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Abstract
Post randomization methods are among the most popular disclosure limitation techniques for both categorical and continuous
data. In the categorical case, given a stochastic matrix M and a specified variable, an individual belonging to category i is
changed to category j with probability Mi, j . Every approach to choose the randomization matrix M has to balance between
two desiderata: (1) preserving as much statistical information from the raw data as possible; (2) guaranteeing the privacy of
individuals in the dataset. This trade-off has generally been shown to be very challenging to solve. In this work, we use recent
tools from the computer science literature and propose to choose M as the solution of a constrained maximization problems.
Specifically, M is chosen as the solution of a constrained maximization problem, where we maximize the mutual information
between raw and transformed data, given the constraint that the transformation satisfies the notion of differential privacy. For
the general categorical model, it is shown how this maximization problem reduces to a convex linear programming and can
be therefore solved with known optimization algorithms.

Keywords Post randomization methods · Disclosure risk · Mutual information · Differential privacy · Categorical variables

1 Introduction

Data from census or survey studies are among the most
useful sources of information for social and political stud-
ies. However, when statistical and governmental agencies
release microdata to the public, they often encounter ethi-
cal and moral issues concerning the possible privacy leak
for individuals present in the dataset. Anonymization tech-
niques, like encrypting or removing personally identifiable
information, have been widely used with the hope of ensur-
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ing privacy protection. However, recent studies by Gymrek
et al. (2013), Homer et al. (2008), Narayanan and Shmatikov
(2008), Sweeney (1997) have shown that, even after remov-
ing directly identifying variables, like names or national
insurance numbers, the potential for breaches of confiden-
tiality is still present. Specifically, an intruder might still be
able to identify individuals by cross-classifying categorical
variables in the dataset and matching them with some exter-
nal database. This kind of privacy problems have beenwidely
considered in the statistical literature and different measures
of disclosure risk have been proposed to assess the riskiness
of specific dataset.

Different disclosure limitation techniques have been pro-
posed, like rounding, suppression of extreme values or entire
variables, sampling or perturbation techniques. Post Ran-
domization Methods (PRAM) are among the most used
techniques for disclosure risk limitation. See De Wolf et al.
(1997), Gouweleeuw et al. (1997), Kooiman et al. (1997).
With these techniques, before releasing the dataset, the data
curator randomly changes the values of some categorical
identifying variables, like gender, job or age, of some indi-
viduals in the dataset. In a recent paper, Shlomo and Skinner
(2010) consider PRAM and random data swapping of a geo-
graphical variable and propose a way of computingmeasures
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of disclosure risk to assess whether these techniques have
been effective in “privatizing” the dataset. The choice of
the geographical variable is motivated by the fact that, by
swapping or changing it, it is usually less likely to generate
unreasonable combinations of categorical variables, like for
instance a pregnant man or a 10 year old lawyer. In order
to implement PRAM, they consider a stochastic matrix M ,
where the (i, j) entry of this matrix gives the probability that
an individual from location i has his geographical variable
swapped to location j . Given this known matrix M , Shlomo
andSkinner (2010) suggest somemeasures of risk and related
estimation methods. However, an open problem is to decide
how the data curator should actually choose the matrix M in
order to guarantee an effective level of privacy.

Over the last ten years, a new approach to data protec-
tion, called Differential Privacy (see Dwork et al. (2006)),
has become more and more popular in the computer sci-
ence literature and has been implemented in their security
protocols by IT companies [Eland (2015), Erlingsson et al.
(2014), Machanavajjhala et al. (2008)]. This new framework
finds its roots in the cryptography literature and prescribes to
transform the original data, containing sensitive information,
using a channel ormechanism Q into a sanitized dataset. The
mechanism Q should be chosen carefully, in such a way that,
by only looking at the released dataset, an intruder will have
very low probability of guessing correctly the presence or
absence of a specific individual in the raw data and, there-
fore, the privacy of the latter will be preserved. Differential
Privacy formalizesmathematically this intuitive idea.Wewill
provide a short review on it in Sect. 2.3.

In this work, we bring together ideas from the Disclosure
Risk and Differential Privacy literature to propose a formal
way of choosing the stochastic matrix M used in PRAM.
Specifically, when choosing M , we need to balance two con-
flicting goals: (1) on the one hand, we want the application
of M to make the dataset somehow private; (2) on the other
hand, we also want that the released dataset preserves as
much statistical information as possible from the raw data.
In order to balance this trade-off, we propose to choose M
as the solution of a constrained maximization problem. We
maximize the Mutual Information between the released and
the raw dataset, hence guaranteeing preservation of statisti-
cal information and achieving goal (2). Mutual Information
is a common measure of dependence between random vari-
ables used in probability and information theory. In order
to guarantee also goal (1), we introduce a constraint in the
maximization problem by imposing that the application M
satisfies differential privacy, therefore the resulting mech-
anism based on M can formally be considered private. We
show how this optimization problem results in a convexmax-
imization problem under linear contraints and can therefore
being solved efficiently by known optimization algorithms.

The rest of thiswork is organized as follows. InSect. 2, first
wewill briefly review the disclosure risk problem in Sect. 2.1
and then the tools needed for our approach. Specifically, we
review Mutual Information in Sect. 2.2 and Differential Pri-
vacy in Sect. 2.3. In Sect. 3, we formalize the proposed
constrained maximization problem to choose the stochas-
tic matrix M in PRAM and show that this choice is made
by solving a convex optimization problem under linear con-
straints. Section 4 contains a simulation study showing first
the effect of the Diffential Privacy constraint on simulated
data and then the effect of different choices of M using a real
dataset of a survey of NewYork residents. Finally, a conclud-
ing remarks section closes the work. Proofs of the statements
are deferred to the Appendix.

2 Literature review

2.1 Disclosure risk limitation with categorical
variables

In disclosure risk problems, we usually have microdata of
n individuals, where for each individual we can observe
two distinct sets of variables: (1) some variables, usually
called sensitive variables, containing private information,
e.g. health status or salary; (2) some identifying categori-
cal variables, usually called key variables, e.g. gender, age or
job. Disclosure problems arise because an intruder may be
able to identify individuals in the dataset by cross-classifying
their corresponding key variables andmatching them to some
external source of information. If the matching is correct, the
intruder will be able to disclose the information contained in
the sensitive variables.

