

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  OCTOBER 31 2022

Regular non-semisimple Dubrovin–Frobenius manifolds 
Paolo Lorenzoni  ; Sara Perletti  

J. Math. Phys. 63, 102301 (2022)
https://doi.org/10.1063/5.0094580

 28 D
ecem

ber 2023 09:13:51

https://pubs.aip.org/aip/jmp/article/63/10/102301/2843112/Regular-non-semisimple-Dubrovin-Frobenius
https://pubs.aip.org/aip/jmp/article/63/10/102301/2843112/Regular-non-semisimple-Dubrovin-Frobenius?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jmp/article/63/10/102301/2843112/Regular-non-semisimple-Dubrovin-Frobenius?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0001-6171-0821
javascript:;
https://orcid.org/0000-0002-8745-4448
javascript:;
https://doi.org/10.1063/5.0094580
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063253&setID=592934&channelID=0&CID=754915&banID=520996574&PID=0&textadID=0&tc=1&scheduleID=1989154&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjmp%22%5D&mt=1703754831193918&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjmp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0094580%2F16619198%2F102301_1_online.pdf&hc=3b5318398bb492ec427603eea48b6552ad95bc15&location=


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Regular non-semisimple Dubrovin–Frobenius
manifolds

Cite as: J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580
Submitted: 4 April 2022 • Accepted: 5 September 2022 •
Published Online: 31 October 2022

Paolo Lorenzonia) and Sara Perlettib)

AFFILIATIONS
Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via Roberto Cozzi 55, I-20125 Milano,
Italy and INFN Sezione di Milano-Bicocca, Milano, Italy

a)E-mail: paolo.lorenzoni@unimib.it
b)Author to whom correspondence should be addressed: s.perletti1@campus.unimib.it

ABSTRACT
We study regular non-semisimple Dubrovin–Frobenius manifolds in dimensions 2, 3, and 4. Our results rely on the existence of special local
coordinates introduced by David and Hertling [Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17(5), 1121–1152 (2017)] for regular flat F-manifolds
endowed with an Euler vector field. In such coordinates, the invariant metric of the Dubrovin–Frobenius manifold takes a special form,
which is the starting point of our construction. We give a complete classification in the case where the Jordan canonical form of the operator
of multiplication by the Euler vector field has a single Jordan block, and we reduce the classification problem to a third-order ordinary
differential equation and to a system of third-order PDEs in the remaining three-dimensional and four-dimensional cases. In all the cases, we
provide explicit examples of Dubrovin–Frobenius potentials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0094580

I. INTRODUCTION
Dubrovin–Frobenius manifolds have been introduced by Dubrovin as a coordinate-free reformulation of the so-called

Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations of two-dimensional topological field theories (see Ref. 1) and play an important
role in many areas of mathematics (quantum cohomology, Gromov–Witten theory, singularity theory, integrable PDEs, etc.). Some construc-
tions in the theory of Dubrovin–Frobenius manifolds rely on an additional assumption: the existence of a holonomic frame of idempotents.
Dubrovin–Frobenius manifolds having this property are called semisimple or massive since in a physical context they correspond to massive
perturbations of two-dimensional topological field theories. Semisimple Dubrovin–Frobenius manifolds are characterized by the existence of
a special set of local coordinates, called Dubrovin canonical coordinates or simply canonical coordinates, reducing the structure constants of
the product to a constant canonical form. A generalization of canonical coordinates in the non-semisimple regular case was found by David
andHertling in Ref. 2. David–Hertling canonical coordinates depend on the Jordan normal form of the operator of multiplication by the Euler
vector field. In this paper, using these coordinates, we construct explicit examples of non-semisimple regular Dubrovin–Frobenius manifolds
in the case of a single Jordan block.

This paper is organized as follows. In Sec. II, we recall the definition of the Dubrovin–Frobenius manifold and some known results in the
semisimple case. In Sec. III, we introduce David–Hertling canonical coordinates for regular non-semisimple Dubrovin–Frobenius manifolds
and some general properties of the invariant metric in such coordinates. In Sec. IV, we focus on the case of a single Jordan block in dimensions
2, 3, and 4, and in Sec. V, we briefly discuss the case of multiple Jordan blocks in both dimensions 3 and 4.

II. DUBROVIN–FROBENIUS MANIFOLDS: THE SEMISIMPLE CASE
Following the work of Dubrovin,1 we introduce the notion of the Dubrovin–Frobenius manifold.
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Definition I.1. A Dubrovin–Frobenius manifold M is a manifold equipped with a metric η, a commutative associative product ○ on the
tangent space with unit e, and a second distinguished vector field E called the Euler vector field satisfying the following conditions:

● Invariance of the metric,

ηil c
l
jk = ηjl clik. (1.1)

● Flatness of the metric,

Rm
ijk = ∂ jΓmik − ∂iΓmjk + ΓsikΓmsj − ΓsjkΓmis = 0. (1.2)

● Symmetry of ∇c,

∇icljk = ∇ jclik. (1.3)

● Constancy of e,

∇iek = 0. (1.4)

● Homogeneity conditions,

ℒEcijk = cijk, ℒEei = −ei, ℒEηij = (2 − d)ηij (1.5)

for some constant d. Here, ∇ denotes the Levi-Cività connection associated with η and ℒZ denotes the Lie derivative along a vector
field Z.

From the axioms above, it follows that in flat coordinates for the metric, the structure constants of the product can be written in terms of
the third-order partial derivatives of a function F called the prepotential of the Dubrovin–Frobenius manifold,

cijk = ηil∂l∂ j∂kF.

By construction, the function F is a solution of Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations.3,4

Remark I.2. The manifold M in the above definition is a real or complex n-dimensional manifold. In the first case, all the geometric data
are supposed to be smooth. In the latter case, TM is intended as the holomorphic tangent bundle and all the geometric data are supposed to be
holomorphic.

Remark I.3. Since the components of the metric and of the unit vector field are constant in flat coordinates, we clearly have

ℒeηij = 0. (1.6)

A point p ∈M of an n-dimensional Dubrovin–Frobenius manifold is called semisimple if TpM has a basis of idempotents π1, . . . ,πn
satisfying πk ○ πl = δk,lπk. Semisimplicity at a point is an open property onM: locally around a semisimple point, one can choose coordinates
ui such that ∂

∂uk ○
∂
∂ul = δk,l

∂
∂uk . These coordinates are called canonical coordinates.

Due to (1.1), in canonical coordinates, the metric η becomes diagonal: ηij = H2
i δij. Let us introduce the Ricci rotation coefficients10

βij ∶= ∂ jHi
H j

, i ≠ j. In the case of Dubrovin–Frobenius manifolds, the rotation coefficients are symmetric (βij = βji), and as a consequence, the

metric is potential in canonical coordinates (i.e., H2
i = ∂iφ for some function φ). Moreover, it is easy to check that the rotation coefficients

satisfy the following overdetermined system of PDEs:

∂kβij = βikβkj, i ≠ j ≠ k ≠ i, (1.7)

e(βij) = 0, i ≠ j, (1.8)

E(βij) = −βij, i ≠ j, (1.9)

where
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e =
n

∑
i=1

∂i, E =
n

∑
i=1

ui∂i.

Condition (1.8) follows from (1.6). Systems (1.7) and (1.8) are called Darboux–Egorov system (see Refs. 5 and 6) and imply the flatness of
the metric η. The last condition (1.9) follows from the homogeneity properties. Given a solution of the above system, the Lamé coefficients
(H1, . . . ,Hn) are obtained by solving the overdetermined system of PDEs,

∂ jHi = βijH j, i ≠ j, (1.10)

e(Hi) = 0, (1.11)

E(Hi) = DHi, (1.12)

where D = − d
2 is an eigenvalue of the skew-symmetric matrix V ij ∶= (uj − ui)βij.1 In dimension n = 3, on the open set u1 ≠ u2 ≠ u3 ≠ u1, the

general solution of systems (1.8) and (1.9) is given as

β12 =
1

u2 − u1 F12(
u3 − u1
u2 − u1 ),

β23 =
1

u3 − u2 F23(
u3 − u1
u2 − u1 ),

β13 =
1

u3 − u1 F13(
u3 − u1
u2 − u1 ).

