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ABSTRACT

We study regular non-semisimple Dubrovin-Frobenius manifolds in dimensions 2, 3, and 4. Our results rely on the existence of special local
coordinates introduced by David and Hertling [Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17(5), 1121-1152 (2017)] for regular flat F-manifolds
endowed with an Euler vector field. In such coordinates, the invariant metric of the Dubrovin-Frobenius manifold takes a special form,
which is the starting point of our construction. We give a complete classification in the case where the Jordan canonical form of the operator
of multiplication by the Euler vector field has a single Jordan block, and we reduce the classification problem to a third-order ordinary
differential equation and to a system of third-order PDEs in the remaining three-dimensional and four-dimensional cases. In all the cases, we
provide explicit examples of Dubrovin-Frobenius potentials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0094580

I. INTRODUCTION

Dubrovin-Frobenius manifolds have been introduced by Dubrovin as a coordinate-free reformulation of the so-called
Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations of two-dimensional topological field theories (see Ref. 1) and play an important
role in many areas of mathematics (quantum cohomology, Gromov-Witten theory, singularity theory, integrable PDEs, etc.). Some construc-
tions in the theory of Dubrovin-Frobenius manifolds rely on an additional assumption: the existence of a holonomic frame of idempotents.
Dubrovin-Frobenius manifolds having this property are called semisimple or massive since in a physical context they correspond to massive
perturbations of two-dimensional topological field theories. Semisimple Dubrovin-Frobenius manifolds are characterized by the existence of
a special set of local coordinates, called Dubrovin canonical coordinates or simply canonical coordinates, reducing the structure constants of
the product to a constant canonical form. A generalization of canonical coordinates in the non-semisimple regular case was found by David
and Hertling in Ref. 2. David-Hertling canonical coordinates depend on the Jordan normal form of the operator of multiplication by the Euler
vector field. In this paper, using these coordinates, we construct explicit examples of non-semisimple regular Dubrovin-Frobenius manifolds
in the case of a single Jordan block.

This paper is organized as follows. In Sec. II, we recall the definition of the Dubrovin-Frobenius manifold and some known results in the
semisimple case. In Sec. 111, we introduce David-Hertling canonical coordinates for regular non-semisimple Dubrovin-Frobenius manifolds
and some general properties of the invariant metric in such coordinates. In Sec. I'V, we focus on the case of a single Jordan block in dimensions
2,3, and 4, and in Sec. V, we briefly discuss the case of multiple Jordan blocks in both dimensions 3 and 4.

Il. DUBROVIN-FROBENIUS MANIFOLDS: THE SEMISIMPLE CASE

Following the work of Dubrovin,' we introduce the notion of the Dubrovin-Frobenius manifold.
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Definition I.1. A Dubrovin-Frobenius manifold M is a manifold equipped with a metric n, a commutative associative product o on the
tangent space with unit e, and a second distinguished vector field E called the Euler vector field satisfying the following conditions:

o [nvariance of the metric,

il CJl‘k =N Cik- (1.1)
e Flatness of the metric,
Rjj = 0T — O + Ty Iy — T = 0. (1.2)
o Symmetry of Ve,
ViCJI-k = Vjcﬁk. (1.3)
o Constancy of e,
Vie' = 0. (1.4)
e Homogeneity conditions,
Lrge= G Lee' ==¢, Zeny=(2-d)ny (1.5)

for some constant d. Here, ¥V denotes the Levi-Civitd connection associated with y and & denotes the Lie derivative along a vector

field Z.

From the axioms above, it follows that in flat coordinates for the metric, the structure constants of the product can be written in terms of
the third-order partial derivatives of a function F called the prepotential of the Dubrovin-Frobenius manifold,

c;k = qilalajakF.
By construction, the function F is a solution of Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations.”

Remark 1.2. The manifold M in the above definition is a real or complex n-dimensional manifold. In the first case, all the geometric data
are supposed to be smooth. In the latter case, TM is intended as the holomorphic tangent bundle and all the geometric data are supposed to be
holomorphic.

Remark 1.3. Since the components of the metric and of the unit vector field are constant in flat coordinates, we clearly have

geﬂg =0. (1.6)
A point p € M of an n-dimensional Dubrovin-Frobenius manifold is called semisimple if T,M has a basis of idempotents m1,...,7m,
satisfying 7 o 7; = 67 Semisimplicity at a point is an open property on M: locally around a semisimple point, one can choose coordinates

u' such that % o % = 6k,l%~ These coordinates are called canonical coordinates.

Due to (1.1), in canonical coordinates, the metric # becomes diagonal: #;; = Hl-z&j. Let us introduce the Ricci rotation coefficients'’

Bij = BF’II?{, i # j. In the case of Dubrovin-Frobenius manifolds, the rotation coefficients are symmetric (ﬂt] =p ﬁ), and as a consequence, the
J

metric is potential in canonical coordinates (i.e., H? = d;¢ for some function ¢). Moreover, it is easy to check that the rotation coefficients

satisfy the following overdetermined system of PDEs:

LS:€1:60 €202 Joqueosq 87

8kﬁ,‘j = ﬁikﬁkj) i :Fj +k+i, (1.7)
e(ﬂij) =0, i#j, (1.8)
E(Byj) = —Pij» i#], (1.9)
where
J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-2
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n n

e=Z@i, E=Zu18i.
i=1 i=1

Condition (1.8) follows from (1.6). Systems (1.7) and (1.8) are called Darboux—Egorov system (see Refs. 5 and 6) and imply the flatness of
the metric #. The last condition (1.9) follows from the homogeneity properties. Given a solution of the above system, the Lamé coefficients
(Hi,...,H,) are obtained by solving the overdetermined system of PDEs,

8]‘Hi = ﬁinj, i ¢j, (1.10)

e(H;) =0, (1.11)

E(H;) = DH;, (1.12)

where D = —g is an eigenvalue of the skew-symmetric matrix V;; := (1 — u")ﬂij.1 In dimension 7 = 3, on the open set u' # u* # u’ # u', the

general solution of systems (1.8) and (1.9) is given as

1 w—u
/312= 2 Flz(f)>

u! u? —ul
1 w—u!
ﬂ23 = B uzes(m); (1-13)

3 1

[3 1 P u —u

B3= I3l 55—
W3-l w2 —yl

The remaining conditions (1.7) are equivalent to the following non-autonomous system of ordinary differential equations (ODEs):

dF, 1
= Fi3F;,
dz  z(z-1) B
dF13 1
el A Fi2F»s, (1.14)
dz -1 %7
dF. 1
=2 CFLFs,
dz z

3 1
where z:= 5=, It is well-known that three-dimensional Dubrovin-Frobenius manifolds are parameterized by solutions of a family of

Painlevé VI equations (see Ref. 1). This can be easily proved by also studying system (1.14).

