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Abstract: In vitro and in vivo stimulation and recording of neuron action potential is currently
achieved with microelectrode arrays, either in planar or 3D geometries, adopting different materials
and strategies. IrO2 is a conductive oxide known for its excellent biocompatibility, good adhesion
on different substrates, and charge injection capabilities higher than noble metals. Atomic layer
deposition (ALD) allows excellent conformal growth, which can be exploited on 3D nanoelectrode
arrays. In this work, we disclose the growth of nanocrystalline rutile IrO2 at T = 150 ◦C adopting
a new plasma-assisted ALD (PA-ALD) process. The morphological, structural, physical, chemical,
and electrochemical properties of the IrO2 thin films are reported. To the best of our knowledge, the
electrochemical characterization of the electrode/electrolyte interface in terms of charge injection
capacity, charge storage capacity, and double-layer capacitance for IrO2 grown by PA-ALD was not
reported yet. IrO2 grown on PtSi reveals a double-layer capacitance (Cdl) above 300 µF·cm−2, and a
charge injection capacity of 0.22 ± 0.01 mC·cm−2 for an electrode of 1.0 cm2, confirming IrO2 grown
by PA-ALD as an excellent material for neuroelectronic applications.

Keywords: pseudocapacitive; atomic layer deposition; IrO2; neuroelectronics

1. Introduction

The investigation of neural networks in vitro is fundamental for the understanding of
the mechanisms involved in neurological diseases such as Alzheimer’s. In this context, the
study of the short- and long-distance interactions between neurons is possible thanks to
the development of microelectrode arrays (MEAs), which can be used for the stimulation
of neurons and the recording of neuronal signals [1]. MEAs are realized, usually on rigid
substrates, either in planar or 3D geometries. The latter approach has been shown to
provide a better physical and electrical coupling between the neurons and the electrodes.

The electrical interaction between MEAs and neurons can take place according to two
main different charge transfer mechanisms that are determined by the electrical properties
of the electrode’s material. The so-called capacitive charge transfer takes place when a
dielectric material, which forms a capacitor at the electrode/electrolyte interface, is polar-
ized, and it transfers the polarization to the electrolyte. The other mechanism, commonly
occurring for metallic electrodes, consists of a direct, Faradaic transfer of charges between
the electrode and the electrolyte [2]. Among the Faradaic charge transfer mechanisms, it
is possible to distinguish between the irreversible transfer, generally unwanted, and the
reversible transfer. The latter mechanism is generally referred to as pseudocapacitive, since
it involves mass exchange at the interface electrode/electrolyte while the stability of the
electrode is preserved, as for the capacitive charge transfer [2].

IrO2 has been widely applied in the neuroelectronic field because of its pseudocapaci-
tive behavior, along with good stability and non-toxicity [3–5]. Nevertheless, the electrical,
physical, and chemical properties of the material depend also on the deposition method.
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Electrodeposition of IrO2 can cause the incorporation of the solvent, generally water,
in the film so prepared. The consequence is the formation of a hydrated IrO2 layer at
the top of the electrode, which is less dense and thus prone to corrosion under working
conditions [2]. For the same reason, the use of the so-called activated IrO2 (AIROF) poses
issues for the long-term stability of the electrode [6,7].

On the other hand, IrO2 layers prepared by reactive sputtering for neuroelectronics
are often quite thick (about 100 nm or more), posing issues with the amounts of such a rare
metal required for electrode fabrication [3,8,9]. In addition, physical deposition methods
do not provide conformal growth on 3D substrates with significant aspect ratios. An
alternative approach for the deposition of IrO2 onto MEAs can be offered by atomic layer
deposition (ALD), a thin film deposition method applied in several fields such as micro- and
nanoelectronics, spintronics, photovoltaics, electrocatalysis, and neuroelectronics. A key
feature of ALD is the self-limiting behavior of the reactions involved, which enables good
control of the thickness, high reproducibility, good quality in terms of impurity incorpora-
tion, and excellent conformality, i.e., uniformity even onto 3D complex structures [10,11].
ALD also offers the possibility of developing low-temperature processes compatible with
flexible substrates such as polydimethyl-siloxane (PDMS).