(1.13)

The remaining conditions (1.7) are equivalent to the following non-autonomous system of ordinary differential equations (ODEs):

dF12
dz
= 1
z(z − 1)F13F23,

dF13
dz
= − 1

z − 1F12F23,

dF23
dz
= 1
z
F12F13,

(1.14)

where z ∶= u3−u1
u2−u1 . It is well-known that three-dimensional Dubrovin–Frobenius manifolds are parameterized by solutions of a family of

Painlevé VI equations (see Ref. 1). This can be easily proved by also studying system (1.14).

Theorem I.4. System (1.14) is equivalent to the following sigma form of Painlevé VI equations (see Ref. 7):

z2(z − 1)2(σ′′)2 + 4[σ′(zσ′ − σ)2 − (σ′)2(zσ′ − σ)] = −2R2(σ′)2 + R4σ′, (1.15)

where the parameter R2 is the value of the first integral I = F2
12 + F2

13 + F2
23.

Proof. First, note that dI
dz = 0, as shown by a simple computation. Hence, we set I = R2. Following Ref. 8, it is easy to check that one can

write the squares of the functions Fij in terms of a single function σ(z),

F2
12 = σ′, (1.16)

F2
13 = σ − zσ′ +

R2

2
, (1.17)

F2
23 = −σ + (z − 1)σ′ +

R2

2
. (1.18)

From Eqs. (1.16)–(1.18), we immediately have

z
d
dz
(F2

23) = z(z − 1)
d
dz
(F2

12) = −(z − 1)
d
dz
(F2

13) = z(z − 1)σ′′(z). (1.19)
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On the other hand, due to (1.14), we have

z
d
dz
(F2

23) = z(z − 1)
d
dz
(F2

12) = −(z − 1)
d
dz
(F2

13) = 2F12F13F32. (1.20)

By comparing these equations with (1.19) and taking the square, we obtain (1.15). ■

In dimension 4, there is a special class of Dubrovin–Frobenius manifolds that are also related to the Painlevé VI equation.11 Dropping
the assumption of symmetry of the rotation coefficients and allowing for different degrees of homogeneity for the Lamé coefficients, one ends
up with the Darboux–Egorov system [(1.7) and (1.8)] with the additional constraint

E(βij) = (di − d j − 1)βij, i ≠ j. (1.21)

In dimension 3, systems (1.7), (1.8), and (1.21) reduce to a system of six ODEs that turned out to be equivalent to the full family of
Painlevé VI.12 The corresponding geometric structure is a generalization of the Dubrovin–Frobenius manifold structure, and it is called
bi-flat structure.8 A similar result can be obtained by studying the following system (see Ref. 13):

∂kΓ
i
ij = −ΓiijΓiik + ΓiijΓ

j
jk + Γ

i
ikΓ

k
kj, i ≠ k ≠ j ≠ i, (1.22)

e(Γiij) = 0, i ≠ j, (1.23)

E(Γiij) = −Γiij, i ≠ j. (1.24)

System (1.22) is called Darboux–Tsarev system. Regular non-semisimple bi-flat structures in dimension 3 are also related to Painlevé tran-
scendents. This was proved in Ref. 13 by studying the analog of the Darboux–Tsarev system in the non-semisimple case (see also Ref. 9 and 14
for an alternative approach based on the study of Okubo-type systems).

III. DUBROVIN–FROBENIUS METRIC IN THE GENERAL REGULAR CASE
LetM be a non-semisimple Dubrovin–Frobenius manifold of dimension n, with commutative and associative product ○, metric η, unit

vector field e, and Euler vector field E. Let M be regular near a point m ∈M, meaning that each Jordan block of the operator L = E ○ is
associated with a different eigenvalue.

Let r be the number of Jordan blocks of L, and letm1, . . . ,mr be their sizes. Any set of coordinates u1, . . . ,un forM can be re-labelled by
means of the following notation: for each α ∈ {2, . . . , r} and for each j ∈ {1, . . . ,mα}, we write

j(α) = m1 + ⋅ ⋅ ⋅ +mα−1 + j (2.1)

[for α = 1, we set j(α) = j] so that uj(α) denotes the jth coordinate associated with the αth Jordan block. From now on, we will write ui when
seeing the coordinate as running from 1 to the dimension of the manifold, and we will write ui(α) when in need to highlight the Jordan block to
which the coordinate refers. According to this notation, ∂ i and ∂ i(α) will denote the partial derivative with respect to ui and ui(α), respectively.

In Ref. 2, David and Hertling provided a generalization of canonical coordinates in the regular case. According to their results, we can
assume that the product has the following form:

∂i(α) ○ ∂ j(β) =
⎧⎪⎪⎨⎪⎪⎩

δαβ ∂(i+j−1)(α), i + j ≤ mα + 1,
0, i + j ≥ mα + 2

(2.2)

for all i ∈ {1, . . . ,mα}, j ∈ {1, . . . ,mβ} for each α,β ∈ {1, . . . , r}. The unit vector field takes the form

e =
r

∑
α=1

∂1(α), (2.3)

and the Euler vector field becomes

E =
n

∑
s=1

us ∂s. (2.4)

The operator L = E○ is given by
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L = Li(α)j(β) ∂i(α) ⊗ du j(β), (2.5)

where

Li(α)j(β) =
⎧⎪⎪⎨⎪⎪⎩

δαβ u
(i−j+1)(α), i ≥ j,

0, i < j
(2.6)

for α,β ∈ {1, . . . , r} and i ∈ {1, . . . ,mα}, j ∈ {1, . . . ,mβ}.
In fact, given α,β ∈ {1, . . . , r} and i ∈ {1, . . . ,mα}, j ∈ {1, . . . ,mβ}, we have

Li(α)j(β) = (E ○ ∂ j(β))
i(α) = uk(γ) (∂k(γ) ○ ∂ j(β))

i(α)

=
⎧⎪⎪⎨⎪⎪⎩

uk(γ)δβγ(∂(j+k−1)(β))
i(α), 1 ≤ k ≤ mβ − j + 1,

0, otherwise,

=
⎧⎪⎪⎨⎪⎪⎩

uk(β) δαβ δ
i
j+k−1, 1 ≤ i − j + 1,

0, otherwise,

=
⎧⎪⎪⎨⎪⎪⎩

δαβ u
(i−j+1)(α), i ≥ j,

0, i < j.

Remark 1. Due to the regularity condition, we are implicitly assuming that u2(α) ≠ 0 and u1(α) ≠ u1(β) if α ≠ β.

In order for the data (η, ○, e,E) to define an actual Dubrovin–Frobeniusmanifold, we have to impose all the axioms entering its definition.
In particular, we want to study conditions (1.1)–(1.6) in David–Hertling canonical coordinates. As stated in Ref. 2, the metric η is

represented by a block diagonal matrix, each block of which is an upper triangular Hankel matrix [for instance, in the case of a single Jordan
block, see (3.3)]. This follows from (1.1). Precisely,

η = δαβ η(i+j−1)(α) dui(α) ⊗ du j(β) (2.7)

for some functions {η(i)(α) ∣ 1 ≤ α ≤ r, 1 ≤ i ≤ mα} and η(i)(α) = 0 for i ≥ mα + 1. Moreover, (1.4) implies the existence of ametric potential H
such that

ηi(α) = ∂i(α)H (2.8)

for all i ∈ {1, . . . ,mα} for each α ∈ {1, . . . , r}.
Since we consider non-semisimple Dubrovin–Frobenius manifolds, there must exist at least one Jordan block of size greater or equal than

2. Without loss of generality, we then assume that the size of the first Jordan block is greater than 1. If one drops this assumption, analogous
results will hold, where different coordinates will play the roles here played by u1, u2.

If we take into account that the metric must be homogeneous with respect to the Euler vector field and constant with respect to the unity
vector field, we are able to get a further expression for the terms η(i)(α) .

Theorem II.1. The functions ηi appearing in (2.7) can be written as

ηi = (u2)−d Fi, i ∈ {1, . . . ,n}, (2.9)

for some functions F1, . . . ,Fn of the variables

z j =
uj+2 − u1

r
∑
α=2

δj+21(α)

u2
, j ∈ {1, . . . ,n − 2}, (2.10)

such that

F1 = −
r

∑
α=2

∂z1(α)−2 f + C1, (2.11)

F2 = −z j ∂z j f − (d − 1) f + C2, (2.12)
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F j = ∂zj−2 f , j ∈ {3, . . . ,n}, (2.13)

for some function f of z1, . . . , zn−2 and constants C1, C2. In particular, the quantity

r

∑
α=1

F1(α) = C1 (2.14)

is a constant that vanishes whenever d ≠ 0.

