
 

Higgs Transverse Momentum with a Jet Veto: A Double-Differential Resummation

Pier Francesco Monni,1 Luca Rottoli ,2 and Paolo Torrielli 3

1CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland
2Dipartimento di Fisica G. Occhialini, U2, Università degli Studi di Milano-Bicocca and INFN,
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We consider the simultaneous measurement of the Higgs (pH
t ) and the leading jet (pJ

t ) transverse
momentum in hadronic Higgs-boson production, and perform the resummation of the large logarithmic
corrections that originate in the limit pH

t ; pJ
t ≪ mH up to next-to-next-to-leading-logarithmic order. This

work constitutes the first simultaneous (double differential) resummation for two kinematic observables of
which one involves a jet algorithm in hadronic collisions, and provides an important milestone in the
theoretical understanding of joint resummations. As an application, we provide precise predictions for the
Higgs transverse-momentum distribution with a veto pJ

t ≤ pJ;v
t on the accompanying jets, whose accurate

description is relevant to the Higgs precision programme at the Large Hadron Collider.

DOI: 10.1103/PhysRevLett.124.252001

The thorough scrutiny of the properties of the Higgs
boson [1,2] is central to the future physics program of the
Large Hadron Collider (LHC). In the high-luminosity run
of the LHC, the experimental precision in Higgs-related
measurements will increase significantly [3], hence
allowing for detailed studies of the Higgs sector of the
standard model (SM) Lagrangian.
A full exploitation of such measurements requires an

unprecedented level of precision in the theoretical descrip-
tion of the relevant observables. In this context, a prominent
role is played by kinematic distributions of the Higgs boson
and the accompanying QCD radiation, which are sensitive
to potential new-physics effects, such as modifications of
light-quark Yukawa couplings [4,5], or heavy new-physics
states [6–11]. Experimental analyses of Higgs processes
typically categorize the collected events in jet bins, accord-
ing to the different number of jets—collimated bunches of
hadrons in the final state—produced in association with the
Higgs boson. Since the future performance of the LHC will
allow for the precise measurement of kinematic distribu-
tions in different jet bins, it is paramount to achieve an
accurate theoretical understanding of Higgs observables at
the multidifferential level.
In this Letter we consider Higgs-boson production in

gluon fusion, the dominant channel at the LHC, and we

focus on the Higgs transverse-momentum (pH
t ) spectrum in

the presence of a veto pJ;v
t bounding the transverse

momentum pJ
t of the hardest accompanying jet. Veto

constraints of such a kind are customarily enforced to
enhance the Higgs signal with respect to its backgrounds,
relevant examples being the selection of H → WþW−

events from tt̄ → WþW−bb̄ production [12,13] or the
categorization in terms of different initial states [14].
Fixed-order perturbative predictions of the pH

t spectrum
in gluon fusion are currently available at next-to-next-to-
leading order (NNLO) in the strong coupling αs [15–19] in
the infinite top-mass limit, and heavy-quark mass effects
are known up to next-to-leading order (NLO) [20–24].
Fixed-order perturbation theory is, however, insufficient to
accurately describe the observable considered here. When
exclusive cuts on radiation are applied, it is well known that
the convergence of the perturbative expansion is spoiled by
the presence of logarithms l ∈ flnðmH=pH

t Þ; lnðmH=p
J;v
t Þg

that become large in the limit pH
t ; p

J;v
t ≪ mH, where the

Higgs mass mH represents the typical hard scale of the
considered process. In this regime, such large logarithmic
terms must be summed to all perturbative orders to obtain a
reliable theoretical prediction. The resummation accuracy
is commonly defined at the level of the logarithm of the
cumulative cross section, where terms of order αnslnþ1 are
referred to as leading logarithms (LL), αnsln as next-to-
leading logarithms (NLL), αnsln−1 as next-to-next-to-lead-
ing logarithms (NNLL), and so on. The resummation of the
inclusive pH

t spectrum has been carried out up to high
perturbative accuracy [25–28] and is currently known to
N3LL order [29,30]. Such calculations have been combined
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with NNLO fixed order in Refs. [29–31] to obtain an
accurate prediction across the whole pH

