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Abstract: Many real-life systems are usually controlled through policies replicating experts’ knowl-
edge, typically favouring “safety” at the expense of optimality. Indeed, these control policies are
usually aimed at avoiding a system’s disruptions or deviations from a target behaviour, leading
to suboptimal performances. This paper proposes a statistical learning approach to exploit the
historical safe experience—collected through the application of a safe control policy based on experts’
knowledge— to “safely explore” new and more efficient policies. The basic idea is that performances
can be improved by facing a reasonable and quantifiable risk in terms of safety. The proposed
approach relies on Gaussian Process regression to obtain a probabilistic model of both a system’s
dynamics and performances, depending on the historical safe experience. The new policy consists of
solving a constrained optimization problem, with two Gaussian Processes modelling, respectively,
the safety constraints and the performance metric (i.e., objective function). As a probabilistic model,
Gaussian Process regression provides an estimate of the target variable and the associated uncertainty;
this property is crucial for dealing with uncertainty while new policies are safely explored. Another
important benefit is that the proposed approach does not require any implementation of an expensive
digital twin of the original system. Results on two real-life systems are presented, empirically proving
the ability of the approach to improve performances with respect to the initial safe policy without
significantly affecting safety.

Keywords: optimal control; safe exploration; Gaussian Processes

MSC: 90-08

1. Introduction

The control of real-life dynamic systems often relies on policies biased towards safety,
at the cost of suboptimal performances. Usually, these policies are designed by experts
and based on their knowledge about the target system. From now on, we refer to these
kind of policies with the term safe-by-design policies. Safety is a generic term related to
preventing physical disruptions of the system itself (e.g., manufacturing plants, robotic
systems, etc.) as well as avoiding poor Quality of Service (e.g., water/energy/gas supply
networks, smart home systems, such as smart cooling/heating or lighting devices).

Nowadays, there could be the chance to work with a digital twin of the target system,
which is a software program replicating the system’s behaviour (i.e., by numerically solving
all the relevant equations) depending on different setups and inputs. The main challenge is
to deal with the uncertainty characterizing the real-life settings. If a model of the uncertainty
is available, for instance, obtained from historical data, then simulation–optimization methods
can be used to search for optimal control policies according to a large number of plausible
scenarios sampled from the uncertainty model and simulated on the digital twin [1–3].
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However, the availability of a digital twin is not so common, especially because designing
and implementing it could be an expensive task depending on the complexity of the target
system. More recently, research has focused on exploiting the safe experience; that is, the
historical data collected over time as a result of the implementation of a safe-by-design policy.
Thus, instead of using historical data just for estimating the uncertain components affecting
the system’s output, the control actions (also known as decisions) implied by the safe-by-
design policy are also exploited. These data offer just a partial view—knowledge—of the
overall system’s behaviour; thus, Machine Learning (ML) algorithms are used to generalize
for unseen data, specifically new control actions, while dealing with two different sources
of uncertainty: the prediction error inherent in the resulting ML model (also known as
epistemic uncertainty) and the stochastic components acting on the system (also known as
aleatoric uncertainty).

Safety and optimality are strictly intertwined, as largely reported in the scientific litera-
ture about optimal learning and optimal control. The most relevant research studies, for this
paper, regard the combination of Safe Active Learning (SAL) and Bayesian Optimization
(BO) [4–7]. For instance, Ref. [8] address the optimal calibration of a PID (proportional–
integrative–derivative) controller for a high-pressure fuel supply system of an engine
through a SAL-BO method. The same problem—also known as safe optimal tuning of
a PID controller’s hyperparameters—has been largely investigated in [9–13], empirically
proving the benefits offered by the combination of BO and SAL. In robotics, optimizing a
control policy is largely a more complicated task than the optimal tuning of a PID controller,
but similar approaches have also been proposed within the Reinforcement Learning (RL)
framework, such as [14–16]. Interestingly, most of the quoted approaches use Gaussian
Process (GP) regression to obtain a probabilistic model of the performance metric to be
optimized under safety constraints. A different approach, based on Lipschitz optimization,
has been proposed in the case that the safety constraint is related to a given threshold
on the performance metric and uncertainty is a bounded noise whose maximum effect is
known [17].

