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Abstract
Metrics such as diversity and novelty have become important, beside accuracy, in the design of Recommender Systems 
(RSs), in response the increasing users' heterogeneity. Therefore, the design of RSs is now increasingly modelled as a multi-
objective optimization problem (MOP) for whose solution Multi-objective evolutionary algorithms (MOEAs) have been 
increasingly considered. In this paper we focus on the k-top recommendation problem in which a solution is encoded as a 
matrix whose rows correspond to customers and column to items. The value of accuracy, novelty, and coverage for each 
candidate list, is evaluated as a sample and can be represented as a 3-d histogram which encodes the knowledge obtained 
from function evaluations. This enables to map the solution space into a space, whose elements are histograms, structured 
by the Wasserstein (WST) distance between histograms. The similarity between 2 users in this probabilistic space is given 
by the Wasserstein distance between their histograms. This enables the construction of the WST graph whose nodes are the 
users and the weights of the edges are the WST distance between users. The clustering of users takes then place in the WST-
graph. In the optimization phase the difference between two top-k lists can be encoded as the WST distance between their 
3-dimensional histograms. This enables to derive new selection operators which provide a better diversification (exploration). 
The new algorithm Multi-objective evolutionary optimization/Wasserstein (MOEA/WST), compared with the benchmark 
NSGA-II, yields better hypervolume and coverage, in particular at low generation counts.

Keywords  Recommender systems · Accuracy · Coverage · Novelty · Wasserstein distance · Multi objective evolutionary 
optimization

1  Introduction

Recommendation systems are a key component of the tool-
box for analysing data from social media. A recent survey 
(Balaji et al. 2021) reviews the main methods and applica-
tion areas. The focus of this paper is on Collaborative Filter-
ing (CF) based RSs, in which the basic data structure is a 
matrix of ratings, with as many rows as users and as many 
columns as items, and each entry is the rating provided by a 
user (row) to an item (column). Rating matrices are mostly 

sparse because many entries are unknown: the key assump-
tion is that the unknown ratings are predictable because the 
known ratings are often highly correlated across various 
users or items.

The main driver in the development of RSs has been the 
accuracy of recommendations i.e., the error in the predic-
tion on unknown ratings. Recently the need to recognize 
the increasing heterogeneity of users' demands has led to 
multiple metrics such as diversity and novelty which might 
conflict with each other. Generally speaking, the increase of 
diversity and novelty might decrease accuracy (Castells et al. 
2015). Therefore, we have to manage a trade-off between 
different objective functions so that we are faced with multi-
objective optimization problems (MOP). The best trade off 
between the objectives can be defined in terms of Pareto 
optimality. in which solutions are the elements of the Pareto 
set.
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We consider Multiobjective evolutionary algorithms 
(MOEAs): recently some papers, e.g. Li et al. (2016), Lin 
et al. (2018), have focused also on novelty and diversity.

In this paper we focus on the k-top recommendation 
problem in which a list is pro posed to each user contain-
ing his k-top rated items. A solution is encoded as a matrix 
whose rows correspond to customers and column to items. 
The objectives of the optimization are accuracy, novelty, 
and coverage.

One key novelty of this paper is that a solution is associ-
ated not to a scalar value of each objective function, given by 
the average over users/items, but to the probability distribu-
tion of its sample values.

This maps the problem into a space whose elements are 
the discrete probability distributions which we represent as 
histograms: this space is structured by a distance between 
histograms, namely the Wasserstein distance. Measuring the 
distance between distributions can be accomplished by many 
alternative models. A general class of distances known as 
f-divergences are based on the expected value of a convex 
function of the ratio of the two distributions. If P and Q 
are two probability distributions over ℝd , continuous with 
respect to each other, and f  is a convex function such that 
f (0) = 1 the f-divergenge is given by:

According to the choice of f  the above formula yields 
specific distances including Kullback–Leibler distance, 
its symmetrized version Jensen–Shannon, Hellinger dis-
tance, total variation divergence and �-square divergence. 
The main disadvantage of KL and �-square distances with 
respect to Wasserstein is that they do not use information 
across different bins of the histograms or distributions with 
different binning schemes, that is different support. WST 
first introduced in Monge (1781) has received its modern 
formulation in Kantorovich (1942). WST has a very rich 
mathematical structure whose complexity and flexibility 
are analyzed in a landmark volume (Villani 2009) and, in 
the discrete domain in the tutorial (Solomon et al. 2014). A 
difficulty with WST is its computational cost which has ham-
pered its diffusion outside the computer vision community. 
Recently a number of specialized computational approaches 
have drastically reduced the computational hurdles (Peyré 
and Cuturi 2019).

1.1 � Related works

A related approach has been proposed in Zheng et al. (2017) 
for the “grey sheep” problem. Users are represented as his-
tograms whose distance is given by their intersections and 
whose feature by the quantile analysis of each histogram. 
Ribeiro et al. (2014) analyses multi-objective Pareto efficient 

(1)Df (P,Q) = �Qf
(

P

Q

)

approaches considering accuracy of a top-k recommendation 
list along with novelty and coverage as objective functions. 
A similar approach is proposed in Li et al. (2016) where one 
more objective serendipity is considered.