Theorem 1.4. System (1.14) is equivalent to the following sigma form of Painlevé VI equations (see Ref. 7):
Z(z-1)(d") + 4[0'(20' - 0)2 —(0") (20 - 0)] = 22R*(d")* + R0, (1.15)
where the parameter R* is the value of the first integral I = Fi, + Fi3 + Fa3.

Proof. First, note that % = 0, as shown by a simple computation. Hence, we set I = R*. Following Ref. 8, it is easy to check that one can
write the squares of the functions Fj; in terms of a single function o(z),

F=d, (1.16)
2
Ff3 :afza'+7, (1.17)
R
Fiy=—0+(z-1)0’ + > (1.18)
From Egs. (1.16)-(1.18), we immediately have

d 2 d 2 d 2 17
z—(F3)=2(z—-1)—(F) =—(z-1)—(F3) =2(z—1)0 (2). 1.19
L (Fh) = 2(e - 1) 2 (Fh) = (= D) (Fs) =2z - 1)o”(2) (119)

J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-3
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On the other hand, due to (1.14), we have

d d d
Z@(F;) = Z(Z - 1)@(1:%2) = —(Z - I)E(Fi%) = 2F13F13F3;. (120)
By comparing these equations with (1.19) and taking the square, we obtain (1.15). [ ]

In dimension 4, there is a special class of Dubrovin-Frobenius manifolds that are also related to the Painlevé VI equation.'' Dropping
the assumption of symmetry of the rotation coefficients and allowing for different degrees of homogeneity for the Lamé coefficients, one ends
up with the Darboux-Egorov system [(1.7) and (1.8)] with the additional constraint

E(Bij) = (di—dj - 1)Byj, i#]. (1.21)
In dimension 3, systems (1.7), (1.8), and (1.21) reduce to a system of six ODEs that turned out to be equivalent to the full family of

Painlevé VI.'” The corresponding geometric structure is a generalization of the Dubrovin-Frobenius manifold structure, and it is called
bi-flat structure.® A similar result can be obtained by studying the following system (see Ref. 13):

ALy = ~TyTh + r:ijrj;( + TRl itk#j#i, (1.22)
e(Tj) =0, i#j, (1.23)
E(Ty) =-Tj i#j. (1.24)

System (1.22) is called Darboux-Tsarev system. Regular non-semisimple bi-flat structures in dimension 3 are also related to Painlevé tran-
scendents. This was proved in Ref. 13 by studying the analog of the Darboux-Tsarev system in the non-semisimple case (see also Ref. 9 and 14
for an alternative approach based on the study of Okubo-type systems).

I1l. DUBROVIN-FROBENIUS METRIC IN THE GENERAL REGULAR CASE

Let M be a non-semisimple Dubrovin-Frobenius manifold of dimension #n, with commutative and associative product o, metric #, unit
vector field e, and Euler vector field E. Let M be regular near a point m € M, meaning that each Jordan block of the operator L = E o is
associated with a different eigenvalue.

Let r be the number of Jordan blocks of L, and let m, . .., m, be their sizes. Any set of coordinates u', ..., u" for M can be re-labelled by
means of the following notation: for each a € {2,...,r} and for eachj € {1,...,mq}, we write

j@)=mi+ - +ma1 +j (2.1)

[for & = 1, we set j(&) = j] so that /) denotes the jth coordinate associated with the ath Jordan block. From now on, we will write «’ when
seeing the coordinate as running from 1 to the dimension of the manifold, and we will write 4 when in need to highlight the Jordan block to
which the coordinate refers. According to this notation, d; and 9y will denote the partial derivative with respect to 4’ and 1", respectively.

In Ref. 2, David and Hertling provided a generalization of canonical coordinates in the regular case. According to their results, we can
assume that the product has the following form:

611 ai'— a)> [+ <mg+1,
w0 ipy =1 7TV e (22)
0, i+j>mg+2

forallie{1,...,mq},je{1,.. .,mﬁ} for each a, f € {1,...,r}. The unit vector field takes the form

r
e = Z D1 (a)» (2.3)
a=1
and the Euler vector field becomes
n
E=>u0. (2.4)
s=1
The operator L = Eo is given by
J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-4
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L= L O ® du'®), (2.5)
where
L) _ {(Saﬁ NGO i>], 6
B~ . .
1 <]

fora,fe{l,...,r}andie {1,...,mu},je{1,...,mp}.
In fact, given a, f € {1,...,r} andie {1,...,ma},j € {1,...,m,3},wehave

L' = (E 0 95))"” = D (04 0 0y9))"

J(ﬁ)
= k(y)aﬁy a(J+k 1)(ﬁ)) “ )’ l<k<mg—j+1,
0, otherwise,
) k(ﬁ)a ks 1<i—j+1,
otherwise,
~ 6043 u(”.’*l)("‘)) i 2]’,
0, i<

Remark 1. Due to the regularity condition, we are implicitly assuming that u**® # 0 and u"® + u'® if a % .

In order for the data (7, o, e, E) to define an actual Dubrovin-Frobenius manifold, we have to impose all the axioms entering its definition.

In particular, we want to study conditions (1.1)-(1.6) in David-Hertling canonical coordinates. As stated in Ref. 2, the metric # is
represented by a block diagonal matrix, each block of which is an upper triangular Hankel matrix [for instance, in the case of a single Jordan
block, see (3.3)]. This follows from (1.1). Precisely,

n= 804; ﬁ(i+j—1)(u) dui(a) ® duj('B) (2-7)

for some functions {ﬁ(i)(,,,) [I<a<r 1<i< ma} and 7(;(«) = 0 for i > mg + 1. Moreover, (1.4) implies the existence of a metric potential H
such that

i) = Oy H (2.8)

forallie {l,...,mq} foreachae {1,...,r}.

Since we consider non-semisimple Dubrovin-Frobenius manifolds, there must exist at least one Jordan block of size greater or equal than
2. Without loss of generality, we then assume that the size of the first Jordan block is greater than 1. If one drops this assumption, analogous
results will hold, where different coordinates will play the roles here played by u, %

If we take into account that the metric must be homogeneous with respect to the Euler vector field and constant with respect to the unity
vector field, we are able to get a further expression for the terms 7y (a) -

Theorem I1.1. The functions 7j; appearing in (2.7) can be written as

LS:€1:60 €202 Joqueosq 87

=) F, ie{l,...,n}, (2.9)

for some functions F1,. .., F, of the variables

u]+2 —ut 811+(2
J = = O 2 2.10)
Z—#, ]E{,...,n— }, (
such that
,
—Z azl(a)—zf + Ci, (2.11)
a=2
= o, f-(d-1)f+Cy, (2.12)
J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-5
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Fj :821—2](, jE {3,..,,"}, (2.13)
for some function f of 2,...,2""* and constants Cy, Cy. In particular, the quantity
> Fiwy=Ci (2.14)
a=1

is a constant that vanishes whenever d + 0.