Only a few reports on the application of IrO2 grown by ALD for neuroelectronics
have been published so far [5,12]. In addition, the electrochemical characterization of the
electrode/electrolyte interface in terms of charge injection capacity, charge storage capacity,
and double-layer capacitance for IrO2 grown by ALD is still missing. Regarding ALD
processes reported in the literature, IrO2 is mainly deposited via thermal ALD, using O2 or
O3 as a reactant [13–17], while the use of plasma is still very limited. The use of plasma as a
co-reactant can be beneficial in several aspects, besides the advantages already mentioned
for ALD. The plasma is generally obtained in the gas phase by an electric field, which
accelerates the electrons. These hot electrons then collide with neutral species, generating
ions, radicals, and UV photons [18]. The high reactivity of plasma can be beneficial in
removing impurities, enabling depositing materials with better electronic properties [18–21].
Furthermore, the high energy provided to the substrate by the plasma allows it to achieve
deposition with a lower thermal budget [18,22–24]. Therefore, the use of a plasma-assisted
process, instead of thermal ALD, can be beneficial for the integration of the process in the
device fabrication, since plasma enables the deposition at lower temperatures (<200 ◦C).
This aspect can be relevant for the fabrication of multi-channel MEAs for neuroelectronics.

There are few reports, to the best of our knowledge, using a plasma-assisted ALD (PA-
ALD) process for the preparation of IrO2. In 2007 Choi et al. [25] reported PA-ALD of IrO2
nanodots using ethylcyclopentadienyl cyclo-hexadiene iridium [(EtCp)Ir(CHD)] dissolved
in ethyl cyclo-hexane as a precursor, and a mix of O2 and H2 plasma as co-reactant. The
same combination of precursor and co-reactant was applied in 2014 by Kim et al. [26]
for PA-ALD of IrO2 nanodots. It is worth mentioning that (EtCp)Ir(CHD) was originally
designed and synthesized by Kawano et al. [27] in 2004 as a precursor for the metal–organic
chemical vapor deposition (MOCVD) of Ir. Recently, Simon et al. [12] have reported a
new PA-ALD of IrO2 (on silicon with its native oxide) using O2 plasma as a reactant and
(Methylcyclopentadienyl) (1,5-cyclooctadiene) Iridium(I) [(MeCp)Ir(COD)].

In this work, we report on a novel PA-ALD approach for the growth of IrO2. The
process is based on the application of a mix of Ar/O2 plasma as a reactant in combination
with (EtCp)Ir(CHD) as a precursor. Compared to previous works on PA-ALD of IrO2 using
(EtCp)Ir(CHD), we did not have to dissolve the precursor in cyclo-hexadiene or feed the
plasma source with H2 gas. The ALD process is characterized in situ by spectroscopic
ellipsometry (SE). In situ SE is a key tool for the characterization of ALD processes, since it
is able to monitor thickness changes in the films deposited down to the atomic scale [28–31].
The determination of the thickness via SE requires modeling the dielectric function of the
film. For the specific case of rutile IrO2, a Drude–Lorentz oscillator was selected, generally
applied for modeling the absorption of light of conductive materials [28–31].
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The chemical, physical, and electrochemical properties of the IrO2 thin films have been
fully characterized to assess key functionalities relevant to neuroelectronics. Specifically, an
extensive electrochemical characterization has been performed, providing key parameters
for neuroelectronics, such as the double-layer capacitance, the charge storage capacity, and
the charge injection limit. Furthermore, the interpretation of the impedance spectroscopy
measurements has been corroborated by the cyclic voltammetry measurements. This last
aspect is not very common in the literature on neuroelectronics and can be of broader
interest in the electrochemical field.

PtSi has been selected as a conductive substrate for the deposition of IrO2. The choice
of the substrate is motivated by the planned integration of IrO2 onto vertical nanopillar
arrays to be used as scalable nanoelectrodes fabricated starting from silicon nanopillars [32].

2. Materials and Methods

IrO2 deposition was performed using a PICOSUN R-200 Advanced ALD system,
equipped with a remote inductively coupled plasma source. The base pressure of the
ALD reaction chamber is within the range of 0.2–4.0 hPa. The plasma source operates in
the range of 1.9–3.2 MHz, with the plasma power adjustable from minimum of 300 W to
maximum of 3000 W. The distance between the plasma source and the sample holder is
about 75 cm, in order to reduce any possible damage to the substrate from highly energetic
ions. (EtCp)Ir(CHD) (99%), from Strem Chemicals, was kept in a stainless steel cylinder
heated to 100 ◦C, while the line from the cylinder to the deposition chamber was heated
to 120 ◦C. (EtCp)Ir(CHD) precursor should be handled with care, since it causes skin and
eye irritation and may cause respiratory irritation. N2 gas (99.9999%), used as carrier for
the precursor, was flowed at 200 sccm. A mix of Ar gas (99.9999%) and O2 gas (99.9999%),
flowing at 40 sccm and 190 sccm, respectively, was used to feed the plasma. During the
plasma step, the power of the plasma source was set to 2500 W.