Proof. By imposing (1.6), we get
r

∑
α=1

∂1(α)ηi =ℒeηi = 0

for i ∈ {1, . . . ,n}. It follows that each ηi can be written as

ηi = φi(u2,u3 − u1
r

∑
α=2

δ31(α), . . . ,u
n − u1

r

∑
α=2

δn1(α)) (2.15)

for some function φi of n − 1 variables. By the homogeneity condition (1.5), it can be rewritten as in (2.9) for some function Fi of the variables
defined in (2.10).

The flatness of e with respect to∇ implies that d(η(e, ⋅)) = 0 (see Ref. 2), that is,

∂ j(β)ηi(α) du
j(β) ∧ dui(α) = 0.

Thus,

∂ j(β)ηi(α) − ∂i(α)η j(β) = 0 (2.16)

for all i ∈ {1, . . . ,mα}, j ∈ {1, . . . ,mβ}, and α,β ∈ {1, . . . , r}. In particular, for i(α), j(β) ∈ {3, . . . ,n}, we get

∂z j(β)−2Fi(α) = ∂zi(α)−2F j(β).

There must then exist a function f of the variables z1, . . . , zn−2, realizing (2.13). By fixing j(β) = 2 and i(α) ∈ {3, . . . ,n} in (2.16), we obtain
the relation

∂i(α)((u2)−d F2) = ∂2((u2)−d Fi(α)),

which amounts to

(u2)−1 ∂zi(α)−2F2 = −d (u
2)−1 Fi(α) + ∂2Fi(α)

and, by the chain rule and (2.10),

∂zi(α)−2F2 = −d Fi(α) −
n−2
∑
j=1

z j ∂z jFi(α).

By taking into account (2.13), we get

∂zi(α)−2F2 = −d ∂zi(α)−2 f −
n−2
∑
j=1

z j ∂z j∂zi(α)−2 f .

Then, for each i ∈ {1, . . . ,n − 2},

∂ziF2 = −d ∂zi f − z j ∂z j∂zi f ,

that is,
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∂zi[F2 − (1 − d) f + z j ∂z j f ] = 0.

Therefore, the quantity F2 − (1 − d) f + z j ∂z j f equals some constant C2, proving (2.12).
By taking i(α) = 1(α), j(β) ∈ {3, . . . ,n} in (2.16) and summing over all α ∈ {1, . . . , r}, we get

r

∑
α=1

∂ j(β)η1(α) =
r

∑
α=1

∂1(α)η j(β),

that is,

(u2)−d ∂ j(β)(
r

∑
α=1

F1(α))=ℒeη j(β).

Thus,

∂z j(β)−2(
r

∑
α=1

F1(α)) = 0.

This means that

∂z j(
r

∑
α=1

F1(α)) = 0

for all j ∈ {1, . . . ,n − 2}, proving that
r
∑
α=1

F1(α) must be equal to some constant C1. Condition (2.11) follows.

On the other hand, by taking i(α) = 1(α), j(β) = 2 in (2.16) and summing over all α ∈ {1, . . . , r}, we get

∂2(
r

∑
α=1
(u2)−d F1(α)) = 0,

which, since
r
∑
α=1

F1(α) = C1, amounts to

∂2( (u2)−d C1) = 0.

This implies d C1 = 0, meaning that the constant C1 must vanish whenever d ≠ 0. ■

Proposition II.2. Up to constants, the function f appearing in (2.11)–(2.13) is related to the metric potential H by the following formula:

H = (u2)1−d f + C2 φ(u2) + C1 u1, (2.17)

where

φ(u2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(u2)1−d
1 − d if d ≠ 1,

lnu2 if d = 1.
(2.18)

Proof. By (2.8) and (2.9), we have

∂iH = (u2)−d Fi(z1, . . . , zn−2) (2.19)

for each i ∈ {1, . . . ,n}. For i ≥ 3, we get

∂iH = (u2)−d ∂zi−2 f ,

that is,

∂zi−2H = (u2)1−d ∂zi−2 f
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or

∂zi−2(H − (u2)1−d f ) = 0.

It follows that

H = (u2)1−d f + K(u1,u2) (2.20)

for some function K(u1,u2). For i = 2 in (2.19), we get

∂2H = (u2)−d (−z j ∂z j f − (d − 1) f + C2),

that is, by the chain rule and (2.10),

(u2)−d((1 − d) f − z j ∂z j f ) + ∂2K = (u2)−d (−z j ∂z j f − (d − 1) f + C2),

yielding

∂2K(u1,u2) = C2 (u2)−d.

Then,

K(u1,u2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

C2
(u2)1−d
1 − d + k(u1) if d ≠ 1,

C2 lnu2 + k(u1) if d = 1
(2.21)

for some function k(u1). By putting together (2.20) and (2.21), one gets

H = (u2)1−d f + C2 φ(u2) + k(u1)

for

φ(u2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(u2)1−d
1 − d if d ≠ 1,

lnu2 if d = 1.
(2.22)

For i = 1 in (2.19), we finally get

∂1H = (u2)−d F1,

that is, by the chain rule and (2.10),

−(u2)−d
r

∑
α=2

∂z1(α)−2 f + ∂1k(u
1) = −(u2)−d

r

∑
α=2

∂z1(α)−2 f + (u
2)−d C1.

Thus,

∂1k(u1) = (u2)−d C1 = {
0 if d ≠ 0
C1 if d = 0

} = C1

implying

k(u1) = C1 u1 + C3
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for some constant C3. We conclude that

H = (u2)1−d f + C2 φ(u2) + C1 u1 + C3

for φ(u2) as in (2.22). ■

IV. THE CASE OF A SINGLE JORDAN BLOCK: EXPLICIT RESULTS UP TO DIMENSION 4
In this section, we classify regular non-semisimple Dubrovin–Frobenius manifold structures up to dimension 4 in the case where the

operator L has a single Jordan block. Due to the results of Sec. III in the specific case where L has a single Jordan block of size n, the unit vector
field becomes e = ∂1, and in canonical coordinates, we have

∂i ○ ∂ j =
⎧⎪⎪⎨⎪⎪⎩

∂i+j−1, i + j ≤ n + 1,
0, i + j ≥ n + 2

(3.1)

for all i, j ∈ {1, . . . ,n} and ui = ui(1) for each i ∈ {1, . . . ,n}. The operator L is described by the following lower triangular Toeplitz matrix:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 0 0 ⋅ ⋅ ⋅ 0 0

u2 u1 0 ⋅ ⋅ ⋅ 0 0

u3 u2 u1 ⋅ ⋅ ⋅ 0 0

⋮ ⋮ ⋮
. . . ⋮ ⋮

un−1 un−2 un−3 ⋅ ⋅ ⋅ u1 0

un un−1 un−2 ⋅ ⋅ ⋅ u2 u1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.2)

The metric is represented by an upper triangular Hankel matrix that only depends on the coordinate u2 and on n functions F1, . . . ,Fn of the
variables,

zi = ui+2

u2
, i ∈ {1, . . . ,n − 2}.

It takes the following form:

η = (u2)−d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 ⋅ ⋅ ⋅ Fn−1 Fn

F2 F3 F4 ⋅ ⋅ ⋅ Fn 0

F3 F4 F5 ⋅ ⋅ ⋅ 0 0

⋮ ⋮ ⋮
. . . ⋮ ⋮

Fn−1 Fn 0 ⋅ ⋅ ⋅ 0 0

Fn 0 0 ⋅ ⋅ ⋅ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.3)

In particular, F1 is equal to a constant C1 that vanishes whenever d ≠ 0, and other Fi’s are expressed in terms of a function f (z1, . . . , zn−2) by

F2 = −zi ∂zi f − (d − 1) f + C2, (3.4)

F j = ∂zj−2 f ∀j ∈ {3, . . . ,n} (3.5)

for some constant C2.

A. Dimension n = 2
LetM be a two-dimensional Dubrovin–Frobenius manifold with product ○, metric η, unit vector field e, and Euler vector field E. Let us

requireM to be regular and the operator L = E ○ to have a single Jordan block near a point m ∈M. The unit and the Euler vector fields read,
respectively, e = ∂1 and E = u1∂1 + u2∂2. It follows directly from (3.3) that the metric has the form
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η = (u2)−d
⎡⎢⎢⎢⎢⎢⎣

C1 C2

C2 0

⎤⎥⎥⎥⎥⎥⎦
(3.6)

for some constant C1, which vanishes whenever d ≠ 0 and for some non-zero constant C2.
We are able to recover flat coordinates and an explicit expression for the Dubrovin–Frobenius prepotential, as pointed out in the

following result.

