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1. Introduction
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be the family of subgroups of R. It has been observed several times [1,7-9] that, when
R is an elementary abelian p-group, there exist two constants ¢, and c; depending on p
only such that

logp(W)

CpT < [Sub(R)| < ¢, -7

logy (1)
1

Borovik, Pyber and Shalev [2, Corollary 1.6] have shown that, for an arbitrary finite
group R of order r, we have

Sub(R)| < rleg2(n)(G+o(),

Therefore, in the light of the comment on elementary abelian p-groups, this bound is
asymptotically best possible.

Besides a natural theoretic interest, there are several practical applications that re-
quire an explicit upper bound on |Sub(R)|. In particular, these applications require to
replace the “o(1)” appearing in the exponent of r with an explicit constant. All ap-
plications that we are aware of come from the problem of classifying graphical regular
representations of finite groups, see the introductory section of [9] for more details.

Now, let p be a prime number and let

c(p) 1:[11_1L (HZkzopiQ)' (1.1)

In [9], it was shown that, when R is an elementary abelian p-group, |[Sub(R)| is
asymptotic to c(p)|R['°8»(FD/4 as |R| tends to infinity. Moreover, using elementary
methods, it was shown that, for a fixed prime p, when R is an arbitrary group,
|Sub(R)| < ¢(2)|R|82(IED/4+1:5315 " Tny this paper, using more sophisticated methods,
we improve this result.

Theorem 1.1. Let R be a finite group and let Sub(R) be the family of all subgroups of R.
Then |Sub(R)| < ¢(2)|R|"“4™ .

We observe that ¢(2) is approximately
7.37197.
2. Preliminaries

Let R be a non-identity finite group and let r be the order of R. Let

4
a;
11
=1
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be the prime factorization of r. In particular, p1, ..., pe are distinct prime numbers and
a; > 1 for each i € {1,...,¢}. Relabeling the indexed set if necessary, we may suppose
that

p1 <p2 <---<py.

Let H be a subgroup of R. Then H is uniquely determined by a family (Q;); of Sylow
p;-subgroups of H, for each i € {1,...,¢}. Each of these subgroups Q; is contained in
a Sylow p;-subgroup P; of R. From Sylow’s theorems, all Sylow p;-subgroups of R are
conjugate and hence R has at most r/p;% Sylow p;-subgroups. Let n; be the number of
Sylow p;-subgroups of R. Then

r

n;, =|R:Ng(P)| = Na(P): Pl (2.1)

Therefore, we have

¢ ’
H % = 7’471 . H ;
=% INR(P) : Pi|pj =5 INR(P) : P

choices for the ¢-tuple (P;);. When (P;); is given, since @); is a subgroup of P; and since
P; is a p;-group, we have at most

choices for the ¢-tuple (Q;);, where S(p;,a;) is the function defined in [9]. (The function
S(p,a) has the property that every p-group of order p® has at most S(p,a) subgroups,
see Lemma 2.1. For not breaking the flow of the argument, we postpone the definition
of S(p,a) to (1.1) in Section 2.1.) Thus R has at most

Y/ 0
1
Zﬁl. — . o . .
" I,I|NR(PZ-):PZ-| [15(:.a)
=1

i=1
subgroups.

We are interested in studying when

¢ ¢
1
2_1 . —_— . . .
r ilzll Na(P) P I | S(pi,a;) <c(2)-r

i=1

logo (1)
4

(2.3)

holds, because in this case Theorem 1.1 immediately follows.



M. Fusari, P. Spiga / Journal of Algebra 635 (2023) 486—526 489

By taking log, on both sides of (2.3), we obtain the equivalent inequality

’ V4
lo i
£—-1- Zlogr |NR P| + ZIOgr puaz ) < IOgr + Z g2 p ’

i=1

Finally, this can be rewritten in the following form

d J4
_1oy o s(NeB): Bl los(e(2)) ailog(p;) _ log(S(pi, ai))
ol ; log(r) < log(r) * Z < 4log(2) log(r) ) . (24)

2.1. The function S(p,a)

Let p be a prime number and let a be a positive integer. We define

2 when a :=1,
p+3 when a := 2,
S(p.a) = 2192 + 223 +4 2 when a := 3, (2.5)
p*+3p° +4p°+3p+5 when a = 4,
2p% + 2p® + 6p* + 6p3 + 6p? + 4p+ 6 when a := 5,
c(p)p§ when a > 6.

We observe that in [9], the value of ¢(p) is slightly different from the value we have
defined in (1.1). In general, the value we have set for ¢(p) in (1.1) is less than or equal
to the value of ¢(p) in [9], and it coincides with the value in [9] when p = 2. All the
results in [9] remain valid with this slightly improved constant. In particular, we have
the following lemma.

Lemma 2.1. Let R be an elementary abelian p-group of order p*. Then |Sub(R)| <
logz(IRI)
S(p,a) < c(2)|R|

Proof. The proof follows from Remark 3.1 and Lemma 3.2 in [9]. O

From Lemma 2.1, for the proof of Theorem 1.1, we may suppose that ¢ > 2. Indeed,
throughout the rest of this paper, we tacitly assume ¢ > 2. Furthermore, throughout the
rest of this paper, we also tacitly assume the notation in this section.

We conclude this section with some numerical information.

Lemma 2.2. For every positive integer a and for every prime number p, we have S(p, a) <
2
c(p)p® /™.

Proof. When a > 6, by (2.5), we have S(p,a) = c(p)pa2/4. When a < 5, the proof follows
from some computations.
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490
From (1.1), we have
1 1 p+2
> (-142(142)) =22
o) 1-1 ( ( p)) p—1
Assume a = 1, that is, S(p,a) = 2. We have
1 a2
T=cpp T,

p+2 1

2< —— .p1 <L .

S 1P c(p)-p

for every p (when p < 15, the first inequality can be verified directly and, when p > 16,
it is clear, because p'/* > 2). Assume a = 2, that is, S(p,a) = p + 3. We have

M)

p+2 a®
p+3Spf1-p<C(p)-p=C(p)p4,

for every p (the first inequality follows from an easy computation). Assume a = 3, that

a

is, S(p,a) = 2p* + 2p + 4. We have
a2
=cpp 7,

o

+2
2p2+2p+4§;%1~p3 <c(p)-p

for every p (when p < 15, the first inequality can be verified directly and, when p > 16,

it is clear, because p'/* > 2 and p> + p+2 < (p+ 2)p*/(p — 1))
To deal with larger values of a, we need to refine the estimate on ¢(p). From (1.1), we

have
e %)1(1 &) (12 (143)) -2

a2

Assume a = 4, that is, S(p,a) = p* + 3p® + 4p* + 3p + 5. We have
t=c(p)pT,

3 2
4 3 2 p°+2p 4
p +3p° +4p*+3p+5< pr<c(p)p
(p—1@*-1)

for every p (the first inequality follows from a computation by expanding the two
= 5, that

members and manipulating the two polynomials in p). Finally, assume a
25 a?

is, S(p,a) = 2p° + 2p° + 6p* + 6p> + 6p? + 4p + 6. We have
6 5 4 3 2 p® + 2p? 25 25 o2
2p° + 2p° 4 6p” + 6p° +6p° +4p +6 < (p_l)(p2_1)~p4 <c(p)-p* =clp)p*,

for every p (when p < 15, the first inequality can be verified directly and, when p > 16,
it follows with a computation, because p'/* > 2 and pb + p° + 3p* +3p> + 3p> +2p+3 <

(P +20")p%/(p—1)(p* - 1))). O
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2.2. Small groups and computations

To avoid some long arguments for groups having small order, we have checked the
veracity of Theorem 1.1 with the computer algebra system magma [4], for all groups R
with |R| < 2000. Indeed, the library of “small groups” in magma has an exhaustive list
of all finite groups of order at most 2 000.

3. Solvable groups

In this section, we prove the following result.

logg (|R])
4 .

Theorem 3.1. If R is solvable, then |[Sub(R)| < ¢(2) - |R|

We argue by induction on |R| = r, where the base case of the induction can be
considered Lemma 2.1. Let P, be a Sylow pg-subgroup of R. Since R is solvable, R
admits a Hall pj-subgroup K. Using P, and K we estimate the number of subgroups of
R.

Let H be a subgroup of R. Then H = H, H,,, where H,, is a Hall pj-subgroup of H
and H,, is a Sylow pg-subgroup of H. Now, from Hall’s theorem, H, is conjugate, via
an element of P, to a subgroup of K and, from Sylow’s theorem, H,, is conjugate, via
an element of K, to a subgroup of P,. In particular, we have at most

14 (|Sub(K)| = 1)py*

choices for Hy,, because every non-identity subgroup of K as at most py* conjugates.
Similarly, we have at most

1+ (jSub(P)| — 1)—
by

choices for H,,, because every non-identity subgroup of P, as at most |K| = r/py*
conjugates. Therefore,

ISub(R)] < (1 + (Sub(K)| — 1)p) - (1 T (ISub(P,)] - 1>%) )
by
Thus

[Sub(R)| < (1 — p* + [Sub(K)[pi) - (1 -+ smw»}%)
¢ ¢

u r
< [Sub(K)[p* - |Sub(Pe)|W-
¢

Using Lemma 2.1, this can be simplified in
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[Sub(R)| < [Sub(K)|S(pe, ag)r.

As |K| < 7, by induction we may bound the number of subgroups of K by
c(2)| K |'82(1KD/4 and hence we obtain

a M logg (1) S Jap)r
[Sub(R)| < e()(r/p) + Slpe,acr = (@)t - (pe, a¢)

- (3.2)
agloga(r/p,”) 1og2(p;}e)
Py * T4

10%(1') S(pg, ag)?“

(2 i)

Proposition 3.2. Let r = p{* ---py*, withpy < --- < pg, a1,...,a¢ > 1 and £ > 2, and let
i€ {l,...,¢}. Then

S(ps, ai)r

_ 3.3)
aing, g2 () = (
(r2/pi)® E

except when

(1) a; =1 and
« pi €{2,3},
e p; =5 andr/p; <4918,
e pi=7andr/p; <23,
e pp=1landr=2-11,r=3-11,
e p;=13 andr=2-13,
(2) a; =2 and
° pi =2,
e pi =3 and r/p? < 46,
e p;=bandr=50=2-5% orr="75=3-52,
(3) a; =3 and
e pi=2andr/p} <723,
e pi=3andr/p} <71,
(4) a; =4 and
e p; =2 and r/p} <67,
e p;=3 andr=2-3*=162,
(5) a; =5 and
e pi=2andr/p? <29,
e p;=3andr=2-3%=486.
(6) a; > 6, p; =2 and r/p;* < 21.

For not breaking the flow of the argument we postpone the proof of Proposition 3.2
to Appendix A.1.
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To conclude the proof of Theorem 3.1 we consider various cases, depending on whether
ap=1or ap > 2.

Lemma 3.3. If ay = 1, then Theorem 3.1 holds true.

Proof. From Proposition 3.2, Theorem 3.1 follows from (3.2), except when part (1) holds.
When r = |R| < 2000, the veracity of this lemma follows from Section 2.2. Therefore,
for the rest of the proof, we may suppose that » > 2000. In particular, either p, = 3 and
r=2%.3 orp,=>5andr=r"-5with 400 < v’ < 4918.