Formally, let us assume we have J categorical key vari-
ables in the dataset, observed for a sample of n individuals,
collected from a population of size N . Each variable has
n j possible categories labelled, without loss of generality,
from 1 up to n j . The observation for individual i , Xi =
(Xi1, . . . , Xi J ), therefore takes values in the state space
C := ∏J

j=1{1 . . . , n j }. This set has K := |C| = ∏J
j=1 n j

values, corresponding to all possible cross-classification of
the J key variables. The information about the sample is usu-
ally given through the sample frequency vector ( f1, . . . , fK ),
where fi counts how many individuals of the sample have
been observed with the particular combination of cross-
classified key variables corresponding to cell i . (F1, . . . , FK )

denotes the corresponding vector frequencies when consid-
ering the whole population of N individuals.

The earliest papers to consider disclosure risk problems
includeBethlehemet al. (1990),Duncan andLambert (1986),
Duncan and Lambert (1989), Lambert (1993). These works
propose different measures of disclosure risk and possible
ways to estimates them under different model choice. Skin-
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ner and Elliot (2002), Skinner et al. (1994) review the most
popular among measures of disclosure risk. These measures
depend on the sample frequencies ( f1, . . . , fK ) and usually
focus on small frequencies, especially those having fre-
quency 1, called sample uniques. The individuals belonging
to these cells are those with the highest risk of their sensi-
tive information being disclosed. Specifically, suppose that
an individual is the only one both in the sample and in popu-
lation to have a specific combination of key variables. Then,
his key variables can be matched to an external database, and
therefore this match will be perfect, i.e. correct with prob-
ability one, and his sensitive information will be therefore
disclosed.

We usually distinguish between two groups of measures
of disclosure risk:

1. Record Level (or per-record) measures: they assign a
measure of risk for each data point. Among the most
popular, there are

r1k = P(Fk = 1| fk = 1),

r2k = E(1/Fk | fk = 1).
(1)

k ∈ {1, . . . , K }. The first measure provides the probabil-
ity that a sample unique is also population unique. The
second tells the probability that if we select a sample
unique and guess uniformly about his identity, we pick
him correctly. The first measure is less conservative and
is always smaller than the second.

2. File level measures: they provide an overall measure of
risk for a dataset and are usually defined by aggregating
the record level. Popular examples are

τ1 =
∑

k: fk=1

r1k, τ2 =
∑

k: fk=1

r2k . (2)

These measures of disclosure risk are estimated using the
data ( f1, . . . , fK ) under different modelling choices. For
example, Skinner and Shlomo (2008), Shlomo and Skin-
ner (2010) consider the estimation of these measures under
log-linear models for the population and sample frequen-
cies. Under this model choice, the indexes (1) and (2),
can be derived in closed form and estimated using plug-in
MLE estimators. A different modelling approach, proposed
in Manrique-Vallier and Reiter (2012, 2014), is to apply
grade of membership models, which provide very accurate
estimates for (2). For a quite recent review on disclosure
risk problems, the reader is referred to Matthews and Harel
(2011).

If the estimated values of (1) and (2) are too high, then the
data curator should apply a disclosure limitation technique to
the dataset before releasing it to the public. Some possibili-
ties are for example rounding, suppression of extreme values

or entire variables, subsampling or perturbation techniques.
See Willenborg and de Waal (2001) for a review of different
disclosure limitation techniques.

2.2 Mutual information

Let X be a discrete random variable taking values on a
finite set X and having probability mass function pX (x).
The (Shannon) entropy of X is defined as

H(X) = −
∑

x∈X
pX (x) log pX (x) = −E(log(pX (x)))

and it is a measure of uncertainty about the distribution of
X . H(X) is always non-negative, takes value 0 when pX is
a point mass in one of the support points and it is maximized
when pX is uniform, pX (x) = 1

|X | ∀x ∈ X , in which case
H(X) = log |X |.
Similarly, given two discrete randomvariables X and Z , their
joint entropy is defined as

H(X , Z) = −
∑

x∈X

∑

z∈Z
p(X ,Z)(x, z) log p(X ,Z)(x, z),

where p(X ,Z) denotes the joint mass function on X × Z .
H(X , Z) measures the joint uncertainty of X and Z taken
together.
Besides the conditional entropy of Z given X is defined as

H(Z |X) = −
∑

x,z

pX ,Z (x, z) log(PZ |X=x (z))

= H(X , Z) − H(X) (3)

and quantifies the amount of information needed to describe
the outcome of Z given that the value of X is known. If
Z and X are independent, the conditional entropy H(Z |X)

coincides with H(Z).
The mutual information between X and Z is defined as

I (X , Z) =
∑

z∈Z

∑

x∈X
P(X ,Z)(x, z) log

(
p(X ,Z)(x, z)

pX (x)pZ (z)

)

where pX , pZ , p(X ,Z) are respectively the marginal and joint
distributions of X and Z . From the definition of I (X , Z) it
follows that

I (X , Z) = DKL(p(X ,Z)||pX pZ ) (4)

where DKL denotes theKullback–Leibler divergence. There-
fore, I (X , Z) measures the divergence between the joint
distribution of X and Z and the product of their marginals.
From (4), it also follows that I (X , Z) ≥ 0, and I (X , Z) = 0
if and only if X and Z are independent.
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An important equality connecting the mutual information
I (X , Z) with the marginal and joint entropies is

I (X , Z) = H(X) + H(Z) − H(X , Z). (5)

This formula is the base of the so-called 3H principle to
estimate I (X , Z), in which the three H entropy terms on the
right hand side are estimated from the data and plugged into
(5) to obtain an estimate ̂I (X , Z).

For a review on entropy, mutual information and their
properties, see for exampleGibbs andSu (2002),Gray (2011)
and references therein.

