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In the last few years it has been proposed a one-dimensional factorization of the fermion determinant in 
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1. Introduction

In path integrals of lattice gauge theories with fermions, once 
the Grassmann variables have been analytically integrated out, the 
manifest locality of the action and of the observables is lost. The 
fermion determinant is a non-local functional of the background 
gauge field, and the resulting effective gauge theory is simulated 
with variants of the Hybrid Monte Carlo (HMC) algorithm [1]. In 
the vast majority of cases, the algorithm implements global up-
dates for an importance sampling with a non-local action.

A few years ago it has been proposed a factorization of the 
gauge-field dependence of the fermion determinant in lattice QCD 
based on a domain decomposition of the lattice [2–5]. The factor-
ization has been derived in full details by decomposing the lattice 
in overlapping domains along one of the dimensions only [5]. Once 
combined with the multi-boson idea [6], it leads to a local ac-
tion in the block gauge, pseudofermion and multi-boson auxiliary 
fields [5]. Extensive numerical tests have been performed since 
then [4,5,7,8], and a first computation of the hadronic vacuum po-
larization contribution to the anomalous magnetic moment of the 
muon based on these ideas has been presented [9].

The aim of this letter is to generalize the factorization of 
the fermion determinant in Ref. [5] to four dimensions. This is 
not straightforward because, in a multi-dimensional decomposi-
tion, the domains may not be naturally the union of discon-
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nected regions. The problem is solved by choosing judiciously a 
four-dimensional overlapping domain decomposition of the lattice 
which leads to a simple block decomposition of the Dirac oper-
ator with highly-suppressed elements in the off-diagonal blocks. 
These contributions can then be taken into account by introducing 
multi-boson auxiliary fields.

A four-dimensional factorization of the gauge-field dependence 
of the fermion determinant boosts our ability of simulating gauge 
theories with fermions, possibly triggering new perspectives in this 
field. It allows for highly efficient parallelizations, also on hetero-
geneous architectures, of Monte Carlo algorithms and of the cor-
responding codes by reducing very significantly the rate of data 
exchange among different (blocks of) computer nodes where the 
various domains of the lattice are mapped to. In master field simu-
lations [10–12], it allows for a block-local accept/reject step in the 
HMC, solving the problem of the increasing numerical precision 
needed for larger and larger volumes. Finally, a block-local action 
of the auxiliary bosonic fields indeed opens the way to multi-level 
simulations of QCD in all four dimensions.

The letter is organized as follows: in Section 2 we introduce 
the four-dimensional domain decomposition of the lattice that we 
adopt, and in the following two Sections we derive the factoriza-
tion of the gauge-field dependence of the determinant. In Section 5
the residual interactions among the various domains is taken ex-
actly into account by introducing multiboson fields on their bound-
aries, while in Section 6 a fully block-local Monte Carlo updating 
scheme is discussed. We end the letter with our conclusions and 
outlook. Notations, conventions, and technical details are reported 
in several appendices.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Two-dimensional representation of the basic domain decomposition of the 
lattice in the disconnected domain �0 (red square blocks) and the globally con-
nected one �1 (grey thick frame). The empty circles indicate the domain of hyper-
planes ∂�, see main text, with the red and black circles indicating ∂�0 and ∂�1

respectively.

2. Four-dimensional domain decomposition of the lattice

We consider a four-dimensional hyperrectangular lattice of 
spacing a and lengths Lμ in the directions labeled by μ = 0, . . . , 3. 
We are interested in decomposing this lattice in all the four di-
mensions by generalizing the one-dimensional domain decomposi-
tion introduced in Ref. [5], see also [7–9]. To this aim, we use some 
of the notation adopted in these papers by assuming familiarity of 
the reader with them.

We start by dividing the lattice in a domain �0 made of hy-
perrectangular blocks embedded in a thick frame �1. In the two-
dimensional representation shown in Fig. 1, the blocks are rep-
resented by red squares, while the grey region is the frame. By 
construction �0 is a disconnected domain which can be decom-
posed as

�0 =
⋃

â

�â
0 (1)

where the label â identifies the single hyperrectangle, see Ap-
pendix B for its definition. The domain �1 spans the entire lattice 
and it is connected,1 at variance of the one-dimensional decompo-
sition [5]. Typically the linear extension Bμ of the blocks in each 
direction μ can be of a few fermi, while the thicknesses bμ of the 
frame are typically of 0.5 fm or so. Following Refs. [2,5], for each 
block �â

0 we define

∂�â
0 , and �̄â

0 = �â
0\∂�â

0 , (2)

where ∂�â
0 is the inner boundary of the block (open red circles 

in Fig. 1) defined as the set of points in �â
0 at a distance a from 

the closest points of the lattice outside the block, the latter being 
the exterior boundary ∂�â∗

0 . The sub-block �̄â
0 is therefore the set 

of the inner points of �â
0 (closed red circles in the same Figure). 