However, almost all of these studies massively use digital twins of the target systems
to learn or tune a safe optimal control policy, instead of exclusively analysing historical
data collected by having operated a safe-by-design policy.

The main contributions of this paper can be summarized as follows:

• Using data collected by having operated a safe-by-design policy, namely, safe experience,
to obtain a probabilistic model of the the target system, both in terms of performance
and safety. Although it is a partial representation of the system, this model allows the
expensive design and implementation of a digital twin to be avoided;

• Using two separate GPs to obtain the probabilistic models of performance metric and
safety, respectively. This allows different uncertainty components to be dealt with that
could affect, separately as well as jointly, performances and safety;

• Generating new safe—and more effective—policies by solving a constrained optimiza-
tion problem involving the two GP models mentioned before;

• Validating the proposed approach on two case studies inspired by real-life systems
and quite commonly considered in the optimal control literature: the control of a
house heating system [18,19] and the control of a water tank [20–22]. Safe-by-design
and new safely explored policies are compared both in terms of performances and
incurred risk (i.e., safety violations).

2. Safe Control of a Dynamic System

In this section, we briefly introduce the generalities about safe optimal control and
present the two case studies.

2.1. System Control: Generalities

Denote with S the target dynamic system to be controlled, and with π the control
policy deciding the control action to apply at time t, namely at, depending on the current
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state of the system, st. According to its internal behaviour, the system will turn its state into
st+∆t depending on both the control action at and some uncontrollable stochastic input, ξt.
Specifically, ξt is unobservable or observable only after the control action at is operated.
Along with the new state, st+∆t , the system can provide further information, specifically
some performance metric(s), denoted with pt+∆t , and constraints satisfaction, denoted
with gt+∆t . It is important to remark that constraints can refer to different aspects of the
system behaviour; in this paper, we are specifically interested in those related to the safety,
namely safety constraints. The subscript t + ∆t is used to denote the fact that state transition,
performance metric(s) and constraint satisfaction are not revealed at the same time that at
is operated; instead, some processing time (i.e., ∆t) is needed.

Figure 1 depicts a schematic representation of a generic control loop for a dynamic
system. The two case studies, detailed in the following two sections, can be resampled to
this general schema.

Figure 1. A schematic representation of the control of a dynamic system.

2.2. Controlling a House Heating System

The first case study considered in this paper is the control of a house heating system,
schematically represented in Figure 2. The uncertain component acting on the system is
the outside temperature, which varies during the day: the higher the difference between
the in-house and outside temperature, the higher the heat dissipation is (depending on the
physical properties of the house’s walls). The control policy, π, receives the current inner
temperature, st, as input, and sets the heater temperature, at, for the next ∆t time.

The most common formulation of this control problem aims at reaching a target
in-house temperature within a given interval of time (after the heater and the controller
are switched on) while avoiding excessive sovraelongation and keeping the in-house
temperature as stable as possible over the day. These constraints can be considered as safety
constraints, where safety—in this case study—refers to avoiding discomfort to the household.

All the equations of this case study were adapted from the “Model A House Heating
System” example available at the MathWorks website (https://www.mathworks.com/
help/simulink/ug/model-a-house-heating-system.html (accessed on 18 September 2023)).

System transition equation. The system transition is regulated by the following
in-house changing temperature equation:

st+∆t = st +
∆t

κ

[
Mκ(at − st) +

st − ξt

R

]
(1)

where Mκ(at − st) = dQG
dt is the rate of heat gain and st−ξt

R is the rate of heat loss. All the
others symbols are listed as follows (along with the values used in the case study):

• M is the mass of air of the heater (M = 3600 kg·h);
• κ is the heater capacity (κ = 1500.4 Joule/°C·kg);
• m is the mass of air in the house (m = 1470 kg);

https://www.mathworks.com/help/simulink/ug/model-a-house-heating-system.html
https://www.mathworks.com/help/simulink/ug/model-a-house-heating-system.html
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• R is the thermal resistance (R = 4.329 · 10−7 °C·h/Joule).