t spectrum.
Similarly, the resummation of the jet-vetoed cross section
has been achieved in Refs. [32–38], reaching NNLL
accuracy matched to N3LO [39]. Related resummations
of the transverse momentum imbalance of the Higgs and
the hardest jet have been also considered in Refs. [40–42].
In this work, we present the first joint resummation of

both classes of logarithms, by obtaining a prediction which
is differential in both pH

t and pJ
t , and NNLL accurate in

the limit pH
t ; pJ

t ≪ mH. Specifically, we integrate the
double-differential distribution dσ=dpJ

tdpH
t over pJ

t up to
pJ
t ¼ pJ;v

t , which results in the single-differential pH
t dis-

tribution with a jet veto. The results presented here are of
phenomenological relevance in the context of the Higgs
physics program at the LHC, and constitute an important
milestone in the theoretical understanding of the structure
of resummations of pairs of kinematic observables, which
has received increasing interest lately [43–45]. Different
kinds of joint resummations for hadronic Higgs production
have been considered in the literature. Relevant examples
are combined resummations of logarithms of pH

t and small
x [46,47], of pH

t and large x [48–51], of small x and large x
[52], and of pJ;v

t and the jet radius [39].
To derive the main result of this Letter, it is instructive to

first consider the standard transverse-momentum resum-
mation [53,54], starting with a description of the effects that
enter at NLL in a toy model with scale-independent parton
densities. The core of the inclusive pH

t resummation lies in
the description of soft, collinear radiation emitted off
the initial-state gluons and strongly ordered in angle.
Observing that in such kinematic configurations each
emission is independent of the others, one obtains the
following formula in impact-parameter (b) space:

dσ
d2p⃗H

t
¼ σ0

Z
d2b⃗
4π2

e−ib⃗·p⃗
H
t

×
X∞
n¼0

1

n!

Yn
i¼1

Z
½dki�M2ðkiÞðeib⃗·k⃗t;i − 1Þ; ð1Þ

where σ0 denotes the Born cross section, and ½dki�M2ðkiÞ is
the phase space and squared amplitude for emitting
a parton of momentum ki. The exponential factor in
Eq. (1) encodes in a factorized form the kinematic con-
straint δ2ðp⃗H

t −
P

n
i¼1 k⃗t;iÞ, while the −1 term in the round

brackets arises because, by unitarity, virtual corrections
come with a weight opposite to that of the real emissions,
but do not contribute to pH

t . The factorization of the phase-
space constraint allows for an exact exponentiation of the
radiation in Eq. (1), leading to the well-known formula of
Refs. [53,54].
In order to include the constraint due to a veto on

accompanying jets, let us first consider the effect of a jet
algorithm belonging to the kt-type family (such as the

anti-kt algorithm [55]). Owing to the strong angular
separation between the emissions, the clustering procedure
at NLL will assign each emission to a different jet [32].
Therefore, imposing a veto pJ;v

t on the resulting jets
corresponds to constraining the real radiation with an extra
factor

ΘðpJ;v
t −maxfkt;1;…; kt;ngÞ ¼

Yn
i¼1

ΘðpJ;v
t − kt;iÞ: ð2Þ

Plugging the above equation into Eq. (1) leads to

dσðpJ;v
t Þ

d2p⃗H
t

¼σ0

Z
d2b⃗
4π2

e−ib⃗·p⃗
H
t

×
X∞
n¼0

1

n!