We first need to refine (3.2) (for the cases under consideration). When a;, = 1, we
have S(p¢,ar) = 2 and hence (3.1) becomes

Sub(R)] < (ISub(K)lpe + 1 — pr) (p7 N 1) |

As |K| < r, arguing by induction, we deduce

ISub(R)] < (e(2)(r/pe) 5 pr + 1 - py) (p )
<

1og2(r/w) logz(r) T+ Py
< e /pe) S pelr e+ 1) < e TP
- .
Yz ro4
log (r) T+ pe logs () T+ pe
Se@)r 1 Gy mEmeg = 2 T g2 (0]
2 1 r— 4 (r2/pe)

(These computations have allowed to replace the numerator S(py, ag)r = 2r appearing
n (3.2) with  + pe.) In particular, the lemma follows as long as

T+
2 {):2(1) S
(r2/pe) 5

Assume p; = 5. Since we are assuming r > 2000, we have r/p, > 256 = 2% and hence

(3.4)

we obtain

loga (5)

1+ §> 1 losg) loss@) (1 N §) 51—l (E)PT o2
T r 5

> 515 91— 53 (1 + §> 910 (5) — L2217 95—t 10g, (5)
T

()g 2
14 0} gs-slog (-t [ 5\ o (10 1) ggy
r 256

T+ pe
(7"2/102) 1og24(pz)

Therefore, for the rest of the proof we suppose py = 3. In particular, £ = 2, p; = 2 and
r=2% .3,
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Let P be a Sylow 2-subgroup of R and let T be a Sylow 3-subgroup of R. Thus
|P| = 2% and |T| = 3. Let H be an arbitrary subgroup of R. Then H = (Q, S), where
Q is a Sylow 2-subgroup of H and S is a Sylow 3-subgroup of H. If S = 1, then we have
at most

logp (291) af
1

c(2) -3+ (2) —c(2)-3-27 (3.5)
choices for H = @, because we have at most 3 Sylow 2-subgroups in R. Assume that
S # 1. Let € € {1, 3} be the number of Sylow 2-subgroups of R and let Py,..., P. be the
Sylow 2-subgroups of R with P = P;. Now, @Q < P, for some i € {1,...,¢}. As S acts
transitively by conjugation on the set {Py, ..., P.} of Sylow 2-subgroups of R, replacing
Q@ by a suitable S-conjugate, we may suppose that Q < P, = P.

Let a € {0,...,a;}. Corollary 4.2 in [8] shows that the number of subgroups of P
having index p® is at most

a 21— 1) (20— 1)

[al | _eu-p..eue_y

(Here, we are denoting with al] the 2-binomial coefficient.) Wince H = (Q, S) =
a

L 2
(@, 8%y, Vo € @), we may replace S with any Q-conjugate. We deduce that the number
of subgroups of R having order divisible by 3 is at most

i [‘ﬂ -0, (3.6)

a=0

For a € {1,...,a1}, we have

a a; —1 a
[;]2.2(1:(2%_1)[;_1 2+ al 2
Therefore, (3.6) becomes
1+(2“1—1)§:[‘“1] +§:la11 :(2‘11—1)&12_:1[‘“1] +§:la11 .
a=1 a—1 o a1l ]y a=0 a P U S

Since
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count the number of subspaces of a vector space of dimension a; — 1 and a; over the
field with 2 elements, from Lemma 2.1, we deduce that (3.6) is at most

(a1—1)2

e(2) - (2% —1)2" T 1 ¢(2) -2

e
"“‘»-Am

Summing up, from (3.5) and (3.7), the number of subgroups of R is at most

2 2
(a1 —1)2 aj a1
4

:c@y21<4+2%*i—2*%+ﬂ.(3&

¢(2)-3-2% £e(2)- (2 —1)2

a ay a3 1

ISub(R)| < ¢(2) - 27 - (4 + 2%+%) <e(2) 2T . 2FFE —¢(2) 2THE R (3.9)

where the last inequality follows with a computation using a; > 12. On the other hand,
we have

loga () logy (3-2%1) logo (3:291)
4 4 4

c(2)r =c(2)-(3-2") > c(2) - (29

logo (3 logo (3
1y ogi( ))Jr ogi( ).

:c@yzﬁ*“( (3.10)

Now, observe

log,(3)
4

+

> -+

1
2

=
-
| =

and log,(3)/4 > 1/3. Therefore, when a; > 12, the result follows from (3.9) and (3.10).

When 3 < a; < 11, we have verified with a calculator that (3.8) is less than or equal
to ¢(2) - (3 - 2%1)1082(3:2"1)/4 and hence the result follows also in this case. Finally, when
a; <2, we have r <12 <2,000. O

Proof of Theorem 3.1. From Lemma 3.3, we may suppose that ay > 2. From Proposi-
tion 3.2, Theorem 3.1 follows from (3.2), except when one of parts (2)—(6) holds. Observe
that we are applying Proposition 3.2 with ¢ = ¢ and hence p; # 2. Thus |R| < 486. We
have verified the veracity of this lemma with a computation using the database of small
groups in the computer algebra system magma [4], see Section 2.2. O

4. Notation and arithmetic reductions
4.1. Notation

In the light of Theorem 3.1, for the rest of our argument we may suppose that R is
not solvable. In particular, from the Odd Order Theorem, we have
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p1=2. (4.1)
Clearly,
a; > 2 (4.2)
because a non-abelian simple group cannot have a cyclic Sylow 2-subgroup. Moreover,
¢>3 (4.3)

from the celebrated p®¢?® theorem of Burnside.

Recall from Section 2 that, for each prime p;, P; is a Sylow p;-subgroup of R. From [6],
we have that, if p; > 5, then [Ng(F;) : P;| # 1. In particular, for each prime p; > 5, we
have |Ng(P;) : P;| > 2. From [6], we see that the same conclusion holds when p; = 3,
except (possibly) when PSLy(3%") is a composition factor of R for some a > 1. Hence
we may replace (2.4) with the inequality

‘
log(2) log(2)  log(c(2)) a;log(p;)  log(S(pi,ai))
(—-1)(1- — 4.4
00 50) o) < e 2 Uit e ) 09
where ¢ = 0 when R has no composition factor isomorphic to PSLy(3%") and ¢ = 1
otherwise.
From (4.4), we are interested in the function

_log(e(2) = (ailog(p)  log(S(piai))\  log(2)
T0) = Fogtn +§<4log<2> ey )~ DD @

Because of the peculiar behavior of S(p;,a;), when a; < 5, we consider the auxiliary
function

5}
o5

S(pi,a;) = C(pz‘)pi

and

log(e(2 ¢ a; log(p; log(S(p;, a; log(2

4.2. Arithmetic reductions

We say that r is good if f(r) > 0 and we say that r is good if £(r) > 0. From
Lemma 2.2, S(p,a) < 8(p,a) and hence f(r) > £(r). In particular, if r is good, then r
is good. Observe that, when r = |R] is good, Theorem 1.1 follows immediately from the
discussion in Section 4.1.
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We use elementary calculus to deduce some important facts about f(r).

Lemma 4.1. Assume (4.1), (4.2) and (4.3). Let i € {1,...,¢} and let v’ be the positive
integer obtained from r, by replacing the prime p; with a prime number p > p; and with
p & {p1,...,pe}. If v is good, then so is r’.

Lemma 4.2. Assume (4.1), (4.2) and (4.3). Let p be a prime number withp ¢ {p1,...,pe}
and p > 17 and let v’ = r - p. If r is good, then so is r’.

Lemma 4.3. Assume (4.1), (4.2) and (4.3). Leti € {1,...,¢} and let v’ = v -p;. If r is
good, then so is r’.

We prove Lemma 4.1 in Appendix A.2, we prove Lemma 4.2 in Appendix A.3 and we
prove Lemma 4.3 in Appendix A .4.

Using Lemmas 4.1, 4.2 and 4.3, we are able to reduce the proof of Theorem 1.1 to a
very limited number of cases.

Proposition 4.4. If r satisfies any of the following conditions, then r is good. In particular,
if |R| satisfies any of the following conditions, then |Sub(R)| < ¢(2) - |R|1082(IED/4,

(1) £>13;
(2) € =4; moreover, pp > 79, or a; > 5 for some i € {2,...,£}, or ay > 28;
(8) £ =5; moreover, pp > 173, or a; > 5 for some i € {2,...,L}, or ay > 15;
(4) € = 6; moreover, pp > 251, or a; > 5 for some i € {2,...,L}, or ag > 12;
(5) £ ="T; moreover, pp > 307, or a; > 5 for some i € {2,...,£}, or ay > 10;
(6) € = 8; moreover, pp > 277, or a; > 5 for some i € {2,...,£}, oray > 9;
(7) £ =9; moreover, pp > 233, or a; > 4 for some i € {2,..., 4}, oray >7;
(8) £ =10; moreover, py > 163, or a; > 3 for some i € {2,...,£}, or ay > 6;
(9) £ =11; moreover, py > 89, or a; > 3 for some i € {2,...,£}, or ay > 4;
(10) £ =12; moreover, py > 47, or a; > 2 for some i € {2,...,4}, or a; > 3.

Proof. We have implemented the functions f(r) and £(r) in (4.5) and in (4.6) in a
computer.
We have verified that

§=2%.3.5-7-11-13-17-19-23-29-31-37-41

is good. Observe that s is divisible by the first 13 prime numbers. From Lemmas 4.1, 4.2
and 4.3, we deduce that any positive integer r with ¢ > 12 is good. This proves (1).
Next, we prove (10). We have verified that

22.3.5.7-11-13-17-19-23-29-31- 67,
22.32.5.7-11-13-17-19-23-29 - 31 - 37,
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23.3.5-7-11-13-17-19-23-29-31-37

are good. From Lemmas 4.1 and 4.3, we deduce that any positive integer r with ¢ = 12
and py > 67, or with a; > 2 for some ¢ > 2, or with a; > 3 is good. In particular, in
all of these cases r is also good. Now, to obtain the refined condition stated in (10), we
have computed explicitly the function f in all numbers r of the form r =2%2-3-.5-7-11-
13-17-19-23-29- 31 - p1o with p1o < 67.

All other parts are proved similarly. 0O

5. The case £ = 3

In this section we prove Theorem 1.1 when ¢ = 3; this is a case where Proposition 4.4
gives no information.

Lemma 5.1. Let R be a non-abelian simple group whose order is divisible by at most three
distinct primes. Then one of the following holds

« R Alt(5) = PSLy(4) = PSLy(5) and |R| = 22 -3 -5 = 60,
« R=PSLs(2) = PSLy(7) and |R| = 2%-3-7 = 168,
« R= Alt(6) = PSLy(9) and |R| = 2% - 3% -5 = 360,

o R PSLy(8) and |R| =23 -3%.7 = 504,
e R=PSLy(17) and |R| = 2* - 32 - 17 = 2448,
e R=PSL3(3) and |R| =2*-3%-13 = 5616,

« R=PSUs(3) and |R| = 2°-3%-7 = 6048,
« R PSU4(2) = PSp,(3) and |R| = 26 -3%.5 = 25920.

Proof. This result follows from the contribution of various authors (Brauer, Herzog,
Klinger, Leon, Mason, Thompson, and Wales) and we refer to [3] and to the references
therein for more details. 0O

We also need a few rather technical observations.

Lemma 5.2. Let r € N with r > 2000, then

(1) 47‘(7‘/7) 1022(1»/7) ( /14) log2(1/14) < rlogi(,.) }
(2) 81“(7“/28)M + 67 (r/21) HE dr(r/14) Y <
M

( /5 i 5)( /5) 032(7/5) rlogi(r) )
< rlogz (/4 for every prime p > 3 with r > 2p.