The ALD recipe starts with the dosing of (EtCp)Ir(CHD) for 6 s, followed by 15 s of
purge. Then, the mixture of Ar/O2 is flowed through the plasma source for 1 s in order to
stabilize the flow before igniting the plasma for 40 s. Afterward, a purge step of 4 s closes
the ALD cycle.

Film Sense FS-1™ ellipsometer system was used for in situ and ex situ characterization
of thickness and optical constants of the deposited IrO2 layer. The fitting of thickness and
optical constants of IrO2 thin films was performed using a Drude–Lorentz oscillator.

ALD-prepared IrO2 thin films were characterized by X-ray diffraction in grazing
incidence mode (GI-XRD), transmission electron microscopy (TEM) and energy dispersive
spectroscopy (EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray
photoelectron spectroscopy (XPS) and atomic force microscopy (AFM).

Transmission electron microscopy (TEM) techniques were conducted on electron-
transparent lamellae obtained by focused ion beam (FIB). The alloy microstructure was
observed by bright-field TEM and high-angle annular dark-field STEM (HAADF-STEM),
while high spatial resolution chemical analyses were carried out by energy dispersive spec-
troscopy (EDS). The lamellae were obtained using a Thermofischer Helios G5UX FIB. Low
energy milling was used during the final thinning steps to limit heating and ballistic effects
of ion irradiation on alloy film. The TEM images were performed with a Thermofischer
Themis Z G3 aberration-corrected transmission electron microscope equipped with an
FEG electron gun operating at 200 kV acceleration voltage. To minimize the electron beam
damage, all the TEM/STEM images and EDS maps were acquired with a low beam current
(0.5 nA). The EDS measures were carried out using a Dual-X sensor made of two detectors
of 100 mm2. The elemental maps were acquired and elaborated by Velox software.

GI-XRD was performed on a Rigaku Smartlab SE equipped with a Cu Ka source
(Ka1 = 1.540598) operating at 40 KV and 30 mA. Data were collected under parallel beam
conditions, at the angle of incidence of 0.2◦, in the range of 20◦–50◦.

ToF-SIMS profiles were performed using a dual beam IONTOF IV system operating
in negative polarity. Sputtering was accomplished using Cs+ ions at 1 keV (113 nA) and
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rastering over a 300 × 300 mm2 area. Analysis was performed by means of Ga+ ions at
25 keV (1.2 pA) rastering over a 50 × 50 mm2 area.

XPS analysis was performed on a PHI5000 Versaprobe III system equipped with a
monochromatic Al Ka X-ray source (1486.6 eV) and a concentric hemispherical analyzer
with a take-off angle of 45◦. Survey spectrum was acquired with a band-pass energy of
280 eV. High-resolution spectra were acquired with a band-pass energy of 55 eV. C 1s
signal at 284.5 eV was used to correct the binding energy scale.

Film surface morphology was analyzed by atomic force microscopy, using a commer-
cial system (Bruker Dimension Edge). Measurements were carried out in non-contact mode
using sharp silicon probes with typical tip radius of 10 nm and resonance frequency of
approximately ~320 kHz. Several square scans (1- to 5-micron side) were taken at various
surface locations. The acquired data were analyzed by Gwyddion (http://gwyddion.net/;
accessed on 7 March 2023) to derive the root mean square (RMS) roughness and the correla-
tion length (L). RMS accounts for the height fluctuations of the surface features, whereas
the correlation length is the measure of the length beyond which surface heights are not
significantly correlated and it was estimated by the gaussian fitting of the height–height
correlation function (see Equations (S1)–(S3), Figures S1 and S2 in the supporting informa-
tion). The surface parameters reported are the average values over the available data, and
the dispersion of these values is reported as the experimental error.

