EGU23-12561 EGU General Assembly 2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License. ## Multi-specific calibration of the B isotope proxy in calcareous red algae for pH reconstruction **Giulia Piazza**^{1,2}, Eduardo Paredes², Valentina Alice Bracchi¹, Leopoldo David Pena², Jason M. Hall-Spencer^{3,4}, Chiara Ferrara⁵, Isabel Cacho², and Daniela Basso¹ ¹University of Milano-Bicocca, Department of Earth and Environmental Sciences, Milano, Italy (g.piazza15@campus.unimib.it) Calcareous red algae have calcified cell walls constituted by high-Mg calcite or aragonite (Morse et al., 2006). They are considered suitable paleoclimate archives due to their worldwide distribution and their longevity through indeterminate growth (Kamenos et al., 2008). Boron isotopes (δ^{11} B) measured in their calcified thallus are considered a pH proxy (Hemming and Hanson, 1992). In seawater, boron occurs as boric acid and borate ion. Both species are enriched in ¹¹B as pH increases, with boric acid characterized by an enrichment factor of 27% compared to borate. The boron isotope proxy theory states that borate is exclusively incorporated in the mineral lattice (Hemming and Hanson, 1992). Therefore, if we measure $\delta^{11}B$ in carbonates, we can derive the seawater pH at the time of precipitation. Literature data on $\delta^{11}B$ in calcareous red algae are sparse, and the mechanisms of boron incorporation are still poorly known (Piazza et al., 2022). We tested the boron isotope-pH proxy on calcareous red algae grown at 1 m depth close to CO₂ seeps off the coasts of Ischia (Italy), and Methana (Greece), which are both characterized by a broad range of natural pH in seawater (from 6.80 ± 0.43 to 8.08 ± 0.07 units). Environmental data characterizing the seawater during the algal growth were extracted from CMEMS products (Marine Copernicus Service Information), or provided by literature. The $\delta^{11}B$ values in the algae ($\delta^{11}B_{algae}$) analysed by Multi Collector Inductively-Coupled Plasma Mass Spectrometry ranged from 22.23% to 26.59‰, calibrated over a range of $\delta^{11}B$ in aqueous borate ($\delta^{11}B_{borate}$) extending from 12.68‰ to 18.05‰. A crystallographic control over boron incorporation was shown by the difference in the isotopic composition of carbonate polymorphs, with Mg-calcite enriched in ¹¹B compared to aragonite. Values of $\delta^{11}B_{algae}$ higher than $\delta^{11}B_{borate}$ could be attributed to the up-regulation of the calcifying fluid pH exerted by the algae. We proposed a multi-specific calibration using literature data of boron isotopes in cultured coralline algae combined with our new data on wild-grown specimens, widening the range of pH considered for $\delta^{11}B$ calibrations so far. The proposed calibration is particularly useful when experimental calibration is not possible, such as in the fossil record and in the case of ambiguous identifications. ## References ²University of Barcelona, Department of Earth and Ocean Dynamics, Barcelona, Spain ³School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom ⁴Shimoda Marine Research Center, University of Tsukuba, Izu-Shimoda, Japan ⁵University of Milano-Bicocca, Department of Materials Science, Milano, Italy Hemming N. G. & Hanson G. N. 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta, 56, 537-543. Kamenos N. A., Cusack M. & Moore P. G. 2008. Coralline algae are global paleothermometers with bi-weekly resolution. Geochim. Cosmochim. Acta, 72, 771-779. Morse J. W., Andersson A. J. & Mackenzie F. T. 2006. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO_2 and "ocean acidification": role of high Mg-calcites. Geochim. Cosmochim. Acta, 70, 5814-5830. Piazza G., Bracchi V. A., Langone A., Meroni A. N. & Basso D. 2022. Growth rate rather than temperature affects the B / Ca ratio in the calcareous red alga *Lithothamnion corallioides*. Biogeosciences, 19, 1047-1065.