Proof. By imposing (1.6), we get

> 0wy Tli= Leli = 0
a=1

forie {1,...,n}.It follows that each 7; can be written as

ﬁ,- = (pi(uz, u3 — ul Z;(S?(a), - ,Lln - ul Z; 5;[(“)) (2.15)

for some function ¢, of  — 1 variables. By the homogeneity condition (1.5), it can be rewritten as in (2.9) for some function F; of the variables
defined in (2.10).
The flatness of e with respect to V implies that d(#(e,-)) = 0 (see Ref. 2), that is,

8j(ﬂ)ﬁi(a) du](ﬂ) A dul(a) =0.

Thus,
9j(p)i(a) ~ i) Mj(p) = O (2.16)
forallie{1,...,mq},je{1,.. .,m/;}, and o, f € {1,...,r}. In particular, for i(«),j(B) € {3,...,n}, we get

azz(ﬁ)—lFi(a) = 82"(“)‘2Fj(ﬂ)'

There must then exist a function f of the variables z', . . ., z" 2, realizing (2.13). By fixing j(8) = 2 and i(«) € {3,...,n} in (2.16), we obtain
the relation

Do () B2) = 02 () Fiy )

which amounts to

(uZ)—l 8Zi(rx)—2F2 =—d (uZ)—l Fi(a) + azFi(a)

and, by the chain rule and (2.10),

n—2

8Zx(a)—ZF2 = —dFi(a) - Z Zj 8Z’Fi(0‘)'
j=1

By taking into account (2.13), we get

n-2
azi(a)szz =-d azx(u)fzf - Z Zj azj 8Zi(a)—2f.
j=1
Then, foreachie {1,...,n -2},
OuF = -d, f -2 0,0, f,
that is,
J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-6
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[F-(-d)f+Zd,f]=o0.
Therefore, the quantity F> — (1 - d) f + 2/ 9, f equals some constant C,, proving (2.12).
By taking i(a) = 1(«), j(B) € {3,...,n} in (2.16) and summing over all « € {1,...,7}, we get

that is,

Thus,

This means that

forallje {1,...,n -2}, proving that 3 F,(,) must be equal to some constant C;. Condition (2.11) follows.
a=1
On the other hand, by taking i(«) = 1(«), j(8) = 2 in (2.16) and summing over all w € {1,...,r}, we get

r
which, since Y Fy() = C1, amounts to
a=1

Z_:l i i(a) = Z_:l A Tj(h)»

r

2\—d —
(u”) 3j(ﬁ>( 1F1<a>)=3e'1f</3>-

a=

C%(ﬁ)—z( > Fl(a)) =0.
a=1

82,-( ZFI(D‘)) =0
a=1

82( Z (uz)_d Fl(a)) = 0,
a=1

82( (uZ)—d C]) =0.

This implies d C; = 0, meaning that the constant C; must vanish whenever d + 0.

scitation.org/journal/jmp

Proposition I1.2. Up to constants, the function f appearing in (2.11)-(2.13) is related to the metric potential H by the following formula:

H-= (uz)lfdf+C2 (p(u2)+C1 ul, (2.17)
where
(uZ)l—d .
d+1,
p(u’)={ 1-d if (2.18)
Inu’ if d=1
Proof. By (2.8) and (2.9), we have
OH = (uz)fd Fi(zl, .. .,z"fz) (2.19)
foreachie {1,...,n}.Fori> 3, we get
OH = (u*) ™ 0, f,
that is,
BZHH = (uZ)l—d 8Zi—zf
J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-7
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or

8Zi—2 (H - (uz)l_df) =0.

It follows that

H= )" f+ K u?) (2.20)
for some function K (u',4*). For i = 2 in (2.19), we get
H =) (2 a,f-(d-1)f +C),
that is, by the chain rule and (2.10),

@) NQ-d)f -2 0.f) + K= () (-2 8uf - (d-1)f+ C),

yielding
K (u',u?) = C ()™
Then,
(uZ)lfd . )
K(ul,uz) _ C -4 +k(u ) ifd+1, (2.21)
Cy Inv + k(u") ifd=1

for some function k(u'). By putting together (2.20) and (2.21), one gets
H=()"""f+Crp(u®) + k(u')

for

(uZ)l—d )
p(u’)=1 1-d ifd+1, (2.22)
Inu’ ifd=1

Fori=1in (2.19), we finally get

OH =) ""F,

that is, by the chain rule and (2.10),

()Y O f + k(') = —(1P) Y O f+ (W) CL
a=2 a=2

LS:€1:60 €202 Joqueosq 87

Thus,
0 ifd+0
Aik(u') = ()" Ci = =C
k() = W) 7 G=q g ifd=0f
implying
k(') =Ciu' + G
J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-8
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for some constant C3. We conclude that
H= (uz)lfdf+ Cro(u?) +Cru' +Cs

for (u?) asin (2.22). |

IV. THE CASE OF A SINGLE JORDAN BLOCK: EXPLICIT RESULTS UP TO DIMENSION 4

In this section, we classify regular non-semisimple Dubrovin-Frobenius manifold structures up to dimension 4 in the case where the
operator L has a single Jordan block. Due to the results of Sec. I1T in the specific case where L has a single Jordan block of size #, the unit vector
field becomes e = 01, and in canonical coordinates, we have

Oitj-1 itj<n+1,
o= ! (3.1)
0, i+tj2n+2

forallije {1,...,n} and u' = ' for each i € {1,...,n}. The operator L is described by the following lower triangular Toeplitz matrix:

o1 -

u 0 0 00
W W0 - 000
w u’ W' o0 0
L= . . (3.2)
un—l un—2 un—3 ul 0
n n—1 n—2 2 1
| " u u u o
The metric is represented by an upper triangular Hankel matrix that only depends on the coordinate 4> and on n functions Fi, .. ., F, of the
variables,
S .
z’:7, ie{l,...,n-2}
It takes the following form:
—Fl FZ F3 Fn—l Fn<
F, F Fy --- Fy 0
v B B B oo 00
n=(u) _ : (3.3)
F..in F, O 0
| F, 0 0 -« 0 0]

In particular, F; is equal to a constant C; that vanishes whenever d + 0, and other F;’s are expressed in terms of a function f (zl, . ,z”fz) by

Fo=-Z28,f-(d=-1)f +Cy, (3.4)
Fj=aﬂ‘—zf VjE {3,...,?1} (3.5)

for some constant C,.

A. Dimension n =2

Let M be a two-dimensional Dubrovin-Frobenius manifold with product o, metric #, unit vector field e, and Euler vector field E. Let us
require M to be regular and the operator L = E o to have a single Jordan block near a point m € M. The unit and the Euler vector fields read,
respectively, e = 91 and E = 48, + 1?9, It follows directly from (3.3) that the metric has the form
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—d G G
G 0

n=(u) (3.6)

for some constant C, which vanishes whenever d # 0 and for some non-zero constant C,.
We are able to recover flat coordinates and an explicit expression for the Dubrovin-Frobenius prepotential, as pointed out in the
following result.

