
1.  Introduction
Ocean and atmosphere communicate through exchanges at the air-sea interface, a complex surface in per-
ennial disequilibrium. At large scales, atmospheric dynamics force ocean variability (Gill, 2016) as strong 
winds enhance surface turbulent heat fluxes and generate upper ocean mixing, reducing sea surface tem-
perature (SST). At finer scales, (100km) , ocean structures influence the atmospheric dynamics (Chel-
ton et al., 2001), impacting air temperature, frictional stress, and the marine atmospheric boundary layer 
(MABL) stability. The upper ocean and lower atmosphere layers interact through different processes form-
ing a feedback loop (e.g., Strobach et al. (2020)).

Ocean thermal structures affect the stability of the air-column and its thermodynamical properties through 
thermal and dynamical adjustments of the MABL (Small et al., 2008). The resulting small-scale processes, 
called thermal feedback, have important upscale and remote impacts at seasonal timescales on local sur-
face wind (Chelton et al., 2004), basin-scale atmospheric circulation (Desbiolles et al., 2018), cloud cover, 
rainfall location over ocean - as shown in long-term average over the Gulf Stream (Minobe et al., 2008) or 
in composite analyses over Southern Ocean eddies (Frenger et al., 2013) - and climatic variability of heat/
tropical lows inland (Desbiolles et al., 2020). Thus, small-scale air-sea interactions significantly affect the 
water cycle.

Two main mechanisms have been proposed to describe the surface wind response to small-scale variability 
of SST: the downward momentum mixing (hereafter DM), notably introduced by Hayes et al. (1989), and 
the pressure adjustment (PA), highlighted by Lindzen and Nigam (1987). The DM mechanism brings into 
play large eddies within the MABL, stimulated by turbulent fluctuations of momentum, temperature and 
moisture, that redistribute horizontal momentum in the vertical direction (Small et al., 2008). This process 
modifies the MABL stability over SST patterns (Businger & Shaw, 1984), entailing, as a net effect, weaker 
(stronger) surface winds over the cold (warm) flank of an SST gradient (Wallace et al., 1989). As a conse-
quence, a positive correlation emerges between wind divergence and downwind SST gradient (e.g., Chelton 
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et al., 2004, 2007; Desbiolles et al., 2014; Meroni, Parodi, & Pasquero, 2018; O'Neill et al., 2003; 2005). The 
PA mechanism causes surface wind divergence due to surface pressure anomalies forced by atmospheric 
temperature patterns, driven themselves by the SST spatial variability (Lindzen & Nigam, 1987). It results 
in a linear relationship between surface wind divergence and SST Laplacian (Foussard et al., 2019; Small 
et al., 2008).

Thus, DM and PA mechanisms affect near-surface winds and then turbulent properties at mesoscales (Small 
et al., 2008). Recent studies show concomitant observations of anomalies in wind speed and clouds over 
mesoscale energetic western boundary currents; such as Gulf Stream (Minobe et al., 2008; Park et al., 2006), 
Kuroshio extended region (Xu et al., 2011) and Aghulas retroflection area (O'Neill et al., 2005). Also the 
link with the change of rain rate has been documented over large and permanent Western boundary fronts 
(e.g., Xu et al., 2011; Minobe et al., (2008) for the Kuroshio and Gulf Stream, respectively). More precisely, 
Minobe et al., (2008) showed that under the PA mechanism, on annual timescale, rainbands develop over 
the warm side of the front. Moreover, cloud and rain responses have been highlighted not only over large 
and permanent structures, but also over shorter timescale transient anomalies, such as the cold wakes of 
tropical storms (Ma et al., 2020), over which PA dominates (Pasquero et al., 2021), and in correspondence 
of eddies of different size, with the prevailing of the DM mechanism (Liu et al., 2018; Park et al., 2006; 
Perlin et al., 2020; Rouault et al., 2016; Villas Boas et al., 2015; Wang et al., 2019). For example, Frenger 
et al., (2013) reported the composite response of the near-surface wind dynamics, clouds and rainfall over 
warm and cold eddies in the Southern ocean and concluded that transient ocean structures significantly 
alter atmospheric weather regimes.