2.3 Differential privacy

Differential Privacy is a notion recently proposed in the
computer science literature by Dwork et al. (2006), Dwork
and Roth (2014) mathematically formalize the idea that
the presence or absence of an individual in the raw data
should have a limited impact on the transformed data, in
order for the latter to be considered privatized. Formally,
let X1:n = (X1, . . . , Xn) be a set of observations, taking
values in a state space X n ⊆ R

n , containing sensitive infor-
mation. A mechanism is simply a conditional distribution Q
that, given the raw dataset X1:n , returns a transformed dataset
Z1:kn = (Z1, . . . , Zkn ), withZkn ⊆ R

kn , to be released to the
public, where the sample sizes of X1:n and Z1:n are allowed
to be different. Differential Privacy is a property of Q that
guarantees that it should be very difficult for an intruder to
recover the sensitive information of X1:n by having access
only to Z1:kn and is defined as follows.

Definition 1 (α-Differential Privacy, Dwork et al. (2006))
The mechanism Q satisfies α-Differential Privacy if

sup
S∈σ(Zn)

Q(Z1:n ∈ S|X1:n)
Q(Z1:n ∈ S|X ′

1:n)
≤ exp(α) (6)

for all X1:n, X ′
1:n ∈ X n s.t. dH (X1:n, X ′

1:n) = 1, where
dH denotes the Hamming distance, dH (X1:n, X ′

1:n) =
∑n

i=1 I(Xi �= X ′
i ) and I is the indicator function of the event

inside brackets.

For small values of α the right hand side of (6) is approx-
imately 1. Therefore, if Q satisfies Differential Privacy, (6)
guarantees that the output database Z1:n has basically the
same probability of having been generated from either one of
two neighboring databases X1:n , X ′

1:n , i.e. databases differ-
ing in only one entry. See Rinott at al. (2018) for a statistical
viewpoint of differential privacy.

Differential Privacy has been studied in a wide range of
problems, differing among them in the way data is collected
and/or released to the end user. The two most important
classifications are between Global versus Local privacy, and

Interactive versus Non-Interactive models. In the Global (or
Centralized) model of privacy, each individual sends his data
to the data curator who privatizes the entire data set cen-
trally. Alternatively, in the Local (or Decentralized) model,
each user privatizes his own data before sending it to the data
curator. In this latter model, data also remains secret to the
possibly untrusted curator. In the Non-Interactive (or Off-
line) model, the transformed data set Z1:n is released in one
spot and each end user has access to it to perform his statisti-
cal analysis. In the Interactive (or On-line) model however,
no data set is directly released to the public, but each end
user can ask queries f about X1:n to the data holder who will
reply with a noisy version of the true answer f (X1:n).

There have been many extensions and generalizations of
the notion (6) of Differential Privacy proposed over the last
ten years, in order to accommodate for different areas of
applications and state spaces of the input and output data.
Among them,wemention (α, δ)-Differential Privacy (Dwork
and Roth 2014), vertex and edge Differential Privacy for net-
work models (Borgs et al. 2015), zero-mean Concentrated
Differential Privacy (Bun and Steine 2016), randomised dif-
ferential privacy (Happ et al. 2011) or ρ Differential Privacy
(Chatzikokolakis et al. 2013;Dimitrakakis et al. 2017),where
the Hamming distance dH is (6) is replaced by possibly any
distance ρ, and many others. However, since it is not possi-
ble to review all the many extensions of Differential Privacy
here, we refer to Dwork and Roth (2014) for a quite updated
review on different applications and extensions of Differ-
ential Privacy. To conclude this brief review, we recall one
of the most important properties of any Differential Private
mechanism: post processing, see Dwork and Roth (2014).
This property guarantees that if the output Z1:n of any α-
Differential Privatemechanism is further processed and gone
through anothermechanism (depending only on Z1:n , and not
on X1:n), then the resulting output will also be α-Differential
Private. Therefore, there will be no chance of any leak of
privacy simply by post-processing the released data Z1:n .

3 An information-theoretic approach to
PRAM using differential privacy

PostRandomizationMethod is a popular perturbationmethod
for disclosure risk limitation. It is connected to random-
ized response techniques described by Warner (1965). In
the former approach, the raw data are perturbed by the data
holder after having being collected, while in the latter, the
perturbation is directly applied by the respondents during
the interviewing process. We remind that PRAM was intro-
duced by Kooiman et al. (1997) and further explored by
Gouweleeuw et al. (1997) and De Wolf et al. (1997). Given
raw microdata, PRAM produces a new dataset where some
of entries are randomly changed according to a prescribed
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probability mechanism. The randomness introduced by the
mechanism implies that matching a record in the perturbed
dataset may actually be a mismatch instead of a true match,
hence making usual disclosure matching attempts less reli-
able.

Shlomo and Skinner (2010) consider the problem of dis-
closure risk estimation when the microdata has gone through
either a PRAM or data swapping process. They perturb the
geographical key variable using a stochastic matrix M , i.e.
every row of M sums to one, where Mi j provides the proba-
bility that an individual from location i is changed to location
j . Shlomo and Skinner (2010) then proceed to discuss the
problem of how to estimate the measures of risk presented
in Sect. 2.1, but without providing any tangible rule on how
to choose M , which is not the main goal of that paper.

In this work, we propose a novel approach to choose the
randomization matrix M in PRAM. Specifically, we propose
to choose it as the solution of a constrained maximization
problem, in which we maximize the mutual information
between raw data X1:n and released data Z1:n , under the con-
straint that the perturbation mechanism satisfies the Differ-
ential Privacy condition (6). Other optimization approaches
for PRAM were already considered by Willnborg (1999)
and Willenborg (2000), using different target functions and
constraints. See also Section 5.5 of Willenborg and de Waal
(2001). However, these choices usually result in a difficult
maximization problems and often rely on approximation
methods.

We argue that the choice of Mutual Information and
Differential Privacy have several advantages. First, Mutual
Information and Differential Privacy are very natural notions
and popular measures of information similarity and privacy
guaranty that have been widely considered in Information
Theory and Machine Learning. Second, as it will be shown
shortly, the resultingmaximization problem reduces to a con-
vex maximization problem under a set of linear constraints,
hence it can be solved efficiently bywell known optimization
tools, like the Simplexmethodwhich is implemented inmost
of the commonly used computational softwares, like Matlab
or R. Finally, the level of privacy guaranteed by the proposed
methodology is tuned by a single tuning parameter α, which
can be chosen by the data curator to achieve the desired level
of privacy in a very simple manner. In Sect. 4.1, we will show
empirically how the choice of this parameter affects the esti-
mation of the parameters, hence providing some evidence
and guidance on how to choose it.

