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ABSTRACT
Finding balanced, highly nonlinear Boolean functions is a diffi-
cult problem where it is not known what nonlinearity values are
possible to be reached in general. At the same time, evolution-
ary computation is successfully used to evolve specific Boolean
function instances, but the approach cannot easily scale for larger
Boolean function sizes. Indeed, while evolving smaller Boolean
functions is almost trivial, larger sizes become increasingly difficult,
and evolutionary algorithms perform suboptimally.

In this work, we ask whether genetic programming (GP) can
evolve constructions resulting in balanced Boolean functions with
high nonlinearity. This question is especially interesting as there
are only a few known such constructions. Our results show that
GP can find constructions that generalize well, i.e., result in the
required functions for multiple tested sizes. Further, we show that
GP evolves many equivalent constructions under different syntactic
representations. Interestingly, the simplest solution found by GP is
a particular case of the well-known indirect sum construction.

CCS CONCEPTS
• Software and its engineering → Genetic programming; •
Theory of computation → Cryptographic primitives; • Se-
curity and privacy → Block and stream ciphers; Mathematical
foundations of cryptography.

KEYWORDS
Evolutionary Algorithms, Boolean Functions, Balancedness, Non-
linearity, Secondary Constructions

ACM Reference Format:
Claude Carlet, MarkoDjurasevic, Domagoj Jakobovic, LucaMariot, and Stjepan
Picek. 2022. Evolving Constructions for Balanced, Highly Nonlinear Boolean
Functions. In Genetic and Evolutionary Computation Conference (GECCO
’22), July 9–13, 2022, Boston, MA, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3512290.3528871

GECCO ’22, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9237-2/22/07.
https://doi.org/10.1145/3512290.3528871

1 INTRODUCTION
Evolutionary algorithms (EAs) are successfully applied in various
domains like rostering [2], design of neural networks [10], and cryp-
tography [20]. While they provide no guarantee to reach optimal
solutions, the obtained solutions are often relevant enough to main-
tain the claim that EAs are viable approaches for many real-world
applications. Considering the cryptography perspective, common
examples of successful applications are evolution of Boolean func-
tions [5], evolution of S-boxes [13], attacks on PUFs [3], hardware
Trojan detection [25], and side-channel attacks [26]. From those
applications, the evolution of Boolean functions is one of the most
successful examples. Indeed, various EAs (as discussed in Section 3)
have managed to evolve Boolean functions fulfilling diverse cryp-
tographic conditions. Nevertheless, we can recognize one major
problem with those works: they evolve specific Boolean functions,
but such an approach often does not generalize to Boolean func-
tions with a larger size. To circumvent this problem, one needs
to use algebraic constructions that generalize for multiple sizes.
There are two types of constructions: primary, where functions are
created from scratch, and secondary, where previously constructed
functions are used as building blocks [4].

For a Boolean function to be useful in cryptography, it should
be large enough (e.g., minimum 13 inputs), be balanced, and have
the highest possible nonlinearity. While these conditions seem
reasonable, there are no known algebraic constructions to reach
larger nonlinearity than what is obtained with simple quadratic
functions (while the existence of sporadic functions shows that it
is possible to do so). The reasons for this can be multiple. The most
obvious reason is that it is not even known what is the best possible
nonlinearity for balanced Boolean functions with more than seven
inputs. Also, designing a construction is, in general, a difficult task.
As one does not know what kinds of constructions are possible, the
search space is prohibitively large.

Thus, finding such algebraic constructions would be very useful.
Besides being a source of Boolean functions for direct applications
in cryptography, any developments would also be highly relevant
for the research in Boolean functions and error-correcting codes.

The literature is abundant with examples for primary or sec-
ondary constructions of bent Boolean functions. Bent functions
have the best possible nonlinearity, but they exist only when the
number of variables is even, and moreover they are unbalanced.
Some of the existing constructions for bent functions have been
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adapted to generate balanced functions with good nonlinearity
(see e.g. [4] for an overview). EAs also showed capable of evolving
constructions of bent Boolean functions [19]. Still, evolving bent
Boolean functions seem to be simpler and less practically relevant
as bent functions do not have a direct usage in cryptography.

This paper aims to investigate whether genetic programming
(GP) can evolve algebraic constructions that, in turn, provide bal-
anced, highly nonlinear Boolean functions. To the best of our knowl-
edge, this is the first work that addresses such an optimization
problem using EAs. In our approach, a candidate construction in
the GP population is encoded by a tree whose leaves are either
seed functions of 𝑛 variables with high nonlinearity or additional
independent variables. The output of the tree is a (𝑛 + 𝑘)−variable
Boolean function (with 𝑘 being the number of additional variables),
which is, in turn, evaluated for its balancedness and nonlinearity.
We experimentally test our approach using different sizes for the
seed functions, using either 1 or 2 additional variables. Our main
findings are as follows:

(1) GP can evolve many optimal constructions that achieve the
target nonlinearity for relatively small sizes, with the addi-
tion of two variables generally performing better than adding
a single one.

(2) In the experiments where GP obtains optimal constructions
with full success rate, many solutions turn out to be the same
after minimizing the corresponding circuits and checking
for pairwise equivalence.

