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The analysis of large-scale datasets, especially in biomedical contexts, fre-
quently involves a principled screening of multiple hypotheses. The celebrated
two-group model jointly models the distribution of the test statistics with mix-
tures of two competing densities, the null and the alternative distributions. We
investigate the use of weighted densities and, in particular, non-local densities
as working alternative distributions, to enforce separation from the null and
thus refine the screening procedure. We show how these weighted alternatives
improve various operating characteristics, such as the Bayesian false discov-
ery rate, of the resulting tests for a fixed mixture proportion with respect to a
local, unweighted likelihood approach. Parametric and nonparametric model
specifications are proposed, along with efficient samplers for posterior infer-
ence. By means of a simulation study, we exhibit how our model compares
with both well-established and state-of-the-art alternatives in terms of various
operating characteristics. Finally, to illustrate the versatility of our method, we
conduct three differential expression analyses with publicly-available datasets
from genomic studies of heterogeneous nature.
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1 INTRODUCTION

Multiple hypothesis tests are often needed in the statistical analysis of large biomedical datasets to screen whether N
appropriately defined test statistics z = {zi}N

i=1 are realizations from a given null model or not. For instance, screening pro-
cedures are pivotal for detecting differentially regulated genes associated with disease occurrences.1 In this context, mix-
ture models represent a flexible statistical tool, widely employed to cast the hypothesis testing problem in terms of selec-
tion and estimation of competing models. In this direction, Efron2 proposed a two-group model to select and estimate an
empirical null distribution and the corresponding alternative. Mixture models have also been proposed for distributions of
P-values.3 In a Bayesian framework, Do et al4 employed Dirichlet process mixture models of Gaussian densities to describe
null and alternative components. Martin and Todkar5 developed a likelihood-based analysis of the two-group model, with
a semiparametric specification of the non-null density. Muralidharan6 proposed an empirical Bayes hierarchical mixture
model to simultaneously estimate the effect size and the local or tail-area false discovery rate for each test statistic.
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Arguably, the objective is to identify relevant cases generated from the alternative model, but the amount of separation
between competing mixture components can crucially affect the performance of the tests. To our knowledge, the avail-
able approaches pose no control on the possible detrimental overlap between the null and the non-null distribution. Here,
we propose a likelihood-based analysis of the two-group model, where the non-null distribution is explicitly chosen to
improve the discriminating power of the testing procedure. More specifically, we first define a class of weighted densities
obtained by rescaling a density function via an appropriately defined weight function.7 The class includes many known
distributions as special cases, like the skew Normal8,9 and the non-local densities proposed by Johnson and Rossell.10

Then, we suggest using non-local likelihood functions as working alternative distributions to enforce improved separa-
tion from the null model. The term working highlights that these distributions are not chosen to represent the actual
distributions of the data under the alternative hypothesis, but only to improve the screening of the hypotheses. Thus,
this modification of the two-group model, which results from the incorporation of available prior knowledge about the
support of the data at the level of the likelihood, gives us direct control over the amount of separation between the two
distributions.

The article is structured as follows. First, we introduce the concept of weighted densities and develop an easily inter-
pretable parametric Bayesian two-group model in Section 2. A Bayesian nonparametric extension is also proposed. In
Section 3, we prove how the use of a non-local likelihood leads to increased power and area under the curve (AUC), and
lower Bayesian false discovery and Bayesian false omission rates with respect to a non-weighted likelihood approach. We
employ a computationally efficient collapsed Gibbs sampler for estimating both the parametric and nonparametric spec-
ifications of the model. To conduct posterior inference, in Section 4 we discuss the adopted post-processing of the results
and provide an estimate of the local false discovery rate (lfdr2,11), which is —additionally— constrained in [0, 1), a natural
requirement nevertheless often violated in the literature. We compare our methodology against established alternatives
on simulated scenarios in Section 5 and on benchmark gene and proteomic expression datasets in Section 6. Section 7
discusses some potential extensions and conclusions.

2 NON-LOCAL LIKELIHOOD TWO- GROUP MODEL

2.1 Weighted densities and non-local distributions

Let X be a random variable with supportX and probability density function 𝜋(x; 𝜂). Let w(x; 𝜉) be a non-negative function
with parameters 𝜉, such that E

𝜋
[w(X; 𝜉)] < ∞. Then, a (proper) weighted density function is defined by rescaling 𝜋(x; 𝜂)

via the weight function over X , that is,

𝜋w(x; 𝜉, 𝜂) =
w(x; 𝜉)

E
𝜋(x;𝜂)[w(X; 𝜉)]

𝜋(x; 𝜂). (1)

Weighted densities of the form (1) have been previously introduced by Rao,7 who provides a formalization as an
adjustment to enhance density specification when knowledge about the data generating mechanism is available.
In the context of robust Bayesian analysis, they have been discussed in Bayarri and Berger12 and, more recently,
in Ruggeri et al.13

Many well-known distributions can be expressed as weighted densities characterized by specific weight functions.
Trivially, a truncation of the random variable X on [a, b] ∈ X can be obtained by setting w(x; 𝜉) = I{x∈[a,b]} with 𝜉 = (a, b).
More complex truncations are obtainable by considering the sum of indicator functions on disjoint sets. A more elaborated
example is the skew normal distribution, which is defined by weighting a Gaussian density via a Gaussian cumula-
tive distribution function (c.d.f). One can also show that multivariate repulsive distributions belong to this family. For
example, define A = {(s, j) ∶ s = 1, … , k; j < s} and let g ∶ R+ → [0,M] be a strictly monotone differentiable function,
with g(0) = 0, g(x) > 0 for all x > 0 and M <∞. Then, with w(x) = min{(s,j)∈A} g

(
||xs − xj||2

)
we obtain the repulsive

distribution of Petralia et al.14

This article considers another type of weighted densities: non-local densities. Non-local priors have been introduced
by Johnson and Rossell:10 these priors balance the convergence rates of the Bayes factor under the null and alterna-
tive hypotheses as the number of samples increases. Here, we recast their use as working alternative densities in a
likelihood-based approach to multiple testing. A density 𝜋NL(x) is a non-local density on 0

X ⊂ X if, for every 𝜀 > 0, there
is a 𝜁 > 0 such that 𝜋NL(x) < 𝜀 for all x ∈ X for which infx0∈0

X
|x − x0| < 𝜁 .
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Hence, non-local densities assign a negligible amount of probability to the subspace 0
X . Following the Bayesian

literature, we will refer to a density that does not satisfy the previous definition as a local density.
A non-local density can be operatively defined by rescaling a local one. For example, if we consider a univariate

normal distribution, the weighted density obtained by assuming w(x; x0, k) = (x − x0)2k defines the so-called moment
(MOM) distribution, whereas w(x; x0, 𝜉) = exp

{√
2 − 𝜏𝜈∕(x − x0)2

}
with 𝜉 = (𝜈, 𝜏) defines the exponential-moment den-

sity (eMOM).15 More generally, a non-local distribution around x0 is obtained by imposing that w(x; 𝜉) → 0 as x → x0,
regardless of the form of 𝜋(x; 𝜂).16 We exploit this behavior by employing a non-local density to identify significant
observations beyond a region of irrelevance.