Theorem III.1. Flat coordinates coincide with the canonical ones when d = 0. Otherwise, they are given by

x1(u1,u2) = u1,

x2(u1,u2) = (u
2)1−d
1 − d

when d ≠ 1 and by

x1(u1,u2) = u1,
x2(u1,u2) = lnu2

when d = 1. In all the cases, the prepotential is given by

F(x1, x2) = C1

6
(x1)3 + C2

2
(x1)2 x2 (3.7)

up to second-order polynomial terms. In flat coordinates, the unit and the Euler vector fields are, respectively, given by e =
∼
∂1 and

E =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1
∼
∂1 +

∼
∂2 if d = 1,

x1
∼
∂1 + x2(1 − d)

∼
∂2 if d ≠ 1.

Proof. If d = 0, then the metric in (3.6) is constant; thus, flat coordinates coincide with the canonical ones. Let us now fix d ≠ 0. In this
case, the flat coordinates are

x1(u1,u2) = u1,

x2(u1,u2) = (u
2)1−d
1 − d

when d ≠ 1 and

x1(u1,u2) = u1,
x2(u1,u2) = lnu2

when d = 1. In both cases, in flat coordinates, the metric becomes

η̃ =
⎡⎢⎢⎢⎢⎢⎣

C1 C2

C2 0

⎤⎥⎥⎥⎥⎥⎦
,

and the structure constants equal the ones in canonical coordinates,

c̃kij = ckij, i, j, k ∈ {1, 2}.

It follows that up to second-order polynomial terms, the Dubrovin–Frobenius prepotential F is of the form

F(x1, x2) = C1

6
(x1)3 + C2

2
(x1)2 x2,

and it follows that in flat coordinates, the unit and the Euler vector fields are of the form as stated above. ■
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B. Dimension n = 3
LetM be a three-dimensional Dubrovin–Frobenius manifold with product ○, metric η, unit vector field e, and Euler vector field E. Let us

requireM to be regular and the operator L = E ○ to have a single Jordan block near a point m ∈M. The unit and the Euler vector fields read,
respectively, e = ∂1 and E = u1∂1 + u2∂2 + u3∂3. We already know from (3.3) that the metric is of the form

η = (u2)−d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(
u3

u2
) F2(

u3

u2
) F3(

u3

u2
)

F2(
u3

u2
) F3(

u3

u2
) 0

F3(
u3

u2
) 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)

for some functions F1, F2, and F3 and that F1 is equal to a constant C1 that vanishes whenever d ≠ 0. It turns out from the zero-curvature
conditions that the functions F2, F3 must be solutions to the following system of ODEs:

⎧⎪⎪⎨⎪⎪⎩

F′2 + z F′3 + d F3 = 0,
2 F3 F′′3 − 3 (F′3)2 = 0.

(3.9)

In fact, let us introduce the variable z = u3
u2 . We have already seen that there exists a function f (z) such that

F2(z) = −z f ′(z) − (d − 1) f (z) + C2,

F3(z) = f ′(z)

for some constant C2. It follows that

F′2 + z F′3 + d F3 = 0.

Moreover, by requiring that R1
232 = 0, one obtains the Liouville-type differential equation,

2 F3 F′′3 − 3 (F′3)2 = 0.

This suffices to make all of the conditions in (1.1)–(1.6) hold without imposing more. So far, what we know about the functions F1, F2, F3 is
that F1 equals some constant C1 and that F2, F3 are solutions to system (3.9). Two expressions for the function f appearing in (3.4) and (3.5)
are then possible, as shown below.

Theorem III.2. The function f realizing (3.4) and (3.5) is either provided by

f (z) = C3 z + C4 (3.10)

for some constants C3, C4 or by

f (z) = − C4

z + C3
+ C5 (3.11)

for some constants C3, C4, C5.

Proof. The first condition in (3.9) amounts to (3.4) and (3.5), while the second one can be rewritten as

2 f ′(z) f ′′′(z) − 3 (f ′′(z))2 = 0. (3.12)

Assuming f ′′(z) ≠ 0, the solutions to Eq. (3.12) can be written as (3.11), while (3.10) is recovered by considering solutions corresponding
to f ′′(z) = 0. ■

Summarizing, two cases may occur: either
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F1(z) = C1,

F2(z) = −C3 d z + C2,

F3(z) = C3

(3.13)

for some constant C1 that vanishes for d ≠ 0 and some constants C2, C3 or

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(z) = C1,

F2(z) =
C3 C4

(z + C3)2
− (2 − d)C4

z + C3
+ C2,

F3(z) =
C4

(z + C3)2

(3.14)

for some constant C1 that vanishes for d ≠ 0 and some constants C2, C3, C4.

Proposition III.3. In the case of (3.13), flat coordinates are given by

x1(u1,u2,u3) = u1,

x2(u1,u2,u3) = (u2)−d u3 + C2(u2)1−d
C3(1 − d)

,

x3(u1,u2,u3) = 2
2 − d (u

2)
2−d
2

when d ∉ {0, 1, 2}, by

x1(u1,u2,u3) = u1,

x2(u1,u2,u3) = u3

(u2)2 −
C2

C3 u2
,

x3(u1,u2,u3) = lnu2

when d = 2, by

x1(u1,u2,u3) = u1,

x2(u1,u2,u3) = u3

u2
+ C2

C3
lnu2,

x3(u1,u2,u3) = 2
√
u2

when d = 1, and, trivially, by

x1(u1,u2,u3) = u1,
x2(u1,u2,u3) = u2,
x3(u1,u2,u3) = u3

when d = 0.
The proof is a straightforward computation.

Proposition III.4. Let x1, x2, x3 denote flat coordinates. Up to second-order polynomial terms, in the case of (3.13), the prepotential is
given by

F(x1, x2, x3) = C3

2
(x1)2 x2 + C3

2
x1 (x3)2 (3.15)

when d ≠ 0 and by

F(x1, x2, x3) = C1

6
(x1)3 + C2

2
(x1)2 x2 + C3

2
(x1)2 x3 + C3

2
x1 (x2)2 (3.16)
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when d = 0 (in this latter case, flat coordinates coincide with the canonical ones). If d ≠ 0, then in flat coordinates, the multiplication is
written as

∂̃1 ○ ∂̃1 = ∂̃1,

∂̃1 ○ ∂̃2 = ∂̃2,

∂̃1 ○ ∂̃3 = ∂̃3,

∂̃2 ○ ∂̃2 = 0,
∂̃2 ○ ∂̃3 = 0,
∂̃3 ○ ∂̃3 = ∂̃2,

and the Euler vector field reads

E = x1 ∂̃1 + (1 − d) x2 ∂̃2 +
2 − d
2

x3 ∂̃3

if d ∉ {0, 1, 2},
E = x1 ∂̃1 +

C2

C3
∂̃2 +

1
2
x3 ∂̃3

if d = 1, and
E = x1 ∂̃1 − x2 ∂̃2 + ∂̃3

if d = 2. In flat coordinates, the unit vector field is e = ∂̃1 for each value of d.

The proof is a straightforward computation.
Analogous results can be achieved for the case of (3.14), as presented below.