Analogously to Eq. (1), it is useful to define

1 It is possible to introduce an even-odd decomposition of the domain �0, so 
that the union of the even and the odd blocks plays the same rôle as the domains 
�0 and �2 in the one-dimensional decomposition in Refs. [5,7,8]. The frame �1

corresponds to the homologous one in these references.
2

Fig. 2. A “framed domain” �â
0 made by the union of a hyperrectangle �â

0 (red) and 
its frame �â

1 (grey). The points of its exterior boundary ∂�â∗
0 are indicated with 

open circles outside the continuous black line. These circles are red, if they belong 
to ∂�0, or black, if they belong to ∂�1 and in particular to ∂�̄â∗

0 .

∂�0 =
⋃

â

∂�â
0 , �̄0 =

⋃
â

�̄â
0 . (3)

The various boundary faces that form ∂�0 belong to hyperplanes 
with normal directions parallel to the axes of the lattice (open cir-
cles in Fig. 1). The planes are spaced alternatively by Bμ and bμ

along each direction μ, and their ensemble is defined to be the 
domain ∂�. The latter can be decomposed as

∂� = ∂�0 ∪ ∂�1 , (4)

where ∂�1 is represented by black open circles in Fig. 1. Notice 
that ∂�1 belongs to �1 and that

�̄1 = �1\∂�1 (5)

is a disconnected domain. Each block �â
0 has an associated “frame” 

�â
1 defined as the grey region surrounding it, see Fig. 2 for a 

graphic representation and Appendix B for its precise definition. 
The set of blocks �â

1 clearly forms an overlapping domain decom-

position of �1. The “framed” counterpart of �â
0 is given by

�â
0 = �â

0 ∪ �â
1 , (6)

a definition which requires obvious modifications for the blocks 
near the boundaries of the lattice, depending on the boundary 
conditions adopted. The blocks �â

0 form an overlapping domain 
decomposition of the entire lattice L, see Fig. 1, similarly to what 
happens in the one-dimensional case [5,7]. Finally, we define

∂�â∗
0 , and ∂�̄â∗

0 = ∂�â∗
0 ∩ ∂�1 (7)

where ∂�â∗
0 is the exterior boundary of �â

0, see Fig. 2 for a graphic 
representation and Appendix B for the definition, while ∂�̄â∗

0 is 
its subdomain belonging to ∂�1 (black open circles in the same 
Figure).

In the next Sections we will need the projection operators to 
the subspace of quark fields supported on the various sub-lattices, 
see Appendix C for their definitions. We will indicate them with 
the symbol I P associated to a subscript indicating the sub-lattice 
considered, e.g. I P

�â
0

for the block �â
0.

3. Block decomposition of the fermion determinant

We are interested in factorizing the gauge-field dependence 
of the determinant of the Wilson–Dirac operator D defined in 
Eq. (A.1) of Appendix A. To this aim, we start by decomposing the 
lattice L as

L = ∂�0 ∪ [
�̄0 ∪ �1

]
, (8)

and, accordingly, we rewrite D as a 2 × 2 block matrix. By using 
Eq. (D.3) in Appendix D, the determinant can then be written as
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det D = det D�̄0
det D�1 det D̃∂�0 , (9)

where2

D̃∂�0 = D̄∂�0 − D∂�0,�1 D−1
�1

D�1,∂�0 (10)

and

D̄∂�0 = D∂�0 − D∂�0,�̄0
D−1

�̄0
D�̄0,∂�0

=
∑

â

D̄
∂�â

0
. (11)

In the formulas above and throughout the paper, the subscript of 
an operator indicates the domain where the operator is restricted, 
e.g. D