3.1 Model of PRAM

We propose to choose M as the solution of the following
constrained maximization program

max
M satisfies (6)

I (X1:n, Z1:n). (7)

Wewill consider the case of randomly changing the values of
a keyvariablewith S possible outcomes, e.g. the geographical
location. Xi ∈ {1, . . . , S} is the corresponding categorical
randomvariable, having probabilities p = (p1, . . . , pS), and
therefore P(Xi = j) = p j . We consider the class of all
randomizing matrices of the following form

M =

⎡

⎢
⎢
⎢
⎣

q1
1−q1
S−1

1−q1
S−1 . . .

1−q1
S−1

1−q2
S−1 q2

1−q2
S−1 . . .

1−q2
S−1

. . . . . . . . . . . . . . . . . . . . . . .
1−qS
S−1

1−qS
S−1

1−qS
S−1 . . . qS

⎤

⎥
⎥
⎥
⎦

(8)

for an unknown parameter vector q = (q1, . . . , qS). This
corresponds to the case in which, given that Xi belongs to
category j , then its transformed value Zi will either remain
unchanged with probability q j , or will be changed to one of
the other S−1 categories, chosen uniformly at random, with
probability 1− q j . Therefore, the conditional distribution of
Zi given Xi is

Q(Zi |Xi ) = qI(Zi=Xi )
Xi

(
1 − qXi

S − 1

)I(Zi �=Xi )

.

To underline the dependency on the vector q, we will some-
times write Qq . It is easy to check that the marginal of Zi is
given by

P(Zi = j) = p jq j +
∑

k �= j

pk
1 − qk
S − 1

=: m j (9)

for j ∈ {1, . . . , S}. We remark that the vector m =
(m1, . . . ,mS) can be computed in linear time in the dimen-
sion S by first computing the quantity

∑S
k=1 pk

1−qk
S−1 .

In the non interactive setting that we are considering, i.e.
when Zi only depends on Xi , the conditional distribution of
Z1:n factorizes and can be written as

Q(Z1:n|X1:n) =
n∏

i=1

Q(Zi |Xi ).

Plugging it into (6), the Differential Privacy condition sim-
plifies into

sup
Zi ,Xi �=X ′

i

Q(Zi |Xi )

Q(Zi |X ′
i )

≤ eα.

Depending on the value of Zi , the quotient Q(Zi |Xi )/

Q(Zi |X ′
i ) can take one of three values. If Zi = Xi , then it is

equal to (S − 1)qXi /(1 − qX ′
i
). If Zi = X ′

i , then it is equal
to (1− qXi )/(S − 1)qX ′

i
. Finally, if Zi is different from both
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Xi and X ′
i , then the quotient is equal to (1− qXi )/(1− qX ′

i
).

Therefore, the privacy condition specializes into the follow-
ing set of constraints

max

(
(S − 1)qk
1 − qk′

,
1 − qk

(S − 1)qk′
,
1 − qk
1 − qk′

I(S ≥ 3)

)

≤ eα

(10)

for any couple k �= k′ ∈ {1, . . . , S}. We notice that this set
of conditions can be expressed as a linear constraint. Specif-
ically,

Fact 1: There exists amatrixC and a vector bα (depending
on α) such that the set of differential privacy constraints (10)
can be rewritten as the following linear constraint

CqT ≤ bα, (11)

where q is the vector q = (q1, . . . , qS) and ≤ denotes entry-
wise inequality. C and bα are given in Appendix.

In general, computing I (X , Z) takes of an order of |X ||Z|
operations, meaning that here it should be quadratic in S.
However, due to the particular form of the matrix M con-
sidered here, this computation can be achieved linearly in S.
Let us recall from Sect. 2.2, that H(Z) denotes the Shannon
entropy of the random variable Z and H(Z |X) the condi-
tional entropy of Z given X . To underline the dependency on
q, we denote f (q) := I (X , Z). We use the following known
identity, which can immediately be derived from (5) and (3),

f (q) = I (X , Z) = H(Z) − H(Z |X),

which leads to the simpler form

f (q) =
S∑

x=1

px

(

qx log qx + (1 − qx ) log
1 − qx
S − 1

)

−
S∑

z=1

mz logmz

wherewe recall thatm = (m1, . . . ,mJ )denotes themarginal
distribution of Z given in (9). Let us start by noticing that f is
minimal, equal to 0, forq1 = · · · = qS = 1

S . In theAppendix,
we show that f is convex in q, which, together with differ-
ential privacy constraint (11), implies that the problem (7) is
a linearly constrained convex program, i.e. we are maximiz-
ing a convex function under a set of linear constraints. As a
consequence, the following proposition follows,

Proposition 1 Any optimal q solution of the program (7),
lays within the vertices of the convex polytope formed by all
the feasible points.

It follows from the previous proposition that finding the
optimal matrix M of general form (8) requires finding the

vertices of the feasible set. In Sect. 3.3 we will give some
properties of this feasible set, which might make the search
faster. In the followingparagraph,wewill provide the optimal
M for several sub-cases of (8).

3.2 Examples

In this section we show howwe can use Proposition 1 to give
the explicit solutions of the program (7) for several particular
examples of interest.

3.2.1 Binary key variable with symmetricM

We start from the simplest case of a categorical variable with
only two possible categories denoted X = {0, 1} and sym-
metric M with q1 = q2 = q. We will abuse our notations by
writing q both the scalar value in [0, 1] and the correspond-
ing two-dimensional vector (q, q)T having both coordinates
equal to this value. We are considering binary symmetric
matrices of the following form,

M =
[

q 1 − q
1 − q q

]

.