A different approach based on Gaussian Processes has 
been proposed in Nguyen et al. (2014), Galuzzi et al. (2020). 
Another approach, also based on Gaussian processes, is 
proposed in Vanchinathan et al. (2014) which deals explic-
itly with the explore/exploit dilemma in top-k list selec-
tion. Multi armed bandits (MAB) is a classical formalism 
for studying the exploration/exploitation dilemma when 
the reward is an unknown pay-off function. Guillou et al. 
(2015) gathers feedback from users which is used to update 
the model of users’ preferences. Another approach which 
stresses the interaction with users is Christakopoulou and 
Banerjee (2018). In Hejazinia et al. (2019) it is shown how 
different approaches, including matrix factorization, can be 
embedded in the MAB framework. The MAB framework 
can also be extended to the case of context dependent ban-
dits (Gentile et al. 2017) and correlated arms (Wang et al. 
2018a, b). A general consideration is that while MAB mod-
els are very good at capturing the interaction with users and 
the online learning mechanism, they meet some difficulty 
dealing with top-k list recommendation and with multi-
objective problems.

Multi-objective problems are typically dealt with using 
evolutionary algorithms; Ribeiro et al. (2014) exploit the 
pareto efficiency and show that the suggested lists are simul-
taneously accurate, diverse, and novel. The same objec-
tives are considered in Lin et al. (2018) which show that an 
extreme point based method can encode the prior knowl-
edge of RSs and enhance the performance of personalized 
recommendation.

Two recent deterministic approaches are (Gillis et al. 
2021) where the issue of distributional robust multi objective 
optimization is considered and Lin et al. (2019) which con-
siders two objectives CTR (Click Through Rate) and GMV 
(Gross merchandise Volume) and propose a scalarization 
approach whose weights are automatically learnt and shown 
to guarantee Pareto efficiency.

A stream of research, increasingly intertwined with RSs is 
metric learning. After the early contributions of Weinberger 
and Saul (2009) metric learning has been suggested moving 
from the observation that the output of MF methods violates 
the triangle inequality between inter user distances.

The literature on WST distance is extremely large. Here 
we quote only few very recent papers focused on the design 
of recommender systems (RSs). Meng et al. (2020) shows 
that embedding the RS into a metric space endowed with 
WST distance enables an effective solution to the item 
cold-start recommendation. Zhao et al. (2021) propose a 
Wasserstein based Correlation Analysis for Cross-Domain 
Recommendation. The use of autoencoders and generative 
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adversarial networks (GAN) for collaborative filtering has 
been recently proposed in Zhang et al. (2021), Li et al. 
(2020).

Wasserstein has been also proposed in the context of met-
ric learning (Ma et al. 2020; Rakotomamonjy et al. 2018) 
to measure uncertainty, embeds user/item representation 
in a low dimensional space and comply with the triangle 
inequality).

Our contributions

•	 The proposal of a probabilistic space in which both the 
data model and the optimization algorithm are embed-
ded. The elements of this space are discrete probability 
distributions, specifically histograms.

•	 A distributional representation of the rating matrix. To 
each user one can associate a vector whose components 
are the distances according to a similarity measure to 
all other users. This vector is synthetized as a histogram 
with N bins, where N ≪ m . The value associated to each 
bin is the number of users whose distance from the target 
user falls in that bin. The histogram might be regarded as 
the signature of a user and the weights as user’s features.

•	 The distance between 2 users in the probabilistic space 
is given by the Wasserstein distance between their histo-
grams. Another important result is that the WST based 
distributional representation enables the construction of 
a new graph: called the WST graph whose nodes are the 
users and the weights of the edges are the WST distance 
between users. The clustering of users takes then place 
in the WST-graph.

•	 The value of each objective (accuracy, novelty, and cov-
erage), for each candidate top k-list, is evaluated as a 
sample and can be represented as a histogram. This mul-
tidimensional histogram encodes the knowledge obtained 
from function evaluations. The difference between two 
lists can be encoded as the WST distance between their 
histograms. This enables to define a WST based selection 
operators in MOEAs.

•	 The resulting algorithm Multi-objective Evolutionary 
Optimization/Wasserstein (MOEA/WST) is run on each 
cluster and compared with the algorithmic benchmark 
NSGA-II. On a standard benchmark data set for RSs 
MOEA/WST results in better hypervolume and cover-
age, in particular at low generation counts.

1.2 � Organization of the paper

Section 2 contains the formal definition of the problem of 
the ranking matrix and the basic notions of multi-objective 
optimization. Section 3 contains the basic definitions of 
the Wasserstein distance and its main computational meth-
ods. Section 4 introduces the distributional representation 

of users, the graph representation of the rating matrix, and 
the results of different clustering methods. Section 5 is 
devoted to the distributional representation of the objective 
functions. Section 6 describes the encoding of solutions 
and their distributional representations. Section 7 contains 
the description of MOEA/WST and in particular of the 
new genetic operators. Section 8 describes the software 
resources. Section 9 the computational results in terms of 
hypervolume and coverage of the Pareto approximation, to 
compare MOEA/WST and NSGA-II. Section 10 contains 
the conclusions and perspectives.

2 � The problem definition and background 
information

2.1 � The problem definition

The basic notion is:

•	 The set of users U =
{
ui
}
i=1,…,M

 , where M is the num-
ber of users.

•	 The set of items O =
{
oj
}
j=1,…,N

 ,, where N  is the num-
ber of items.

Each user expresses its judgement, or rating, r ∈ X  , 
where typical rating values can be binary or integers from 
a given range. The set of all the ratings given by the users 
on the items can be represented as a partially specified 
matrix R ∈ ℝ

N×M , where its entries rij express the possible 
ratings of user ui for item oj . Usually, each user rates only a 
small number of items, thus the matrix R is sparse.

Two types of Collaborative Filtering (CF) methods are 
commonly used to solve it: the memory-based methods 
and model-based methods. The memory-based methods, 
or neighbourhood-based algorithms are based on the fact 
that similar users display similar patterns of rating behav-
iour (user-based) or similar items receive similar ratings 
(item-based). These methods rely usually on k-nearest 
neighborus (kNN) algorithms, are simple to implement, 
and yield recommendations easy to explain. Clearly the 
choice of the distance and the value k can be considered 
as hyperparameters and their values impact substantially 
the performance of the method.