Electrochemical tests were performed using a double-sided-magnetic mount photo-
electrochemical cell from Redoxme. Unless differently specified, the electrode area is
1.0 cm2. Electrochemical impedance spectroscopy (EIS) was performed using a Zurich
Instruments MFIA impedance analyzer, applying a test signal of 100 mV in the frequency
range from 0.1 Hz to 100 kHz. EIS characterization of the interface IrO2/electrolyte was
performed in a two-electrode configuration, with two IrO2 samples facing each other
in electrical contact through the electrolyte. The phosphate buffer (PBS) used as elec-
trolyte for all the electrochemical characterizations was prepared by diluting 10 mL of PBS
10× purchased from Sigma-Aldrich with 90 mL of deionized water.

Cyclic voltammetry (CV) and voltage transient measurements (VT) were performed
using a BioLogic VMP3 multi-channel potentiostat in a three electrodes configuration, i.e.,
the sample under study as working electrode (WE), an Ag|AgCl wire as reference electrode
(RE) and a Pt wire as counter electrode (CE). The Ag|AgCl was selected as reference
electrode since it is commonly applied in the field of neuroelectronics [3]; thus, it makes it
more straightforward to compare electrochemical characterization performed in this work
with the literature.

3. Results and Discussion
3.1. Plasma-ALD of IrO2

The in situ characterization of ALD of IrO2 (on PtSi) via spectroscopic ellipsometry is
shown in Figure 1. From Figure 1a, it is possible to see that, after a nucleation delay of about
50 cycles, the process exhibits linear growth. From the fitting of the experimental data, the
growth-per-cycle (GPC) of the process is 0.28 ± 0.01 Å at 150 ◦C. The value obtained is
lower than the value of 0.66 Å reported recently by Simon et al. [12] for PA-ALD of IrO2.
Nonetheless, the different GPC could be explained by the use of different precursors, i.e.,
(EtCp)Ir(CHD) in this work and (MeCp)Ir(COD) in the work of Simon et al. [12]. On the
other hand, the reports of Choi et al. [25] and Kim et al. [26] on PA-ALD of IrO2 focus on
the deposition of nanodots; therefore, the GPC value of the process is not specified. From
Figure 1b, it is possible to appreciate the thickness changes taking place during each ALD
dosing step. The thickness shows a steep increase during the dosing of the (EtCp)Ir(CHD)
precursor, due to the adsorption of the precursor on the substrate. Subsequently, during the
plasma dosing, the thickness decreases because of the removal of the precursor’s ligands.

http://gwyddion.net/
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Figure 1. (a) Time-resolved in situ spectroscopic ellipsometry measurements during 600 ALD cycles
of IrO2, at 150 ◦C onto PtSi. The process exhibits linear growth after a nucleation period of about
50 cycles, corresponding to about 55 min on the time scale. (b) Enlargement of the in situ measurement
reported in (a), showing the characteristic step-like behavior found for the ALD process, with a
thickness increase due to the precursor dosing and a subsequent thickness decrease during the
plasma dosing due to the removal of ligands.

The saturation of each ALD dosing step was tested by independently changing the
dosing times of precursor and co-reactant. Figure 2 shows the GPC as a function of the
dosing time for the (EtCp)Ir(CHD) (Figure 2a) and for the plasma (Figure 2b), respectively.
The ALD process shows saturation for 6 s of precursor dosing and 40 s of plasma dosing.
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3.2. Physical and Chemical Characterization of IrO2

The crystallinity of the ALD-prepared IrO2 thin films was investigated by grazing
incidence X-ray diffraction (GI-XRD). Figure 3 shows that IrO2 prepared by ALD at 150 ◦C
reveals the characteristic pattern of IrO2 in the rutile phase, with the three peaks corre-
sponding to the <110>, <101>, and the <200> planes, as reported in the literature [33]. The
full-width half maximum and the θ of the three peaks were used to determine, by means of
Scherrer’s formula, the average grain size of IrO2 in the thin film [34,35]. Assuming the
shape factor K = 0.9 and knowing the wavelength of the Cu Ka source λ = 1.540598 Å, the
average grain size of ALD-prepared IrO2 thin film was determined to be 5.3 nm ± 0.4 nm.
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Figure 3. GI-XRD results for IrO2 thin film prepared by 600 ALD cycles, corresponding to
about 14.8 nm (red line). Angle of incidence ω is 0.2◦. The results are compared with the XRD
pattern for rutile IrO2 powder (black line) calculated with the Mercury Software using the structure
deposited on the Cambridge Structural Database as ICSD 640885, deposition number 1759474 [36,37].
The average grain size of IrO2, determined by Scherrer’s formula, is 5.3 nm ± 0.4 nm.