In this study, we focus on the mid-latitude Mediterranean Sea, a semi-enclosed basin, which is subject to 
numerous local and regional atmospheric processes. In particular, air-sea interactions and the complex 
orography surrounding the basin favor the development of heavy precipitation events, such as those asso-
ciated with mesoscale convective systems (Fiori et al., 2017; Nuissier et al., 2008), that generally develop 
over the sea and are responsible for a significant fraction of the annual rainfall in coastal regions (Ducrocq 
et al., 2008; Fiori et al., 2014). The mean SST has been shown to control the rainfall amount of those events 
by modifying the atmospheric stability: the warmer the sea, the more unstable the air-column and the 
higher the rainfall volume (Lebeaupin et al., 2006; Meroni, Renault, et al., 2018; Pastor et al., 2001). Fine-
scale SST structures and gradients, on the other hand, generate a differential heating into the atmosphere 
and modify the surface wind (Cassola et al., 2016; Meroni, Parodi, & Pasquero, 2018; Senatore et al., 2020). 
Meroni et al., (2020) have shown that the DM mechanism drives the near-surface wind response over the 
Mediterranean, especially during Fall.

Following Meroni et al., (2020), this paper aims to describe the daily timescale response of the MABL to 
SST patterns over the Mediterranean, exploiting the relatively high-resolution ERA5 reanalysis (Hersbach 
et al., 2020). To complement Meroni et al., (2020), which used 10 m neutral-equivalent wind and SST based 
on satellite retrievals, we exploit here the ERA5 reanalysis product and focus on the vertical structure of the 
atmospheric response and the potential impact on cloud cover and rainfall.

2.  Data and Metrics Used
This study uses ERA5 (Hersbach et al., 2020) which is the reanalysis data set with the finest spatial res-
olution available (roughly 30 km globally), obtained with a 4DVAR data assimilation approach with the 
integrated forecast system. More specifically, we use SST, horizontal wind, cloud cover fraction from 1000 
to 700 hPa every 25 hPa, and total and convective rain, all at daily frequency taken at midnight UTC. The 
statistical analysis are performed in the period 1990–2014. It is worth remarking that, despite the nominal 
resolution of about 30 km, ERA5 acknowledges an effective resolution of about 100 km.

In order to better assess SST effects on wind divergence, a coastal mask is applied on each field. It covers 
a strip of about 50 km off the coast over which atmospheric dynamics is also driven by several different 
processes such as land-sea breeze and orographic effects (e.g., Drobinski et al., 2018; Buzzi et al., 2020). A 
discussion about the width of the coastal mask is provided in the supportive information document.
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Correlations between wind convergence and SST derivative fields are computed. The DM mechanism re-
sults in a correlation between wind divergence, ∇ ⋅u, and downwind SST gradient,   ˆSST k, where k̂  is 
the unit vector aligned with the wind direction. The sign of the downwind SST gradient is determined by 
the relative direction of the 10 m instantaneous wind and the SST gradient: negative (positive) when the 
wind blows from warm-to-cold (cold-to-warm) water. The PA mechanism results in a positive correlation 
between ∇ ⋅u and SST Laplacian, ∇2SST. The two correlation coefficients, stressing an active DM and/or PA 
mechanisms, are calculated both temporally and spatially.

The significance of the correlation coefficients is determined by the calculation of the 95% confidence in-
terval of the null hypothesis of zero correlation, using the effective number of degrees of freedom following 
Press et al.,  (1992); Bretherton et al.,  (1999). For details, the reader is referred to appendix A of Meroni 
et al., (2018). It is worth noting that all the confidence intervals are wider than in Meroni et al., (2020) due 
to the slightly coarser effective resolution of ERA5 compared to satellite observations.