(3) (2r + 101)(7‘/10)
(4) 2p(r/p) 5"

We postpone the proof of Lemma 5.2 to Appendix A.5.
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Proof of Theorem 1.1 when ¢ = 3. From Section 2.2, we have r = |R| > 2 000. Moreover,
from Theorem 3.1, R is not solvable and hence R has at least one non-abelian simple
section.

From Lemma 5.1, we see that R cannot have a composition factor isomorphic to
PSL,(3%"), for some a > 1. Therefore, (4.4) becomes

3
o1 log2) _ logc(2) S a;logp;  log S(piai) | (5.1)
logr logr pt 4log?2 logr

Moreover, from Lemma 5.1, we have p, = 3 and ps € {5,7,13,17}.

Let f(r) be the function defined in (4.5). Suppose p3 = 13 and observe that, from
Lemma 5.1, each non-abelian simple section of R is isomorphic to PSL2(13). In particular,
|PSL3(3)] = 2% - 33 - 13 divides r. We have

f(2*-3%-13) > 0.46 > 0.

In particular, from Lemma 4.1 and Lemma 4.3, we deduce r is good.
Suppose p3 = 17. Observe that, from Lemma 5.1, each non-abelian simple section of
R is isomorphic to PSL(17). In particular, |PSLg(17)| = 2% - 32 - 17 divides 7. We have

f(2*-3%2.17) > 0.3 > 0.

In particular, from Lemma 4.1 and Lemma 4.3, we deduce r is good.

CASE p3 = 7. From Lemma 5.1, each non-abelian simple section of R is isomorphic to
PSLy(7), or PSLy(8) or PSU3(3). In particular, we have

22.3.7)>042>0,
22.34.7)>0.1>0,
22.3.7%)>0.1>0,

( )

( )

( )

f(22-3%-7) > 0.07 >0,
7)
7)

f(23 32.7%) > 04 >0,

f(26-32.7)>0.02 > 0.

From Lemma 4.1 and Lemma 4.3 and 5.1, we deduce that r is good, as long as r is
divisible by an element of

{22.3.7322.30.723.3.7223.3%.7,23.3%.7%2 20.3%. 7},
Therefore, Lemma 5.1 shows that (5.1) is satisfied, except when r = 2% -3 .7 or

re {252 =122.32.7,756 = 2%.3%.7,504 = 23.32.7,1008 = 2*-32.7,2016 = 2°- 3% 7}.
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As r = |R| > 2000, we may exclude the cases r € {252,756,504,1008}. Assume
|R| = 2016 = 2°- 32 - 7. From Lemma 5.1, we see that R has a unique non-abelian chief
factor, which is isomorphic to either PSLy(7) or to PSLa(8). Suppose PSLo(8) is a chief
factor X/Y of R, that is, X, Y <R, X > Y and X/Y = PSL5(8). Let

C = Cr(X/Y).

By definition, C' is the kernel of the action R — Aut(X/Y") of R by conjugation on X/Y".
In particular, as Aut(PSLy(8)) = PSL3(8) : 3 and as 3|PSL2(8)| does not divide |R|, we
deduce R/C = PSLy(8) and |C| = 2016/|PSL2(8)| = 4. Since PSLy(8) has trivial Schur
multiplier (see [5, page 6]), we deduce that R splits over C and hence

R= PSL2(8) X C4 or R= PSL2(8) X CQ X Cg.

Now, we have checked the veracity of the statement for these two groups with a computer.
We postpone the case that R has a composition factor isomorphic to PSLy(7) for later.

Assume r = 2% -3 -7, or r = 2016 and PSLy(7) is a composition factor of R. Thus
as = 1 in the first case and a2 = 2 in the second case. In particular, by Lemma 5.1, R has
a unique non-abelian chief factor X/Y and X/Y = PSLy(7). Let C := Cr(X/Y). By
definition, C' is the kernel of the action R — Aut(X/Y") of R by conjugation on X/Y. In
particular, as Aut(PSLy (7)) =2 PGLa(7), we deduce R/C = PSLy(7) or R/C = PGLa(7).
Assume first R/C = PSLy(7). Now, PSLy(7) has four conjugacy classes of maximal 7’-
subgroups: two of these subgroups have order 24 and two of these subgroups have order
12. Therefore, R has four conjugacy classes (with representatives Ki, Ko, K5 and Ky,
say) of 7’-subgroups and |K;| = |Ks| = 2% - 392 |K3| = |K4| = 29171 . 392, Therefore,
repeating the same argument we have used for solvable groups (but taking in account
that R has four conjugacy classes of maximal 7’-subgroups), we deduce

Sub(R)| < IS b(K1)||£||S(7,1)|R + |Sub() |§||5(7 H
+Sub(Ka) ST+ Sub (e ST )

= 20(|Sub(K7)| + [Sub(Kx)]) + 4r(|Sub(Ks)| + [Sub(K )

10g2(r/7) loga(r/14)

< Adre(2)(r/7) +8rc(2)(r/14) T,

where the last inequality follows from Theorem 3.1 and from the fact that K, K5, K3 and
K, are solvable. Hence, in this case, Theorem 1.1 follows from Lemma 5.2 (1). Assume
next R/C = PGLy(7). Observe that a; > 4, because a Sylow 2-subgroup of PGLy(7)
has order 16. Now, PGL3(7) has three conjugacy classes of maximal 7’-subgroups and
these groups have order 12,16 and 24. Therefore, R has three conjugacy classes (with
representatives K1, Ko and K3, say) of 7/-subgroups and |Ki| = 24172 . 3% |K,| =
201 . 3921 and |K3| = 29171 . 392, Therefore, arguing as above, we deduce
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LN Rl g IR
[Sub(R)| < |SUb(K1)\mS(77 1)— 7 +[Su b(K2)|@5(771)7
+Sub()| e ST

= [Sub(K)|S(7, 1)4r + |Sub(K»)[S(7, 1)3r + [Sub(K3)|S(7, 1)2r

logo (r/28) logo (r/21) logo (r/14)
1 1 1 .

= 8rc(2)(r/28) + 67¢(2)(r/21) + 4rce(2)(r/14)

Hence, in this case, Theorem 1.1 follows from Lemma 5.2 (2).

CASE p3 = 5. From Lemma 5.1, each non-abelian simple section of R is isomorphic to
Alt(5), or Alt(6) or PSU4(2). We have

f(22-3-5%) >0.12> 0,
f(22-32.5%) > 0.04 > 0,
f(22.3°.5)
23.3%.5)>0.15 >0,
)
)
)

f( >0.17>0,
(
(2*-3%.5) > 0.04 > 0,
(
(

- =

2°.3.52)>0.03 >0,
29.3%2.5) > 0.04 > 0.

= =

From Lemma 4.1 and Lemma 4.3 and 5.1, we deduce that f(r) > 0 and hence r is good,
as long as r is divisible by an element of

{22.3.5%,22.3%2.5%22.3°.5,23.3.5,2.3%.5,2°.3.5%29.3% . 5.
Therefore, Lemma 5.1 shows that (5.1) is satisfied, except when r = 2% -3 -5 or

r€ {300 =22-3-5%,600=2%-3-5%1200=2%-3.5%
1620 =22-3%.5540=22-.3%.5,1080 =2-3 .5,
180 =2%2.32.5,360=23-3%2.5,720=2%.32.5,1440 =2°-32 .5
2880 =26.32.5,5760 =27 -32.5,11520 = 2% - 3% . 5}.

As r = |R| > 2,000, we may exclude the cases r € {180, 300, 360, 540, 600, 720, 1 080,
1200,1440,1620}. Assume r € {2880,5760,11520}. Thus r = 2% - 32 .5 with a; €
{6,7,8}. From Lemma 5.1, we see that R has a unique non-abelian composition factors,
which is isomorphic to either Alt(5) or to Alt(6). Suppose Alt(6) is a composition factor
X/Y of R. Let C := Cgr(X/Y). By definition, C is the kernel of the action R —
Aut(X/Y) of R by conjugation on X/Y. In particular, as Aut(Alt(6)) = PT'Ly(9), we
deduce
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o R/C = Alt(6) and |C| =273, or

¢ R/C =2 PGL3(9) and |C] =24 or
e R/C = Mg and |C| =274 or

e R/C = PILy(9) and |C| =274 or
e R/C = PTLy(9) and |C| = 2475,

Since Alt(6) has Schur multiplier of order 6 (see [5, page 6]) and since C' is a 2-group, we
deduce that either R splits over C' and hence R = R/C x C, or R = R/C o C'. Using this
information we recover the various isomorphism classes of R and check the veracity of
Theorem 1.1 in each case. For instance, when R/C = Alt(6), R = R/C x C and a1 = 6,
we have that R is isomorphic to one of the following five groups

Alt(6) x C3, Alt(6) x Co x Cy, Alt(6) x Cg, Alt(6) x Dy, Alt(6) x Qs.

Assume r = 2% - 3.5, or r € {2880,5 760, 11520} and Alt(5) is a composition factor
of R. Thus as = 1 in the first case and as = 2 in the second case. In particular, by
Lemma 5.1, R has a unique non-abelian chief factor X/Y and X/Y = Alt(5). Let
C := Cgr(X/Y). By definition, C is the kernel of the action R — Aut(X/Y) of R by
conjugation on X /Y. In particular, as Aut(Alt(5)) = Sym(5), we deduce R/C = Alt(5)
or R/C = Sym(5). Here we need to argue slightly differently from the case in the
previous paragraph, because otherwise we end up with too many cases to be checked
with a computer. Now Alt(5) and Sym(5) both have two conjugacy classes of maximal
5’-subgroups and these subgroups have order 6 and 12 in Alt(5) and have order 12 and
24 in Sym(5). Therefore, R has two conjugacy classes (with representatives K; and Ko,
say) of 5’-subgroups and | K| = 29171.3% and |K3| = 2% -3%2. Let us call a the number
of subgroups of R having order relatively prime to 5 and let us call b the number of
subgroups of R having order divisible by 5. Since K; has 10 conjugates in R and since
K> has 5 conjugates in R, we deduce

ogo(r/10) lo g2(7‘/5)

a < 10|Sub(K1)| + 5|Sub(E»)| < 10¢(2)(r/10) 25 + 5¢(2)(r/5) . (5.2)

Now, let H be an arbitrary subgroup of R having order divisible by 5. Then H = (A, B),
where A is a 5’-subgroup of H and B is a Sylow 5-subgroup of H. Now, A is contained in
one of the 15 maximal 5'-subgroups of R. However, since B acts transitively on the five
conjugates of Ko, we may assume (replacing A with a suitable B-conjugate if necessary)
that either A is contained in one of the 10 conjugates of K; or A < K. Taking this in
account, we have

loga (r/5) (T /5)

-(r/5)

log (r/10)

b< 10|Sub(K1)|g + |Sub(K2)\% <e2)- 20 (r/10) T 4 e(2) -

U‘Iﬁ

(5.3)
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Clearly, |Sub(R)| = a + b. Using (5.2) and (5.3), we obtain a + b < ¢(2)r'82"/4 ex-
cept when a; = 2. Therefore, in this case, Theorem 1.1 immediately follows from
Lemma 5.2 (3). O

6. The final cases

Before dealing with the remaining cases, we need three general results.

Lemma 6.1. Let R be a counterezample of minimal order to Theorem 1.1. Then R has
no normal non-identity Sylow p-subgroup.

Proof. We argue by contradiction and we let R be a counterexample of minimal order
to Theorem 1.1 admitting a normal non-identity Sylow p-subgroup P. From the Schur-
Zassenhaus theorem, let K be a complement of P in R. Thus p > 3.