Theorem III.1. Flat coordinates coincide with the canonical ones when d = 0. Otherwise, they are given by
A o) = o,

(ul)l—d
1-d

O (u' i) =
when d # 1 and by
xl(ul,uz) =ul,
(u',u’) = Inu’
when d = 1. In all the cases, the prepotential is given by
HA@:%@T+%@W£ (37)
up to second-order polynomial terms. In flat coordinates, the unit and the Euler vector fields are, respectively, given by e = 8~1 and

xléﬁ +-éé if d= L
X'+ (1 - d)d, if d+1.

Proof. 1f d = 0, then the metric in (3.6) is constant; thus, flat coordinates coincide with the canonical ones. Let us now fix d # 0. In this
case, the flat coordinates are

xl(ul, uz) _ ul,

(ul)l—d

2,1 2y _
x(u,u") = 4

whend # 1 and
x (u',u?) =,
&(u', i) = Inu’
when d = 1. In both cases, in flat coordinates, the metric becomes

|G G
n= >
C 0

and the structure constants equal the ones in canonical coordinates,
G=d,  ijke{12).
It follows that up to second-order polynomial terms, the Dubrovin-Frobenius prepotential F is of the form

_a
"6

1}

(x1)3+ : (xl)zxz,

F(x',%%)

and it follows that in flat coordinates, the unit and the Euler vector fields are of the form as stated above. [ ]
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B. Dimension n =3

Let M be a three-dimensional Dubrovin-Frobenius manifold with product o, metric #, unit vector field e, and Euler vector field E. Let us
require M to be regular and the operator L = E o to have a single Jordan block near a point m € M. The unit and the Euler vector fields read,
respectively, e = 9; and E = u' 8 + 4?0, + 1’ 05. We already know from (3.3) that the metric is of the form

3 3 3
A) w () m()
3 3
=)™ Fz(%) Fs(%) 0 (3.8)
3
F3(%) 0 0

for some functions Fi, F», and F3 and that F, is equal to a constant C; that vanishes whenever d + 0. It turns out from the zero-curvature
conditions that the functions F,, F3 must be solutions to the following system of ODEs:

{Fg+z1:;+dF3=o, (39)

2F;F —3(F5)* =0,
In fact, let us introduce the variable z = Z—z We have already seen that there exists a function f(z) such that

Fa(z) = —zf'(2) = (d - 1) f(2) + Ca,
Fi(z) = f'(2)
for some constant C,. It follows that
Fy+zF+dFs =0.
Moreover, by requiring that Rs, = 0, one obtains the Liouville-type differential equation,
2F; FY -3 (F5)* =0.
This suffices to make all of the conditions in (1.1)-(1.6) hold without imposing more. So far, what we know about the functions Fy, F», F3 is
that F, equals some constant C; and that F,, F3 are solutions to system (3.9). Two expressions for the function f appearing in (3.4) and (3.5)
are then possible, as shown below.

Theorem II1.2. The function f realizing (3.4) and (3.5) is either provided by

f(Z) =C3z+Cy (3.10)
for some constants Cz, Cy4 or by
Cy
=- C 3.11
f@=- 0 (3.11)

for some constants Cs, Cy, Cs.

Proof. The first condition in (3.9) amounts to (3.4) and (3.5), while the second one can be rewritten as

2f'(2)f"(2) -3 (f"(2))* = 0. (3.12)

Assuming f"'(z) # 0, the solutions to Eq. (3.12) can be written as (3.11), while (3.10) is recovered by considering solutions corresponding

to f'(z) = 0. |

Summarizing, two cases may occur: either
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F1 (Z) = Cl,
Fz(z) = —C3 dz+ Cz, (3.13)
F3(Z) = C3

for some constant C; that vanishes for d # 0 and some constants C,, C; or

F](Z) = Cl,
GG (2-d)C
Fy(z) = GiGY 2+ G +Cp, (3.14)
4
F3(Z) = 7(Z+C3)2

for some constant C; that vanishes for d # 0 and some constants C,, Cs3, Cy.
Proposition II1.3. In the case of (3.13), flat coordinates are given by
xl(ul)u2)u3) —

Cz(uz)l_d
C(1-d)’

()™

2(u1,u2,u3) - (uz)—du3 +

=

2
2-d

2

Sl it i) =
when d ¢ {0,1,2}, by
xl(ul,uz,u3) =ul,

2 3 u’ G
22 Cur’

when d =2, by

xl(ul,uz,u3) _ ul,
B
02

xz(ul,uz,uS) =

x3(u1,u2,u3) =2Vu?

+ 9 In uz,
Cs

when d = 1, and, trivially, by
A, ) = o,
P A ) = o,
x3 (ul’ uz, u3) _ u3
when d = 0.
The proof is a straightforward computation.

Proposition IIL.4. Let x',x*,x* denote flat coordinates. Up to second-order polynomial terms, in the case of (3.13), the prepotential is
given by

C C
F(x', %%, %) = 73 (") + 73 x'(x)? (3.15)
when d #+ 0 and by
C C C C
F(x' 2 %) = 2 (¢ ) + 2 ()% + 2 ()% + 25 () (3.16)
6 2 2 2
J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-12
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when d =0 (in this latter case, flat coordinates coincide with the canonical ones). If d + 0, then in flat coordinates, the multiplication is

written as
D100 =01,
91002 =0,
d100s =05,
0,08, =0,
32 o 53 =0,
83 ° 83 =0a,

and the Euler vector field reads

E:x131+(1—d)x252+27dx353

if d¢{0,1,2},
1z G - 1 3¢
E=x 81+—82+7x 83
G 2
if d=1,and
E=x"8,-x"9,+0s
if d = 2. In flat coordinates, the unit vector field is e = 9, for each value of d.

The proof is a straightforward computation.
Analogous results can be achieved for the case of (3.14), as presented below.

Proposition IIL5. In the case of (3.14), flat coordinates and the Euler vector field are given by

C2C3(u2)2 + Cz u2u3 - C4(u2)2
C1 (C3u2+u3) ’
2,1 2 3 5, 2/aG 3, 2, Gn/aG 1
,u’, = [ (-GG Ci1Cs — Cu(Cr — Cy + GC Gy -C Cy Cs+VCiC s
x(u,u,u’) [( 2C3V/CiCy - Co(Cr = Gy + GG3) ) (u) 2w () (Ci+VCICy) Ci(C1 - C) (C 12 + u?)
1
-Cy) (G2 +u?)’