Yn
i¼1

Z
½dki�M2ðkiÞ½eib⃗·k⃗t;iΘðpJ;v

t −kt;iÞ−1�

¼σ0

Z
d2b⃗
4π2

e−ib⃗·p⃗
H
t e−SNLL ; ð3Þ

where the radiator SNLL reads [32]

SNLL ¼ −
Z

½dk�M2ðkÞ½eib⃗·k⃗tΘðpJ;v
t − ktÞ − 1�: ð4Þ

To evaluate the above integral, we can perform the
integration over the rapidity of the radiation k and obtain

Z
½dk�M2ðkÞ ¼

Z
dkt
kt

dϕ
2π

R0
NLLðktÞ; ð5Þ

with

R0
NLLðktÞ ¼ 4

�
αCMW
s ðktÞ

π
CA ln

mH

kt
− αsðktÞβ0

�
;

where β0 is the first coefficient of the QCD beta function.
The coupling in the CMW scheme is defined as
[56–58] αCMW

s ðktÞ ¼ αsðktÞf1þ ½(αsðktÞ)=2π�½ð[67=18]−
[π2=6]ÞCA − ð5=9Þnf�g, and includes the contribution of
nonplanar soft radiation necessary for NLL accuracy in
processes with two hard emitters. The azimuthal integral of
Eq. (4) leads to

SNLL ¼ −
Z

mH

0

dkt
kt

R0
NLLðktÞ½J0ðbktÞ − 1�

þ
Z

mH

0

dkt
kt

R0
NLLðktÞJ0ðbktÞΘðkt − pJ;v

t Þ: ð6Þ

In the first integral, we exploit the large-b property [29,34]

J0ðbktÞ ≃ 1 − Θðkt − b0=bÞ þOðN3LLÞ; ð7Þ

with b0 ¼ 2e−γE , to recast Eq. (6) as
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SNLL ¼ −Lg1ðαsLÞ − g2ðαsLÞ

þ
Z

mH

0

dkt
kt

R0
NLLðktÞJ0ðbktÞΘðkt − pJ;v

t Þ; ð8Þ

where αs ≡ αsðμRÞ (with μR being the renormalization
scale), L ¼ lnðmHb=b0Þ, and the gi functions are those
used in the standard pH

t resummation [59].
The procedure that led to Eq. (3) can be used to extend

the above result to higher logarithmic orders. The crucial
observation is that, as already stressed, in impact-parameter
space the measurement function for pH

t is entirely factor-

ized, resulting in a phase factor eib⃗·k⃗t for each emission k.
This implies that the jet-veto constraintΘðpJ;v

t − pJ
tÞ can be

included by implementing the jet-veto resummation [34] at
the level of the b-space integrand, namely, directly in
impact-parameter space. We note incidentally that this
observation can be applied to the resummation of other
pairs of observables for which the measurement function
can be factorized.
We now derive the NNLL result. Starting from Eq. (3),

the first step is to promote the R0
NLLðktÞ function that

appears in the radiator SNLL to NNLL. The corresponding
expression is given in Refs. [29,34], and leads to

SNNLL ≡ −Lg1ðαsLÞ − g2ðαsLÞ −
αs
π
g3ðαsLÞ

þ
Z

mH

0

dkt
kt

R0
NNLLðktÞJ0ðbktÞΘðkt − pJ;v

t Þ: ð9Þ

The above step assumes that the veto on the radiation is
encoded in a phase-space constraint of the type (2). While
this approximation is correct at NLL, where the jet
algorithm does not recombine the emissions with one
another, it fails beyond this order. Specifically, up to
NNLL, at most two soft emissions can become close in
angle (three unordered soft emissions only contribute to
N3LL), and therefore may get clustered into the same jet
(whose momentum is defined according to the so-called E
scheme, where the four momenta of the constituents are
added together). The configurations in which the resulting
cluster is the leading jet are not correctly described by the
constraint in Eq. (2). In order to account for this effect, one
has to include a clustering correction [34] in impact
parameter space, that reads

F clust ¼
1

2!