Proposition III.5. In the case of (3.14), flat coordinates and the Euler vector field are given by

x1(u1,u2,u3) = u1 + C2C3(u2)2 + C2 u2u3 − C4(u2)2
C1 (C3 u2 + u3)

,

x2(u1,u2,u3) = [(−C2C3
√
C1C4 − C4(C1 − C4 + C2C3))(u2)

2C4−
√

C1C4
C4 − C2 u3(u2)

C4−
√

C1C4
C4 (C4 +

√
C1C4)]

1
C4(C1 − C4) (C3 u2 + u3)

,

x3(u1,u2,u3) = [(C2C3
√
C1C4 − C4(C1 − C4 + C2C3))(u2)

2C4+
√

C1C4
C4 − C2 u3(u2)

C4+
√

C1C4
C4 (C4 −

√
C1C4)]

1
C4(C1 − C4) (C3 u2 + u3)

,

E = x1 ∂̃1 + bx2 ∂̃2 + c x3 ∂̃3,

where

b = (C2C3 + C1)(C4)
3
2 − C1C2C3

√
C4 + (C4)2

√
C1

C4 (C2C3
√
C1 + C2C3

√
C4 + C1

√
C4 − C4

√
C4)
+ −(C1)

3
2 C4 − (C4)

5
2

C4 (C2C3
√
C1 + C2C3

√
C4 + C1

√
C4 − C4

√
C4)

,

c =
√
C4 (C1 − C4)√
C1C4 − (C4)

3
2

when d = 0, C1 ≠ 0, and C1 ≠ C4, by

x1(u1,u2,u3) = u1 + (u
2)2(lnu2)2

2 (C3 u2 + u3)
+
C2 u2(2 lnu2 − (lnu2)2 − 2)

2C4
,

x2(u1,u2,u3) = −(u
2)2 lnu2

C3 u2 + u3
+
C2 u2(lnu2 − 1)

C4
,

x3(u1,u2,u3) = − (u2)2
C3 u2 + u3

+ C2 u2

C4
,

E = (x1 − x2) ∂̃1 + (x2 + x3) ∂̃2 + x3 ∂̃3

when d = 0 and C1 = 0, by
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x1(u1,u2,u3) = u1 − (u2)2
C3 u2 + u3

+ C2 u2

C4
,

x2(u1,u2,u3) = − (u2)3
2 (C3 u2 + u3)

+ C2 (u2)2
4C4

,

x3(u1,u2,u3) = − u2

C3 u2 + u3
+ C2 lnu2

C4
,

E = x1 ∂̃1 + 2 x2 ∂̃2 +
C2

C4
∂̃3

when d = 0 and C1 = C4, by

x1(u1,u2,u3) = u1 + 2(u2)2(C4 − C2 C3)
C4(d)2(C3 u2 + u3)

,

x2(u1,u2,u3) = (C2C3 − C4 (1 − d))(u2)2−d
C4 (1 − d)(C3 u2 + u3)

+ C2 u3(u2)1−d
C4 (1 − d)(C3 u2 + u3)

,

x3(u1,u2,u3) = 2C2 u3(u2)
2−d
2

C4 (2 − d)(C3 u2 + u3)
+ −(C4(2 − d) − 2C2C3)(u2)

4−d
2

C4 (2 − d)(C3 u2 + u3)
,

E = x1 ∂̃1−
d − 2
2

x2 ∂̃2 − (d − 1) x3 ∂̃3

when d ∉ {0, 1, 2} and C3 ≠ 0, by

x1(u1,u2,u3) = u1 +
2(−C2 u2 u3 + C4(u2)2)

C4 (d)2 u3
,

x2(u1,u2,u3) = 2C2 u3(u2)
2−d
2 − C4 (2 − d)(u2)

4−d
2

C4 (2 − d) u3
,

x3(u1,u2,u3) = C2 u3(u2)1−d − C4 (1 − d)(u2)2−d
C4 (1 − d) u3

,

E = x1 ∂̃1−
d − 2
2

x2 ∂̃2 − (d − 1) x3 ∂̃3

when d ∉ {0, 1, 2} and C3 = 0, by

x1(u1,u2,u3) = u1 + 2(u2)2
C3 u2 + u3

− 2C2 u2

C4
,

x2(u1,u2,u3) = − u2

C3 u2 + u3
+ C2 lnu2

C4
,

x3(u1,u2,u3) = − (u2) 3
2

C3 u2 + u3
+ 2C2

√
u2

C4
,

E = x1 ∂̃1 −
d − 2
2

x2 ∂̃2 + (
C2

C4
− (d − 1) x3) ∂̃3

when d = 1, and by

x1(u1,u2,u3) = u1 + (u2)2
2(C3 u2 + u3)

− C2 u2

2C4
,

x2(u1,u2,u3) = − u2

C3 u2 + u3
+ C2 lnu2

C4
,

x3(u1,u2,u3) = − 1
C3 u2 + u3

− C2

C4 u2
,

E = x1 ∂̃1 + (
C2

C4
− d − 2

2
x2) ∂̃2 − (d − 1) x3 ∂̃3

J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-14

Published under an exclusive license by AIP Publishing

 28 D
ecem

ber 2023 09:13:51

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

when d = 2. In each of these cases, the unit vector field reads e = ∂̃1.

Here are explicit expressions for the Dubrovin–Frobenius potential in some selected cases.

Example III.6. Let us fix d = 0, C1 = C4, and C2 = 0. In flat coordinates, the metric becomes

η̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C4 0 0

0 0 −C4

0 −C4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

the multiplication is given by

∂̃1 ○ ∂̃1 = ∂̃1,

∂̃1 ○ ∂̃2 = ∂̃2,

∂̃1 ○ ∂̃3 = ∂̃3,

∂̃2 ○ ∂̃2 = −
3
√
2

4

√
x3

x2
∂̃2 +

√
2
4
(x

3

x2
)

3
2

∂̃3,

∂̃2 ○ ∂̃3 = −∂̃1 −
3
√
2

4

√
x2

x3
∂̃2 −

3
√
2

4

√
x3

x2
∂̃3,

∂̃3 ○ ∂̃3 =
√
2
4
(x

2

x3
)

3
2

∂̃2 −
3
√
2

4

√
x2

x3
∂̃3,

and the prepotential reads

F(x1, x2, x3) = 2
√
2

3
C4 (x2)

3
2 (x3)

3
2 + C4

6
(x1)3 − C4 x1 x2 x3 (3.17)

up to second-order polynomial terms. In flat coordinates, the unit and the Euler vector fields are, respectively, written as

e = ∂̃1

and
E = x1 ∂̃1 + 2 x2 ∂̃2.

Example III.7. Let us fix d = 2 and C2 = 0. In flat coordinates, the metric becomes

η̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 C4

0 C4 0

C4 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

the multiplication is given by

∂̃1 ○ ∂̃1 = ∂̃1,

∂̃1 ○ ∂̃2 = ∂̃2,

∂̃1 ○ ∂̃3 = ∂̃3,

∂̃2 ○ ∂̃2 = −
3
2
(x

2

x3
)
2

∂̃1 + 3
x2

x3
∂̃2 + ∂̃3,

∂̃2 ○ ∂̃3 = (
x2

x3
)
3

∂̃1 −
3
2
(x

2

x3
)
2

∂̃2,

∂̃3 ○ ∂̃3 = −
3
4
(x

2

x3
)
4

∂̃1 + (
x2

x3
)
3

∂̃2,

J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-15

Published under an exclusive license by AIP Publishing

 28 D
ecem

ber 2023 09:13:51

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

and the prepotential reads

F(x1, x2, x3) = C4

2
(x1)2 x3 + C4

2
x1 (x2)2 + C4

8
(x2)4
x3

(3.18)

up to second-order polynomial terms. In flat coordinates, the unit and the Euler vector fields are, respectively, written as

e = ∂̃1

and
E = x1 ∂̃1 − x3 ∂̃3.

Example III.8. Let us fix d = 2 and C2 = 1. In flat coordinates, the metric becomes

η̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 C4

0 C4 0

C4 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

the multiplication is given by

∂̃1 ○ ∂̃1 = ∂̃1,

∂̃1 ○ ∂̃2 = ∂̃2,

∂̃1 ○ ∂̃3 = ∂̃3,

∂̃2 ○ ∂̃2 = −
3

2(C4)2(x3)2
W(C4 x3 eC4 x2−1)

2
∂̃1 +

3
C4x3

W(C4 x3 eC4 x2−1)∂̃2 + ∂̃3,

∂̃2 ○ ∂̃3 =
1

(C4)3(x3)3
W(C4 x3 eC4 x2−1)

3
∂̃1 −

3
2(C4)2(x3)2

W(C4 x3 eC4 x2−1)
2
∂̃2,

∂̃3 ○ ∂̃3 = −
3

4(C4)4(x3)4
W(C4 x3 eC4 x2−1)

4
∂̃1 +

1
(C4)3(x3)3

W(C4 x3 eC4 x2−1)
3
∂̃2,

and the prepotential reads

F(x1, x2, x3) = 1
24(C4)3x3

(3W(C4 x3 eC4 x2−1)
4
+ 22W(C4 x3 eC4 x2−1)

3
+ 63W(C4 x3 eC4 x2−1)

2
+ 72W(C4 x3 eC4 x2−1))

+ C4

2
(x1)2 x3 + C4

2
x1 (x2)2 (3.19)

up to second-order polynomial terms, where W denotes the principal branch of the Lambert W function (see Ref. 15 and references therein). In
flat coordinates, the unit and the Euler vector fields are, respectively, written as

e = ∂̃1

and
E = x1 ∂̃1 +

1
C4

∂̃2 − x3 ∂̃3.