Section 4 shows the effect of air-sea interactions on low-level cloud cover and rainfall. Cloud cover fraction 
is integrated from 1000 to 925 hPa. The uppermost pressure level used for the cloud cover analysis roughly 
corresponds to the MABL top (see supporting information). Its choice is based on the vertical structure of 
MABL response to SST gradients highlighted in Figure 2. The total and convective rain fields are analyzed 
regardless of the amount of rain: each pixel with a strict positive rainfall has been flagged as a rain event.

Details about methodology are given to complement the following results in the supporting information.

3.  MABL Dynamics Responses to SST Patterns
3.1.  Surface Responses

Figure 1 shows the temporal (upper) and spatial (bottom panels) correlation coefficients between ∇ ⋅u and 
  ˆSST k (left panels) and between ∇ ⋅u and ∇2SST (right panels). The spatial correlations are shown in 
Figures 1c and 1d as a climatology.

It emerges that, at daily timescale, DM is prevailing over PA in shaping the 10 m wind divergence. Indeed, 
wind divergence is positively correlated with downwind SST gradient while it is mostly non-significantly 
correlated with SST Laplacian (Figures 1a and 1b). Therefore, the DM mechanism acts almost everywhere 
over the Mediterranean basin, except in some locations where the wind dynamics is driven by other pro-
cesses. This is the case for the Adriatic and Alboran basins, which are narrow seas where wind dynamics is 
constrained by the surrounding land. Temporal correlation between wind divergence and downwind SST 
gradient can be important (i.e., coefficients greater than 0.5 in the Gulf of Lions and North of the border 
between Libya and Egypt).

The seasonal mean of the spatial correlation also shows that wind divergence is significantly related to 
downwind SST gradient and not to SST Laplacian (Figures 1c and 1d). During Fall, correlations are higher 
(Figure 1c), which can be explained by the presence of stronger SST gradients (see supporting information). 
This transitional season is the period during which storms and atmospheric depressions develop over a 
thermally stratified ocean. Resulting SST gradients are then intense and act back on surface winds.

Meroni et al., (2020) found that during Fall, the probability of having strong wind convergence over warm-
to-cold SST fronts is twice as high as the probability of having it over cold-to-warm fronts. Together with 
the positive and significant correlations introduced above, this is in agreement with the action of the DM 
mechanism, suggesting that the presence of warm-to-cold fronts affects the overlying atmosphere. In par-
ticular, this behavior is observed for strong convergence values, typically associated with atmospheric fronts 
(see supporting information).

3.2.  Vertical Structure

Figure 2 shows boxplot of the spatial correlation between ∇ ⋅u from the surface to 700 hPa and   ˆSST k 
for the entire period and Fall only. Note that the downwind SST gradient is taken with respect to the 10 m 
wind direction, regardless of the wind direction at higher levels. The shaded area along the 0 correlation 
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represents the 95% confidence interval. On the first y-coordinate the statistics are calculated with the neu-
tral stability hypothesis ( N

10u ) on both fields.

Mean spatial correlations between wind divergence and downwind SST gradient are significant from the 
surface (i.e., 10 m) up to 925 hPa for the entire period and Fall only (Figures 2a and 2b, respectively). De-
spite during Fall correlations admit higher values (Figure 2b), the vertical structure remains the same. The 
coefficients decrease with altitude but remain relatively important up to 925 hPa. In both analyzed periods, 
the time mean spatial correlation crosses the zero line at 875 hPa, but is non-significant from 925 hPa and 
above. Therefore, we conclude that the imprint of SST gradients is not only present at the surface but is 
significantly visible up to 925 hPa, encompassing the entire MABL at least 80% of the time (see supporting 
information). Indeed, the DM mechanism affects fluctuations of momentum over the MABL thickness 
since it enhances mixing of momentum from the top of the MABL to the surface (Spall, 2007; Wallace 
et al., 1989).

