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Chapter 1

Introduction

The notion of a microbial pangenome goes back to 2005 [1], and it is usually considered

the first example of the use of the term pangenome to describe multiple genomes. Under

this definition, the microbial pangenome comprises two fundamental components: the core

genome, encompassing the genes that are ubiquitous across all strains within a given micro-

bial population, and the dispensable genomes, which encompass genes that are absent in at

least one strain within the population.

Nowadays sequencing organisms is essentially routine, as we have witnessed during the

SARS-CoV-2 pandemic, when millions of viral genomes have been sequenced. Indeed, the

introduction of Next-Generation Sequencing (NGS) technologies in 2006 made sequencing

cheaper and more accessible. Later on, a new sub-area of research in computational biology

was consolidated to address the intrinsic challenges introduced by the availability of several

genomes, named computational pangenomics. In computational pangenomics, a pangenome

is a collection of genomic sequences to be analyzed jointly or to be used as a reference [2].

Reference genomes (as a linear string) are widely used for genomic analyses. Typical

pipelines consist of mapping a sample of reads against these references, looking for similari-

ties, but more importantly differences, such as single nucleotide polymorphisms (SNPs) and

structural variants (SVs). Linear reference genomes often fail to capture the full spectrum of

genetic variation. For instance, the human reference genome (GRCh38) does not adequately

represent the genetic diversity of African populations [3]. This limitation is even more pro-

nounced in bacterial genomes, where pangenome approaches have proven significantly more

effective [4]. On the other hands, pangenome graphs have demonstrated their ability to en-
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compass more comprehensive genetic information accross diverse domains, such as crops [5],

bovines [6], and humans [7]. These advancements have important implications for accurately

identifying structural variations, particularly when contrasted with conventional linear ref-

erence genome assemblies.

With the vast amount of available data, selecting sequences for constructing a varia-

tion graph becomes challenging. Evidence suggests that tools developed to handle human

genomes can scale to hundreds of sequences, although this demands substantial computa-

tional resources [8]. Even with this relatively small subset of sequences, the over represen-

tation of variants has been shown to complicate downstream analyses, particularly variant

calling. This challenge has led to new approaches in the field, such as extracting subgraphs

from the pangenome to make downstream analyses more effective [9]. Ideally one might

carefully select a subset of these sequences that can express the vast amount of variability.

This raises the question of how to query a large dataset to obtain the most informative

sequences within the pangenome, enabling biologists to conduct meaningful analyses.

Pangenomes, either as a graph or as a collection of genomes, inherently capture more

variability than a single reference genome. To make the transition from a reference genome

as a string to a pangenome graph, it is important to have procedures for the construction of

pangenome graphs that are suitable for the application of sequence-to-graph tools [10] [11],

such tools should allow on pangenome graphs the same analyses that are routinely done on

linear reference genomes. Furthermore, a pangenome as a collection of genomes imposes

its own challenges. Ideally, one might be able to work with an entire kingdom at different

taxonomy levels, where the ultimate goal is to perform efficient queries to a pangenome

with sequences on the order of millions with minimal computational resources, such as on

a personal computer. This requires the development and use of succinct data structures for

storing and querying pangenomes.
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1.1. Construction and comparison of pangenome graphs

In graph pangenomics, we find several graph representations, such as variation graphs,

sequence graphs, and De Bruijn Graphs [12]. In this work, we pay special attention to the

first one. A variation graphs aim to express a set of input sequences as paths in a graph,

where sequences are broken into segments such that each sequence is a concatenation of

these segments.

The construction of pangenome graphs has been addressed mainly from heuristics [4,

7, 13–15], and their comparison has relied upon downstream analyses instead of the graph

itself [6, 7, 16]. The establishment of an optimal representation of genomics sequences as a

graph has been discussed only to extend the good properties known for indexing strings to

these graphs [17].

As the first contribution of this thesis, we present an approach to construct variation

graphs starting from a multiple sequence alignment (MSA), leveraging the notion of maximal

blocks, called pangeblocks. The MSA naturally highlights similarities and differences in a

set of genomic sequences, and blocks capture a subset of sequences in an interval of columns

sharing a substring in the MSA. pangeblocks is an Integer Linear Programming (ILP)

approach that finds a tiling of the MSA using blocks. The construction is guided by several

objective function criteria that aim to force the desired properties of the final graph, using

the most natural criteria, like the number of nodes, the length of node labels, and others

intended to ensure good properties of the graph for downstream analyses, like optimizing

the number of seeds for sequence-to-graph tools. The nature of our approach restricts our

analyses to relatively short genomic sequences, like genes, plasmids, or viral sequences like

SARS-CoV-2, whose genomes are around 30 Kbp.

In the second contribution of this thesis, we explore the alignment between variation

graphs under the realm of Riemannian Geometry, specifically by modeling pangenome graphs
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as discrete manifolds and proposing a mathematical model based on an ILP formulation for

assessing isomorphism between manifolds by leveraging the Ricci-Flow algorithm on discrete

manifolds [18,19] that might help solve the isomorphism on variation graphs.

1.2. Exploring viral and bacterial pangenomes with Deep Learning

Pangenomics is becoming more relevant than ever with the explosive increment in genomic

data, particularly in the study of viral and bacterial genomes. By the end of 2024, the number

of SARS-CoV-2 genome sequences overcomes the 20 millions1, and in the field of bacteria,

the largest publicly available dataset was released, with almost 2 million assemblies, spanning

more than 10000 species [20], and is in continuos expansion.

Since 1990, BLAST [21] has been the primary tool for querying large genomic datasets.

However, with the explosion of genomic data especially for viruses and bacteria, its capacity

in terms of computational resources and speed is now exceeded. To address these limitations,

new methods have been developed for bacteria [22, 23], that use k-mer-based indexing to

improve query efficiency. While the ultimate goal is to perform these analyses on personal

computers [22], k-mer-based indexes still demand substantial memory. For example, two

recent approaches have managed to index the 2MM bacterial dataset using 248 GB [20] and

4.26 TB [23], enabling read-level queries to expand BLAST’s capabilities.

This large volume of data brings additional challenges. Addressing the quality of data is

not a trivial task, and manual curation is still needed to build reliable databases of reference

sequences, both in the quality of the assembly and the correct assignment of the taxonomy

label. High-quality databases are crucial for taxonomy classification. GISAID has a large

team of specialists to help curate SARS-CoV-2 genomes submitted. In the case of bacterial

applications, several tools rely on manually curated databases for taxonomy classification

purposes [24–28], while others are more flexible and allow the user to provide their dataset [29,

1https://gisaid.org/
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30]. Ideally one would like to rely on all the data available, but manual curation becomes

almost impossible at this scale.

Machine Learning tools have been proposed to speed up classification and avoid the

dependency on index databases, thus decreasing computational resources needed to solve

taxonomy level assignment [31–33]. Nonetheless, the need for reliable methods to alleviate

manual curation of large datasets is imminent.

The second contribution of this thesis combines the best of indexes and deep learning ap-

proaches. We exploit an encoding called the Chaos Game Representation of DNA (CGR) [34],

on top of which is a k-mer-based representation of a sequence, known as the Frequency Ma-

trix of the CGR (FCGR) [35]. The FCGR is a matrix storing k-mer occurrences of a DNA

sequence, and when visualized as an image it shows fractal patterns.

First, we explore well-known deep-learning architectures for image based classification

of SARS-CoV-2 sequences. Secondly, we develop architectures for exploiting the FCGR,

and propose an embedding-based index for the largest bacterial dataset, comprising around

1.8MM assemblies, allowing data curation, fast queries at the assembly level, and accurate

taxonomic classification at species and genus levels. Most notably, the index for this dataset

uses roughly 1GB of disk space, and queries require less than 5 GB of RAM, building bridges

for analyses of high-volume genomic datasets with low computational resources.

1.3. Outline

This thesis is organized as follows. In Chapter 2 we introduce the basic concepts necessary

to understand the content of the thesis. We introduce the notion of pangenome graphs,

present the Chaos Game Representation of DNA, and the basics notions of Machine Learning

and Deep Learning.
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In Chapter 3 we present the first contribution of this thesis, a variation graph builder

from MSA, namely pangeblocks, describing its algorithmic approach, and experimental

evaluation. The contributions of this chapter have been recently published in BMC Bioin-

formatics [36].

In Chapter 4 we present an exploration to align pangenome graphs with tools from

Riemannian geometry, we explain how a pangenome graph is modeled as a discrete manifold,

and explore the isomorphism between variation graphs.

In Chapters 5 and 6 we present two contributions in the realm of deep learning. The first

one, CouGaR, for the classification of SARS-CoV-2 sequences, and the second one, PANSPACE,

for indexing, querying, and assessing the quality of bacterial assemblies. CouGaR has been

published in Gigascience in 2022 [37], while the work on PANSPACE is ready for submission

to a journal.

Finally, in Chapter 7 we outline potential directions for future research based on the

findings of this work and provide a comprehensive list of publications and contributions

developed during my PhD.
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Chapter 2

Preliminaries

In this chapter, we introduce the essential concepts required to understand the core

topics of this thesis. We begin by defining pangenome graphs, with special emphasis on

Variation graphs, the main object of study in Chapters 3 and 4. Then, we dive into the

Chaos Game Representation of DNA (CGR), central to our deep-learning-based approaches

in Chapters 5 and 6. Finally, we introduce the foundational concepts and core techniques in

machine learning and deep learning that are utilized throughout this thesis.

2.1. Pangenome graphs

Computational pangenomics highlights the transition from working with reference genomes

as strings to pangenome graphs, where the natural representation of a pangenome is a di-

rected graph [12]. In a pangenome graph nodes are labeled with strings that correspond to

portions of the input sequences, and edges are added such that any input sequence can be

spelled by a path in this graph, by concatenating the labels of its nodes.

Pangenome graphs are referred to as Variation graphs when paths are labeled, and as

Sequence graphs when these paths are not explicit, or in other words when all paths are

assumed to be valid. Hence, a Sequence graph can be seen as a particular case of a Variation

graph.

The construction of pangenome graphs has been assessed by several approaches that deal

with the input sequences in different ways, for example, starting from a Multiple Sequence

Alignment (MSA) (make prg [4], vg [13], founderblockgraph [17]), using progressive align-

ment (minigraph [14], minigraph-cactus [7]), all-vs-all pairwise alignment (pggb [15]), and
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exploiting the Variant Calling Format (VCF) (vg [13]). As we mentioned earlier, pangenome

graphs are directed and, while most tools create acyclic graphs, some of them allow cycles,

which in theory can lead to more compact graph representations. Currently, make prg and

founderblockgraph are the only tools that guarantee the construction of an acyclic graph.

Notice that some approaches, such as minigraph do not ensure a lossless representation

of the input sequences since they do not care about small variations between sequences.

In what follows, we define the main object of study, the Variation Graph (for a tutorial

on Computational Graph Pangenomics, we refer the reader to [12]). Sequences used to

create these graphs are strings over the alphabet Σ = {A,C,G, T}, but in some cases,

when null calls are allowed, denoted by the character N , we deal with the alphabet ΣN =

{A,C,G, T,N}, and the following definition is equally valid for both alphabets (and the

RNA alphabet {A,C,G, U} as well).

Definition 2.1 [Variation Graph] A Variation graph G = ⟨V,A,W ⟩ is a directed graph

whose vertices are labeled by nonempty strings, with λ : V 7→ Σ+ being the labeling function,

and where A denotes the set of arcs and W denotes a nonempty set of distinguished walks.

A Sequence graph G = ⟨V,A⟩ is a graph obtained from a variation graph by ignoring

the set W of distinguished walks, in other words, where all walks are allowed. Let G be a

variation graph and let w = ⟨v1, . . . , vl⟩ be a walk in G. Then the label of the walk w is the

concatenation λ(w) = λ(v1) · · ·λ(vl) of the labels of the vertices of the walk. Given a string

g, then G expresses g if there is a walk w ∈ W such that the label of the walk w is exactly

g, that is λ(w) = g.

An example of a variation graph built from the sequences # = AACCGA, □ = AAACGAT ,

♢ = GAACGAT , △ = CAACGAT , and ▽ = AATCCGGAA is shown in Figure 2.1, where

each sequence is a path in this graph. The paths correspond to sequences of nodes following
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the figures on top of them. Each sequence can be recovered by concatenating the node labels

in each path.

T

A

A

G

C

A

AATC

A

C

G

C

GA

Figure 2.1: An example of a Variation graph G = ⟨V,A,W ⟩ built from the sequences
# = AACCGA, □ = AAACGAT , ♢ = GAACGAT , △ = CAACGAT , and
▽ = AATCCGGAA. The 12 colored rounded squares form the set of vertices V , the set of
arcs A (13 in total) is represented by the black curved lines ending in a diamond shape
between vertices, and the set of distinguished walks W is obtained by traversing the
vertices with the 5 different shapes #,□,♢,△ and ▽, spelling each sequence.

2.2. Chaos Game Representation of DNA

The Chaos Game Representation of DNA (CGR) was proposed in 1990 [34], and is a

direct application of the Chaos Game, an iterative algorithm used to create fractals by

randomly plotting points within a predefined geometric shape (e.g. a triangle or a square),

following specific contraction rules to produce self-similar patterns.

In the CGR, these points are plotted within a square, where each vertex of the square

is assigned a character in the DNA alphabet Σ = {A,C,G, T}, and instead of a random

selection of points, these are guided by the characters in a DNA sequence. A new point is

plotted in the square by choosing a vertex of the square and moving half of the distance (the

contraction rule) from the current point in the direction of the chosen vertex.
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The CGR encoding has been used in several bioinformatics applications, and extended to

the aminoacid alphabet as well. For a more extensive list of application we refer the reader

to [38].

In what follows, we define the CGR of sequence s over the alphabet Σ embedded in the

square [−1, 1]2 ⊂ R2.

Definition 2.2 [Chaos Game Representation of DNA (CGR)] Given a sequence s = s1 · · · sn ∈

Σ+, the CGR encoding of s is the 2-D representation of the ordered pair (xn, yn) which is

defined iteratively as follows:

(xi, yi) =
1

2

(
(xi−1, yi−1) + g(si)

)
, if i ≥ 1 (2.1)

where (x0, y0) = (0, 0) and,

g(si) =



(1, 1) si = A

(−1, 1) si = C

(−1,−1) si = G

(1,−1) si = T

(2.2)

The CGR encoding of a sequence is used to create visual representation by plotting all

intermediate points in the iterative process.

An example of the CGR encoding for the sequence ACGGTG is shown in Figure 2.2,

where points are shown as white dots, and the encoded characters that guide the movements

in each iteration are colored.
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Figure 2.2: Example of the CGR encoding for the sequence ACGGTG. Each white
circle correspond to the R2 coordinate encoding a prefix of the sequence. The last
character of the prefix encoded in each iteration is colored, and correspond to the same
character assigned to the corner of the sub-quadrant it is located. The dashed line
exemplifies how the encoding moves half of the distance from the current coordinate in the
direction of the vertex assigned to the next character in the sequence.

Notice that as per the definition above, the CGR encoding is defined over the DNA

alphabet Σ, but in real settings we can have null calls (represented by the character N), i.e.

we deal with sequences in the extended alphabet ΣN , a situation that the CGR encoding

cannot handle. However, to obtain a visual representation that might be obtained with

the CGR in this scenario, there is an alternative, called the Frequency matrix of the CGR

(FCGR), which encodes all strings of length k in the sequence, called k-mers, in a matrix that

is the result of a subdivision of the square used by the CGR in 4k small squares (with 4k the

total number of k-mers), and where the values assigned to each small square correspond to the
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number of ocurrences of the k-mer assigned to such square by the CGR encoding. As shown

in [35, 39] the CGR visual representation of a sequence is well approximated by the FCGR,

where k-mers containing an N are simply excluded, this offers a good approximation to the

CGR visual representation, because the CGR encoding of a sequence is well approximated

by the CGR encoding of its suffix (a k-mer).

Definition 2.3 [Frequency matrix of CGR (FCGR)] Let s = s1 · · · sn ∈ Σ+
N be a sequence,

and let k be an integer. Then the Frequency matrix of CGR, in short FCGR, of the sequence

s is a 2k × 2k 2-D matrix F = (ai,j), 1 ≤ i, j ≤ 2k, i, j ∈ N, where for each k-mer b ∈

{A,C,G, T}k, we have an element ai,j in the matrix F , that is equal to the number of

occurrences of b as a substring of s. The position (i, j) of such element is computed as

follows:

i = 2k − ⌈2k−1(y + 1)⌉ + 1 (2.3)

j = ⌈2k−1(x+ 1)⌉ (2.4)

where (x, y) is the CGR encoding for the k-mer b.

For example, following the definition above, for the 3-mer ACG, its CGR encoding is

given by (−5/8,−1/8), then the position in the FCGR matrix corresponds to the element

ai,j, where

i = 2k − ⌈2k−1(y + 1)⌉ + 1

= 8 − ⌈4(−1/8 + 1)⌉ + 1

= 8 − ⌈7/2⌉ + 1

= 8 − 4 + 1

= 5
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and

j = ⌈2k−1(x+ 1)⌉

j = ⌈4(−5/8 + 1)⌉

j = ⌈3/2⌉

j = 2

As we can see in Figure 2.3, the position of ACG in the matrix is the element a(5,2).

It is immediate to obtain a 2-D image from an FCGR matrix; it suffices to rescale all its

values to the interval [0, 255] (8 bits). Examples of these images for five different species are

shown in Figure 2.4, and the ordering that k-mers adopt in the representation is shown in

Figure 2.3, for k ∈ {1, 2, 3}.

Figure 2.3: Position of each k-mer (for k ∈ {1, 2, 3}) in the square [−1, 1]2 ⊂ R2 given
by the CGR encoding. Each nucleotide is assigned to a vertex of the square to guide the
encoding of k-mers. A subdivision of one level of a sub-square (i.e. from k to k + 1)
corresponds to adding the letters A,C,G, T as prefixes to the k-mer encoded in the center
of such sub-square, following the orientation of the vertices.
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Notice that the set of k-mers that share a suffix of length l are encoded by the CGR

encoding inside a sub-square of size 2k−l × 2k−l in the FCGR matrix.

Figure 2.4: FCGR of bacterial isolates Examples of five bacterial assemblies, species
names, and sample ID identifiers are in the title of each image. Each image corresponds to
the visualization of the FCGR in 8-bits (k-mer frequencies rescaled to the interval [0, 255])
computed from 6-mers, and it has dimensions 26 × 26, one pixel or position for each 6-mer.
White color in a pixel means that the k-mer encoded has the minimum value of frequency
found in the assembly. Black color represents k-mers with the maximum frequency in the
assembly. Gray colors correspond to k-mer frequencies lying between the minimum and
maximum values.

2.3. Machine Learning and Deep Learning

2.3.1. Supervised and Unsupervised Learning

Supervised and unsupervised learning are two fundamental paradigms in machine learn-

ing, each serving different purposes in data analysis and model building [40].

Supervised Learning is a framework where models are trained on a labeled dataset, mean-

ing that each input has a corresponding output label. The primary goal of supervised learning

is to learn a mapping function that predicts output labels accurately for new, unseen data.

This approach is widely used in applications like classification and regression, where labeled

data is available, allowing models to learn from direct feedback.

In contrast, Unsupervised Learning involves training models on an unlabeled dataset,

where no explicit output labels are provided. Here, the objective is to identify patterns,

groupings, or underlying structures within the data. Techniques like clustering, dimension-

ality reduction, and density estimation are common in unsupervised learning. These methods
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are often used in exploratory data analysis, where the task is to uncover hidden relationships

within the data without prior labels.

2.3.2. Metric Learning

Metric Learning is a type of machine learning that focuses on learning a distance function

tailored to specific tasks [41]. Rather than using standard distance measures like Euclidean

or cosine distances, metric learning aims to learn a custom metric that optimally separates

classes or clusters data points according to specific criteria. This approach is particularly

useful in scenarios where traditional distance measures are insufficient for capturing the

nuanced relationships between data points.

In metric learning, a model is trained to map data into a transformed space, where sim-

ilar data points are closer together and dissimilar points are farther apart. One common

application is face recognition, where a learned metric can ensure that different images of

the same person are close in the embedding space, while images of different people are far

apart [42]. Metric learning can be supervised (with labels indicating similarity) or unsuper-

vised (based on structural properties within the data), and methods such as triplet loss [42]

and contrastive loss [43] are commonly used to train these models effectively.

2.3.3. Classification metrics

Class-specific metrics

In evaluating the performance of our model, we consider three key metrics: precision,

recall, and the F1-score. Precision measures the proportion of correctly predicted positive

instances among all instances predicted as positive, while recall quantifies the ability of the

model to correctly identify all positive instances from the dataset. The F1-score provides a

harmonic mean of precision and recall, offering a balanced metric when both false positives
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and false negatives are of concern. These metrics are critical in understanding the trade-offs

between precision and recall, especially in imbalanced datasets.

1. Precision =
TP

TP + FP

2. Recall =
TP

TP + FN

3. F1-score = 2 · Precision · Recall

Precision + Recall

where True Positives (TP) represent instances where the model correctly identifies positive

cases. False Positives (FP) occur when the model incorrectly classifies negative instances as

positive, and False Negatives (FN) arise when the model fails to identify positive instances.

In multi-class classification, we can report an aggregated value for these metrics with

the macro average and the weighted average. The macro average computes the metric in-

dependently for each class and then takes the unweighted mean, treating all classes equally

regardless of their frequency. In contrast, the weighted average accounts for the class imbal-

ance by weighting each class’s contribution to the overall metric according to its frequency

in the dataset. The macro average is useful for evaluating performance across all classes,

while the weighted average gives a more balanced view in the presence of imbalanced class

distributions.

Global metrics

Given a classification problem on S samples and N classes, the corresponding confusion

matrix C = (cij), i, j ∈ [1, N ] is a square matrix where each entry ci,j is the number of

elements that belong to the true class i and were classified in the class j, and the sum of

the entries in C is exactly S. For global metrics, we define accuracy and the Matthews

Correlation Coefficient (MCC).
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1. The Accuracy of the model is defined as the proportion of the corrected classified

samples over the total number of samples, this value ranges between 0 and 1, where 0

means that all samples were erroneously classified, while a value of 1 means a perfect

classification. It can be defined in terms of the entries of the confusion matrix as

follows:

acc =

N∑
k=1

ckk

S
(2.5)

2. The Matthews Correlation Coefficient (MCC), proposed in [44] as a binary clas-

sification metric, was generalized to the multi-class case in 2004 [45], and it can be

defined in terms of the confusion matrix as follows (see [46] for details):

MCC =

cp× S −
N∑
k=1

pk × tk√√√√(S2 −
N∑
k=1

p2k) × (S2 −
N∑
k=1

t2k)

(2.6)

where cp =
∑N

k=1 ckk is the total number of samples correctly predicted, tk =
∑N

i=1 cik

is the number of times class k was truly occurred, and pk =
∑N

j=1 ckj is the number

of times class k was predicted. MCC lives in the range [−1, 1], where 1 is perfect

classification, −1 is the opposite, and 0 means that the confusion matrix is all zeros

but for one single column, or when all entries are equal cij = K ∈ N [46].

2.3.4. Clustering metrics

In order to assess the quality of the class separability given by the CNN, we evaluate the

embeddings of the last layer (the one used to perform the classification) in the network with

three clustering evaluation measures. These embeddings are the output from the final layer

of the network for each FCGR.
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1. Silhouette Coefficient [47] Given an embedding v belonging to a cluster A, the

silhouette coefficient s(v) of v compares the mean intra-cluster distance in A (a) with

the mean nearest-cluster distance for v (b), that is, the closest cluster to v different

from A.

s(v) =
a− b

max{a, b}
(2.7)

where a = 1
|A|

∑|A|
w∈A,w ̸=v d(v, w) and b = minB ̸=A

1
|B|

∑|B|,v∈A
w∈B d(v, w).

The value of s(v) ranges between −1 (wrongly assigned) and 1 (perfect separability).

For a cluster A, the mean silhouette coefficient of A is computed as the average of s(v)

over all embeddings v ∈ A.