In this setting, the Differential Privacy condition (10) spe-
cializes into

max

(
q

1 − q
,
1 − q

q

)

≤ eα,

which simplifies to q ∈ [ 1
1+eα , eα

1+eα ]. In such a situa-
tion, the constrained maximization problem can actually
be solved analytically by derivation of the target function.
However, from Proposition 1, it is already known that the
optimal q is among the boundaries of the feasible region. Let
ψ : {0, 1} → {0, 1} be defined as ψ(x) = 1 − x . Since
ψ is one-to-one, it follows that I (X , Z) = I (X , ψ(Z)).
Moreover, by noticing that ψ(Z) has conditional distribu-
tion Q1−q , we can deduce that I (X , ψ(Z)) = f (1−q), and
therefore f (q) = f (1 − q). Hence, the optimal q are both
boundaries points, 1

1+eα and eα

1+eα .
There are two interesting properties appearing in this sim-

ple example. First, we understand that there are two solutions
of the program. Second, these solutions are independent of
p, the marginal of X .

3.2.2 Binary key variable with anyM

The previous argument can be easily extended to the non-
symmetric case,

M =
[

q1 1 − q1
1 − q2 q2

]

.
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Table 1 Scenario I: the number of times the qk ’s assume the four pos-
sible values vα, v−α, vmin and vmax, under different choices of α

α # vα # v−α # vmin # vmax

0.5 4 6 0 0

1 5 5 0 0

1.5 2 8 0 0

2 0 9 0 1

In this setting, the convex polytope generated by the linear
constraints has four vertices, specifically (q1, q2) belongs to
the following set

{

(1, 0), (0, 1),
( 1

1 + eα
,

1

1 + eα

)
,
( eα

1 + eα
,

eα

1 + eα

)}

If either (q1, q2) is equal to (1, 0) or (0, 1), then the Mutual
Information I (X1:n, Z1:n) is null, since Zi will be constant
and independent of Xi . Therefore, the only optimal solutions
are the two symmetric matrices derived in the symmetric
case.

3.2.3 SymmetricM

Let us now consider the case of a categorical variable with S
categories and symmetric M . Specifically, we consider X =
{1, . . . , S} and M of the form (8) with q1 = q2 = · · · = qS .
We again abuse our notation by denoting with q both the
scalar in [0, 1] and the corresponding S dimensional vector
with all entries equal to this value. The differential privacy

condition (10) specializes into max
(

(S−1)q
1−q ,

1−q
(S−1)q

)
≤ eα ,

which leads to q ∈ [ e−α

S−1+e−α , eα

S−1+eα ]. As before, following
from Proposition 1, the optimal q are the boundary values.

3.3 Feasible set

In our experiments, we have experienced that routine opti-
mization functions implemented in standard software, e.g.
Matlab, can solve the optimization problem (7) extremely
quickly. However, when the number of possible categories
S becomes very large, the optimization might become time
consuming. For this reason, in the following Proposition, we
provide a description of all possible vectorsq = (q1, . . . , qS)
that can arise as vertices of the convex polytope generated
by the Differential Privacy constraints (10) when S is large
enough. This result should help to speed up the search for
the optimal vertices among all feasible points given by (10).

Proposition 2 For S ≥ 4, if α ≤ log(S + √
S(S − 4) − 2) −

log 2, then, up to permutations, the vertices of the convex
polytope formed by all feasible points are:

Fig. 1 Scenario I: estimates of the true probabilities generating the data.
The x-axis encodes the S = 10 possible categories, for each one the
yellow point represents the true probability pk , while the solid red line
connects the estimated probabilities averaged over 100 iterations
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Table 2 Scenario II: the number of times the qk ’s assume the four
possible values vα, v−α, vmin and vmax, under different choices of α

α # vα # v−α # vmin # vmax

0.5 7 3 0 0

1 6 4 0 0

1.5 6 4 0 0

2 0 9 0 1

1. qk = vα , ∀k ∈ {1, . . . , S};
2. qk = v−α , ∀k ∈ {1, . . . , S};
3. qk = vikα , with ik = ±1 and 2 ≤ #{k s.t.ik = 1} ≤ S−2,

∀k ∈ {1, . . . , S};
4. q1 = vmin, qk = vα . , ∀k ∈ {2, . . . , S};
5. q1 = vmax, qk = v−α , ∀k ∈ {2, . . . , S};

where vx = ex
ex+S−1 , vmin = e−α

eα+S−1 and vmax = eα

e−α+S−1 .

Common values of α are generally within the range [0, 2],
which means that the conditions of previous Proposition are
satisfied when S ≥ 10. Contrary to the symmetric case, the
optimal M will depend on p. In the following section, we
will show some simulations illustrating for some values of p
which of the vertices in Proposition 2 are optimal.

4 Simulations

4.1 Simulation study

We consider different simulates scenarios, where the obser-
vations X1:n are generated from a categorical distribution
with S possible outcomes, having known probabilities p =
(p1, . . . , pS). In the first scenario, we set S = 10 and con-
sider the following vector of probabilities

p = (0.3, 0.1, 0.2, 0.08, 0.02, 0.04, 0.06, 0.1, 0.01, 0.09).

We consider the following values of α = 0.5, 1, 1.5, 2,
and we determine the corresponding optimal vectors of
q = (q1, . . . , qS) that solve (7). We select a sample size
n = 104. As explained in Sect. 3, the Differential Privacy
condition can be expressed as a set of linear constraints as
in (11). The optimal q is then determined numerically by
solving the constrained maximization problem via the opti-
mization function in Matlab. Besides we have also generated
the corresponding privatized dataset Z1:n using the deter-
mined values of (q1, . . . , qS) for the different choices of α.
The determined values of q are reported in Table 1. From
Proposition 2, we know that, up to permutations, there are
only 5 possible different scenarios and the qk’s may assume
only 4 different values, corresponding to vα, v−α, vmin and

Fig. 2 Scenario II: estimates of the true probabilities generating the
data. The x-axis encodes the S = 10 possible categories, for each one
the yellow point represents the true probability pk , while the solid red
line connects the estimated probabilities averaged over 100 iterations

123



Statistics and Computing (2020) 30:1347–1361 1355

Table 3 Scenario III: the number of times the qk ’s assume the four
possible values vα, v−α, vmin and vmax, under different choices of α