Finally, for the outside temperature, ξ(t), we used the Yosemite temperature dataset (https:
//github.com/facebook/prophet/blob/main/examples/example_yosemite_temps.csv
(accessed on 18 September 2023). It stores the daily temperature measurements, sam-
pled every minute, referring to 60 different days. All the temperature values, originally
expressed as Fahrenheit degrees, were first converted into Celsius degrees.

Figure 2. An illustrative representation of a house heating system.

Safety (and operating) constrains. As previously mentioned, in this case study, the
safety constraints refer to:

• Bringing the in-house temperature close to a target one (i.e, ŝ = 18 °C) within 30 min
from the heater and controller switch-on;

• Not exceeding a sovraelongation of 1 °C within the first 30 min (i.e., st ≤ 19 °C,
with t ≤ 30 min);

• Keeping the in-house temperature close to the target, which is st ∈ [ŝ− 0.5; ŝ + 0.5] °C,
with t > 30 min.

Finally, there is only one operating constraint to consider, which is the maximum heat
the heater can provide. In this study, we considered 0 ≤ at ≤ 70 °C.

Safe-by-design policy. The safe-by-design policy for this case study is implemented
through the following PID (proportional–integrative–derivative) control:

at = min

{
Kpεt + Ki

t

∑
j=0

ε j + Kd
εt − εt−1

∆t
, amax

}
(2)

where εt = ŝ− st, amax = 70 ◦C, and the PID’s parameters are manually set to Kp = 43,
Ki = 0.17, and Kd = 0 to meet all the safety constraints.

Figure 3 shows the implementation of the safety-by-design policy over a certain day.
On the top, the in-house temperature is reported, along with the safety constraints; on the
bottom, the heat provided by the heater, according to the control policy, is depicted.

Figure 4, instead, shows (a) the in-house temperature, (b) the heat provided by the PID
controller, and (c) the outside temperature, all over time for each one of the 60 days into
the Yosemite temperature dataset. Specifically, it is easy to notice that the control policy
implemented by the PID controller is always safe (i.e., Figure 4a).

https://github.com/facebook/prophet/blob/main/examples/example_yosemite_temps.csv
https://github.com/facebook/prophet/blob/main/examples/example_yosemite_temps.csv
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Figure 3. Safe-by-design policy for the house heating system case study: (top) in-house temperature
over 24 h for a certain day, along with safety constraints; (bottom) amount of heat provided by the
heater over the day.

(a) In-house temperature. (b) Heating by the PID. (c) Outside temperature.
Figure 4. A graphical representation of all the data for the case study, for each one of the 60 days
stored in the Yosemite temperature dataset: (a) the in-house temperature along with the safety
constraints, (b) the amount of heat provided by the safe-by-design control policy operated by the PID
controller, and (c) the outside temperature (i.e., the stochastic component acting on the system).

Performance metric. In the original formulation of this control problem there is
not any economical performance metric to optimize: the goal is just to keep the in-house
temperature as close as possible to the target one. On the other hand, as far as a real-life
setting is considered, a quite natural optimization the household could be interested in is
the minimization of heating-related energy costs, under a Time-of-Use (ToU) energy tariff.
Specifically, we considered the following ToU for the energy price:

pricet =


1 €/◦C if t ∈ [0; 7] ∪ [21; 24]

10 €/◦C if t ∈ (7; 10] ∪ (17; 21]
5 €/◦C if t ∈ (10; 17]

Thus, the safe optimization problem consists of

min
at∈[0, 70]°C

T

∑
t=0

at · pricet
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subject to all the safety constraints previously defined.

2.3. Controlling a Water Tank

The second case study is the safe and optimal control of a water tank. The system is
schematically depicted in Figure 5. The stochastic component affecting the system’s output
is the water demand, ξt, varying over time.

Figure 5. A schematic representation of the water tank control case study.

Contrary to the previous case, where a target temperature to reach is given, here there
is not any target water level. The aim is to minimize the energy costs to pump water into
the tank, under a ToU energy tariff, while matching stochastic demand.