2. Calinski-Harabasz Score [48] Given a set of embeddings E of size nE that has been

clustered into k clusters, the Calinski-Harabasz Score s, also known as the Variance

Ratio Criterion, is defined as the ratio of the between-clusters dispersion and the inter-

cluster dispersion for all clusters (the dispersion of a group of n points is measured by

the sum of the squared distances of the points from their centroid).

s =
tr(Bk)

tr(Wk)

nE − k

k − 1
(2.8)

where tr(Bk) is the trace of the between-cluster dispersion matrix and tr(Wk) is the

trace (the sum of all elements in the diagonal of Wk) of the within-cluster dispersion

matrix, defined as follow:

Wk =
k∑
q=1

∑
v∈Cq

(v − cq)(v − cq)
T (2.9)

Bk =
k∑
q=1

nq(cq − cE)(cq − cE)T (2.10)
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where Cq is the set of embeddings in the cluster q, cq is the centroid of the cluster q,

cE is the centroid of E and nq = |Cq|. The higher the score s means that the clusters

are dense and well separated.

3. Generalized Discrimination Value (GDV) [49] Given a set of N D–dimensional

embeddings {x1, . . . , xN}, with xn = (xn,1, . . . , xn,D) and a set of L classes {C1, . . . , CL},

where each xn is assigned to one of the L distinct classes. Consider their z–scored points

(s1, . . . , sN), with si = (si,1, . . . , si,D), where sn,d =
1

2
xn,d−µd

σd
. Here µd = 1

N

∑N
n=1 xn,d

denotes the mean, and σd =
√

1
N

∑N
n=1(xn,d − µd)2 the standard deviation of dimension

d. Using the re-scaled data points sn = (sn,1, . . . , sn,D), the Generalized Discrimination

Value ∆ is calculated from the mean intra–class and inter–class distances as follows:

∆ =
1√
D

[
1

L

L∑
l=1

dintra(Cl) −
2

L(L− 1)

L−1∑
l=1

L∑
m=l+1

dinter(Cl, Cm)

]
(2.11)

where the mean intra–class for each class Cl is defined as

dintra(Cl) =
2

Nl(Nl − 1)

Nl−1∑
i=1

Nl∑
j=i+1

d(s
(l)
i , s

(l)
j ) (2.12)

and the mean inter–class for each pair of classes Cl and Cm is defined as follows,

dinter(Cl, Cm) =
1√
D

[ 1

NlNm

Nl∑
i=1

Nm∑
j=1

d(s
(l)
i , s

(l)
j )

]
(2.13)

here Nk correspond to the number of points in class k, and s
(k)
i is the ith point of class

k. The quantity d(a, b) is the distance between a and b, for our case, we considered

the Euclidean distance. The value ∆ range between −1 (perfect separability) and 0

(wrongly assigned),
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2.3.5. Convolutional layers and Batch normalization

A convolutional layer is fundamental in Convolutional Neural Networks (CNNs) [50] and

has transformed the way deep learning models process visual and spatial data. This layer

applies a series of filters or kernels—small matrices that move (convolve) across the input

data—to detect and learn spatial patterns. By capturing these local patterns in the input,

such as edges, textures, or shapes, convolutional layers can form hierarchical representations

where earlier layers detect low-level features, and deeper layers capture higher-level patterns

(e.g., objects or specific textures).

Each convolutional layer has a set of hyperparameters, such as the filter size, stride, and

padding—that impact the size and resolution of the output feature maps. In conjunction

with other layers (like pooling and fully connected layers), convolutional layers enable CNNs

to perform exceptionally well on image classification, object detection, and segmentation

tasks.

Batch Normalization is a technique commonly used in conjunction with convolutional

layers to improve the stability and efficiency of deep neural network training [51]. Intro-

duced to address issues related to internal covariate shift, batch normalization normalizes

the activations of each layer by adjusting and scaling the inputs for each mini-batch. This

normalization maintains a consistent distribution of activations throughout the network,

which helps stabilize the learning process and enables the use of higher learning rates. In

convolutional neural networks (CNN), batch normalization is applied after the convolutional

operation and before the activation function. This step has been shown to reduce training

time and improve generalization, making it a standard component in many CNN architec-

tures.
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2.3.6. Cross validation

Cross-validation is a crucial technique in machine learning for model evaluation and

validation, particularly useful in avoiding overfitting and ensuring that model performance

is generalizable across unseen data [52]. The most commonly used method, k-fold cross-

validation, involves dividing the dataset into k subsets or folds. In each iteration, one

fold is used as the validation set while the remaining k-1 folds serve as the training set.

This process repeats k times, ensuring that each data point is used for both training and

validation. Repeated k-fold cross-validation is an extension of the standard k-fold cross-

validation approach that increases the reliability of model performance estimates by further

reducing variance due to data partitioning. In repeated k-fold cross-validation, the k-fold

cross-validation procedure is performed multiple times with different random splits of the

data into folds in each repetition. The average of the performance metrics across these folds

provides a more robust estimate of the model’s generalization performance, as opposed to

relying on a single train-test split, which could be biased. Cross-validation is especially

advantageous when working with limited datasets, as it maximizes data utilization for both

training and evaluation.

2.3.7. Feature importance

Feature importance methods in machine learning and deep learning aim to quantify the

contribution of input features to a model’s predictions. These methods are crucial for in-

terpreting complex, often opaque, neural networks, particularly in high-stakes domains like

healthcare, finance, and autonomous systems. Traditional techniques, such as permutation

importance [53], rely on evaluating the impact of feature perturbations on model perfor-

mance. More recent approaches, including gradient-based methods like Integrated Gradi-

ents [54] and saliency maps [55], leverage the internal structure of deep learning models

to provide more fine-grained attributions. Additional methods, such as Lime [56], Grad-
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CAM [57], and DeepLIFT [58], have further enriched the toolkit for model interpretability.

These tools bridge the gap between predictive accuracy and interpretability, enabling re-

searchers and practitioners to trust and validate deep learning models.
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Chapter 3

Customized construction of pangenome graphs via maximal blocks

The construction of a pangenome graph is a fundamental task in pangenomics. A natural

theoretical question is how to formalize the computational problem of building an optimal

pangenome graph, making explicit the underlying optimization criterion and the set of fea-

sible solutions. Current approaches build a pangenome graph with some heuristics, without

assuming some explicit optimization criteria. Thus it is unclear how a specific optimization

criterion affects the graph topology and downstream analysis like read mapping and variant

calling.

Our contribution

• By leveraging the notion of maximal block in a Multiple Sequence Alignment (MSA),

we reframe the pangenome graph construction problem as an exact cover problem on

blocks called Minimum Weighted Block Cover (MWBC). Then we propose an Integer

Linear Programming (ILP) formulation for the MWBC problem that allows us to study

the most natural objective functions for building a graph.

• We provide an implementation of the ILP approach for solving the MWBC and we

evaluate it on SARS-CoV-2 complete genomes, showing how different objective func-

tions lead to pangenome graphs that have different properties, hinting that the specific

downstream task can drive the graph construction phase.

Our tool, pangeblocks, is open source and available at https://github.com/AlgoLab/

pangeblocks.
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3.1. Introduction

The natural representation of a pangenome is a directed graph [12], and computational

pangenomics highlights the transition from working with reference genomes as strings to

pangenome graphs.

The need for richer data structures to represent pangenomes is clear. However, the pur-

suit of establishing an unambiguous notion of optimal pangenome graph is still unsettled.

For example, pangenome graphs can be built with different tools (vg [13], minigraph [14],

pggb [15], minigraph-cactus [7], make prg [4], founderblockgraph [17]), but the compar-

ison of their results has always relied on specific downstream analyses [6, 7, 16], while we

would like to have a quality measure that is not overly dependent on downstream analysis.

It is noteworthy that computational tools diverge in several critical attributes, including

scalability, the ability to represent exactly the original genomes, the presence of cycles in the

graph, and the proficiency in showcasing well-documented genetic variants. In particular, a

critical aspect to consider in the construction of a pangenome graph is whether the graph

is suitable for tasks such as mapping reads under the seed-and-extend paradigm. In fact,

when most of the vertices have a label that is shorter than the seed length, obtaining a high

quality alignment becomes harder [10,13,59,60].

We propose a formal framework to build a variation graph [12]) that (1) is acyclic and

(2) represents perfectly the input genomes, from a Multiple Sequence Alignment (MSA) of

the input genomes. More precisely, we frame the pangenome construction problem as finding

an optimal tiling of the MSA into blocks, where each block is the set of cells of the MSA

defined by a set of rows and an interval of consecutive columns, where all rows of the block

are labeled by the same string. Each block becomes a vertex of the pangenome graph and

we add arcs to the graph to connect blocks that are adjacent in the MSA. This guarantees

that each input sequence corresponds to a path of an acyclic graph. More precisely, we
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introduce an optimization problem, the Minimum Weight Block Cover problem, in short

MWBC, which, given a set of blocks, finds an optimal subset of blocks that cover the MSA.

The MWBC problem is a special case of a more general optimization problem, called the

General Minimum Weight Block Cover problem (G-MWBC) that asks for a set of blocks

that cover the MSA, where the set is optimum w.r.t. a weighted function defined over the

solution.

Other approaches, based on Elastic Founder Graphs (EFG) [17, 61, 62] use the notion

of block as a portion of the MSA resulting from a vertical segmentation of it. Under this

definition, a block is essentially a subMSA instance, where several strings might belong to a

block, while our definition of block is based on maximal blocks and relates to a unique string.

The EFG approach aims to create indexable graphs for linear time pattern matching queries

and propose several optimization criteria for the segmentation of the MSA for enhancing the

efficiency and expressiveness of the graph for queries.

Currently, make prg and founderblockgraph are the only tools that guarantee the con-

struction of an acyclic graph. The former builds a sequence graph, which is a graph whose

paths are not distinguished. On the other hand, the second one creates a variation graph

with all sequences explicitly expressed as a path in the graph, but both express all input

sequences in the final graph. On the other hand, vg can remove cycles from a variation

graph, but only at a later step: its main heuristics are tailored for the general case.

The MWBC problem is similar to some problems that have been studied in the liter-

ature, such as the Weighted Rectangle Cover [63] or the Maximum Weighted Submatrix

Coverage [64] problems. Unfortunately, none of those problems are on matrices containing

characters and where the order of the rows is irrelevant, therefore MWBC does not inherit

their hardness results. On the other hand, the similarities are sufficiently strong that we

conjecture that MWBC is NP-hard.
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We propose an ILP approach for solving MWBC, based on the classical ILP formulation

of Exact Set Cover [65]. To avoid including all possible blocks of an MSA in the formulation,

first we identify its maximal blocks, a notion introduced in the context of haplotyping, since

they can be computed in linear time [66].

More precisely, we use an extension, called Wild-pBWT1 [67], that works on an arbitrary

alphabet, with this approach we can compute blocks directly over an MSA over the alphabet

ΣN = {A,C,G, T,N} extended with the special symbol − called indel. Hence characters N

and − are treated equally as ACGT for computing blocks.

Moreover, we restrict our attention to blocks that are obtained by decomposing overlap-

ping maximal blocks. We will describe two decomposition strategies; a slower strategy that

produces more blocks, but is limited to smaller instances, and a faster strategy that can be

applied to larger MSAs. The result of the decomposition phase is a set of blocks that is an

instance of MWBC.

We propose and analyze five different objective functions for the ILP formulation, each

tailored for a different goal. Those objective functions aim to highlight some measurable

properties that the graph should exhibit, such as the length of the labels, the number of

paths traversing the vertices, and the total size of the graph. These are the first elementary

properties that can be measured or optimized when constructing the graph. On the other

hand, an open question is how can we computationally encode in the graph construction

some properties that are biological meaningfully, such as how to represent similarities or

differences between the sequences or some biological events.

We assess experimentally the impact on the final pangenome graph of the different strate-

gies used to produce the set of blocks that is an instance of the MWBC problem. Then we

measure the impact of the objective functions on an MSA built from 50 complete SARS-

1github.com/AlgoLab/Wild-pBWT
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CoV-2 genomes — we have obtained similar results on 20 and 100 complete SARS-CoV-2

genomes.

Our results show that a strategy that produces a larger set of blocks improves significantly

the optimal values reached by each objective function at the expense of an increase in the

computation time for solving the MWBC problem.

Most notably, with pangeblocks we were able to construct variation graphs where the

number of potential seeds is much larger than the graphs computed by pggb— this is a

property that helps tools based on seeding approaches like GraphAligner [10]. We also

notice that graphs built with vg are closer (w.r.t. the properties measured) to the graphs

built with pangeblocks when minimizing the length of the graph. On the other hand,

compared to pggb, pangeblocks is able to produce graphs with a smaller number of nodes

in general, and in particular has significantly fewer nodes that are used by only a smaller

percentage of the input genome sequences. In conclusion, the experimental analysis shows

that pangenome graph measures may significantly change with the use of objective functions

in building an optimal graph under such functions.

3.2. Preliminaries

Since our algorithm starts from a multiple sequence alignment (MSA), we need to provide

a formal definition of it, while referring to the reader to [68] for a more detailed exposition.

Definition 3.1 [Expansion of a sequence] Given a string s = s1s2 · · · sl over the alphabet

ΣN , an expansion t of s is obtained by possibly inserting − symbols into s. A maximal

substring of t containing only − symbols is called a gap.

Definition 3.2 [Multiple Sequence Alignment (MSA)] Let S = {s1, . . . , sk} be a set of k

strings. Then an MSA of S is a set T = {t1, . . . , tk} such that each ti is an expansion of si,
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all ti have the same length n (also called the length of the MSA) and for all j with 1 ≤ j ≤ n,

then there exists a ti such that ti[j] ̸= −.

We will use the example of Figure 3.1 as a running example to introduce the technical

aspects of this work.

A variation graph (see Definition 2.1) is a representation of an MSA [69], but such a

representation is not unique. Indeed there can exist more than one variation graph expressing

the sequences in an MSA. Conversely, from each variation graph we can obtain several MSAs,

e.g. depending on where indels are inserted. However, it is not immediate to obtain those

alignments, since a graph might contain cycles that must be broken to obtain the MSA.

In this work we explore a connection between MSAs and variation graphs based on the

notion of block, where a block is a portion of the MSA correponding to the same string and

is associated with a vertex of the variation graph.

In what follows, given a set S = {s1, . . . , sk} of sequences and a subset K ⊂ {1, . . . , k}

of indexes, S|K is defined as the set {si : i ∈ K}. We can now introduce the definition of

block.

Figure 3.1: Example of MSA on the sequences # = AACCGA, □ = AAACGAT ,
♢ = GAACGAT , △ = CAACGAT , and ▽ = AATCCGGAA.
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Definition 3.3 [Block] Let T = {t1, . . . , tk} be an MSA of length n. Then a block is a triple

(K, b, e) with K ⊆ {1, . . . , k}, K ̸= ∅ and 1 ≤ b ≤ e ≤ n, such that ti[b : e] = tj[b : e] for all

i, j ∈ K.

The label of the block (K, b, e) is the string tl[b : e], for any l ∈ K.

Informally, a block is a collection K of rows of the MSA and an interval of columns

between b and e such that all rows of K in that interval are the same sequence.

In this paper, each vertex of the variation graph corresponds to a block, and the label of

the vertex is exactly the label of the block. Moreover, the vertices of the graph correspond

to non-overlapping blocks of the MSA. While the number of blocks is exponential in the

number of sequences, maximal blocks can be computed in linear time, where a block (K, b, e)

is maximal if enlarging K, decreasing b, or increasing e does not result in a block.

Definition 3.4 [Maximal block] Let T = {t1, . . . , tk} be an MSA of length n, and let

(K, b, e) be a block of T . Then (K, b, e) is a maximal block if:

1. for each h ∈ {1, . . . , k} \K, th[b : e] ̸= tk[b : e] for any k ∈ K (row-maximality),

2. b = 1 or ti[b− 1] ̸= tj[b− 1] for some ti, tj ∈ T |K (left-maximality), and

3. e = n or ti[e+ 1] ̸= tj[e+ 1] for some ti, tj ∈ T |K (right-maximality).

Finally, we say that two blocks are overlapping if they share some entry of the MSA.

Definition 3.5 [Overlapping blocks] Two blocks (K1, b1, e1) and (K2, b2, e2) overlap if (1)

K1 ∩K2 ̸= ∅ and (2) there exists an integer i such that b1 ≤ i ≤ e1 and b2 ≤ i ≤ e2.
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Figure 3.2: Two overlapping maximal blocks whose sets of rows are not nested. On the left,
the (dashed line) block ({#,□,▽}, 1, 2), on the right the (solid line) block ({□,♢,△}, 2, 9)

Figure 3.3: Two overlapping maximal blocks with nested sets of rows Starting from the
left, we have the red block ({□,♢,△}, 2, 9) and the blue block ({#,□,♢,△,▽}, 7, 8). The
blue block is a vertical block because it contains all rows of the MSA.

3.2.1. The Minimum Weight Block Cover problem

We formalize the variation graph construction as computing a block cover of the MSA.

Definition 3.6 [Block Cover] Let T = {t1, . . . , tk} be an MSA of length n over k sequences,

and let B be a set of blocks of T . Then B is a cover of the MSA T if, for each 1 ≤ i ≤ k and

1 ≤ j ≤ n, there exists at least a block (K, b, e) such that i ∈ K and b ≤ j ≤ e. Moreover,

if all blocks in B are non-overlapping, then B is an exact cover of the MSA.

The natural computational problem that we formalize is the Minimum Weight Block

Cover, where the instance is an MSA and we want to compute an exact cover of the MSA

using blocks that minimize some objective function.
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Notice that we are not specifying the objective function here, since different biological

settings will result in different objecting functions. In fact, one of the advantages of our

approach is that we can easily consider different objective functions, resulting in the following

(meta)problem.

Problem 3.1 [General Minimum Weight Block Cover (G-MWBC)] The instance of the G-

MWBC problem is an MSA T . Then a feasible solution is an exact cover C of T . We denote

f() as the objective function. Then C is an optimal solution if C minimizes the objective

function.

Our strategy to solve G-MWBC will mainly consist of selecting a set of blocks B and

looking for a subset of B that is an exact cover of the MSA. This is formalized with the

following computational problem, where the set of possible blocks is given as part of the

instance.

Problem 3.2 [Minimum Weight Block Cover given a set of blocks (MWBC)] The instance

of the MWBC problem is an MSA T and a set B of blocks of the MSA. Then a feasible

solution, if it exists, is an exact cover C ⊆ B of T . We denote f() as the objective function.

Then C is an optimal solution if C minimizes the objective function.

As already observed, we conjecture that G-MWBC and MWBC are NP-hard even though

they are restricted versions of the (weighted) exact set cover. In fact, we can easily encode

an instance of MWBC as an instance of minimum weight exact set cover, and G-MWBC is

the special case of MWBC where B is the set of all possible blocks of the MSA.

3.2.2. Building a variation graph from a Block Cover

Once we have an exact cover C of the MSA (e.g. Figure 3.4), we compute a variation

graph whose vertices are exactly the blocks of the cover, and two blocks (K1, b1, e1) and
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(K2, b2, e2) are an arc of the graph iff e1 = b2 − 1, and K1 ∩ K2 ̸= ∅, that is those blocks

correspond to consecutive columns of the MSA, and share at least one row. Observe that

the variation graph we build is a directed acyclic graph.

The label of a vertex is the label of the corresponding block, as shown in Figure 3.5.

Observe that, by construction, each row of the MSA is the concatenation of the labels of

blocks corresponding to a path of the graph. This means that the graph we have obtained

is a lossless representation of the input sequences of the MSA.

Although the graph represents each input sequence without any loss of information, it

might require some post-processing steps to obtain a simpler graph that is able to represent

the same set of sequences. First, we remove all nodes whose label consists of indels only

— when such a node is removed, an arc is added between its predecessors and successors,

to preserve the property that the graph expresses all the input sequences. Then we remove

indels from all labels.

Finally, we collapse each non-branching subpath into a single node. Notice that the initial

graph construction requires time linear in the MSA size, while the final step consists of a

Figure 3.4: Exact cover of the MSA of Figure 3.1. Blocks with a solid line contain at least
2 rows. Blocks with dashed lines contain only 1 row — they are one-row or one-character
blocks. The same colors will be used for the associated variation graph (see Figure 3.5
and Figure 3.6).
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Figure 3.5: The Variation graph obtained from the Exact Cover of Figure 3.4, by defining a
node for each block, and including arcs between consecutive blocks sharing at least one row
in the MSA.

graph traversal that updates the graph. The creation of nodes and arcs from consecutive

blocks is illustrated in Figure 3.4 and Figure 3.5.

3.3. Methods

3.3.1. Solving the Minimum Weight Block Cover problem

Since the number of blocks of an MSA T can be exponential in the MSA size, it is

infeasible to use a direct ILP formulation of the MWBC problem to obtain an optimal

solution. Therefore we must describe some approaches that reduce the running time, based

on restricting the set of possible blocks, that is solving an instance of MWBC, and forcing

some blocks to be part of the solution.

We first look at blocks spanning all rows, called vertical blocks (see Figure 3.11). We

introduce an additional parameter α: all maximal vertical blocks spanning at least α columns

will be a block in our Exact Cover. The final effect is that each long substring that is shared

by all rows of the MSA results in a single vertex of the variation graph, and all paths traverse

such vertex. This heuristic will greatly reduce the running time, since we can split the MSA

33



T

A

A

G

C

A

AATC

A

C

G

C

GA

Figure 3.6: The result of postprocessing on the variation graph of Figure 3.5: indels are
removed from node labels, and nodes labeled only by indels are removed. Non-branching
paths are collapsed to a single node.

into smaller subMSAs, one for each portion delimited by two vertical blocks. For example,

if a vertical block consists of columns 10–20 of the MSA and another vertical block consists

of columns 57-81, and then we extract and solve the subMSA corresponding to the columns

21-56. Those subMSAs are then solved independently (if possible, in parallel) to obtain an

exact cover of the initial ILP.

Even restricting to subMSA might result in a huge number of blocks, therefore we need

to compute a set of blocks that is sufficiently small to be manageable but allows us to

find an almost-optimal exact cover. To obtain such a set, we start from the set B of all

maximal blocks. Then a procedure, we called decomposition, is applied to each pair of

overlapping maximal blocks to create some smaller blocks that are added to B — we will

detail in Section 3.3.3 the decomposition procedures.

Finally, we add some blocks to guarantee the existence of an exact cover in the set of

blocks B, we will detail this procedure in Section 3.3.4.
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3.3.2. Computing maximal blocks

As observed before, to obtain the instance B for the MWBC problem, we first compute

the set of maximal blocks, since their number is linear in the MSA size and they can be

computed in linear time [66] via the Positional Burrows-Wheeler Transform (PBWT). In

particular, in [66] the notion of maximal perfect haplotype blocks has been introduced in

the framework of genome-wide selection. Maximal perfect haplotype blocks correspond to

the notion of maximal block over a binary alphabet with the requirement that at the block

has at least two rows. In our context, we used an implementation that extends the maximal

haplotype block notion to the DNA alphabet extended with the indel symbol.

Still, an exact cover consisting only of maximal blocks might not exist, while we need to

apply the ILP approach on a set B of blocks that contains a feasible solution of the MWBC

problem.

3.3.3. Decomposition of maximal blocks into non-overlapping blocks

First, we will show that two overlapping maximal blocks can involve two nested intervals

of columns if and only if the two sets of rows involved are one included in the other.

Lemma 3.1 Let (K1, b1, e1) and (K2, b2, e2) be two overlapping maximal blocks. Then b2 ≤

b1 ≤ e1 ≤ e2 if and only if K2 ⊂ K1.

Proof: (⇒) Assume to the contrary that ∃r ∈ K2 \ K1. Since b2 ≤ b1 ≤ e1 ≤ e2, this

implies that r[b1 : e1] is equal to the label of the block (K1, b1, e1), hence contradicting the

maximality of (K1, b1, e1).

(⇐) Assume now that K2 ⊂ K1. Since the two maximal blocks are overlapping, b2 ≤

e1 ≤ e2 or b2 ≤ b1 ≤ e2. Assume that b2 ≤ e1 ≤ e2 (the other case is symmetrical), and
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assume to the contrary that b1 < b2. Since K2 ⊂ K1, also (K2, b1, e2) is a block, contradicting

the maximality of (K2, b2, e2). 2

The coverage of an MSA can be split into two parts: those positions covered by maximal

blocks and the remaining ones. In the latter case, there exists a unique option to cover

the positions, that consists in creating one-row blocks. We can now focus our attention on

finding the coverage of the regions covered by maximal blocks.