(3) One of the optimal solutions that occur in all considered ex-
periments, with more or less bloated variants, is a particular
case of the well-known indirect sum construction [4].

We finally provide a possible explanation for the third finding,
which relates to the way the additional variables are used in the
constructions. This prompts us with interesting directions for future
research on this optimization problem, which we overview in the
conclusions of the paper.

2 BACKGROUND
2.1 Notation
Let 𝑛 be a positive integer, i.e., 𝑛 ∈ N+. We will denote the set of all
𝑛-tuples of elements in the finite field F2 = {0, 1} as F𝑛2 . We denote
the inner product of two vectors 𝑎 and 𝑏 by 𝑎 · 𝑏, and it equals
𝑎 · 𝑏 =

⊕𝑛−1
𝑖=0 𝑎𝑖𝑏𝑖 . Here, “⊕” denotes the addition modulo two

(bitwise XOR). The support (𝑠𝑢𝑝𝑝) of a Boolean function 𝑓 is the set
containing the non-zero positions in the truth table representation,
i.e., 𝑠𝑢𝑝𝑝 (𝑓 ) = {𝑥 : 𝑓 (𝑥) = 1}. The Hamming weight 𝑤𝐻 (𝑓 ) of a
Boolean function 𝑓 equals the size of its support.

2.2 Boolean Functions
A Boolean function of 𝑛 variables is a mapping f from F𝑛2 to F2, and
it can be uniquely represented by a truth table. The truth table of 𝑓
is the vector (𝑓 (0, · · · , 0), . . . , 𝑓 (1, · · · , 1)) containing the function
values of 𝑓 , with the input vectors ordered lexicographically.

The Walsh-Hadamard transform𝑊𝑓 is another unique represen-
tation of a Boolean function. It measures the correlation between

𝑓 (𝑥) and the linear functions 𝑎 · 𝑥 [4]:

𝑊𝑓 (𝑎) =
∑︁
𝑥 ∈F𝑛2

(−1) 𝑓 (𝑥)⊕𝑎·𝑥 . (1)

A Boolean function 𝑓 is balanced if its truth table vector has the
same number of 0s and 1s, or equivalently if |𝑠𝑢𝑝𝑝 (𝑓 ) | = 2𝑛−1.

The minimum Hamming distance between a Boolean function
𝑓 and all affine functions 𝑎 · 𝑥 ⊕ 𝑏 is called the nonlinearity of 𝑓 .
The nonlinearity 𝑁𝑙𝑓 of a Boolean function 𝑓 can be expressed in
terms of the Walsh-Hadamard coefficients as [4]:

𝑁𝑙𝑓 = 2𝑛−1 − 1
2
max
𝑎∈F𝑛2

|𝑊𝑓 (𝑎) |. (2)

The nonlinearity of a Boolean function with 𝑛 inputs is bounded
above by the following inequality:

𝑁𝑙𝑓 ≤ 2𝑛−1 − 2
𝑛
2 −1 . (3)

This bound is usually called the Covering Radius Bound. Note that
the so-called bent functions satisfy with equality this bound, and
therefore they are maximally nonlinear. However, bent functions
cannot be balanced and exist only for even 𝑛, limiting their ap-
plicability in cryptography. When 𝑛 is odd, the bound given in
Eq. (3) cannot be tight and the maximal nonlinearity lies between
2𝑛−1 − 2

𝑛−1
2 and 2𝑛−1 − 2

𝑛
2 −1. Here, 2𝑛−1 − 2

𝑛−1
2 is also called the

quadratic bound because it is the best nonlinearity achievable by
quadratic functions (i.e. functions of algebraic degree 2). The maxi-
mum possible nonlinearity for balanced Boolean functions is un-
known for all 𝑛 > 7. Table 1 recaps the optimal and best-known
nonlinearities values for such functions of several sizes.

If a Boolean function is not balanced, it cannot be used in cryptog-
raphy as it causes a statistical bias. Similarly, if a Boolean function is
not highly nonlinear, it will not provide optimal (or near to optimal)
resilience against linear cryptanalysis.

2.3 Construction Techniques
There are three viable options to create Boolean functions: algebraic
constructions, random search, and heuristic approaches. The main
strength of algebraic constructions is that they generate functions
with certain properties, and it is equally easy to construct functions
of any number of variables. The main drawback lies in the fact that
they are deterministic and always result in the same functions up
to affine equivalence (that is, up to the composition by an affine
automorphism), which means the number of different functions
one can obtain is limited. Furthermore, it is quite difficult to devise
an algebraic construction that results in Boolean functions with
the desired properties. Heuristic methods are known to generate a
large number of good results in a relatively short time. However, the
search space size grows exponentially with the number of variables,
and it is difficult to work even with a moderate number of inputs.

The construction techniques can be divided into primary con-
structions and secondary constructions. In primary constructions,
one obtains new functions without using known ones. In secondary
constructions, one uses existing functions to construct new ones [4].

The Rothaus construction represents an example of a secondary
algebraic construction [6]. Let ℎ1, ℎ2, and ℎ3 be three bent functions
with 𝑛 inputs, with ℎ1 ⊕ ℎ2 ⊕ ℎ3 also being a bent function.
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Table 1: Best known nonlinearity values for balanced Boolean functions. Entries in bold are optimal.