If p = 2, then from the Odd Order Theorem P and R/P are solvable, and hence so is
R. However, this contradicts Theorem 3.1.

From Section 2.2, we may suppose that |R| > 2000 and, from Section 5, we may
suppose that ¢ > 4.

Let H be a subgroup of R. Then, from the Schur-Zassenhaus theorem, H = H, H),
where H) is a Hall p’-subgroup of H and H, is a Sylow p-subgroup of H. Now, from
the Schur-Zassenhaus theorem, H,/ is conjugate, via an element of P, to a subgroup
of K and, from Sylow’s theorem, H), is conjugate, via an element of K, to a subgroup
of P. In particular, we have at most 1 + (|Sub(K)| — 1)|P| choices for H,, because
every non-identity subgroup of K as at most |P| conjugates. Similarly, we have at most
1 + (JSub(P)| — 1)|K| choices for Hp, because every non-identity subgroup of P as at
most | K| = |R|/|P| conjugates. Write |P| = p® and r = |R|. Therefore,

Sub(R)] < (1+ (|Sub(K)] — 1)p°) - (1 T (ISub(P)| 1)1%) | (6.1)

Using Lemma 2.1, this can be simplified in

[Sub(R)| < [Sub(K)[p® - ISub(P)I]% < [Sub(K)[S(p, a)r.

As K < R, K is not a counterexample to Theorem 1.1 and hence

loga (r/p) logy r S(p,a)r

[Sub(R)| < ¢(2)(r/p*) S(p,a)r = c(2)r 7

alogo(r/p%) loga(p®)
P r a

p
Loz Spa)r

(r2/pe)

As R is a counterexample to Theorem 1.1, we have
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S(p,a)r
2 (p 1022(?“) > 1.
(r2/p*) 4
From Proposition 3.2, we obtain that one of (1)—(6) is satisfied. As r > 2000, we deduce
p€{3,5} and a = 1.
When a = 1, 1 and P are the only p-subgroups of R and hence we may refine (6.1)
with

loga(r/p)
4

[Sub(R)[ < (1 + (|Sub(K)| —1)p®) - 2 < 2p|Sub(K)| < 2pc(2)(r/p)
Now, the proof follows from Lemma 5.2 (4). O

Lemma 6.2. Let C be a solvable group and let p be a prime divisor of |C| with the property
that, for each prime power divisor q of |C| with ¢ > 1 and p 1 q, p is relatively prime to
q— 1. Then C has a normal Sylow p-subgroup.

Proof. We argue by contradiction and we let C' be a counterexample of minimal order.
Let N be a minimal normal subgroup of C. As C is solvable, N has order a prime power
q > 1. We adopt the “bar” notation for C' = C/N. If p is relatively prime to |C/|, then N
is a normal Sylow p-subgroup of C', contradicting the fact that C' is a counterexample
to the statement of this lemma. Thus p | |C|. As |C| < |C|, C has a normal Sylow
p-subgroup P. Thus P = NP/N, where P is a Sylow p-subgroup of C. As P 1 C, we
have NP < C and hence the minimality of C' gives C' = NP. Now the action of P by
conjugation on N endows N of the structure of module for P. As N is a minimal normal
subgroup of C, P acts irreducibly on N and hence p divides |[N| — 1= ¢ — 1, which is a
contradiction. 0O

6.1. An algorithm: step 1

In view of Proposition 4.4, there is only a finite number of counterexamples to The-
orem 1.1 and our task is to show that actually there is no counterexample. We now
describe an algorithm that greatly reduces the number of exceptions we need to analyze
in detail.

The first step in our algorithm is to refine even further the functions (4.5) and (4.6).
The input in the first step of our algorithm is a positive integer r satisfying none of
the conditions in Proposition 4.4. The output of our algorithm is “yes” if a finite group
of order r satisfies Theorem 1.1 and is “unknown” if our procedure cannot exclude the
existence of a counterexample to Theorem 1.1.

First, as usual, we write r = p{'---pj*, where p; < --- < p;. Next, for each i €

{]‘7"'35}7

e when p; = 2, we let n; :T/p?i’
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Table 6.1
Positive integers returning “unknown”
in the step 1 of the algorithm with £ =

10.
22.3.5.7-11-13-17-19-23-29
22.3.5.7-11-13-17-19-23-31
22.3.5.7-11-13-17-19-23-59
22.3.5.7-11-13-19-23-29-31

Table 6.2
Positive integers returning “unknown” in the step 1 of the algorithm with £ = 9.

22.3.5-7-11-13-17-19-23 2%.3.5.7-11-13-17-19-23 2%*.3.5.7-11-13-17-19-23
22.3.5.7-11-13-17-19-29 22.3.5.7-11-13-17-19-29 22.3.5.7-11-13-17-19-31
22.32.5.7-11-13-17-19-31 2%.3.5.7-11-13-17-19-31 22.3.5.7-11-13-17-19-37
22.3.5.7-11-13-17-19- 37 22.3.5.7-11-13-17-19-41 22.3.5.7-11-13-17-19-53
22.3.5.7-11-13-17-19-59 22.3.5.7-11-13-17-23-29 2%.3.5.7-.11-13-17-23-29
22.3.5.7-11-13-17-23-37 22.3.5-7-11-13-17-23-41 22.3.5-7-11-13-17-23-47
22.3.5-7-11-13-17-29-31 2%3.3.5.7-11-13-17-29-31 22.3.5-7-11-13-19-23-29
2%2.3.5.7-11-13-19-23-29 22.3.5-7-11-13-19-23-31 22.3.5-7-11-13-19-23-37
22.3.5-7-11-13-19-23-41 22.3.5.7-11-13-19-29-31 22.3.5.7-11-17-19-23-29

e when p;, = 3 and r is divisible by the order of PSLs (33f) for some f > 0, we let n;
be the largest divisor of r/p]* with n; =1 mod p; and with n; <r/p}’, otherwise
o we let n; be the largest divisor of r/p}* with n; =1 mod p; and with n; < r/pj*.

Observe that, by [6], n; is an upper bound on the number of Sylow p;-subgroups of a
non-solvable finite group of order r. From Section 2, for every non-solvable group R of
order r, we have

¢
|Sub(R)| < HniS(Pmai)- (6.2)
i=1
We have computed nq, . .., ny and we have computed the right hand side of this inequality.

When n; = 1 for some i or when this number is less than ¢(2)r'°827/4, we return “yes”
otherwise we return “unknown”. The list of positive integers r where this procedure
returns “unknown” is reported in Tables 6.1-6.7. From Lemma 6.1 and from (6.2), when
the procedure returns “yes”, finite groups of order r satisfy Theorem 1.1. Therefore, the
cardinalities that require further considerations are in Tables 6.1-6.7.

Using the order of the non-abelian simple groups (via the Classification of Finite
Simple Groups), we are able to verify two important facts in our second procedure.

FactT 1: Let T be a non-abelian simple group whose order divides . Then T appears in
Table 6.8. Observe that the order of the outer automorphism group of T is not divisible
by primes larger than 3.

Fact 2: Let k > 2 and let T1,...,T, be non-abelian simple groups with r divisible by
|T1| - |T2| - - |Tx|- Then k = 2 and T x Ty is isomorphic to either
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Table 6.3

Positive integers returning “unknown” in the step 1 of the algorithm with £ = 8.

22.3.5.7-11-13-17-19 22.3.5-72.11-13-17-19 22.3.52.7.11-13-17-19 22.3%2.5.7.11-13-17-19
2%.3.5.7-11-13-17-19 2%.32.5.7.11-13-17-19 24.3.5.7-11-13-17-19 22.3.5.7-11-13-17-23
22.32.5.7-11-13-17-23 2%.3.5.7-11-13-17-23 24.3.5.7-11-13-17-23 22.3.5-7-11-13-17-29
2%.3.5.7-11-13-17-29 24.3.5-7-11-13-17-29 22.3.5.7-11-13-17-31 22.32.5.7.11-13-17-31
2%.3.5.7-11-13-17-31 22.3.5-7-11-13-17-37 2%.3.5.7-11-13-17-37 2%.3.5.7-11-13-17-41
22.3.5.7-11-13-17-43 2%.3.5.7-11-13-17-43 22.3.5.7-11-13-17-47 22.3.5.7-11-13-17-53
22.3.5.7-11-13-17-53 22.3.5.7-11-13-17-61 22.3.5.7-11-13-17-67 22.3.5.7-11-13-17-73
22.3.5.7-11-13-19-23 22.32.5.7.11-13-19-23 2%.3.5.7-11-13-19-23 24.3.5.7-11-13-19-23
22.3.5.7-11-13-19-29 22.3.5.7-11-13-19-31 2%.3.5.7-11-13-19-31 22.3.5.7-11-13-19-41
2%.3.5.7-11-13-19-41 22.3.5.7-11-13-19-43 2%.3.5.7-11-13-19 - 43 22.3.5.7-11-13-19-53
22.3.5-7-11-13-19-59 22.3.5-7-11-13-19-61 22.3.5.7-11-13-23-29 24.3.5.7-11-13-23-29
22.3.5-7-11-13-23-31 22.3.5-7-11-13-23-37 22.3.5.7-11-13-23-43 22.3.5-7-11-13-23-47
2%.3.5-7-11-13-23-47 22.3.5-7-11-13-23-83 22.3.5.7-11-13-29-31 22.3.5.7-11-13-29-37
22.3.5.7-11-13-29-41 2%2.3.5-7-11-13-29-59 22.3.5.7-11-13-29-61 22.3.5.7-11-13-31-41
22.3.5.7-11-13-31-43 22.3.5.7-11-17-19-23 22.3%2.5.7.11-17-19-23 2%3.3.5.7-11-17-19-23
22.3.5.7-11-17-19-29 22.3.5.7-11-17-19-31 2%.3.5.7.11-17-19-41 22.3.5.7-11-17-19-47
22.3.5.7-11-17-19-61 22.3.5.7-11-17-23-31 22.3.5.7-11-17-23-37 22.3.5.7-11-17-23-41
2%.3.5.7-11-17-23-41 22.3.5.7-11-19-23.29 22.3.5.7-11-19-23-31 22.3.5.7-11-19-23-43
22.3.5-7-13-17-19-23 22.32.5.7-13-17-19-23 24.3.5.7-13-17-19-23 22.3.5.7-13-17-19-29
2%.3.5-7-13-17-19-29 22.3.5-7-13-17-19-43 22.3.5.7-13-17-23-31 22.3.5.7-13-17-23-37
22.3.5-11-13-17-19-31

985-98% (£308) 589 49261y fo puanopr / vbidg g ‘wDSN ]y
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Table 6.4

Positive integers returning “unknown” in the step 1 of the algorithm with £ = 7.