2.2 Non-local likelihood and two-group model

We focus on multiple tests of N hypotheses. Let zi denote a standardized test statistic, i = 1, … ,N, and let H(i)
0 ∶ zi ∼ f0 be

the i-th null hypothesis. This setting is typical, for example, of large-scale screening in genomics. Here, the objective is to
quickly identify a few targets of interest, for example, genes that are differentially expressed across conditions. Alternative
hypotheses do not typically represent a well-determined belief about the true distribution of the statistics. Still, their
purpose is to help reach a conclusion about the evidence against the null. Thus, any specific distributional assumption for
the alternative hypothesis, say H(i)

1 ∶ zi ∼ f1, can be seen as a working alternative distribution used to detect differentially
expressed genes. In other words, the choice of f1 should be made to improve the operating characteristics of the model.

Under the assumption of exchangeable hypotheses, one could describe the hypothesis testing problem using a
two-group model mixture formulation2 by assuming

zi|𝜌, f0, f1
i.i.d.∼ f (zi) = (1 − 𝜌)f0(zi) + 𝜌f1(zi), (2)

where i = 1, … ,N and 𝜌 ∈ (0, 1) denotes the mixture weight. More specifically, let 𝜙(z;𝜇, 𝜎2) denote a normal density
with mean 𝜇 and variance 𝜎2. A natural choice for f0 would be the theoretical null𝜙(z; 0, 1). However, a standard Gaussian
distribution may be unrealistic, especially in a multiple hypothesis testing setting. Indeed, Efron11,17 notes that the failed
model assumptions, unobserved covariates, and correlation of measurements across and within statistical units can make
the null distribution effectively wider or narrower than N(0,1). Hence, following Efron’s paradigm, we propose to estimate
an empirical null distribution, which should capture departures from the theoretical null, but still be “close” to a standard
Gaussian, with mean and variance estimated from the data. Therefore, we model f0 as a normal distribution 𝜙(z;𝜇0, 𝜎

2
0),

with normal-inverse gamma prior concentrated around (0, 1) for
(
𝜇0, 𝜎

2
0
)
.

In contrast, we model f1 with a non-local distribution of the form 𝜋W (z; 𝜉, 𝜂) ∝ w(z; 𝜉)𝜋(z; 𝜂), where w(z; 𝜉) is a weight
function that induces small (zero) mass around (at) the origin, in order to enforce separation from f0. As for the local
density 𝜋(z; 𝜂) we first propose a bi-modal mixture of two normals,

𝜋

(
z; 𝛼̃,

{
𝜇j, 𝜎

2
j

}2

j=1

)
= (1 − 𝛼̃)𝜙

(
z;𝜇1, 𝜎

2
1
)
+ 𝛼̃𝜙

(
z;𝜇2, 𝜎

2
2
)
,

with 𝛼̃ ∈ (0, 1). In most cases, 𝜇1 and 𝜇2 have opposite signs, to capture the behavior of the tails. To this extent, we assume
𝜇1 and 𝜇2 to be constrained on the negative and positive semi-axis, respectively. For example, in the analysis of a genomic
dataset, it may be of interest to identify under- and over-expressed groups of observations.

Let ̃𝜽 =
(
𝜌, 𝛼̃,

{
𝜇j, 𝜎

2
j

}2

j=0
, 𝜉

)
and ̃𝜽1 be the sub-vector of parameters that pertain to the non-null distribution. Then,

model (2) can be re-written as

zi| ̃𝜽 ∼ (1 − 𝜌)𝜙(zi;𝜇0, 𝜎
2
0 ) + 𝜌

w(zi; 𝜉)
̃( ̃𝜽1)

[
(1 − 𝛼̃) 𝜙(zi;𝜇1, 𝜎

2
1) + 𝛼̃ 𝜙(zi;𝜇2, 𝜎

2
2 )
]
, (3)

where ̃(⋅) is the normalizing constant of the non-null distribution. For computational convenience, we reparameterize
f1 in model (3) as a mixture of weighted kernels:

f1(zi|
{
𝜇j, 𝜎

2
j

}2

j=1
, 𝛼, 𝜉) = (1 − 𝛼)

w(zi; 𝜉)𝜙(zi;𝜇1, 𝜎
2
1)

1
+ 𝛼

w(zi; 𝜉)𝜙(zi;𝜇2, 𝜎
2
2 )

2
, (4)
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with j = E
𝜙

(
z;𝜇j,𝜎

2
j

)[w(Z; 𝜉)] for j = 1, 2 and 𝛼 = 𝛼̃2∕ ̃. In Section 1.1 of the Supplementary Material, we show how

this equivalence holds in the general case of mixtures with J components. To provide a visual example, in the Section
3.1 of the Supplementary Material, we report a figure that illustrates how the weight function influences a priori the
alternative and marginal densities, and the corresponding relevance probability. Finally, in Section 3, we will show how
the induced separation between the two competing densities improves the operating characteristics of the weighted
model.