�â
0

is the Wilson–Dirac operator restricted to the domain 

�â
0 with Dirichlet boundary conditions imposed on its external 

boundaries. When the subscript of the operator has two domains 
separated by a comma, this indicates a hopping term among these 
two domains, see for instance Appendix C. By noticing that

D∂�0,�1 =
∑

â

D
∂�â

0,�â
1
, D�1,∂�0 =

∑
â

D
�â

1,∂�â
0
, (12)

it is clear that

D∂�0,�1 D−1
�1

D�1,∂�0 =
∑
â,â′

D
∂�â

0,�â
1

D−1
�1

D
�â′

1 ,∂�â′
0

. (13)

If we decompose �1 as the union of �â
1 and its complement, the 

corresponding Schur decomposition of D�1 , written in the 2 × 2
blocked form, allows us to rewrite its inverse as in Eq. (D.4). This 
in turn implies that

IP
�â

1
D−1

�1
= D−1

�â
1
− D−1

�â
1

D
�â

1,∂�̄â∗
0

D−1
�1

, (14)

D−1
�1

IP
�â

1
= D−1

�â
1
− D−1

�1
D

∂�̄â∗
0 ,�â

1
D−1

�â
1
. (15)

By inserting Eqs. (14) and (15) in Eq. (13), we obtain

D̃∂�0 = D̂∂�0 − D̂∂�0,∂�1 D−1
�1

D̂∂�1,∂�0 (16)

where

D̂∂�0,∂�1 = −
∑

â

D
∂�â

0,�â
1

D−1
�â

1
D

�â
1,∂�̄â∗

0
, (17)

D̂∂�1,∂�0 = −
∑

â

D
∂�̄â∗

0 ,�â
1

D−1
�â

1
D

�â
1,∂�â

0
, (18)

and

D̂∂�0 = D̂d
∂�0

+ D̂h
∂�0

(19)

with

D̂d
∂�0

=
∑

â

D̂
∂�â

0
, D̂h

∂�0
=

∑
â �=â′

D̂
∂�â

0,∂�â′
0

, (20)

and

D̂
∂�â

0
= D̄

∂�â
0
− D

∂�â
0,�â

1
D−1

�â
1

D
�â

1,∂�â
0
, (21)

D̂
∂�â

0,∂�â′
0

= −1

2
D

∂�â
0,�â

1

[
D−1

�â
1
− D−1

�â
1

D
�â

1,∂�̄â∗
0

D−1
�â′

1

+

D−1
�â′

1

− D−1
�â

1
D

∂�̄â′∗
0 ,�â′

1
D−1

�â′
1

]
D

�â′
1 ,∂�â′

0
. (22)

2 It is interesting to notice that D̃∂�0 corresponds to the effective Wilson–Dirac 
operator, once the Grassmann field variables in �̄0 and �1 have been integrated out 
in the path integral. Analogous considerations apply to other Schur complements 
throughout the paper.
3

Before proceeding further, it is already interesting to notice that 
D̂

∂�â
0

is the Schur complement of D
�â

0
with respect to the decom-

position �â
0 = ∂�â

0 ∪[�̄â
0 ∪�â

1], and that the hopping terms among 
the blocks D

∂�â
0,∂�â′

0
are suppressed with the thicknesses of the 

frame. To manipulate the last sum on the r.h.s. of Eq. (16), it is 
useful to define the Schur complement

D̂∂�1 = D∂�1 − D∂�1,�̄1
D−1

�̄1
D�̄1,∂�1

. (23)

Since ∂�̄â∗
0 ∈ ∂�1, in Eq. (16) we can replace D−1

�1
with its pro-

jection on ∂�1, which in turn is equal to D̂−1
∂�1

. Therefore, if we 
define the block matrix

Ŵ =
⎛⎝ D̂∂�0 D̂∂�0,∂�1

D̂∂�1,∂�0 D̂∂�1

⎞⎠ , (24)

it is immediate to see that

det Ŵ = det D̂∂�1 det D̃∂�0 . (25)

By remembering that

det D�1 = det D�̄1
det D̂∂�1 , (26)

Eq. (9) can thus be written as

det D = det D�̄0
det D�̄1

det Ŵ . (27)

Notice that the matrix Ŵ acts on the fermion fields defined on 
the domain of the hyperplanes ∂� only. The off-diagonal blocks of 
Ŵ are suppressed with the thicknesses of the frame of the blocks 
and depend on the gauge field in �1 only. The one-dimensional 
decomposition in Ref. [5] is readily obtained as a particular case of 
Eq. (27) by noticing that in that case D̂∂�0 is identified with Ŵ
since the other blocks are absent, and that D̂

∂�â
0,∂�â′

0
takes con-

tribution from the first and the third terms in the parenthesis in 
Eq. (22) only.