22.3.5.7-11-13-17 22.3.5.72.11-13-17 22.3%2.5.7.11-13-17 2%.3.5.7-11-13-17
2%.32.5.7.11-13-17 2*.3.5.7-11-13-17 24.3%2.5.7.11-13-17 2°.3. 5 7.11-13-17
22.3.5.7-11-13-19 22.3.5.-72.11-13-19 22.3.5%2.7.11-13-19 22.32.5.7-.11-13-19
22.3%.5.7.11-13-19 2%.3.5.7-11-13-19 2%.32.5.7.11-13-19 2*.3. 5 7-11-13-19
25.3.5.7-11-13-19 22.3.5.7-11-13-23 22.3.5.72.11-13-23 22.3%2.5.7.11-13-23
2%.3.5.7-11-13.23 24.3.5.7.11-13-23 25.3.5.7-11-13-23 22.3.5.7-11-13-29
22.32.5.7.11-13-29 2%.3.5.7-11-13-29 2%.3%2.5.7.11-13-29 2*.3.5.7-11-13-29
25.3.5.7-11-13-29 22.3.5.7-11-13-31 22.3.52.7.11-13-31 2%.3.5.7-11-13-31
22.3.5.7-11-13-37 2%.3.5.7-11-13-37 22.3.5.7-11-13-41 2%.3.5.7-11-13-43
2%.3.5.7-11-13-47 22.3.5.7-11-13-53 22.3.5.7-11-13-67 22.3.5.7-11-17-19
22.32.5.7.11-17-19 2%.3.5.7-11-17-19 2%.32.5.7.11-17-19 2*.3.5.7-11-17-19
22.3.5.7-11-17-23 2%.3.5.7-11-17-23 24.3.5.7-11-17-23 22.3.5.7-11-17-29
2%.3.5.7-11-17-29 24.3.5.7-11-17-29 22.3.5.7-11-17-31 22.3%2.5.7.11-17-31
2%.3.5.7-11-17-31 24.3.5.7-11-17-31 2%.3.5.7-11-17-37 22.3.5.7-11-17-43
22.3.5.7-11-17-47 2%.3.5.7-11-17-47 22.3.5.7-11-17-59 22.3.5.7-11-17-61
22.3.5.7-11-17-79 22.3.5.7-11-19-23 22.3.52.7.11-19-23 22.3.5.7-11-19-23
24.3.5.7-11-19-23 22.3.5.7-11-19-29 2%.3.5.7-11-19-29 22.3.5.7-11-19-31
2%.3.5.7-11-19-31 22.3.5.7-11-19-53 2%.3.5.7-11-19-61 22.3.5.7-11-23-29
22.3.5.7-11-23-31 22.3.5.7-11-29-37 22.3.5.7-13-17-19 22.32.5.7-13-17-19
2%.3.5.7-13-17-19 24.3.5.7-13-17-19 25.3.5.7-13-17-19 22.3.5.7-13-17-23
2%.3.5.7-13-17-23 24.3.5.7-13-17-23 22.3.5.7-13-17-29 22.32.5.7.13-17-29
2%.3.5.7-13-17-29 22.3.5.7-13-17-31 22.3.5.7-13-17-41 22.3.5.7-13-17-43
22.3.5.7-13-17-53 22.3.5.7-13-19-23 22.3.5.7-13-19-29 2%.3.5.7-13-19-29
22.3.5.7-13-19-31 22.3.5.7-13-19-41 22.3.5.7-13-23-31 22.3.5.7-17-19-23
22.3.5.7-17-23-37 22.3.5.11-13-17-23 22.3.5.11-13-17-31 22.3.5.11-13-17-37
22.3.5.11-13-17-43 22.3.5-11-13-19-23 22.3.5.11-13-19-41 2%.3.7-11-13-17-19

Alt(5) X PSLQ(?), or Alt(5) X PSL2(13), or PSLQ(].].) X PSL2(13)

In particular, a non-solvable group R of order r (where the previous procedure has
returned “unknown”) has at most two non-abelian simple sections, and if R has two
non-abelian simple sections, then these two sections are not isomorphic.

6.2. An algorithm: step 2

We are now ready to describe our second procedure that needs to be applied to all
cases where the previous procedure returns “unknown”, that is, to each positive integer
in Tables 6.1-6.7.

The input of the second procedure is a positive integer r. First, we determine the set
D all the divisors d of r, with the property that d is the order of a direct product of
non-abelian simple groups. (The number d represents the product of the cardinalities of
the non-abelian simple sections in a non-solvable group of order r.) Clearly, in this step,
we may use the information in Table 6.8.

In the case that there is no such divisor d, that is D = (, we stop our algorithm
and we return “yes”: this represents the fact that a finite group of order r is solvable
because r is not divisible by the order of a non-abelian simple group. For instance, when
r=22.3.7-11 = 924 from Table 6.7, we have D = (), because no non-abelian simple
group has order a divisor of 924.
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Table 6.5
Positive integers returning “unknown” in the step 1 of the algorithm with ¢ = 6.
2.3.5-7-11-13 22.3.5.7-112.13 22.3.52.7.11-13 22.3%2.5.7.11-13
22.3%.5.7.11-13 2%.3.5.7-11-13 2%.32.5.7.11-13 2*.3.5.7-11-13
24.32.5.7.11-13 25.3.5.7-11-13 26.3.5.7-11-13 27.3.5.7-11-13
28.3.5.7-11-13 22. 35711-17 22.3.52.7.11-17 22.3%2.5.7.11-17
2%5.3.5.7-11-17 22.32.5.7.11-17 2*.3.5.7.11-17 24.3%2.5.7.11-17
25.3.5.7.11-17 26.3.5.7.11-17 22.3.5.7-11-19 22.3.5.72.11-19
22.32.5.7.11-19 2%.3.5.7-11-19 24.3.5.7-11-19 25.3.5.7-11-19
22.3.5.7-11-23 22.3.5.72.11-23 22.32.5.7.11-23 2%.3.5-7-11-23
2%.32.5.7.11-23 24.3.5.7-11-23 22.3.5.7-11-29 2%.3.5.7-11-29
24.3.5.7-11-29 25.3.5.7-11-29 22.3.52.7.11-31 22.3%2.5.7-.11-31
2%.3.5.7-11-31 24.3.5.7-11-31 22.3.5.7-11-41 22.3%2.5.7.11-41
2%.3.5.7-11-41 22.3.5.7-11-47 22.3.5.7-11-71 22.3.5.7-11-73
22.3.5.7-13-17 22.3.52.7.13.-17 22.32.5.7.13-17 2®.3.5.7-13-17
2%.32.5.7.13.17 24.3.5.7-13-17 25.3.5.7-13-17 22.3.5.7-13-19
22.32.5.7.13-19 2%.3.5.7-13-19 2¢4.3.5.7-13-19 22.3.5-7-13-23
22.32.5.7.13-23 2%.3.5.7-13-23 24.3.5.7-13-23 25.3.5.7-13-23
22.3.5.7-13-31 2%.3.5.7-13-31 24.3.5.7-13-31 22.3.5.7-13-37
22.32.5.7.13.37 2%.3.5.7-13-37 22.3.5.7-13-41 2%.3.5.7-13-41
22.3.5.7-13-43 2%.3.5.7-13-53 22.3.5-7-13-59 22.3.5.7-17-19
22.3%2.5.7.17-19 22.3.5.7-17-19 24.3.5.7.17-19 22.3.5.7-17-23
22.3%2.5.7.17-23 23.3.5.7.17-23 22.3.5.7-17-29 22.3.5.7-17-41
22.3.5.7-17-43 2%.3.5.7-17-43 22.3.5.7-17-83 22.3.5-7-19-29
2%.3.5.7-19-29 2%.3.5.7-23.29 22.3.5.7-23-37 22.3.5-11-13-17
22.3%2.5.11-13-17 2%.3.5.11-13-17 2.3.5.11-13-17 22.3.5-11-13-19
2%.3.5-11-13-19 22.3.5-11-13-23 2%®.3.5-11-13-43 2*.3.5.11-17-19
22.3.7-11-13-17 22.3.7-11-13-17 22.3.7-11-13-19 22.3.7.11-13-23
Table 6.6
Positive integers returning “unknown” in the step 1 of the algorithm with £ = 5.
22.3.5.7-11 22.3.5-72.11 22.3.5%2.7.11 22.3%.5.7.11 22.3%.5.7.11
2%.3.5.7-11 23.32.5.7.11 22.3%.5.7.11 2*.3.5.7-11 24.32.5.7-11
25.3.5.7-11 26.3.5.7-11 27.3.5-7-11 28.3.5.7-11 29.3.5-7-11
22.3.5.7-13 22.3.5-72.13 22.3.52.7.13 22.3%.5.7.13 22.3%.5.7.13
2%.3.5.7-13 23.3.5%2.7.13 2%.32.5.7.13 2*.3.5.7.13 25.3.5.7-13
25.32.5.7.13 26.3.5.7.13 22.3.5.7-17 22.32.5.7.17 22.3%.5.7.17
22.3.5.7-17 22.32.5.7.17 2*.3.5.7.17 24.3.52.7.17 25.3.5.7-17
26.3.5.7.17 22.3.5.7-19 22.32.5.7.19 23.3.5.7.19 24.3.5.7-19
2¢4.32.5.7.19 27.3.5-7-19 22.3.5.7-23 22.3.5%.7.23 23.3.5.7-23
25.3.5.7-23 26.3.5.7.- 3 22.3.5-7-29 23.3.5-7-29 2%.3.5-7-31
22.32.5.7.37 22.3.5-7- 24.3.5.7-43 22.3.5-11-13 2%2.3.5-11-13
2°.3.5-11-13 22.3.5. 11-17 24.3.5-11-17 22.3%2.5.11-23 22.3.5-11-29
22.3.5-11-47 22.3.5.13-17 23.3.5.13-19 22.3.5.13.37 22.3.7-11-13
22.32.7.11-13 22.3.7.-11-13 2*.3.7.11-13 26.3.7.11-13 24.3.7.11-17
22.3.7-11-19 22.3.7.11-23 22.3.7.17-31

Let xk be the number of non-abelian factors in a composition series of a non-solvable
group R of order r. From Fact 2, K < 2 and, in the case k = 2, the two non-abelian
factors are non-isomorphic. Let X1/Y7,..., X, /Y. be the non-abelian simple sections of
Randlet d = |X;/Y1| - -|X,./Ys|. When x = 1, by taking a suitable chief series, we may
suppose that X7 and Y] are normal subgroups of R. Similarly, when x = 2, as X;/Y; 2
Xo/Ys, by taking a suitable chief series, we may suppose that X7, Xo, Y7, Ys are normal
subgroups of R. Let C'= Cr(X;/Y7) when k =1 and let C = Cr(X;1/Y1)NCRr(X2/Y>2)
when k = 2. Now, C is the kernel of the action of R by conjugation on X;/Y; (when
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Table 6.7
Positive integers returning “unknown” in the step 1 of the algorithm with ¢ = 4.

22.3.5-7 22.3.5.72 22.3.52.7 22.32.5.7 22.3%.5.7
23.3.5.7 23.3.5%.7 2%.32.5.7 2%.3%.5.7 24.3.5.7
24.3.5.72 24.3%2.5.7 25.3.5. 26.3.5.7 26.32.5.7
27.3.5.7 2%2.3.5.7 29.3.5 210.3.5.7 211.3.5.7
212.3.5.7 2¥.3.5.7 214.3.5.7 216.3.5.7 217.3.5.7

219.3.5.7 222.3.5.7 22.3.5.11 22.3.52.11 22.32.5.11
23.3.5-11 2%.3%2.5.11 2*.3.5-11 26.3.5.11 27.3.5-.11
2°.3.5-11 2%.3.5-13 2%.3.5%2.13 2%*.3.5.13 24.3.5.17
2°.3.5-17 22.3.5-19 24.3.5.19 2%.3.5.23 22.3.5-29
22.3.7-11 22.3.7.11 24.3.7.11 26.3.7.11 22.3.7.13
23.3.7.13 22.3.7.41 22.3.11-13

Table 6.8

Putative non-abelian simple sections in a counterexample to Theorem 1.1.
Group Order Order of outer Automorphism
Alt(5) 60=2%-3-5 2

PSLy(7) 168 =2%-3-7 2

Alt(6) 360 =2%.3%2.5 4

PSLy(8) 504 =2%.32.7 3

PSLp(11) 660 =22-3-5-11 2

PSL2(13) 1092=2%2.3.7-.13 2

PSLo(17) 2448 =2%.32.17 2

Alt(7) 2520=2%.32.5.7 2

PSL2(19) 3420=2%-32.5-19 2

PSLy(16) 4080 =2*-3.5-17 4

PSL3(3) 5616 = 2% .3%.13 2

PSL2(23) 6072=2%.3.11-23 2

PSL2(25) 7800=2%.3.52.13 4

My, 7920 =12%.3%2.5.11 1

PSL2(27) 9828 =2%2.3%.7.13 6

PSL2(29) 12180 =22-3-5-7-29 2

Alt(8) 20160 =2°%.32.5.7 2

PSL3(4) 20160 =2°%.32.5.7 12

Suz(8) 29120 =2%.5.7-13 3

PSLy(41) 34440=2%.3.5.7-41 2

PSLo(43) 39732 =22.3.7-11-43 2

PSL2(67) 150348 =22 .3-11-17-67 2

Jy 175560 =2%-3-5-7-11-19 1

k = 1) and on X1/Y; x X5/Y5 (when k = 2). When « = 1, R/C is almost simple
with socle X7/Y; and C' is solvable. When « = 2, R/C is isomorphic to a subgroup of
Aut(X; /Y1) x Aut(X5/Y3) and C' is solvable.