2.2.1 Model augmentation with latent membership labels

It is useful to introduce the latent allocation variables (𝜆i, 𝛾i), i = 1, … ,N, that explicitly identify the mixture components
each observation is sampled from:

zi|𝜽
i.i.d.∼

⎧
⎪
⎨
⎪
⎩

𝜙(zi;𝜇0, 𝜎
2
0) if 𝜆i = 0, 𝛾i = 0,

w(zi; 𝜉)𝜙(zi;𝜇1, 𝜎
2
1)∕1 if 𝜆i = 1, 𝛾i = 1,

w(zi; 𝜉)𝜙(zi;𝜇2, 𝜎
2
2)∕2 if 𝜆i = 1, 𝛾i = 2,

(5)

where 𝜽 =
({

𝜇j, 𝜎
2
j

}2

j=0
, 𝜉,𝚪,𝚲

)
, with 𝚲 = (𝜆1, … , 𝜆N) and 𝚪 = (𝛾1, … , 𝛾N). Note that 𝛾i is enough to identify in which

of the three cases the i-th item is located, therefore 𝜆i has the only scope of improving model interpretability. We refer to
the distribution induced by (5) as a non-local likelihood (Nollik). We complete model specification as follows:

zi|𝜽
i.i.d.∼ Nollik

(
⋅|𝜆i, 𝛾i,

{
𝜇j, 𝜎

2
j

}2

j=0
, 𝜉

)
,

𝛾i|𝜆i, 𝛼
i.i.d.∼ Cat (1 − 𝜆i, 𝛼𝜆i, (1 − 𝛼)𝜆i) , 𝜆i|𝜌

i.i.d.∼ Bern(𝜌), 𝜌 ∼ Beta(a
𝜌
, b
𝜌
),

𝜇j|𝜎2
j ∼ TN

(
mj, 𝜎

2
j ∕𝜅j,j

)
, 𝜎

2
j ∼ IG(aj, bj), j = 1, 2,

(
𝜇0, 𝜎

2
0
)
∼ NIG (m0, 𝜅0, a0, b0) , 𝛼 ∼ Beta(a

𝛼
, b
𝛼
), 𝜉 ∼ Q, (6)

where 𝛾i ∈ {0, 1, 2}, Cat(p) indicates a categorical distribution with support on {0,1,2} and probability vector p, NIG a
normal-inverse gamma, and TN a truncated normal distribution, with1 = R−,2 = R+ being the truncation regions.
Finally, Q is the distribution of the parameters in the weight function. Interpretability of the parameters in model (6) is
straightforward. In addition, posterior simulation can be easily performed via Gibbs sampling. For further details, see
Section 2.1 of the Supplementary Material.

2.3 A Bayesian nonparametric extension

In the proposed setup, the distribution under the alternative is a working alternative aimed at improving the screening
between relevant and irrelevant tests. From a hypothesis testing perspective, one should only require f1 to be longer-tailed
than f0, with the non-null zi’s tending to occur far away from the origin.11 However, the assumption of a specific para-
metric form under the alternative hypothesis can be too restrictive, and it may not be able to capture multi-modality
or heavy-tailed behavior. Hence, to reflect the desired flexibility and lack of knowledge about f1, we can extend (4) to a
Dirichlet Process Mixture Model (DPMM) with non-local mixing kernels. The DPMM is defined as

̃f (z) =
∫
𝜑(z; 𝜗)G(d𝜗), G ∼ DP(a,H),

where 𝜑(z; 𝜗) denotes a generic kernel density parameterized by 𝜗 and DP indicates the Dirichlet process with concen-
tration parameter a and base measure H.18 It is well known that the realizations of a DP are almost surely discrete,
G =

∑+∞
j=1𝜔j𝛿xj where xj ∼ H and according to the stick-breaking representation19

𝝎 = {𝜔j}j≥1 ∼ SB(a), that is, 𝜔j =
uj
∏j−1

l=1(1 − ul), ul ∼ Beta(1, a) for l ≥ 1.
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DENTI et al. 1935

Through the stick-breaking representation, we obtain a broad class of densities that favor realizations away from the
origin as

f1

(
zi| ̃𝜽

DP
1

)
=
∑

j≥1
𝜔j

w(zi; 𝜉)𝜙
(

zi;𝜇j, 𝜎
2
j

)

j
, (7)

where ̃𝜽DP
1 =

(
{𝜔j}j≥1, {𝜇j, 𝜎

2
j }j≥1, 𝜉

)
and j = E

𝜙

(
z;𝜇j,𝜎

2
j

)[w(Z; 𝜉)] for j ≥ 1. We remark that, similarly to the parametric

case, model (7) can be expressed as f1 = w(z, 𝜉)𝜋(z, 𝜂)∕ ̃, that is, a non-local distortion of a nonparametric local density.
Despite the similar nomenclature, the proposed model is essentially different from the weighted DP of Sun et al20 (see

also References 21 and 22), where the authors employ a Dependent DP23 in a regression framework to allow the error
terms of observations with similar predictors’ values to be characterized by similar distributions.

An alternative approach may assume a non-local distribution for the base measure of the prior process. However,
without an appropriate choice of the concentration parameter a, such a prior choice does not prevent the resulting mixture
from assigning non-negligible mass to regions around the origin.24

Once again, we introduce latent allocation variables that assign every observation zi to either the null (𝜆i = 0, 𝛾i = 0)
distribution or one of the countable components of the alternative density weighted DP density (𝜆i = 1, 𝛾i = l, l ≥ 1). We

collect the new parameters in 𝜽DP =
({

𝜇j, 𝜎
2
j

}+∞

j=0
, 𝜉,𝚪,𝚲

)
, so we can write

zi|𝜽DP i.i.d.∼
⎧
⎪
⎨
⎪
⎩

𝜙(zi;𝜇0, 𝜎
2
0 ) if 𝜆i = 0, 𝛾i = 0,

w(zi;𝜉)
l

𝜙(zi;𝜇l, 𝜎
2
l ) if 𝜆i = 1, 𝛾i = l, ∀l ≥ 1.

(8)

In the following, we refer to the two-group mixture (8) between the empirical null and the nonparametric alternative as
a Bayesian nonparametric non-local likelihood (BNP-Nollik) model. In summary, our Bayesian nonparametric extension
can be represented as

zi|𝜽
i.i.d.∼ BNP-Nollik

(
⋅|𝜆i, 𝛾i, {𝜇j, 𝜎

2
j }
+∞
j=0 , 𝜉

)

𝜋 (𝛾i = l|𝜆i,𝝎) = 𝜆i ⋅ 𝜔l + (1 − 𝜆i) ⋅ 𝛿0(l), ∀l ≥ 0, 𝜆i|𝜌
i.i.d.∼ Bern(𝜌),

𝜌 ∼ Beta(a
𝜌
, b
𝜌
), 𝝎 ∼ SB(a), 𝜉 ∼ Q,

(
𝜇0, 𝜎

2
0
)
∼ NIG (m0, 𝜅0, a0, b0) ,

(
𝜇j, 𝜎

2
j

)
∼ G = NIG (mG, 𝜅G, aG, bG) , (9)

where we assume 𝜔0 = 0 and mG, 𝜅G, aG, bG denote the hyperparameters of the normal-inverse gamma distribution
adopted as DP base measure for the alternative distribution. Lastly, a gamma distribution can be adopted as a prior for
the concentration parameter a.