4. Preconditioning of Ŵ

By taking inspiration from the one-dimensional example, we 
would like to precondition Ŵ so as to remain with a matrix which 
deviates from the identity by off-diagonal blocks which are sup-
pressed with the thicknesses of the frame. To this aim we first no-
tice that each block of the diagonal part D̂d

∂�0
in Eq. (20) depends 

on the gauge field in that (framed) block, while the elements of the 
off-diagonal component D̂h

∂�0
are suppressed with the thicknesses 

of the frame and depend on the gauge field in �1 only. At variance 
of the one-dimensional case, here D̂∂�0 is not the only operator 
that appears in Ŵ . We have to consider additional block matrices, 
e.g. D̂∂�1 , because the domain �1 is not factorized. The operator 
D̂∂�1 may also be decomposed in blocks similarly to D̂∂�0 . For the 
factorization strategy of this letter, however, this decomposition is 
not necessary and we proceed by considering this operator as a 
unique global domain.

The structure of D̂∂�0 suggests that we can define a precondi-
tioned operator W 1 so that

Ŵ =
(

D̂d
∂�0

0

0 D̂∂�1

)
· W 1 , (28)

where

W z =
⎛⎝ zIP∂�0 + [D̂d

∂�0
]−1 D̂h

∂�0
W ∂�0,∂�1

W zIP

⎞⎠ , (29)

∂�1,∂�0 ∂�1
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with z ∈C,

W ∂�0,∂�1 =
∑

â

IP
∂�â

0
D−1

�â
0

D
�â

1,∂�̄â∗
0

, (30)

and

W ∂�1,∂�0 = D̂−1
∂�1

D̂∂�1,∂�0 . (31)

Notice that the off-diagonal block operators of W z act on a sub-
space of ∂� identified by the projector P∂� = P∂�0 + P∂�1 defined 
in Appendix C. Indeed at variance of I P∂�0 and I P∂�1 , the projec-
tors P∂�0 and P∂�1 include also the appropriate projectors on the 
spinor index for the inner and outer boundaries of the blocks �â

0

and �â
0 respectively. As shown in Eq. (D.5) of Appendix D, it then 

holds

det W 1 = det W1 , where W z = P∂� W z P∂� , (32)

with the dimensionality of the matrix W z being smaller by es-
sentially a factor 2 with respect to the one of W z . By combining 
Eqs. (27), (28) and (32) we obtain the final result

det D = 1

det D−1
�1

∏
â

[
det D

�â
1

det D−1
�â

0

] det W1 . (33)

The denominator in Eq. (33) has already a factorized dependence 
on the gauge field in the various blocks of �0. The next Section 
will be dedicated to the factorization of the remaining global con-
tribution det W1.

5. Multi-boson factorization of det W1

For large enough thicknesses of the frame �1, we expect the 
matrix W1 to have a large spectral gap, a fact which makes it 
effective to express its determinant through a polynomial approxi-
mation of W −1

1 . As reviewed in the Appendix D of Ref. [5], a gener-
alization of Lüscher’s original multiboson proposal [6] to complex 
matrices [13–15] starts by approximating the function 1/z, with 
z ∈C, by the polynomial

P N(z) ≡ 1 − R N+1(z)

z
= cN

N∏
k=1

(z − zk) , (34)

where N is chosen to be even, the N roots of P N(z) are ob-
tained by requiring that for the remainder polynomial R N+1 it 
holds R N+1(0) = 1, and cN is an irrelevant numerical constant. The 
roots zk can be chosen to lie on an ellipse passing through the ori-
gin of the complex plane with center 1 and foci 1 ± c,

uk = 1 − zk = cos

(
2πk

N + 1

)
+ i

√
1 − c2 sin

(
2πk

N + 1

)
, (35)

where k = 1, . . . , N . This polynomial can be used to approximate 
the inverse determinant as

det W 1 = det{1 − R N+1(W 1)}
det P N(W 1)