It is worth noting here that neutral-equivalent winds have been shown to be stronger (weaker) than actual 
winds in unstable (stable) boundary layers (O'Neill et al., 2012). This implies that higher correlation coeffi-
cients are expected when using neutral-equivalent winds with respect to the actual ones, as also discussed 
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Figure 1.  (a and b) Temporal correlation between ∇ ⋅ u and (a)   ˆSST k  and (b) ∇2SST at the daily time scale. Black “+” marks denote pixels where 
correlations are non-significant (see text for details). (c and d) Seasonal cycle of spatial correlation between ∇ ⋅ u and (c)   ˆSST k  and (d) ∇2SST. The solid line 
represents the mean and the red shaded area the standard deviation around that mean. The black shaded area corresponds to the 95% confidence interval.
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in Meroni et al. (2020). This is the case here (Figure 2) but the difference in the mean correlation (∼1%) 
is non-significant. This confirms that the use of satellite-derived neutral-equivalent wind fields does not 
impact the overall correlation between the two fields, even if the coupling coefficient differs (e.g., Renault 
et al. (2019)).

4.  Effect on Cloud Cover and Rainfall
Figure 3 shows the relative change of cloud fraction (in %) as a function of wind divergence (upper) and 
downwind SST gradient (bottom panels) for the entire period and Fall only. Figure 4 is built in the same 
way but displays the relative change of total and convective rainfall events. In all panels, the response in 
cloud cover and rain is analyzed statistically every 5% bins of the distribution of the considered field (either 
∇ ⋅u or   ˆSST k). The gray shaded area around the 0 line represents the 95% range of expected values of 
the relative change in the null hypothesis (cloud cover and total rain events independent of the considered 
fields). As convective rain admits a large confidence interval (∼30%), the relative change in convective rain 
events is only shown when it is greater than this reference level. Notably, this never happens in panels c and 
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Figure 2.  Boxplot of the spatial correlation between ∇ ⋅ u at different vertical levels and   ˆSST k  for (a) the entire period and (b) Fall only. The vertical shaded 
area represents the 95% confidence interval. The black boxplot (shown on the lowest level) represents the statistics using 10 m neutral-equivalent winds.
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d, as discussed below. In Figures 3a and 3b, blue histograms and numbers show the percentage of negative 
  ˆSST k events (warm-to-cold fronts) in each class of ∇ ⋅u. The red color on Figures 3c and 3d, represents 
the percentage of wind convergence events in each class of   ˆSST k.

Cloud cover has a clear response for extreme convergence events, with an increase of about 140% and 175%, 
for the entire period and Fall only, respectively (Figures 3a and 3b). This means that the cloud fraction more 
than doubles in case of extreme convergence. Over those events, 57% of them correspond to a negative 
downwind SST gradient. During Fall, this percentage is higher (almost 66%, i.e., 2/3) and indicates that the 
probability of having surface convergence over a warm-to-cold front is twice as large as the opposite one, in 
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Figure 3.  Percentage of cloud fraction change as a function of ∇ ⋅ u (a and b) and   ˆSST k  (c and d) for the entire period and Fall only. Cloud cover fraction is 
integrated from 1000 to 925 hPa. The vertical gray solid line represents the percentile of the distribution from which the metric considered changes sign. Each 
x-bin represents 5% of the distribution during the period of analysis. The gray shaded area represents the reference value of mean change ±1.96σ0 of 5% of 
randomly sampled integrated cloud cover fraction calculated 1000 times. On panels a and b (c and d), the blue (red) areas and numbers indicate the fraction of 
events in each bin associated with    0ˆSST k  (∇ ⋅ u < 0).
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agreement with the findings of Meroni et al., (2020). The relative change of cloud fraction monotonically 
decreases for increasing wind divergence.