3 PROPERTIES OF NON-LOCAL TWO- GROUP MODEL

To simplify notation, we denote with f1(z) = 𝜋(z; 𝜂) a local density for the alternative distribution and with

f NL
1 (z) = 𝜋NL(z; 𝜉, 𝜂) =

w(z; 𝜉)


𝜋(z; 𝜂),

its weighted distortion as in (1), where w(z; 𝜉) is a non-local weight function and  = ∫ ∞−∞w(s; 𝜉) 𝜋(s; 𝜂) ds is the
normalizing constant.

The screening process determines the specification of an interval = [z, z] (that is, the acceptance region) outside of
which the z-scores are flagged as relevant, and the corresponding null hypotheses are rejected. Let = R∕ denote the
rejection region. Without loss of generality, we assume z > 0 and z < 0. Following Efron,2,11 given an acceptance region
, we define the Bayesian false discovery rate as
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FDR() = P [H0|Z ∉ ] =
P [Z ∉ |H0] (1 − 𝜌)

P[Z ∉ ]
=

(1 − 𝜌) ∫


f0(z)dz
∫

(1 − 𝜌)f0(zi) + 𝜌f1(zi)dz

. (10)

Analogously, we can also define the Bayesian false omission rate FOR() = P [H1|Z ∈ ], and the power (sensitivity)
1 − 𝛽() = P [Z ∉ |H1], where with 𝛽 we indicate the type II error probability. Similar quantities can be defined when
the assumed alternative distribution is non-local, that is, for f NL

1 (z). We denote them with FDRNL
,FORNL and 1 − 𝛽NL,

respectively. We will show that modeling the unknown alternative with a non-local density improves these operating
characteristics given a fixed mixing proportion 𝜌. With this in mind, we compute the differences

ΔFDR() = FDR() − FDRNL(), ΔFOR() = FOR() − FORNL(), Δ𝛽() = 𝛽() − 𝛽NL(), (11)

to provide a direct assessment of the relative performances in the unweighted and weighted versions. In Section 1.2 of the
Supplementary Material, we show that all these differences simplify into the comparison of the discrepancies between the
c.d.f.’s of the local and non-local distribution ΔF1(z) = F1(z) − FNL

1 (z) evaluated at the extremes of the acceptance region,
implying that:

ΔF1(z) ≥ ΔF1(z) ⇒ ΔFDR ≥ 0, ΔFOR ≥ 0, Δ𝛽 ≥ 0. (12)

Thus, a sufficient condition for ensuring improved Bayesian FDR, Bayesian FOR, and power of the non-local weighted
alternative is that the weighted c.d.f. is lower than its unweighted counterpart in z (so thatΔF1(z) > 0), and higher in z (so
that ΔF1(z) < 0). This also implies that the screening procedure has a higher ROC curve and a higher AUC index (refer
to Section 1.2 of the Supplementary Material for more details).

To provide a visual intuition, we display a simple example in Figure 1. Given an acceptance region = [−2, 2], delim-
ited by vertical dashed lines, we depict the local and non-local densities in red and blue, respectively. With similar colors
we highlight the areas representing the power P [Z ∉ |H1]. The non-local weight pushes the density mass away from
the origin, resulting in sharper increments in the corresponding c.d.f. distant from zero.

To state a formal result, we need to postulate some reasonable regularity assumptions on the behavior of the weight
function, additionally to the ones introduced in Section 2.1. We start by recalling that, generally, a weight function w ≡
w(z; 𝜉) is non-local w.r.t. z0 if (i) limz→z0 w(z; 𝜉) = 0.16 In the hypothesis testing setting we consider here, z0 = 0 represents
the only interesting point where to induce vanishing mass. Thus, we require (ii) w to be weakly monotone decreasing
(increasing) on the negative (positive) semi-axis. With no additional information about how to weight the support of z,

Density Function Cumulative Distribution Function

−4 0 4 −4 0 4

0.00

0.25

0.50

0.75

1.00

0.00

0.05

0.10

0.15

0.20

z−score

F I G U R E 1 Comparison between local (red) and non-local (blue) distributions. The acceptance region = [−2, 2] is highlighted by
vertical dashed lines. The left panel compares the density functions, the right one the c.d.f.’s. The colored areas in the left panel represent the
power P [Z ∉ |H1]
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DENTI et al. 1937

we require (iii) w(−z; 𝜉) = w(z; 𝜉) ∀z, that is, w is an even function. The effect of the weight function has to vanish far
away from the origin: an essential requirement is (iv) w(z; 𝜉)𝜋(z; 𝜂) = (𝜋(z; 𝜂)) as z → ±∞, that is, the non-local density
shows the same or a faster asymptotic decay than the corresponding local density. This is always the case for bounded
weights. If w(⋅) satisfies the conditions (i)-(iv), we refer to it as a proper weight function. We can then prove the following
propositions.

Proposition 1. Consider a null hypothesis H0 ∶ z ∼ f0 characterized by an acceptance region. Let w(z; 𝜉) be
a proper weight function, f1 a symmetric local density and f NL

1 = w(z;𝜉)


f1 its non-local distortion. Then, within the
framework of the two-group model (2) assuming a fixed mixing proportion 𝜌, modeling the alternative distribution
with f NL

1 rather than with f1 ensures lower Bayesian FDR and Bayesian FOR, and higher power and AUC.