C. Dimension n = 4
LetM be a four-dimensional Dubrovin–Frobenius manifold with product ○, metric η, unit vector field e, and Euler vector field E. Let us

requireM to be regular and the operator L = E ○ to have a single Jordan block near a point m ∈M. The unit and the Euler vector fields read,
respectively, e = ∂1 and E = u1∂1 + u2∂2 + u3∂3 + u4∂4. We already know from (3.3) that the metric is of the form

η = (u2)−d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 F4

F2 F3 F4 0

F3 F4 0 0

F4 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.20)
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for some functions F1, F2, F3, and F4 of the variables z = u3
u2 , w =

u4
u2 . In particular, F1 is equal to a constant C1, which vanishes whenever d ≠ 0,

and from (3.4) and (3.5), we know that F2, F3, and F4 can be expressed as

F2(z,w) = −z ∂z f (z,w) −w ∂w f (z,w) − (d − 1) f (z,w) + C2, (3.21)

F3(z,w) = ∂z f (z,w), (3.22)

F4(z,w) = ∂w f (z,w) (3.23)

for some function f (z,w) and some constant C2. By the flatness conditions, two expressions for f are possible, as shown below. This fully
classifies regular four-dimensional Dubrovin–Frobenius manifolds whose operator L = E ○ has a single Jordan block.

Theorem III.9. The function f realizing (3.4) and (3.5) is either provided by

f (z,w) = C3 w eC4 z + h(z) (3.24)

for some constants C3, C4 and some function h(z), which is a solution to

h′′′(z) − 2C4 h′′(z) + C2
4 h
′(z) + 2C3 C4 eC4 z = 0, (3.25)

or by

f (z,w) = C3 −
A(z)

2B(z) + w (3.26)

for some constant C3 and solutions A(z), B(z) to the following system of ODEs:

A′′ A − (A′)2 + 2 (C2 + (1 − d)C3)A = 0, (3.27)

AB′′′ − A′ (B′′ + 1) + 2 (C2 + (1 − d)C3)(B′ + z) + C1 = 0. (3.28)

Proof. By requiring that R1
243 = 0, we get

2 ∂w f ∂3
wf − 3(∂2

wf )2 = 0. (3.29)

Let us distinguish two cases: ∂2
wf ≠ 0 and ∂2

wf = 0. In the first case, we obtain

f (z,w) = C(z) − A(z)
2B(z) + w (3.30)

for some functions A(z), B(z), and C(z), while in the second one, we obtain

f (z,w) = wh1(z) + h2(z) (3.31)

for some functions h1(z), h2(z).
If f is as in (3.30), then condition R3

343 = 0 implies that the function C(z)must be equal to a constant C3. Conditions R3
234 = 0 and R2

322 = 0
yield, respectively,

A′′ A − (A′)2 + 2 (C2 + (1 − d)C3)A = 0

and

AB′′′ − A′ (B′′ + 1) + 2 (C2 + (1 − d)C3)(B′ + z) + C1 = 0.

All the other conditions in (1.1)–(1.6) hold without imposing more.
If, on the other hand, f is as in (3.31), condition R3

234 = 0 implies that

h1(z) h′′1 (z) − (h′1(z))2 = 0. (3.32)
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Solutions to (3.32) are given by h1(z) = C3 eC4 z for some constants C3 and C4 so that

f (z,w) = C3 w eC4 z + h2(z).

By imposing condition R2
322 = 0, we get

h′′′2 (z) − 2C4 h′′2 (z) + C2
4 h
′
2(z) + 2C3 C4 eC4 z = 0

that yields

h2(z) = C7 −
eC4 z

C2
4
[C3 C2

4 z
2 − C4 (2C3 + C5) z − C4 C6 + 2C3 + C5]

when C4 ≠ 0 and
h2(z) = C5 z2 + C6 z + C7

when C4 = 0 for some constants C5, C6, and C7 so that f becomes, respectively,

f (z,w) = C3 w eC4 z + C7 −
eC4 z

C2
4
[C3 C2

4 z
2 − C4 (2C3 + C5) z − C4 C6 + 2C3 + C5] (3.33)

and
f (z,w) = C3 w eC4 z + C5 z2 + C6 z + C7. (3.34)

In both cases, it turns out that all the other conditions in (1.1)–(1.6) hold without imposing more. ■

Proposition III.10. The functions A(z) and B(z) appearing in (3.27) and (3.28) are expressed via hyperbolic functions and second-order
polynomials,

A(z) = C2 + (1 − d)C3

C2
4

sinh2(C4(z + C5)),

B(z) = C6 cosh(2C4(z + C5)) + C7 sinh(2C4(z + C5)) −
z
2
( C1

C2 + (1 − d)C3
+ 4C4C7) −

z2

2
+ C8

for some constants C4, C5, C6, C7, C8 if C2 + (1 − d)C3 ≠ 0 and

A(z) = C5 (cosh(C4 z) + sinh(C4 z)), (3.35)

B(z) = 1
2 (C4)3 C5

((2C6 C4 C5 + C1) cosh(C4 z) + (2C6 C4 C5 − C1) sinh(C4 z)) −
z2

2
+ C7 z + C8 (3.36)

for some constants C4, C5, C6, C7, C8 if C2 + (1 − d)C3 = 0.

Below, flat coordinates are computed for selected other cases, together with some Dubrovin–Frobenius prepotentials.

Example III.11. Let us consider the case (3.24) with C3 = 1, C4 = 0, and d ≠ 0. Equation (3.25) becomes h′′′(z) = 0, yielding h(z) = az2
+ bz + c for some constants a, b, c. In particular, we choose a = c = 0 and b = 1 so that h(z) = z and f (z,w) = z + w. When d ≠ 1, in the flat
coordinates,

x1(u1,u2,u3,u4) = u1,
x2(u1,u2,u3,u4) = (u2)−d(u3 + u4),

x3(u1,u2,u3,u4) = 1
2
u2 + u3,

x4(u1,u2,u3,u4) = 1
1 − d (u

2)1−d,

we have
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η̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 C2

1 0 0 0

0 0 0 1

C2 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

e = ∂̃1,

E = x1 ∂̃1 + (1 − d) x2 ∂̃2 + x3 ∂̃3 + (1 − d) x4 ∂̃4.

Up to second-order polynomial terms, the prepotential is given by

F(x1, x2, x3, x4) = C2

2
(x1)2x4 + x1x3x4 + 1

2
(x1)2x2 + (d − 1)

d−3
d−1 e

2πi
d−1 (x4) d−3

d−1

2(d + 1)(d − 3)

when d ∉ {−1, 0, 3}, by
F(x1, x2, x3, x4) = 1

4
(x4)2 ln x4 + C2

2
(x1)2x4 + x1x3x4 + 1

2
(x1)2x2

when d = −1, by
F(x1, x2, x3, x4) = C2

2
(x1)2x2 + x1x2x3 + 1

2
(x1)2x3 + 1

2
(x1)2x4 + 1

2
x1(x2)2 + 1

6
(x2)3

when d = 0, and by
F(x1, x2, x3, x4) = C2

2
(x1)2x4 + x1x3x4 + 1

2
(x1)2x2 − 1

16
ln x4

when d = 3. The case where d = 1must be treated separately. In the flat coordinates,

x1(u1,u2,u3,u4) = u1,

x2(u1,u2,u3,u4) = u3 + u4
u2

,

x3(u1,u2,u3,u4) = 1
2
u2 + u3,

x4(u1,u2,u3,u4) = lnu2,

the unit and the Euler vector fields are given by
e = ∂̃1, E = x1 ∂̃1 + x3 ∂̃3 + ∂̃4.

The metric is as the one for d ≠ 1, and up to second-order polynomial terms, the prepotential is

F(x1, x2, x3, x4) = 1
8
e2x

4

+ C2

2
(x1)2x4 + x1x3x4 + 1

2
(x1)2x2.