Figure 4 shows the TEM cross-section and TEM-EDS of IrO2 grown on PtSi/Poly-
Si/SiO2/Si. Figure 4a shows a TEM image of the IrO2 layer, clearly visible because of the
difference in Z-contrast with respect to the PtSi substrate. The layer is homogenous with a
thickness of about 13 nm, in line with SE measurements. Figure 4b shows EDS color maps
of Ir (yellow), O (green), Pt (purple), and Si (cyan) of the specimen. The Ir-L line, O-K line,
Pt-L line, and Si-K line, respectively, were used for the construction of the color maps. The
analysis reveals a continuous and conformal IrO2 layer on PtSi. Considering the surface
roughness of PtSi, the interface between IrO2 and PtSi is sharp, with no clear indication of
interdiffusion between the two layers. The surface roughness of the underlying substrate
has a strong influence on the surface morphology of the IrO2 deposited, as suggested by
AFM measurements performed on IrO2 grown onto Al2O3 on c-Si (see Figure S3 in the
supporting information). Specifically, the RMS of IrO2 on Al2O3 was 0.7 nm ± 0.3 nm, way
lower compared to the RMS of IrO2 grown onto PtSi (3.5 nm± 0.3 nm). The EDS line profile
in Figure 4c clearly shows Ir and O peaks related to ALD thin film, while the increasing
Pt signal on the surface of IrO2 is due to the Pt deposited as a contrast layer during the
specimen preparation. No further contamination from other elements was detected in the
IrO2 film within the sensitivity limit of the EDS technique.

ToF-SIMS depth profile of the ALD-prepared IrO2 thin film, shown in Figure 5, con-
firms the presence of a thin, but homogeneous, IrO2 layer on top of the PtSi substrate.
193IrO− secondary ion signal and 195Pt− and 30Si− secondary ion signals are reported as
markers of the IrO2 film and PtSi substrate, respectively. These signals clearly indicate
no diffusion of Pt and Si from the substrate into the IrO2 film during the ALD growth.
The broadening of the 193IrO−, 195Pt−, and 30Si− secondary ion signals at the IrO2/PtSi
interface is fully consistent with the roughness of the PtSi surface that was highlighted by
the TEM analysis shown above in Figure 4. No C contaminations were detected in the IrO2
film, within the sensitivity limit of the technique, confirming the good quality in terms of
impurities for the IrO2 thin film prepared by ALD.
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Figure 5. ToF-SIMS depth profiles of the IrO2 film deposited on PtSi. 193IrO− secondary ion signal
indicates the presence of a homogeneous IrO2 film with negligible carbon contamination. 195Pt− and
30Si− signals are reported as markers of the PtSi substrate.

The results of the chemical characterization performed by XPS are reported in Figure 6.
Figure 6a shows the survey spectrum of the IrO2 film deposited on top of the PtSi substrate.
The different core lines in the spectrum correspond to signals from the Ir and O atoms in the
IrO2 film. No signals from the underlying PtSi substrate were detected, further supporting
the idea of a homogeneous IrO2 film, perfectly covering the PtSi substrate. Figure 6b,c
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show high-resolution spectra of the Ir 4f and O 1s core lines, respectively. Since rutile-type
IrO2 is a metallic conductor, an asymmetric line shape is expected for the Ir 4f core lines.
The high-resolution Ir 4f spectrum was fitted using a doublet of asymmetric functions with
spin–orbit splitting of 3 eV to capture the main 4f lines and a doublet of Gaussians at 1 eV
higher binding energy to capture the primary shake-up satellites. A secondary satellite of
the Ir 4f 5/2 peak at ~3 eV above the main line was introduced to obtain a satisfactory fitting
of the experimental data, in agreement with previous results reported in the literature [33].
The position of the Ir 4f 7/2 core line is determined to be 61.7 ± 0.1 eV. The high-resolution
O 1s spectrum was fitted using asymmetric functions. The position of the O 1s core line is
found to be 529.9 ± 0.1 eV. Two additional Gaussian functions were introduced to correctly
fit the experimental data. These functions account for hydroxyl groups (BE ~ 531.3 eV) and
adsorbed water (BE ~ 532.4 eV) on the IrO2 surface [38]. The binding energies of the Ir 4f
and O 1s core lines are perfectly consistent with data available in the literature for rutile
IrO2 [33,38].