The model-based methods, since the Netflix contest, use 
mostly matrix factorization where users and items can be 
represented by latent factors in a low dimensional space. 
Many variants of MF have been recently proposed and 
MF has become a de-facto cornerstone in the construc-
tion of RS. The focus of this paper is not on matrix filling 
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but on the multi-objective optimization problem in k-top 
recommendation.

An important evolution of MF is given in Indyk et al. 
(2019) which propose a learning based approach and Wang 
et al. (2018a, b) and Zhang et al. (2018).

We used the basic implementation of k-NN in Surprise 
with the cosine similarity.

2.2 � Multi‑objective optimization

Multiobjective optimization problem (MOP) can be stated 
as follows:

Pareto rationality is the theoretical framework to analyse 
multi objective optimization problems where m objective 
functions f1(x),… , fm(x), where fi(x) ∶→ ℝ are to be simul-
taneously optimized in the search space Ω ⊆ ℝ

d . Here we 
use x to be compliant with the typical Pareto analysis’s nota-
tion, clearly in this study x is a sensor placement s.

Let u, v ∈ ℝ
m u is said to dominate v if and only if 

ui ≥ vi∀i = 1,… , n and uj > vj for at least one index j to refer 
to the vector of all objectives evaluated at a location x . The 
goal in multi-objective optimization is to identify the Pareto 
frontier of f (x) . A point x∗ is pareto optimal for the problem 
in Eq. (1) if there is no point x such that F(x) dominate F(x∗) . 

(2)min
x∈Ω⊆ℝd

F(x) =
(
f1(x),… , fm(x)

)

This implies that any improvement in a Pareto optimal point 
in one objective leads to a deterioration in another. The set 
of all Pareto optimal points is the Pareto set and the set of 
all Pareto optimal objective vectors is the Pareto front (PF). 
The interest in finding locations x having the associated F(x) 
on the Pareto frontier is clear: all of them represent efficient 
trade-offs between conflicting objectives and are the only 
ones, according to the Pareto rationality, to be considered 
by the decision maker. The issue of the quality evaluation 
of Pareto solutions sets is the key issue in multi objective 
optimization. The quality evaluation of Pareto solutions sets 
is the key issue in multi objective optimization.

To measure the progress of the optimization a natural and 
widely used metric is the hypervolume indicator that meas-
ures the objective space between a non-dominated set and a 
predefined reference vector. An example of Pareto frontier, 
along with the reference point to compute the hypervolume, 
is reported in Fig. 1.

A good approximation of the Pareto set will result into 
a high hypervolume value; thus, hypervolume is a reason-
able measure for evaluating the quality of the optimization 
process.

The grey shaded area is the original hypervolume: a new 
point A improves the approximation to the exact Pareto front 
and increases the hypervolume by the blue shaded area. The 
improvement of the hypervolume can also be used in the 
selection of the new point as in Daulton et al. (2020). This 

Fig. 1   An example of Pareto frontier (left), with the associated hypervolume (right), for two minimization objectives
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approach has been further developed using the gradient of 
the expected hypervolume improvement to speed up the 
selection process and also in the selection of the new point.

Another metric to compare different approximations of 
the Pareto front is the C-metric, also called coverage. Let 
A and B be two approximations of the PF, C(A,B) gives 
the fraction of solutions in B that are dominated by at least 
one solution in A . Hence, C(A,B) = 1 means that all solu-
tions in B are dominated by at least one solution in A while 
C(A,B) = 0 implies that no solution in B is dominated by a 
solution in A.

2.3 � Structure of the overall approach

Phase A: data representation and analysis

Step 1: Distributional representation of each user as a his-
togram whose values depend on the distribution of (user, 
user) similarity values. This step can be considered as the 
embedding of each user in a lower dimensional space whose 
elements are the histograms.

Step 2: The distance between histograms is computed as 
the Wasserstein distance (a.k.a. optimal transport distance) 
and the space of histograms, endowed with the Wasserstein 
metric, is called the Wasserstein space.

Step 3: The rating matrix can be represented as two alterna-
tive graphs:

	 i.	 The usual cosine graph where each edge is weighted 
by the cosine similarity of the two end-point users of 
the edge.

	 ii.	 The WST graph where each edge is weighted by the 
WST distance of the two histograms associated to the 
two end-point users of the edge.

Each graph can be clustered by any standard method like 
k-means or spectral clustering. In the computational results, 
spectral clustering has been used.

Phase B: optimization

Step 4: Formulation of the multi-objective optimization 
problem.

The candidate top-k list is encoded as a matrix. The val-
ues of the objective functions (accuracy, novelty and cover-
age) are represented as multivariate histograms.

Step 5: Multi-objective evolutionary algorithm.
The selection operation is built upon the WST distance 

between histograms associated to two candidate solutions.
To measure the performance of the algorithm over each 

cluster computed in Step 3, hypervolume and coverage of 
the approximate pareto sets have been used.

3 � The Wasserstein distance

Measuring the distance between distributions can be accom-
plished by many alternative models. Most used distances 
are Kullback–Leibler distance, Hellinger distance, total 
variation divergence and �-square divergence and Jensen-
Shannon, which is a symmetrized version of KL. The main 
disadvantage of KL and �-square to measure the distance 
between histograms is that they account only for the cor-
respondence between bins of the same index and do not use 
information across bins or distributions with different bin-
ning schemes, that is different support.

This is clearly shown in Fig. 2 (Öcal et al. 2019), which 
compares the values of 5 distances Total Variation (TV), 
Hellinger, Jensen-Shannon and Kullback–Leibler (KL) 
between 3 histograms. It’s apparent that WST not only shows 
a better discrimination but also an intuitive and natural per-
ception of the distances.