X () = ut +

264 +/C1Cy C+V/CiCy
x3(u1,u2,u3)—[(C2C3\/C1C4—C4(C1—C4+C2C3))(u2) G —Gu@W) G (G- C‘C4)]c(c
4 1

E:x151+bx252+cx333,

where
_ (GG +C)(C): - CGGVEi+ (G ~(C1)iCs - (Ca)?
C4 (C2C3\/ C1 + C2C3\/ C4 + Clx/C - C4\/ C4) C4 (C2C3\/ C1 + C2C3\/ C4 + C1 V4 C4 - C4\/ C4) ’
VCi (C1 = Cy)

VTG - (Gy):

whend =0, Cy # 0, and C, # Cq, by

) =u (£)" (In ')’ + Cow'(2Inw - (i)’ -2)

2(Csu? +u?) 2C, »
2,1 2 3 (1?2 Inu?  Cu’(lnu’-1)
X (u,uu)=—- + i
Cu?+ud o
@y o

x(u' ki) = - ,

C3u2+u3 Cy
E=(x'-x)d1+ (X" +x°) D2+ x° O3

whend = 0and C, =0, by
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2\2 2
1,1 2 3 1 (u") CGu
2\3 2\2
2,01 2 3\ _ (u”) G (u7)
X (u,u"u) = 2(Co i+ ) G
u? G, Inu?

x3(u1, W, u3) =—

>

C3u2+u3 Cy
E:x151+2x252+983
Cy
when d = 0 and C, = Cy, by

2(“2)2(C4 - Cz C3)

xl(ul,uz,u3) =yl oL 2
Ca(d)2(Cs 12 + u?)

2 i) = (GG - Ca (1-d)) (u*)*™ . G () ’
C4(1—d)(C3u2+u3) C4(1—d)(C3u2+u3)
261 (1) 5 ~(Ci(2-d) -2G:C) ()

(ut ik u’) = ,

CG-(CGw+w) G 2-d)(Ci+w)

E = xl 51—d

;szgz—(d—l)x383
when d ¢ {0,1,2} and C3 # 0, by

2(—C2 Pl + C4(u2)2)

xl(ul,uz,u3) —ul +

Cy (d)l ud >

xZ(ul’u2)u3) _ 2C, u3(u2)2§J -G (2—d)(u2)4%d |
Cs(2-d)ud

(ulut ') = Gu)' ™ -c( _d)(ul)Z—d’
Cy(1-d)ud

E = Xl 81—d

;széz—(d—l)x333
when d ¢ {0,1,2} and C3 = 0, by

2 232 2C 2
xl(ul,uz,u3):ul+7(u) -2k

>

C3u2+u3 C4
2,1 2 3 u? Czlnuz
X (u,uu)=- - )
Ciul+u Cy
253
3,1 2 3 (u)2 2C, Vu?
x(u,u'u)=- st R
Cul+u Cy

d-2

E=x131— x232+(%—(d—1)x3)53
4

when d = 1, and by

272 2
1,01 .2 3 1 (u") Cu
x(u,uu)=u + - ,
( ) 2(C3 u? + u3) 2C4
2 2
2,1 2 3 u C, Inu
x(u,u’u)=- + R
( ) C3u2+u3 C4
1 C,

xS(ul,uz,u3) =—_— -
Cu+ud Cqu?
. d-2 - -
E:xlal+(9——x2)82—(d—1)x383
Cy 2
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when d = 2. In each of these cases, the unit vector field reads e = .

Here are explicit expressions for the Dubrovin-Frobenius potential in some selected cases.

Example IIL.6. Let us fixd = 0, C1 = Cy, and C, = 0. In flat coordinates, the metric becomes

Cs 0 0
77]: 0 0 —Cy |
0 -C4 0
the multiplication is given by
d1001 =01,
O100;=0s,
O100s =05,
= = 3\/2 x3 = ﬁ 2\ .
62082:—T ;82-'—7(72) 83,
- A 3V2 x5 3V2 [x3
3
2 = \/2 2\ 3\/5 x? -
33‘-"83:7*3 Z—T 303,
and the prepotential reads
F(xl,xz,xs) = 23£C4 (xz)%(x3)% + %(xl)3 —Cixt At

up to second-order polynomial terms. In flat coordinates, the unit and the Euler vector fields are, respectively, written as
e= 81

and i i
E= xl 61 +2x2 82.

Example IIL.7. Let us fix d = 2 and C, = 0. In flat coordinates, the metric becomes

0 0 C
i=lo ¢ ol
Cs 0 O
the multiplication is given by
d1001 =01,
D100 =0,
91005 =0s,

2

R 32\ . 2

0,00, =—= x 81+3£32+83,
2\ %3 x3

= = X ’. 3(° 2

82083:(963) 81_2(963) 02,
R 3(,2\1. 2\3
83063:—1(%) 61+(%) 82,

(3.17)
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and the prepotential reads
C C Cy (x°)*
F(x', %%, %) = 74 ()X + 74 x' (&) + f ();3) (3.18)
up to second-order polynomial terms. In flat coordinates, the unit and the Euler vector fields are, respectively, written as
e= 81
and i i
E=x1 81 —x383.
Example ITI1.8. Let us fix d = 2 and C, = 1. In flat coordinates, the metric becomes
0 0 Gy
f] =10 C4 0|
C 0 0
the multiplication is given by
31 ° 51 = 81,
D100, =0,
D005 =05,
5 oA 3 3 C-1\25 3 -1\
82082—*WW(C4.X e ) 81+ C4x3 W(C4x e )82+83, .
- = 1 3 C-1\° 3 3 3 CP-1\25 8
02003 = ——F—W|(C ¢ - —— a5 W|C ¢ 02, 2
b 003 (Y@ ( 41X e ) 1 G ( X e ) ) :
5 oA 3 3 C-1)%5 1 3 C-1\3z g
83083——WW(C4X e ) 81+WW(C4X e ) 82, %
and the prepotential reads ;
1 2 3y _ 1 3 C -1\t 3 C -1)\° 3 ¢ xt-1)2 3 C -1 -
F(x,x,x)—m(3W(C4x e ) +22W(C4x e ) +63W(C4x e ) +72W(C4x e ))
+ % (') + % x' (&%) (3.19)

up to second-order polynomial terms, where W denotes the principal branch of the Lambert W function (see Ref. 15 and references therein). In
flat coordinates, the unit and the Euler vector fields are, respectively, written as

and

8281

- 1 - -
E:X181+682—X383.
4

C. Dimension n =4

Let M be a four-dimensional Dubrovin-Frobenius manifold with product o, metric #, unit vector field e, and Euler vector field E. Let us
require M to be regular and the operator L = E o to have a single Jordan block near a point m € M. The unit and the Euler vector fields read,
respectively, e = 0y and E = 'O + 120 + 1205 + u'Hs. We already know from (3.3) that the metric is of the form

n= ()"

F
F,
3

Fy4

F
F;3
Fy
0

F3

Fy4

0
(3.20)

(= ]
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3 4
for some functions Fy, F;, F3, and F4 of the variables z = %, w= 57 In particular, F; is equal to a constant C;, which vanishes whenever d # 0,
and from (3.4) and (3.5), we know that F,, F3, and F4 can be expressed as

F(z,w) = -z0.f(z,w) —wOuwf(z,w) — (d-1) f(z,w) + C3, (3.21)
F3(z,w) = 0. f(z,w), (3.22)
Fi(z,w) = Onf(2z,w) (3.23)

for some function f(z,w) and some constant C,. By the flatness conditions, two expressions for f are possible, as shown below. This fully
classifies regular four-dimensional Dubrovin-Frobenius manifolds whose operator L = E o has a single Jordan block.