, (36)

where, if the moduli of all eigenvalues of W 1 are smaller than 1, 
the numerator of the r.h.s. converges exponentially to 1 as N is 
increased. Thanks to the γ5 hermiticity of Ŵ and of D̂d

∂�0
, the 

matrix W 1 can be written as a product of two Hermitian matrices 
which in turn implies that W 1 is similar to W

†
1. Since the zk come 

in complex conjugate pairs, the approximate determinant can then 
be written in a manifestly positive form,
4

1

det{P N(W 1)}
= C

N/2∏
k=1

det−1
[
(zk − W 1)

†(zk − W 1)
]

= C
N/2∏
k=1

det−1
[

W
†
uk

W uk

]
(37)

where C is again an irrelevant numerical constant and W z is de-
fined in Eq. (29). As a result

det D

det{1 − R N+1(W1)} ∝ 1

det D−1
�1

∏
â

[
det D

�â
1

det D−1
�â

0

] ×

1∏N/2
k=1 det

[
W †

uk
Wuk

] , (38)

where we have replaced W uk with Wuk by using again the first 
relation in Eq. (32) which, for z �= 1, is valid up to an irrelevant 
multiplicative constant. The first factor and the first product in the 
denominator on the r.h.s. can be included in the effective gluonic 
action via standard pseudofermions defined within the blocks la-
beled by the subscript of the operators.

5.1. Multiboson action

Each of the N/2 factors in the last product in the denomina-
tor of the r.h.s. of Eq. (38) can be represented, up to an irrelevant 
multiplicative constant, as

1

det
[

W †
uk

Wuk

] ∝
∫

dχkdχ
†
k e−|Wukχk|2 . (39)

The N/2 multiboson fields χk are defined on the subspace of ∂�

identified by the projector P∂� . Each of them can be decomposed 
as χ = χ

∂�0
+ χ

∂�1
, with χ

∂�0
= P∂�0χ and χ

∂�1
= P∂�1χ . As a 

result

|W zχ |2 =
∑

â

∣∣∣P
∂�â

0

[
z χ

∂�0
+ [D̂d

∂�â
0
]−1 D̂h

∂�0
χ

∂�0

+ D−1
�â

0

D
�â

1,∂�̄â∗
0
χ

∂�1

]∣∣∣2 +
∣∣∣z χ

∂�1
+ W∂�1,∂�0χ∂�0

∣∣∣2 .

(40)

The term on the second line of the r.h.s. of Eq. (40) depends on 
the gauge field in �1 only. The gauge field within the domain �0
appears only on the first line. As a result the dependence of the 
multi-boson action from the gauge field in the blocks �â

0 is factorized. 
Moreover, all contributions in Eq. (40) are highly suppressed with 
the thicknesses of the frame. This implies that the order N of the 
multi-boson polynomial can be rather low, i.e. of the order of ten 
or so [5].

5.2. Reweighting factor

A given correlation function of a string of fields O can finally 
be written as

〈O 〉 = 〈OWN〉N

〈WN〉N
, (41)

where 〈·〉N indicates the expectation value for an importance sam-
pling with N multi-bosons in the action, and

WN = det{1 − R N+1(W1)} . (42)

By using Eq. (34), up to an irrelevant numerical multiplicative con-
stant, the reweighting factor can be written as
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WN ∝ 1

det

⎧⎨⎩W −1
1

N/2∏
k=1

[W †
uk

]−1W −1
uk

⎫⎬⎭
, (43)

a representation which suggests the random noise estimator

WN =
∫ [dη][dη†]e−ξ † W −1

1 ξ∫ [dη][dη†]e−η†η
, ξ =

N/2∏
k=1

W −1
uk

η . (44)

The expectation value can then be computed as

〈O 〉 = 〈OWN〉N

〈WN〉N
= 〈O fact〉N + 〈

O
WN

〈WN〉N
− O fact

〉
N , (45)

where O fact = O if the observable is already factorized, otherwise 
it has to be a rather precise factorized approximation of O (see 
Ref. [4] for instance). As a result, 〈O fact 〉N can be computed with 
a fully factorized integration algorithm, while the last (small) con-
tribution on the r.h.s. of Eq. (45) can be estimated in the standard 
way.