The first notion of decomposition called row-maximal decomposition, is stated in the

following definition which builds on Lemma 3.1 (see Figure 3.7).

Definition 3.7 [Row-maximal decomposition of maximal blocks] Given two overlapping

blocks l1 = (K1, b1, e1) and l2 = (K2, b2, e2) with b1 ≤ b2, the result of their row-maximal

decomposition consists of the following blocks:

(K1, b1, b2 − 1) (3.1)

(K2, e1 + 1, e2) if e1 < e2 (3.2)

(K1, e2 + 1, e1) if e2 < e1. (3.3)

Notice that more than one condition might be true in Definition 3.7. In that case, the

result consists of all blocks whose conditions hold.

The case when b2 < 1 is symmetrical to the one of Definition 3.7.

A second decomposition, called complete decomposition, of two overlapping maximal

blocks is described next (see Figure 3.8). This second decomposition returns a superset of

the blocks computed with a row-maximal decomposition, hence resulting in a larger set of
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blocks. Just as for Definition 3.7, we describe only the case when b1 ≤ b2, since the other

case is symmetrical.

Definition 3.8 [A complete decomposition of maximal blocks] Given two overlapping

blocks l1 = (K1, b1, e1) and l2 = (K2, b2, e2) with b1 ≤ b2, the result of their complete

decomposition consists of the union of the result of their row-maximal decomposition, and

of the following blocks:

(K1 ∩K2, b1, e1), (K1 ∩K2, b2, e2) if K1 ∩K2 ̸= ∅ (3.4)

(K1 \K2, b1, e1), (K1 \K2, b2, e2) if K1 \K2 ̸= ∅ (3.5)

(K2 \K1, b1, e1), (K2 \K1, b2, e2) if K2 \K1 ̸= ∅ (3.6)

(K1 ∩K2, b2, e1) if K1 ∩K2 ̸= ∅ and b2 < e1 (3.7)

(K1 \K2, b2, e1) if K1 \K2 ̸= ∅ and b2 < e1 (3.8)

(K2 \K1, b2, e1) if K2 \K1 ̸= ∅ and b2 < e1 (3.9)

Notice that more than one of the above conditions might be true. In that case, the result

consists of all blocks whose conditions hold.

For each pair of overlapping maximal blocks, we compute their decomposition and the

result is added to the set of blocks. In Section 3.4 we will discuss when to use the row-

maximal or complete decomposition.

Figure 3.7: The additional blocks obtained by the row-maximal decomposition on the
overlapping maximal blocks of Figure 3.2 (on the left) and of Figure 3.3 (on the right).
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Figure 3.8: The additional blocks obtained by the complete decomposition on the
overlapping maximal blocks of Figure 3.2 (on the left) and of Figure 3.3 (on the right).
Additional blocks are colored.

3.3.4. Adding short blocks

Maximal blocks involving only one row — blocks (K, b, e) with |K|= 1 — correspond to

vertices of the variation graph encoding an entire genome, without highlighting the common

portions of the genomes we want to represent in a pangenome. For this reason, they are

undesirable and we remove them from the set B of blocks. On the other hand, their removal

does not guarantee that B contains an exact cover. To overcome this problem, we add to B

all blocks of the form ({r}, b, e) where [b, e] is a maximal interval in the row r not covered by

any maximal block spanning at least two rows. We refer to these blocks as one-row blocks.

Finally, we add to B all blocks of the form (Kσ, b, b) for each 1 ≤ b ≤ n and for each

character σ, where Kσ is the set of rows that have the character σ in column b. Notice that,

for each column b there are at most |Σ|+1 such blocks, since the character σ can be the indel.

We refer to these blocks as one-character blocks. The addition of one-row and one-character

blocks guarantees that the set B contains a feasible solution of MWBC.

3.3.5. An ILP for the Minimum Weight Block Cover problem

We can now describe the ILP for solving the MWBC that forms the main ingredient of

our approach. We recall that the set of blocks B fed to the solver consists of the following

blocks: i) the set of maximal blocks, ii) the result of the decomposition of the maximal blocks

described in Section 3.3.3 (which is either the row-maximal or the complete decomposition),
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iii) the one-row blocks, and finally iv) the one-character blocks described in Section 3.3.4.

Our implementation also removes duplicate blocks, but that is not relevant to our discussion.

The binary variables we use are C[K, b, e] for each block (K, b, e), where C[K, b, e] = 1

iff the block (K, b, e) belongs to the solution. The main constraints in our ILP are the usual

ones used to encode an exact cover:

∑
(K,b,e)∈B:r∈K,b≤c≤e

C[K, b, e] = 1 ∀1 ≤ r ≤ k, 1 ≤ c ≤ n (3.10)

The above constraints express the condition that exactly one block in the solution covers

each position (r, c) of the MSA.

We have not introduced the objective function of our ILP approach, since different bio-

logical or computational goals can be better modeled with different objective functions: one

of the advantages of an ILP approach is that we do not rely on a specific objective function,

but we can leave it as a decision that the final user will take.

We recall that each block in the solution will be later transformed into a node of a

Variation Graph. We are going to show five possible objective functions, the first three will

be a subject of our experimental assessment in Section 3.4.

We will denote by γ(K, b, e) the label of the blocks (K, b, e) without considering indels.

Clearly, the length of γ(K, b, e), denoted as |γ(K, b, e)|, is at most e − b + 1 and it is equal

to e− b+ 1 when the string in the block does not contain indels.

1. Minimize the number of blocks. The objective function is called blocks and it is defined

as

min
∑

(K,b,e)∈B

C[K, b, e]. (3.11)
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2. Minimize the number of vertices of the variation graph, penalizing vertices whose labels

are shorter than a certain threshold q. Notice that read mappers based on seeding,

such as GraphAligner [10], can benefit from graphs with longer node labels, where it

is more likely to find a seed. The objective function is called weighted and it is defined

as

min
∑

(K,b,e)∈B

P (|γ(K, b, e)|)C[K, b, e] (3.12)

where the penalization function P is defined as

P (a) =


∆ if a ≤ q

1 otherwise

and ∆ > 1 is the penalization parameter for these shorter labels.

3. Minimize the number of vertices of the variation graphs, penalizing vertices that are

not used by at least p input sequences, that is we prefer nodes with high coverage. The

rationale is that some variant calling pipelines (such as minigraph-cactus or vg prune)

start by removing vertices with low coverage. The objective function is called depth

and it is defined as

min
∑

(K,b,e)∈B

P (|K|)C[K, b, e] (3.13)

where the penalization function P is

P (a) =


∆ if a ≤ p

1 otherwise

with ∆ > 1 the penalization parameter.
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4. Minimize the total length of the labels of the nodes of the variation graph, excluding

indels. The objective function is called strings and it is defined as

min
∑

(K,b,e)∈B

|γ(K, b, e)|C[K, b, e]. (3.14)

5. Minimize the total length of the labels of the variation graphs, penalizing vertices that

are shared by fewer sequences. The objective function is called penalized strings and

it is defined as

min
∑

(K,b,e)∈B

|γ(K, b, e)|
|K|

C[K, b, e]. (3.15)

3.4. Results

We randomly select 50 complete SARS-CoV-2 genome sequences from ENA and down-

loaded them with ENA Tools2, we then create an MSA using MAFFT (version 7.525)

with default parameters. This MSA has 29903 columns.

Our analysis is divided into 3 parts. The first part examines the scalability of the decom-

position strategy, by determining the time and memory needed to apply the row-maximal

and the complete decomposition on the input MSAs. Secondly, we analyze the effect of vary-

ing the parameter α, that is the minimum length of forced vertical blocks. More precisely,

we report the values of the objective function blocks for different values of α, using both

decompositions. Finally, we study the effect of choosing different objective functions on the

resulting variation graph. The graphs are evaluated on the number of vertices, the length

of the graph labels, the number of potential seeds it contains, and the number of shared

nodes they have. In this last part, we have compared the variation graphs computed by

2https://github.com/enasequence/enaBrowserTools
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pangeblocks with those created with vg, make prg, founderblockgraph (starting from the

same MSA), and pggb (using the same set of sequences).

While our approach requires more computational resources, the experiments show that

pangeblocks can be run on a personal computer for real instances.

3.4.1. Assessing the decomposition strategies

We start by investigating the impact of the decomposition strategies on the computa-

tional resources required to run pangeblocks. Since the blocks obtained with the complete

decomposition (Definition 3.8) include those obtained with the row-maximal decomposition

(Definition 3.7), selecting the complete decomposition leads to a larger ILP instance.

We ran pangeblocks varying the number of columns, ranging from 100 to 3000 (incre-

menting by 100). For each number of columns, we have extracted 10 random MSAs from

the complete MSA on 50 SARS-CoV-2 genomes. We ran all those experiments on the blocks

objective function, since its the choice should not affect the memory and time, and without

any forced vertical block (this is imposed by setting α equal to the length of the MSA).

RAM usage and user time are comparable when using both decompositions in instances

up to a few hundred columns. After that point, the complete decomposition requires more

time and memory than the row-maximal decomposition (see Figure 3.9). The complete

decomposition failed since it used too much RAM (more than 90GB) on approximately 18%

of the instances — only successful runs are displayed in the Figure.

Notice that the row-maximal decomposition never exceeded 12 GB of RAM and com-

pleted its execution in less than 10 minutes.
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Figure 3.9: Time (on the left) and peak RAM usage (on the right) needed to solve the ILP,
as a function of the MSA length and the choice of decomposition. For each MSA length,
ranging from 100 to 3000, incremented by 100, we have extracted 10 random MSAs with
that length from the MSA of 50 SARS-CoV-2 complete genomes. The red dashed line
represents the complete decomposition, and the blue line represents the row-maximal
decomposition. The objective function blocks was used in this experiment.

3.4.2. Assessing the choice of α

We recall that the parameter α is the minimum number of columns of all forced vertical

blocks, that is all vertical blocks spanning at least α columns are forced to be part of the

solution. We explore if vertical blocks are chosen by pangeblocks with different objective

functions.

We focus on those α values where the longest subMSA (between two forced vertical

blocks) has more columns than the ones with smaller values of α, we refer to those values

of α as breakpoints. Breakpoints are especially relevant since each subMSA can be solved

independently and in parallel, therefore the computational resources needed are affected

mostly by the size of the largest subMSA (i.e. the one that changes at a breakpoint).

Breakpoints are shown in Figure 3.10 and can be identified as the values of α where the

blue curve increases its value. The effect of choosing different values of α on the entire MSA

can be seen in Figure 3.11, where black rectangles represent the forced vertical blocks, white

areas are the subMSA with the largest number of columns, and the gray rectangles are all

other subMSAs.
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Figure 3.10: Longest (columns) subMSA obtained for different values of α in the
SARS-CoV-2 MSA with 50 sequences and 29903 columns . The number of columns
(y-axis) shows the longest subMSA given that all vertical blocks with length at least α
(x-axis) are fixed. The curve shows how increasing the value of α implies an increase of the
number of columns in the longest subMSA. In particular, we call breakpoints of α those
values of α that determines a change in length of the subMSA. This plot can help to decide
a reasonable value of α given the available resources. A picture of the MSA given these
breakpoints is shown in Figure 3.11.

44



Figure 3.11: A view of SARS-CoV-2 MSA with 50 sequences and 29903 columns for
different values of α (see label to the left), from α = 1 to α = 881 (from top to bottom).
Forced vertical blocks (those with the number of columns less or equal to α) are shown in
black. SubMSAs in between vertical blocks (or at the beginning, or the end of the MSA)
are in gray. The longest subMSA is shown in light gray. Values of α correspond to
breakpoints shown in Figure 3.10, where the longest subMSA when fixing α increases in
length.
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Notice that we have decided to focus on the number of columns of the largest subMSA

instead of the time and memory used, since Section 3.4.1 shows that the complete decom-

position can manage at most a few thousand columns using at most 90 GB of RAM. On the

other hand, Figure 3.10 represents all possible number of columns of a subMSA, hence it does

not have such restriction. Moreover, each subMSA is solved independently, therefore we can

actually use the number of columns of the largest subMSA as a proxy of the computational

resources needed.

Now we can analyze the effect of the choice of α on the number of vertices of the resulting

graph — results are shown in Figure 3.12 — when we use the blocks objective function. Since

we need to run pangeblocks on the resulting subMSAs, we have been able to consider only

values of α smaller than 158.

We expected larger values of α to correspond to fewer vertices, but this is what we observe

for the complete decomposition only, and even in that case it is not a monotonous decrease.

This phenomenon is due to the fact the maximal blocks and their decomposition is computed

independently for each subMSA, therefore the set of blocks fed to the ILP for larger values

α is not a superset of the set for smaller values. Moreover, the phase where a solution of

MWBC is used to compute a variation graph introduces an additional uncertainty in the

number of vertices of the final graph.

We observe in Figure 3.12 that the row-maximal decomposition reach a plateau, or even

begin to worsen, for moderate values of α — around 90 for the row-maximal decomposition —

hinting that the large computational resources needed for larger values of α are not actually

necessary in this case. In the case of the complete decomposition, due to computational

resources, we are limited to consider up to α = 158, nevertheless, in smaller instances

(See Supplementary material) we observe the same behavior described for the row-maximal

decomposition.
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Figure 3.12: Number of vertices. The plot is the results of running pangeblocks, pggb,
vg, make prg and founderblockgraph on the 50 SARS-CoV-2 genomes instance, using the
row-maximal (blue dot) and the complete (red square) decomposition. The y-axis is the
number of vertices of the variation graphs (after post-processing), and the x-axis
corresponds to various values of α (from 1 to 158, see Figure 3.11). The number of nodes
for other tools is shown by horizontal lines. The black dotted line corresponds to pggb, the
red dashed line corresponds to vg, and the orange dash-dot line corresponds to make prg,
and the green dash-dot line corresponds to founderblockgraph.

47



It is especially noticeable that both decompositions are able to obtain graphs with fewer

vertices than vg and pggb as shown in Figure 3.12. This is partially surprising since vg and

pggb can build variation graphs that contain cycles (which helps in reducing the size of the

graph), while pangeblocks constructs only acyclic graphs. make prg creates a graph with

the number of nodes in between both decompositions, while founderblockgraph graph has

more than 3× the number of nodes than all other tools. The row-maximal decomposition

results in essentially the same number of vertices as vg and about 10% fewer vertices than

pggb. On the other hand, the more computationally expensive complete decomposition

obtains 55-60% fewer vertices than vg.

By choosing α we are fixing vertical blocks with equal or more columns than α, this im-

poses finding a suboptimal solution of the MSA by solving an ILP for each resulting subMSA

not covered by the fixed vertical blocks. Vertical blocks are nodes in the graph traversed

Figure 3.13: Number of vertices of the variation graph that are traversed by all sequences
as a function of α and the choice of decomposition, on the MSA of 50 SARS-CoV-2
complete genomes. For the complete decomposition (right), the objective functions blocks,
weighted, and depth coincide in the use of vertical blocks (y-axis), and decrease when
increasing α, the same tendency for strings with higher usage of vertical blocks. In the
row-maximal decomposition (left), the tendency is to decrease the use but with lower
fluctuation due to the smaller search space. The strings objective function does not change
with α, meaning that vertical blocks are always preferred.
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by all sequences. We can see in Figure 3.13 (right) that with the complete decomposition,

the blocks, weighted, and depth objective functions lead to fewer nodes that are shared by

all sequences when α is increased. With larger values of α, the ILP can discard (unforced)

vertical blocks to find a better solution that contains larger blocks, i.e. those that cover more

cells in the MSA. In other words, both the number of blocks and the total length of labels

of the graph decrease with larger values of α, as expected since the space of the feasible

solution is larger.

The left plot of Figure 3.13 is on row-maximal decomposition, where there is no substan-

tial difference among the objective functions. When choosing the depth objective function,

the procedure prefers to pick blocks traversed by a larger number of sequences. Among

those, all vertical blocks fit this criteria, therefore they are likely to be retained even for

larger values of α, hence the final solution computed is largely unaffected by the choice of α.

This is likely to be the result of the smaller search space created by this decomposition,

which is heavily constrained and does not allow the choice of the objective function to affect

the selection of the blocks covering the MSA. On the other hand, larger values of α and the

associated larger search space lead to fewer nodes overall, including those shared by all nodes.

Finally, comparing the two plots of Figure 3.13 we can observe that the two decompositions

lead to a completely different behavior of the ILP when choosing the different objective

functions, except for α = 1, when all vertical blocks are forced to be in the solution.

3.4.3. Assessing the objective functions

In this section, we assess the effect of the objective functions on some properties of the

resulting variation graph. More precisely, we analyze the blocks, weighted, and depth objec-

tive functions, since the strings and the penalized strings objective functions result in graphs

that have a simplistic structure. The optimal solution with the strings objective function
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consists of one-character blocks, therefore demanding the nontrivial graph optimization steps

to the post-processing phase.

Figure 3.14 (a) shows the total number of vertices of the variation graphs (after post-

processing) obtained with the different objective functions, with α = 168. In all three

settings, the number of vertices is smaller than those achieved by pggb and vg, even though

the difference with vg is negligible when using the row-maximal decomposition. Choosing

the blocks or the weighted objective functions produces graphs with the fewest vertices.

When choosing the weighted objective function, we have run pangeblocks with the

parameter q equal to 20 (all blocks spanning fewer than q columns have cost ∆ = 1000

instead of 1). We present only the results with ∆ = 1000, since smaller values of ∆ result in

graphs that are very close to those obtained with ∆ = 1, that is without penalization. When

choosing the depth objective function, we have run pangeblocks with the parameter p equal

to 0.11 (all blocks that are traversed by fewer than a p fraction of the input sequences have

cost ∆ = 1000 instead of 1). When choosing the blocks objective function, no parameter is

needed.

Notice that choosing the weighted objective function results in a graph with negligible

differences from the one created by choosing the blocks objective function.

We recall that the objective function determines the block cover, while the y axis of the

figure is computed on the result of the post-processing over the block cover, nodes that are

labeled only by indels are removed. The weighted objective function is designed to prefer

nodes with longer labels, by penalizing those who contain too many indels, see Eq. 3.12,

which leads to the selection of fewer, but longer (w.r.t. their label without indels) nodes, as

we can see in Figure 3.14 (b).

Figure 3.14 (b) shows the total number of characters of the graph labels (after post-

processing) obtained with the different objective functions, with α = 158. In all three
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(a) Number of vertices (b) Length of the graph

(c) Number of seeds (d) Node depth

Figure 3.14: Four metrics were measured over pan-genome graphs created with five
construction tools on the 50 SARS-CoV-2 genome instance. We report (a) the number of
vertices of each graph, (b) the total length of the graph, (c) the number of potential seeds
(k-mers) of length 20, and (d) the number of vertices used by at least the 11% of the input
sequences. For pangeblocks we report the results of three objective functions: blocks,
depth, and weighted (horizontal axis) The metrics for other tools are shown by horizontal
lines. The black dotted line corresponds to pggb, the red dashed line corresponds to vg, the
orange dash-dot line corresponds to make prg, and the green dash-dot line corresponds to
founderblockgraph. Since make prg creates a sequence graph, node depth cannot be
computed for it.
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settings, the total number of characters obtained by pangeblocks is larger than that achieved

by pggb and vg, even though the differences are marginal when using the row-maximal

decomposition.

Figure 3.14 (c) shows the total number of potential seeds (that is the 20-mers that are

substring of at least a vertex label) of the variation graphs, obtained with the different

objective functions, with α = 158.

When using the complete decomposition, we obtain a number of seeds that is larger

than those achieved by pggb and vg. When choosing the row-maximal decomposition, the

results obtained by pangeblocks are marginally larger than both vg and pggb. The weighted

objective function produces a graph with more seeds, thus the graph can be potentially more

informative if the task is aligning reads to the graph. Figure 3.14 (d) shows the fraction of

vertices traversed by at least 11% of the genome sequences, obtained with the different

objective functions, with α = 158. When using the row-maximal decomposition, the results

are slightly smaller than pggb. vg on the other hand has the highest number of these nodes.

In the case of pangeblocks, we notice that choosing the depth objective function results in

a higher number of vertices with this coverage, for both decompositions, as was expected,

since this objective function was built for this purpose.

In general, we can observe that founderblockgraph creates bigger graphs w.r.t. the

other tools, both in number of nodes and length of the graph, with the particularity of

very short nodes, which translates into a small number of potential seeds. make prg creates

graphs with fewer nodes than vg, pggb, and founderblockgraph, but with longer nodes,

showing a higher number of potential seeds than the other tools.

3.5. Discussion

We have presented a computational problem, Minimum Weight Block Cover (MWBC),

that formalizes the problem of constructing a variation graph from an MSA. We have pro-
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posed an ILP approach for solving the MWBC problem and constructing a graph and we

implemented it as a tool, called pangeblocks.

We have experimentally shown that pangeblocks can scale to genome-scale instances.

More precisely, our experimental analysis has been run on an MSA on 50 complete SARS-

CoV-2 genome sequences (approximately 30kbp). We have also shown how the ILP formula-

tion is sufficiently flexible to accommodate different goals. In fact, by choosing an objective

function, the decomposition strategy, or the minimum size of a forced vertical block, we are

able to obtain variation graphs that have different characteristics, for example we can obtain

graphs whose number of vertices ranges from 800 to 1400. Notice that all graphs computed

by pangeblocks are complete representations of the input MSA, that is each input genome

corresponds to the concatenation of the labels if a path of the graph.

We have compared pangeblocks with the two most widely used tools for constructing

variation graphs, vg and pggb, showing that we can obtain graphs that are similar to theirs.

We have to remind that our ILP approach is more flexible, therefore allowing to tailor

the graph construction to specific need. At the same time, those possibilities affect the

computational resources needed by pangeblocks.

We observe that the use of ILP and optimization criteria in the construction of the

variation graphs allows to include biological constraints. In particular, we have introduced

the parameter α to bound the length of the so called vertical blocks, i.e. those nodes of

the graph corresponding to consecutive MSA columns where the input sequences are all

identical. While we have introduced α for computational reasons, setting its value might

have a possible biological motivation, since it can influence the regions where recombinations

are more likely.

There are some directions for future research. First of all, there is a large gap in both

the computational resources needed and the resulting graphs, between the complete and the
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Row-maximal decompositions. Therefore we think that different decomposition strategies

can be relevant. Moreover, we would like to keep most of the flexibility allowed by the

ILP approach, but avoiding its computational cost. This requires restricting the possible

parameters to a subset of those that are currently modeled by the ILP, and designing a

combinatorial approach that is able to quickly compute a solution on those parameters.

3.6. Availability of data and materials

All sequences used in this manuscript were downloaded from 3ENA. The datasets gen-

erated and/or analysed during the current study are available in the Zenodo repository

doi.org/10.5281/zenodo.12187814.

3https://www.ebi.ac.uk/ena
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Chapter 4

Comparison of pangenome graphs with Ricci-Flow

A pangenome graph is a data structure used to represent a collection of genomic se-

quences, with each sequence depicted as a path within the graph. Regardless of the in-

creasing development of graph builders, the comparison of different graph representations

has been always based on some downstream analysis; like variant calling or read alignment.

Even though metrics for graph comparison exist, to the best of our knowledge no prior work

has extended any of these approaches to work on Pangenome Graphs.

The comparison of Pangenome Graphs imposes a challenge from the combinatorial point

of view since paths and labels need to be considered, and the graph isomorphism problem

is not known to be solvable in polynomial time yet. We propose to study the comparison of

two pangenome graphs using Riemannian geometry, in particular, with the use of Ricci-Flow

which was proposed in the 1980s.

In this ongoing work, we extend previous work for the comparison of undirected and

unlabeled graphs to variation graphs. We present a framework where information regarding

nodes, edges, and paths can be considered, and explore how to align variation graphs modeled

as discrete manifolds.

A proof of concept of the work introduced here was materialized in the tool PanRicci,

open source and available at https://github.com/jorgeavilacartes/panricci.
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Our contribution

• We propose a framework for modeling variation graphs as discrete manifolds, enabling

manipulation with the discrete Ollivier Ricci-Flow algorithm. Specifically, we show how

path and label information in a variation graph can define probability distributions over

its nodes.