The order of C divides r/d. Now, we select all prime divisor p > 5 of r/d with

e ptd, and
o for each divisor ¢ of r/d with ¢ > 1 and with ¢ a prime power, p is relatively prime
tog—1.

If there is at least one such prime, we stop the computations and we return “yes”; indeed,
by Lemma 6.1 and 6.2, r is not the order of a minimal counterexample to Theorem 1.1.



510 M. Fusari, P. Spiga / Journal of Algebra 635 (2023) 486—526

The only positive integers r where this produce did not return “yes” are recorded in
Tables 6.9, 6.10 and 6.11. In particular, observe that ¢ € {4, 5,6} and hence there are no
counterexamples to Theorem 1.1 with £ > 6.

We give an example. Suppose 7 = 22-3-5-7-11-13-17-19-23 - 29 from Table 6.1.
We have

D = {60, 168, 660, 1092, 12 180}.

In particular, a non-solvable group R of order r has a unique non-abelian composition
factor X/Y. Moreover, X/Y is isomorphic to one of the following groups

Alt(5), PSLy(7), PSLy(11), PSLy(13), PSLy(29).

Therefore £ = 1 in this case. Let C'= Cg(X/Y). As the outer automorphism group of
each of these groups has order 2 and as 23 { r, we have R/C = X/Y. Then C is solvable
and the order of C is an element of

{r/d|deD}={7-11-13-17-19-23.29,5-11-13-17-19 - 23 - 29,
7-13-17-19-23-29,5-11-17-19-23-29,11-17- 19 - 23}

Just to give an example, let us say |C| =7-11-13-17-19-23-29. From Lemma 6.2, we
see that a Sylow 29-subgroup of C'is normal in C' and hence also normal in R. Therefore,
from Lemma 6.1, R is not a counterexample of minimal order to Theorem 1.1.

A direct inspection in Tables 6.9, 6.10 and 6.11 shows that, except when |R| = 20160
and Alt(5) x PSLy(7) is a section of R, R has a unique non-abelian composition factor.
Suppose that |R| = 20160 and Alt(5) x PSLy(7) is a section of R. As |Alt(5) x PSLa(7)| =
10080, we deduce that R has a normal subgroup N such that either

e |[R:N|=2and N = Alt(5) x PSLy(7), or
e |[N|=2and R/N = Alt(5) x PSLa(7).

Taking in account that the Schur multiplier and the outer automorphism group of Alt(5)
and PSLy(7) have order 2, we deduce that R is isomorphic to

Sym(5) x PSLy(7), Alt(5) x PGLy(7), (Alt(5) x PSLy(7)).2,
or to
Co x Alt(5) x PSLy(7), SLa(5) x PSLy(7), Alt(5) x SLa(7), SLa(5) o SLa(7).

The veracity of Theorem 1.1 for these seven groups can be verified with a computer.
Therefore, for the rest of our argument, we may suppose that R has a unique non-abelian
simple factor T. Therefore, R has a normal solvable subgroup C with R/C almost simple
with socle T'.
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Table 6.9
Exceptions with £ = 6.
r = |R| non-abelian sections  |R|/|T|
175560 =2%-3-5-7-11-19 J; 1
351120 =2%.3.5-7-11-19 Ji 2
702240 =2°-3-5.7-11-19 J; 4
Table 6.10
Exceptions with £ = 5.
r = |R| non-abelian sections  |R|/|T|
36960 =2°-3.5.7-11  PSLy(11) 56
73920 =2°.3.5.7-11  PSLy(11) 112
147840 =27.3.5-7-11  PSLa(11) 224
295680 =2%.3.5.7-11 PSLy(11) 448
591360 =2°-3-5-7-11 PSLy(11) 896
87360=2°.3.5.7-13 PSL2(13) 80
12180 =2%-3-5-7-29 PSL>(29) 1
24360 =2%-3.5-7-20  PSL,(29) 2

6.3. The case £ =6

From Table 6.9, we have T" = J;. Since J; has trivial Schur multiplier and trivial
outer automorphism group, we deduce R =T x C. As |C] € {1,2,4}, we get that R is
isomorphic to one of the following groups

Jl, CQ X Jl, C4 X Jl, CQ X C2 X Jl.
Now, the veracity of Theorem 1.1 for these groups can be verified with a computer.
6.4. The case £ =5

We use the information from Table 6.10. When T = PSL2(29), we have |C| < 2 and
hence we deduce that R € {PSL2(29), SL2(29), PGL2(29)}. Here, we check Theorem 1.1
with a computer.

Suppose now T = PSLy(p), with p € {11,13}. Thus R/C = PSLa(p) or R/C =
PGL4y(p). Observe that p is relatively prime to |C|. We adopt the “bar” notation for the
projection of R onto R = R/C. Let Hy, ..., H, be representatives for the R-conjugacy
classes of the maximal p’-subgroups of R. Then the preimages Hi, ..., H, are represen-
tatives for the R-conjugacy classes of the maximal p’-subgroups of R. Since the Sylow
p-subgroups of R are cyclic of order p and since R has at most r/p Sylow p-subgroups,
we deduce

< 2rel) Z |H|

=1

u T r
Sub(R)| < Sub(H;)| - -2 —
[Sub(R)] ;I (Hi)l AR
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Table 6.11

Exceptions with £ = 4.
r = |R| non-abelian sections  |R|/|T|
2520=2%-32.5.7 Alt(7) 1
5040 =2*-32.5.7 Alt(7) 2
7560 =2%.3%.5.7 Alt(7) 3
3360=2°-3.5-7 Alt(5) 56
6720=2%.3.5.7 Alt(5) 112
20160 =2%-32.5.7  Alt(5) 336
20160 =2%-32.5.7  Alt(6) 56
20160 =2%-3%2.5.7  Alt(7) 8
20160 =2°-3%2.5.7  Alt(8) or PSL3(4) 1
20160 =2°-32.5.7  Alt(5) x PSLy(7) 2
13440 =27.3.5.7 Alt(5) 224
13440 =27.3.5.7 PSL2(7) 80
26880 =2%-3.5-7 Alt(5) 448
26880 =2%.3.5-7 PSL2(7) 160
53760 =2°.3.5-7 Alt(5) 896
53760 =2°.3.5.7 PSL2(7) 320
107520 =20 .3.5.7  Alt(5) 1792
107520 =29 .3.5.7  PSLy(7) 640
215040 =21 . 3.5.7  Alt(5) 3584
215040 =21 .3.5.7  PSL2(7) 1280
430080 =2'2.3.5.7  Alt(5) 7168
430080 =2'2.3.5.7  PSLy(7) 2560
660 =2%2-3.5-11 PSLy(11) 1
1320=2%-3-5-11 PSLy(11) 2
1980 =22.32.5.11 PSLy(11) 3
2640 =2%.3.5-11 PSLy(11) 4
3300 =2%-3.5%.11 PSLy(11) 5
3960 =2%.3%2.5.11  PSLy(11) 6
10560 =2°.3.5.11  PSLg(11) 16
21120=27-3-5-11  PSLy(11) 32
84480 =2-3.5-11  PSLy(11) 128
7800 =2%-3-52.13  PSLy(25) 1
4080=2%.3.5-17 PSL2(16) 1
8160 =2°.3-5-17 PSLy(16) 2
1092 =2%2.3.7-13 PSL2(13) 1
2184 =2%.3.7-13 PSL3(13) 2

We have implemented this function using the information on R and in all cases this
bound is less than c(2)|R|\82 I71/4,

6.5. The case £ = 4

We omit the analysis of this case. All groups can be checked with arguments analogous
to the methods used in Section 6.4.

Data availability

Data will be made available on request.
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Appendix A
A.1. Proof of Proposition 3.2

We consider various cases depending on the value of a;.

CASE a; = 1. We have S(p;,a;) = 2. As € > 2, we have r/p; > p1 -+ Di—1-Pix1 - De > 2.
Hence, we have

S(piai)r 2r _ QP%irl_logzz(m)
) logo(p;) logo(py) ~— i
ai\a; —~82Pi) \ og2(pi)
(r2/pyt) 1 (r2/pi) 4
1_ loga(p;)
loga(ps) 1 _ loga(py) r 2
J— 4 2
= 2p, DP; — (A.l)
Di
1 ; ) ) 1 i ) 2

< gpl T I gL gyt 1SR gy lonaira) (era(p)”
—_— (3

Set = :=logy(p;). Now, the expression

2
T
) z

+ 1

|8

is a parabola and it can be verified that it is negative when x > 4, that is, p; > 16. In
particular, (3.3) follows from (A.1) when p; > 16.

Suppose p; < 16, that is, p; < 13 because p; is a prime number. Set y = log,(7/p;).
By following the same computations as in (A.1), we obtain

S(pi,a;)r ) 1 lozalo) 9 (17 logs (pi) )

(TQ/p{li)ai 10g24(p71> - %
7

1 )2 1 ;
v _ 21+10g2(p71)*(°g2ip1)) +(1-torg(ea) )y

Now, the expression

1+ logy(pi) — 9

lo i 2 lo i
e, (,_ keed),
4
is linear in y. When p; > 5, we have 1 — log,(p;)/2 < 0 and hence this linear expression
is negative for

2
a gzipz)) —logy(pi) — 1

log, (pi)
1— 0g22p

y >

When p; = 13, we find r/p; = 2¥ > 2.8 and hence (3.3) is satisfied as long as r/p; > 2.8.
Thus, the only exceptions arising with p; = 13 are in (1). All other cases are dealt with
similarly, considering all primes p; < 13.
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CASE a; = 2. We have S(p;,a;) = p; + 3. When p; = 2, we have the exceptions in (2).
Therefore, for the rest of the argument we suppose p; > 3. In particular, p; + 3 < 2p;.
As ¢ > 2, we have r/p]* > 2. Hence, we have

(pi +3)r < 2p; -

log! (pl) — log (m
(r?/p?) = (r2/p?)
1—lo ( 1)
_ 2p1+1og2(pi)r1flog2(pi) _ 2p;+1og2(pi)p272log2(pi) <r> 2o (P
T 7 3 (A 2)

p?