WST is a cross binning distance and is not affected by dif-
ferent binning schemes. Moreover, WST matches naturally 
the perceptual notion of nearness and similarity. Moreover, 
Wasserstein embedding can be easily generalized to multi-
objective problems considering m-dimensional histograms:

Fig. 2   Three histograms and 
their distances (Öcal et al. 2019)
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3.1 � Basic definitions

The WST distance between continuous probability distribu-
tions is:

where d(x(1), x(2)) is also called ground distance (usually 
it is the Euclidean norm), Γ

(
P(1),P(2)

)
 denotes the set of all 

joint distributions �(x(1), x(2)) whose marginals are respec-
tively P(1) and P(2) , and p > 1 is an index. The Wasserstein 
distance is also called the Earth Mover Distance (EMD). The 
EMD is the minimum energy cost of moving and transform-
ing a pile of sand in the shape of P(1) to the shape of P(2) . 
The cost is quantified by the amount of sand moved times 
the moving distance d(x(1), x(2)).The EMD then is the cost of 
the optimal transport plan.

There are some specific cases, very relevant in applica-
tions, where WST can be written in an explicit form. Let P̂(1) 
and P̂(2) be the cumulative distribution for one-dimensional 
distributions P(1) and P(2) on the real line and 

(
P̂(1)

)−1

 and 
(
P̂(2)

)−1

 be their quantile functions.

Let’s now consider the case of a discrete distribution P 
specified by a set of support points xi with i = 1,… ,m and 
their associated probabilities wi such that 

∑m

i=1
wi = 1 with 

wi ≥ 0 and xi ∈ M for i = 1,… ,m.
Usually, M = ℝ

d is the d-dimensional Euclidean space 
with the lp norm and xi are called the support vectors. M can 
also be a symbolic set provided with a symbol-to-symbol 
similarity. P can also be written using the notation:

where �(⋅) is the Kronecker delta.
The WST distance between two distr ibutions 

P(1) =
{
w
(1)

i
, x

(1)

i

}
 with i = 1,… ,m1 and P(2) =

{
w
(2)

i
, x

(2)

i

}
 

with i = 1,… ,m2 is obtained by solving the following linear 
program:

The cost of transport between x(1)
i

 and x(2)
j

 , d
(

x(1)i , x(2)j

)

 , is 

defined by the p-th power of the norm ‖x(1)
i
, x

(2)

j
‖ (usually the 

Euclidean distance).

(3)Wp

(
P(1),P(2)

)
=

(
inf

γ∈Γ(P(1) ,P(2))
∫

X×X

d
(
x(1), x(2)

)p
d�

(
x(1), x(2)

)
) 1

p

(4)

Wp

(
P(1),P(2)

)
=

(
1

∫
0

|||
(
P̂(1)

)−1(
x(1)

)
−
(
P̂(2)

)−1(
x(2)

)|||
p

dx

) 1

p

(5)P(x) =
m∑
i=1

wi�
�
x − xi

�

(6)W
�
P(1),P(2)

�
= min

�ij∈ℝ
+

∑
i∈I1,j∈I2

�ijd
�
x
(1)

i
, x

(2)

j

�

We define two index sets I1 =
{
1,… ,m1

} and I2 likewise, 
such that:

Equations (7) and (8) represent the in-flow and out-flow 
constraint, respectively. The terms �ij are called matching 
weights between support points x(1)

i
 and x(2)

j
 or the optimal 

coupling for P(1) and P(2).
The discrete version of the WST distance is usually called 

Earth Mover’s Distance (EMD). For instance, when measur-
ing the distance between grey scale images, the histogram 
weights are given by the pixel values and the coordinates by 
the pixel positions. Another way to look at the computation 
of the EMD is as a network flow problem. In the specific 
case of histograms, the entries �ij denote how much of the 
bin i has to be moved to bin j.

The basic computation of OT between 2 discrete distribu-
tions involves solving a network flow problem whose com-
putation scales typically cubic in the sizes of the measure. 
There are 2 lines of work to reduce the time complexity of 
OT, simple ground costs can lead to simpler computations. 
In the general case it is shows to be equivalent to a min-
flow algorithm of quadratic computational complexity and, 
in specific cases, to linear. The computation of EMD turns 
out to be the solution of a minimum cost flow problem on a 
bi-partite graph where the bins of P(1) are the source nodes 
and the bins of P(2) are the sinks while the edges between 
sources and sinks are the transportation costs. In the case 
of one-dimensional histograms, the computation of WST 
reduces to the comparison of two 1-dimensional histograms 
which can be performed by a simple sorting and the applica-
tion of the following Eq. (11).

where x(1)∗
i

 and x(2)∗
i

 are the sorted samples.To clarify the 
relation between Euclidean and WST distance we consider 
histograms seen as probability vectors of length d, belonging 
to the probability simplex:

Assume that we wish to compare images of 10 × 10 = 100 
pixels and that these pixels can only take values in a range 
of 4 possible colours, dark red (dR), light red (lR), dark blue 

(7)
∑
i∈I1

�ij = w
(2)

j
,∀j ∈ I2

(8)
∑
j∈I2

�ij = w
(1)

i
,∀i ∈ I1

(9)Wp

�
P(1),P(2)

�
=

�
1

n

n∑
i

���x
(1)∗

i
− x

(2)∗

i

���
p
� 1

p

(10)Σd =

�
u ∈ ℝ

d
+
�

d∑
i=1

ui = 1

�
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(dB) and light blue (lB): each image can therefore be associ-
ated to a histogram of 4 colours.