Specifically, we considered the following ToU for the energy price:

pricet =


1 €/kWh if t ∈ [1; 6] ∪ [23; 24]
2 €/kWh if t ∈ [9; 18] ∪ [21; 23]
3 €/kWh if t ∈ [7; 8] ∪ [19; 20]

(3)

Then, the cost associated to a control action at also depends on the pump efficiency
η. We assumed the following simple non-linear relation between action, pump efficiency,
and energy-related costs:

costt =
pricet · a3

t
η

As far as safety is concerned, the control policy π must guarantee that the level of water
in the thank is always within a prefixed interval, formally s ≤ st ≤ s̄, with t = 0, . . . , T.

The safe-by-design policy—typically operated in the real-life setting—simply consists
of refilling the water tank depending on its current level st and the maximum amount of
water that can be pumped in the unite of time, namely ā. Formally,

π : at = min{ā, s̄− st}

Specifically, 0 ≤ at ≤ ā is the operating constraint characterizing this case study.
Clearly, the reported safe-by-design policy is suboptimal—indeed, it does completely

ignore energy-related costs—while our aim is to solve the following problem

min
at∈[0, ā]

T

∑
t=0

pricet · a3
t

η

subject to the mentioned safety (and operating) constraints.
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As far as all the other technical details are concerned, we considered:

• s = 5 m3;
• s̄ = 50 m3;
• ā = 10 m3.

Finally, a dataset of 365 daily water demand time series (i.e., hourly data) was gener-
ated by sampling from typical real-life patterns. Figure 6 shows the water demand data.

Figure 6. The dataset of 365 generated water demand time series, one for each day with hourly
time step.

3. Safely Exploring More Efficient Control Policies

This section describes the proposed approach aimed at exploring new, more efficient,
still safe policies, starting from the knowledge collected by having operated a safe-by-
design policy. First, we describe the general methodology to model safety constraints
and system performances from previous knowledge. Then, we provide all the details to
specialize the general method on the two case studies.

3.1. Modelling Performance and Safety from Safe Experience

The safe experience collected by having operated a safe-by-design policy can be simply
represented as a set of N tuples, each codified as:

< t, st, at, st+∆t , pt+∆t , gt+∆t > (4)

where symbols refer to the concepts described in Section 2.1. It is important to remark that,
even if the stochastic components ξt was observable after at was operated, our approach
does not require to explicitly store it into the tuple.

The first step consists of organizing the information within the set of tuples into two
datasets, respectively, denoted with D =

{(
x(i), z(i)

)}
1:N and P =

{(
x(i), p(i)

)}
1:N , where:

• x(i) ∈ Rd is an input vector of observable information, whose definition—and dimen-
sionality d—is strictly problem-specific (as demonstrated in the next with respect to
the two case studies). Anyway, it must contain at least st and at;

• z(i) ∈ R is the next system’s state, st+∆t , observed depending on x(i);
• p(i) ∈ R is the performance value, pt+∆t , associated to x(i).

Therefore, it is quite intuitive that the datasets D and P can be used to model, re-
spectively, the system’s dynamics and the system’s performance, in response to an input
vector x whose components must include the current state st and the control action at. The
choice of the modelling strategy is crucial, especially to deal with the uncertainty due to
the stochastic component acting on the target system.

In line with the more recent literature, we decided to adopt Gaussian Process (GP)
regression as the modelling strategy. From an ML perspective, a GP is a probabilistic



Mathematics 2023, 11, 4347 8 of 16

regression model, where probabilistic means that the model provides not only the prediction
of the output variable but also the associated predictive uncertainty. More importantly, a GP
is able to deal with noisy observations (i.e., different values of the target variable for the
same input). Indeed, the GP’s predictive uncertainty consists of two different components:
epistemic, increasing with the distance from observations (i.e., data) that the GP is fitted on,
and aleatoric, which is the noise in the output variable due to inherently random effects (i.e.,
the effect of the stochastic uncontrollable component on the target system, in our setting).

For a comprehensive study of GP regression, the reader could consider [23,24]. Here,
we report just the equations for the GP’s predictive mean µ(x) (i.e., the predicted output)
and the predictive variance σ2(x) (i.e., the square of the predictive uncertainty).