Variables 4 5 6 7 8 9 10 11 12 13 14 15 16

Max NL 4 12 26 56 116 240 492 992 2012 4036 8120 16272 32638

A new bent function of 𝑛 + 2 variables is generated as:

𝑓 (𝑥, 𝑥𝑛+1, 𝑥𝑛+2) = ℎ1 (𝑥)ℎ2 (𝑥) ⊕ ℎ1 (𝑥)ℎ3 (𝑥) (4)
⊕ℎ2 (𝑥)ℎ3 (𝑥) ⊕ [ℎ1 (𝑥) ⊕ ℎ2 (𝑥)]𝑥𝑛+1
⊕[ℎ1 (𝑥) ⊕ ℎ3 (𝑥)]𝑥𝑛+2 ⊕ 𝑥𝑛+1𝑥𝑛+2 .

This kind of construction is a motivation for our approach, where
we aim to evolve secondary algebraic constructions that use a
number of 𝑛-variable highly nonlinear balanced Boolean functions
to produce either (𝑛 + 1) or (𝑛 + 2)-input balanced functions having
high nonlinearity.

3 RELATEDWORKS
The history of using evolutionary algorithms to evolve Boolean
functions with good cryptographic properties is already 25 years
long. As far as we know, the first work using EAs for Boolean
functions with specific cryptographic properties happened in 1997.
There, the authors used genetic algorithms to evolve Boolean func-
tions with high nonlinearity [15]. Next, various algorithms were
tested to obtain even better results. For instance, Millan et al. used
GA in combination with hill climbing and a resetting step to evolve
highly nonlinear Boolean functions up to 12 inputs [16]. On the
other hand, Clark and Jacob used simulated annealing and hill-
climbing with a cost function motivated by the Parseval theorem
to find Boolean functions with high nonlinearity and low autocor-
relation [7]. Aguirre et al. were the first to consider multi-objective
optimization for this problem [1]. The authors used a random bit
climber to find balanced, highly nonlinear Boolean functions.

Picek et al. considered various EAs (genetic algorithms and ge-
netic programming) to find Boolean functions that fulfill multiple
cryptographic properties [21]. Mariot and Leporati experimented
with Particle Swarm Optimization [9] to find Boolean functions
with good trade-offs of cryptographic properties for sizes up to
12 inputs [12]. Picek et al. investigated various immunological al-
gorithms to evolve highly nonlinear Boolean functions up to 16
inputs [22]. Clark et al. [8] pioneered the spectral inversion ap-
proach where pseudo-Boolean functions are represented by Walsh
spectra that satisfy good cryptographic properties; the optimization
objective is to find a spectrum that corresponds to a true Boolean
function. Mariot and Leporati [11] further investigated this ap-
proach by proposing a genetic algorithm to evolve such spectra.

The above-listed works make only a small part of the research
done but show how most of the works manage to find highly fit
Boolean functions (whatever the properties required). Still, there
was always the problem of using such computationally heavy ap-
proaches for Boolean functions with more inputs or cryptographic
properties that are more expensive to evaluate. Additionally, such
approaches resulted in specific Boolean function instances, running
searches for every new size required.

Picek and Jakobovic considered an approach where instead of
evolving Boolean functions, they evolved constructions resulting in

Boolean function with the required properties [19]. They used ge-
netic programming to evolve secondary algebraic constructions of
bent (thus, imbalanced but maximally nonlinear) Boolean func-
tions [19]. Carlet et al. used genetic programming to improve
Boolean functions obtained through algebraic constructions [5].
This approach resulted in Boolean functions obtained through the
Hidden Weight Boolean Function construction with higher nonlin-
earity than previously known. Finally, Mariot et al. [14] investigated
a secondary construction based on cellular automata (CA), using
evolutionary strategies to search for CA local rules that result in
bent and semi-bent functions when plugged into the construction.

For a more detailed overview of EAs and Boolean functions in
cryptography, we refer interested readers to [20].

4 METHODOLOGY
This section describes how to evolve Boolean functions from scratch
using GP and then evolve secondary constructions that rely on
predefined Boolean functions in a smaller size.

4.1 Evolving Boolean Functions with GP
GP and its variants (most notably Cartesian Genetic Program-
ming [17]) have already been extensively used in the evolution
of Boolean functions as indicated in Sec. 3 and have been able to
produce human-competitive results. As a baseline approach, we
use GP to evolve a function in the symbolic form, using a tree rep-
resentation. According to the truth table it produces, each tree is
evaluated for the nonlinearity property. The terminal set is com-
prised of a given number of Boolean variables, which we denote
with 𝑣0, 𝑣1, ..., 𝑣𝑛−1. The function set consists of several Boolean
primitives, which can be used to represent any Boolean function.
Our experiments use the following function set: OR, XOR, AND,
AND2, XNOR, and function NOT that takes a single argument. The
function AND2 behaves the same as the function AND but with
the second input inverted. Additionally, we included the function
IF, which takes three arguments and returns the second one if the
first one evaluates to true and the third one otherwise.