The symmetry of the alternative distribution f1 seems a reasonable assumption for two-tailed tests. The same result
holds for one-tailed tests. If the symmetry hypothesis is removed, it is more difficult to derive a result that holds in general.
However, with the introduction of a few alternative assumptions, we can prove the following:

Proposition 2. Consider a null hypothesis H0 ∶ z ∼ f0 characterized by an acceptance region. Let w(z; 𝜉) be
a proper weight function, f1 a local density and f NL

1 = w(z;𝜉)


f1 its non-local distortion. Define  = {z ∶ w(z; 𝜉) ≤
}, and assume that  ⊆ . Then, within the framework of the two-group model (2) assuming a fixed mixing
proportion 𝜌, modeling the alternative distribution with f NL

1 rather than with f1 ensures lower Bayesian FDR and
Bayesian FOR, and higher power and AUC.

We remark that these are general properties that hold every time a two-tailed test is adopted. Given an acceptance
region, a two-group model with alternative non-local density and weight function satisfying (i)-(iv) has higher power,
lower Bayesian FDR, and lower FOR than the corresponding local version. In Sections 1.3 and 1.4 of the Supplemen-
tary Material, we report the proofs of both propositions, concluding with an example in Section 1.5. Last, in Section 3.3
of the Supplementary Material, we discuss another advantage of the non-local specification: its robustness to prior mis-
specification. Specifically, the two-group model is sensitive to the choice of the distribution for 𝜌, which directly controls
the overlap between f0 and f1 in the absence of other constraints. With the help of a simulation study, we show how the
non-local specification helps control the number of false positives and provides more reliable estimates of the posterior
probability of relevance.

4 POSTERIOR INFERENCE

The posterior distributions 𝜋(𝜽|z) for models (6) and (9) are not analytically tractable and we need to rely on Gibbs sam-
pling schemes for posterior inference. For the parametric model, the full conditional distributions for 𝜉 and (𝜇j, 𝜎

2
j ) j = 1, 2

require a Metropolis step. We adopt an adaptive Metropolis to improve the acceptance rate, as in Roberts and Rosenthal.25

For the BNP Nollik model, we use the truncated representation of Ishwaran and James,26 where the infinite sum in (7) is
substituted with a sufficiently large number of mixture components J. The conditional specification allows faster compu-
tations than samplers based on Pólya Urn schemes. The samplers for both model specifications, along with comparisons
in terms of the computational costs, are reported in Section 2 of the Supplementary Material.

We recover by thresholding the probability of selecting the alternative distribution. In the two-group model, this is
equivalent to thresholding the lfdr, defined as lfdr(z) = (1 − 𝜌)f0(z)∕f (z). Thus, the acceptance region is

 = {z ∈ R ∶ lfdr(z) ≥ 𝜈∗} =
{

z ∈ R ∶
𝜌f1(z)
f (z)

≤ 𝜈

}
, (13)

where 𝜈 = 1 − 𝜈∗, 𝜈 ∈ (0, 1).
The fully Bayesian specification of our model allows the estimation of the parameters and functions thereof and

the quantification of the uncertainty of the estimates. In particular, we are interested in the posterior probability of H(i)
0

being rejected given by P1(zi) = P (𝜆i = 1|zi), that is, the probability of zi being flagged as relevant. Once the MCMC
sample is collected, we estimate P1(zi) evaluating the ergodic mean ̂P1(zi) =

∑T
t=1𝜆it∕T, where T is the total number of

iterations and 𝜆it is the value of the chain for the parameter 𝜆i at the t-th MCMC step. For any z ∈ R, we estimate the
posterior probability of relevance P1(z) by interpolating the estimates at the observed z′i s. Alternatively, we can first esti-
mate the densities ̂f 0 and ̂f 1 and consequently compute ̂lfdr(z) as defined in (13). The function ̂P1(z) is then obtained
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1938 DENTI et al.

as ̂P1(z) = 1 −̂lfdr(z). Our Bayesian model naturally constrains the range of both lfdr(z) and P1(z) in [0, 1), and enforces
P [H1|z = 0] = 0, meaning that a statistic value z = 0 implies irrelevance almost surely. Based on the computed estimate,
the hypothesis test is conducted by thresholding the function P1(z) and deriving the corresponding critical values (z, z)
on the z-scores domain. We choose a threshold 𝜈 that controls, at a given level 𝛼, the Bayesian FDR (BFDR) defined in
Newton et al:27

BFDR(𝜈) = E(FDR|Y) =
∑N

i=1 (1 − P(zi)) I{P(zi)>𝜈}
∑N

i=1I{P(zi)>𝜈}
. (14)

For a specified level of 𝛼, we obtain the threshold as the minimum 𝜈 for which BFDR(𝜈) < 𝛼.

5 SIMULATION STUDY

For the following applications, we will focus on three specific weight functions, one improper (w0), and two proper and
bounded in [0, 1]:

w0(z; k) = z2k
, w1(z; 𝜉, k) = 1 − e−

(
z
𝜉

)2k

, and w2(z; 𝜉, k) = e−
(

z
𝜉

)−2k

, (15)

characterized by different behaviors in the way they converge to zero. For example, the weight functions w0 and w2 have
a similar structure to the MOM and eMOM weight, respectively. However, the latter presents a sharper decay than w1,
comparable to the iMOM distribution, leading to large areas of low density for the same values of k and 𝜉. It is interesting
to compare the two proper weight functions w1 and w2 in terms of their behavior around the origin. Figure 7 in the
Supplementary Material shows the shape of the two weight functions for different values of k, 𝜉 ∈ {1, 2, 3, 4}. We can
appreciate the different effects that the two parameters induce on the chosen functions: 𝜉 affects the functions globally,
imposing a milder growth as the parameter increases. In contrast, k affects the function only in a neighborhood of the
origin. Therefore, the two parameters are crucial in modeling the decay of the non-local weights and tuning the amount
of separation between the null and the alternative distributions. In the following, we will set w0(z) = z2 and fix k = 2
in w1 and w2, since in our experiments the resulting power 2k provides a reduction of the weight in a reasonably large
neighborhood of the origin sufficient to enforce the required separation. In Section 3.2 of the Supplementary Material,
we report an additional simulation study that showcases the robustness of our model to several choices of the parameters
𝜉 and k.

Once the weight functions are chosen, we can discuss the specification of the hyperprior parameters for both the
parametric and nonparametric model specifications of the working alternative density f1 in our model.