The Euclidean distance (the l2 norm of the difference 
of two vectors) computes the distance between a and b by 
comparing for each given index i their coordinates ai and bi 
one at a time. The Euclidean distance between a and b is 66, 
between a and c is 69, and between b and c is 77. For the 
Manhattan distance (the l1 norm of the difference of two 
vectors) of three histograms, we obtain that it is 120 between 
a and b as well as a and c and it is 114 between b and c.

Already in Aitchison (1982) and in Le and Cuturi (2015) 
it was remarked that the information reflected in histograms 
lies more in the relative value of their coordinates rather than 
on their absolute value.

This observation matches with the reasonable assumption 
that dark and light red have more in common than dark red 
and dark blue supporting the intuition that c should be closer 
to a than it is to b.

The Wasserstein distance implements this intuition by 
carrying out an optimization procedure to compute a dis-
tance between histograms.

The transport distance is defined as the lowest cost one 
could possibly find by considering all possible transport 
plans from a to b. For a, b, and c, we obtain Table 1.

We can see that the transport distance agrees with our 
initial intuition that a is closer to c than b by considering a 
metric computed on features. The Manhattan distance does 
not discriminate because it assigns the same value to the 
pairs (a, b) and (a, c). The Euclidean distance does not dis-
criminate because it results respectively 66.83 between a 
and b, and 77.24 between b and c, and 72 between a and c. 

WST distance is also a full metric in that satisfies also the 
triangle inequality.

3.2 � Computational issues

There are some particular cases, very relevant in applica-
tions, where WST can be written in an explicit form. Let F 
and G be the cumulative distribution for one-dimensional 
distributions f  and g on the real line and F−1 and G−1 be 
their quantile functions.

Then the computation of WST reduces to the compari-
son of two 1-dimensional histograms which can be per-
formed by a simple sorting and the application of Eq. (11).

where x∗
i
 and y∗

i
 are the sorted samples. In this paper 

p = 1 . The output of the optimization problem is the dis-
tance WST and the optimal transport map, where Mij is the 
metric cost matrix defining the cost of moving mass from 
xi to yj and �ij ∈ ℝ

+.
To the term Wp(f , g) we add the entropic regularizer 

given by the entropy of the matrix Γ =
[
�ij
]
.

The additional computational cost of MOEA/WST over 
MOEA is due to the computation of the WST distance.

(11)Wp(f , g) =

(
1

∫
0

||F−1(x) − G−1(x)||
p
dx

) 1

p

(12)Wp(f , g) =

�
1

n

n∑
i

���x
∗
i
− y∗

i

���
p
� 1

p

(13)H(Γ) =
∑
ij

�ijlog �ij

(14)
W(f , g) = min

�ij∈ℝ
n×n�

n∑
i=1

n�∑
j=1

�
�ijMij + ��ijlog �ij

�

s.t.
n�∑
j=1

�ij = fi,
n∑
i=1

�ij = gj, �ij ≥ 0
Table 1   Distances between the histograms in Fig. 3

�
1

�
2

W1 W2

(a, b) 120.00 66.83 125.00 134
(b, c) 114.00 77.24 59.00 75
(a, c) 120.00 69.22 72.00 68

Fig. 3   The above picture is 
taken from Cuturi and Avis 
(2014)
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The formula (11) that we have used to construct 
Gw = (Vw,Ew) does no longer work for d > 1 . To speed 
up the search we could consider approximate solutions as 
suggested in Backurs et al. (2020), Atasu and Mittelholzer 
(2019). In this paper we have solved the full optimal trans-
port problem given by Eq. (5) using the library Python 
Optimal Transport (POT) (Flamary et al. 2021) and spe-
cifically extending to 3d the OT networks simplex solver.

Here we consider the computational cost of OT. Assuming that 
each objective function is quantized in 10 bins, we have a 3D “image” 
of 1000 bins. The transport matrix γij ∈ Γ has n = 1 M entries, the 
linear program has a worst-case complexity, using interior point meth-
ods, of 3n log n. This can be reduced in several specific cases, notably 
for univariate distributions using Eq. (7). This is clearly displayed by 
the behaviour of the wall clock time. Another solution, offered in the 
OPT package, is the Sinkhorn regularization.

If we define Kij = e
−

dij

�  where dij represents the cost of 
moving from xi to yj and � is a multiplicative coefficient in 
the entropic regularizer H(Γ). Then it can be shown that the 
solution �∗

ij
 can be expressed as uiKijvj where u and v are 

unknown vectors. This result means that instead of optimiz-
ing over the n × n

� values of the full matrix [� ij] we have to 
optimize over n + n

� values u and v (i.e., Eqs. (15) and (16) 
would result in 2000 variables instead of 1 M).

Alternating the estimation of u and v the algorithm will 
reach the correct values. This result is the basis of the most 
effective approximate algorithms which are analyzed in 
Peyré and Cuturi (2019).

Starting from the consideration that the variables in w are 
more important that the matching weights, approximate solv-
ers have been proposed, specifically Sinkhorn solvers. Here 
it is just important to remark that they allow to manage the 
trade-off between accuracy and computational cost through a 
regularization hyperparameter. Entropic regularization enables 
scalable computations, but large values of the regularization 
parameter lambda in Eq. (13) could induce an undesirable 
smoothing effect while low values not only reduce the scal-
ability but might induce several numeric instabilities.

4 � Graph representation of the rating matrix

The graph representation of rating matrix is very useful 
both for natural interpretation and as enabler of many graph 
analysis tools.