Theorem IIL.9. The function f realizing (3.4) and (3.5) is either provided by
f(z,w) = Cswe“* + h(z) (3.24)

for some constants Cs, Cy4 and some function h(z), which is a solution to

W' (z)-2Cyh"(2) + Cih'(2) +2C35 Cye“ 7 = 0, (3.25)
or by
_ A(z)
flzw) =G 2B(2) +w (3.26)

for some constant Cs and solutions A(z), B(z) to the following system of ODEs:

A"A- (A" +2(C+(1-d)C)A=0, (3.27)
AB" A" (B"+1)+2(C+(1-d)C3)(B' +2) + Cr =0. (3.28)

Proof. By requiring that Rj; = 0, we get
28w f Ouf —3(05f)* = 0. (3.29)

Let us distinguish two cases: 95f # 0 and d;f = 0. In the first case, we obtain

_ A(z)
flzw) =C(2) 2B(z) +w (3.30)
for some functions A(z), B(z), and C(z), while in the second one, we obtain
f(zow) = whi(z) + ha(2) (3.31)

for some functions h; (z), h2(2).
If f is as in (3.30), then condition R3,; = 0 implies that the function C(z) must be equal to a constant Cs. Conditions R3;, = 0 and R3,, = 0
yield, respectively,

A"A- (A +2(C+(1-d)C3)A=0

and

AB" - A" (B"+1)+2(Co+(1-d) G3)(B +2) + Ci = 0.

All the other conditions in (1.1)-(1.6) hold without imposing more.
If, on the other hand, f is as in (3.31), condition R;34 = 0 implies that

hi(2) b (2) - (h1(2))* = 0. (3.32)
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Solutions to (3.32) are given by k1 (z) = Cs e“** for some constants C; and Cy so that
f(z,w) = Cwe " + hy(2).
By imposing condition R3,, = 0, we get
By (z) = 2C4 by (2) + Ci hb(2) +2C5 Co e = 0
that yields
Ciz

hz(z) = C7 - 67

a [C3Ciz’ ~ Ci(2Cs +Cs) 2z~ Cy Co +2C5 + Cs]|

when C4 # 0 and
hz(Z) = C522 + C52+ C7

when Cy = 0 for some constants Cs, Cs, and C; so that f becomes, respectively,

Cyz

f(z,w) = Cswe* + C; - %[Q Ciz’ = Ci(2Cs+Cs)z—Cy Cs +2Cs + Cs] (3.33)
4
and
f(z,w) = Cs we" 4+ Cs22 + Csz+ Co. (3.34)
In both cases, it turns out that all the other conditions in (1.1)-(1.6) hold without imposing more. [ ]
Proposition II1.10. The functions A(z) and B(z) appearing in (3.27) and (3.28) are expressed via hyperbolic functions and second-order
polynomials,
C 1-d)C
Az) = % sinh®(Cy(z + Gs)),
4
B(z) = Cs cosh(2C4(z + Cs)) + C7 sinh(2C4(z + Cs)) — Ao +4C4C7 | - é +C
=GCs 4 5 7 4 5 Nera-dc I s 8
for some constants Cy, Cs, Cg, C7, Cs if C2 + (1 —d)Cs # 0 and
A(z) = Cs (cosh(Cq z) + sinh(Cy 2)), (3.35)
1 2
B(Z) = 7((2C6 C4 Cs + C1) COSh(C4 Z) + (ch C4 C5 - Cl) Sil’lh(C4 Z)) - i + C7 zZ+ Cg (3.36)
2(C4)* Cs 2

for some constants C4, Cs, Cs, C7, Cs if C2+ (1 —d)C3 = 0.

Below, flat coordinates are computed for selected other cases, together with some Dubrovin-Frobenius prepotentials.

Example IIL11. Let us consider the case (3.24) with C3 = 1, C4 = 0, and d # 0. Equation (3.25) becomes I’ (z) = 0, yielding h(z) = az*
+ bz + ¢ for some constants a, b, c. In particular, we choose a=c =0 and b =1 so that h(z) = z and f(z,w) = z+w. When d + 1, in the flat

LS:€1:60 €202 Joqueosq 87

coordinates,
xl(ul,uz,u3,u4) -
xz(ul,uz,u3,u4) = (112)7'71(143 + u4),
1
xs(ul,uz,u3,u4) = Euz i,
4,1 2 3 4 1 231-d
x(u,u5u,u’)=—(u ,
( )= )
we have
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0 1 0 &G
11 00 o0
n= s
0 0 0 1
C 01 o0
€= 51,

E:xlél+(1—d)x232+x353+(1—d)x454.

Up to second-order polynomial terms, the prepotential is given by

(d- 1) edt ()
2(d+1)(d-3)

C 1
F(x', %%, 7, x") = 72(x1)2x4 +x'xt + 5(x1)2x2 +
whend ¢ {-1,0,3}, by
1 C 1
F(x', o0, x") = Z(x‘*)2 Inx* + 72(961)2164 +x'xt E(x1 £
whend = -1, by
123 4y _ G a0 123 01,003, 1, 124, 11,00, 1,23
F(x',x"x,x )= —(x )% +xxx + (0 )x +=(x)x +=x (7)) +=(x)
2 2 2 2 6
when d = 0, and by

C 1 1
F(xl,xz,x3,x4) = 72(361)2364 rallxt ¢ E(x1 D % Inx*

when d = 3. The case where d = 1 must be treated separately. In the flat coordinates,

1,1 2 3 4 1
x (w,u,u,u)=u,
w+ut
2

2

xz(ul,u ,us,u4) =

,
3,1 2 3 4y L1 2 3

x(u,u,u,u)ziu +u,
4,1 2 3 4 2

X (u,uu,u ) =lnu,

the unit and the Euler vector fields are given by
8281, E:x15‘1+x333+34.