In the parametric case, we first assume 𝜉 ∼ IG(a
𝜉
, b
𝜉
), setting a

𝜉
= 20 and b

𝜉
= 57. This choice, a priori, ensures

E[𝜉] = 3, while the V[𝜉] = 0.5. As Figure 7 in the Supplementary Material shows, 𝜉 ≈ 3 enforces very low weight
on the interval [−1, 1] when combined with k = 2. For the mixture proportion 𝛼, we set a

𝜌
= 1 and b

𝜌
= 9, based

on the assumption that only a small fraction of the observations is relevant. Moreover, we have no prior informa-
tion about the proportions of the bi-modal mixture that models f1 in Equation (3). Thus, we adopt an uniform
prior imposing a

𝛼
= b

𝛼
= 1. Regarding the NIG specification for the parameters {𝜇j, 𝜎

2
j }

2
j=1 of the alternative local

distribution in (6), we set 𝜅j = 1, aj = 2, bj = 5. This implies, a priori, that E

[
𝜎

2
j

]
≈ 1.67 and Var

[
𝜎

2
j

]
= 6.25. This

way, we are fairly uninformative while preventing the values of the variances from assuming indefinitely large val-
ues. This choice helps prevent the estimation of extremely flat posteriors that would jeopardize the classification of
the relevant observations into the under-expressed and over-expressed sets. Moreover, we adopt m1 = −3 and m2 =
3. For the parameters

(
𝜇0, 𝜎

2
0
)

of f0 we need to specify a NIG that places most of the mass around (0, 1). There-
fore, we set a0 = b0 = 10 to induce a density for 𝜎2

0 peaked around 1. We finally set 𝜅0 = 100 and m0 = 0, so that
V
[
𝜇0|𝜎2

0
]
= 𝜎2

0∕100.
In the nonparametric case, we truncate the stick-breaking process at J = 30. We then set the concentration parameter a

equal to 1 and we choose a NIG(0, 0.01, 3, 1) as the base measure G for the DP. These values are selected so that E
[
𝜇l|𝜎2

l

]
=

100𝜎2
l and E

[
𝜎

2
l

]
= 1∕2.28 All the other specifications are equal to the parametric case.

We test the performance of our model on 50 datasets generated under four scenarios, adopting all the weight speci-
fications listed in (15) under the parametric model. In addition, we also estimate the nonparametric model with the w1
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DENTI et al. 1939

weight function. Each simulated dataset contains 1000 observations: 90% of the sample is drawn from f0, the remaining
10% from f1. The data generating mechanisms for the four scenarios are assumed as follows: (S1) zi ∼ 0.90 (0, 1.5) +
0.05 (5, 1) + 0.05 (−5, 1); (S2) zi ∼ 0.90 (0, 0.25) + 0.05 (3, 1.5) + 0.05 (−3, 1.5); (S3) each zi ∼ (𝛾i, 1), where 𝛾i
is sampled from the mixture 0.90𝛿0 + 0.1 (−3, 1). This scenario was previously proposed in Efron;29 (S4) zi ∼ (𝛾i, 1),
where 𝛾i is sampled from the mixture: 0.90𝛿0 + 0.10

(
0.5[−4,−2] + 0.5[2,4]

)
. This scenario is similar to the one proposed

by Muralidharan.6
We run the MCMC for 35 000 iterations, discarding the first 10 000 as burn-in period. We then thin the chains every

five iterations to reduce autocorrelation, retaining a total of 5000 simulations. Visual inspection of the traceplots reveals
good mixing, and the convergence of the chains was also assessed using standard MCMC diagnostics.30 In each simulation
scenario, we compute the estimatêlfdr(z). In the nonparametric case, we evaluate the posterior densities f0 and f1 on a grid
of points at each Markov chain iteration and then consider their point-wise averages. More specifically, given T MCMC
steps, we have

̂f
BNP
0 (z) = 1

T

T∑

t=1
𝜙(z;𝜇0,t, 𝜎

2
0,t), ̂f

BNP
1 (z) = 1

T

T∑

t=1

J∑

j=1
𝜔j𝜙(z;𝜇j,t, 𝜎

2
j,t). (16)

We flag the relevant hypotheses by thresholding the posterior probability of the alternative with a value that controls the
BFDR (14) at a 5% level.

We compare the results obtained by our method with the MixFDR model,6 the LocFDR model,2 and the
Benjamini-Hochberg procedure (BH).31 For the first two competitors, we threshold̂lfdr at 0.20, as suggested by the authors.
We threshold the BH adjusted P-values at.05. To quantify the relative performance of the models, we compute several
indices describing the operating characteristics of the procedures. More precisely, we calculate the accuracy (ACC), speci-
ficity (SPE), sensitivity (SEN), precision (PRE), and AUC of the different methods. Moreover, we compare Matthew’s
correlation coefficients (MCC) and the F1 scores, defined as

MCC = TP × TN − FP × FN
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, F1 =
2

SEN −1 + PRE −1 ,

where FP and FN denote the number of false positives and false negatives, respectively. Similarly, TP and TN denote
the number of true positives and true negatives. For all indices, we report the boxplots of their distributions across
the 50 Monte Carlo replications in Figures 2 and 3. Figure 2 contains indexes that summarize the overall classification
performance (AUC, ACC, MCC, F1), whereas Figure 3 showcases the different screening rates (PRE, SEN, SPE).

All the Nollik procedures lead to similar results, underlying the robustness of our proposal to different weight choices.
We point out that an unbounded weight function, like w0, is expected to over-inflate the mass far away from the origin,
and therefore it is not optimal for density estimation. Nonetheless, it appears to function correctly as working density for
estimating the posterior probability of rejection in all tests. It is also interesting to note that, despite we introduced the
nonparametric specification to reflect a potential lack of knowledge regarding the true shape of the alternative distribution
f1, the parametric and nonparametric methods return similar results in all the different cases considered here. Again, this
behavior suggests that, albeit the parametric specification is not optimal for density estimation, in many cases it may be
sufficient to obtain competitive performances.