• We provide formal definitions of isomorphism for both variation graphs and discrete

manifolds.

• Our method uses Integer Linear Programming to align variation graphs by defining

relative node representations. These representations are derived from weights obtained

after applying discrete Ricci-Flow to the corresponding discrete manifold.

4.1. Introduction

Pangenome graphs can be built with different tools (vg [13], minigraph [14], pggb [15],

minigraph-cactus [7], make prg [4], founderblockgraph [17]), but the comparison of their

results has always relied on specific downstream analyses [6, 7, 16], while we would like to

have a quality measure that is not overly dependent on downstream analysis, but on the

graphs themselves.

A motivation to pursue a geometrical direction to align pangenome graphs based on [70],

where the problem of covering alignment between graphs was investigated. Their work

concludes that comparing two pangenome representations is NP-hard if the notion of covering

alignment they propose is accepted. Comparing pangenome graphs presents a combinatorial

challenge, as both paths and labels must be taken into account.

In our approach, we explore a novel direction using Riemannian geometry. Specifically,

we leverage the concept of manifolds, which are smooth, curved spaces that generalize the
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idea of surfaces in higher dimensions. Ricci-Flow, introduced by Hamilton in the 1980s [71],

is a process that smooths out the curvature of a manifold over time, providing a powerful

tool in Riemannian geometry. This area of mathematics gained significant attention in the

early 2000s when Perelman published a series of groundbreaking papers [72–74], claiming

to have solved the Poincaré Conjecture, one of the Millennium Prize Problems. However, it

took nearly four years for the mathematical community to fully understand and validate his

results.

Subsequently, Ollivier extended these concepts to metric spaces [75, 76], and in [77],

the Ollivier-Ricci curvature was adapted to graphs. This adaptation has led to numerous

applications in graph theory, such as approximate graph alignment [18], community detection

in networks [78], and the study of over-squashing and bottlenecks in the training of graph

neural networks [79].

We propose studying the comparison of two variation graphs using the discrete Ollivier

Ricci-Flow [18], along with an extension of Ricci-Flow to discrete manifolds. Our approach

begins by exploring the isomorphism between variation graphs within this framework, and

we introduce formal definitions of alignment between manifolds to establish a connection

with alignment in variation graphs.

4.2. Preliminaries

First, we introduce the Wasserstein distance, a metric for probability distributions, along

with the concepts of discrete manifolds, Ricci curvature, and discrete Ollivier Ricci-Flow.

Finally, we provide definitions of the isomorphism between graphs and variation graphs.
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4.2.1. Wasserstein distance

The Wasserstein distance (also known as the optimal transport distance) has been ex-

tensively studied for comparing probability distributions on Riemannian manifolds [80].

Here we define the Wasserstein for two discrete probability distributions.

Definition 4.1 [Wasserstein Distance] Given two discrete probability distributions f1 =

(a1, · · · , am) and f2 = (b1, · · · , bn), the p-Wasserstein Distance between f1 and f2 is defined

as W(f1, f2) = (⟨C, T ⟩)1/p, where C = (cij) assigns a cost for each pair (i, j), and T = (Tij)

is the optimal transport plan obtained by the solution of the following model,

minimize
m∑
i=1

n∑
j=1

cijTij

subject to
m∑
i=1

Tij = aj , j = 1, . . . , n

m∑
j=1

Tij = bi , i = 1, . . . , n

Tij ≥ 0

4.2.2. Discrete manifolds and Curvature

The main object of study in this framework is the manifold. In particular, we will model

a variation graph (see Definition 2.1) as a discrete manifold, which we formalize in the

following definition.

Definition 4.2 [Discrete manifold] A discrete manifold is a tuple (X, d) with X a set of

elements, and d : X × X 7→ R+ a metric. Each element of X is doted by a probability

distribution over its one-step proximity neighbors, i.e. over elements that can be reached

across one geodesics defined by the metric d (analogous to traversing one edge in a graph).
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To better understand the concept of curvature, consider the following analogy. Suppose

you need to move an object from one point to another along the shortest possible path,

known as a geodesic. In this scenario, the curvature of the surface indirectly quantifies the

effort required to transport the object along the geodesic.

Consider the difference between moving an object across various terrains. On a flat sur-

face, where curvature is zero, the energy required to move the object is consistent regardless

of the direction you choose –— whether moving straight, left, or right. This is because a flat

surface implies that the shortest path between two points remains constant and the effort is

uniform. In Riemannian geometry, a surface with zero curvature is one in which distances

and the corresponding effort are unchanged across different directions.

In contrast, if the object is moved uphill on a surface with negative curvature, the effort

increases due to the steeper incline. The path is more challenging to traverse, and more

energy is expended in the process. Similarly, if moving downhill on a surface with positive

curvature, the path might appear easier, but additional factors, such as gravity or the nature

of the terrain may increase the effort required to maintain control.

In essence, curvature tells you how terrain affects the effort to move an object along a

geodesic. On a flat surface, the effort is constant; on a curved surface, the effort changes

depending on the type of curvature.

Curvature in a discrete manifold (X, d), is defined for a pair of elements u, v ∈ X, and is

denoted by κ(u,v). It measures the deviation of the manifold from being flat.

W (mu,mv) = (1 − κ(u,v))d(u, v), (4.1)
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where mu,mv are probability distributions defined over the elements u and v, respectively,

and W (·, ·) is the Wasserstein distance with costs defined by the shortest paths between

pairs of nodes in the metric d.

In the next section, we pay special attention to these probability distributions, an essential

part of the curvature. We will show how to manipulate them to model the information present

in variation graphs.

For simplicity, we will consider a discrete manifold (X, d) as a weighted graph G =

⟨V,A,w⟩, where for each node u ∈ V we have a probability distribution mu. We assume

we have a bijection between nodes of G and the elements in X, Θ : V 7→ X such that the

weight function w : V × V 7→ R+ is defined by the metric d as w(u, v) = d(Θ(u),Θ(v)).

Furthermore, the weighted graph is assumed to be a single connected component. Since d is

a metric, for any existing edge (u, v) ∈ A, the weight of such edge, w(u, v), is the shortest

path between those nodes. This will be relevant since the curvature in a discrete manifold

is computed only for existing edges.

From equation Eq. 4.1 we can define the curvature as follows.

Definition 4.3 [Discrete Ollivier-Ricci Curvature [18]] The discrete Ollivier-Ricci Curva-

ture of an edge (u, v) is defined by

κ(u,v) = 1 − W (mu,mv)

d(u, v)
(4.2)

where mu,mv are probability distributions defined over the nodes u and v, respectively, and

W (·, ·) is the Wasserstein distance. While d(u, v) is the distance between nodes u and v

given by the weight of the arc (u, v) ∈ A.
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The overall curvature of the graph can be defined as the average curvature of its edges:

κ =
1

|E|
∑

(u,v)∈E

κ(u,v) (4.3)

Given a discrete manifold, we can apply the following Ricci-Flow algorithm to evolve its

metric.

4.2.3. Probability measures for nodes

Probability measures are the key to compute the curvature of an edge, as shown in Def-

inition 4.3. In [18], given 0 < α < 1, the probability measure mu
α of a node u is defined as

follows,

mu
α(v) =


α , v = u

(1 − α)/|π(u)| , v ∈ π(u)

0 ,∼

(4.4)

In [78] another probability measure extending definition (Eq. 4.4) was proposed, to con-

sider nodes distant from the proximal neighbors, but we stick with the former definition.

Let us observe that (Eq. 4.4) can be generalized by,

mu
α(v) =


α , v = u

(1 − α)fu(v) , v ∈ π(u)

0 ,∼

(4.5)

where the mapping fu : π(u) 7→ [0, 1] satisfies
∑

v∈π(u) f(v) = 1.

Notice that in equation (Eq. 4.4), fu(v) = 1/|π(u)| for all nodes u ∈ V , which is not

suitable for modeling information like paths and labels.
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4.2.4. Ricci-Flow

Manifolds preserve the intrinsic relationships between their elements but possess a degree

of freedom in their metric. The Ricci-Flow algorithm provides a mechanism to iteratively

modify this metric, smoothing the manifold’s curvature while maintaining its underlying

structure.

Definition 4.4 [Discrete Graph Ricci-Flow algorithm [18]] The discrete Ricci-Flow is an

iterative process applied to the edges of a discrete manifold G = ⟨V,A,w⟩, where in each

iteration t, the weight of each edge (u, v) ∈ A, denoted by w
(t)
(u,v) is updated until the overall

curvature of the graph is constant and equal to 0. The updating process is defined as follows

w
(t+1)
(u,v) = w

(t)
(u,v) − κ

(t)
(u,v) · w

(t)
(u,v) (4.6)

where weights for t=0 are initialized randomly (w
(0)
(u,v) > 0).

Notice that the initialization of the weights must preserve d as a metric, i.e. , the shortest

path between two connected nodes must be the weight of the edge itself, otherwise, the

triangle inequality breaks.

In [19] a normalized version of the Ricci-Flow is proposed, where in each iteration, the

sum of the weights of the graph is ensured to be equal to 1. This prevents the graph from

collapsing to a point since all edges have a positive weight.

Definition 4.5 [Discrete Normalized Graph Ricci-Flow algorithm [19]]

w
(t+1)
(u,v) = w

(t)
(u,v) − κ

(t)
(u,v) · w

(t)
(u,v) + w

(t)
(u,v)

∑
(i,j)∈A

κ
(t)
(i,j)w

(t)
(i,j) (4.7)
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In the case of networks with a large number of edges, the edge weight can be infinitesimal

under the constraint that all weights sum up to 1. To avoid this, a small modification

of definition 4.5 was proposed, where the sum over the edges is defined by σ > 1. In

addition, a step size ε > 0 is also introduced.

Definition 4.6 [σ-weighted-sum of Discrete Normalized Graph Ricci-Flow algorithm [19]]

w(t+1)(u, v) = w(t)(u, v) − ε ·
(
κ
(t)
(u,v) −

1

σ

∑
(i,j)∈E

κ
(t)
(i,j)w

(t)(i, j)
)
· w(t)(u, v) (4.8)

With this modified normalization, the calculation is guaranteed within the computer preci-

sion regardless of networks with many edges [19].

Finally, when (any of) the Ricci-Flow algorithm is applied to a manifold, the resulting

metric is defined as the Ricci-Flow metric.

Definition 4.7 [Ricci-Flow Metric [18]] After Ricci-Flow is applied to a manifold (X, d), the

(updated) metric d—determined by the shortest paths between nodes based on the weights

when the overall curvature is 0— is called the Ricci-Flow metric.

4.2.5. Isomorphism on graphs

We first define the isomorphism on unlabeled unweighted graphs.

Definition 4.8 [Isomorphism between graphs] Given G1 = ⟨V1, A1⟩ and G2 = ⟨V2, A2⟩ two

graphs. We say that G1 and G2 are isomorphic if there exists a bijection ϕ : V1 7→ V2 such

that (u, v) ∈ A1 if and only if (ϕ(u), ϕ(v)) ∈ A2.

And we extend this definition to variation graphs, where we include labels and paths.
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Definition 4.9 [Isomorphism between variation graphs] Given G1 = ⟨V1, A1,W1⟩ and G2 =

⟨V2, A2,W2⟩ two variation graphs, with λ1 : V1 7→ Σ+, and λ2 : V2 7→ Σ+ labelling functions.

If there exists a bijection ϕ : V1 7→ V2 such that

1. (u, v) ∈ A1 if and only if (ϕ(u), ϕ(v)) ∈ A2.

2. u1, . . . , un ∈ W1 if and only if ϕ(u1), . . . , ϕ(un) ∈ W2.

3. λ1(u) = λ2(ϕ(u)) for all u ∈ V1.

4.3. Methods

Our approach consists of modeling a variation graph as a manifold and applying Ricci-

Flow to obtain its metric when the overall curvature is 0. Then we use the updated metric to

define relative vector representations of each element of the manifold w.r.t. chosen reference

elements.

In this section, we start by showing how to model a variation graph as a manifold by

defining probability measures for nodes from a variation graph that fits into this framework.

Then we define the relative vector representations of nodes that depend on its metrics and

relate it to the alignment problem between variation graphs. Finally, we propose an Integer

Linear programming approach to solve the mapping between discrete manifolds and focus

on how to solve the isomorphism between variation graphs.

4.3.1. Probability measures for nodes in variation graphs

Given a variation graph G = ⟨V,A,W ⟩, with labeling function λ : V 7→ Σ+, and u ∈ V ,

let us denote by πout(u) = {v : (u, v) ∈ E}, and by πin(u) = {v : (v, u) ∈ A}, and by

π(u) = πin(u) ∪ πout(u), notice that u /∈ π(u) (if we do not allow bucles).
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In a variation graph, paths are present in the graph, and traverse nodes. The proportion

of paths traversing a node is called node depth, formally defined as follows.

Definition 4.10 [Node depth] Given a Variation Graph G = ⟨V,A,W ⟩, the node depth of

u ∈ V , is defined as the number of paths using the node u,

Nd(u) = |{p ∈ W : u ∈ p}|

Given a node v ∈ π(u), we can incorporate the paths in the definition of fu (see Equa-

tion 4.5) using the node depth as follows.

Definition 4.11 [Probability measure for a node in a Variation Graph with paths] Given a

Variation Graph G : ⟨V,E,W ⟩, and given a node v ∈ V , with π(v) the neighborhood of v,

with 0 < α < 1.

mu
α(v) =



α , v = u

(1 − α)
Nd(v)∑

w∈π(u)Nd(w)
, v ∈ π(u)

0 ,∼

(4.9)

Notice that we weighted each node depth by the total sum of them (in the neighborhood of

u), this is necessary to obtain a mapping that sums up to 1. Following the same reasoning

previously described, we can replace the node depth in Eq. 4.9 by an arbitrary function over

the neighbors of u, gu : π(u) 7→ R+

To include node labels in the probability distribution of the node u, we propose to extract

the labels of the subpaths traversing a node in a subgraph around u, such a subgraph is

formally defined as a locally induced variation graph.

65



Definition 4.12 [Locally Induced Variation Graph] Given a variation graph G = ⟨V,A,W ⟩,

and a node u ∈ V , we will define a locally induced variation graph as the variation graph

around the node u and its neighbors, formally Gu = ⟨{u} ∪ π(u), Au,Wu⟩, where Au is the

set of edges in E with u as one endpoint, and Wu is the set of sub-paths of W traversing u.

Given a node u, we use the locally induced variation graph Gu = ⟨{u} ∪ Π(u), Au,Wu⟩,

to use a k-mer based definition of gu.

Definition 4.13 [Probability measure for a node in a Variation Graph with labels] Given

a Variation Graph G : ⟨V,E,W ⟩, and given a node v ∈ V , with π(v) the neighborhood of v,

with 0 < α < 1.

mu
α(v) =



α , v = u

(1 − α)
gu(v)∑

w∈π(u) gu(w)
, v ∈ π(u)

0 ,∼

(4.10)

where gu is define as follows

gu(v) =

∑
m∈Kv∩Ku

(F v(m) + F u(m))

2
∑

m∈Ku
F u(m)

(4.11)

Kv correspond to the set of k-mers computed from the set of paths (strings) in the induced

variation graph of node v (analogous for Ku), and F v(m) correspond to the frequency of

k-mer m in the set Kv (analogous for F u(m)).
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4.3.2. Variation graph as a discrete manifold

To model a variation graph G = ⟨V,A,W ⟩ as a discrete manifold (X, d), we simply define

each node in V as an element of X, and define probability distributions for each node as

described in Section 4.3.1.

To make explicit the situation where we have a manifold obtained from a variation graph

after Ricci-Flow, i.e. provided with a Ricci-Flow metric d, we define it as a discrete manifold

variation graph as follows.

Definition 4.14 [Discrete manifold variation graph] Given a variation graph G = ⟨V,A,W ⟩

with labeling function λ : V 7→ Σ+, we will denote by M(G) the discrete manifold (X, d),

where X corresponds to the set of nodes V , and d is obtained by applying (one of the)

discrete Ricci-Flow to G.

We do not explicitly mention the distribution of nodes in the previous definition, since when

applying (normalized) discrete Ricci-Flow the resulting metric d captures this information.

4.3.3. Alignment between discrete manifolds variation graphs

Now that we have definitions of discrete manifolds, we are interested in finding a way to

align them, i.e. to find a correspondence between their elements. We start by defining the

mapping between discrete manifolds using their metrics.

Definition 4.15 [Mapping between discrete manifolds] Given M1 = (X1, d1) and M2 =

(X2, d2) two discrete manifolds, and without loss of generality let us assume that |X1|≤ |X2|,

a mapping between M1 and M2 is a partial injection ϕ : X1 7→ X2 such that the following

expression is minimized, ∑
u,v∈X1

|d1(u, v) − d2(ϕ(u), ϕ(v))| (4.12)
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Notice that in our situation, where variation graphs are modeled as manifolds, the map-

ping ϕ corresponds to a mapping between nodes of the graphs involved in the alignment.

Given that with the Ricci-Flow metric we have the distance for each pair of nodes,

following the idea proposed in [18], we propose to define relative distance representations

for each node w.r.t. chosen anchors. These anchors can be existing nodes in the graph or

dummy ones added for convenience. In the case of variation graphs, since we have paths,

we include dummy source and sink nodes to serve as the starting and ending points for all

paths, respectively.

Definition 4.16 [Relative distance representations of nodes in a variation graph] Given a

Variation Graph G = ⟨V,A,W ⟩ with discrete manifold variation graph M(G) = (X, d)

(see Definition 4.14). We include two auxiliary elements to X, namely source s, and sink t

nodes, such that all paths in W start in s, and all end in t. We extend the metric d with

d(s, u) = 0, for all u starting node of a path in W , and d(v, t) = 0, for all v ending node of

a path in W . Then, for each node x in V , we define its relative representation as follows,

x⃗ = [d(s, x), d(x, t)] (4.13)

Our main goal is to align variation graphs, to do so, we model them as discrete manifolds

(see Definition 4.14). To find ϕ for the problem defined in Definition 4.15, we solve a matching

problem between relative representations as in [18]. A key element of this approach is the

use of the source and sink nodes (see Definition 4.16). When aligning two discrete manifolds

(X1, d1) and (X2, d2), with source nodes s1 ∈ X1, s2 ∈ X2, and sink nodes t1 ∈ X1 and

t2 ∈ X2, we assume that these nodes correspond under the alignment ϕ. Specifically, the

source nodes are aligned such that ϕ(s1) = s2, and the sink nodes are aligned such that

ϕ(t1) = t2.
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4.3.3.1. On variation graphs with the same number of nodes

We start by considering two manifolds with the same number of elements. Given {u⃗1, · · · , u⃗n}

and {v⃗1, · · · , v⃗n} relatives representations of the elements of two discrete manifold variation

graphs, M(G1) = (X1, d1) and M(G2) = (X2, d2), respectively.

We define the binary decision variable

xij =


1, if u⃗i is aligned with v⃗j

0, ∼
(4.14)

The cost of aligning the relative representations u⃗i and v⃗j is defined by the Euclidean distance

between them.

cij = ∥u⃗i − v⃗j∥2 (4.15)

The goal is to minimize the global alignment cost between each pair of elements, i.e.

minimize
n∑
j=1

cijxij

subject to
n∑
i=1

xij = 1, j = 1, . . . , n

n∑
j=1

xij = 1, i = 1, . . . , n

xij ∈ {0, 1}

(4.16)

The solution of this problem is a bijection ϕ : [1, n] 7→ [1, n], such that ϕ(i) = j if and only

if u⃗i match with v⃗j.

We claim that considering relative representations as defined in Definition 4.16 suffice to

check if two manifold variation graphs are isomorphic.
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The following lemma shows that when the former alignment problem has an optimal cost

alignment value of 0, these relative representations allow us to prove that the metrics of the

aligned manifolds are the same.

Lemma 4.1 Given M(G1) = (X1, d1) and M(G2) = (X2, d2) discrete manifolds variation

graph with |X1|= |X2|. If there exists a bijective mapping ϕ : [1, n] 7→ [1, n], such that

∥u⃗i− v⃗ϕ(i)∥2= 0, ∀i ∈ [1, n], where u⃗i and v⃗ϕ(i) are the relative representations of the elements

ui ∈ X1 and vϕ(i) ∈ X2, respectively. Then ∀ui, uj ∈ X1, d1(ui, uj) = d2(vϕ(i), vϕ(j))

Proof: Given u⃗i, u⃗j relatives representations of ui and uj in X1, and v⃗ϕ(i), v⃗ϕ(j) relative

representations of vϕ(i) and vϕ(j) in X2. Let us suppose that,

d1(ui, uj) ̸= d2(vϕ(i), vϕ(j)) (4.17)

Notice that the bijection ϕ over the relative representation induces a bijection ψ : X1 7→ X2,

where ψ(uk) = vϕ(k), and which we extend with s 7→ ψ(s) and t 7→ ψ(t), for source and sink

nodes in X1 (s and t) and X2 (ψ(s) and ψ(t)). Then Eq. 4.17 can be rewritten as,

d1(ui, uj) ̸= d2(ψ(ui)), ψ(uj)) (4.18)

Since ∥u⃗i − v⃗ϕ(i)∥2= 0, using the definition of the relative representations in Equation 4.13

and ψ, we obtain that 
d1(s, ui) = d2(ψ(s), ψ(ui))

d1(ui, t) = d2(ψ(ui), ψ(t))

(4.19)

analogously, since ∥u⃗j − v⃗ϕ(j)∥2= 0,


d1(s, uj) = d2(ψ(s), ψ(uj))

d1(uj, t) = d2(ψ(uj), ψ(t))

(4.20)
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Let us consider the closed path in M(G1),

p1 : s, ui, t, uj, s

and the closed path in M(G2)

p
′

1 : ψ(s), ψ(ui), ψ(t), ψ(uj), ψ(s).

The length of p1 is given by,

L1 = d1(s, ui) + d1(ui, t) + d1(t, uj) + d1(uj, s) (4.21)

and the length of p
′
1 by,

L
′

1 = d2(ψ(s), ψ(ui)) + d2(ψ(ui), ψ(t)) + d2(ψ(t), ψ(uj)) + d2(ψ(uj), ψ(s)) (4.22)

L1 can also be computed by summing up the lengths of the closed paths p2 : s, ui, uj, s and

p3 : ui, t, uj, ui, and subtracting twice the length of ui, uj. Let us define by L2 and L3, the

lengths of p2 and p3, respectively. Then, we can equivalently express L1 as follows,

L1 = L2 + L3 − 2d1(ui, uj) (4.23)

Analogously, L
′
1 can be computed by

L
′

1 = L
′

2 + L
′

3 − 2d2(ψ(ui), ψ(uj)) (4.24)

where L
′
2 and L

′
3 is the length of the closed path p

′
2 : ψ(s), ψ(ui), ψ(uj), ψ(s) and p

′
3 :

ψ(ui), ψ(t), ψ(uj), ψ(ui), respectively.
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By Equations 4.19 and 4.20, L1 = L′
1, L2 = L′

2 and L3 = L′
3, then from Equations 4.23

and 4.24,

d1(ui, uj) = d2(ψ(ui), ψ(uj)) (4.25)

which is a contradiction with our assumption in Eq. 4.18. 2

Notice that Lemma 4.1 is merely geometric and the relative representations play a cru-

cial role in determining that the metrics of the two manifolds are the same, where knowing

the correspondence for the source and sink nodes are fundamental in the alignment. An-

other observation is that since the metrics of the manifolds are the same, we also have a

correspondence on the weights between the edges.

Recall that for each element in a manifold, we have a probability distribution. In the

following Lemma we show that two non-isomorphic manifold variation graphs cannot have

the same metric.

Lemma 4.2 If M(G1) = (X1, d1) and M(G2) = (X2, d2) are two non-isomorphic manifold

variation graphs (with curvature κ = 0), then d1 ̸= d2.

Proof: Let us suppose that |X1|= |X2|, with d1 and d2 defined over the same number of

edges, with isomorphic underlying graphs G1 and G2 (without considering distributions over

nodes), respectively. Consider the bijective mapping ψ : X1 7→ X2 such that (u, v) arc in G1

if and only if (ψ(u), ψ(v)) arc in G2.