α # vα # v−α # vmin # vmax

0.5 29 0 1 0

1 29 0 1 0

1.5 30 0 0 0

2 29 0 1 0

vmax. Hence in Table 1 we have reported the number of times
the qk’s assume these values for the different choices of α. In
order to investigate the effect of differential privacy, for the
four values of α considered here, we have reported the MLE
of the vector of probabilities p obtained using the observed
sample Z1:n . The results are represented in Fig. 1, all the sim-
ulations are averaged over 100 iterations. For each value of
the categorical variable k ∈ {1, . . . , 10}, we have reported the
estimated pk’s, and each blue star corresponds to theMLE of
pk in one of the 100 experiments. The solid red line links the
averaged estimates of the pk’s over the 100 runs, while the
true values of the probabilities pk are represented in yellow.
It is apparent that as α increases, the estimates improve and
the variability of the estimates decreases, hence the higher α,
the weaker the privacy mechanism.

In the second scenario we have generated the data using
the vector of probabilities

p = (0.0336, 0.1059, 0.1697, 0.0962, 0.0180,

0.0062, 0.1097, 0.0005, 0.1233, 0.3369).

Asbeforewe report the values of theqk ’s for different choices
of α in Table 2, besides the estimated probabilities pk’s are
reported in Fig. 2. The simulations are averaged over 100
iterations.

We consider now a third scenario, in which S = 30 and
we have generated the data using the vector of probabili-
ties p obtained as a normalization of 30 independent gamma
random variables with parameters (1, 5), more precisely we
have generated Gk ∼ Gamma(1, 5) for k = 1, . . . , 30 and
we have put pk := Gk/

∑S
s=1 Gs . As before we report the

vectors of q for different values of α in Table 3 and the esti-
mated probabilities averaged over 100 iterations in Fig. 3,
where again n = 104 is the sample size.

In the last scenario IV, we assume again that S = 30 and
we have generated the data using the vector of probabilities
p defined by

p1 = 0.05, pk = 0.95/29 for k ≥ 2.

We report the vectors of q for different values of α in Table 4
and the estimated probabilities averaged over 100 iterations
in Fig. 4, where the sample size equals n = 104.

Fig. 3 Scenario III: estimates of the true probabilities generating the
data. The x-axis encodes the S = 30 possible categories, for each one
the yellow point represents the true probability pk , while the solid red
line connects the estimated probabilities averaged over 100 iterations
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Table 4 Scenario IV: the number of times the qk ’s assume the four
possible values vα, v−α, vmin and vmax, under different choices of α

α # vα # v−α # vmin # vmax

0.5 0 29 0 1

1 30 0 0 0

1.5 30 0 0 0

2 30 0 0 0

4.2 Real data

We finally test the performance of our strategy on some
benchmark datasets from the public use microdata sample
of the U.S. 2000 census for the state of New York, Ruggles
et al. (2010). The data contains the values of ten categori-
cal variables of 953,076 individuals: ownership of dwelling
(3 levels), mortgage status (4 levels), age (9 levels), sex (2
levels), marital status (6 levels), single race identification (5
levels), educational attainment (11 levels), employment sta-
tus (4 levels), work disability status (3 levels), and veteran
status (3 levels).
For ease of illustration we consider the sex variable, which
has two possible categories (female ormale), therefore S = 2
and q = q1 = q2. We have already seen that the optimal
q lies on the boundaries of the interval Jα := [1/(eα +
1), eα/(1 + eα)]. We have estimated the probabilities of
the two possible categories using the sample mean, thus
obtaining p1 = 0.48 and p2 = 0.52. In our numerical
experiments we have considered α = 0.05, and for dif-
ferent values of q ∈ Jα we have generated the privatized
dataset Z1:n estimating p1 and p2. More precisely, in Fig. 5
we have considered six values of q ∈ [0.4875, 0.5125], and
we reported the estimates of p1 and p2 averaged over 100
iterations. Each panel corresponds to a different q, each blue
star corresponds to the estimated value in one of the 100
experiments based on the privatized sample Z1:n . The solid
blue line links the averaged estimates of the pk’s over the 100
runs, while the true values of the probabilities are represented
in yellow. From the top left to the bottom right, we have cho-
sen q = 0.4875, 0.4925, 0.4975, 0.5025, 0.5075, 0.5125:
from the theory developed in the paper it is not surpris-
ing to realize that the values on the boundary lead to more
reliable estimates, indeed theymaximize themutual informa-
tion between X and Z . In Fig. 6 we reported the estimated
mutual information between X and Z for different values
of q ∈ J0.05, in order to do that we have estimated PZ (k)
and PX (k) using the corresponding sample means for each
k = 1, 2.

Fig. 4 Scenario IV: estimates of the true probabilities generating the
data. The x-axis encodes the S = 30 possible categories, for each one
the yellow point represents the true probability pk , while the solid red
line connects the estimated probabilities averaged over 100 iterations

123



Statistics and Computing (2020) 30:1347–1361 1357

Fig. 5 NY dataset: estimates of the true probabilities generating the data. The x-axis encodes the S = 2 possible categories (female or male),
for each one the yellow point represents the true probability pk , while the solid blue line connects the estimated probabilities averaged over 100
iterations
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Fig. 6 NY dataset: mutual information as a function of q