The metric is as the one for d # 1, and up to second-order polynomial terms, the prepotential is

1 C 1

F(x' ot o0ty = -+ 22 () 4 at + - ()2
8 2 2

Example IIL.12. Let us consider the case (3.24) with C3 = C4 = 1 and d # 0. Equation (3.25) becomes h'""' (z) — 2h" (2) + h'(z) + 2¢° = 0,

yielding h(z) = a— (2% + bz + c)é® for some constants a,b,c. In particular, we choose a=b=c=0 so that h(z) = -Z*¢* and f(z,w)
=(w- zz)ez. When d + 0, 1,2, the flat coordinates are

2

1,1 2 3 4 1
sU LU, =u + >
x(u,uuu)=u 20-d)
a 3V2_ 2.4 4
(i, ut) = C Inu —2(1-d) e — % e,
2 Cy(u?)
x3(u1,u2,u3,u4):(uz)fdfl(u2u4—(u3)2)eu7+ ziu)d ,
(u2)27d

x4(ul,u2,u3,u4)= S d
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In such coordinates, the unit and the Euler vector fields are, respectively, written as e = 8, and
E:xl 81 +Cz(§2* (d* 1)x3(~937(d72)x434.

For d = -1, the metric is

0o 0 1 O
1
) 0 0 O “1
n= >
1 0 0 O
1
0 -—— 0 O
4

and up to second-order polynomial terms, the prepotential is given by

1

4 15 4 1 2 3 4 1 1
F(x', %%, x*) = ——\3/§C2(x4)§ ln(3x4) + m\s/ng(xzt);1 + 5\3/5(x4)§x3 + 5\3/5(x4)§x2 + E(XI % - Zx1x2x4.

32

For d = =2, the metric is

0o 0 1 O
1
) 0 0 O 5
n= >
1 0 0 O
1
0 -—— 0 O
6

and up to second-order polynomial terms, the prepotential is given by
123 4y 1 443 N 4 4y5 2 45 2 1\/—311231124
F(x ,x",x",x ) = —E\/Ecz(x )t ln(z X )+ %\/Ecz(x )t + E\/E(x )ix®+ > XA x4 E(x ) x - XX

The case d = 2 must be treated separately. In the flat coordinates,

2

xl(ul,uz,ua,u4) - u?,
22V + it — (P 2
ottt ut) = = (ZZI;Z W) s,
24 3\2
3,1 2 3 4y WU —(w) £ G
x(u,u,u,u):weuz—ﬁ,
x4(ul,u2,u3,u4) = Ind?,
we have
0 0 1 0
1
z 1z 32 % 00 o
e=01, E=x 01 -x" 03+ 04, 7= 2|
1 0 0 O
1
0 - 0 C
2 2

Up to second-order polynomial terms, the prepotential is

1 . #\ ¢ C 1 1
F(xl,xz,xs,x4) PV P Mo N [P iC iV x4)2 +oatixt . f(xl 23,
16 2 2 2 2

In the case where d = 1, which must be handled separately as well, flat coordinates are given by
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2 2
1,1 2 3 4 1 2
x(u,u,u,u)=u +7—71nu,

2.4 312
wu - (w) 2 2
Weuz+Czlnu,

2.4 (03\2 s C
Ot it ity = (%lnu2 +2) e + ;(lnuz)z,

xz(ul,uz,us,u4) =

2 2

x4(u1,u ,u3,u4) =u

and

4
6281, (.X *1)81+C2(92+X 83+x 84,

01 0 O
1 0 0 O
o _ 1l
1 0005
1
00 - O
2

Up to second-order polynomial terms, the prepotential is

6

F(x', %% x") = 9(x4)2(1nx4)3 - (Cz +=x )(x )? (lnx ) + %(Cz +

x2+ ox )(x) Inx*

2.2 7x +6x

T (X4)2.

1
+2xxx+ (x)

The last case to be considered separately is the one for d = 0, as C, may not vanish. Here, the flat coordinates are

2
1,01 2 3 4 1, U
x(u,uuu)=u +—,

2

24 (3 2 G —2C
xz(ul,uz,us,u4) _uu uz(u ) 6:7 L . 2 u2,

2.4 372 272

u —(u) —-2(u £ Cp—4C
xs(ul,uz,u3,u4): ((uz)z () e Y - 2 i,

272
x4(u1,u2,u3,u4) = 7(u2) .

In such coordinates, the unit and the Euler vector fields are, respectively, e = 0, and
1z 25 Ci\ - 4z
E=x 81+x (92— CZ_I 83—236 84,

and up to second-order polynomial terms, the prepotential reads

3(Ci - 4G) In(2x*) - 8Cy \/z(x4)%+32C2+24x3 Vit~ Ly

F(xl,xz,x3,x4) =
72 72

*x In(x*) + %(xl)3

+ - (x) 77xxx

V. A MENTION OF THE MULTIPLE-BLOCKS CASES

As seen in Sec. 111, an expression for the Dubrovin-Frobenius metric in terms of a function f realizing (2.11)-(2.13) can be achieved in
the case where the operator L = E o has multiple Jordan blocks as well. This section is devoted to show how, in this case, it is possible to reduce
the conditions defining a Frobenius manifold to a single ODE in dimension 3 and to a system of PDEs in dimension 4.
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A. The three-dimensional case

In dimension 3, the only regular non-semisimple case with multiple Jordan blocks is the one of two blocks of dimensions 2 and 1,

respectively.
We already know that there exists a function f of the variable

w—u
)
such that the metric can be written as
F, F, 0
n=w)M|R 0 o
0 0 Fs

for

Fi(z) = —f'(2) + Cy,
Fi(z) = —zf'(2) - (d- 1) f(2) + Cs,
Fi(z) = f'(2),

where C;, C, are constants. In particular, the quantity F; + F3 = C; must vanish whenever d # 0. The flatness condition amounts to the

following equation:

2 (2f ~(@=1f + Cf " =2V (=f - 5 (=f - (@-Df + C)

22(=dzf — (2f — (d=1)f + C2))zf f" + d(f’)z(—dzf' ; d;2

(-2f - (@-1f + ) ).
By solving (4.1), one can determine explicitly the function f, which turns out to be expressed in terms of hyperbolic functions.

B. The four-dimensional case
In dimension 4, three rearrangements in Jordan blocks are possible. Let us briefly illustrate the results of computations:

o In the case of two blocks of sizes 3 and 1, respectively, we have

Fr. F, F3 0

F, F 0 0
n=@H) ,

Fs 0 0 0

0 0 0 Fu

where

Fi(z,w) = =0wf(z,w) + C1,

Fr(z,w) = =20, f(z2,w) —wOwf(z,w) — (d—1) f(z,w) + Cy,
F3(z,w) = 0:f(z,w),

Fi(z,w) = 0w f(2z,w)

for some constants C;, C; and a function f of the variables

In particular, the quantity F; + F4 is a constant that must vanish whenever d # 0.