Since M(G1) and M(G2) are non-isomorphic, let us assume that there exist x1 ∈ X1

and x2 ∈ X2 such that their probability distributions, f1 and f2, respectively, are different,

i.e. W (f1, f2) > 0 (see Definition 4.1).

Consider y ∈ π(x1) and ψ(y) ∈ π(x2), with x2 = ψ(x1), where the distributions defined

over y and ψ(y) are equal, i.e. fy = fψ(y), and suppose that d1 = d2. In both cases, κ(x1,y) = 0
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and κ(x2,ψ(y)) = 0,

1 − W (f1, fy)

d1(x1, y)
= 1 −

W (f2, fψ(y))

d2(ψ(x1), ψ(y))
(4.26)

since d1 = d2, we obtain

W (f1, fy) = W (f2, fψ(y)) (4.27)

let us define by T 1 the optimal transport plan between f1 and fy, and by T 2 the one between

f2 and fy (= fψ(y)), by Equation 4.27

T 1 = T 2 (4.28)

given f1 = (a11, · · · , a1n) and f2 = (a21, · · · , a2n), since f1 ̸= f2, exists l ∈ {1, · · · , n} such that

a1l ̸= a2l , then
n∑
j=1

T 1
lj ̸=

n∑
j=1

T 2
lj (4.29)

which is a contradiction with Equation 4.28. 2

A take-home message of the above proof is that the choice of node distribution is cru-

cial. For example, if we have a linear graph with a single bubble (two nodes) in the middle,

such that two possible walks between the source and sink nodes are possible, each one tra-

versed by 2 paths, when considering the probability measure with weights given by the node

depth Equation 4.9, the distributions of both nodes in the bubble are the same, hence their

Wasserstein distance is 0. This might lead to the wrong alignment between two variation

graphs with the same underlying structure w.r.t. nodes and paths, since their relative rep-

resenations might be the same if node labels are not considered. Hence, is crucial to define

a proper definition of probability distribution for nodes that can capture all the relevant in-

formation. We conjecture that including k-mer counts might avoid the described situation.

Equation 4.11 might be a way to properly model the information of paths and labels. In

this case, the distributions of nodes with different labels, traversed by the same number of
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paths, might result to be different (because the set of subpaths traversing each node differs

in at least one k-mer), but we have no proof yet about this.

One way to bypass this situation is to modify the formulation of Equation 4.16 and

include node labels as part of the cost, as follows.

cij = ∥u⃗i − v⃗j∥2+∆(λ(ui), λ(vj)) (4.30)

where, λ(ui) and λ(vj) are the labels of nodes ui and vj, respectively.

∆(a, b) =


δ, if a = b

0, otherwise.

(4.31)

and δ > 0 is the penalization cost.

4.3.3.2. On the isomorphism between variation graphs

The main result in [81] is the existence and uniqueness theorem for solutions to a

continuous-time normalized Ricci-Flow. This means that given a manifold (X, d), after

applying this version of the Ricci-Flow the updated metric d will always be the same (which

theoretically is not guaranteed for other versions of the discrete Ricci-Flow).

In this scenario, given two discrete manifold variation graphs, there will exist a bijective

mapping between their corresponding relative representations satisfying Lemma 4.1. Since

their metrics are the same, by Lemma 4.2, we conclude that the manifolds are isomorphic.

The last ingredient to find the correct mapping between the nodes is to solve the alignment

problem in Equation 4.16. To ensure that the assignment is correct (i.e. to avoid nodes with

the same relative representation and different labels being assigned incorrectly) we can use

the costs from Equation 4.30.
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4.3.3.3. On variation graphs with different number of nodes

The formulation of aligning two pangenome graphs with different numbers of nodes re-

quires several considerations, in particular the size of the graphs, which should lead to the

definitions of global (graph-vs-graph) and local (subgraph-vs-graph) alignments. Regarding

the approach described in the previous section, when comparing graphs with a substantial

difference in the number of nodes, the current definition of relative representation (see Def-

inition 4.16) might not capture relevant information for the comparison of the resulting

manifolds.

Here we relax the formulation given in Equation 4.16 for a global alignment and consider

the same relative representations given in Definition 4.16.

Given {u⃗1, · · · , u⃗m} and {v⃗1, · · · , v⃗n} relatives representations of the elements of two dis-

crete manifold variation graphs (m < n), M(G1) = (X1, d1) and M(G2) = (X2, d2), respec-

tively.

We define the binary decision variable

xij =


1, if u⃗i is aligned with v⃗j

0, ∼
(4.32)

with the same cost alignment as in Equation 4.15.

The goal is to minimize the alignment cost, i.e.
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minimize
n∑
j=1

cijxij

subject to
n∑
i=1

xij = 1, j = 1, . . . ,m

n∑
j=1

xij ≤ 1, i = 1, . . . , n

xij ∈ {0, 1}

(4.33)

The solution of this problem is a partial injection ϕ : [1,m] 7→ [1, n], such that ϕ(i) = j

if and only if u⃗i is aligned with v⃗j.

We refer to the function ϕ as the alignment between M(G1) and M(G2) (or G1 and G2).

Even though the same formulation could be considered for the local alignment, we believe

it requires other considerations regarding the relative representation defined in Equation 4.13,

Since these representations involve introducing dummy source and sink nodes, they may vary

considerably between graphs of different sizes, subsequently affecting the alignment costs.

Addressing this is considered a direction for future work.

4.4. Discussions

In this work, we introduce a novel framework that models variation graphs as discrete

manifolds, utilizing the principles of discrete Ollivier Ricci-Flow, particularly by defining

probability distributions over nodes based on paths and labels. We believe that this approach

paves the way for exploring the underlying geometry of variation graphs in a structured,

mathematically rigorous way, through the lens of the curvature.

We offer both a novel theoretical viewpointfor the alignment and analysis of variation

graphs. Future work could expand on these foundations by exploring additional discrete
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manifold techniques and notions of curvature, potentially enhancing the precision and scal-

ability of variation graph analyses in genomics and other fields.

We propose an Integer Linear Programming (ILP) approach to model alignment tasks

between variation graphs when modeled as discrete manifolds, by defining relative node

representations based on weights derived from applying discrete Ricci-Flow, our ILP model

provides a practical method for graph alignment, enabling theoretically grounded alignment

processes.

Some theoretical work must be done on the analysis and definition of probability distri-

butions for elements in a manifold. The goal is to ensure that the relative representations

for the nodes in a variation graph are unique for each element. This would allow us to solve

the alignment problem entirely based on the relative representations, instead of considering

additional information to penalize decision variables in the ILP formulation.
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Chapter 5

Fast and accurate clade assignment of Sars-CoV-2 sequences via Deep Learning

Since the beginning of the COVID-19 pandemic, there has been an explosion of sequencing

of the SARS-CoV-2 virus, making it the most widely sequenced virus in history. Several

databases and tools have been created to keep track of genome sequences and variants of the

virus, most notably the GISAID platform hosts millions of complete genome sequences, and

it is continuously expanding every day. A challenging task is the development of fast and

accurate tools that can distinguish between the different SARS-CoV-2 variants and assign

them to a clade, i.e. species evolutionarily related to a common ancestor.

In this chapter, we leverage the Frequency Chaos Game Representation (FCGR) and

Convolutional Neural Networks (CNNs) to develop an original method that learns how to

classify genome sequences that we implement into CouGaR, a tool for the clade assignment

problem on SARS-CoV-2 sequences. On a testing subset of the GISAID, CouGaR achieves an

96.29% overall accuracy, while a similar tool, Covidex, obtained a 77, 12% overall accuracy.

As far as we know, our method is the first to use Deep Learning and FCGR for intra-species

classification. Furthermore, by using some feature importance methods CouGaR allows to

identify k-mers that match SARS-CoV-2 marker variants.

CouGaR is open source and available at https://github.com/AlgoLab/CouGaR-g.

Our contribution

• By combining FCGR and CNNs, we develop a method that achieves a better accuracy

than Covidex (which is based on Random Forest) for clade assignment of SARS-CoV-2
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genome sequences, thanks to our training on a much larger dataset, with comparable

running times.

• Our method implemented in CouGaR-g is able to detect k-mers that capture relevant

biological information that distinguishes the clades, known as marker variants.

5.1. Introduction

The global coordination in combating the COVID-19 pandemic has led to the sequencing

of one of the largest amounts of viral genomic data ever produced. All this data is stored

in publicly available archives, such as the European Nucleotide Archive (ENA) and GI-

SAID [82], currently having more than 20 million sequenced genomes, classified in variants,

clades, and lineages.

The SARS-CoV-2 virus has evolved since its discovery, and the currently available phy-

logenies describing its evolutionary history [83] show more than 2000 different genomes,

divided into lineages.

Since the phylogeny is fairly stable and the main (existing) lineages, i.e. the lines of

descent, have been identified, a natural and interesting problem is to quickly find, given

a sequence, the clade to which it belongs, i.e. a group of descendants sharing a common

ancestor [84]. Fast and efficient solutions to the clade assignment problem would help in

tracking current and evolving strains and it is crucial for the surveillance of the pathogen.

This classification problem has been attacked with machine learning approaches [85–87]

using the Spike protein amino acid sequence to drive the classification step, and using k-mer

(substrings of length k) frequencies from complete genomes [88].

Subtyping Sars-Cov-2 sequences has been addressed in the literature with bioinformatics

pipelines that require the alignment to a reference genome [83] [89], and also with machine

learning approaches aiming to skip the alignment step [90]. Furthermore, an early approach
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to construct phylogenetic trees within SARS-CoV-2 strains and closely related species was

proposed in [91] using FCGR as embedding for a Hierarchical Agglomerative Clustering.

Similarly, FCGR was explored along with other techniques as embedding for the identification

of homologies between different known and emerging viruses in [92].

5.2. Preliminaries

Let us define by Σ = {A,C,G, T} the DNA alphabet, and the extended DNA alphabet

by ΣN = {A,C,G, T,N}, where N indicates a null call. We are given a phylogeny over the

possible viral strains, partitioned into classes: each class c of such partition L is a clade of

the tree, where a clade is a group of related organisms descended from a common ancestor.

Consider a collection S of complete genome assemblies over the alphabet ΣN , and a set

of L clades. We assume that there exists a labeling function λ : S 7→ L that assigns a clade

in L to each assembly s ∈ S. The problem asks for a mapping f : S 7→ L that assigns each

string to its clade.

To solve this problem, we propose a supervised learning model based on Convolutional

Neural Networks (CNN) [93], using FCGR as inputs.

5.3. Methods

We use the k-th order FCGR representation for each sequence. In order to obtain this

representation, we need to count the k-mers in each sequence and to put those frequencies

in the FCGR based on the CGR encoding.

Before feeding the FCGR to the model, we rescale its elements to values between 0 and

1 for stability of the learning process. To do so, we divide each FCGR element-wise by the

maximum value in the FCGR. It is worth mentioning that other preprocessing steps were

taken into consideration but were ultimately excluded because found empirically worse.
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Due to the huge amount of data available for most of the clades, we undersampled at most

20.000 sequences per clade to perform our experiments, nevertheless, for some clades only a

portion of it was available (see table representativity). In order to overcome the unbalance in

the undersampled dataset, we decided to use a weighted binary cross-entropy loss function

(instead of oversampling the underrepresented classes), where the cost associated with a

class c is inversely proportional to its representativity in the training set.

5.3.1. Model architecture

We choose a residual neural network, ResNet50 [94] as our CNN, adapted for k-th order

FCGR, i.e. with input size equal to (2k × 2k × 1), and output size equal to the number of

clades: |L|, with softmax activation function in the last layer and categorical crossentropy

as loss function, since we want to assign only one clade to each DNA sequence.

5.3.2. Model training

Each model was set to be trained for 50 epochs with a batch size of 32 using Adam

optimizer [95] with learning rate 0.001 (the default parameters in keras). The validation loss

was monitored after each epoch to save the best trained weights, reducing the learning rate

with a patience of 8 epochs and a factor of 0.1, and by an early stopping in case the metrics

do not improve after 12 epochs.

5.3.3. Model evaluation

To assess the performance of our trained model, we perform a classification evaluation of

the predictions and also a clustering evaluation for the embeddings in order to evaluate the

class separability. The reported metrics are based on a Repeated 5-fold Cross Validation.
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We report global (accuracy and Matthews correlation coefficient) and class-specific met-

rics (precision, recall, and F1-score) for the trained models.

5.3.4. Identification of relevant k-mers

After we train a model, we can perform feature importance methods to analyze the

impact of each element of the FCGR in our prediction. We selected Saliency Maps [55] and

Shap Values [96]. Saliency Maps calculate the gradient of the loss function for a specific

desired class concerning the input (FCGR) elements, the gradients are rescaled to [0, 1],

where elements with values closer to 1 represent the more influential features for the input

FCGR over the predicted class. Shap (Shapley Additive Explanations) Values is a game

theoretic approach to explain the output of any machine learning model. It aims to explain

the influence of each feature compared to the average model output over the dataset the

model was trained on, it outputs positive and negative values, where positive values push

the prediction higher, and negative values push the prediction lower. Using the most relevant

features from both methods over the FCGR, we aim to identify the most relevant k-mers for

the classification of each clade.

5.3.5. Data Selection

The dataset for this experiment was downloaded from GISAID. By the time of our access

to GISAID 1 there were around 10 million sequences.

To undersample the available data, we first dropped all the rows in the metadata without

information in the columns Virus name, Collection Date, Submission Date, clade, Host

and Is complete?, then we built a fasta_id identifier from the metadata as a concatenation

of the columns Virus name, Collection Date and Submission Date.

1April 04, 2022. https://www.gisaid.org/
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For each clade, we randomly selected 20, 000 sequences considering only those rows where

the Host column has value ”Human” — clades L, V, and S have less than 20, 000 sequences

available, in these cases all sequences have been selected.

As a result of the above procedure, we obtained 191, 456 sequences among the 11 GISAID

clades (S, L, G, V, GR, GH, GV, GK, GRY, O, and GRA) over the 12 available, we excluded

the clade GKA from our study since there were only 81 sequences reported in the metadata.

The undersampled dataset was randomly split into train, validation and test sets in 80 : 10 :

10 proportion, preserving the same proportion of clades (labels) in each set. The distribution

of the clades over the datasets is given in Table 5.1

Clade Train Val Test Total Available

S 14,298 1,788 1,788 17,874 17,874

L 5,154 644 644 6,442 6,442

G 15,999 2,000 2,000 20,000 408,552

V 5,713 714 714 7,141 7,141

GR 16,000 2,000 2,000 20,000 625,662

GH 16,000 2,000 2,000 20,000 547,792

GV 16,000 2,000 2,000 20,000 182,248

GK 16,000 2,000 2,000 20,000 4,170,758

GRY 16,000 2,000 2,000 20,000 944,876

O 16,000 2,000 2,000 20,000 55,400

GRA 16,000 2,000 2,000 20,000 2,833,863

153,164 19,146 19,146 191,456 9,800,608

Table 5.1: Distribution of the number of sequences selected for train, validation and test
sets by each clade. The final dataset for the 11 clades was split in a 80 : 10 : 10 proportion
for train, validation, and test sets.

5.4. Results

In this section, we present the experimental setup, clustering, and classification metrics.

We train one model for each k ∈ {6, 7, 8} and we complement the study of the accuracy of
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each model (compared against Covidex [88]) with an analysis of the most relevant k-mers

for the classification of each clade using Saliency Maps and Shap.

For this experiment we choose k ∈ {6, 7, 8} and sequences from 11 GISAID clades: S, L,

G, V, GR, GH, GV, GK, GRY, O, and GRA.

5.4.1. Model training

We show the accuracy (average of the 5 Repeated fold cross validation) of the train and

validation sets for k = 8 in Figure 5.1. For k = 6 and k = 7 the training is more unstable

for the first epochs, but it behaves similar to k = 8 in the later epochs, i.e. training and

validation metrics are similar.

The architecture used in this experiment is the same for all k (ResNet50 [94]), we only

changed the input size. Originally, this architecture was designed for inputs of size (224 ×

224 × 3), which led us to the assumption that this architecture could be more suitable for

k = 8. Notice that our sequences are ≈ 29, 000bp long, which means that our input FCGR

for k = 8 is very sparse, since from an n-long sequence we can count n − k + 1 k-mers, it

means that (in the case where all k-mers are different) we have at most 29, 000 k-mers, at

least 55% of the elements of the FCGR are 0 for k = 8. In Table 5.2 a comparison of the

number of features for each k and the training time per epoch in our experiments is detailed.

k-mer Dimensions Features Size (GiB) Time per epoch (min)

6 (64,64) 4,096 6.6 4:05

7 (128,128) 16,384 24.1 8:21

8 (256,256) 65,536 94.2 24:50

Table 5.2: For each k, the dimension of the FCGR, its number of features (4k), the amount
of memory required to store the selected dataset of 191, 456 sequences as FCGR, and the
average training time per epoch are reported in the table. The number of features and the
space increase exponentially w.r.t k.
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Figure 5.1: Average accuracy in the training and validation sets for our model with k = 8.
The best model (final weights) is set as the one with the lowest validation loss, achieved at
epochs 24 ± 5 for k = 8 (from a 5 RepeatedFold cross validation process). All models were
trained for 50 epochs using an early stopping of 12 epochs based on the validation loss
(hence, not all of them ran for 50 epochs).

5.4.2. Classification results

After each model is trained the precision and recall for the test set are computed for each

clade using the best trained weights (lowest loss in the validation set), achieved at epochs

24 ± 5, 27 ± 8, and 20 ± 3 for k = 6, k = 7, and k = 8, respectively. In our case, we assign

each sequence to the clade with highest score. Precision, recall and F1-score are shown in

Table 5.4.

Precision and recall are very similar among all the trained models, with small improve-

ments when k increases, 5 out of 11 clades have F1-score greater than 99% in our best

model (k = 8). Most notable differences in the performance can be seen in clades GR and

GRY, which present the lowest (and under 90%)reported recall and precision in each model,

85



respectively. Moreover, from the confusion matrices (see Fig. 5.2) we can see that misclas-

sified sequences that belong to clades GR and GRY, are confused between them, this can

be explained since clade GRY is originated from clade GR. For the other clades, most of

the misclassified sequences are predicted as (or belong to) clade G, that is the former one.

Clade O exhibits the second lowest recall, where the misclassified sequences are assigned

predominantly to clades G, GH, GK, and GRY.

k-mer Accuracy MCC

6 0.953714 ± 0.001589 0.948792 ± 0.001813

7 0.959856 ± 0.001740 0.955566 ± 0.001910

8 0.962175 ± 0.002829 0.958211 ± 0.003141

Table 5.3: Accuracy and Matthews Correlation Coefficient in the set for each of our
models. Each metric (µ± σ) is reported by its average (µ) and standard deviation (σ) from
a 5 RepeatedFold cross validation process. For both, accuracy and MCC the model
increases with the value of k. Going from k=6 to k=8 increases accuracy in 0.84%, and
MCC in 0.94%. In bold the highest value of each metric.
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Figure 5.2: Confusion matrix for the test set for one of the trained models with k = 8
(from a 5 RepeatedFold cross validation process). All the models are able to correctly
classify more than 98% of the sequences for all clades except for G, GR, GRY, and O. Most
of the incorrectly classified sequences of GR and GRY are confused between them, which
makes sense since they are evolutionarily related. For the G clade, the incorrectly classified
sequences are shared between clades GK and O. For the clade O, the incorrectly classified
sequences are predominantly assigned to clades G, GH, GK, and GRY.
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k-mer 6 7 8

Clade Precision Recall F1score Precision Recall F1score Precision Recall F1score

S 99.4 ± 0.2 99.6 ± 0.2 99.5 ± 0.1 99.7 ± 0.1 99.6 ± 0.1 99.7 ± 0.1 99.8 ± 0.2 99.7 ± 0.3 99.8 ± 0.1

L 98.3 ± 0.4 97.7 ± 0.6 98.0 ± 0.3 98.7 ± 0.4 99.0 ± 0.2 98.9 ± 0.2 98.0 ± 0.4 99.5 ± 0.3 98.7 ± 0.2

G 95.8 ± 0.7 94.7 ± 0.8 95.2 ± 0.4 97.1 ± 0.4 95.1 ± 0.4 96.1 ± 0.3 97.3 ± 0.8 95.9 ± 0.7 96.6 ± 0.1

V 99.1 ± 0.4 99.2 ± 0.4 99.1 ± 0.2 99.5 ± 0.5 99.4 ± 0.3 99.4 ± 0.3 99.6 ± 0.5 99.6 ± 0.2 99.6 ± 0.3

GR 91.7 ± 2.0 85.9 ± 1.7 88.7 ± 0.4 92.4 ± 1.3 87.5 ± 1.4 89.8 ± 0.2 93.9 ± 2.3 86.6 ± 1.7 90.1 ± 0.7

GH 98.6 ± 0.3 99.5 ± 0.1 99.0 ± 0.2 98.9 ± 0.2 99.7 ± 0.1 99.3 ± 0.1 98.8 ± 0.2 99.8 ± 0.1 99.3 ± 0.1

GV 99.5 ± 0.3 99.6 ± 0.2 99.5 ± 0.1 99.7 ± 0.1 99.6 ± 0.1 99.7 ± 0.1 99.6 ± 0.1 99.8 ± 0.1 99.7 ± 0.0

GK 91.8 ± 0.4 97.6 ± 0.5 94.6 ± 0.2 92.2 ± 0.5 97.7 ± 0.2 94.9 ± 0.4 92.7 ± 0.2 98.1 ± 0.8 95.3 ± 0.4

GRY 86.4 ± 1.3 93.2 ± 2.4 89.7 ± 0.6 87.8 ± 1.1 93.9 ± 1.4 90.7 ± 0.3 87.1 ± 1.5 95.5 ± 2.0 91.0 ± 0.7

O 94.3 ± 0.8 86.8 ± 0.2 90.4 ± 0.4 95.0 ± 0.6 89.2 ± 0.8 92.1 ± 0.6 96.7 ± 0.4 88.8 ± 1.2 92.6 ± 0.7

GRA 99.7 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.9 ± 0.1 99.7 ± 0.1 99.8 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1

Table 5.4: Precision, recall, and F1-score. Each of our models is represented by length of the the k-mers used to generate the
FCGR. Two clades, GR and GRY present deviations greater than 1% in their precision and recall for all values of k. In bold
the highest F1score for each clade and k. Each metric (µ± σ) is reported by its average (µ) and standard deviation (σ) from a
5 RepeatedFold cross validation process.
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5.4.3. Clustering results

We evaluate the embeddings of the last layer of each trained model using the Silhouette

Coefficient, Calinski-Harabasz score and Generalized Discrimination Value (GDV). These

results are shown in Table 5.5. We can observe that the model for k = 9 is the best one

among all metrics, however, all trained models exhibit a very similar separability based on

Silhouette and GDV.

5.4.4. Comparison with the literature

We compare our results against Covidex [88], a tool that classifies Sars-CoV-2 sequences

into three nomenclatures: GISAID, Nexstrain and Pango lineages. Using a different model

for each task, all based on Random Forest and 6-mers as input. The reported accuracy are

97, 77%, 99, 52% and 96, 56% for GISAID, Nextstrain and Pango models, respectively. They

also trained the models using 7-mers, but they claim that it only produced slightly better

results in terms of accuracy but with more than doubling the computation time [88].

The input for Covidex is a vector with the normalized counting of the frequencies for all 4k

k-mers. Our input, the FCGR also considers all k-mers but in a bi-dimensional matrix. The

k-mer Silhouette Calinski-Harabasz GDV

6 0.939 ± 0.007 145,879.214 ± 18,132.428 -0.712 ± 0.003

7 0.948 ± 0.003 163,926.767 ± 8,638.391 -0.717 ± 0.002

8 0.948 ± 0.006 174,736.086 ± 22,554.904 -0.718 ± 0.003

Table 5.5: Clustering metrics for our trained models. Each metric is computed using the
output of each model and the predicted clade (that is, the clade that achieves the highest
score by our model) in the test set. Each model is represented by the length of the k-mers
used to generate the FCGR. For the Silhouette score, the closest to 1 the better. For the
Calinski-Harabasz score, larger values are better. For the GDV score, the closest to −1, the
better. All models exhibit comparable separability of the clusters. Each metric (µ± σ) is
reported by the average (µ) and standard deviation (σ) in the from a 5 RepeatedFold cross
validation process.
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main difference between both approaches is the model behind it, while Covidex uses Random

Forest to perform the classification, we take advantage of the CNNs and use a 2-dimensional

input, the FCGR. Notice that using the FCGR with any other classical Machine Learning

method implies to convert the FCGR into a vector, and hence, the loss of the 2-dimensional

structure.