6. Block-local updates

The factorization of the fermionic contribution to the effective 
gluonic action in Eqs. (38)–(40) allows for a decoupling of the link 
variables in different blocks �â

0. This can be achieved by gener-
alizing the Domain Decomposed Hybrid Monte Carlo (DD-HMC) 
proposed many years ago [3] to a MultiBoson Domain Decomposed 
Hybrid Monte Carlo (MB-DD-HMC) [5]. To this aim, the molecular 
dynamics evolution is restricted to the subset of all link variables, 
referred to as the active link variables, which have both endpoints in 
the same block �â

0 and at most one endpoint on the inner bound-
ary of the block (white open circles in Fig. 1). From Eqs. (38)–(40), 
it is clear that the active link variables in different blocks are de-
coupled from each other during the molecular dynamics evolution 
because the multiboson fields and the inactive gauge links are kept 
constant in this phase of the simulation. The accept/reject step can 
thus be carried out independently on each block �â

0, i.e. there will 
be blocks where the proposed new configuration is accepted and 
blocks where it is not. In between every update cycle, the gauge 
field is then translated by a random vector v , i.e.

Uμ(x) → Uμ(x + v) , (46)

to ensure that all link variables are treated equally on average. 
Before restarting the molecular dynamics evolution, new pseud-
ofermion and multiboson fields need to be generated. The pseud-
ofermions can be generated locally in each block �â

0. The multi-
bosons, instead, require a global inversion of the Dirac operator but 
on a vector belonging to the domain ∂� which is much smaller 
than the entire lattice.3

In such an updating scheme, one needs to be sure that a good 
fraction of the link variables can be updated in each step. This is 
the case if the linear extensions of the blocks are at least of a 
few fermi. If, for instance, we consider blocks with an extension of 
2.5 fm and a frame of 0.5 fm in all directions, the fraction of the 
active links is readily computed to be approximatively 50%, a value 
which increases very rapidly with the size of the blocks.

3 The localization of the generation of the multiboson fields is beyond the scope 
of this paper.
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7. Conclusions and outlook

The factorization of the gauge-field dependence of the fermion 
determinant clearly boosts our ability of simulating gauge theo-
ries in the presence of fermions. In particular the complete four-
dimensional factorization of the molecular dynamics evolution and 
of the accept/reject steps may change the way we simulate lattice 
gauge theories in several ways:
Parallelization − During the molecular dynamics evolution and in 
the accept-reject step the link variables in different blocks are 
decoupled from each other, and the HMC runs independently in 
each block. On heterogeneous architectures, one can envisage to 
simulate each block on a sub-set of nodes which have faster con-
nections (or, for instance, on a single GPU) without the need to 
communicate during long periods of simulation time. A commu-
nication overhead is required only when the gauge field is shifted 
and the multiboson fields are generated. This is typically a very 
small fraction of the computer time of the simulation.
Master field simulations − During the molecular dynamics evolution 
and for the accept-reject step, an inversion of the global lattice 
Dirac operator is never required. In master field simulations in 
the presence of fermions [10–12], this solves the problem of the 
increasing numerical precision needed for inverting the Dirac op-
erator on larger and larger volumes.
Multi-level integration − The update procedure sketched in Sec-
tion 6 calls for a two-level Monte Carlo integration scheme [5]
where first n0 level-0 independent configurations of the gauge field 
are generated over the entire lattice, and then for each of them n1
level-1 configurations of the active links are generated by keeping 
fixed the inactive links and the multiboson fields. The two-level 
estimate of an observable is then computed by averaging over the 
n0 · nnb

1 configurations obtained at a cost proportional to n0 · n1, 
where nb is the number of blocks in �0. This two-level integra-
tion can in principle be generalized to a multi-level scheme by 
iterating the domain decomposition and the integration procedure. 
Extensive numerical tests which have been performed in the one-
dimensional case [4,5,7–9] have already shown the benefit of the 
multi-level integration in solving the signal to noise ratio problem 
in the computation of correlation functions in lattice QCD.
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Appendix A. O (a)-improved Wilson-Dirac operator

The massive O (a)-improved Wilson-Dirac operator is defined 
as4 [16,17]

D = Dw + Dsw + m0 , (A.1)

where m0 is the bare quark mass, Dw is the massless Wilson-Dirac 
operator

Dw = 1

2
{γμ(∇∗

μ + ∇μ) − ∇∗
μ∇μ} , (A.2)