5 Conclusions and future work

In thiswork,wehaveproposed anovel approach to choose the
randomizingmatrixM in PRAM.This approach applies pop-
ular tools from computer science to derive M as the solution
of a constrained optimization problem, in which the Mutual
Informationbetween rawand transformeddata ismaximized,
under the constraint that the transformation satisfies Differ-
ential Privacy. The proposed approach has the advantage to
be quick and easy to implement. Also, the desired level of
privacy can be tuned by a single parameter α.
There are different ways in which the present work could be
extended. A first possible direction of research is to under-
stand how to tune theDifferential Privacy parameterα, which
regulates the desired level of privacy, using the classical mea-
sures of risk (1) and (2). Specifically, given the choice of
some model, α can be chosen in such a way that the estimate
of the disclosure risk index computed on the transformed
dataset matches or falls below a particular threshold value.
A second direction of research is to generalize the proposed
procedure to the case in which a few categorical variables
are jointly perturbed. The proposed methodology can be
extended to this case following similar lines. In particular,
an individual will be randomly moved from one frequency
cell to another using a K × K stochastic matrix, where K is
the number of cells after cross-classifying the variables we
want to jointly perturb. In this setting, it will be important to
study what further structure the K ×K matrix should have in
order to avoid structural zeros combinations. Further, another
direction of research is to examine the problem using other
formulations of Differential Privacy. Specifically, the defi-
nition of Differential Privacy as in (6) is known to provide

a very strong privacy guarantee. Therefore, generalizing the
proposed methodology to other formulations and relaxations
of Differential Privacy, as those mentioned in Sect. 1, might
be an interesting topic.
Some other important research directions have also been sug-
gested by the reviewers. Specifically, the proposed approach
is focused on perturbing categorical variables, which are
usually the most sensitive in terms of disclosure risk. How-
ever, a direction of research can be to study the problem
for other datatypes, possibly including also some continuous
data. Another line of research is to study theoretical guaran-
tees in terms of preservation of utility for different classes of
queries. In computer science, with a query it is usually meant
a statistics of the observations, or function of some sufficient
statistics. A crucial problem consists to quantify and anal-
yse the expected distance (risk) of some classes of queries
computed on raw and realised dataset. Similar contributions
in this direction are Smith (2011) and Duchi et al. (2018). A
useful extension of the proposed methodology would focus
on different structures for the matrix M , rather than with
uniform off-diagonal rows as in (8). An interesting example
of application suggested by one reviewer, in which impos-
ing non-uniform off-diagonal rows would be important, is in
spatial modelling, when perturbing a geographical variable.
In this context, a more suitable structure for M would allow
for the geographical category to have a higher probability to
be swapped with a spatially neighboring category rather than
to one very far from the true observed value. Within this con-
text, the optimal choice of M will have to balance between
the higher randomization to achieve the same level of Differ-
ential Privacy and the benefit in statistical utility that follows
from geographically localised perturbation for any later spa-
tial analysis. Finally, another extension could be to include
all variables in the mutual information in the maximization
(7), applying privacy perturbation and the Differential Pri-
vacy constraint only to a subset of them. If the included and
excluded variables are modelled as independent, the solution
of themaximization problemM should be unaltered. Instead,
in the dependent case, the optimal solution M might depend
also on the non-perturbed variables and the maximization
problem could become analytically much more challenging.

Acknowledgements The authors thank the Associate Editor and two
anonymous referees, whose constructive comments and suggestions
have been appreciated andhelped to improve the paper. FedericoCamer-
lenghi received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation pro-
gramme under Grant Agreement No. 817257. Federico Camerlenghi
gratefully acknowledge the financial support from the Italian Ministry
of Education,University andResearch (MIUR), “Dipartimenti di Eccel-
lenza” Grant 2018-2022.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

123



Statistics and Computing (2020) 30:1347–1361 1359

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

5.1 Proof of Proposition 1

To underline the dependency on q, we will sometimes use
the notation Qq . We need to show that f is convex. Let
q ′ = (q ′

1, . . . , q
′
S)

T and θ ∈ [0, 1]. Let k, l ∈ {1, . . . , S}
such that k �= l.

Qθq+(1−θ)q ′(Z = k|X = k) = θqk + (1 − θ)q ′
k

= θQq(Z = k|X = k) + (1 − θ)Qq ′(Z = k|X = k).

Besides,

Qθq+(1−θ)q ′(Z = l|X = k)

= 1 − (θqk + (1 − θ)q ′
k)

S − 1

= θ(1 − qk) + (1 − θ)(1 − q ′
k)

S − 1
= θQq(Z = l|X = k) + (1 − θ)Qq ′(Z = l|X = k).

Therefore, Qθq+(1−θ)q ′ = θQq+(1−θ)Qq ′ . It is known that
for a fixed marginal distribution of one of the variables, the
mutual information is convex in the conditional distribution
of the second, see for example Theorem 2.7.4 of Cover and
Thomas (2012). Therefore, f (θq + (1 − θ)q ′) ≤ θ f (q) +
(1 − θ) f (q ′), and hence f is convex.

5.2 Fact 1: Set of feasible parameters q

We start by writing explicitly the linear constraints (11) on
q. Let Tα be the convex polytope of all q satisfying α-
differential privacy. Let Sα be the planar polygon defined
by the set of equations

(S − 1)x + eα y ≤ eα (12)

(S − 1)y + eαx ≤ eα (13)

−(S − 1)eα y − x ≤ −1 (14)

−(S − 1)eαx + y ≤ −1 (15)

eα y − x ≤ eα − 1 (16)

eαx − y ≤ eα − 1 (17)

The set of feasible points is then characterized by

(q1, . . . , qS) ∈ Tα ⇐⇒ ∀(k, l), (qk, ql) ∈ Sα.

This set characterized by the 3S(S − 1) linear constraints
given by equations (12) to (17) can thus be defined as the
set of solutions of the equation CqT ≤ bα , where C has
dimension 3S(S−1)× S and bα is a 3S(S−1)-dimensional
vector.

5.3 Proof of Proposition 2

Equations (12) to (15) define a quadrilateral whose vertices
are

uα =
(

(S − 1)eα − 1

S(S − 2)
,
(S − 1)e−α − 1

S(S − 2)

)

,

u−α =
(

(S − 1)e−α − 1

S(S − 2)
,
(S − 1)eα − 1

S(S − 2)

)

,

vα =
(

eα

S − 1 + eα
,

eα

S − 1 + eα

)

,

v−α =
(

e−α

S − 1 + e−α
,

e−α

S − 1 + e−α

)

.