Since our model is trained using GISAID clades, we only compare to those results. In

Covidex, they used 10 clades: S, L, G, V, GR, GH, GV, GK, GRY and O. In our case, we

included GRA since there were enough available sequences by the time of our experiments,

but this is not considered in the comparison.

For Covidex, the model for the GISAID nomenclature was trained with 66, 126 sequences

and tested on 13, 230. Since Covidex is made available as an user app for any SARS-Cov2

sequence, we used the app over our test dataset to compare the results. We tested Covidex

on our test dataset of 17, 146 sequences (excluding the 2000 sequences from GRA clade).

Achieving a 77, 12% of accuracy, more than a 18% lower than all our trained models and

20, 65% lower than their reported accuracy. The reported precision, recall and F1-score, as

well as the test results over our selected dataset can be seen in Table 5.6. We found that

the reported F1-score of Covidex is quite distant for the one we obtained in our test dataset

for clades L (−8.4%), G (−15.8%), GR (−42.4%), GK (−10.9%), GRY (−19.3%) and O

(−28.8%), while for clades S (−0.8%), V (−2.9%), GH (−2.5%) and GV (−0.9%), we can

observe a decrement on the reported F1-score ranging from 0.8% to 2.9%. Our models (see

Table 5.4) exhibit better performance than Covidex in all clades and metrics on our test set,

with similar results only on clades S and GV. We did not perform an extensive comparison

of the running times since both tools classify a genome sequence in less than a second (on k

= 8, our tool took 0.15 seconds in average).
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Report Test

Clade Prec. Rec. F1score Prec. Rec. F1score

S 0.998 1 0.999 0.988 0.995 0.991

L 0.997 1 0.999 0.859 0.979 0.915

G 0.993 0.984 0.989 0.811 0.852 0.831

V 1 1 1 0.958 0.985 0.971

GR 0.945 0.915 0.930 0.379 0.760 0.506

GH 0.995 0.999 0.997 0.957 0.987 0.972

GV 0.996 0.999 0.997 0.980 0.995 0.988

GK 0.977 0.995 0.986 0.925 0.833 0.877

GRY 0.920 0.961 0.940 0.732 0.763 0.747

O 0.994 0.959 0.976 0.722 0.658 0.688

Table 5.6: Precision, recall, and F1-score for Covidex. The Report part is taken from the
Supplementary material of [88]. The Test part has the precision, recall, and F1-score
obtained by Covidex on our test set, restricted to the 10 clades (17,146 sequences) analyzed
in [88]. We found significant differences between Covidex and our trained models in the
Test metrics (see Table 5.4). In particular, the most notorious differences w.r.t F1-score,
ranging from 8.4%–42.4% are found for clades L (−8.4%), G (−15.8%), GR (−42.4%), GK
(−10.9%), GRY (−19.3%) and O (−28.8%), while for clades S (−0.8%), V (−2.9%), GH
(−2.5%) and GV (−0.9%), we can observe a decrement on the reported F1-score ranging
from 0.8%–2.9%. Metrics in bold in the Test part are those which did not decrease more
than 3% w.r.t the reported metrics.

5.4.5. Relevant k–mers for the classification of each clade

The purpose of this experiment is to study if a set of the most relevant k-mers (based on

feature importance methods) are informative enough to a SVM to perform similarly than

the trained CNNs (that uses FCGR as input, and hence all the 4k possible k-mers).

Using Saliency Maps and Shap Values, we can evaluate the contribution of each element

of a FCGR in the classification, for each model. From each one of these feature attribution

methods we can obtain an ordered list of all k-mers. For each clade, we use the centroid

FCGR of all correctly classified sequences in the test set, then we use each centroid FCGR

to identify the most relevant k-mers for each clade and then train a SVM using the N most
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relevant k-mers (for different values of N ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}) and

their respective frequencies as input.

The same training and test sets used for the CNNs were used for the SVM. The results

of the accuracy in the test set for the different values of N are shown in Figures 5.6 and 5.5.

We can observe that k-mers identified by Saliency Maps are more informative than those

identified by Shap Values, since for N = 20, we obtain similar accuracy in the test set for

k = 6, 7, 8 compared to CNN (96–97%), while in the case of Shap Values, this accuracy is

only achieved by k = 7 with N = 35. Notice that using N = 20, we are considering a small

number of all possible k-mers (0.49% for k = 6, 0.12% for k = 7 and 0.03% for k = 8).
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Figure 5.3: FCGR image (left) and Shap Values (right) of the centroid FCGR for the clade
V (k = 6). The FCGR image is obtained rescaling the frequencies in the FCGR to a
gray-scale range of 8 bits ([0,255]), an inversion of colors is performed to visualize higher
values as black squares and lower values as white. Shap Values represent the importance of
the features in the FCGR, the higher the value (red) the more important is the feature.
Each feature (pixel) in the FCGR corresponds to a k-mer.

5.4.6. Matching relevant k-mers to mutations

Using the reference genome employed by GISAID (EPI ISL 402124) 2 and the list of

marker variants 3 for each GISAID clade with respect to this reference, we evaluated how

2https://www.gisaid.org/resources/hcov-19-reference-sequence/
3https://www.gisaid.org/resources/statements-clarifications/clade-and-lineage-nomenclature-aids-in-

genomic-epidemiology-of-active-hcov-19-viruses/
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Figure 5.4: FCGR image (left) and Saliency Map (right) of the centroid FCGR for the
clade V (k = 6). The FCGR image is obtained rescaling the frequencies in the FCGR to a
gray-scale range of 8 bits ([0,255]), an inversion of colors is performed to visualize higher
values as black squares and lower values as white. Saliency Map represent the importance
of the features in the FCGR, the higher the value (red) the more important is the feature.
Each feature (pixel) in the FCGR and Saliency Map corresponds to a k-mer.

many k-mers among the 50 chosen ones by Saliency Maps and Shap Values matched any of

the reported marker variants. A summary is shown in Table 5.7.

The results shown that the most relevant k-mers selected using Saliency Maps match

several of the reported marker variants (46 matches for k = 6, 51 for k = 7, and 11 for

k = 8). On the other hand, the ones chosen by Shap Values barely match with the mutation

(3 for k = 6), suggesting that Saliency Maps could provide a richer explainability of the

model from a biological perspective.

k-mer Saliency Maps Shap Values

6 46 3

7 51 0

8 11 0

Table 5.7: Summary of matches between the 50 most relevant k-mers (from Saliency Maps
and Shap Values) and the list of marker variants reported by GISAID for each clade. The
k-mers obtained by Saliency Maps are able to match several mutations and the matches
decrease when k increases, but the ones from Shap Values only reported 3 matches, for
k = 6.
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Figure 5.5: Accuracy of test set for SVM trained models using only the most N relevant
k-mers for each clade (N ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}). The relevant
k-mers are selected using Saliency Maps on the centroid of the correctly classified FCGR
for each clade and model. The same train and test datasets used for the trained CNNs are
used for the SVM. The SVM trained with 20 most relevant k-mers identified by Saliency
Map, for k ∈ {6, 7} achieves an accuracy in the test set (≈ 96%) that is in the range of the
minimum and maximum accuracies (see Table 5.3) obtained by our trained CNNs (the
gray dashed band represents the minimum and maximum accuracy for the trained CNNs).

5.5. Discussion

In this work we have shown that FCGR can be used to classify DNA sequences. Most

notably, we have used FCGR to assign SARS-CoV-2 genome sequences to its GISAID strain

by running a CNN on 191, 456 genome sequences (80% training set, 10% validation set, and

10% test set). In particular, the 8-th order FCGR achieved a test accuracy of 96.22%. The

majority of misclassified sequences are shared between two strongly related strains, GR and

GRY (GR is a close ancestor of GRY).

We decided to exclude transfer learning from our experiments after trying this approach

without success on 8-mers. For this trial we used pre-trained weights from the Imagenet
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Figure 5.6: Accuracy of test set for SVM trained model using only the most N relevant
k-mers for each clade (N ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}). The relevant
k-mers are selected using Shap Values on the centroid of the correctly classified FCGR for
each clade and model. The same train and test datasets used for the trained CNNs are
used for the SVM. The SVM trained with the 30 most relevant (or more) 6-mers identified
by Shap Values, achieves the closest accuracy (92, 44%) to the ones obtained by our trained
models (see Table 5.3). When k increases, the accuracy always decreases (for the same
number of relevant k-mers), which can be explained since when k increases the total
number of possible k-mers increases exponentially.

dataset using ResNet50 architecture, where the backbone weights were frozen, and three

dense layers were included at the top of it for the classification.

We have assessed the influence of the length k of the substrings (k-mers) used to build

the FCGR, showing that values between 6 and 8 lead to very similar results, with less

than 1% of difference in both accuracy and MCC on the same test set. However, when

increasing the value of k, the training time for the model and the memory required to save

the FCGRs increases exponentially. For k = 6 each epoch required 4:05 minutes and 6.6GB

of memory, while for k = 8 it required 24:50 hour and 94.2GB. However, FCGRs show a
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fractal structures; this suggests that we might couple increasing k with using only a portion

of the FCGR.

We compare our results with Covidex, a Random Forest based tool that classify sequences

on GISAID clades based on k-mers frequencies. Under the same test set, our results show

that our models outperform Covidex in all clades and reported metrics (accuracy, precision,

recall and F1-score). Moreover, we found that the reported precision, recall and F1-score of

Covidex are quite different for all clades but S and GV in our test set, exhibiting a decreasing

in the F1-score metric up to 42.4%.

We have used Saliency Maps and Shap to identify relevant k-mers, looking for matches

with the marker variants reported for each strain. Using the k-mers obtained by Saliency

Map, we found 46, 51, and 11 matches for k = 6, 7, 8, respectively. While, for the k-mers

identified by Shap, only 3 matches were found for k = 6. A possible direction for future

works is to explore other existing methods (e.g. Lime [56], GradCAM [57], DeepLIFT [58])

that might be suitable in explaining the decisions of the model.

Classifying genome sequences introducing the assembly bias includes more factors to

take care of, since any classification depends on the specific assembly pipeline that has been

used. To lessen this possible problem, we should study a related problem, where we classify

read samples instead of fully assembled genomes. This new problem is more complex, since

different regions of the viral genome can have different coverage — hence impacting the

frequencies — and reads needs to be cleaned from both errors and contamination artifacts.

We did not perform an extensive comparison of the running times since both tools classify

a genome sequence in less than a second.
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5.6. Availability of data and materials

The list of FASTA sequences and metadata used for the SARS-CoV-2 experiment can be

downloaded from gisaid.org after creating an account and accepting the Terms of Use. The

data used in this study was downloaded on April 4, 2022. Trained models and results of our

experiments can be downloaded from https://zenodo.org/record/7185290g.
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Chapter 6

Taxonomic aware querying and indexing of bacterial pangenomes via Deep Learning

In bacteria, species identification is of great importance in areas such as agriculture,

food processing, and healthcare. The continually growing genomics databases, especially

with the increased focus on investigating new bacterial genomes in clinical microbiology,

have exceeded the capabilities of conventional tools for basic search and query procedures

like BLAST. In addition, more complex tasks are needed, such as rapid identification and

classification of species from draft assemblies. In particular, these two tasks face two common

challenges: species mislabeling and outliers, i.e. cases where the assembly contains sequences

that do not fit well within any known taxonomy category.

We propose PANSPACE, a framework for indexing genomic sequences in a continuous n-

dimensional space, referred to as Embedding space. The FCGRs are used as feature represen-

tations of the sequences and then mapped to the Embedding space (n≪ 4k) by leveraging a

Convolutional Neural Network (CNN) designed to exploit the k-mer ordering in the FCGR

with metric learning for clustering based on species labels, and optionally the use of Au-

toencoders when no labels are available. The embedding representations are indexed with

FAISS [97], an index for high-dimensional vectors, proven to scale to 1 billion embeddings.

Embeddings allow the application of computational methods for data curation: the detection

of outliers, and the evaluation of correct labels.

PANSPACE is open source and available at https://github.com/pg-space/panspace.
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Our contribution

• We describe a method for rapidly identifying the species associated with an isolated

(draft) assembly, using a database of labeled assemblies for species identification.

• We propose a carefully designed Convolutional Neural Network that exploits the FCGR

representation and utilizes metric learning to learn compressed vector representations

of (draft) assemblies in an n-dimensional space.

• We use Confident Learning to identify outliers and mislabeled assemblies, facilitating

database curation without manual intervention. Autoencoders can optionally handle

cases without known labels in the detection of outliers.

• We index the largest publicly available database of bacterial draft assemblies [20], using

approximately 1 GB of disk space.

• Our experiments reveal a strong correlation between ANI distances of (draft) assemblies

and the Euclidean distances of their embeddings.

6.1. Introduction

Classifying DNA in terms of the species from which it was extracted is one of the most

fundamental tasks in biology. In addition to its obvious relevance, the prominence of the task

is documented by the fact that BLAST [21] is still one of the most popular, if not the best

known bioinformatics tools developed so far. The principle of BLAST is to align sequenced

DNA against databases storing large collections of annotated genomes. This principle is well-

justified because alignment scores positively correlate with the average nucleotide identity

(ANI) of the two matched sequences.

For example, it was shown that an ANI of 95-96% or greater corresponds to DNA-

DNA hybridization (DDH) of 70% or greater, where DDH of 70% or greater is the ultimate
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indication that the two sequences are evolutionarily closely related. However, because DDH

can only be determined through costly and time-consuming laboratory experiments, DDH

was replaced by ANI early on in computational biology, which is statistically well justified by

the strong positive correlation between DDH and ANI that has been observed in innumerous

experiments. fastANI is a tool that accurately approximates ANI values for (draft) genomes

with 20-100% completeness, in the identity range of 80-100% [98].

In the meantime, databases have been filling up with DNA sequences, whose numbers now

rather range in the millions than in the thousands. By 2024, GenBank and RefSeq has more

than 2.3 million bacterial genomes [23], and ENA more than 1.9 million [20]. So, querying

DNA sequence databases with alignment-based search tools is no longer feasible: runtimes

inherent to the computation of alignments, even if guided by smart heuristics such as with

BLAST, become excessive when hundreds of thousands, or even millions of alignments have

to be computed. Novel alignment-free approaches that accurately classify query sequences

are urgently sought for.

The delimitation of boundaries for defining a species is a fundamental task in taxonomy.

In the bacterial world, defining species is of great importance in the food industry and

healthcare settings [99], [100], [101], [102].

The field of bacterial taxonomy was significantly advanced by the seminal work of Woese

and colleagues [103, 104]. He was the first to construct a phylogenetic tree using only the

16S rRNA gene, which is also known as the subunit rRNA gene. The 16S rRNA gene is used

since it is highly conserved and is ubiquitous in prokaryotes (bacteria and archaea) [105].

Most computational species identification frameworks tools utilize the 16S rRNA gene

[26, TYGS] due to its efficiency in conducting pairwise comparisons since it is short (≈ 1485

bp long) and highly variable between species. Thus, it is well suited to serve as a marker

to distinguish between different species. However, a prerequisite for this approach is the
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identification of the gene in the assembly using RNAmmer [106] which can be missing in

some (draft) assemblies. Some tools [27, fIDBAC] integrate 16S rRNA gene identification

with k-mer-based approaches to address this limitation. In contrast, other tools [25, GAMBIT]

exclusively rely on k-mers, while additional tools prioritize species delimitation only using

ANI [107]. Is it noteworthy that all species identification tools rely on a fixed database of

known assemblies.

The Type (Strain) Genome Server (TYGS)1 [26] database contains a comprehensive col-

lection of 20,196 microbial type-strain genomes2, and is updated weekly by searching Gen-

Bank [111, 112]. It incorporates quality checks to reject poor quality assemblies, and incor-

rectly identified species. This is done by rejecting assemblies > 500 contigs and matching

the known 16S rRNA gene sequence of a type strain of the same species or subspecies re-

spectively. TYGS is offered as web server only.

In fIDBAC [27] the authors curated the database by collecting bacterial genome assemblies

with meta-information such as strain, culture collection, clone, and comments from NCBI. In

addition, CheckM(v1.0.18) [113] was used to evaluate the completeness and contamination

of each genome. Assemblies with completeness smaller than 90%, or with contamination

smaller than 5% were removed. Furthermore, the LTP [114] database was used to map

16S rRNA genes for consistency. Assemblies with any disagreement were excluded by the

authors. Subsequently, the authors also investigated wrongly labeled genomes, and among

species containing more than one type of genome, they found and removed 20 genomes that

were incorrectly labeled, as assessed by ANI values and using strain information from LPSN3

1https://tygs.dsmz.de/
2data accession: January 12, 2024. The initial release of TYGS used only the 16S gene to determine

species. The latest release of TYGS [108] also incorporates MASH [109] to determine inter-genomic distances,
in cases where the 16S gene is missing. However, as noted in the latest release, the 16S gene is still preferred.
The TYGS database, which contains genome sequences with pre-computed G+C content, and uses taxonomy
databases that list all the names of prokaryotes, which have been validated and published according to the
International Code of Nomenclature of Prokaryotes [110]. The number of species is not mentioned

3https://bacterio.net/
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[114] or articles in the International Journal of Systematic and Evolutionary Microbiology4.

This way, the authors of the study curated a database of 12,783 bacterial genome assemblies,

covering 9,827 species and 2,448 genera. A four-step method is used to perform the identifi-

cation. The first step in this process is the extraction of 16S sequences from queries, which

are BLASTed against the LTP database. The second step consists of matching k-mers from

the query genome against the k-mers in the curated database using KmerFinder [115].

In GAMBIT [25] a curated database of 48,224 bacterial genomes is used from the NCBI

RefSeq database spanning 1,414 species and 454 unique genera. To perform species identifi-

cation, an approximate Jaccard similarity between the query and a subset of the k-mers of

the genomes in the database is computed.

Recently, GSearch [116] was published, a genome search tool that combines MinHash-

like or HyperLogLog sketching algorithms for genomic distance estimation and Hierarchical

Navigable Small World graphs (HNSW) for finding nearest neighbors. A subset of k-mers

and its ocurrences is selected as a feature representation of each assembly, and using a

weighted Jaccard-like similarity (Jaccard similarity only accounts for presence and absence

of k-mers) they create an index based on HNSW. An advantage of k-mer hashing methods

is that there exist approximations for computing the ANI distance between assemblies based

on the Jaccard distance.

Aiming to replace BLAST, in MOF [22] the authors utilized a bacterial dataset that in-

cluded 661k genomes, comprising all bacterial genome isolates up to November 2018 at the

European Nucleotide Archive (ENA) [117]. The dataset is not manually curated in any man-

ner but relies on its uniformly assembled construction and criteria for defining high-quality

assemblies. The identification of species is not explicitly defined as one of their main tasks,

since it focuses on exposing the advantages of phylogenetic compression to deal efficiently

4https://www.microbiologyresearch.org
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with large genomics datasets. However, species can be identified by a majority vote based

on a query.

Most recently, the largest bacterial dataset was released [20], comprising all bacterial

genomes uniformly assembled, available at ENA (up to May 2023), where the same approach

as in MOF, this time refer as to Phylign, was used to index the dataset with an index size of

248GB.

In addition to Phylign, another tool called LexicMap [23] was proposed for handling large

bacterial datasets, reporting an index of 2.46TB for the same dataset. Both Phylign and

LexicMap aim to overcome the limitations of BLAST for querying large genomic datasets,

hence proposing a pipeline consisting of a query (at the level of reads or contigs) and posterior

alignment against assemblies, while Phylign leverages minimap2 for this task, LexicMap

makes use of the wavefront alignment algorithm.

Although, out of the scope of this work, several tools are specifically designed for read

classification in metagenomics, where the goal is to bin reads in a sample based on the

species they come from. Examples of these tools are Kraken [118], and Kraken2 [24],

Centrifuge [28], and Centrifuger [29], all of them work with short reads, while Centrifuger

can work with long reads as well. Taxor [119] is another tool that only handles long reads.

These tools rely on databases of taxonomically labeled sequences.

Machine Learning tools have been proposed to speed up classification and avoid the

dependency on index databases, thus decreasing computational resources needed to solve

taxonomy-level assignments at the level of reads. Most notably, HiTaxon [31] and Taxometer [32]

for bacterial taxonomy classification, DeepMicrobes [33] restricted to gut microbiota. EukRep [120]

and Tiara [121] are the most general tools at the Domain taxonomy level, and MycoAI [122]

targets fungal sequences. While not at their main purpose, the last three tools have been

shown to work with bacterial data.
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While small databases allow for manageable datasets for manual curation and require

few computational resources, they lack variability, which is a concern, especially in bacte-

rial applications due to their high mutation nature. This variability is naturally present

in the pangenome, but considering such datasets makes manual curation impractical, and

current tools have been demonstrated to require significant computational resources, which

limits their accessibility and practical use to the broader research community. In contrast,

classification methods based on machine learning have the advantage of being faster and

generalizable to unseen data (if well trained), at the expense of restricting its utility to mere

classification, not allowing the user to find similar sequences for downstream analyses like

traditional methods that index databases.

6.2. Preliminaries

Let us define by Σ = {A,C,G, T} the DNA alphabet, and the extended DNA alphabet

by ΣN = {A,C,G, T,N}, where N indicates a null call. Consider a collection S of (possibly

draft) assemblies, where each assembly s ∈ S could be a set of more than one (contig)

sequence over the alphabet ΣN , and a set L of labels. We assume that there exists a labeling

function λ : S 7→ L that assigns a species in L to each assembly s ∈ S.

We aim to learn a function f : Sk 7→ Rn (for n≪ 4k) that reduces the dimensionality of

the k-mer distribution of an assembly, where Sk represents the space of k-mer distribution

for the set S of assemblies, and the n-dimensional representation is known as the embedding.

The embedding representation of the assemblies is then used to create an index that can

be query based on similarity given by their Euclidean distance. We can approximate f by

choosing a mapping E : Sk 7→ Rn, from now on the encoder. The construction of this encoder

is the main goal of our approach. Furthermore, we exploit the embedding representation for

the identification of outliers and mislabeled assemblies using Confident Learning [123,124].
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6.2.1. In-distribution and out-of-distribution samples

In machine learning, understanding the concepts of outliers, in-distribution samples, and

out-of-distribution (OOD) samples is crucial for developing robust models. In-distribution

samples are those that conform to the patterns learned during training [125], while outliers

are data points that significantly deviate from these patterns, potentially indicating anoma-

lies [124]. OOD samples, on the other hand, originate from different distributions than

the training data, posing challenges for model reliability. Effectively identifying and han-

dling these categories is essential for ensuring that models can generalize well and maintain

accuracy when faced with novel or unexpected inputs during deployment.

1. Outlier. An outlier is a data point that significantly differs from the majority of the

data in a dataset. In the context of machine learning and OOD detection, an outlier is

typically an instance that does not conform to the expected patterns or distributions

of the training data. Outliers can indicate anomalies or novel instances that the model

has not been trained on.

2. In-distribution sample. An in-distribution sample refers to data points that belong

to the same distribution as the training data used to train a model. These samples are

expected to conform to the patterns and characteristics learned by the model during

training.

3. Out-of-distribution sample (OOD). An out-of-distribution sample is a data point

that comes from a different distribution than the training data. These samples do not

conform to the patterns learned by the model and are considered to be outside the

scope of what the model was trained to recognize. OOD samples are important for

testing the robustness and generalization capabilities of machine learning models, as

they help assess how well the model can identify instances that it has not encountered

during training.
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6.2.2. Indexes

An index is a data structure that allows for efficient retrieval of information within a

large dataset. Just as a book index provides page numbers for specific topics, an index in a

database or data structure enables quick access to particular records, reducing the need for

a full scan of the data. Indexes are essential for performing queries efficiently, especially as

the volume of data grows. By organizing data for faster retrieval, indexes make it possible

to perform search, filter, and sort operations more quickly.