4 Throughout this appendix the lattice spacing is set to unity for notational sim-
plicity.
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with γμ being the Dirac matrices and the summation over re-
peated indices is understood. The covariant forward and backward 
derivatives ∇μ and ∇∗

μ are defined to be

∇μψ(x) = Uμ(x)ψ(x + μ̂) − ψ(x) ,

∇∗
μψ(x) = ψ(x) − U †

μ(x − μ̂)ψ(x − μ̂) , (A.3)

where Uμ(x) are the link fields and μ̂ is the unit versor along the 
direction μ. By inserting Eq. (A.3) in Eq. (A.2), the Wilson operator 
reads

Dwψ(x) = 4ψ(x) − 1

2

3∑
μ=0

{
Uμ(x)(1 − γμ)ψ(x + μ̂)

+ U †
μ(x − μ̂)(1 + γμ)ψ(x − μ̂)

}
. (A.4)

The second term on the r.h.s. of Eq. (A.1) is the Sheikholeslami-
Wohlert operator defined as

Dswψ(x) = cSW

i

4
σμν F̂μν(x)ψ(x) , (A.5)

where σμν = i
2 [γμ, γν ], and F̂μν(x) is the clover discretization of 

the field strength tensor which is given by

F̂μν(x) = 1

8
{Q μν(x) − Q νμ(x)} , (A.6)

with

Q μν(x) = Uμ(x) Uν(x + μ̂) U †
μ(x + ν̂) U †

ν(x)

+ Uν(x) U †
μ(x − μ̂ + ν̂) U †

ν(x − μ̂) Uμ(x − μ̂)

+ U †
μ(x − μ̂) U †

ν(x − μ̂ − ν̂) Uμ(x − μ̂ − ν̂) Uν(x − ν̂)

+ U †
ν(x − ν̂) Uμ(x − ν̂) Uν(x + μ̂ − ν̂) U †

μ(x) .

(A.7)

It is also possible to use the alternative expression for Dsw given 
by

Dsw + (4 + m0) → (4 + m0)exp

{
cSW

4 + m0

i

4
σμν F̂μν

}
, (A.8)

which has been proposed in the context of master field simula-
tions [12].

Appendix B. Definitions of basic domains

To easily label the various subdomains considered in this letter, 
it is useful to introduce a non-overlapping domain decomposition 
of the lattice so that the entire lattice L is decomposed as

L =
⋃

â

�â , (B.1)

where �â is a basic hyperrectangular cell, see Fig. B.3 for a 2-
dimensional representation. Each cell has dimension Gμ = Bμ +bμ

Fig. B.3. Two-dimensional representation of a basic cell �â .
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in the direction μ and it is uniquely identified by the position of 
its lower-left corner, given in four-dimensional Cartesian coordi-
nates (in units of Gμ) by â = {a0, a1, a2, a3}, where

aμ = 0, . . . ,
Lμ

Gμ
− 1 , μ = 0, . . . ,3 , (B.2)

where Lμ is the length of the lattice along direction μ. As a result, 
the global lattice coordinates of the lower-left point of the basic 
cell are given by xμ = Gμ ·aμ (no summation over repeated indices 
is meant here).

To map the blocks of the decomposition in Fig. 1 to the ba-
sic cells, the latter are further decomposed in 24 blocks as de-
picted in Fig. B.3. Within each cell, the 16 blocks can be identi-
fied by their local Cartesian coordinates in each direction μ, i.e. 
by d̂ = (d0, d1, d2, d3) with dμ = 0, 1. In particular, the lower-left 
block (d̂ = 0̂) of �â identifies the block �â

0 of �0, with their lower-
left corners coinciding. The other blocks of the basic cell belong 
to �1, and the coordinates of their lower-left point are given by 
xμ = Gμ · aμ + Bμ · dμ with d̂ �= 0̂. With those definitions we can 
finally write

�â = �â
0

⋃
d̂ �=0̂

dμ=0,1

�
(â,d̂)
1 . (B.3)

For each block �â
0, it is useful to define its “frame” �â

1, which is 
shown in Fig. 2, as

�â
1 =

⋃
(ĉ,d̂) �=(0̂,0̂)

cμ,dμ=0,1
∣∣(d−c)μ=0,1

�
(â−ĉ,d̂)
1 . (B.4)

Therefore, the “framed” domain

�â
0 = �â

0 ∪ �â
1 (B.5)

is made of 34 blocks with the obvious modifications for the blocks 
near the boundaries of the lattice depending on the boundary con-
ditions adopted. The blocks �â clearly form an overlapping domain 
decomposition of the entire domain �1. Analogously, the blocks 
�â

0 form an overlapping domain decomposition of the entire lattice 
L, similarly to what happens in the one-dimensional case [5,7].