Example III.12. Let us consider the case (3.24) with C3 = C4 = 1 and d ≠ 0. Equation (3.25) becomes h′′′(z) − 2h′′(z) + h′(z) + 2ez = 0,
yielding h(z) = a − (z2 + bz + c)ez for some constants a, b, c. In particular, we choose a = b = c = 0 so that h(z) = −z2ez and f (z,w)
= (w − z2)ez . When d ≠ 0, 1, 2, the flat coordinates are

x1(u1,u2,u3,u4) = u1 + u2

2(1 − d) ,

x2(u1,u2,u3,u4) = C2 lnu2 − 2(1 − d) e
u3

u2 − (u
3)2 − u2u4
(u2)2 e

u3

u2 ,

x3(u1,u2,u3,u4) = (u2)−d−1(u2u4 − (u3)2) e
u3

u2 + C2(u2)1−d
1 − d ,

x4(u1,u2,u3,u4) = (u
2)2−d
2 − d .
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In such coordinates, the unit and the Euler vector fields are, respectively, written as e = ∂̃1 and

E = x1 ∂̃1 + C2 ∂̃2 − (d − 1) x3 ∂̃3 − (d − 2) x4 ∂̃4.

For d = −1, the metric is

η̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 −1
4

1 0 0 0

0 −1
4

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and up to second-order polynomial terms, the prepotential is given by

F(x1, x2, x3, x4) = − 1
32

3
√
3C2(x4)

4
3 ln(3x4) + 15

128
3
√
3C2(x4)

4
3 + 1

32
3
√
9(x4)

2
3 x3 + 3

32
3
√
3(x4)

4
3 x2 + 1

2
(x1)2x3 − 1

4
x1x2x4.

For d = −2, the metric is

η̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 −1
6

1 0 0 0

0 −1
6

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and up to second-order polynomial terms, the prepotential is given by

F(x1, x2, x3, x4) = − 1
45

√
2C2(x4)

5
4 ln(2

√
x4) + 4

75

√
2C2(x4)

5
4 + 2

45

√
2(x4)

5
4 x2 + 1

72

√
x4 x3 + 1

2
(x1)2x3 − 1

6
x1x2x4.

The case d = 2must be treated separately. In the flat coordinates,

x1(u1,u2,u3,u4) = u1 − u2

2
,

x2(u1,u2,u3,u4) = 2(u2)2 + u2u4 − (u3)2
(u2)2 e

u3

u2 ,

x3(u1,u2,u3,u4) = u2u4 − (u3)2
(u2)3 e

u3

u2 − C2

u2
,

x4(u1,u2,u3,u4) = lnu2,

we have

e = ∂̃1, E = x1 ∂̃1 − x3 ∂̃3 + ∂̃4, η̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0
1
2

1 0 0 0

0
1
2

0 C2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Up to second-order polynomial terms, the prepotential is

F(x1, x2, x3, x4) = − 1
16

x3 e2x
4

+ (C2 +
x2

2
) ex

4

+ C2

2
x1(x4)2 + 1

2
x1x2x4 + 1

2
(x1)2x3.

In the case where d = 1, which must be handled separately as well, flat coordinates are given by
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x1(u1,u2,u3,u4) = u1 + u2

2
− u2

2
lnu2,

x2(u1,u2,u3,u4) = u2u4 − (u3)2
(u2)2 e

u3

u2 + C2 lnu2,

x3(u1,u2,u3,u4) = (u
2u4 − (u3)2
(u2)2 lnu2 + 2) e

u3

u2 + C2

2
(lnu2)2,

x4(u1,u2,u3,u4) = u2

and

e = ∂̃1, E = (x1 −
x4

2
) ∂̃1 + C2 ∂̃2 + x2 ∂̃3 + x4 ∂̃4,

η̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 0
1
2

0 0
1
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Up to second-order polynomial terms, the prepotential is

F(x1, x2, x3, x4) = C2

24
(x4)2(ln x4)3 − 3

16
(C2 +

2
3
x2)(x4)2(ln x4)2 + 7

16
(C2 +

6
7
x2 + 4

7
x3)(x4)2 ln x4

+ 1
2
x1x3x4 + 1

2
(x1)2x2 − 7 x2 + 6 x3

16
(x4)2.

The last case to be considered separately is the one for d = 0, as C1 may not vanish. Here, the flat coordinates are

x1(u1,u2,u3,u4) = u1 + u2

2
,

x2(u1,u2,u3,u4) = u2u4 − (u3)2
u2

e
u3

u2 − C1 − 2C2

2
u2,

x3(u1,u2,u3,u4) = u2u4 − (u3)2 − 2(u2)2
(u2)2 e

u3

u2 − C1 − 4C2

4
lnu2,

x4(u1,u2,u3,u4) = (u
2)2
2

.

In such coordinates, the unit and the Euler vector fields are, respectively, e = ∂̃1 and

E = x1 ∂̃1 + x2 ∂̃2 − (C2 −
C1

4
) ∂̃3 − 2x4 ∂̃4,

and up to second-order polynomial terms, the prepotential reads

F(x1, x2, x3, x4) = 3(C1 − 4C2) ln(2 x4) − 8C1

72

√
2(x4)

3
2 + 32C2 + 24 x3

72

√
2(x4)

3
2 − 1

8
x2 x4 ln(x4) + C1

6
(x1)3

+ 1
2
(x1)2x2 − 1

2
x1 x3 x4.

V. A MENTION OF THE MULTIPLE-BLOCKS CASES
As seen in Sec. III, an expression for the Dubrovin–Frobenius metric in terms of a function f realizing (2.11)–(2.13) can be achieved in

the case where the operator L = E ○ has multiple Jordan blocks as well. This section is devoted to show how, in this case, it is possible to reduce
the conditions defining a Frobenius manifold to a single ODE in dimension 3 and to a system of PDEs in dimension 4.
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A. The three-dimensional case
In dimension 3, the only regular non-semisimple case with multiple Jordan blocks is the one of two blocks of dimensions 2 and 1,

respectively.
We already know that there exists a function f of the variable

z = u3 − u1
u2

such that the metric can be written as

η = (u2)−d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 0

F2 0 0

0 0 F3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

for

F1(z) = −f ′(z) + C1,

F2(z) = −z f ′(z) − (d − 1) f (z) + C2,

F3(z) = f ′(z),

where C1, C2 are constants. In particular, the quantity F1 + F3 = C1 must vanish whenever d ≠ 0. The flatness condition amounts to the
following equation:

z2 (−z f ′ − (d − 1)f + C2) f ′ f ′′′ = −z2(f ′′)2(z f ′ −
1
2
(−z f ′ − (d − 1)f + C2))

+ 2(−d z f ′ − (−z f ′ − (d − 1)f + C2))z f ′ f ′′ + d (f ′)2(−d z f ′ +
d − 2
2
(−z f ′ − (d − 1)f + C2)). (4.1)

By solving (4.1), one can determine explicitly the function f , which turns out to be expressed in terms of hyperbolic functions.

B. The four-dimensional case
In dimension 4, three rearrangements in Jordan blocks are possible. Let us briefly illustrate the results of computations:

● In the case of two blocks of sizes 3 and 1, respectively, we have

η = (u2)−d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 0

F2 F3 0 0

F3 0 0 0

0 0 0 F4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

F1(z,w) = −∂w f (z,w) + C1,
F2(z,w) = −z∂z f (z,w) −w ∂w f (z,w) − (d − 1) f (z,w) + C2,
F3(z,w) = ∂z f (z,w),
F4(z,w) = ∂w f (z,w)

for some constants C1, C2 and a function f of the variables

z = u3

u2
, w = u4 − u1

u2
.

In particular, the quantity F1 + F4 is a constant that must vanish whenever d ≠ 0.
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● In the case of two blocks, both of size 2, we have

η = (u2)−d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 0 0

F2 0 0 0

0 0 F3 F4

0 0 F4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

F1(z,w) = −∂z f (z,w) + C1,
F2(z,w) = −z∂z f (z,w) −w ∂w f (z,w) − (d − 1) f (z,w) + C2,
F3(z,w) = ∂z f (z,w),
F4(z,w) = ∂w f (z,w)

for some constants C1, C2 and a function f if the variables

z = u3 − u1
u2

, w = u4

u2
.