In bioinformatics, indexing is crucial for managing large genomic datasets, particularly for

tasks involving k-mers, which are often used to represent and compare genomic sequences,

where each sequence is broken down into these k-mers (and possibly its occurrences) to

capture its unique features. Indexes for k-mers enable a rapid search for similarity, alignment,

and comparison of genomic sequences by allowing efficient access to these substrings without

scanning entire genomes.

Several indexing structures are specifically designed for k-mer-based bioinformatics tasks.

Hash tables and suffix trees are widely used [68], providing a way to quickly locate all

occurrences of a k-mer in a genome or across multiple genomes. More recent approaches, like

Burrows-Wheeler Transform (BWT) and FM-indexes [126], and most recently, Compact Bit-

Sliced Signature (COBS) index [127] offer compressed indexing techniques that are memory-

efficient and highly effective for large-scale sequence alignment tasks. These indexes enable

rapid searching and alignment, making them foundational for genome assembly, variant

calling, and other large-scale bioinformatics analyses.

In machine learning and data analysis, a dense vector is a representation of data in a

continuous, high-dimensional space where most elements have non-zero values. Dense vectors

are widely used to represent items in tasks like natural language processing, image retrieval,

and recommendation systems. Each vector encodes features of an item, such as the semantic
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content of a text document or the pixel patterns in an image, allowing for similarity-based

retrieval (e.g. finding similar documents or images).

Indexing dense vectors is more challenging than indexing traditional tabular data, as it

requires efficient similarity search in high-dimensional spaces. Techniques such as approxi-

mate nearest neighbor (ANN) search algorithms, like Locality-Sensitive Hashing (LSH) [128]

and Hierarchical Navigable Small World (HNSW) [129], are commonly used. These methods

create indexes that facilitate quick similarity searches, enabling applications such as image

recognition or text-based recommendation to locate similar vectors (and thus similar items)

without exhaustively comparing all pairs.

6.2.3. Metric learning and the triplet loss

In metric learning, in the context of supervised learning, the goal is to embed representa-

tions of the input data learned such that embeddings sharing a label are closer in Euclidean

distance than embeddings with different labels.

The triple loss for a triplet (xai , x
p
i , x

n
i ) is defined as follows,

Ltriplet = min (0, ∥f(xai ) − f(xpi )∥22−∥f(xai ) − f(xni )∥22+α) (6.1)

where xai is the anchor sample, xpi is the positive sample (same label as the anchor), xni is

the negative sample (different label from the anchor), f(·) is the embedding function that

maps inputs into the feature space, ∥·∥2 is the Euclidean (L2) distance, α is the margin

enforced between positive and negative pairs, usually defined in [0.1, 0.5]. In our case, f(·)

denotes the encoder, and the pair (xai , x
p
i ) are two FCGRs from the same species, while xni

corresponds to an FCGR of a different species.
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Notice that by the definition of Ltriplet not all triplets might contribute to the learning

process, those triplets (xai , x
p
i , x

n
i ) such that

∥f(xai ) − f(xpi )∥22+α ≤ ∥f(xai ) − f(xni )∥22 (6.2)

already satisfied the desired separability condition, hence Ltriplet = 0, making meaningless

the computation of the gradient and consequently not influencing the update of weights in

the neural network.

As explained in [42], choosing triplets is crucial to use the triplet loss effectively, and a

triplet of interest (for which Ltriplet ̸= 0) can be categorized in two classes: semi-hard and

hard triplets.

In this context, given an anchor xai , a hard-positive is computed as the arg maxxpi ∥x
a
i−x

p
i ∥,

while a hard-negative is computed as the arg minxni ∥x
a
i − xni ∥. These are the most difficult

examples to separate that violate the desired condition from Equation 6.2. Since computing

arg max and arg min is computationally expensive over the entire dataset (e.g. for a dataset

of N elements, the number possible triplets is O(N3)), in practice, these hard triplets are

chosen from a mini-batch (the subset of data used in each iteration of an epoch). A drawback

of selecting the hardest negatives is that they can lead to bad local minima early on in training

[42].

On the other hand, a triplet (xai , x
p
i , x

n
i ) is called semi-hard when

∥f(xai ) − f(xpi )∥22< ∥f(xai ) − f(xni )∥22< α (6.3)

so even when xpi is closer to the anchor than xni , it still lies inside the margin α.
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The suggested procedure when using the triplet loss is to start training with semi-hard

triplets, and then focus on hard triplets, but we need to be careful since hard triplets might

be composed of outliers or mislabeled samples and could worsen the results.

6.2.4. Confident Learning

Mislabeled assemblies are identified using Confident Learning (CL) [123], a model agnos-

tic framework to identify mislabeled data. Let us recall that each assembly in the dataset

S is dotted with a label in L given by the function λ : S 7→ L. In CL the assumption

is that λ is a noisy function, i.e. it may contain errors w.r.t. the real (uncorrupted and

unknown) labels. A classifier Θ, which outputs probabilities for each assembly s ∈ S and

label l ∈ L in the dataset is needed to identify these errors, and gives confidence thresholds.

The probabilities used by CL must be from out-of-sample data, i.e. on assemblies the model

was not trained on. Here is where cross-validation plays a crucial role in analyzing the entire

dataset.

In the CL framework, the identification of mislabeled data relies on the computation of

the confident joint, denoted by Cỹ,y∗ , where ỹ represents the noisy observed labels, and y∗ the

real (uncorrupted) ones. The goal is to estimate the joint probability distribution between

ỹ and y∗, denoted by Qỹ,y∗ . Since the real labels y∗ are unknown, the joint probability

distribution must be estimated from Cỹ,y∗ .

The confident joint Cỹ,y∗ is similar to the confusion matrix, in the sense that it counts

occurrences between predicted and true labels, with the difference that it takes into account

the probabilities of each prediction to filter what is counted. Its main purpose is to estimate

the set Xỹ=i,y∗=j, that is the set of s ∈ S labeled as λ(s) = ỹ = i with large enough probability

p̂(ỹ = j; s;Θ) to likely belong to class y∗ = j. Here p̂(ỹ = j; s;Θ) is the probability that s

is labeled as j given by the model Θ being used.
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Formally, the confidence threshold tj for a class j is defined as

tj =
1

|Xỹ=j|
∑

x∈Xỹ=j

p̂(ỹ = j; s;Θ) (6.4)

where |Xỹ=j| is the number of assemblies s ∈ S with label λ(s) = ỹ = j. Intuitively, if

the model is over-confident in predicting a class j, then tj will be proportionally larger, and

vice-versa. These thresholds help to handle class imbalance.

With these thresholds, an element (i, j) of the confident joint, Cỹ,y∗(i, j) is computed as

|X̂ỹ=i,y∗=j|, the number of assemblies in that set (which estimates Xỹ=i,y∗=j), and is formally

defined as follows,

X̂ỹ=i,y∗=j = {s ∈ S : ỹ = i, p̂(ỹ = j; s;Θ) ≥ tj, j = arg max
l∈[|L|]:p̂(ỹ=l;s;Θ)≥tl

p̂(ỹ = l; s;Θ)} (6.5)

Finally, the joint probability distribution Qỹ,y∗ can be estimated from the confident joint

by Q̂ỹ,y∗ , where each element (i, j) is defined as follows,

Q̂ỹ=i,y∗=j =

Cỹ=i,y∗=j∑
j∈[|L|]Cỹ=i,y∗=j

· |Xỹ=i|∑
i∈[|L|],j∈[|L|]

( Cỹ=i,y∗=j∑
k∈[|L|]Cỹ=i,y∗=k

· |Xỹ=i|
) (6.6)

Q̂ỹ=i,y∗=j is the estimated joint probability for the observed label ỹ = i and the true label

y∗ = j.
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The numerator ensures that the total of each row in Q̂ỹ,y∗ equals the total number of

examples we have for each label. While the denominator calibrates it such that the sum of

all probabilities equals 1.

Finally, based on the estimations of Cỹ=i,y∗=j and Qỹ=i,y∗=j, several rank and pruning

methods can be used to flag label issues. We refer the reader to Section 3.2 in [123] for more

details. We used the prune-by-noise rate method.

6.3. Methods

In this section, we describe a convolutional (and deconvolutional) layer specifically de-

signed to exploit the FCGR representation: ConvFCGR (and DeconvFCGR), and two ar-

chitectures for supervised and unsupervised learning on top of these layers, the CNNFCGR and

AutoencoderFCGR, respectively. Following with details on how they are trained. We describe

the bacterial dataset we use for our experiments, how their labels are assigned, and link its

importance with our data curation procedure. Finally, we describe how to create and query

the embedding-based index of assemblies for fast query and accurate classification at the

species taxonomy level.

6.3.1. Convolutional Neural network for the Frequency matrix of the Chaos Game Repre-

sentation of DNA

A convolutional layer is a layer of a deep neural network in which a convolutional filter

passes along an input matrix. In the case when the FCGR is the input matrix, this filter

corresponds to a 2-dimensional matrix and applies a linear operation between subsets of

the input matrix and the filter. The convolutional layer can be characterized by the ker-

nel size (numbers of rows and columns of the convolutional filter), the stride (number of

rows/columns to move left, right/up, down to apply the convolutional filter in the input
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matrix), and the number of filters, which correspond to additional matrices applied to the

input matrix independently (in-depth), usually refer to as channels.

Given k, in the FCGR representation, k-mers sharing the length l suffix (l < k) are

contained in a sub-square of dimension 2k−l × 2k−l in the FCGR. In Figure 2.3 we can

illustrate this with an example with k = 3 and l = 2. In the top-left, the sub-square with

center CC contains the 3-mers ACC, CCC, GCC, and TCC, all sharing the same suffix

CC of length 2. This can be generalized as the following result.

Proposition 6.1 When a convolutional layer with kernel size 2k−l and stride 2k−l is applied

to the FCGR matrix, the convolutional filter only processes k-mer occurrences of subsets of

k-mers sharing a length l suffix.

We propose two (strongly related) convolutional network architectures for exploiting the

FCGR representation under unsupervised (no labels) and supervised metric learning (with

labels) scenarios. We will use these two modes when classifying bacterial species.

For unsupervised learning, we propose the AutoencoderFCGR architecture (see Figure 6.1a).

Where the encoder is designed using ConvFCGR layers, a convolutional layer [50], and

the decoder is designed using DeConvFCGR layers, a deconvolution layer [130] (see Fig-

ure 6.2). These proposed layers exploit the CGR encoding by analyzing k-mers sharing the

length (k − l) suffix, for 0 < l < k.

When labels are available, we can apply supervised learning. More specifically, under

the umbrella of supervised metric learning, we propose the CNNFCGR (see Figure 6.1b), a

convolutional neural network defined as the encoder part of the AutoencoderFCGR, and whose

output is an n-dimensional vector, the so-called embedding. Unlike traditional supervised

learning approaches designed for mere classification into a fixed number of classes, metric

learning focuses on learning distance metrics or similarity measures tailored to specific tasks,
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such that similar instances are closer in the embedding space, and dissimilar ones are further

apart, clustering the input data in the n-dimensional space. This is achieved using ad-hoc

loss functions, most notably contrastive loss [43], or triplet loss [42] by directly optimizing

the embeddings.

6.3.1.1. ConvFCGR and DeConvFCGR layers

The ConvFCGR layer of level l corresponds to a convolutional layer with kernel size

2l, stride 2l, and no padding. Hence, for an input of size 2k × 2k, the ConvFCGR of level
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Figure 6.1: The input of the AutoencoderFCGR is the 26 × 26 × 1 dimensional tensor,
representing the FCGR of a (draft) assembly. The architecture of the autoencoder is
composed of an encoder and a decoder. The encoder (left side) is a concatenation of three
ConvFCGR layers of level 1, and the number of filters 24, 20, and 16, respectively. The
output of the encoder is an L2 normalized 128-dimensional vector (Embedding),
represented by a dense layer with 128 neurons. The decoder (right side) receives as input
the embedding and is followed by three DeConvFCGR of level 1, and the number of filters
16, 20 and 24, respectively, the output of the decoder is the reconstructed FCGR
(26 × 26 × 1). The CNNFCGR is the encoder part of the AutoencoderFCGR. The ReLU
activation function follows all ConvFCGR layers, and batch normalization in the filter
axis. The same applies to the DeConvFCGR layers, except for the last one, for which we
do not apply batch normalization.
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(a) (b)

Figure 6.2: ConvFCGR layer. Gray grids correspond to the input and output of the
layers. Red grids represent the position where a filter of a layer is applied. In (a) a
ConvFCGR(1, 1) is applied to the input (FCGR) tensor of size 23 × 23, level l = 1
correspond to a layer with stride and kernel equal to 2, i.e. the output is a tensor of size
22 × 22. In (b) ConvFCGR(2, 1) is applied to the same input. This time, since l = 2, the
layer uses 16 positions of the tensor, and outputs 1.

l outputs a tensor of dimension 2(k−l) × 2(k−l). The DeConvFCGR of level l represents

the inverse operation of ConvFCGR of level l, i.e. for an input of size 2(k−l) × 2(k−l),

the ConvFCGR of level l outputs a tensor of dimension 2k × 2k (filters were intentionally

excluded here for the ease of explanation since they add information in-depth).

Given l levels and f filters, the convolutional FCGR and deconvolutional FCGR layers

are denoted by ConvFCGR(l, f), and DeConvFCGR(l, f), respectively. In Fig 6.2 are

illustrated ConvFCGR(1, 1) and ConvFCGR(2, 1) on an input of dimension 23 × 23. The

same example illustrates how DeConvFCGR, with the same parameters (l, f) works.

6.3.1.2. Encoder

Given an input tensor of dimensions 2k× 2k× 1 (FCGR from k-mers with depth channel

included) the encoder is defined as a concatenation of ConvFCGR(1, 4l) layers, l ∈ {k, k −

1, . . . , 4} (in that order) each one followed by the ReLU activation function [131] and a

batch normalization in the channel axis. The number of layers is equal to k− 3, so given an

input of dimension (2k × 2k × 1), it outputs a (24 × 24 × 16), i.e. 1024 features.
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This is then flattened and fed to a dense layer of n neurons, with an L2 normalization,

so embeddings have a norm equal to 1, and Euclidean distances between embeddings lie in

[0, 2]. Notice that the choice of stopping at k = 4 is to consistently decrease the number of

dimensions of the feature space up to the embedding layer so that n can be defined up to

n = 1000 to follow the described desired criteria. We choose n = 128 for our experiments.

6.3.1.3. Decoder

The decoder first maps the n-dimensional input to a dense layer of 1024 neurons, followed

up by a reshape to (24 × 24, 16) and a concatenation of DeConvFCGR(1, 4l) layers, l ∈

{4, . . . , k−1}, each one followed by the ReLU activation function and a batch normalization

in the channel axis, finally a DeConvFCGR(1, 1) with activation function ReLU, to output

the 2k × 2k × 1 tensor with values in [0, 1].

6.3.2. Autoencoder training

The AutoencoderFCGR is designed to reconstruct the FCGR of assemblies. It receives as

input the FCGR matrix and outputs a matrix of the same dimensions. We use the encoder

described in Section 6.3.1.2 and decoder from Section 6.3.1.3. The mean squared error (MSE)

is used as loss function [40], and is defined as follows,

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (6.7)

where N is the number of data points, yi is the true value for the i-th data point, ŷi is the

predicted value for the i-th data point. In our case, N = 4k is the total number of k-mers in

the FCGR, while yi is the (rescaled) frequency of the i-th k-mer.
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We set the training of the AutoencoderFCGR to 100 epochs, monitoring the validation

loss with a patience early stopping (number of epochs the training continues if the validation

loss does not improve) of 50 epochs, and a patience learning rate (number of epochs the

optimizer continues using the same learning rate if the validation loss does not improve)

of 30 epochs with a factor of 0.1. A random split of 80 : 10 : 10 was used for training,

validation, and test sets.

6.3.3. Metric Learning training

When dealing with a dataset with a large number of labels, the generation of mini-batches

to train the models requires special considerations. For example, in the 661k bacterial dataset

we find 2336 species belonging to high-quality assemblies, while in the 2MM bacterial dataset,

the number of species reported is 10542. Recall that a mini-batch consists of a subset of the

dataset randomly sampled. When dealing with the triplet loss, we must provide a way to

subsample the dataset for creating (either semi-hard or hard) triplets. For this purpose, we

use a mini-batch generator that randomly selects a portion of the labels (species), and then

selects a fixed number of FCGRs for each label, thus, each time we train the CNNFCGR, the

triplets are created from a balanced dataset with a constrained number of possible anchors.

We set the training of the CNNFCGR to 100 epochs, with a patience early stopping of

30 epochs, and a patience learning rate of 20 epochs with a factor of 0.1, both monitoring

the validation loss. We selected 64 species per mini-batch and multiplied by a factor of 10

the number of mini-batches generated for training and validation steps, i.e. the number of

mini-batches corresponds to 10× the ratio between the FCGRs in the training set (as well

in the validation set) divided by the mini-batch size, thus increasing the number of triplets

seen during training.
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Training, validation, and test sets were built as follows, for each species with more than

13 samples in the dataset, we randomly split them into training, validation, and test sets in

proportion 80 : 10 : 10. This decision is in line with how we query the index (created with

training and validation sets) with the test set since we search for the 11 closest neighbors

for classification purposes. As we will see in the Section 6.3.7 and Section 6.3.8.

6.3.4. Large bacterial datasets

Our goal is to index and query large bacterial datasets, and to evaluate their quality

under our approach. We consider the 661K [117] and the 2MM [20] bacterial datasets.

The former contains all the bacterial data from the European Nucleotide Archive (ENA)

available up to 2018, while the latter was updated with the bacterial data up to 2023. They

were both assembled with a unified pipeline from short reads but differ in how a ”high-

quality” assembly was defined. The main difference lies in how the species label is assigned

and trusted. In the 661K dataset, the label is defined as the most abundant species in the

sample (with a Kraken [24]Bracken [132] pipeline) if its abundance exceeds 90%. In contrast,

in the 2MM dataset, the label is assigned to the most abundant species from isolated data

(with sylph [30]), with the abundance threshold set to 99%. The number of assemblies and

species for both datasets is reported in Table 6.1.

High quality All

Dataset Assemblies Species Assemblies Species

661K 639981 2336 661405 6997

2MM 1857792 10542 1932812 11445∗

Table 6.1: Bacterial datasets.
∗ The total number of species was obtained by counting all unique values in the column la-
bel from the file sample2species2file.tsv.gz from https://ftp.ebi.ac.uk/pub/databases/
AllTheBacteria/Releases/0.2/metadata/, since only the number of species of high-quality
assemblies was reported in the manuscript.
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6.3.5. Outlier detection

To find outliers we need to define two sets of assemblies (labels are not needed here); X ,

an in-distribution dataset, and Y , the set to be evaluated. We identify outliers using the

embedding representations of the FCGRs after training a model.

The set X is defined by the embeddings of the assemblies in the training and validation

set, while the set Y is defined by the embeddings of the assemblies in the test set.

To identify outliers, we adopt the method from [124]. For each embedding in X , the

average distance to its N (we use N = 10) closest neighbors in X is calculated, and a

distance threshold dα (we use α = 99) is defined as the α-th percentile of the averages of

those distances. Then, for each embedding in the set Y the average distance to the neighbors

of the N closets in X is calculated, if this distance is greater than dα, the associated assembly

is flagged as an outlier.

Examples of FCGRs for in-distribution assemblies, and outliers for 5 different species are

shown in Figure 6.4.

6.3.6. Verification of mislabeled assemblies with ANI

To flag possible mislabeled assemblies with Confident Learning, on top of the embeddings

obtained with the AutoencoderFCGR, we trained a 3-layer dense neural network, with 64, 32,

and |L| neurons, respectively, with the ReLU activation function for internal layers, and the

Sigmoid activation function in the output, to obtain probabilities for each label in L, and

the categorical cross-entropy loss function.

Given an assembly s ∈ S with label λ(s) = X and predicted label Y that is flagged as

misclassified, we compute the average nucleotide identity (ANI) between s and the reference

sequences of labels X and Y (when possible, not all species have a known reference). If the
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ANI distance between s and the reference sequence of Y exceed the 95.0 threshold required

to classify them as the same species, and is greater than the ANI distance between s and

the reference sequence of X, we redefine λ(s) = Y . Reference sequences were downloaded

from NCBI 5, and fastANI [98] was used to compute ANI values.

Once outliers are identified and flagged mislabeled assemblies are verified from the initial

dataset and, we can optionally modify the initial dataset, and proceed with the construction

of the index on top of the embeddings of the curated dataset. But not doing this does not

impede to proceed to the creation of the index.

6.3.7. Creating the Index

We recall that we aim to learn a function f : Sk 7→ Rn (for n ≪ 4k) that reduces the

dimensionality of the k-mer distribution of an assembly by encoding some relevant informa-

tion for its reconstruction, where Sk represents the space of k-mer distribution for the set

S of assemblies. We can approximate f by choosing a mapping E : Sk 7→ Rn, from now on

refer as the encoder, that could be either the encoder of the AutoencoderFCGR or directly

the CNNFCGR (see Figure 6.1).

The index I has three components: (1) a FAISS index F [97] storing the embeddings of

each assembly in S, (2) the encoder E, and (3) the labeling function λ.

With the encoder E, we create the embedding representation for each assembly s ∈ S.

These embeddings are indexed using FAISS [97], an easy-to-use index for dense vectors,

extremely compressed (less than 250 MB for half a million embeddings of dimension 100),

and fast to query. To facilitate associating embeddings in F to the labels (species) by the λ

function, we store a list where the i-th label corresponds to the i-th embedding in F .

5accession July 30th, 2024. https://www.ncbi.nlm.nih.gov/datasets/genome/?taxon=2&reference only=
true
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To compare or query other assemblies against the set S, we need to map them to the

embedding space, so we need to preserve the mapping E as part of the index I.

6.3.8. Querying the Index

The process to go from a (possibly draft) assembly to the embedding space where the

indexed assemblies lie involves (1) counting k-mers from the assembly, (2) creating the FCGR

matrix, and (3) using the mapping E to get an embedding in Rn, as illustrated in Fig 6.3.

A query to the index I is defined as a (draft) assembly sq (in fasta format, and which

might not belong to S), and the query results correspond to a list with the N closest

embeddings in the FAISS index F and their labels given by the labeling function λ. We

assign the label L to sq, where L corresponds to the most common label in the query

result. Additionally, we define a confidence threshold for the query as the ratio between the

frequency of L in the query results and N .

Figure 6.3: Query index. Given a query (draft) assembly, we start by (1) counting k-mers
and creating its FCGR representation. Then (2) the FCGR is fed to the Encoder to
produce the embedding representation. Finally, (3) we query the FAISS index to retrieve
its N -closest neighbors and assign a label to the query assembly based on the majority of
species in the query result.
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6.4. Results

We have three main goals in these experiments. The first one is to assess the utility of the

data curation procedure, the second one is to evaluate how accurately we retrieve sequences

of the same species given a query assembly, and the third one, is to index the largest bacterial

dataset available in the literature, the 2MM bacterial dataset (see Table 6.1)

We have described two architectures to handle the FCGR, the AutoencoderFCGR, and

the CNNFCGR. For the first goal related to data curation, we use the AutoencoderFCGR and

the 661K bacterial dataset. Let us recall that labels information is not required for training

the AutoencoderFCGR, nor the identification of outliers. We chose the 661K dataset for this

experiment since the criteria for defining high-quality assemblies is less restrictive than for

the 2MM dataset, in addition, the assignment of labels was obtained from the sample of

reads, while in the 2MM was from the isolated data (see Section 6.3.4), so we expect it to

be the more noisy one w.r.t. outliers and labels.

For the other experiments, we have decided to use the CNNFCGR and the 2MM bacterial

dataset, since we are interested not only in building the index but in how accurate is to

classify and group assemblies from the same species in an imbalanced dataset. Additionally,

we include correlation analysis between the Euclidean distances of embeddings produced by

PANSPACE, and distances produced by fastANI and GAMBIT for a subset of assemblies. In all

experiments, we report results using 6-mers.