µ(x) = m0(x) + k(x, XN)
[
KN + λ2I

]−1
(yN −m0(XN)) (5)

σ2(x) = k(x, x)− k(x, XN)
[
KN + λ2I

]−1k(XN , x) (6)

where m0(x) is the prior mean (usually set constant and equal to 0 without loss of generality),
and (XN , yN) is the training dataset, such that XN =

{
x(i)
}

i=1:N are the input data and
yN =

{
y(i)
}

are the associated output values. Here, the output values are assumed
to be noisy observations of the unknown target function f (x), that is y(i) = f (x(i)) +
ε(i), with ε(i) ∼ N (0, λ2). Finally, k(x, x) is a kernel (also known as covariance) function
establishing a prior on structural properties, specifically the smoothness, of the GP regression
model. It follows that k(x, X)—as well as its transpose k(X, x)—is a vector with components
k(x, x(i)), and KN is an N × N matrix with entries Kij = k(x(i), x(j)).

The kernel function can be chosen among many possibilities [23,24]. For the purposes
of this study, the Squared Exponential (SE) kernel was considered a reasonable choice,
that is:

k(x, x′) = σ2
f · e
− ‖x−x′‖2

2`2

with σf and ` being two kernel’s hyperparameters regulating the vertical and horizontal
span of the GP’s output. Learning a GP regression model given a dataset (XN , yN) means
tuning the kernel hyperparameters to fit the data. The common choice—also adopted in this
paper—consists of searching for the values of the kernel’s hyperparameters, maximizing
the marginal log-likelihood estimation (MLE).

As far as the goal of modelling knowledge from previously operated safe-by-design
policies is concerned, we propose to fit two separate GP regression models: one learned
on the dataset D for predicting the next state of the system, and one learned on P for
predicting the system performances. As a result, we obtain the predictive means, µD(x)
and µP (x), and the predictive uncertainties, σD(x) and σP (x).

3.2. New Safe Policy via Constrained Optimization

Given the two GP regression models introduced in the previous section, the safe explo-
ration of more efficient and safe control policies is performed as a constrained optimization
problem, generically formalized as follows:

a∗t = arg min
at∈A

µP (x)− βP σP (x)

s.t. γ(x, µD(x), σD(x), βD) ≈ gt+∆t ≥ 0
(7)

where x is an input vector whose components include, necessarily, the current st and the
control action at to be chosen. It is important to remark that the only decision variable is at,
while all the other components of x, including st, are unchangeable observed values (they
are denoted in blue in the following).

The optimal control action a∗t must be searched within the space A that is specified by
the operating constraints of the target system.
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Without any loss of generality, we consider a minimization problem (i.e., we want to
minimize costs in both the two case studies). Specifically, the lower confidence bound of
the GP modelling the performance is considered, with the parameter βP specifying the
confidence interval to consider.

Finally, with the function γ(.) we denote the approximation of the safety constraints
gt+∆t ≥ 0. This function depends on the input vector x, the GP approximating the sys-
tem’s dynamics—specifically, µD(x) and σD(x)—and, similarly to the objective function,
a coefficient βD dealing with the confidence interval of the prediction.

The general formulation (7) is specifically declined for the two case studies (i.e.,
following optimization problems (8) and (9)). The same software framework is adopted,
which is the R package nloptr. All the code is developed in R and it is available for free,
along with data and results, as detailed in the “Data Availability Statement” at the end of
the paper.

3.3. Detailing the Approach for the House Heating System Case Study

In the house heating system case study, the input vector is defined as x = (at, st, at−∆t),
where the blue components are observed and unchangeable values.

At a generic time t = 0, . . . , T, all the tuples referring to that specific time are retrieved
and the two datasets D[t] and P [t] are built. Here, the superscript [t] remarks that all the
observations are related to the time step t, but it is omitted in the following to keep the
notation as simple as possible. For t = 0, we assume at−∆t = 0.