In particular, the quantity F1 + F3 is a constant that must vanish whenever d ≠ 0.
● In the case of three blocks, of sizes 2, 1, and 1, respectively, we have

η = (u2)−d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 0 0

F2 0 0 0

0 0 F3 0

0 0 0 F4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

F1(z,w) = −∂z f (z,w) − ∂w f (z,w) + C1,
F2(z,w) = −z ∂z f (z,w) −w ∂w f (z,w) − (d − 1) f (z,w) + C2,
F3(z,w) = ∂z f (z,w),
F4(z,w) = ∂w f (z,w)

for some constants C1, C2 and a function f of the variables

z = u3 − u1
u2

, w = u4 − u1
u2

.

In particular, the quantity F1 + F3 + F4 is a constant that must vanish whenever d ≠ 0.

Let us consider the flatness conditions in the first case. They amount to the following system of PDEs for the third derivatives of f :

∂3
z f =

3(∂2
z f )2

2∂z f
, (4.2)

∂2
z∂w f =

∂z∂w f (∂z f ∂z∂w f + 2 ∂2
z f ∂w f )

2∂z f ∂w f
, (4.3)

∂z∂
2
wf =

1
2w(∂z f )2 ∂w f

(2w ∂z f ∂w f (∂z∂w f )2 + (−∂w f ∂2
z f (w ∂w f + (d − 1) f − C2)

+ (∂z f )2((d − 2) ∂w f + w ∂2
wf )) ∂z∂w f + ∂z f ∂2

z f ∂w f (w ∂2
wf + d ∂w f )), (4.4)
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∂3
wf =

1
2w3 ∂w f (∂z f )3

(−∂z f ∂w f w2 (w ∂w f + (d − 1) f − C2) (∂z∂w f )2

− ((w3 (∂w f )2 − 2 (−(d − 1) f + C2)w2 ∂w f + (−(d − 1) f −wC1 + C2) ∂z f + (−(d − 1) f + C2)2 w) ∂2
z f

− 3 (∂z f )2 (w3 ∂2
wf − (−4w2 d ∂w f )

1
3
− d − 2

3
∂z f + (−

d
3
(−(d − 1) f + C2)w))) ∂w f ∂z∂w f

+ ∂z f ((w2 (w ∂w f + (d − 1) f − C2) ∂2
wf + (w2 ∂w f − ∂z f + (d − 1)w f −wC2) d ∂w f ) ∂w f ∂2

z f

+ (∂z f )2 (w2 (∂2
wf )2 −w ∂w f (d + 4) ∂2

wf − 2 (∂w f )2 d)w)). (4.5)

In the remaining cases, flatness conditions are given by similar but much more cumbersome systems of third-order PDEs. We skip details of
these computations.

We conclude this section by providing two examples of solutions to systems (4.2)–(4.5).

Example IV.1. If d = 0, then the function
f (z,w) = a z + bw + c

(where a, b, and c are constants) is a solution to systems (4.2)–(4.5). With this choice of f , the Dubrovin–Frobenius metric turns out to be
constant in canonical coordinates. It reads

η =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 − b C2 + c a 0

C2 + c a 0 0

a 0 0 0

0 0 0 b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and up to second-order polynomial terms, the Dubrovin–Frobenius potential is

F(u1,u2,u3,u4) = C1 − b
6
(u1)3 + C2 + c

2
(u1)2 u2 + a

2
(u1)2 u3 + a

2
u1 (u2)2 + b

6
(u4)3. (4.6)

Example IV.2. Let L = E ○ have two Jordan blocks of sizes 3 and 1. When looking for a function f of the form

f (z,w) = a z + g(w)

for some function g(w), systems (4.2)–(4.5) come down to a single ODE for g(w),

2w2 g′(w) g′′′(w) −w2 (g′′(w))2 + (d + 4)w g′(w) g′′(w) + 2d (g′(w))2 = 0. (4.7)

This yields

g(w) = a1 +
d2 (a2)2

16a3 (d − 1)w
+ a2 w−

d
2 + a3 w1−d

when d ≠ 1 and

g(w) = a1 −
(a2)2 ln w

16a3
+ a2√

w
+ a3

w

when d = 1 for some constants a1, a2, and a3. For instance, when d = 2 in the flat coordinates,

x1(u1,u2,u3,u4) = u3

(u2)2 +
a − C2

au2
+ (a2)2
4a a3 (u4 − u1)

+ a2 + a3
a (u4 − u1) ,

x2(u1,u2,u3,u4) = lnu2,
x3(u1,u2,u3,u4) = ln(u4 − u1),
x4(u1,u2,u3,u4) = u1,
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the metric becomes

∼
η =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 a

0 a 0 0

0 0 −(2a3 + a2)
2

4 a3
0

a 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and up to second-order polynomial terms, the Dubrovin–Frobenius potential is

F(x1, x2, x3, x4) = −(2a3 + a2)
2

8a3
(2ex

3

+ (x3)2 x4) + a
2
(x1 (x4)2 + (x2)2 x4). (4.8)

In flat coordinates, the unit and the Euler vector fields are, respectively, written as

ẽ = ∂̃4

and
Ẽ = −x1 ∂̃1 + ∂̃2 + ∂̃3 + x4 ∂̃4.

VI. CONCLUSIONS
In this paper, we have studied regular Dubrovin–Frobenius manifold structures (η, ○, e,E). Assuming that the Jordan form of the opera-

tor of multiplication by the Euler vector field L contains a single Jordan block and using a special set of coordinates introduced by David and
Hertling where the operator L and the Dubrovin–Frobenius metric take the form

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 0 0 ⋅ ⋅ ⋅ 0 0

u2 u1 0 ⋅ ⋅ ⋅ 0 0

u3 u2 u1 ⋅ ⋅ ⋅ 0 0

⋮ ⋮ ⋮
. . . ⋮ ⋮

un−1 un−2 un−3 ⋅ ⋅ ⋅ u1 0

un un−1 un−2 ⋅ ⋅ ⋅ u2 u1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

η =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂1H ∂2H ∂3H ⋅ ⋅ ⋅ ∂n−1H ∂nH

∂2H ∂3H ∂4H ⋅ ⋅ ⋅ ∂nH 0

∂3H ∂4H ∂5H ⋅ ⋅ ⋅ 0 0

⋮ ⋮ ⋮
. . . ⋮ ⋮

∂n−1H ∂nH 0 ⋅ ⋅ ⋅ 0 0

∂nH 0 0 ⋅ ⋅ ⋅ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we have shown that, up to constants, the metric potential H has the form

H = (u2)1−d f + C2 φ(u2) + C1 u1, (5.1)

where

φ(u2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(u2)1−d
1 − d if d ≠ 1,

lnu2 if d = 1
(5.2)

and f = f (z1, . . . , zn−2) with zi = ui+2
u2 for each i = 1, . . . ,n − 2. In dimension n = 2, 3, 4, we have obtained explicit formulas for the metric

potential H (see Table I) and, in some special cases, we have computed the flat coordinates and the corresponding prepotential.

J. Math. Phys. 63, 102301 (2022); doi: 10.1063/5.0094580 63, 102301-25

Published under an exclusive license by AIP Publishing

 28 D
ecem

ber 2023 09:13:51

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

TABLE I. Metric potential.

n = 2 f = C3

n = 3 f = C3z + C4 or f = C4
z+C3
+ C5.

n = 4 f = C3weC4 z + C7 − eC4 z

C2
4
[C3C2

4z
2

− C4(2C3 + C5)z − C4C6 + 2C3 + C5]
or
f = C3weC4 z + C5 z2 + C6 z + C7
or
f = C3 − A(z)

2B(z)+w with z = u3
u2 , w =

u4
u2 , and

A(z) and B(z) defined as in Proposition
III.10

We also considered the case of multiple Jordan blocks in dimensions 3 and 4, showing that the flatness conditions reduce to a third-order
ODE in the first case and to a system of third-order PDEs in the remaining cases, computing the flat coordinates and the corresponding
prepotential in some selected cases.

According to the general theory the metrics η−1 and Lη−1, define a flat pencil of metrics. Therefore, a by-product of our results is
a list of non-semisimple flat pencils of metrics that define the bi-Hamiltonian structures of the principal hierarchies of the associated
Dubrovin–Frobenius manifolds. The study of this class of bi-Hamiltonian structures and of their bi-Hamiltonian deformations in the non-
semisimple case is at a preliminary stage, and only a few results are available so far (see, for instance, Ref. 16). The explicit examples obtained
in this work might be the starting point of future investigations.
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