4.2 Evolving Boolean Constructions
To evolve constructions with GP, we take a slightly different ap-
proach. Firstly, we presume the existence of a certain number of
predefined Boolean functions (seed functions) that are included in
the terminal set. In our experiments, up to four predefined Boolean
functions are available as terminals, which are denoted with 𝑓0, 𝑓1,
𝑓2, and 𝑓3. The number of variables of seed functions is taken to be𝑛,
and they are given by their truth tables. Additionally, the terminal
set includes a number of independent Boolean variables; if a single
variable is added (𝑣0), then the resulting construction (a GP tree)
represents a new Boolean function with 𝑛 + 1 variables. Likewise,
with two Boolean variables, 𝑣0 and 𝑣1, the construction obtains an
(𝑛 + 2)-variable function. The function set remains the same as
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Predefined functions:

f0 1001

f1 1010

Independent variables:

v0 0101

v1 0011

GP

Boolean construction function

IF

v0 f0 XOR

f1 v1

1010 1001 0101 1001Output:

Figure 1: Outline of evolving Boolean constructions (2 seed
functions of 2 variables, construction resulting in 𝑛 + 2 = 4
variable Boolean function)

in the previous method. Figure 1 shows the outline of the entire
construction process, in which the GP based on a set of predefined
functions and input variables constructs a Boolean function.

To be able to apply this approach, the seed functions must be
given or previously evolved with the general GP method. Since we
optimize for high nonlinearity, the seed functions are presumed to
be optimally (where possible) or highly nonlinear. The initial set of
seed functions is obtained with the general method, starting with
a low number of variables (e.g., four variables), which is trivial to
find. Then, the seed functions are used to find constructions for
a larger number of variables (e.g., six). The evolved constructions
can be decoded and stored as a truth table; that way, the outputs of
the previous stage may then be used as seed functions in the next
stage, in a kind of bootstrap procedure.

4.3 Fitness Functions
The algorithm should find constructions that give balanced, highly
nonlinear functions. To facilitate this, we distinguish the objective
value of the resulting Boolean function and the fitness value of the
construction that obtained this function.

We use a two-stage objective function in which a bonus equal to
the nonlinearity is awarded only to a perfectly balanced function;
otherwise, the objective value is only described by the balancedness
penalty. The balancedness penalty 𝐵𝐴𝐿 is defined as the difference
up to the balancedness (i.e., the number of bits to be changed to
make the function balanced). This difference is included in the
objective function with a negative sign to act as a penalty in max-
imization scenarios. The delta function 𝛿𝐵𝐴𝐿,0 assumes the value

one when 𝐵𝐴𝐿 = 0 and is zero otherwise.

𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒1 : −𝐵𝐴𝐿 + 𝛿𝐵𝐴𝐿,0 · 𝑁𝑙𝑓 . (5)

The second objective function extends the first one to consider
the whole Walsh-Hadamard spectrum:

𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒2 : −𝐵𝐴𝐿 + 𝛿𝐵𝐴𝐿,0 · (𝑁𝑙𝑓 + 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 ). (6)

In this expression, the 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 term is the normalized number of
occurrences of the largest nonlinearity value in the whole spectrum
(denoted #𝑚𝑎𝑥_𝑣𝑎𝑙𝑢𝑒𝑠). The smaller the number of these largest val-
ues, the easier it is for the algorithm to reach the next nonlinearity
value: 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 = 1 − #𝑚𝑎𝑥_𝑣𝑎𝑙𝑢𝑒𝑠

2𝑛 .

When evolving constructions, we aim to obtain a general con-
struction that will be able to produce a highly nonlinear function for
every combination of seed functions of lower order. For this purpose,
we evaluate the constructions with several groups of seed functions,
where each group consists of different values of terminals 𝑓0− 𝑓3. In
our experiments, we use four groups of seed functions, where for
each group 𝑖 , the value of the objective function is calculated with
the same tree (i.e., the same construction). The resulting fitness for
the evaluated construction is then defined in three ways.

A) The first method considers the objective value obtained with
the first seed group; only if the nonlinearity reaches a prede-
fined level (e.g., the best-known value), then the other seed
groups are used, and their obtained objective value is added
to the first one to obtain the fitness value:

𝑓 𝑖𝑡1 : 𝑣𝑎𝑙1 + 𝛿𝑣𝑎𝑙1,𝑡𝑎𝑟𝑔𝑒𝑡𝑉𝑎𝑙 ·
∑︁

𝑣𝑎𝑙𝑖 . (7)

B) The second approach sums the objective value obtained by
all the seed groups; we denote this as sum of all groups:

𝑓 𝑖𝑡2 :
∑︁

𝑣𝑎𝑙𝑖 . (8)

C) The third method considers the minimum objective value
among all seed groups, which is maximized as a consequence:

𝑓 𝑖𝑡3 : min 𝑣𝑎𝑙𝑖 . (9)

Naturally, this approach does not guarantee that the evolved
construction will be general; thus, every evolved construction is
subsequently evaluated with a separate test set of seed functions.