Z
½dka�½dkb�M2ðkaÞM2ðkbÞJabðRÞeib⃗·k⃗t;ab

× ½ΘðpJ;v
t − kt;abÞ − ΘðpJ;v

t −maxfkt;a; kt;bgÞ�;
ð10Þ

where k⃗t;ab ¼ k⃗t;a þ k⃗t;b and kt;ab is its magnitude. The
constraint JabðRÞ ¼ ΘðR2 − Δη2ab − Δϕ2

abÞ restricts the
phase space to the region where the recombination between

the two emissions takes place. Here R is the jet radius and
Δηab and Δϕab are the pseudorapidity and azimuthal
separation between the two emissions, respectively. We
observe that Eq. (10) differs from the corresponding
clustering correction for the standard jet-veto resummation

[34] by the factor eib⃗·k⃗t;ab, which accounts for the pH
t

constraint in impact-parameter space.
Equation (10) describes the clustering correction due to

two independent soft emissions. A similar correction arises
when the two soft emissions ka, kb are correlated, i.e., their
squared matrix element cannot be factorized into the
product of two independent squared amplitudes. The
contribution of a pair of correlated emissions is accounted
for in the CMW scheme for the strong coupling that was
already used in the NLL radiator (4). However, such a
scheme is obtained by integrating inclusively over the
correlated squared amplitude M̃2ðka; kbÞ, given in
Ref. [63]. While this inclusive treatment is accurate at
NLL, at NNLL one needs to correct for configurations in
which the two correlated emissions are not clustered
together by the jet algorithm. This amounts to including
a correlated correction [34] of the form

F correl ¼
1

2!

Z
½dka�½dkb�M̃2ðka; kbÞ½1 − JabðRÞ�eib⃗·k⃗t;ab

× ½ΘðpJ;v
t −maxfkt;a; kt;bgÞ − ΘðpJ;v

t − kt;abÞ�:
ð11Þ

The corrections (10) and (11) describe the aforementioned
effects for a single pair of emissions. At NNLL, all
remaining emissions can be considered to be far in angle
from the pair ka, kb, and therefore they never get clustered
with the jets resulting from Eqs. (10) and (11).
As a final step towards a NNLL prediction, one must

account for non-soft collinear emissions off the initial-state
particles. Since a kt-type jet algorithm never clusters the
soft emissions discussed above with non-soft collinear
radiation, the latter can be conveniently handled by taking
a Mellin transform of the resummed cross section. In
Mellin space, the collinear radiation gives rise to the scale
evolution of the parton densities fðμÞ and of the collinear
coefficient functions CðαsÞ. The latter, as well as the hard-
virtual correctionsHðαsÞ, must be included at the one-loop
level for a NNLL resummation. The equivalent of the
clustering and correlated corrections for hard-collinear
radiation enters only at N3LL, and therefore is neglected
in the following.
After applying to hard-collinear emissions the same

procedure detailed above for soft radiation, we obtain
the main result of this Letter, namely, the NNLL master
formula for the pH

t spectrum with a jet veto pJ;v
t , differential

in the Higgs rapidity yH:
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dσðpJ;v
t Þ

dyHd2p⃗H
t
¼ 2π

s
M2

g g→HHðαsðmHÞÞ
Z
C1

dν1
2πi

Z
C2

dν2
2πi

x−ν11 x−ν22

Z
d2b⃗
4π2

e−ib⃗·p⃗
H
t e−SNNLLð1þ F clust þ F correlÞ

×
h
Pe

R
mH

0

dμ
μ Γν1

ðαsðμÞÞðΘðpJ;v
t −μÞJ0ðbμÞ−1Þ

i
c1a1

h
Pe

R
mH

0

dμ
μ Γν2

ðαsðμÞÞðΘðpJ;v
t −μÞJ0ðbμÞ−1Þ

i
c2a2

fν1;a1ðmHÞfν2;a2ðmHÞ

× e
R

mH

0

dμ
μ ½ΓðCÞ

ν1
ðαsðμÞÞ�gc1 ðΘðp

J;v
t −μÞJ0ðbμÞ−1Þe

R
mH

0

dμ
μ ½ΓðCÞ

ν2
ðαsðμÞÞ�gc2 ðΘðp

J;v
t −μÞJ0ðbμÞ−1ÞCν1;gc1ðαsðmHÞÞCν2;gc2ðαsðmHÞÞ; ð12Þ

where x1;2 ¼ mH=
ffiffiffi
s

p
e�yH

, and M2
gg→H is the Born squared

matrix element including the partonic flux factor. The νl
subscripts denote the Mellin transform, while the latin
letters represent flavor indices, and the sum over repeated