(4.1)
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e 1In the case of two blocks, both of size 2, we have

FF Fb 0 0

F, 0 0 0
n=0H)™|? :

0 0 F; Fu

0 0 F O

where
Fi(z,w) = =0:f(z,w) + Ci,
Fy(z,w) = =20 f(z,w) —wOuw f(z,w) — (d - 1) f(z,w) + C,
F3(z,w) = 0:f(z,w),
Fi(z,w) = Onf(2,w)

for some constants C;, C, and a function f if the variables

u2

In particular, the quantity F; + F3 is a constant that must vanish whenever d # 0.
o In the case of three blocks, of sizes 2, 1, and 1, respectively, we have

FR F, 0 0

F, 0 0 0
n=0H)|? ,

0 0 F 0

0 0 0 Fu

where

Fi(z,w) = =0.f(z,w) — Owf(2z,w) + Ci,

F(z,w) = -z0.f(z,w) —wyf(z,w) — (d-1) f(z,w) + C3,
F3(z,w) = 0:.f(z,w),

Fi(z,w) = Ouf(2z,w)

for some constants C;, C; and a function f of the variables

In particular, the quantity F; + F3 + F4 is a constant that must vanish whenever d # 0.

Let us consider the flatness conditions in the first case. They amount to the following system of PDEs for the third derivatives of f:

s, 3(2f)
azf - Zazf > (42)
2 _ 8zawf (8zf 8z8wf +2 8zzf awf)
0;0uf = 20,7 0uf , (4.3)
1
O = gy (B Of Onf (0:0uf) + (-0uf 8Ef (wOuf + (d=1)f - C2)
+ (@) ((d=2) Ouf + W) 000 f +0-F O2F Ouf (wOLf + D)), @)
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m(—@f Quf W' (wOf + (d=1)f - C2) (3:0uf)’

(W Ouf) -2(~(d-1)f+C)W Buf + (~(d-1)f~wCi + C) Bof + (—(d - 1) f + C2)* w) Of
SIS - (e d0u)] - TR0 4 (- (<@ 05+ Cow)) s 00

+ 0. f (W (WOWf +(d=1)f = C2) Oof + (W Ouf = Dof + (A= 1) wf —wCy) duf) Duf Oof
+(0:f) (W (O0f)* = wonf (d+4) Ouf =2(0uf)* d) w)).

Of =

(4.5)

In the remaining cases, flatness conditions are given by similar but much more cumbersome systems of third-order PDEs. We skip details of

these computations.
We conclude this section by providing two examples of solutions to systems (4.2)-(4.5).

Example IV.1. If d = 0, then the function
flzzw)=az+bw+c

(where a, b, and c are constants) is a solution to systems (4.2)-(4.5). With this choice of f, the Dubrovin-Frobenius metric turns out to be

constant in canonical coordinates. It reads

Ci-b C+c a 0

C+c a 0 0
a o o0 of
0 0 0 b

}1:

and up to second-order polynomial terms, the Dubrovin-Frobenius potential is

b b

Ci - C
F(u',u?, i’ ut) = IT (u')’ + fare (') u* + g (u')*u® + g u () + A (u)’. (4.6)
Example IV.2. Let L = E o have two Jordan blocks of sizes 3 and 1. When looking for a function f of the form
flzw) =az+g(w)
for some function g(w), systems (4.2)-(4.5) come down to a single ODE for g(w),
207 g () g (W) = (¢ (w))" + (d+ 4) wg' (w) g (w) + 24 (' (W) = 0 (47)
This yields
dz (a2)2 _d 1-d
= 4+ — 4+ 2 +
gw) =a T (d— 1) w aw azw
whend # 1 and
(az)2 Inw a a3
w)=a - ——— + —— + —
g( ) ! 16(13 \/W
when d = 1 for some constants a1, az, and as. For instance, when d = 2 in the flat coordinates,
1,1 .2 3 4 u a-C (a2)? a + az
x(u,u’u,u )= + + + ,
( ) (u2)?  aw?  daas(ut-u') a(ut-ul)
2,01 2 3 4 2

x(u,u'u,u) =lnu,

xs(ul,uz,u3,u4) = ln(u4 - ul),

A6 = o,
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the metric becomes
0 0 0 a
o a 0 0
n= 2 s
0 0 - (2a3 + az) 0
4a3
a 0 0 0
and up to second-order polynomial terms, the Dubrovin-Frobenius potential is
1234_(26l3+6l2)2 X3 3\2 4 a1, 42 2\2 4
F(x,x,x,x)——T(Ze +(x)x)+5(x (") + ()" ). (4.8)
3

In flat coordinates, the unit and the Euler vector fields are, respectively, written as
&=04
and

E:—x181+§2+83+x484.

VI. CONCLUSIONS

In this paper, we have studied regular Dubrovin-Frobenius manifold structures (7, o, e, E). Assuming that the Jordan form of the opera-
tor of multiplication by the Euler vector field L contains a single Jordan block and using a special set of coordinates introduced by David and
Hertling where the operator L and the Dubrovin-Frobenius metric take the form

u 0 0 0o 0
w0 0 0
W W’ u' (V]
L= s
un—l un—Z un—3 ul 0
un un—l un—z 1/[2 Lll
[ O0H &,H 0:H Ou1H 0,H|
8ZFI 83H 84H 8,,H 0
0sH O4H OsH 0 0
}7 =
Oyp-1H O.H 0 0 0
| O.H 0 0 0 0 |

we have shown that, up to constants, the metric potential H has the form

where

and f = f(2',..

H = (uz)l_df+ C2 (p(uz) + C] ul,

o(u’) =

(ul)l—d

1-d

Inu

ifd+1,
ifd=1

(5.1)

(5.2)

.,z”fz) with z' = %Z for each i =1,...,n — 2. In dimension #n = 2,3,4, we have obtained explicit formulas for the metric
potential H (see Table I) and, in some special cases, we have computed the flat coordinates and the corresponding prepotential.
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TABLE 1. Metric potential.

n=2 f = C3
n=73 f:C3Z+C40rf:zfQC;+CS'
n=4 f = Cwe "+ & - [ GG
- C4(2C3 + C5)Z — C4Cs +2C3 + CS]
or
f= C3W€C42 +C522 +Csz+ Cy
or
f=C3—% with Z=Z—z, w=3—2, and
A(z) and B(z) defined as in Proposition
III.10

We also considered the case of multiple Jordan blocks in dimensions 3 and 4, showing that the flatness conditions reduce to a third-order
ODE in the first case and to a system of third-order PDEs in the remaining cases, computing the flat coordinates and the corresponding
prepotential in some selected cases.

According to the general theory the metrics 77" and Ly™", define a flat pencil of metrics. Therefore, a by-product of our results is
a list of non-semisimple flat pencils of metrics that define the bi-Hamiltonian structures of the principal hierarchies of the associated
Dubrovin-Frobenius manifolds. The study of this class of bi-Hamiltonian structures and of their bi-Hamiltonian deformations in the non-
semisimple case is at a preliminary stage, and only a few results are available so far (see, for instance, Ref. 16). The explicit examples obtained
in this work might be the starting point of future investigations.
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