Finally, we observe that when evolving constructions, the ob-
tained trees with maximal fitness always include the two Boolean
variables 𝑣0 and 𝑣1, but not necessarily the whole set of input func-
tions 𝑓0 − 𝑓3. To find meaningful expressions that can be candidates
for general construction (see Sec. 2.3), we need to ensure that all
input seed functions are contained in every construction. Therefore,
we add a penalty step, in which a construction is penalized if it does
not include all the input terminals. This penalization is applied to
all the fitness functions and can be represented with the following
equation:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =
𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑖

1 +𝑚𝑖𝑠𝑠𝑖𝑛𝑔_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠
, (10)

which simply equals to 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑖 divided by the number of missing
input terminals.
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Table 2

Parameter description Parameter value

Number of variables of target
Boolean function

5, 6, 7, 8

Independent variables 1, 2
Number of seed functions 2, 4
Number of seed function groups 4
Seed functions type balanced, bent
Objective value nonlinearity (5), nonlinearity

with spectrum (6)
Type of fitness function first group (7), sum of all groups

(8), minimum of all groups (9)

4.4 Experimental Settings
The parameters for the GP are the same for all configurations and
are based on our previous experience, as well as guidelines from the
existing literature addressing similar problems. The population size
is set to 500, and the maximal tree depth to 5. We employ a steady-
state selection operator with a 3-tournament elimination, which
in each iteration randomly selects three individuals for the tour-
nament and eliminates the worst one. A new individual is created
immediately by crossing over the remaining two from the tourna-
ment, which then undergoes mutation with a probability of 0.5. The
variation operators used for GP are simple tree crossover, uniform
crossover, size fair, one-point, and context preserving crossover [23]
(selected at random) and subtree mutation.

Common parameters for all the experiments include the ter-
mination condition of 500 000 fitness evaluations. We chose this
particular bound because our preliminary tests showed that final so-
lutions are mostly found before reaching this number of evaluations.
Finally, each experiment is repeated 30 times.

5 EXPERIMENTAL RESULTS
In this section, we present the results of the described experiments.
First, we applied a canonical GP to evolve balanced, highly nonlinear
Boolean functions. We limit to functions with a larger number of
variables; for 𝑛 < 8, the optimal nonlinearity values are known (see
Table 1), and GP has no difficulties in finding functions with this
property. For this experiment only, the number of runs was set to
100, and the results are shown in Table 3.

We can see that, for some function sizes, the search always
converges to the same level of nonlinearity (i.e., for 𝑛 = 9, 11, 17).
In most cases, however, the GP managed to obtain the best-found
value only with a lower rate (i.e., one or two out of 100 runs).

For the constructions, the experiments were performed in two
phases. In the first phase, we conducted experiments in which we
explored all the configuration variants presented in Table 2. For
example, to get to construction that results with 8 variables, we
used seed functions of both 6 variables (adding two independent
ones, 𝑛+2) and 7 variables (plus a single independent one, 𝑛+1); the
number of seed functions was 2 or 4, and they were either balanced
or bent; objective value used two options, and all three fitness
functions were tested. In cases where balanced highly nonlinear
seed functions were used, their nonlinearity was equal to that from

Table 1, since they are relatively easy to obtain with GP. Also, in all
cases when using the first fitness function, best known nonlinearity
value from Table 1 is used as a 𝑡𝑎𝑟𝑔𝑒𝑡𝑉𝑎𝑙 in 9.

The first phase aimed to identify configurations that allow us
to obtain “locally optimal” constructions; we define those as the
ones that manage to reach the target nonlinearity value for a given
number of variables (5-8). The first thing to note is that there is no
comparative advantage in using the objective value (5), which only
considers nonlinearity; all the experiments show that (6) is never
worse and almost always a better choice. Secondly, it seems that
constructions of the form 𝑛 + 1 are generally worse than the ones
introducing two variables (𝑛 + 2), as locally optimal solutions are
seldomly found in the former. Using bent seed functions produces
the same results as the balanced seeds for target sizes 5 and 6 but
obtains worse results in sizes 7 and 8. Finally, when only 2 input
seed functions are used, the first fitness function does not find
locally optimal construction; otherwise (for 4 seed functions), there
is no difference between them. It is interesting that no construction
has produced functions with nonlinearity 26 (which is optimal) for
6 variables. This is surprising since those functions can be found
relatively easily with a search-based approach.

In the second phase, we take all the configurations that were able
to produce locally optimal constructions and evaluate them on a
separate test set of seed functions. The test set comprises of 8 groups
of balanced highly nonlinear functions, obtained either with search-
based GP (up to 13 variables) or with the constructions themselves,
using a bootstrap approach. In this phase, the same construction
(taken from a single run) is used to produce the resulting Boolean
function whose nonlinearity is then evaluated on the whole range
of variables from 𝑛 = 6 to 𝑛 = 18.

In this experiment, it became evident that the 𝑛 + 1 constructions
we found are not general since they do not reach target values where
the number of variables is different from the one on which they
were evolved; the same can also be observed for constructions using
bent seeds. All the other configurations (i.e., with two independent
variables (𝑛 + 2), using balanced seeds) could produce “general”
constructions in at least several runs.

The results for those constructions are presented in Table 4; the
first row lists the target number of variables (𝑛 + 2), the middle
row shows the nonlinearity of seed functions in 𝑛 variables, and
the last row shows the obtained nonlinearity. The most important
finding in this phase is that, although the evolved constructions
look different (with a different genotype) and produce different
resulting Boolean functions, all the constructions we tested always
produce the same nonlinearity for a given number of variables. We
try to analyze this behavior in the next section.