Overall, the simulations suggest that the Nollik models obtain very good results across all the scenarios for almost
every score. Most importantly, all the scores obtained by the Nollik models are always in line, if not better, with the ones
obtained by the other well-established methods. We do not observe the same robustness across scenarios in competitors.
For example, BH presents low precision and specificity in Scenario 1, where the actual null distribution does not coincide
with the theoretical one, that is, N(0, 1). The MixFDR always presents the highest specificity, but its results deteriorate in
terms of sensitivity, especially in Scenario 2. Nonetheless, we note that theLocFDRprocedure always provides comparable
performances to those of the Nollik. The main advantage to the Nollik framework resides in the fully Bayesian approach,
which provides straightforward uncertainty quantification and posterior inference. However, the improved performance
of our modeling framework comes at a price. As it fully relies on MCMC, Nollik is computationally more expensive
than any of the competitors we considered. For example, the average time taken by different Nollik specifications to run
ranged between 10 and 30 min to be completed (with the nonparametric specification being the most expensive), while
the competitors provided results in a matter of seconds. For a more detailed description of the computational cost of the
algorithm, see Section 2.3 of the Supplementary Material.
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1940 DENTI et al.
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F I G U R E 2 Boxplot of the different performance scores (rows) obtained over 50 replications under four scenarios (columns) by the
Nollik models (NLw0-2) with different weights, the BNP-Nollik model (BNP-NLw1), the BH procedure, the LocFDR, and the MixFDR

6 DIFFERENTIAL GENE EXPRESSION CASE STUDIES

We apply our model to three different gene expression datasets using the weight function w1 in Equation (15). Results
obtained with w2 are similar; a summary can be found in Section 3.4.2 of the Supplementary Material. We compare the
results with Efron’s LocFDR model and the BH procedure. In the first two applications, we run 70 000 MCMC iterations,
and, after discarding the first 20 000 as a burn-in period, we thin the remaining chain every 10 iterations. In the third case,
we increase the burn-in to 50 000 iterations and thin the chain every 20 steps to reduce autocorrelation. We adopt the
hyperparameter configuration detailed in Section 5. On the one hand, we will show how our model can capture the overall
data distribution leading to similar results as Efron’s LocFDR, while also allowing for uncertainty quantification in a
coherent, fully Bayesian framework. On the other hand, the mixture formulation allows for more flexible modeling of the
irregularities in the empirical null distribution, such as lepto- or platykurtosis (see Figures 10 and 11 in the Supplementary
Material). These characteristics are mostly ignored by theBH procedure, leading to potential loss of relevant (abundance of
irrelevant) genes in the case of leptokurtosis (platykurtosis) of f0. In Section 3.4.3 of the Supplementary Material, we also
report plots that summarize the discoveries obtained by the various methods on the different datasets and their pairwise
agreements.

6.1 HIV microarray data

A benchmark example of gene expression case study is the HIV microarray matrix.1,11 The dataset is publicly available in
the R package locfdr. The experiment goal is to compare the gene expression values of 7680 microarray genes of 4 HIV
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F I G U R E 3 Boxplot of the different screening rates (rows) obtained over 50 replications under four scenarios (columns) by the Nollik
models (NLw0-2) with different weights, the BNP-Nollik model (BNP-NLw1), the BH procedure, the LocFDR, and the MixFDR

negative subjects with 4 HIV positive patients. Microarray data are continuous, therefore for each gene we compute the
corresponding t-statistics to test the difference of expression among the two groups. We transform the data using the c.d.f.
of a Student’s t-distribution with 6 degrees of freedom. Efron’s LocFDR (thresholded at 0.2) flags 160 genes as relevant,
the MixFDR flags 64 genes, while the BH (thresholded at 0.05) only 18. Nollik, in its parametric version, estimates a
proportion of relevant hypotheses of 𝜌̂ = 0.079 (s.d. 0.011), whereas the estimated proportion of the over-expressed genes
among the flagged ones is 𝛼̂ = 0.121 (s.d. 0.050). The parameter ̂𝜉 of the weight function is estimated as 2.062 (s.d. 0.306).
The empirical null is characterized by 𝜇̂0 = −0.108 (s.d. 0.012) and 𝜎̂2

0 = 0.557 (s.d. 0.023), which suggests the potential
presence of correlation across tests. We control for a BFDR level of 5%, corresponding to a threshold on ̂P1(z) equal to
0.840. This leads to 143 genes flagged as relevant. From the left panel of Figure 4 we can see how the functions ̂P1(z) for
our method and Efron’s LocFDR are very similar, while the MixFDR results in the most conservative method, with the
lowest ̂P1(z) on the entire domain.

6.2 Microbiome abundance table: the Torondel dataset

Many models and software have been developed by bioinformaticians to address the challenges that count data from
sequencing studies raise for investigating differential expression (eg, edgeR and baySEQ32,33). Among these models, Love
et al34 have proposed Deseq2, a method for differential analysis based on negative binomial regression. To conduct multiple
hypothesis testing, Deseq2 thresholds the BH adjusted P-values computed from estimated Wald statistics. Here, we apply
this method to the Torondel dataset,35 available from the R library microbiomeSeq. The abundance table comprises
the frequencies of 8883 taxa found in 81 pit latrines: 29 from Tanzania, 52 from Vietnam. Let xij denote the frequency for
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1942 DENTI et al.

F I G U R E 4 HIV (left) and Torondel (right) datasets. Histograms of the data with function P1(z) superimposed computed via the
LocFDR (orange), the MixFDR (yellow) and Nollik (blue). The horizontal dotted lines represent the estimated threshold controlling for a
BFDR of 5%

taxon i in the pit latrine j. We first filter out all the taxa having variance of the relative counts rij = xij∕
∑

j≥1 xij lower than
10−7. The inclusion of this extremely sparse taxa might distort the analysis producing a high number of negligible test
statistics which may mislead the estimation of f0. After these preprocessing steps, we are left with 1204 taxa. The Wald
statistics are known to be asymptotically normal in the number of samples. A preliminary data analysis shows that the
assumption is reasonable for the rescaled Wald statistics. The BH procedures flags only 1 taxon as relevant, the MixFDR
flags 39 taxa, while the LocFDR 107. To better address irregularities in the tails of the data, we employ the BNPNollik. We
obtain a proportion of relevant taxa equal to 𝜌̂ = 0.139 (s.d. 0.023), while ̂

𝜉 = 2.913 (s.d. 0.689). Controlling for a BFDR
at level 0.05 induces a threshold at 0.822, with 91 taxa marked as relevant, as reported in the right panel of Figure 4, in
between the discoveries provided by MixFDR and LocFDR.