indices is understood. Here Γνl and Γ
ðCÞ
νl are the anomalous

dimensions describing the scale evolution of the parton
densities and coefficient functions, respectively. The con-
tours C1 and C2 lie parallel to the imaginary axis to the right
of all singularities of the integrand. The (anti)path-ordering
symbol P has a formal meaning, and encodes the fact that
the evolution operators are matrices in flavor space. All the
ingredients of Eq. (12) are given in Ref. [59]. The multi-
differential distribution dσ=dpJ

tdyHd2p⃗H
t is simply obtained

by taking the derivative of Eq. (12) in pJ;v
t .

All integrals entering the above formula are finite in four
dimensions and can be evaluated numerically to very high
precision. We point out that, similarly to the standard pH

t
resummation [28,29], the result in Eq. (12) can also be
deduced directly in momentum space, without resorting to
an impact-parameter formulation. The momentum-space
approach is particularly convenient for computational
purposes, in that it gives access to differential information
on the QCD radiation, thereby enabling an efficient
Monte Carlo calculation. Therefore, we adopt the latter
method for a practical implementation of Eq. (12). The
relevant formulas are detailed in Ref. [59], and imple-
mented in the RadISH program.
For the numerical results presented below, we chooseffiffiffi
s

p ¼ 13 TeV and we adopt the NNPDF3.1 set [64] of
parton densities (PDFs) at NNLO, with αsðMZÞ ¼ 0.118.
The evolution of the PDFs is performed with the LHAPDF
[65] package and all convolutions are handled with
HOPPET [66]. We set the renormalization and factorization
scale to μR ¼ μF ¼ mH ¼ 125 GeV, and R ¼ 0.4. Figure 1
shows Eq. (12) integrated over the rapidity of the Higgs
boson yH and over the p⃗H

t azimuth, as a function of pH
t and

pJ;v
t . We observe the typical peaked structure along the pH

t
direction, as well as the Sudakov suppression at small
pJ;v
t . The two-dimensional distribution also features a

Sudakov shoulder along the diagonal pH
t ∼ pJ;v

t ,
which originates from the sensitivity of the differential
spectrum to soft radiation in this region beyond leading
order [67]. Equation (12) provides a resummation of the
logarithms associated with the shoulder in the regime
pH
t ∼ pJ;v

t ≪ mH, which can be appreciated by the absence
of an integrable singularity in this region.

To verify the correctness of Eq. (12), we perform a number
of checks. As a first observation, we note that in the region
pJ;v
t ≳mH, the termsF clust andF correl vanish by construction

and, as expected, one recovers the NNLL resummation for
the inclusive pH

t spectrum. Conversely, considering the limit
pH
t ≳mH (i.e., small b), Eq. (12) reproduces the standard

NNLL jet-veto resummation of Ref. [34] as detailed in
Ref. [59]. As a further test, we expand Eq. (12) to second
order inαs relative to theBorn, and compare the resultwith an
Oðα2sÞ fixed-order calculation for the inclusive production of
a Higgs boson plus one jet [68–70], with jets defined
according to the anti-kt algorithm [55]. In particular, to
avoid theperturbative instability associatedwith theSudakov
shoulder, we calculate the double cumulant

σðpJ;v
t ; pH;v

t Þ≡
Z

dyHd2p⃗H
t
dσðpJ;v

t Þ
dyHd2p⃗H

t
ΘðpH;v

t − jp⃗H
t jÞ;

and define the quantity

ΔðpJ;v
t ; pH;v

t Þ ¼ σNNLOðpJ;v
t ; pH;v

t Þ − σNNLLexp ðpJ;v
t ; pH;v

t Þ;

where σNNLOðpJ;v
t ; pH;v

t Þ is computed by taking the
difference between the NNLO total Higgs-production
cross section [71–73], obtained with the ggHiggs program
[74], and the NLO Higgsþ jet cross section for