For strong wind divergence cases, cloud cover decreases by about 40% for the entire period and by far less 
during Fall (Figures 3a and 3b); the latter result will be discussed later, when rain events will be presented. 
Over all wind divergence events, about 2/3 correspond to a positive   ˆSST k. This confirms that it is pre-
dominantly more likely to have wind divergence over a positive downwind SST gradient, as per the DM 
mechanism. In fact, low-level cloud cover fraction has significant changes in association to underlying SST 
patterns, as shown in Figures 3c and 3d, irrespective of the upper layer thermodynamical state. During Fall, 
when the signal is stronger, the cloud cover fraction in the lower 5% values of  ˆSST k is about 48% higher 
than on average, and it is about 13% lower than on average in the upper 5% values of  ˆSST k. This results 
in a cloud cover about 1.7 times larger in the lower 5% negative downwind SST gradient than in the upper 
5% positive one.
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Figure 4.  Relative change of total (black) and convective (green) rain events as a function of ∇ ⋅ u (upper panels) and   ˆSST k  (bottom panels) for the 
entire period (left panels) and Fall only (right panels). The vertical gray solid line represents the percentile of the distribution from which the surface metric 
considered changes sign. Each x-bin represents 5% of the distribution. The gray shaded area around 0 represents the reference value of mean change ±1.96σ0 of 
5% of randomly sampled total rain events calculated 1,000 times. Only significant changes of convective rain events are shown.
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Low-level cloud cover responds to   ˆSST k with, notably, an important increase of 30% and 45% over ex-
treme negative values for the entire period and Fall only, respectively (Figures 3c and 3d). Therefore, an 
extreme negative   ˆSST k, corresponding to a warm-to-cold scenario, favors wind convergence (found in 
∼60% of the cases) and cloud formation. For the entire period the signal is however not significant for the 
rest of the distribution (Figure 3c) but the cloud response is straightforward for the whole distribution of 
  ˆSST k during Fall (except from the percentile 30 to 50% for which the relative change is non-significant, 
Figure 3d). A large positive   ˆSST k is associated with wind divergence in ∼ 60% of the cases, and with a 
reduction of ∼15% of cloud cover.

Rainfall events are clearly favored by strong wind convergence, with an increase of chance of having rain 
of about 200% and 250% for the entire period and for Fall only, respectively (Figures 4a and 4b). The occur-
rence of convective rain events is also significantly larger for the strongest 20% wind convergence events. 
The probability of having rain events decreases with increasing ∇ ⋅u until it reaches a minimum at about 
2/3 of the wind divergence distribution. For weak convergence and weak-to-moderate divergence winds, 
rainfall is suppressed compared to the average value. Remarkably, strong divergence is associated with a 
significant increase of the probability of having precipitation, possibly because rainfall can produce cold 
mesoscale downdrafts when raindrops evaporate during their fall, generating strong divergence when the 
downdrafts get to the surface. In other words, strong wind divergence is probably caused by precipitations, 
while large scale dynamics typical of the extratropical storms seldom generate strong surface wind diver-
gence. The rain events that generate downdrafts are more likely to happen during the Fall season, as they 
are associated with mesoscale convective systems, whose dynamics is favored by warm SSTs. This is consist-
ent with the small change of cloud cover associated with the strong divergence shown in Figure 3b: whereas 
strong divergence in surface winds suppresses low-level clouds, thick convective clouds typical of the Fall 
season in some cases produce strong surface wind divergence. Overall, the two processes combine to induce 
a negligible change in cloud cover with respect to the average conditions.

The relative change in the occurrence of rainfall events is statistically significant for large values (both 
positive and negative) of   ˆSST k (Figures 4c and 4d). Indeed, we find 30% and 35% more chance of having 
a rainfall event over strong negative downwind SST gradients during the entire period and Fall only, respec-
tively, with respect to average conditions. For Fall (Figure 4d), the relative change in rain events remains 
positively significant over the lowest 30% of the distribution, and conversely, we have from 10% to 20% less 
rain events over the strongest positive 40%   ˆSST k. No significant signal has been found for convective 
rainfall events.