(15)
∑
j

Tij = si ⇒ ui
∑
j

Kijvj = si ⇒ ui =
si∑
j Kijvj

(16)
∑
i

Tij = dj ⇒ vj
∑
i

Kijui = dj ⇒ vj =
dj∑
i Kijui

4.1 � Cosine graph

The first graph representation of the rating matrix is directly 
from k-NN method. Two users/items (vertices) i and j are 
connected by an edge if their distance (given by a similar-
ity measure like cosine or Pearson) is among the ksmallest 
distances from i to other users/items.

A more general representation is given by the cosine 
graph. Figure 4 shows the distribution of cosine similarity 
between all pairs of users.

The cosine similarity between individual users, can be 
used to build a graph Gc = (Vc,Ec) , in which two nodes 
(users) are linked together if their similarity is above a 
given threshold (the dotted red line in Fig.  4); then 
Vc =

{
ui
}
i=1,…,M

 i s  t h e  s e t  o f  u s e r s  a n d 
Ec =

{
(i, j) ∶ cos

(
ui, uj

)
> 𝜏

}
 is the set of edges. Each edge 

Fig. 4   Distribution of the Cosine similarity between all pair of nodes

Fig. 5   Cosine graph
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of this graph is then weighted based on the similarity 
cos

(
ui, uj

)
 . Figure 5 displays the resulting graph, in which 

the edge color represents its weight. The nodes connected 
by a red edge are the most similar, while the ones con-
nected by a green edge are the most different.

4.2 � Users as histograms, the feature graph and its 
clustering

Another graph representation is through the association to 
each user ui of a one-dimensional histogram h(ui) : the bins 
are the equi-subdivisions of the interval [0, 1] for cosine sim-
ilarity (and [−1, 1] for Pearson correlation) and the weights 
are the fraction of users whose cosine similarity falls in each 
bin; the same representation can be item driven. In Fig. 6 
three users’ histograms are shown.

According to this representation each user is described by 
a signature, feature vector, given by the bins and the associ-
ated weights. The elements in this feature space are proba-
bilistic distributions. Whose distance is measured by WST 
distance. Figure 6 shows the distribution of the Wasserstein 
distance averaged over all the pairs of nodes.

This distributional representation of the users enables 
construction of another graph (Fig. 7) in which the nodes are 
the users that are linked if their distributions of similarity 
are close enough, i.e., their Wasserstein distance is below a 
given threshold (the red dotted line in Fig.  7). Let 
Gw = (Vw,Ew) be  the  Wasserste in  g raph,  then 
V =

{
h(ui)

}
i=1,…,M

 is the set of users represented as histo-
grams and Ew =

{
(i, j) ∶ WST

(
h
(
ui
)
, h
(
uj
))

< 𝜏
}
 is the set 

of edges. The edge (i, j) is then weighted based on the Was-
serstein distance WST

(
h
(
ui
)
, h
(
uj
))

 between the similarity 
distributions of nodes i and j (see Fig. 8).

The same procedure could be used to construct the item-
base Wasserstein graph.

5 � Objective functions

For the problem of finding the optimal top-L recommen-
dation list, three conflicting objectives are considered, i.e., 
accuracy, coverage, and novelty. The distributional repre-
sentation of these three metrics enables the definition of an 
information space that allows the use of MOEA/WST In 
particular, each recommendation list matrix can be repre-
sented by a three dimensional histogram as shown in Fig. 9.

5.1 � Rating score

To each recommendation list, it is possible to assign a score 
that represents how “good” the items recommended to users 
are. This score is based on the sum of the ratings given by 
the users to the recommended items and is given by the fol-
lowing equation:

Fig. 6   Cosine similarity histograms with a bin length of 0.025

Fig. 7   Distribution of the Wasserstein distance between all pair of 
nodes. To enable a better visualization, we omitted in the figure pair 
of nodes whose WST is greater than 0.5
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where r(ui, oj) is the rating given by user ui to item oj . Maxi-
mize this score ensures that the recommendation list of each 
user contains only items that user has given a high rating.

This particular definition of score admits a distribu-
tional representation. The distribution is given by the val-
ues of accuracy of each user as in Eq. (16). This distribu-
tion can be represented by a histogram (Fig. 10) in which 
the support points k1,… , kNa

 correspond to accuracy 

(17)score =
1

M⋅L

∑
ui∈U

∑
oj∈SL(ui)

r
�
ui, oj

� values, and the weights wki
 with i = 1,… ,Na represent the 

fraction of users with a cer tain value of score 
wki

=
1

M

����

�
ui ∶

∑
oj∈SL(ui)

r(ui, oj) ∈
�
ki, ki+1

������
.

One problem with Collaborative Filtering recommenda-
tion is the ''popularity bias'': (Abdollahpouri et al. 2019) 
popular items are being recommended too frequently while 
most of the items do not get attention. This is one rea-
son why in recent research papers, the score is considered 
together with other two objectives, coverage and novelty.

Fig. 8   Distributional Wasser-
stein graph

Fig. 9   Representation of the recommendation list
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5.2 � Coverage

A recommender system is expected to provide M recommen-
dation lists. Each list corresponds to a user and consists of L 
items. The coverage of the recommendation list is defined as 
the number of different items in all users’ top-L lists.

The objective function coverage is averaged over the 
number of items N  . Coverage reflects the diversity of rec-
ommendation. A larger value of coverage is better because 
more choices are provided to the users.

Also the coverage admits a distributional representa-
tion. The distribution is given by the ratio between the 
non-duplicated items in the recommendation list and the 

(18)coverage =
1

N

�����

⋃
ui∈U

SL
�
ui
������

total number of items for each user, i.e., the coverage of 
the user recommendation list SL(u).