Appendix C. Projectors

In this Appendix we define projectors on the various domains 
introduced in Section 2. For �â

0 the projector is defined as

IP
�â

0
ψ(x) =

{
ψ(x) if x ∈ �â

0 ,

0 otherwise ,
(C.1)

i.e. it localizes the quark field ψ(x) inside the domain indicated in 
the subscript. It follows that

IP�0 =
∑

â

IP
�â

0
. (C.2)

Projectors on other domains, e.g. I P
�â

0
, I P�0 , I P

∂�â
0
, I P∂� , etc., are 

defined analogously.
Projectors on the inner and outer boundaries of �â

0 are indi-
cated with P

∂�â
0

and P
∂�â∗

0
respectively, and they are defined so 

that

P
∂�â

0
D

∂�â
0,∂�â∗

0
= D

∂�â
0,∂�â∗

0
P

∂�â∗
0

,

P â∗ D â∗ â = D â∗ â P â . (C.3)

∂�0 ∂�0 ,∂�0 ∂�0 ,∂�0 ∂�0
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From Eq. (A.4) it holds

[
D

∂�â∗
0 ,∂�â

0
ψ
]
(x) = −IP

∂�â∗
0

3∑
μ=0

[
Uμ(x)

1 − γμ

2
IP

∂�â
0
ψ(x + μ̂)

+U †
μ(x − μ̂)

1 + γμ

2
IP

∂�â
0
ψ(x − μ̂)

]
,

(C.4)

and analogously for D
∂�â

0,∂�â∗
0

with I P
∂�â

0
←→ I P

∂�â∗
0

. This implies 
that

P
∂�â

0
ψ(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x /∈ ∂�â
0 ,

1−γμ

2
ψ(x) if x ∈ ∂�â

0 and ∃! μ ∣∣ (x−μ̂) ∈ ∂�â∗
0 ,

1+γμ

2
ψ(x) if x ∈ ∂�â

0 and ∃! μ ∣∣ (x+μ̂) ∈ ∂�â∗
0 ,

ψ(x) otherwise ,

(C.5)

and analogously for P
∂�â∗

0
, i.e. with respect to I P

∂�â
0

and I P
∂�â∗

0
they 

include also the appropriate projectors on the spinor index on each 
face of the boundaries. It follows that

P∂�0 =
∑

â

P
∂�â

0
, (C.6)

and analogously for P∂�∗
0
, P

∂�â
0
, P

∂�â∗
0

, etc. The projector P∂� is 
defined as P∂�0 but extended to all points of each hyperplane, 
while P∂�1 is defined from

P∂� = P∂�0 + P∂�1 . (C.7)

Appendix D. LU decomposition of a 2 × 2 block matrix

A 2 × 2 block matrix can be decomposed as

M =
(

A B
C D

)
=

(
I B D−1

0 I

)(
S A 0
C D

)
, (D.1)

where the Schur complement is defined as

S A = A − B D−1C . (D.2)

Its determinant can then be factorized

det M = det D det
(

A − B D−1C
)

, (D.3)

while the inverse is given by

M−1 =
⎛⎝ S−1

A −S−1
A B D−1

−D−1C S−1
A D−1 + D−1C S−1

A B D−1

⎞⎠ . (D.4)

It is worth noting that S−1
A is the exact inverse of M in the domain 

where A is defined. If B and C act only on subspaces identified by 
the projectors P1 and P2 in the first and the second block respec-

tively a simplification occurs, e.g. the inverse D−1 in the second 
determinant on the r.h.s. of Eq. (D.3) can be restricted to the sub-
space identified by P2. This in turn implies that

det

(
A B
C D

)
= det A det D det

(
1 A−1B

D−1C 1

)
(D.5)

where A−1 = P1 A−1P1, B = P1 BP2, C = P2CP1, and D−1 =
P2 D−1P2. Notice that the dimensionality of the last matrix on the 
r.h.s. of Eq. (D.5) is smaller with respect to the one of the original 
matrix on the l.h.s.
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