To summarize the effects of SST patterns on cloud cover and rainfall in the Mediterranean region, we aggre-
gated the results presented above over the upper and lower 25th percentiles of   ˆSST k. The 25% strongest 
warm-to-cold fronts are associated with a mean increase of cloud cover of 10% ± 5% (25% ± 12%) and a 
mean increase in the probability of a rain event of 15% ± 6% (22% ± 10%), with respect to the average values 
for the entire period (Fall only). The 25% strongest cold-to-warm fronts are associated with a mean decrease 
of cloud cover of 4% ± 2% (14% ± 8%) and a mean decrease in the probability of a rain event of 10% ± 4% 
(18% ± 8%) for the entire period (Fall only).

5.  Concluding Remarks
In this paper we have analyzed the links between SST patterns and wind divergence at the daily timescale 
over the Mediterranean Sea. Near the surface, that is, at 10 m, the wind divergence field is positively corre-
lated with the downwind SST gradient and insignificantly correlated to the SST Laplacian (Figure 1). Thus, 
mesoscale air-sea interactions are controlled by the DM mechanism. This is notably the case during Fall, 
when correlation analysis shows larger values (Figure 1), due to stronger SST gradients found in this season. 
SST fronts and gradients play an important role in shaping the daily wind divergence field. Strong values 
of convergence are twice as likely to be found over warm-to-cold fronts. These results, shown by satellite 
observations in Meroni et al., (2020), are here supported by the reanalysis data.

The use of reanalysis data allowed us to verify that the DM mechanism modulates fluctuations not only at 
the surface but through the entire MABL thickness and that SST gradients modify wind divergence/con-
vergence cells up to 925 hPa (see Section 3.2). As a consequence, the cloud cover in the MABL is modified 
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accordingly. A positive (negative) downwind SST gradient favors wind divergence (convergence) over the 
whole boundary layer, which leads to a significant decrease (increase) of cloud cover and rainfall events. 
The effects are larger when winds blow from warm-to-cold fronts than when they blow from cold-to-warm 
fronts, suggesting that the MABL response to a warm-to-cold front could be sharper and stronger than in 
the opposite case. This might indicate that the time needed to stabilize the MABL is shorter than the time 
needed to destabilize it, but further studies are necessary to characterize this asymmetric response. In de-
tail, we have shown here that in correspondence of the 25% strongest positive downwind SST gradients the 
chances of having rainfall drop by 10% ± 4% and conversely, in correspondence of the 25% strongest neg-
ative downwind SST gradients the chance of rainfall increase of 15% ± 6%. Overall, the chances of having 
rainfall in the lower quartile of the distribution of downwind SST gradient is about 27% ± 10% larger than 
in upper quartile.

The use of daily data shows that SST gradients impact wind divergence over synoptic weather regimes, 
and not only over averaged conditions. The correlation values between downwind SST gradient and wind 
divergence at daily timescale are smaller, but still significant, than those obtained when fields are filtered 
from synoptic dynamics (as it usually done, e.g., Chelton et al., 2001; O'Neill et al., 2003). This is also the 
case for the statistics related to the PA mechanism, for which higher positive significant correlations are 
found from weekly to monthly timescales (see supporting information). It is worth noting that, from daily 
to monthly timescales, correlation analysis highlight that the DM is always more important than the PA 
mechanism in the Mediterranean. However, previous works suggest that PA mechanism might control the 
wind divergence response in certain conditions also at the daily and weekly scales (Li & Carbone, 2012; Ma 
et al., 2020).

The air-column stability, which is at the core of the DM mechanism, is not only driven by surface conditions 
but it also depends on the free troposphere state aloft. Together with environmental conditions (background 
winds, MABL height, ocean front size and intensity, etc,\enleadertwodots), which qualify and quantify the 
atmospheric response, remain to be deeply analyzed in order to disentangle their effects on the processes at 
play (e.g., Foussard et al., 2019; Kilpatrick et al., 2014; Oerder et al., 2016; Perlin et al., 2020).

Data Availability Statement
ERA5 reanalysis data set used is publicly available at https://cds.climate.copernicus.eu/#!/
search?text=ERA5&type=dataset
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