This distribution can be represented by a histogram 
(Fig. 11) in which the support points are the values of 
coverage k1,… , kNc

 , and the weights wki
 with i = 1,… ,Nc 

represent the fraction of users with a certain value of cov-
erage wki

=
1

M

||||

{
ui ∶

|||SL
(
ui
)||| ∈

[
ki, ki+1

)}||||
.

5.3 � Novelty

This objective is based on the degree dj of an item oj that 
is the number of times it has been rated. Then, the self-
information (Zhou et al. 2010) of the item oj is given by:

The novelty is then defined as the average self-informa-
tion of all the items in the recommendation lists of each 
user:

It's important to note that novelty also admits a distri-
butional representation. The distribution is given by the 
values 

∑
i∈Su

Ni

L
 for each user u.

This distribution can be represented by a histogram 
(Fig. 12) in which the support points k1,… , kNn

 are the 
values of novelty, and the weights wki

 with i = 1,… ,Nn 
represent the number of users with a certain value of nov-
elty wk =

1

M

����

�
ui ∶

∑
j∈SL(ui)

Nj

L
∈ [k, k + 1)

�����
.

(19)Nj = log2
M

dj

(20)Novelty =
1

M

∑
ui∈U

∑
j∈SL(ui)

Nj

L

Fig. 10   Distributional representation of accuracy

Fig. 11   Histogram representation of coverage Fig. 12   Distributional representation of novelty
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The Eqs. (19) and (20) could be interpreted as relating 
the novelty to the number of items originally unrated that 
are recommended to users, in the recommendation lists.

5.4 � Encoding of solutions and their representation

A solution is represented as a matrix whose rows are the 
users in the cluster and the columns represent for each user 
the top-L items (see Fig. 13).

The multi-objective problem is

where x is given by the entries of the matrix shown before. 
The codomain of each objective function fi(x) is subdivided 
in ni bins.

The distributional representation of the three previously 
defined objective can be viewed as a three-dimensional histo-
gram. For each recommendation list SL the support points of this 
histogram are the values of accuracy along the x-axis, the values 
of coverage along the y-axis and the values of novelty along the 
z-axis; the weights represent the fraction of users whose values 
of accuracy, coverage and novelty fall in a specific range. These 
distributions constitute the space on which the MOEA/WST 
algorithm is based. Therefore, it uses the Wasserstein distance 
computed by formula (6), (7), (8) to compare the histograms 
associated to different top-L recommendation lists. In our prob-
lem f1 is the accuracy given by (16), f2 is the coverage given by 
(17) and f3 is the novelty, given by (19).

6 � The description of MOEA/WST

The multi-objective evolutionary algorithm used for the 
solution of problem (1) is based on the Python framework 
Pymoo (Blank and Deb 2020). This section is focused on 

max
x∈Ω⊆ℝd

F(x) =
(
f1(x), f2(x), f3(x)

)

analyzing how the mathematics presented in the previous 
sections enables the construction of a new genetic opera-
tor and how it can be embedded in the general workflow of 
Pymoo.

The set of non-dominated solutions is called the Pareto 
set and its image in the objective space the Pareto Front (PF). 
For a Pareto optimal solution, the value of one objective can-
not be improved unless at least one of the other objectives 
is negatively affected.

In order to approximate the Pareto set MOEAs we fol-
low a strategy based on non-dominated sorting genetic 
algorithms which is implemented in Pymoo by the algo-
rithm NSGA-II.

The general structure is as follows. The blue modules 
are basically the same as in Pymoo. The red one “selec-
tion” is a contribution of this paper and is analyzed in 
detail in 6.1.

The algorithm begins with a random selection of a 
number of individuals among which we select the non-
dominated individuals as elements of first approximation 
of the Pareto set. Then MOEA/WST performs the follow-
ing steps: (i) selection, (ii) crossover and (iii) mutation.

Pymoo offers different solutions for the above points. For 
the computations Simulated Binary Crossover with η = 3 and 
Inverse Mutation have been used. The element of novelty of 
the proposed algorithm with respect to NSGA-II is the selec-
tion operator based on the Wasserstein distance analyzed in 
Sect. 6.1. The new algorithm is accordingly called MOEA/
WST. To evaluate the performance of the MOEAs the hyper-
volume metric is generally adopted given by the volume of 
the portion of the objective space enclosed by a reference 
point and the approximate Pareto front.

6.1 � Selection

In order to select the pairs of parents to be mated using 
the crossover operation, we have introduced a problem 

Fig. 13   Matrix encoding of a 
top-L recommendation list
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specific selection method that takes place into the Wasser-
stein space. In this paper we used the Wasserstein distance 
between the histograms corresponding to the recommen-
dation lists Fi and Mi.

First, we randomly sample from the actual Pareto set 
two pairs of individuals (F1,M1) and (F2,M2) . Then we 
choose the pair 

(
Fi,Mi

)
 as the parents of the new offspring, 

where i = arg max
i∈{1,2}

WST(Fi,Mi) . This favours exploration 

and diversification in the Wasserstein space (see Fig. 14).

7 � Computational results

In this section, the computational results over the Mov-
ieLens dataset are reported. First, the two algorithms, 
NSGA-II and MOEA/WST, have been tested on the clus-
ters resulting from the graph in Fig. 4. The optimization 
has been run for each cluster. Figure 15 shows the Hyper-
volume over generations of NSGA-II (red) and MOEA/
WST (blue). Since multiple runs of the algorithms are 
performed, the charts display mean and standard devia-
tion of the target metric.

Fig. 14   The Wasserstein-based 
selection operator

Fig. 15   Hypervolume over generations of the three different clusters identified by clustering the cosine graph

Fig. 16   Coverage over generations of the three different clusters identified by clustering the cosine graph
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The hypervolume curve of MOEA/WST is better than 
NSGA. Also, in terms of the C-metrics, defined in Sect. 2, 
and shown in Fig. 16, MOEA/WST is the better performer. 
Then the two algorithms have been used, with the same 
settings, on the Wasserstein graph in Fig. 7. The results, 
respectively for hypervolume and C-metrics are reported 
respectively in Figs. 17 and 18.