6.4.1. Assessing data curation

The first step of data curation consists of training the AutoencoderFCGR, where training

and validation sets are indexed for each fold, and the test set is used for the query. We

identify outliers in each fold’s test set and then report all of them so that the entire dataset

is analyzed. Mislabeled assemblies are also identified in each fold’s test set, but then validated
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by computing the ANI distance w.r.t. the reference genomes of their original label, and the

presumably correct label.

We report in Table 6.2, the user time and maximum RAM usage in the 4 main steps

when creating the index: training of the autoencoder, indexing embeddings, querying the

index, and data curation. All metrics are reported from a 5-fold cross-validation experiment

on the 661K dataset. Each fold required on average an estimated 1:25 hr for k = 6, 4:35 hr

for k = 7, and 14:59 hr for k = 8, where most of the time is spent in the training phase.

On average, the maximum RAM usage for k = 6 is 5.71 GB (data curation step), for k = 7

10.51 GB (train step), and k = 8 is 11.52 GB (train step). Computational resources do not

differ significantly in the query and data curation steps since all of it is defined at the level

of embedding, while training and indexing depend on the size of k.

User time (s)

k-mer Train Index Query Data Curation

6 1212.5 ± 146.2 59.7 ± 1.2 827.6 ± 10.7 3029.0 ± 98.6

7 12538.6 ± 1328.2 86.9 ± 0.9 840.0 ± 9.6 3044.3 ± 110.5

8 50019.2 ± 11584.8 183.0 ± 2.1 838.9 ± 10.4 2922.7 ± 99.6

Max RAM (GB)

k-mer Train Index Query Data Curation

6 4.60 ± 0.18 2.39 ± 0.01 2.91 ± 0.01 5.71 ± 0.00

7 10.51 ± 0.22 1.97 ± 0.00 2.50 ± 0.00 5.72 ± 0.00

8 11.52 ± 0.19 2.43 ± 0.00 2.91 ± 0.02 5.64 ± 0.00

Table 6.2: 5-fold cross-validation User time and RAM usage for the main steps when
creating the index. Training of the autoencoder (Train), index creation (Index), querying
the index (Query), and outliers detection and mislabeled assemblies identification (Data
Curation). All values are reported as the mean and standard deviation (µ± σ) from a
5-fold validation experiment. The time to count k-mers is not considered in the metrics
reported, it is assumed that the input is the FCGR format (matrix stored as .npy files).
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Outliers Outliers are defined as assemblies that significantly differ from the other as-

semblies in the dataset and are computed as described in Section 6.3.5. Examples of FCGRs

from non-outliers and outliers for 5 different species are shown in Figure 6.4.

In the 661K dataset, we found 7707 outliers using k = 8, that span 1675 species. We

show the top 20 species with outliers in Table 6.3. We noticed that the most represented

species in the dataset (Salmonella enterica) is not the one with the most outliers, it is

preceded by Escherichia coli, and Staphylococcus aureus, and that for species with relative

high representativity (more than 5000 assemblies in the dataset), we find less than 1% of

their assemblies flagged as outliers. Additionally, in all these cases, most of the outliers

correspond to assemblies that fall outside of the high-quality group (obtained using the

column high_quality in the file File4_QC_characterisation_661K.txt from https://doi.

org/10.6084/m9.figshare.16437939.v1).

On the opposite side, we find species with a very high proportion of outliers, most no-

tably, Faecalibacterium prausnitzii, Prevotella intermedia, and Muribaculum intestinal, for

which more than 80% of their sequences were flagged as outliers. All these species con-

tribute less than 100 assemblies each to the dataset. In some cases a considerable number of

assemblies tagged as high-quality are par the outliers, we suspect this is due to their under-

representativity in the dataset (except for Enterococcus faecium with a high representativity

in the dataset, but half of their outliers are high-quality assemblies), and the training method

we selected (AutoencoderFCGR with a random selection of data during training). This ap-

proach may be affected by imbalanced datasets, as under-represented data points have less

influence on the learning process.
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Species Outliers HQ not HQ Assemblies % Outliers

1 Escherichia coli 266 21 245 88749 0.30

2 Staphylococcus aureus 191 25 166 48418 0.39

3 Salmonella enterica 176 12 164 181871 0.10

4 Mycobacterium tuberculosis 116 3 113 48727 0.24

5 Streptococcus pneumoniae 102 12 90 51517 0.20

6 Clostridioides difficile 86 5 81 13713 0.63

7 Chlamydia trachomatis 80 10 70 1201 6.66

8 Faecalibacterium prausnitzii 79 41 38 84 94.05

9 Prevotella intermedia 78 49 29 90 86.67

10 Roseburia hominis 76 29 47 109 69.72

11 Bacillus subtilis 72 27 45 645 11.16

12 Klebsiella pneumoniae 56 9 47 13621 0.41

13 Enterococcus faecium 53 26 27 8635 0.61

14 Streptococcus agalactiae 51 7 44 10302 0.50

15 Lactobacillus plantarum 49 20 29 158 31.01

16 Pseudomonas aeruginosa 47 1 46 6371 0.74

17 Acinetobacter baumannii 46 11 35 5162 0.89

18 Campylobacter jejuni 45 2 43 28498 0.16

19 Streptococcus pyogenes 44 18 26 16830 0.26

20 Muribaculum intestinale 44 9 35 52 84.62

Total 1757 337 1420 524753 0.33

Table 6.3: Top 20 species with outliers. For each species, we show the number of
outliers detected in the 661K dataset, disaggregated into high-quality assemblies (HQ) and
no-high-quality ones (not HQ), the total number of assemblies per species, and the
proportion of outliers w.r.t. to the number of assemblies in the dataset. The results
correspond to the models using k = 8 with the AutoencoderFCGR architecture.

Mislabeled assemblies This experiment aims to determine whether assemblies iden-

tified by CL as having label issues (see Section 6.2.4) can be validated using ANI distance

analysis. Let us recall that the rule to state that two assemblies correspond to the same

species is that the ANI value between their assemblies is greater or equal to 95%. In ad-
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Figure 6.4: Examples of outliers through the lens of the FCGR Examples of five
bacterial assemblies, species names, and sample ID identifiers are in the title of each image.
Each image corresponds to the visualization of the FCGR in 8-bits (k-mer frequencies
rescaled to the interval [0, 255]) computed from 6-mers, and it has dimensions 26 × 26, one
pixel or position for each 6-mer. White color in a pixel means that the k-mer encoded has
the minimum value of frequency found in the assembly. Black color represents k-mers with
the maximum frequency in the assembly. Gray colors correspond to k-mer frequencies lying
between the minimum and maximum values. The top row corresponds to FCGRs of
assemblies considered not outliers, while the bottom row corresponds to FCGRs flagged as
outliers from the same species.

dition, we recall that the label assigned to each assembly in the 661K dataset is the most

abundant species in its sample of reads (see Section 6.3.4).

For each assembly flagged as with label issues, we compute the ANI distance between

the assembly against (1) the reference sequence of its label, denoted by ANI1, and (2) the

reference sequence of the second most abundant species in its sample of reads, denoted by

ANI2.

The second most abundant species was obtained from https://doi.org/10.6084/m9.figshare.

16437939.v1 (File1_full_krakenbracken.txt). Bacterial reference sequences were down-

loaded from NCBI (we obtained a total of 1709 reference sequences for the analysis).

We categorize the label of each assembly are as follows:

• If ANI1 < 95 and ANI2 < 95, the label of the assembly is categorized as unreliable.
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• If ANI1 ≥ 95 and ANI2 ≥ 95, the label of the assembly is categorized as doubt.

• If ANI1 < 95 ≤ ANI2, the label of the assembly is categorized as change label.

• If ANI1 ≥ 95 > ANI2, we keep the original label, categorized as unchanged.

On 8642 label issues assessed with the described procedure, we obtained that 756 assem-

blies fit in the category change label, 1924 in the category doubt, 2340 are in the category

unreliable, and 3622 with unchaged label. Most of the label issues in the category change

label correspond to the species Enterobacter cloacae, and according to the ANI distance, the

assemblies should be labeled as Enterobacter hormaechei.
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Original label Change to Assemblies

1 Enterobacter cloacae Enterobacter hormaechei 476

2 Bacillus cereus Bacillus anthracis 73

3 Burkholderia dolosa Burkholderia cenocepacia 51

4 Mycobacterium tuberculosis Mycobacterium ulcerans 9

5 Staphylococcus pasteuri Staphylococcus warneri 9

6 Klebsiella oxytoca Klebsiella michiganensis 7

7 Escherichia coli Klebsiella quasipneumoniae 7

8 Acinetobacter calcoaceticus Acinetobacter baumannii 6

9 Salmonella enterica Escherichia coli 6

10 Klebsiella pneumonia Klebsiella quasipneumoniae 5

11 Escherichia coli Salmonella enterica 5

12 Listeria monocytogenes Salmonella enterica 5

13 Lactococcus garvieae Enterococcus faecalis 5

14 Campylobacter lari Campylobacter jejuni 4

15 Bacillus thuringiensis Bacillus anthracis 4

16 Xanthomonas citri Xanthomonas phaseoli 4

17 Stenotrophomonas maltophilia Pseudomonas aeruginosa 3

18 Bacillus cereus Streptococcus pneumonia 3

19 Streptococcus oralis Streptococcus pneumonia 3

20 Campylobacter coli Campylobacter jejuni 3

Table 6.4: Top 20 pairs of species that should change labels. The first column
(Original label) corresponds to the original label of assemblies in the 661K that were
flagged as having label issues with confident learning, the second column (Change to)
corresponds to the suggested species label validated with ANI distance, for which the
assembly is closer in ANI distance to the reference sequence of the second column than to
the reference of its original label. The last column corresponds to the number of assemblies
that fit into this scenario.

6.4.2. Indexing the bacterial dataset

We recall that the index produced with PANSPACE is composed of the FAISS index which

stores all embeddings of the indexed assemblies, the trained model, namely the Encoder,
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which serves to map assemblies to the embedding space and performs queries, and the list

of labels for each assembly in the index.

We report in Table 6.5 the size of each component of the PANSPACE Index. Creating the

index from FCGRs took less than 8 minutes with maximum RAM usage of 4.5 GB. The

encoder corresponds to the CNNFCGR architecture for 6-mers.

FAISS Index Encoder Labels

Size 899 (MB) 567 (KB) 68 (MB)

Table 6.5: PANSPACE Index. The FAISS Index for the high-quality assemblies from the
2MM bacterial dataset (1.841.109 assemblies). The Encoder is the trained model CNNFCGR
for k = 6.

Furthermore, for testing purposes, we built the index for PANSPACE using 6-mers with

embedding size of 128 and 256 considering only training and validation sets (90% of the high-

quality data). The same dataset was used to create the index with the recent tool GSearch,

using the default parameters: 16-mers for the size of the sketch, using the ProbMinHash

algorithm.

For GSearch, using 24 cores, the maximum RAM usage was 156.8 GB, with 605 hrs of

user time (elapsed time of 24:52 hrs). The size of the index is 75 GB.

For PANSPACE, the maximum RAM usage was 2.3 GB in both cases. With embedding

size 128 the user time was 20:43 hrs (elapsed time 14:24), and with embedding size 256 the

user time was 29:54 (elapsed time 20:44). With embedding size 128, the index uses 817 MB

of disk space, and the encoder 567 KB. With embedding size 256, the index uses 1.6 GB,

and the encoder 1.1 MB. The labels (same list for both) uses 62 MB.
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6.4.3. Quality of queries to the index

This experiment aims to assess the quality of queries against the index built on top of

the train and validation sets from the 2MM dataset.

The dataset was split into training, validation, and test sets, in a proportion of 80:10:10.

The test set is used to query the index built on top of the 90% of the dataset used in the

training phase, as described in the previous section.

Given a query assembly, we retrieve the n=11 assemblies and their labels for which their

embeddings are closer (in Euclidean distance) to the embedding of the query. The label

assigned to the query is the most common label among the labels in the query result, if the

query has two different labels with the same frequency (e.g. 5 of species X, and 5 of species

Y), we label it as unrealiable for the effects of this experiment.

For this experiment (and the ones that follow) we consider only high-quality assemblies,

and the subset of species for which there are at least 13 assemblies so that at least 1 as-

sembly can be part of the test set based on the split of the dataset and how we defined the

classification based on the query results (11 assemblies are retrieved).

Precision, recall, and F1-score for the 30 more represented species in the dataset are

reported in Table 6.6. We can observe that all F1-scores reported among these species are

above 0.97, except for Campylobacter coli reporting an F1-score of 0.9. These are notable

results considering how imbalanced is the dataset, suggesting that the metric learning with

the triplet loss successfully handles this problem.
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Species Precision Recall F1-score Assemblies

Salmonella enterica 1 1 1 53324

Escherichia coli 1 1 1 31136

Mycobacterium tuberculosis 1 1 1 13215

Staphylococcus aureus 0.999 1 1 10366

Streptococcus pneumoniae 0.992 1 0.996 9508

Campylobacterd jejuni 0.939 1 0.968 8041

Listeria monocytogenes 0.999 1 1 5907

Klebsiella pneumoniae 0.983 1 0.992 5665

Neisseria gonorrhoeae 1 1 1 4358

Neisseria meningitidis 1 1 1 3449

Streptococcus pyogenes 1 1 1 3173

Campylobacterd coli 1 0.823 0.903 2958

Enterococcusb faecium 0.970 1 0.985 2747

Clostridioides difficile 0.999 1 0.999 2617

Pseudomonas aeruginosa 1 1 1 2486

Streptococcus agalactiae 1 1 1 2286

Acinetobacter baumannii 0.992 0.999 0.996 1430

Haemophilus influenzae 0.999 1 1 1082

Vibrio cholerae 1 1 1 1058

Enterococcus faecalis 1 1 1 794

Bordetella pertussis 1 1 1 715

Vibrio parahaemolyticus 1 1 1 713

Enterobacter hormaechei 0.997 0.998 0.998 619

Staphylococcus epidermidis 1 0.995 0.997 569

Mycobacterium abscessus 0.998 1 0.999 532

Legionella pneumophila 0.959 1 0.979 519

Burkholderia mallei 0.988 1 0.994 509

Salmonella houtenae 0.995 0.995 0.995 366

Staphylococcus pseudintermedius 0.981 1 0.991 365

Salmonella diarizonae 1 0.972 0.986 357

Table 6.6: Classification metrics 30 most represented species We show the 30
species more represented in 2MM dataset. Precision, recall, and F1-score are reported for
each species. The number of assemblies in the test set is reported in the last column. The
predicted label is computed as the most frequent label of the query result (of size 11).
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The weighted average and macro average of the precision, recall, and F1-score are re-

ported at the level of species and at the level of genus for PANSPACE and GSearch in Table 6.7

and Table 6.8, respectively. For PANSPACE at the level of species, the macro average F1-score

is 0.87, and at the level of genus, is 0.99, suggesting that misclassified assemblies are not

random but taxonomically consistent. We also report results for the new tool GSearch for

comparison, which present better results at the level of species, but we recall that its index

uses 16-mers and is 75× larger than ours.

Precision Recall F1-score

PANSPACE Weighted Average 0.992 0.992 0.991

Macro Average 0.895 0.871 0.874

GSearch Weighted Average 1 1 1

Macro Average 0.974 0.972 0.971

Table 6.7: Average Precision, Recall, and F1-score at species level for the test set (184,512
assemblies). For PANSPACE using 6-mers and a model with embedding size 128, and
GSearch with 16-mers for the size of the sketch.

Precision Recall F1-score

PANSPACE Weighted Average 1 1 1

Macro Average 0.992 0.989 0.990

GSearch Weighted Average 1 1 1

Macro Average 0.981 0.981 0.980

Table 6.8: Average Precision, Recall, and F1-score at genus level for the entire dataset.
The total number of assemblies in the test set is in the last column

6.4.4. Distance correlation with ANI

In this experiment, we aim to assess how the Euclidean distances between the embedding

representation of assemblies correlate to the ANI values between the assemblies. We also
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include GAMBIT in our analyses (it computes a Jaccard-based distance between assemblies

based on k-mers), since has been shown to correlate with ANI.

We first compare fastANI, PANSPACE, and GAMBIT distances, by randomly selecting 1000

assemblies from the 30 species. We compute all-vs-all distances for all of them. Still, since

fastANI only reports ANI values close to 80% (in our case, the minimum ANI value reported

was 73.4%), we restrict our analysis to 59.593.343 pairwise distances. In Table 6.9 we

compute the Spearman correlation between distances computed with fastANI, GAMBIT, and

PANSPACE. Results show that both, PANSPACE and GAMBIT strongly correlate (Spearman

correlation < −0.7) with ANI distance.

These values suggest that as the PANSPACE distance decreases (indicating greater genomic

similarity), the ANI values tend to increase, which is consistent with the expected relationship

between these two measures of genomic relatedness. The same reasoning applies to GAMBIT

distances compared to ANI.

fastANI-PANSPACE fastANI-GAMBIT PANSPACE-GAMBIT

Spearman correlation −0.745 −0.966 0.756

Table 6.9: Spearman correlation between distances computed by fastANI, GAMBIT
and PANSPACE. A random selection of 1000 sequences for the 30 species with more
assemblies was selected. An all vs all pairwise distance was computed. We restricted our
analysis to the 59.593.343 pairwise distances successfully returned by fastANI (the
minimum ANI value reported was 73.4). All values suggest a strong correlation between
the three distance measures, In all cases, p-values were 0.0 (most likely due to large sample
size, or computational precision).

Secondly, we explore how assemblies cluster themselves by using PANSPACE and GAMBIT

distances. We randomly selected one assembly for each of the 30 species we selected to

compare distances and create a cluster map for each tool. In Figure 6.5 we show the cluster

map for GAMBIT and in Figure 6.6 the cluster map for PANSPACE. We observe that groups of

species tend to be clustered by genus level.
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Figure 6.5: Cluster map GAMBIT. We randomly selected one assembly of 30 species in the
2MM dataset. We can observe that species tend to be clustered by genus level, most
notably (from top to bottom) Mycobacterium, Neisseria, Campylobacter, and
Staphylococcus. GAMBIT distances are in the range [0, 1], we chose different ranges for
colors for visualization purposes.

6.4.5. Discussion

In this work, we have shown PANSPACE, a deep-learning-based tool with two architectures,

AutoencoderFCGR and CNNFCGR, for unsupervised and supervised learning, respectively, built

on top of convolutional layers that exploits the FCGR representation of assemblies, leading

to small models that are accurate and efficient to train.

By using embedding representations of assemblies given by the output of these models,

we have shown a pipeline for the identification of outliers and mislabeled assemblies.
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Figure 6.6: Cluster map PANSPACE. We randomly selected one assembly of 30 species in
the 2MM dataset. We can observe that species tend to be clustered by genus level, most
notably (from top to bottom) Mycobacterium, Neisseria, Campylobacter, and
Staphylococcus, except for Streptococcus genus which is split into two groups. PANSPACE
distances are in the range [0, 2], we chose different ranges for colors for visualization
purposes.

More importantly, the embedding representations of assemblies serve as the basis for

defining an extremely compressed and efficient index to handle large bacterial datasets. The

Euclidean distance between embeddings of assemblies correlates with ANI values between

the assemblies. Our index, comprising more than 1.8 million assemblies is roughly 1 GB of

disk space and requires less than 5 GB of RAM to be queried and trained.

We have shown that we can tackle an imbalanced dataset with the use of metric learning

and the triplet loss, leading to a taxonomy-aware classification model at the level of genus and

species. We believe that results can be improved by defining better strategies for mini-batch
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selection when training the models, and by cleaning the dataset, i.e. removing outliers, and

fixing label issues by applying the data curation pipeline with models trained with metric

learning. Additionally, we can explore other metric learning approaches like proxy-based

losses, which have been shown to excel in this framework compared to pair-based losses (the

ones used here). Incrementing the dimension of the FCGR (by selecting larger k-mers) and

the embedding size would also help to improve results, but at the expense of incrementing

the index and encoder sizes.

To the best of our knowledge, this is the first approach that deals with genomic sequences

in a continuous space.

6.5. Availability of data and materials

For experiments on bacterial data, results and experiments can be downloaded from https:

//zenodo.org/records/14004182, and the codes to replicate the experiments at https://

github.com/pg-space/panspace-paper.
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Chapter 7

Future work

In this thesis, we present a novel approach for constructing customized variation graphs

from a multiple sequence alignment (MSA), utilizing the concept of maximal blocks. Al-

though the ILP formulation limits our analysis to smaller instances, it enables the explo-

ration of various objective functions to guide graph construction based on different criteria.

A potential future direction is to bypass the MSA by extending our ILP formulation to work

with Maximal Exact Matches (MEMs) computed directly from the input sequences, similar

to the use of maximal blocks derived from the MSA.

We have explored the study of variation graphs as discrete manifolds, proposing the

basis for addressing the alignment between variation graphs from a geometrical point of

view. Experimental evaluation of our method remains as one of the priorities as future work.

A natural direction for our approach is to model other pangenome graph representations as

manifolds (e.g. de Bruijn Graphs, colored de Bruijn Graphs), by defining suitable probability

distributions that encapsulate the information within these graph structures.

Deep learning combined with the FCGR representation of assemblies has proven to be

effective at the pangenome scale, successfully analyzing viral and bacterial sequences. We

anticipate that this approach could be extended to all kingdoms of life. Additionally, through

metric learning, we demonstrate that imbalanced genomic datasets can be managed effec-

tively and that embedding representations of assemblies offer a promising path for creating
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compact, fast-to-query indexes. A logical next step would be to adapt our approach to

function at the read level, particularly in metagenomic contexts.
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[26] J. P. Meier-Kolthoff and M. Göker, Tygs is an automated high-throughput platform for
state-of-the-art genome-based taxonomy, Nature communications 10 (2019) 2182. 4,
100, 101

[27] Q. Liang, C. Liu, R. Xu, M. Song, Z. Zhou, H. Li et al., fidbac: a platform for fast
bacterial genome identification and typing, Frontiers in Microbiology 12 (2021)
723577. 4, 101

140

http://dx.doi.org/10.1186/s13059-020-02168-z


[28] D. Kim, L. Song, F. P. Breitwieser and S. L. Salzberg, Centrifuge: rapid and sensitive
classification of metagenomic sequences, Genome research 26 (2016) 1721–1729. 4,
103

[29] L. Song and B. Langmead, Centrifuger: lossless compression of microbial genomes for
efficient and accurate metagenomic sequence classification, Genome Biology 25
(2024) 106. 4, 103

[30] J. Shaw and Y. W. Yu, Rapid species-level metagenome profiling and containment
estimation with sylph, Nature Biotechnology (2024) 1–12. 4, 117

[31] B. Verma and J. Parkinson, Hitaxon: a hierarchical ensemble framework for taxonomic
classification of short reads, Bioinformatics Advances 4 (2024) vbae016. 5, 103

[32] S. Kutuzova, M. Nielsen, P. Piera, J. N. Nissen and S. Rasmussen, Taxometer: Improving
taxonomic classification of metagenomics contigs, Nature Communications 15 (2024)
8357. 5, 103

[33] Q. Liang, P. W. Bible, Y. Liu, B. Zou and L. Wei, Deepmicrobes: taxonomic
classification for metagenomics with deep learning, NAR Genomics and
Bioinformatics 2 (2020) lqaa009. 5, 103

[34] H. J. Jeffrey, Chaos game representation of gene structure, Nucleic acids research 18
(1990) 2163–2170. 5, 9

[35] P. J. Deschavanne, A. Giron, J. Vilain, G. Fagot and B. Fertil, Genomic signature:
characterization and classification of species assessed by chaos game representation of
sequences., Molecular biology and evolution 16 (1999) 1391–1399. 5, 12

[36] J. Avila Cartes, P. Bonizzoni, S. Ciccolella, G. Della Vedova and L. Denti, Pangeblocks:
customized construction of pangenome graphs via maximal blocks, BMC
bioinformatics 25 (2024) 344. 6

[37] J. Avila Cartes, S. Anand, S. Ciccolella, P. Bonizzoni and G. Della Vedova, Accurate and
fast clade assignment via deep learning and frequency chaos game representation,
GigaScience 12 (2023) giac119. 6
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