Nanomaterials 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 6. (a) Survey spectrum of the IrO2 film deposited on top of the PtSi substrate. (b) High-reso-
lution Ir 4f spectrum (open circles) of IrO2 fitted with a doublet of asymmetric main lines (red) and 
a corresponding doublet of Gaussian functions corresponding to primary shake-up satellites 
(green). An additional Gaussian function (yellow) is introduced to account for secondary shake-up 
satellites. Calculated Shirley background (blue) is reported as well. Red line corresponds to the en-
velope of the fitting functions. (c) High-resolution O 1s spectrum (open circles) of IrO2 fitted with 
an asymmetric main line (red) and two Gaussian-like lines corresponding to hydroxyl groups 
(green) and adsorbed water (yellow). Calculated Shirley background (blue) is reported as well. Red 
line corresponds to the envelope of the fitting functions. 

The surface morphology of IrO2 films is strictly related to the surface morphology of 
the supporting substrate. In Figure 7, AFM measurements of the IrO2 surface and of the 
bare PtSi surface are shown. IrO2 (Figure 7a) has a marked granular morphology with an 
RMS roughness of 3.5 ± 0.3 nm and correlation length of 53 ± 3 nm, very similar to that of 
the PtSi substrate (Figure 7b. RMS roughness: 3.6 ± 0.2 nm; correlation length: 47 ± 3 nm). 
Thus, in the explored experimental conditions, IrO2 film grows conformal to the PtSi sub-
strate, replicating the corresponding surface profile. 

Figure 6. (a) Survey spectrum of the IrO2 film deposited on top of the PtSi substrate. (b) High-
resolution Ir 4f spectrum (open circles) of IrO2 fitted with a doublet of asymmetric main lines (red)
and a corresponding doublet of Gaussian functions corresponding to primary shake-up satellites
(green). An additional Gaussian function (yellow) is introduced to account for secondary shake-up
satellites. Calculated Shirley background (blue) is reported as well. Red line corresponds to the
envelope of the fitting functions. (c) High-resolution O 1s spectrum (open circles) of IrO2 fitted with
an asymmetric main line (red) and two Gaussian-like lines corresponding to hydroxyl groups (green)
and adsorbed water (yellow). Calculated Shirley background (blue) is reported as well. Red line
corresponds to the envelope of the fitting functions.

The surface morphology of IrO2 films is strictly related to the surface morphology
of the supporting substrate. In Figure 7, AFM measurements of the IrO2 surface and of



Nanomaterials 2023, 13, 976 9 of 15

the bare PtSi surface are shown. IrO2 (Figure 7a) has a marked granular morphology with
an RMS roughness of 3.5 ± 0.3 nm and correlation length of 53 ± 3 nm, very similar to
that of the PtSi substrate (Figure 7b. RMS roughness: 3.6 ± 0.2 nm; correlation length:
47 ± 3 nm). Thus, in the explored experimental conditions, IrO2 film grows conformal to
the PtSi substrate, replicating the corresponding surface profile.
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Figure 7. AFM measurement of (a) IrO2 deposited on PtSi and (b) PtSi surface morphology. Both
images have scan size of 2 µm× 2 µm and image resolution is 512× 512 points per line. The thickness
of IrO2 is about 14.8 nm.

3.3. Electrochemical Characterization

Electrochemical impedance spectroscopy (EIS) was used to characterize the charge
transfer properties of the interface between the ALD-prepared IrO2 and the electrolyte.
Figure 8 shows the Bode plot, i.e., the module (Figure 8a) and the phase shift (Figure 8b) of
the impedance measured as a function of frequency. The equivalent circuit used to fit the
data was assembled with a constant phase element (CPE) to model the electrode/electrolyte
interface, in series with a resistor (Rsol) used to model the bulk resistivity of the solution. The
data analysis was performed using EIS Spectrum Analyser software [39]. The model applied
fits the experimental data well, indicating that the charge transfer resistivity, generally used
in parallel to the CPE for the modeling of the double layer, tends to infinity. This finding
indicates that the ALD-prepared IrO2 behaves in solution as an ideally polarized blocking
electrode, i.e., no DC is flowing at the electrode/electrolyte interface. The parameters
of the CPE, as reported in Table S1 (supporting information), can be used to estimate
the double-layer capacitance (CEIS

dl ), according to the surface distribution model, using
Equation (1) [40,41]:

CEIS
dl = Q

1
n ·Rsol

1−n
n (1)

where Q and n are the parameters defining the impedance of the CPE (see Equation (S4) in
supporting information). For the results shown in Figure 8, the double-layer capacitance
was calculated to be 301 ± 4 µF·cm−2. This value obtained for ALD-prepared IrO2 is very
promising, considering that the electrochemically active surface area influences the Cdl, and
how in this work, IrO2 was deposited onto a relatively flat substrate. As a comparison, a
Cdl value of 270 µF·cm−2 has been reported for IrO2 electrodeposited onto Ti felt [42].