Again, both the hypervolume curve and the C-metric of 
MOEA/WST is better than NSGA-II. It is also important 
to note that, using the clusters over the Wasserstein graph, 
both algorithms perform better than using the cosine graph.

8 � Limitations and discussion

The main limitation in the application of the Wasserstein 
distance is its computational cost for multivariate his-
tograms. The straightforward utilization of Eqs. (6), (7) 
and (8) can become prohibitive. A first solution is to use 
approximate solvers as those quoted in Sect. 3.2. Another 
solution, offered in Python Optimal Transport (POT) is the 
Sinkhorn regularization which has the effect of reducing 
drastically the computational cost introducing a regulari-
zation term. Handling the regularization parameter is not 
easy and requires a delicate balance between accuracy and 

numerical stability due to ill conditioning. Another limita-
tion is that the cost matrix is usually assumed in a problem 
agnostic way: a better solution is to use algorithms that 
can learn the ground metric using only a training set of 
labelled histograms as proposed in Cuturi and Avis (2014) 
and Heitz et al. (2021).

Given the growing importance of WST distance in 
fields like imaging, the generation of adversarial network 
among others approximate algorithms are being proposed. 
Beugnot et al. (2021) introduce before the linear solver a 
pre-processing step in which they summarize a smaller 
number of representative samples therefore solving a 
smaller linear problem. A different approach has been 
recently suggested in Si et al. (2020) where they provide 
insights as to why, despite the curse of dimensionality, the 
WST distance enjoys favourable empirical performance.

The computational overhead related to the computa-
tion of the distance is expectedly significant because the 
support of the histograms is 3-dimensional. As it can be 
gleaned from Fig. 17, the value 0.538 of hypervolume is 
reached by MOEA/WST in 25 generations versus the 50 
generations required by NSGA-II. Each generation requires 
10 function evaluations which brings the advantage of 
MOEA/WST over NSGA-II to 250 function evaluations. 
The wall-clock time from these specific computations is 

Fig. 17   Hypervolume over generations of the three different clusters identified by clustering the Wasserstein graph

Fig. 18   Coverage over generations of the three different clusters identified by clustering the Wasserstein graph



10863Distributional learning in multi‑objective optimization of recommender systems﻿	

1 3

80 s for NSGA-II and 220 s for MOEA/WST of which 
140 s are due to the computation of Wasserstein distances 
which must be computed for each individual. If c is the 
time in seconds required for each function evaluations, the 
balance between the two algorithm is given by 250c = 140. 
This means that for c > 0.56 s MOEA/WST is better also in 
terms of wall-clock time. This computation has been per-
formed for MovieLens 100 k. In a conservative assumption 
the value c scales linearly with the number of users which 
means that MovieLens 1 M would give an advantage to 
MOEA/WST.

9 � Conclusions and perspectives

The main conclusion is that embedding in a probabilis-
tic space both the data model and the optimization algo-
rithm in the design of RSs is a novel and potentially useful 
approach. The elements of this space are histograms which 
capture in a low dimensional space using a limited number 
of features the interactions between users and items. The 
Wasserstein distance is particularly suitable as measure of 
similarity between histograms. The Wasserstein distance 
also enables a novel graph representation of the rating 
matrix: the nodes are the users, and the weights of the 
edges are the WST distance between users.

The second key result is that a candidate top k-list 
is represented as a multidimensional histogram which 
encodes the knowledge obtained from the evaluation of 
all the objectives function evaluations. The difference 
between 2 lists can be encoded as the WST distance 
between their histograms. This enables to define a WST 
based selection operators in MOEA.

The resulting algorithm MOEA/WST results in better 
hypervolume and coverage than NSGA-II. The advantage 
is larger at low generation counts meaning that MOEA/
WST is particularly useful when the evaluation of the 
objectives is even moderately expensive. Moreover, com-
paring histograms through the Wasserstein distance ena-
bles a better visualization. This potential has been largely 
realized for images but has general applications. As we 
have remarked before, WST between histograms or point 
clouds, considered as instances of probability measures, is 
defined as the smallest cost required to move one measure 
to another. Because the Wasserstein distance is geodesic 
when the ground metric is geodesic Optimal transport can 
be used to compute interpolation between two measures, 
which is the shortest path in the probability simplex that 
connects the two measures as end-points. The interpola-
tion process describes a series of intermediate measures 

during the transport process. We have not considered in 
this paper the use of the Fréchet mean, also called Was-
serstein barycenter, of a set of measures. This is shape-
preserving and offers a better synthesis of the set of distri-
butions than the Euclidean distance. The barycenters can 
be seen as centroids in a clustering process which can be 
structured as the standard k-means using the Wasserstein 
distance between elements. The Wasserstein distance, 
thanks to its linear programming basis, has emerged as a 
main tool in economic analysis (Galichon 2021) where the 
issues of labour economics, trade and derivatives pricing 
have been considered.

The main conclusion of this paper is that the Wasser-
stein distance is a convenient way to describe complex or 
high dimensional objects, allowing to reparametrize them 
so as to work with a reduced number of features. These 
results have implications, beyond the domain of RSs, for 
those situations as for instance computer experiments or 
simulation/optimization, in which associating a distribu-
tion to the inputs might be more effective than merely 
comparing a set of parametric features such as the mean 
or the higher moments. Indeed, the WST distance takes the 
whole distribution into account and matches naturally the 
perceptual notions of nearness and similarity.
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