1-logy(pi)

_ 2p:i3710g2(m) (%) : < 2p?710g2(pi)21710g2(pi)
p;

— 92— logg(pl)p3 108;2(171)

When p; > 7, we have 22_1°g2(pi)p?_10g2(m) < 1 and hence (3.3) is satisfied.
Assume p; = 5. If r/p? > 4, then we may follow step by step the computations in (A.2)
and replace r/p? with 4 (rather than 2); thus we obtain

L?’)T_ < 93-2logs(pi) 3 -loB2(Pe)
(r2 /p o 5
[

If r/p? < 4, then r =2-p? =50 or r = 3-p? = 75 and we obtain the exceptions in (2).
Assume p; = 3. If r/p? > 64, as above, we may follow step by step the computations
in (A.2) and replace r/p? with 64 = 25; thus we obtain

_ PiEITrblom () plos ) _ (g3 < 1,
(r2 pe )

When r/p? < 64, we have computed explicitly the value on the left hand side of (3.3)
and we have verified that the only exceptions arise with r/p? < 46, that is, we obtain
the exceptions in (2).

CASE a; = 3. We have S(p;, a;) = 2p? + 2p; + 4. Moreover, we have

(2}712 + 2p; + 4) < 4p12 -y Py 2_;,_9%7"173%

log. (pl — 1og (pZ i
(r2/p})* " (r2/p})> ™"

loga (p;) loga (p4)
_ 22p?+9 oga (p p?’_g og2 (p <L>
% 7 3
b;

1-3 101%22(;"1')

1-3 10322(;71'

logz (pi) 10g2<p ) loga (p;)

9 5—9—=2—1s r 9 5—9—=2r71s 1 _glogalpy)

= 2%p, — < 2%p, 2 2
b

) loga (py
_ 23_310522(171) 579%
3
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_ 23+71og22(pi> _9<log2ipi>>2 .

This number is less than 1 for each p; > 3 and hence (3.3) is satisfied in these cases.
Assume p; = 3. If r/p? > 16, as usual, we may follow the computations above but
replacing 7/p? with 16 = 2%; thus we obtain
(2p} + 2pi1+ 4)‘7“ < 22p5—9%24—610g2(m) =042 < 1.
(r2ppeye A0
When r/p? < 16, we have computed explicitly the value on the left hand side of (3.3)
and we have verified that the only exceptions arise with r/p3 < 7, that is, we obtain the
exceptions in (3).
Assume p; = 2. We obtain

(2p} 4 2p; +4)r 167 2%5/4

(2 ey P (2R A

This expression is less than 1 when r > 5800, therefore the only exceptions arise when
r/p? < 723, that is, we obtain the exceptions in (3).
CASE a; € {4,5}. These values of a; are checked similarly; indeed, for a; € {4,5}, (3.3)
is satisfied, except for the cases listed in (4) and (5).

2
CASE a; > 6. We have S(p;,a;) = c(pi)p?i/4. Assume p; > 3. Using ¢(p;) < ¢(3) < 4, we
have

a?

-+ 2 2
4 o <1, D
c(p)p;* r — o(py) of yof OiZ(pt)Tk%M
9/ a;\a, 082 T Di)P;
(r2/pi")® s
a; logs (p;)
17 (2 A
B %?Jra% loizwi)ﬂi_a? los2(ps) [ 3
[
a?  a?logs(p;) af _ af loza(pi)
47’7l+ai 17(lilog2(pi) 37n,ilog2(pi) *‘*L71+ai
1 1 _ 1 1
< ¢(3)p; 2 2 = p; )

Summing up,

2 2
ajg aj loga (pi)
i L ta;

S(pi,ai)r < 23_%2%)}%

=
Now,

ailog, (pi) <3_ ailogy(3) <3_ 6 -logy(3)

3— 5 < 5 < 5 < 0.

Similarly, for (a;,p;) # (6,3), one can check that
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Therefore, for (a;,p;) # (6,3), (3.3) follows from (A.3). Finally, when (a;,p;) = (6,3),

we have

af _af loga(py)
21 Tt

g ailogs (p4)
2

z. = 0.6646 < 1
and hence (3.3) follows again from (A.3).
Finally, assume p; = 2 and set r’ = r/p{*. We have
of
Vp A 2 o . 2 4 o2 a2
clppi’ T _ c(2)2F T 1-F = ¢(2)2F P17 F = ¢(2)2F 20T 1-F

(1 fpiyos =

_ 6(2)2%7‘/17% _ 6(2)2%2(1*%/2)10%2 7’ < 23+ai+(17ai/2)10g2(r').

Now, consider the function g(a;, ") = 3+ a; + (1 — a;/2) log,(r'), where we think of a;
and " as continuous variables. We have dg/0a; = 1 — log,(r')/2 < 0. Therefore,

gla;, ") <346+ (1 —6/2)logy(r') =9 — 2log,(r').

Now, 9 — 2log,(r") < 0, when log,(r') > 9/2, that is, 7' > 22. In particular, the only
exceptions to (3.3) arise when r/p]" = r’ < 21, as stated in (6).

A.2. Directional monotonicity of f(r) and proof of Lemma /.1

Let i € {1,...,¢}. By considering the discrete variable p; as continue, we find
of(r) _ ailoge(2) ai  08(pi,a;)/0pi | ailogS(pi;a;) (£ —2)a;log?2
Op;  pilogr)?  4p;log2  S(ps,a;)logr pi(logr)? pi(logr)?

We are interested in showing 9f(r)/0p; > 0, Vp; > 2, where f(r) = f(p1,...,pe) is
thought as a function in pq,...,py with ay,...,a, being fixed. From this, the proof of
Lemma 4.1 immediately follows.

Multiplying by p;(logr)?, we obtain

pi(logr)Qm = —a;logc(2) +

ai(logr)®  pidS(pi, ai)/Ops log r
Op;

4log 2 S(pi, ai) (A.4)
+ a;log S(pi,a;) — (€ — 2)a; log 2.

We now distinguish various cases depending on a;.
CASE a; = 1. Then S(p;,a;) = 2 and, from (A.4), we obtain

of(r)

ptogr 200 tog(s ) + T

4log?2 B

Llog 2. (A.5)
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We have

1
¢ <log,r = 27 (A.6)

because £ is the number of prime factors of r. From (A.5) and (A.6) and from ¢(2) < 8,
we have

Of(r) (logr)? (logr)?

i (1 22227 > Jog(8/c¢(2 —1 >
pllogr? 20D > log(8/c(2)) + [T ~logr > 8T
The formula appearing on the right hand side of p;(log7)2df (r)/dp; is positive for logr >
4log 2, that is, r > 16. In particular, df(r)/0p; > 0, for each r with r > 16. Recalling

that ¢ > 3, the condition r > 16 is automatically satisfied.
CASE a; = 2. Then S(p;,a;) = p; + 3 and 95 (p;, a;)/0p; = 1 and, from (A.4), we obtain

af(r) (logr)? Di
) 2 — el B . _ _
pi(logr) ; 2logc(2) + Ilog 2 logr 3 + 2log(p; +3) — 2(¢ — 2) log 2.

As above, by using p; > 2 in the first inequality, by using log(16/c(2)?) +2log(5) > 1.99
in the second inequality and by using (A.6) in the last inequality, we deduce

af(r) (logr)? i
i(logr)? =log(16/¢(2)?) + ~—=>—-~ —logr——— + 2log(p; + 3) — 2¢log 2
pi(logr) o, 0g(16/¢(2)7) + 2log2 8743t og(pi +3) og
> log(16/c(2)?) + (logr)® s+ 210 (5) — 2¢1og 2
> log 31og2 g g g
1 2
> (log 7) —logr —2¢log2 + 1.99
2log 2
(logr)? (logr)?
>2°/ ooy —21 1.99 = ~—2—-_ 3] 1.99.
Z Jlog 2 ogr ogr + 9log 2 ogr +

The formula appearing on the right hand side of p;(logr)2df(r)/dp; is quadratic in
logr and it can be verified that it is positive for r > 28. As ¢ > 3 by (4.3), we have
r > 2-3-5 = 30 and hence the condition » > 28 is automatically satisfied. Thus
df(r)/opi > 0, Vp; > 2.

CASE a; = 3. Then S(p;, a;) = 2p? +2p; +4 and 9S(p;, a2)/0p; = 4p; +2 and, from (A.4),
we obtain

af(r) 3(logr)* 4p? + 2p;
i(logr)? = —3logc(2 S ]
pi(logr) Ip; ogc(2) + 4log 2 2pf—|—2pi+4 08T

+ 3log(2p? + 2p; +4) — 3(¢ — 2) log 2.

We deduce
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3(1 2
p;i(log ) 2~ f( ) > —3logc(2 )—1—751105;2) — 2log 7 + 3log(2p? + 2p; +4) — 3(£ — 2)log 2
3(logr)?
> _ bt S~ SV _ _
> —3logc(2) + 1log2 2logr + 3log(16) — 3(¢ — 2) log 2
3(logr)?
= -31 2 —— — 21 181og(2) — 3llog 2
3logc(2) + 1log 2 ogr + 18log(2) — 3¢log
3(logr)?
> —31 2 —— — 21 181og(2) — 31
> —3loge(2) + log2 ogr + 18log(2) — 3logr
3(logr)?
= -31 2 ——— — 51 181og(2).
3logc(2) + o2 5logr + 181og(2)

Now, using this expression, it can be verified that df(r)/dp; is always positive.

CASE a; € {4,5}. These cases are analogous and their proof is omitted.

2
aq

CASE a; > 6. Then S(p;, a;) = c(p;)p;* and

98 (pi, ai) — (p: )a_? i N 3C(Pi)p_“—12 N =
Op; 4 p;

because ¢(p;) is a strictly decreasing function. Thus, from (A.4), we deduce

(1 2 2
pi(logr)? f]g ) > —a;logc(2) + % - % logr + a;log S(p;,a;) — (£ — 2)a; log 2.

Using (A.6), we deduce

a;(logr)? a2
pi(logr)? —=— f( ) > —a;log(c(2)/4) + ing; - ZlegT‘Fai log S(ps, a;) — a;logr
(A7)
a;(logr)?  a?
> G081 iy gl
1log? 4 log7 —ailogr,

where in the last inequality we are using S(p;, a;) > S(2,6) > 2° and hence log S(p;, a;) >
log(¢(2)/4). Therefore,

a; Jp; — 4log2 4

Bl 1 )

pilogrdf(r) _ logr a; (A8)

When p; > 3, we have r > 3% - 2.5, because ¢ > 3. Hence logr > a;log3 + log10.
Therefore,

logr S a;log3  log10
4log2 ~ 4log2 = 4log2’
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This inequality and the fact that a; > 6 show that (A.8) is satisfied and hence
Of(r)/Op; > 0. Assume then p; = 2. When /2% > 15, we have logr > a;log 3 + log 16.
Therefore,

4log2 = 4 = 4log2 4

logr S @ log16  a;
and hence (A.8) shows that df(r)/0p; > 0. Finally, when p; = 2 and /2% < 16, we
must have r = 2% . 3 -5, because ¢ > 3. In this particular case, we may refine the

computations in (A.7). Indeed, by repeating the same steps except by replacing S(p;, a;)
with 0(2)2‘1?/4, we have

0 i(1 2 2
piltogr? 21 > —aitoge(z) + T % tog - a,1og S(pi,a) — (€~ Daslog?
a;(logr)?  a?
> —a;l 2 7——1 1 A.
> —a;loge(2) + 1log? 1 ogr + a; logc(2) (A.9)
as
+Zzlog2—ailogr+4log2
a;(logr)?  a} a?
> GVOBT). | 9009 Yiger _ g;log
= “dlog2 + 1 og 1 ogr — a;logr
Therefore,

pilogr Of(r) S logr  a?log2 a;
a; dp; — 4log2 4 logr 4

It is now clear that also in this case df(r)/0p; > 0.