FIG. 1. The NNLL differential distribution (12), integrated
over the Higgs-boson rapidity yH and over the p⃗H

t azimuth, as a
function of pH

t and pJ;v
t .
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ðpJ
t > pJ;v

t Þ ∨ ðpH
t > pH;v

t Þ, calculated with the NNLOJET

program [18]. Given that the NNLL prediction controls all
divergent terms at the second perturbative order, one expects
the quantity Δ to approach a constant value of N3LL nature
in the pH

t → 0 limit. Figure 2 displays this limit for
pJ;v
t ¼ 2pH;v

t , which shows an excellent convergence
towards a constant, thereby providing a robust test of
Eq. (12).
As a phenomenological application of our result, we set

pJ;v
t ¼ 30 GeV in accordance with the LHC experiments.

While Eq. (12) provides an accurate description of the
spectrum in the small-pH

t region, in order to reliably extend
the prediction to larger pH

t values one needs to match the
resummed formula to a fixed-order calculation, in which
the hard radiation is correctly accounted for. We thus match
the NNLL result to the NLO Higgsþ jet pH

t distribution
obtained with the program MCFM-8.3 [75,76] by means of
the multiplicative matching formulated in Refs. [23,31,77].
We adopt the setup outlined above, and in addition we
introduce the resummation scale Q as detailed in the
Supplemental Material [59] as a mean to assess the
uncertainties due to missing higher logarithmic corrections.
To estimate the theoretical uncertainty of our final pre-
diction, we perform a variation of the renormalization
and factorization scales by a factor of 2 about the central
value μR ¼ μF ¼ mH, while keeping 1=2 ≤ μR=μF ≤ 2.
Moreover, for central μR and μF scales, we vary the
resummation scale by a factor of 2 around Q ¼ mH=2,
and take the envelope of all the above variations. Figure 3
compares the NNLLþ NLO prediction to the NLLþ LO,
and to the fixed-order NLO result. The integral of the
NNLLþ NLO (NLLþ LO) distribution yields the corre-
sponding jet-vetoed cross section at NNLLþ NNLO
(NLLþ NLO) [34].
We observe a good perturbative convergence for the

resummed predictions to the left of the peak, where
logarithmic corrections dominate. Above pH

t ∼ 10 GeV,
the NNLLþ NLO prediction differs from the NLLþ LO

due to the large NLO K factor in the considered process.
The residual perturbative uncertainty in the NNLLþ NLO
distribution is ofOð10%Þ for pH

t ≲ pJ;v
t . The comparison to

the NLO fixed order shows the importance of resummation
across the whole pH

t region, and a much reduced sensitivity
to the Sudakov shoulder at pH

t ∼ pJ;v
t (in Fig. 3 we use a

2 GeV bin across the shoulder).
In this Letter we have formulated the first double-

differential resummation for an observable defined through
a jet algorithm in hadronic collisions. As a case study, we
considered the production of a Higgs boson in gluon fusion
with transverse momentum pH

t in association with jets
satisfying the veto requirement pJ

t ≤ pJ;v
t . In the limit

pH
t ; p

J;v
t ≪ mH, we performed the resummation of the large

logarithms lnðmH=pH
t Þ; lnðmH=p

J;v
t Þ up to NNLL, resulting

in an accurate theoretical prediction for this physical
observable. As a phenomenological application, we pre-
sented matched NNLLþ NLO results at the LHC. Our
formulation can be applied to the production of any color-
singlet system, and it is relevant in a number of phenom-
enological applications that will be explored in future work.
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FIG. 2. ΔðpJ;v
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t Þ, as defined in the text, at second order in
αs as a function of lnðpH;v

t =mHÞ, for pJ;v
t ¼ 2pH;v

t . This test
features a slightly different Higgs mass, mH ¼ 125.18 GeV.

FIG. 3. Matched NNLLþ NLO (red band), NLLþ LO (blue
band), and fixed-order NLO (green band) pH

t differential dis-
tributions for pJ;v

t ¼ 30 GeV, with theoretical uncertainties
estimated as explained in the main text.
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