The two GP models are separately fitted on the two datasets and, according to the
definition of the use case, the constrained optimization problem becomes:

a∗t = arg min
at∈[0; 70]◦C

µP (x)− βP σP (x)

s.t. 19 ◦C−
[
µD(x)− βD σD(x)

]
≥ 0 ∀t ≤ 30′

18.5 ◦C−
[
µD(x)− βD σD(x)

]
≥ 0 ∀t ≥ 30′[

µD(x)− βD σD(x)
]
− 17.5 ◦C ≥ 0 ∀t ≥ 30′

(8)

The first constraint refers to the maximum allowed sovraelongation within 30′, while
the other two refer to the allowed deviation from the target temperature (i.e., 18 °C).

With regard to the parameters considered, we chose to set βP = 1 and βD = 6. Indeed,
we decided to be precautionary in terms of safety estimation. These values were obtained
from preliminary experiments (not reported in the paper).

3.4. Detailing the Approach for the Water Tank Case Study

In the second case study, the optimal and safe control of a water tank, the input
vector is defined as x = (at, st). Again, in blue is the component that is observed and
unchangeable, specifically, the current amount of water in the tank. As for the previous
case study, after retrieving the observations related to the current time step t, and after the
two GPs are learned, the optimal and safe action a∗t is obtained by solving the following
constrained optimization problem:

a∗t = arg min
at∈[0; 10]m3

µP (x)− βP σP (x)

s.t. 50 m3 −
[
µD(x) + βD σD(x)

]
≥ 0 m3[

µD(x)− βD σD(x)
]
− 5 m3 ≥ 0 m3

(9)

For this specific case study, and according to preliminary experiments, we empirically
defined the values of the parameters as follows: βP = 1 and βD = 4.

According to the definition of the input vector x, it is easy to provide a graphical
representation of how the approach works. Figure 7 provides an illustrative example for
a specific day (i.e, the 354th in the dataset) and a specific hour of the day (i.e., t = 7),
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in which st is observed and unchangeable and, therefore, a one-dimensional representation
can be easily obtained. The top of the figure shows the GP modelling the cost associated
to any possible action: the solid blue line is the GP’s predictive mean, µP (x), while the
dashed line represents the lower confidence bound (i.e., the objective function), that is
µP (x) − βP σP (x). The shaded area represents the confidence interval; it is clear that
the value of βP does not affect the minimizer. The bottom of the figure depicts the GP
devoted to predicting st+∆t , depending on the possible actions (while st is always observed
and kept fixed). The solid curve is the GP’s predictive mean, µD(x), and the dashed
lines are the lower and the upper confidence bound, respectively, µD(x)− βD σD(x) and
µD(x) + βD σD(x). It is clear that the higher βD is, the smaller the estimated feasible (i.e.,
safety) region, directly affecting the location of the constrained minimizer.

Figure 7. An illustrative example of how the proposed method works, for a specific day and hour of
the day. (top) The GP regression model and the associated objective function µP (x)− βP (x) σP (x)
(dashed blue curve) to minimize; (bottom) GP regression model predicting the next water level in
the tank: prediction and uncertainty are used to evaluate safety with respect to the max and min
allowed level. Finally, the vertical dashed line is the optimal and safe solution a∗t of the constrained
optimization problem.

4. Results

In this section, the results obtained on the two case studies are reported, separately.
The approach are evaluated in terms of efficiency improvement (i.e., cost reduction) and
safety guarantees of the explored policies against the safe-by-design ones.

The validation schema is inspired by the well-known leave-one-out validation procedure
largely adopted in ML. One day is left apart as a test, while all the others are used to train
the GP models and to consequently apply our approach on the test day.

The energy costs obtained are compared with the historical data related to the safe-by-
design policy. Moreover, the possible safety violations of the approach are also reported.

It is important to remark that safety has two different meanings in the two case studies:
it is just related to discomfort for the household in the house heating system case study, while
it refers to service interruption and/or system disruption in the water tank control case study.

4.1. Results on the House Heating System Case Study

As expected, operating the proposed approach leads to a reduction in the energy-
related costs when compared with the safe-by-design policy. The overall cost saving is
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approximately 2.5%. Figure 8 shows the box plot of the daily costs incurred by operating
the two different policies, highlighting an overall shift towards lower costs over all the
60 days when the proposed approach is operated.