From the results, it is evident that the obtained constructions are
“general”, in the sense that they always produce balanced Boolean
functions with very high nonlinearity. In some cases, that nonlin-
earity is optimal (which is known for𝑛 < 8) and in some cases equal
to the one obtained by search-based GP. It is interesting to note
that, in cases where constructions produce lower nonlinearity than
simple GP, the GP has a significantly lower probability of finding
better solutions.
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Table 3: Results for search-based GP in finding balanced highly nonlinear Boolean functions

GP search n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 16 n = 17 n = 18

min NL 240 480 992 1 953 3 905 8 001 16 192 32 512 65 280 130 561
avg NL 240 484.24 992 1 996.69 4 028.39 8 087.3 16 253.5 32 542.2 65 280 130 622
max NL 240 492 992 2 008 4 032 8 120 16 256 32 608 65 280 130 753
occurrence of max 100% 2% 100% 14% 96% 1% 97% 2% 100% 2%

Table 4: Results for secondary constructions producing balanced highly nonlinear Boolean functions

constructions n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 16 n = 17 n = 18

seed NL 12 26 56 116 240 488 992 2 000 4 032 8 096 16 256 32 576
resulting NL 56 116 240 488 992 2 000 4 032 8 096 16 256 32 576 65 280 130 688

Figure 2: Tree size distribution for the eight experiments that
always converged to a general solution.

6 DISCUSSION
We now investigate in detail the constructions produced by GP for
those experiments that always converged to a general solution in
each run. In particular, we considered five experiments with two
seed functions and three experiments with four seed functions. In
all considered experiments, the constructions extended the seed
functions by two additional variables. In what follows, an experi-
ment is synthetically identified by the tuple (𝑠, 𝑛, 𝑛𝑙, 𝑒𝑣), where 𝑠 is
the number of seed functions used as input for the constructions,
𝑛 is the number of variables of each seed function (which means
that the construction will generate functions of 𝑛 + 2 variables), 𝑛𝑙
is the nonlinearity of the seed functions, and 𝑒𝑣 is the evaluation
method used by GP to evolve the constructions. In particular, we
denote by A, B, C respectively the three fitness functions 𝑓 𝑖𝑡1, 𝑓 𝑖𝑡2
and 𝑓 𝑖𝑡3 defined in Section 4.3.

6.1 Solutions Size
We start by analyzing the size of the trees generated by GP, con-
sidering it as an interpretability proxy. In particular, we define the
size of a tree as the number of its nodes, independently of the type
of functional or input variable (i.e., additional independent variable
or seed function). Figure 2 plots the distributions of the tree sizes
for all eight experiments.

The first interesting remark is that the distributions of the five ex-
periments with two seed functions are quite dispersed, with extreme
values ranging as low as 6 nodes and as high as 120 nodes. Further,
the upper quartiles of these distributions make up a large part of
the interquartile ranges, except for the experiment (2, 5, 12,𝐶). Con-
sidering also that the median tree size is around 35-40 nodes, we
can conclude that most of the trees evolved by GP with two seed
functions are too unwieldy to be interpreted by hand. The situation
seems better with the three experiments using four seed functions,
where the upper and lower quartiles are more balanced, and there
is also a smaller difference between the minimum and maximum
values. However, the median tree sizes are similar to those of the
experiments with two seed functions, and the minimum sizes are
significantly higher. Therefore, we end up with constructions that
are quite difficult to interpret also with four seed functions.

6.2 Solutions Diversity
As a next step, we employed the ESPRESSO heuristic logic mini-
mizer [24] to simplify the GP trees obtained in all eight experiments,
with a twofold objective. First, we determined the simplest possible
circuit of each construction by performing an exact minimization
and verified if its size was small enough to elicit a manual inter-
pretation. Unfortunately, the resulting minimized expressions were
still too complex for a deeper analysis. As a second objective, we
checked for equivalent circuits to investigate how many different
solutions GP can generate within each experiment. In particular, the
ESPRESSO tool allows checking if two different circuits are equiva-
lent by comparing their truth tables and applying basic equivalence
relations such as output negation or permutation of the input vari-
ables. We performed a pairwise equivalence test among all solutions
evolved by GP in each considered experiment and built the corre-
sponding graphs. Hence, each graph is composed of 30 nodes (one
node per solution), and two nodes are connected by an undirected
edge if and only if the two circuits were marked as equivalent by
the ESPRESSO minimizer.

Figure 3 displays the adjacency matrices of the equivalence rela-
tion graphs, while Table 5 reports for each experiment the number
of distinct solutions (or equivalence classes), the size of the largest
equivalence class, and the number of seeds effectively used.
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Figure 3: Adjacency matrices for the equivalence relation
graphs of all eight experiments.

Table 5: Equivalence classes summary for all experiments.
Bold values represent experiments where all constructions
use less seeds than allowed.

Exp. #classes max_size seeds_used

(2,4,4,B) 15 4 2
(2,4,4,C) 13 5 2
(2,5,12,A) 15 5 2
(2,5,12,C) 13 5 2
(2,5,12,B) 11 5 2

(4,5,12,B) 14 4 2
(4,5,12,C) 27 2 4
(4,5,12,A) 14 4 2

In general, one can see from Figure 3 and Table 5 that using
two seed functions generally leads GP to evolve many equivalent
functions, with (2, 5, 12, 𝐵) yielding the smallest number of distinct
solutions and the largest equivalence classes. This is somewhat
expected since the number of ways to combine the two additional
variables of the constructions is smaller with two seed functions
than with four. Accordingly, the experiment (4, 5, 12,𝐶) is the one
giving the highest diversity among solutions, with only 6 equivalent
solutions grouped in three equivalences classes of size 2.