6.3 Grouped proteomic data: The ubiquitin-protein interactors dataset

In numerous studies, the case group may be composed of J different subsets reflecting specific experimental conditions
(eg, stages of a disease, drug dosages, etc.), while the control group remains the same. At one extreme, a separate analysis
for each subgroup would result in a potential loss of statistical power. At the other extreme, pooling all the data together is
not optimal, since test statistics are not independent across subgroups. In other words, we need to capture commonalities
across subgroups induced by the comparisons with a shared control group. To conduct a unified analysis, we extend our
approach into a hierarchical model where we jointly estimate different Nollik distributions, one for each experimental
condition. In this specification, the dependence across groups induced by the shared control set is captured via a common
relevant proportion 𝜌. Let zij be the test statistics relative to hypothesis i in the j-th subgroup. Model (2) becomes

zij|𝜌, f0,j, f1,j ∼ fj(zij) = (1 − 𝜌)f0,j(zij) + 𝜌f1,j(zij), (17)

where f0,j and f1,j are subgroup-specific null and alternative distribution, respectively. Within each subgroup, the model
is (3)-(5), with 𝜽j being its specific set of parameters. At the same time, 𝜌 is the same across all the subgroups. The advan-
tages of this model specification are threefold. First, the efficiency and interpretability of the Nollik model are unaltered.
Second, the parameters 𝜌 captures the commonality structure, allowing for the borrow of information across subgroups.
Third, this model allows the estimation of P1,j(z) functions specific for each group, capturing the differences in the various
proportions of relevant hypotheses across conditions.

We analyze a mass spectrometry proteomic data for differential protein expression, freely available in the R package
DEP. The proteins are grouped into three sub-groups, reflecting the different intensities of label-free quantification of the
mass spectrometry used to preprocess the data: Ubi1, Ubi4, and Ubi6. See Zhang et al36 for additional details on the
data. We follow the data analysis pipeline indicated by Zhang et al,37 and obtain 1899 values of proteomic expressions by
evaluating the contrasts of the three experimental conditions with the common control group. We evaluate the differential
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Ubi1 Ubi4 Ubi6
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F I G U R E 5 Ubiquitin-protein interactors dataset. Estimated null (black, dashed), alternative (red), and overall (blue)
densities for the of the three subgroups considered (z-scores shown as histograms). The dotted lines denote the 𝜙(0, 1) densities. Weight
function: w1

T A B L E 1 Ubiquitin-protein interactors

Posterior estimates #Relevant proteins

𝝃j 𝜶̂j Threshold Nollik MixFDR LocFDR BH

Ubi1 2.656 (s.d. 0.405) 0.447 (s.d. 0.249) 0.815 107 61 92 132

Ubi4 2.202 (s.d. 0.508) 0.348 (s.d. 0.157) 0.903 17 7 13 466

Ubi6 2.366 (s.d. 0.539) 0.387 (s.d. 0.121) 0.882 31 10 19 457

Note: Estimates and numbers of relevant proteins according to different methodologies stratified by subgroup (Ubi1, Ubi4, Ubi6).

expressions with Limma, an Empirical Bayes procedure that produces moderate t-statistics, computed as d∕(s + s0), where
d is the difference in the sample means, s is the pooled SD and s0 is a small constant, added to avoid divisions by an
extremely small variance estimate.38

The estimated overall proportion of relevant tests is 𝜌̂ = 0.101 (s.d. 0.014). Figure 5 shows the data and the estimated
densities stratified by condition. The subgroup-specific models lead to the estimation of different parameters and numbers
of relevant proteins, as summarized in Table 1, where we also report the discoveries obtained by the competitors when
applied to each subgroup independently. Here, we observe that the platykurtic shape of the histograms Ubi4 and Ubi6
lead the BH procedure to likely overestimate the number of relevant proteins.

7 DISCUSSION

In this article, we have proposed a weighted alternative density for multiple hypothesis testing, which leverages on
non-local distributions. We have shown how a non-local alternative likelihood can be used as a convenient working den-
sity for hypotheses’ screening, as it increases the separation from the null distribution. In particular, the trimodal structure
of the proposed parametric model, with parameters appropriately tuned for the screening of a large number of hypotheses,
allows the segmentation of the z-scores into under-expressed, null, and over-expressed once they are assigned to the nor-
mal distributions centered in 𝜇1 < 0, 𝜇0, and 𝜇2 > 0, respectively. In summary, the results we observed in the various
simulation studies suggest that Nollik is particularly suited for the following scenarios: in case of an asymmetric behavior
of over- and under-expressed test statistics, under potential hyperprior misspecification for the proportion of the relevant
statistics, and when the overlap of the two competing distributions hinders the estimation of the empirical null.

An acknowledged limit of our approach stands in its computational cost. Albeit efficient, our implementation fully
relies on MCMC, which makes it more costly than every competitor we considered. One solution to this problem would
be the development of a variational Bayes approximation39 of the Nollik posterior, which would scale up its applicability
to massive collections of hypotheses.
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Methodologically, the simple yet flexible structure of the Nollik models paves the way for relevant extensions. First, the
weight functions can be readily generalized to accommodate multivariate data, following Johnson and Rossell.10 Given
a d-dimensional vector z, we can define the quantity Q(z) = (z−z0)′Σ−1(z−z0)

n𝜉𝜎2 , where Σ is a positive definite matrix and 𝜎2

and 𝜉 are scalars, and then extend the weight functions to w1(z; 𝜉) = 1 − exp
[
−Q(z)k

]
and w2(z; 𝜉) = exp

[
−Q(z)−k]. This

multivariate likelihood can be useful, for example, in spatial settings, where hypotheses are typically associated with
clusters. Second, a covariate-adjusted framework can be naturally addressed without increasing the complexity of the
model. Let X be a dataset of P dimensional measurements and denote as Xi =

(
Xi1, … ,Xip

)
the vector of values specific

for individual i. Then we can introduce the dependence via𝚲, specifying 𝜆i ∼ Bern (pi) , pi = g(Xi, 𝜼) ∀i. This formulation
has two main advantages: (i) the tractability of the MCMC is not altered, being 𝚲 separated from the other parameters in
the hierarchical structure; (ii) the covariates directly affect parameters driving allocation to latent classes. The function
g(Xi, 𝜼) can be assumed as the usual logistic or probit link, for which efficient samplers are readily available.40,41
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