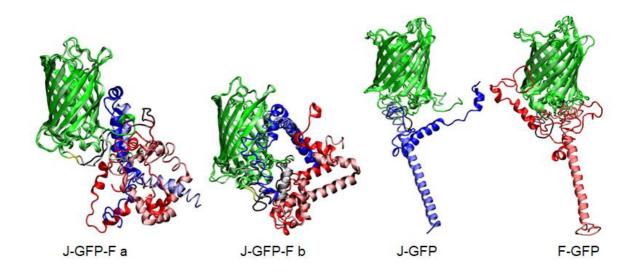
Supplementary information

Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications

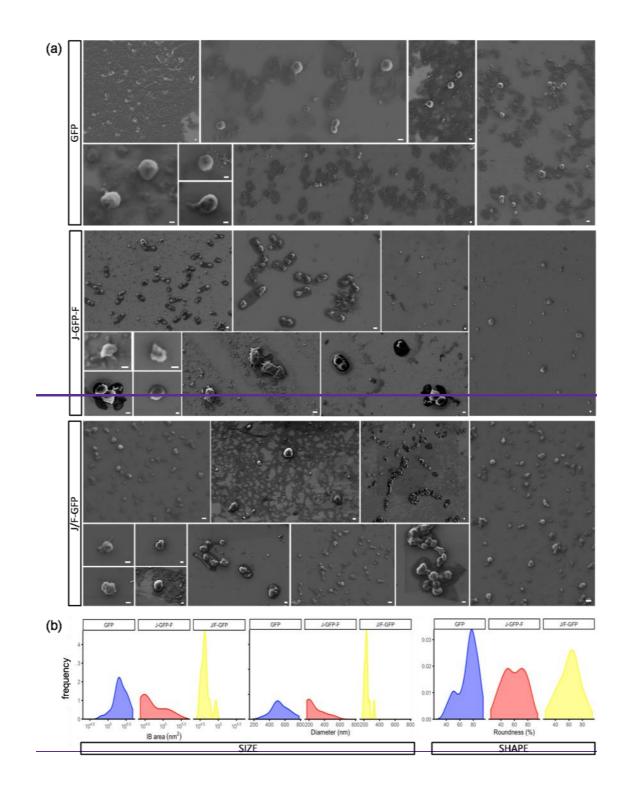
Ramon Roca-Pinilla^a, Sara Fortuna^b, Antonino Natalello^c, Alejandro Sánchez-Chardi^{d,e}, Diletta Ami^c, Anna Arís^{a*}, Elena Garcia-Fruitós^{a*}

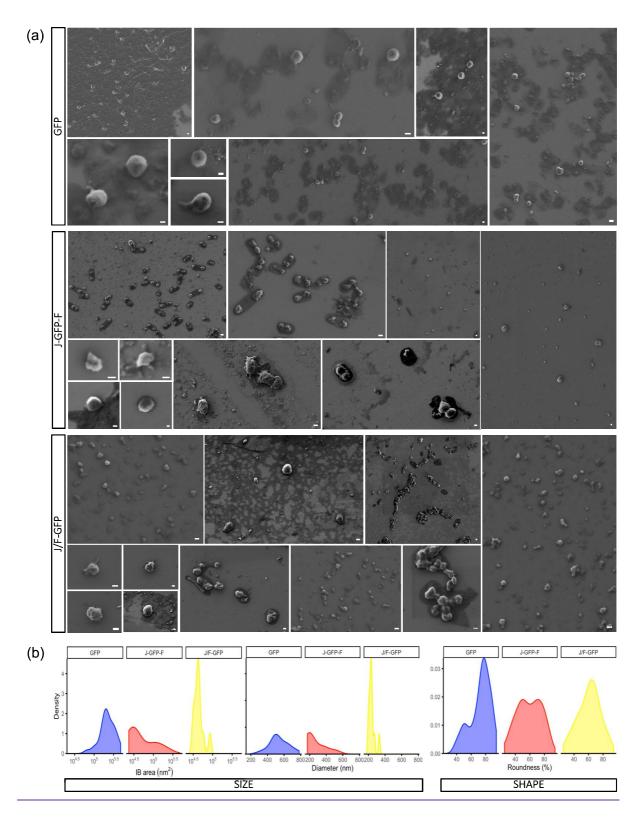
^aDepartment of Ruminant Production, Institute of Agriculture and Food Research (IRTA), 08140 Caldes de Montbui, Spain

^b Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy

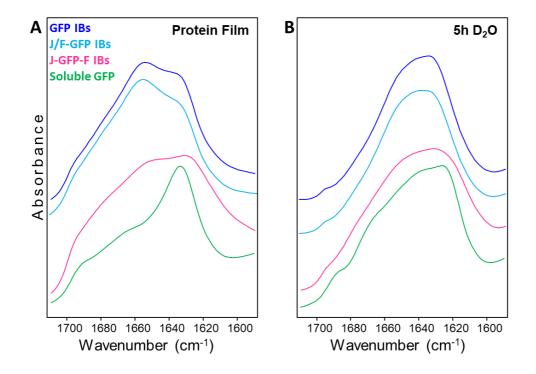

^c Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy

^d Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona (UB). 08028 Barcelona, Spain


^e Microscopy Service, Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Valles, Spain


*Corresponding authors. Tel: + 34 93 467 40 40; Fax: +34 93 467 40 42; E-mail: anna.aris@irta.cat, elena.garcia@irta.cat

Figures



Supplementary Figure S1. Overlap between starting model (lighter shades) and final configuration (darker shades) of the J-GFP-F (two models: a and b) and J/F-GFP constructs (one model each), after 250 ns of molecular dynamics simulation. The generated models were minimized, placed in a cubic water box, minimized again, equilibrated and, for each construct, 250ns of molecular dynamics simulation were performed. Large rearragements of the Jun/Fos domains were observed. Construct domains are color coded as follow: GFP (green), Jun (blue), Fos (red).

Supplementary Figure S2. (a) Representative FESEM images of the isolated IBs for each construct: GFP IBs, J-GFP-F IBs and J/F-GFP IBs. Bars size represent 200 nm. (b) Frequency distribution of IBs ultrastructural morphometry quantification for each construct: size (area (nm²) and diameter (nm)) and shape (roundness (%)).

Supplementary Figure S3. A) FTIR absorption spectra of the protein films. B) FTIR absorption spectra collected after re-hydration of the protein films with D_2O for 5 h. GFP and J/F-GFP IBs displayed similar absorption spectra both as film and after re-hydration, while J-GFP-F IBs showed distinct spectral features. As a control, the absorption spectra of the soluble GFP are also shown.

Tables

Supplementary Table 1. Statistics for the protein aggregation ratio (%) for each construct over time. (a) Aggregation ratio (%) differences between the three constructs and (b) aggregation ratio (%) differences for each construct over time. Different letters mean statistically significant difference (Post-hoc Tukey HSD (THSD) comparisons).

(a)

Protein	Aggregation ratio (%)	p-value		
GFP	44.57 ± 7.71^{a}			
J-GFP-F	52.56 ± 7.36 a, b	0.0189		
J/F-GFP	73.55 ± 3.59^{b}			

Protein	GFP			J-GFP-F		J/F-GFP			p-value	
Time (h)	1	3	5	1	3	5	1	3	5	Time
Aggregation ratio (%)	29.18± 17.15 ^a	53.12± 18.85 ^a	51.40± 3.80°	49.78± 26.98 a	41.43± 30.11 ^a	66.46± 2.73 ^a	69.71± 15.15 ^a	70.23± 10.89 ^a	70.23± 9.14 ^a	0.057