In order to corroborate the Cdl value extracted from EIS data, the double-layer capaci-
tance was determined via cyclic voltammetry (CV) as well. A series of CV measurements
were carried out, varying the scan rate from 5 mV·s−1 to 10 mV·s−1 in the voltage range
between 0.35 V and 0.45 V, where no faradaic processes are supposed to occur [9]. The
results reported in Figure 9 show the capacitive cathodic current (Ic) and the capacitive
anodic current (Ia) as a function of the voltage of the working electrode (Ewe) for different
scan rates. The double-layer capacitance can be calculated from the CV measurements
via Equation (2) [9]:
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CCV
dl = ic/a·

(
dE
dt

)
(2)

where ic/a is the capacitive current, cathodic or anodic, and dE/dt is the scan rate. As reported
in Figure S4 (supporting information), the value of CCV

dl obtained is about 341 ± 1 µF·cm−2

which is in good agreement with the value obtained by EIS, considering that two different
methods, based on different working principles, were used. The high values of Cdl ob-
tained for ALD-prepared IrO2 can be explained by considering the good pseudocapacitive
behavior of IrO2 due to the oxidation/reduction of the Ir(III)/Ir(IV) species at the surface
of the electrode [43,44]. It is worth mentioning that it is not common to find, in the liter-
ature on neuroelectronics, the comparison between EIS and CV for the characterization
of the electrode/electrolyte interface and, more specifically, for the determination of the
double-layer capacitance.
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Figure 9. Cyclic voltammograms of ALD prepared IrO2 in the range 0.35 V-0.45 V for different
scan rates. The values of capacitive cathodic current (Ic) and capacitive anodic current (Ia) at 0.40 V
are used to determine the double-layer capacitance by the application of Equation (2). CV curves
reported are acquired after 50 cycles of stabilization.
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Cyclic voltammetry was then performed in order to determine the charge storage
capacity (CSC) of ALD-prepared IrO2 in the range of −0.6–0.8 V vs. Ag|AgCl. Figure 10
shows the cyclic voltammogram of IrO2 thin film deposited onto PtSi (blue line) compared
to the bare PtSi substrate (black line). The current density measured for the IrO2/PtSi
electrode is much larger than the current density recorded for the PtSi substrate. Since
the Faradaic contribution due to the oxidation and reduction of water is negligible below
0.8 V and above −0.6 V, the higher current density of IrO2 over the PtSi substrate can be
attributed to the pseudocapacitive behavior of IrO2, which allows accumulating a larger
amount of charge.
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Figure 10. Cyclic voltammograms of ALD-prepared IrO2 deposited onto PtSi (blue curve) and
of the bare PtSi substrate (black curve). The higher current density of IrO2 can be attributed to
the pseudocapacitive properties of IrO2. Both CV curves reported are acquired after 50 cycles of
stabilization, with a scan rate of 50 mV·s−1.

The CV curves reported in Figure 10 can be used to calculate the CSC by mean of
Equation (3) [4,9]:

CSC =
1

v·A

∫ Ea

Ec
|i|dE (3)

where Ea and Ec are the anodic and cathodic limits of the potential, i is the measured current,
v is the scan rate, and A is the surface area of the electrode [4]. For ALD-prepared IrO2,
the value of CSC was calculated to be 1.9 ± 0.1 mC·cm−2, while the bare PtSi substrate
exhibited a CSC of (2.4± 0.2)·10−2 mC·cm−2. The value of CSC obtained for ALD-prepared
IrO2 is slightly lower compared to the non-activated sputtered IrO2 reported in the lit-
erature (2.8 mC·cm−2) [3]. Nevertheless, a fair comparison should take into account the
effective electrochemical surface area. IrO2 deposited by reactive sputtering is generally
characterized by higher surface roughness, while ALD-prepared thin films are generally
smoother since they replicate the surface features of the underneath substrate conformally,
as mentioned above in the AFM measurement paragraph.