Contrarily, the distributions of equivalence classes for the other
two experiments with four seed functions, namely (4, 5, 12, 𝐵) and
(4, 5, 12, 𝐴), are closer to those with two seeds. What is more sur-
prising is that all solutions evolved by GP in these two experiments
actually use less seeds than expected, as shown by the entries in
bold of Table 5. Although the original GP trees of each solution in
these two experiments use all seeds functions, the ESPRESSO tool
always returned minimized circuits where the seeds 𝑓2 and 𝑓3 are
never used. This is interesting since, as explained in Section 4.3,
we adopted a penalty factor in all our fitness functions in order to
force the occurrence of all seed functions in the candidate trees.
However, in this particular experiment GP was able to circumvent
this penalty by using all four seed terminals at a syntactic level, but
encoding two of them in subtrees that do not affect the output of
the constructions. The cause of this phenomenon likely resides in

Table 6: Simplest GP constructions selected for analysis.

exp. size construction

(2,4,4,B) 6 IF(𝑣0, 𝑓0, (𝑣1 XOR 𝑓1))
(2,4,4,C) 6 IF(𝑣0, 𝑓0, (𝑓1 XOR 𝑣1))
(2,5,12,A) 10 IF(𝑣0, 𝑓1, ((𝑣1 XOR 𝑓0) OR (𝑣1 AND 𝑣0)))
(2,5,12,C) 6 IF(𝑣1, 𝑓1, (𝑓0 XOR 𝑣0))
(2,5,12,B) 10 IF(NOT(NOT(𝑣0)), NOT((𝑓0 XOR NOT(𝑣1))), 𝑓1)

(4,5,12,B) 17 IF(𝑣1, (𝑣0 XOR (𝑓1 AND 𝑣1)), IF(𝑣1, (𝑓2 OR
(𝑓2 AND (𝑓2 OR 𝑓3))), 𝑓0))

(4,5,12,C) 17 IF(𝑣0, (𝑓1 XOR 𝑣1), ((((𝑓0 OR 𝑓3) AND2 IF(𝑓3, 𝑓2,
𝑣1)) AND 𝑣0) OR 𝑓3))

(4,5,12,A)
22

IF(𝑣0, (𝑣0 AND2 𝑓1), ((𝑣0 AND ((𝑓2 XOR 𝑣1)
XOR 𝑓3)) XOR (NOT(𝑓0) XOR IF((𝑣0 XNOR 𝑣1),
𝑣1, 𝑣0))))

the underlying fitness functions, which are 𝑓 𝑖𝑡2 and 𝑓 𝑖𝑡1 respec-
tively for the experiments (4, 5, 12, 𝐵) and (4, 5, 12, 𝐴). In both cases,
each seed group can contribute in a non-uniform way to the fitness
value of an individual. This might, in turn, lead the GP evolution-
ary process to favor general constructions with fewer active seed
functions. On the other hand, the experiment (4, 5, 12,𝐶), where all
four seed functions partake in the minimized circuits, is based on
the fitness function 𝑓 𝑖𝑡3, which maximizes the minimum objective
value among all seed groups. In this case, GP is forced to evolve
constructions that yield highly nonlinear balanced functions for
each tested group, possibly increasing the chances that all seed
functions are combined uniformly.

6.3 Interpreting Simple Constructions
So far, we discussed the general constructions concerning their sizes
and diversity, which gave us some insights on the GP’s behavior
for this particular optimization problem. We now investigate the
specific nature of these constructions to determine if they are new
or already known in the literature of Boolean functions.

As remarked in Section 6.2, the minimized circuits obtained
through ESPRESSO are, on average, still too complex to allow a
manual interpretation. For this reason, here we analyze in detail
only some of the simplest constructions evolved by GP. In particular,
we selected one construction for each of the eight experiments
investigated in the previous sections. Our selection criteria for
"simplicity" were as follows:

(1) Small tree size, by considering the lower quartiles of the tree
size distributions in Figure 2 as an upper bound.

(2) IF node at the root, so the construction is piecewise-defined.
(3) Condition at the root IF composed of a single literal (inde-

pendent additional variable or seed function). This helps
avoiding bloated expressions that control the output of the
functions resulting from the construction.

Table 6 reports the selected constructions for each experiment, as
evolved by GP. The notation used for the expressions includes 𝑣0, 𝑣1
for the two additional variables and 𝑓0 − 𝑓3 for the seed functions.
Regarding the constructions with two seed functions, one can easily
see that the smallest solutions of size 6 all correspond to the same
construction, up to a swap of the XOR operands or a renaming of
the leaf nodes. Figure 4 depicts the tree of this construction and the
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IF

+

𝑓1𝑣1

𝑓0𝑣0 𝐹 (𝑣0, 𝑣1, 𝑣) =
{
𝑓0 (𝑣) , if 𝑣0 = 1 ,

𝑓1 (𝑣) ⊕ 𝑣1 , if 𝑣0 = 0 .

