(continued on next page)
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Table 6 (continued)

N 200 400 800 1200 2400 5000

RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE

ˆ̄Y H

HTB -0.92 0.86 -0.86 0.73 -0.93 0.9 1.1 0.73 0.92 0.78 0.4 0.62
-0.82 0.77 0.65 0.54 0.71 0.69 0.79 0.54 -0.77 0.7 0.37 0.53

Holm 1.15 0.83 0.81 0.61 0.79 0.73 -0.7 0.71 0.26 0.44 0.1 0.43
0.85 0.71 0.67 0.52 -0.68 0.63 -0.59 0.57 -0.2 0.41 -0.08 0.42

Q 1.3 1.07 0.93 0.68 0.99 1.11 -0.78 1.01 -0.63 1.13 1.18 0.92
0.98 0.82 -0.78 0.62 -0.86 0.97 0.79 0.93 -0.61 0.99 -0.93 0.8

R-1 -1.06 0.8 0.96 0.62 -0.88 0.76 -0.7 0.76 0.2 0.61 -0.11 0.53
0.81 0.72 -0.67 0.54 -0.73 0.63 -0.71 0.57 -0.18 0.5 -0.09 0.49

R-2 -1.02 0.83 0.86 0.75 1.02 0.88 0.76 0.75 0.17 0.8 -0.11 0.57
0.84 0.75 -0.7 0.54 -0.73 0.63 -0.71 0.57 -0.18 0.5 -0.09 0.48

H 1.08 0.97 -0.81 0.64 0.98 0.94 -0.68 0.73 0.28 0.53 0.12 0.56
0.93 0.79 -0.69 0.54 -0.74 0.71 -0.7 0.55 -0.22 0.49 -0.14 0.53

M̂eY

HTB 1.14 1.3 -1.33 1.05 -1.21 0.84 -1.36 0.65 0.78 0.66 -0.32 0.75
0.97 1.16 1.02 1.06 1.04 0.72 0.95 0.63 0.74 0.64 0.26 0.71

Holm 1.16 1.27 -1.2 1.02 -1.11 0.88 1.05 0.89 -0.14 0.6 -0.06 0.56
-0.92 1.11 0.92 0.95 0.89 0.7 -0.85 0.58 -0.11 0.51 -0.06 0.49

Q 1.07 1.43 -1.31 1.06 1.32 1.11 -1.57 1.15 -0.28 0.81 -0.86 0.92
0.88 1.24 0.98 0.96 1.11 0.94 -1.06 0.77 -0.26 0.79 -0.81 0.79

R-1 -1.04 1.36 -1.02 1.09 1.09 0.88 -0.92 0.57 -0.13 0.81 0.06 0.64
-0.86 1.1 0.86 1 0.85 0.69 -0.83 0.59 -0.14 0.7 -0.05 0.53

R-2 -0.95 1.27 1.05 1.4 0.94 0.77 0.99 0.76 -0.18 0.73 0.06 0.62
-0.74 1.07 0.86 1 0.86 0.7 -0.89 0.59 -0.13 0.7 -0.05 0.54

H -0.85 1.28 1.02 1.1 1 0.83 -0.91 0.72 -0.17 0.83 -0.11 0.62
0.65 1.14 -0.85 1 0.86 0.71 -0.84 0.57 -0.14 0.68 -0.1 0.54

Q̂ 3Y

HTB 1.4 1.55 -1.15 1.11 1.07 0.8 0.97 0.74 -0.91 0.79 0.45 0.9
0.84 1.32 0.98 0.85 -0.92 0.69 0.8 0.62 0.75 0.66 0.33 0.77

Holm -1.77 1.65 -0.99 0.92 1.01 0.63 -0.99 0.65 -0.2 0.58 -0.08 0.69
-0.98 1.27 0.87 0.75 0.85 0.53 -0.81 0.57 -0.12 0.54 -0.07 0.49

Q -1.39 1.58 1.21 0.9 1.07 0.9 1.55 0.75 -1.43 1.16 -0.77 0.96
0.96 1.38 -0.98 0.75 0.97 0.82 -1.09 0.76 -1.03 1.06 -0.66 0.9

R-1 -0.92 1.45 1.1 0.98 1.13 0.94 -0.83 0.58 -0.3 0.7 0.07 0.49
-0.75 1.24 -0.86 0.79 -0.85 0.71 -0.82 0.57 -0.22 0.54 -0.06 0.46

R-2 1.46 1.46 -1.06 0.87 1.02 0.83 -0.9 0.56 0.23 0.62 0.07 0.65
-0.87 1.27 -0.86 0.79 -0.87 0.71 -0.82 0.57 -0.21 0.54 -0.06 0.46

H -1.01 1.49 -1.19 0.83 -1.19 0.97 -1.04 0.67 -0.24 0. 57 -0.11 0.59
-0.87 1.28 -0.82 0.78 -0.88 0.72 0.87 0.56 -0.18 0.52 -0.09 0.5

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2021.107366.
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