To determine the maximum charge that the IrO2 electrode can deliver without over-
coming the cathodic limit for the water reduction, voltage transient (VT) measurements
were performed. A current squared wave of different amplitudes was forwarded to the sam-
ple, recording the voltage (Ewe) over time. The results reported in Figure 11 show the Ewe as
a function of time for values of current amplitude between 0.5 mA and 2.5 mA (Figure 11a).
The maximum cathodic polarization (Emc) was then calculated by the difference between
the voltage peak (Ep) and the access voltage (Ea) [3]. Figure 11b shows the Emc as a function
of the charge injected. By linear regression of the data, it was possible to calculate that
for Emc = −0.6, the charge injected is 0.22 ± 0.01 mC·cm−2. Taking into account that the
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CIC is inversely proportional to the electrode’s surface area [3], the value obtained can be
considered as the lower boundary for ALD-prepared IrO2, in view of its application onto
microelectrode arrays. We shall also note that CIC values higher than 1.0 mC·cm−2 can be
detrimental to neural stimulation because of possible neural damage [45].
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Figure 11. Results of the voltage transient measurements performed on ALD-prepared IrO2.
(a) Shows the voltage of the working electrode (Ewe) as function of time for squared current pulses of
0.5, 1.0, 1.5, 2.0, and 2.5 mA. (b) Reports the maximum polarization (Emc), calculated by the difference
between the peak voltage (Ep) and the access voltage (Ea), as function of the charge injected. By linear
regression of the data (orange dashed line), it was possible to calculate the charge injection capacity
to be 0.22 ± 0.01 mC·cm−2 for Emc = −0.6.

4. Conclusions

In this work, we disclosed a novel PA-ALD process for the deposition of IrO2 using
(EtCp)Ir(CHD) as the precursor and a mix of Ar/O2 plasma as the reactant. The growth
characteristics, the physicochemical as well as the electrochemical properties of IrO2 grown
by PA-ALD were determined in view of the application in neuroelectronics. The use of the
plasma allowed deposition at a relatively low temperature (150 ◦C), which can be helpful
for the integration of the layer on existing devices as well as on flexible substrates. XRD
results show the characteristic peaks of the metallic rutile-phase IrO2, indicating that the
layer so prepared is nanocrystalline. TEM/EDS and ToF-SIMS analysis of ALD-prepared
IrO2 indicates that the layer is compact and continuous with low carbon contamination.
TEM and AFM results highlight the conformality of the layer to the PtSi substrate. XPS
results further confirm the presence of the metallic rutile phase of IrO2.

Electrochemical characterization showed that IrO2 grown by PA-ALD has compet-
itive performances for application in neuroelectronics. Specifically, EIS results revealed
a strong capacitive coupling between the IrO2 electrode and the electrolyte, with a Cdl of
301 ± 4 µF·cm−2, higher than the value reported in the literature for IrO2 electrodeposited
on Ti felt [42]. The value of Cdl obtained from CV was about 341 ± 1 µF·cm−2, in general
agreement with the value determined with EIS, considering the different working princi-
ples of the two methods. To the best of our knowledge, the electrochemical characterization
of the electrode/electrolyte interface in terms of charge injection capacity, charge storage
capacity, and double-layer capacitance for IrO2 grown by PA-ALD was not reported yet.
Furthermore, the comparison between EIS and CV results for the determination of the
double-layer capacitance is also an element of novelty in the field of neuroelectronics.

The CSC of IrO2 was calculated in the range of −0.6-0.8 V vs. Ag|AgCl, where the oxi-
dation and reduction reactions of water are negligible. The CSC value of 1.9 ± 0.1 mC·cm2

is slightly lower than what is reported for non-activated electrodeposited IrO2 (2.8 mC·cm2),
although it should be considered that surface roughness has a big role in the electrochemical
results. Finally, voltage transient measurements were performed in order to determine the
maximum charge that the IrO2 electrode can deliver without overcoming the cathodic limit
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for the water reduction (−0.6 V). The charge injection capacity found for ALD-prepared
IrO2 was 0.22 ± 0.01 mC·cm−2, in line with the literature [3]. The value obtained can
be regarded as a lower limit in view of the integration of IrO2 onto MEAs, since the
charge injection capacity is inversely proportional to the surface area (1.0 cm2 in this work)
of the electrodes.
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