(11)

Figure 4: Smallest GP construction. XOR is denoted by +.

IF

+

+

IF

𝑣0𝑣1+

𝑣1𝑣0

¬

𝑓0

∧

+

𝑓3+

𝑣1𝑓2

𝑣0

∧2

𝑓1𝑣0

𝑣0

Figure 5: Example of bloated GP construction. AND2 is de-
noted by ∧2, XNOR by +.

corresponding mathematical definition, taking as a reference the
solution of the experiment (2, 4, 4, 𝐵). Considering the truth table
representation, this construction basically concatenates the two
seed functions as 𝑓0 | |𝑓0 | |𝑓1 | |𝑓1, where 𝑓1 denotes the negation of 𝑓1.
For this reason, in what follows we refer to this expression as the
concatenation construction.

It is interesting to remark that the remaining five expressions
in Table 6 still correspond to the concatenation construction. This
can be easily verified for the expressions with two seed functions.
In particular, for the experiment (2, 5, 12, 𝐴) the innermost AND
always maps to 0, since we are in the subtree where 𝑣0 = 0, and
thus the subsequent OR evaluates to 𝑣1 XOR 𝑓0. Similarly, for the
expression selected in experiment (2, 5, 12, 𝐵), the condition on
the root IF is simply a double negation of 𝑣0. Further, the subtree
NOT(𝑓0 XOR NOT(𝑣1)) which is selected when 𝑣0 = 1 is equivalent
to 𝑓0 XOR 𝑣1, by comparing the respective truth tables.

Concerning the three constructions with four seed functions,
the simplification process is more convoluted, so we do not report
it here in full for the sake of brevity. As an example, we only show
in detail the largest tree in Figure 5, namely the construction se-
lected for (4, 5, 12, 𝐴). The subtree with AND2 always evaluates to
NOT(𝑓1), since 𝑣0 = 1 in that branch of the root IF. On the contrary,
the AND subtree can be pruned since 𝑣0 = 0, and thus it always
evaluates to 0. Hence, the seed functions 𝑓2 and 𝑓3 are effectively
discarded, since they only occur in this prunable subtree. Replacing
the other occurrences of 𝑣0 with 0 in the remaining XOR subtree,
one finally gets NOT(𝑓1) XOR 𝑣1, which is a trivial variation of
𝑓1 (𝑣) ⊕ 𝑣1 when 𝑣0 = 0. Therefore, this tree is equivalent to the
concatenation construction as well.

Since all solutions analyzed up to now are equivalent, it makes
sense to determine whether the concatenation construction cor-
responds to a known result in the related literature. In particular,
taking the expression in Figure 4 and exchanging the indices of 𝑣0
and 𝑣1, one can see that this construction is a particular case of the
indirect sum construction [4], where only two additional variables
are used to extend the functions.

7 CONCLUSIONS AND FUTUREWORK
This paper proposed for the first time a GP approach to evolve
secondary constructions of Boolean functions that are both bal-
anced and highly nonlinear, which are particularly relevant in the
design of symmetric ciphers. A candidate construction is encoded
by a tree where the internal nodes are Boolean operators, while the
leaves represent either seed functions or additional independent
variables. The fitness functions evaluate the generality of construc-
tion by measuring the balancedness and the nonlinearity of the
resulting Boolean functions starting from a set of optimal seeds.
Our experiments show that, for certain parameters combinations,
GP always converges to a general construction. A closer inspection
of these solutions reveals that GP actually finds many equivalent
constructions, and the solutions that we analyzed in detail turned
out to be a particular case of the indirect sum construction [4].

Our findings seem to indicate that GP cannot find novel construc-
tions with our current formulation of the optimization problem.
However, it is still remarkable that GP always finds the same simple
construction in all considered experiments, albeit under different
syntactic forms. One possible explanation for this behavior could be
related to the genotype representation adopted in our experiments.
Indeed, the additional two variables are always used externally to
the seed functions; in other words, 𝑣0 and 𝑣1 are never employed
as inputs to the seed functions themselves, but rather their values
are combined with the outputs of the seeds. Remark this is not a
real restriction from the semantic point of view, since all Boolean
functions of 𝑛 + 2 variables can be expressed as the combination
of two 𝑛-variable functions 𝑓 , 𝑔 with the additional two variables;
However, considering also that we enforce a maximum depth on
the trees, the representations that GP can evolve in this way are
quite constrained. In particular, we formulate the hypothesis that
the concatenation construction is the only general construction
discoverable by GP under this encoding and that differences arise
only at a syntactic level, with more or less bloated constructions.
We plan to investigate this hypothesis in future research, following
two complementary future directions. The first direction is to inves-
tigate if, under the given encoding constraints, the concatenation
is the only optimal solution in the semantic space of constructions.
This could be accomplished by analyzing the space of all construc-
tions in terms of their truth tables. It would also be interesting to
consider the use of geometric semantic GP [18] for this particular
problem. Finally, the second direction is to experiment with GP
encodings that are less constrained, by either allowing the addi-
tional variables to partake in the input of the seed functions, or
by adopting a more general approach with independent additional
variables. Indeed, the indirect sum construction is more symmetric
in its structure than what we experimented with in this paper, and
this the reason why GP could not evolve it in its most general form.
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