The points vα and v−α always satisfy (16) and (17). Besides,
for S ≥ 4, ifα ≤ log(S+√

S(S − 4)−2)−log 2, then uα and
u−α also satisfy (16) and (17). In such a setting, equations
(16) and (17) are redundant and hence can be omitted when
defining T�. Common values of α are generally within the
range [0, 2], therefore equations (16) and (17) are omitted
when S ≥ 10. In the following, we will suppose that S ≥ 4
and α ≤ log(S+√

S(S − 4)−2)− log 2. Let (q1, . . . , qS) ∈
Tα , since (q2, q3) satisfy (15), we have that q3 ≤ 1 − (S −
1)eαq2. Therefore, using the fact that (q1, q3) satisfy (12),
and the symmetry of the constraints, we can deduce that any
(qk, ql) satisfy

y − e2αx ≥ 1 (18)

x − e2α y ≥ 1 (19)

Equations (13) and (18) give that qk ≤ eα

e−α+S−1 = vmax and

equations (15) and (18) give qk ≥ e−α

eα+S−1 = vmin. Let V be
the set of points defined up to permutations by

1. ∀k, qk = eα

eα+S−1 = vα

2. ∀k, qk = e−α

e−α+S−1 = v−α

3. ∀k, qk = vikα with ik = ±1 and 2 ≤ #{k s.t ik = 1} ≤
S − 2

4. q1 = vmin, qk≥2 = vα

5. q1 = vmax, qk≥2 = v−α .
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Under the assumption that S ≥ 4 and α ≤ log(S +√
S(S − 4) − 2) − log 2, it is straightforward to verify that

V ⊂ Tα . In the following, we show that any element of Tα is
a convex combination of points of V . In order to do so, we
will use the following Lemma.

Lemma 1 For S ≥ 2, if q satisfies differential privacy, then
at most one of its coordinates is larger than vα and at most
one is smaller than v−α

Proof This trivially follow from the constraint (10). Indeed,
suppose that qi > eα

S−1+eα . Then for any other q j , using
formula (19),

(S − 1)
eα

S − 1 + eα
+ eαq j < (S − 1)qi + eαq j ≤ eα

Therefore,

(S − 1)
1

S − 1 + eα
+ q j < 1

q j < 1 − (S − 1)
1

S − 1 + eα
= eα

S − 1 + eα

Similarly suppose both qi < e−α

S−1+e−α . For any other q j , from
formula (21),

(S − 1)eα e−α

S − 1 + e−α
+ q j > (S − 1)eαqi + q j ≥ 1

Therefore

(S − 1)

S − 1 + e−α
+ q j > 1

q j >
e−α

S − 1 + e−α

��
Let (q1, . . . , qS) ∈ Tα , using previous Lemma, we know

that up to permutations, one of 4 settings is possible:

1. For all k, v−α ≤ qk ≤ vα .
2. vα < q1 ≤ eα

e−α+S−1 = vmax, and for k ≥ 2, v−α ≤ qk ≤
vα

3. vmin = e−α

eα+S−1 ≤ q1 < v−α , and for k ≥ 2, v−α ≤ qk ≤
vα

4. vα < q1 ≤ vmax, vmin ≤ q2 < v−α , and for k ≥ 3,
v−α ≤ qk ≤ vα

The first setting is the most straightforward, indeed since
vmin < v−α and vmax > vα , we find that all the points
(vikα)1≤k≤S for any sequence (ik)1≤k≤S ∈ {−1, 1}S , are
within the convex hull of V and so does the whole hyper-
cube generated by those 2S points.

The second and third settings have similar proof, that we
will explicit for the second setting. As said in the previous
remark, the point (vα, v−α, . . . , v−α) belongs to the convex
hull of V . Let k ≥ 2, we know that qk ≥ v−α . Besides,
since (qk, q1) ∈ Sα , (12) gives that (qk, q1) is below the line
passing through (v−α, vmax) and (vα, vα). Hence, denoting
θ = q1−vα

vmax−vα
, we find that

v−α ≤ qk ≤ θv−α + (1 − θ)vα.

Therefore, we only need to show that any point (q1, x2, . . . ,
xS) is in the convex hull of V for any sequence (xk)k≥2 ∈
{v−α, θv−α +(1−θ)vα}S−1. Let (q1, x1, . . . , xS−1) be such
a point. Let (ik)2≤k≤S such that ik = −1 if xk = v−α , and
ik = 1 otherwise. Now, from previous setting we know that
(vα, vi2α, . . . , viSα) is in the convex hull of V , and so does
(vmax, v−α, · · · , v−α). We conclude as we notice that

θ(vmax, v−α, · · · , v−α) + (1 − θ)(vα, vi2α, . . . , viSα)

= (q1, x2, . . . , xS)

The proof of the last setting is similar to the previous
one. Equation (19) together with x ≥ vα and y ≤ v−α

define a triangle within which (q1, q2) lays. The points
(vmax, v−α), (vα, vmin) and (vα, v−α) are the three vertices
of the triangle. Therefore, denoting θ1 = q1−vα

vmax−vα
and θ2 =

v−α−q2
v−α−vmin

, we have that 0 ≤ θ1, θ2 ≤ 1, θ1 + θ2 ≤ 1 and
(q1, q2) equals

θ1(vmax, v−α) + θ2(vα, vmin) + (1 − θ1 − θ2)(vα, v−α).

Let k ≥ 3, since (qk, q1) ∈ Sα , (12) implies that (qk, q1)
is below the line passing through (v−α, vmax) and (vα, vα).
Similarly, since (q2, qk) ∈ S�, (15) implies that (q2, qk) is
above the line passing through (vmin, vα) and (v−α, v−α).
Therefore, qk satisfies

θ2vα + (1 − θ2)v−α ≤ qk ≤ θ1v−α + (1 − θ1)vα.

As previously, we only need to show that any point
(q1, q2, x3, . . . , xS) is in the convex hull of V for any
(xk)k≥3 ∈ {θ2vα +(1−θ2)v−α, θ1v−α +(1−θ1)vα}S−2.Let
(xk)k≥3 be such a sequence. Let (ik)k≥3 defined by ik = −1 if
xk = θ2vα +(1−θ2)v−α and ik = 1 otherwise. We conclude
by noticing that

(q1, x2, . . . , xS)

= θ1(vmax, v−α, · · · , v−α) + θ2(vα, vmin, vα, · · · , vα)

+ (1 − θ1 − θ2)(vα, v−α, vi3α, . . . , visα).
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