Figure 8. Comparison between the daily costs, over 60 days, incurred by operating the safe-by-design
policy and the proposed approach, respectively denoted with safe initial policy and new policy in
the chart.

On the other hand, the observed cost saving implies some safety violations. Specifically,
the sovraelongation constraint (i.e., the in-house temperature must be lower than 19 °C
within the first 30 min) is violated in 14 days out of 60. However, the entity of the violations
is really small: the violating temperature is 19.2 °C, for both the average and median, with a
standard deviation of 0.1 °C. Similarly, the constraints related to the allowed deviation
for the target temperature are violated in 35 days, but, also in this case, the entities of the
violations are affordable: the temperature violating the allowed deviation from below (i.e.,
lower than 17.5 °C) is 17.3 °C for the average and median, with a standard deviation of
0.3 °C, while the temperature violating the allowed deviation from above (i.e., higher than
18.5 °C) is 18.9 °C on average and 18.8 °C for the median, with a standard deviation of
0.3 °C.

Figure 9 compares the in-house temperatures under, respectively, the safe-by-design
policy and the proposed approach, over a certain day. The goal of cost reduction, underlying
the proposed approach, is clear: the in-house temperature is significantly lower, oscillating
around the lower bound of the desired target range. Temperatures under the lower bound
are due to erroneous modelling of the safety (and/or too small values of βD), which, in turn,
is due to the fact that cost minimization leads the system to work in unseen conditions for
which it is difficult to provide an accurate prediction.

Although a fine-tuning of the GP model and the βD parameter could lead to an increase
in terms of safety—but to a consequently worsening in terms of costs—we concluded that
the resulting discomfort (i.e., safety violation) could be considered acceptable by the
household when compared against the economical gain.

Finally, we are aware that the oscillating behaviour of the in-house temperature,
implied by the proposed approach, is definitely far from the smooth one observed for
the safe-by-design policy. Thus, we want to remark that our goal was not to replicate the
actions operated by the PID controller, but to completely explore new policies starting from
the safe experience collected so far. Therefore, the different observed behaviour has to be
considered, in our opinion, as a positive result: our approach is actually able to discover
new policies instead of replicating the original one. It is important to remark that, in any
case, the oscillations could be removed/decreased through two possible strategies: adding
a further constraint relative to smoothness or operating the control action less frequently
(e.g., every 5 or 10 min, or every time the in-house temperature becomes too close to the
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upper or lower bounds of the desired target interval). These strategies are not considered
in this paper and will be investigated in future works.

Figure 9. In-house temperature under the safe-by-design policy (light blue) and the proposed
approach (gray) over a given day.

4.2. Results on the Water Tank Case Study

The results obtained on the water tank case study are exciting. According to the leave-
out-procedure, the proposed approach was always able to drastically reduce energy-related
costs with no safety violations over all the 365 days. This is crucial because, contrary to
the previous case study, here a safety violation refers to a system disruption or a service
interruption, two situations that must be definitely avoided.

Figure 10 shows the statistically significant difference between the daily costs incurred
by operating the safe-by-design policy (“safe initial policy”, in the chart) and those incurred
by adopting the proposed approach (“new policy”, in the chart). The reduction in terms
of daily costs is clear in both the two reported charts: a box plot (on the left) and two
probability density functions (on the right).

(a) Box plot. (b) Probability density function.

Figure 10. Comparison between daily energy-related costs incurred by using the safe-by-design (“safe
initial policy”) and the proposed approach (“new policy”). Daily energy-related costs of the proposed
approach were computed through leave-one-out validation. The statistically significant difference
in terms of daily costs is clear both in (a) the box plot and (b) the charts of the two probability
density functions.
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Long-run validation. An important consideration is that the water level in the tank,
at the end of the day, is completely different when the proposed approach is used instead
of the safe-by-design policy. Moreover, the resulting water level at the end of the day is
significantly lower than the water level at the beginning of any other day in the dataset.
However, the control of a real-life water tank must be operated in the long-run, from one
day to the next without any interruption. This makes this case study more complicated
than the previous one (where, instead, it is quite simple to keep the in-house temperature
stable as soon as the target temperature is reached, due to the time horizon of the control).
Thus, we decided to perform a long-run test by operating, in parallel and independently,
the safe-by-design policy and our approach. Both start from the same initial water level in
the tank and are operated for 365 days, subject to the same water demand.

As a result, the proposed approach again provides a relevant reduction in the energy-
related costs. However, in order to avoid any possible safety violation, it was necessary
to increase βD from 4 to 5. This is reasonable because, in the long-run, the proposed
approach leads the system to work in very unexplored conditions; thus, assuming a more
precautionary attitude is more than advisable.

The cost reduction offered by the proposed approach can be clearly observed in
Figure 11, as a comparison between both the two probability density functions and the cost
time series. While the first chart shows that, overall, a large amount of high daily costs are
shifted towards lower ones, the second demonstrates that the cost reduction occurs over
the entire long-run period, not just at the beginning.

Finally, we report in Figure 12 the daily amount of water pumped into the tank, namely
inflow, for the safe-by-design policy and our approach. Clearly, there is not any difference
because this quantity is strictly linked to the water to be supplied to match the water
demand (this is even more obvious in the long run). Indeed, the few outliers observed
for the proposed approach refer just to the first day of the control, according to a lower
water level in the tank, than the safe-by-design policy. From this consideration stems the
most relevant result for the case study: since the daily inflows are significantly similar,
the unique reason behind the cost reduction is a clever strategy for pumping and storing
water into the tank. More simply, the proposed approach is able to pump water into the
tank when this operation is more economically convenient, and, at the same time, it keeps
the water level in the tank within a safety range.

(a) Probability density function. (b) Time series.
Figure 11. Comparing safe-by-design policy and proposed approach in the long run. Differences
between daily costs as (a) probability density functions and (b) time series.
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Figure 12. Comparison between the daily inflows operated by the safe-by-design policy and the
proposed approach.

5. Discussion and Conclusions

We presented a novel approach to explore more efficient and safe control policies
starting from data collected by having operated a safe-by-design one. The proposed
approach does not require the expensive design and implementation of any digital twin
of the target system, and deeply exploits the knowledge coded into a set of historical safe
data (also known as safe experience).

As demonstrated in the paper, a more efficient policy can only be obtained by incurring
some risk in terms of safety. Thus, uncertainty quantification becomes crucial to estimate
such a risk, and GP modelling resulted in being a well-suited methodology for this purpose.

The safe exploration of new policies is obtained by solving a constrained optimization
problem in which both the objective function and the safety constraints are predicted
along with the associated uncertainty. Empirical results on two case studies, inspired from
real-life systems, proved the effectiveness of the proposed approach, providing a significant
cost reduction—with respect to the initial safe-by-design policy—without any relevant
safety violation.

Indeed, the two case studies imply two different meanings of safety violation: a dis-
comfort for the household in the house heating system case study and a system disruption
or a service interruption in the water tank control case study. While relatively small viola-
tions can be considered acceptable in the first case, they must definitely be avoided in the
second. The approach proved to work in the two different settings.

A limitation of the proposed approach can be found in the identification of the most
suitable confidence interval for the safety estimation, namely the parameter βD in the two
case studies. It is difficult to choose a suitable value a priori: too large a value can lead
to a poor performance improvement, while too small a value increases the risk for safety
violations. Our suggestion is to adopt validation procedures, such as the leave-one-out
validation used in our paper, to estimate a suitable value of the parameter and, in case,
to slightly increase it before operating on the real-life system.

Ongoing work aims at (i) evaluating safety not only at time t but also looking ahead—
even if this entails an additional computational cost—and (ii) augmenting the initial safe
experience with all the new observations collected by operating the new approach. Indeed,
as empirically demonstrated, our approach leads the system to work in previously unseen—
but still safe—conditions and new observations can increase the knowledge about the
overall behaviour of the target system. This would also help to address the previously
reported limitation, by allowing us to adaptively refine the value of βD over time as quickly
as new knowledge is collected.
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