Proof of Lemma 4.1. We have proved that the directional derivative 9/dp; of f(r) is
positive. Since r is good, we have f(r) > 0. Therefore, as p’ > p;, f(r') > f(r) > 0 and
r’ is also good. O

A.8. Increasing the number of prime factors and proof of Lemma 4.2

Let p be a prime number with p € {p1,...,p;} and let 7/ = r - p. Observe that r has
¢ distinct prime factors, whereas r’ has £ + 1 distinct prime factors. We have

1 1 logp log 2
N -1 2 — —
f(r) f(r) Ogc( )(10grl logr) 410g2 log?"/
)
1 1 log 2 log 2
=) JogS(pi ai) | 7— — — +(-1 £=2
iz:; og S(pi, ai) <10g7“' log?"> ( )1 gr! ( )logr

1 2)1 1 1 1
_ _logc(2)logp | logp ZlogS i ai) _
log r log r’ 4log2 logr’ logr
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log 2
log 7’

log ¢(2)1 1 1
__ logc(2)logp  logp (ZlogSp“al> ogp

log 2

—1+ (-2 —(t-2)

logr

log r log 7’ 4log2 log rlogr’
log21
Ly g)los2logp.
log rlogr’

Now, when ¢ > 2, we have S(p;,a;) > 2 and hence log S(p;, a;) > log 2. Similarly, when
i = 1, we have p; = 2 and a1 > 2 by (4.2); hence S(p;,a;) > S(2,2) = 5 > 4; thus
log S(pi, a;) > 2log 2. Taking this into account, we obtain

f(r’)—f(r)>—10gc(2)10gp log p (€+1)log2logp717(672)10g210gp

log rlog ! 4log?2 log r log 7’ log rlogr’
_log c(2)logp  logp  3log2logp s logp
~ logrlogr! 4log2 = logrlogr’ ~ 4log?2 ’

where in the last inequality we have used 8 > ¢(2), that is, 3log 2 > log ¢(2).

Proof of Lemma 4.2. Asp > 17, we have logp/(4log2)—1 > 0. Therefore, f(r')— f(r) >
logp/(4log2) — 1 > 0. Since r is good, we have f(r) > 0. Thus f(r’) > 0 and 7’ is
good. O

A.4. Increasing the multiplicity of a prime

Let i € {1,...,¢}. We think of a; as a continuous variable and we compute 9f(r)/da;.
We are interested in showing 9f(r)/0a; > 0, where f(r) = f(a1,...,a,) is thought as
a function of aq,...,ay with py,...,pe being fixed. From this Lemma 4.3 immediately
follows.

We have

Of(r) _ logpiloge(2) logp;  ailogp;

da; (logr)? 4log2  2logr
a?/4
log pi log(c(pi)p;*" ) log 2log p;
4 —(l=2)—F———=
(logr)? (logr)?

Multiplying this by (logr)?, we obtain

(logr)? 0t (r) = —logp;logc(2) + log pi (log r)? — % logr (A.10)

8ai 41

%/ )

+ log p; log(c(pi)p; ') — (£ — 2) log 21og p;.

In particular, using (A.6) and c(p;) > 1, we get
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Q08 IE() & 1oe(2)/4) +

(logr)?  a; a?logp;
logp; Oda; —

_ 4y
logz 2 877

—logr. (A.11)
Write r = p{ir’. Replacing 7 in (A.11) with p{ir’, we obtain

aZ(logp;)?  (logr’)?  a;logp;logr’

> —log(c(2)/4) +

logp;, Oa; 4log 2 4log 2 2log 2
? log ps i logr’ ?log p;
_ % (Q)gp _ (;gr & ng —a;logp; —logr’
(log1")? , a?(logp;)?  a?logp;
=(-1 2)/4 —1 : - L
< 08(c(2)/N) + Ty T1o8T ) | Toga 4
ailogpilogr’  a;logr’ i losn:
21og 2 2 108 Di-

Now, logp; > log 2 and hence

7 (log pi)? 7 log p; 2 log i
a;(logp;)®  ajlogp L Gilogpi
4log 2 2 4

Assume, for the time being, p; > 3 and v’ > 27. If we set x := logr’, then

(logr")? , x?
“logr = — log(¢(2)/4 -
Alog2 8" 08(c2)/4) + o5 7

—log(c(2)/4) +

is a parabola and it is not hard to verify that it is positive when r’ > 27. Furthermore,

a;logp;logr’  a;logr’ log3logr’ '
_ —alogp; > a; (222298 T 1663) >0
210g 2 2 @08Pi = G\ Tojoe0 T g T 98 =0

where in the last inequality we are using again v’ > 27. In particular, we have shown
that 0f(r)/da; > 0, provided that +' > 27 and p; > 3.

Assume now p; = 2. Thus ¢ = 1 and r = 2%*¢/. By specializing (A.10) with p; = 2 and
by using logr = a; log 2 + logr’, we obtain

(10gr)2 Of(r) (10g7")2 a;logr a?log 2
=—1 2 — 1 2 27 (f—2) oo 2
log2 Oda; oge(2) + 4log 2 D) +loge(2) + ( ) log
(logr)?  a;logr a?log?2
= - — (0 —2)log2
4log? > T4 (€= 2)log
_ aflog2  (logr')> ailogr’ aflog2 a;logr’
4 Alog 2 2 2 2
2log 2
a Zg —(t—2)log2
1 /\2
:(ogr) — (£ —2)log2.

4log?2
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Now, 7" = p3? -+ py* with py,...,p¢ > 3 and hence logr’ > ¢ — 1. We deduce

(logr)? 0f(r) < (logr')?

— (logr’" — 1) log 2.
log2 da; 4log 2 (log ) log

The expression appearing on the right hand side is a parabola in x := logr’ and it is not
hard to verify that it is positive. Therefore, 9£(r)/da; > 0 also in this case.

Finally, suppose p; > 3 and 7’ < 27. Since the product of three distinct primes is at
least 30, we deduce ¢ = 3. Assume, ' > 10. By specializing (A.10) with ¢ = 3 and by

using
a; log p; +1og 10 < logr = a; log p; + logr’ < a; log p; + log 26,
we obtain

(logr)? O£ () (logr)?  a;logr = a?logp;

=—1 2 — — log 2
logp; Oa; 0g(2) + 4log 2 2 + 4 o8
(logr)?  a;logr  a?logp;
=-1 2)/2 — !
08(e(2)/2) + "fog 2 > 1
az(logp;)?  (log10)®  a;logp;log10
> _1 2 2 7 1 1 K3
= —log(c(2)/2) + 4log?2 4log?2 2log?2
B a7 log p; _a;log 26 L a?log p;
2 2 4
aZ(logp;)?  (log10)?  a;logp;log10
=1 2)/2 L
08(c(2)/2) + 4log?2 4log?2 2log2
B a?log p; _a;log26
4 2
S aZ(logp;)?  a;logp;log10 _ a?logp; G log 26
4log?2 2log 2 4 2

where the last inequality follows because —log(c(2)/2) + (log 10)2/(41og 2) > 0. Observe
that

>0

— b

a;(logp;)® ailogp; _ aflogp; <logpi B 1)

4log?2 4 N 4 log 2

because p; > 3. Observe also that

a; log p; log 10 G log26 a; (logpi log 10 7

log 26 ) >
210g 2 2 2 8 6) 20,

log 2

because p; > 3. Therefore 9f(r)/da; > 0 in this case. It remains to consider the case
7’ < 10. Since £ = 3, r’ is the product of two distinct primes and hence r’ = 6. In other
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words, ¢ = ¢ =3 and r = 2-3-p/". By repeating the computations above with this value
of r and 7/, we obtain

2 2 . 2 B
(logr)* 0£(r) — log(c(2)/2) (log ) a;logr LG log p;

logp; Oa; 4log?2 2 4
a;(logp;)®  (log6)®  ailogp;log6
-1 2)/2 L
08(c(2)/2) + 4log?2 4log 2 2log?2
a? log p; G log 6 n a?log p;
2 2 4
a?(logp;)®>  (log6)? a;logp;log6
-1 2)/2 L
08(c(2)/2) + 4log?2 4log 2 2log?2

a?logp; a;log6

4 2

Now, using a; > 1 and p; > 5, we have

v

v

a;logp;log6 a;log6 a;log6 (logp; 1 a;logb _ log6
2log 2 2 2 log 2 '

Therefore,

(log7)* 9% (r) >~ log(c(2)/2) + log6 N (log6)* | ai(logp:)* aflogp;
Oa; —

log p; 4log?2 4log?2 4
aj(logp)® ailogpi _ aflogp; (logp; Y\ _
4log?2 4 4 log 2 -

where the second inequality follows with a calculation and the third inequality follows
because p; > 5.

Proof of Lemma 4.3. From above 9f/da; > 0. Thus if £(r) > 0, then £(r') = £(r - p;) >
£(r) > 0 and hence 7’ is good. O

A.5. Proof of Lemma 5.2

We start by proving part (1). As r > 2000, we have

(7’/14) 10g2(4r/14) _ 2_1052(‘:/14) (7"/7) 10%2(1/14) < 2_1052(2200/14) (T/?)
logo (2 000/14)

=2 (/1) (r/T)

logo (2 000/14)

<27 T (2000/7) 5 (r/7)

10?,2(7”/7)
<27%(r/T) T

logg (r/14)
i
10@.2( r/7)

logz(T/7)
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where the last inequality follows with a computation. Therefore,

logy (r/7) loga(r/14) loga (r/7)

dr(r/T)" 5 +8r(r/14)" & <5Br(r/T)" 3 < 5.2\ .2

(loga (/7))2
4

2
—9 M +log, (r)+log, (5)

Similarly, rlog2(m)/4 = 2(log2(r)* /4 We show that

(log, (r/7))*

1 (10g2(r))2 (A12)

+logy(r) +logy(5) < 1 )

from which (1) immediately follows. Rearranging the summands in (A.12) and using
log,(r/7) = logy(r) — log,(7), we obtain the equivalent inequality

It | ,
<%(7) - 1) logy(r) > logy(5) + @’
that is,
1 5) 4 Uoga(7)*
logy (1) > 0g2(5) + T _ 10.63. (A.13)

log, (7)
ogé 1

As r > 2000, we have log,(r) > 10.96 and hence (A.13) is satisfied.
We prove part (2). We have

8 (r/28) 5 60 /21) S ar (/1) < (/1)
+ 6r(r/14) 2

+ 47“(7“/14)%

= 18r(r/14) 25

2
— oUes2lE/A00" tiog, (r)+log, (18)

As above, we use the fact that rlog2(")/4 = 2(1082(r)*/4 We show that

(log,(r/14))?

1 (1Og2(7'))2 (A14)

+ logy(r) + log, (18) < 1

from which (2) immediately follows. Rearranging the summands in (A.14) and using
log,(r/14) = log, (1) — logy(14), we obtain the equivalent inequality

(% — 1) log,(r) > log,(18) + w,
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that is,

2
log (18) + (logy(14))
logy(r) > =3~ 14 = 8.62. (A.15)
log, (14)

As logy(r) > 10.96, (A.15) is satisfied.
We prove part (3). As r > 2000, we have

(r/10) logg(r/10) 2_log2(4r/10> (r/5) logz (r/10) < 2_log2<2200/10> (r/5)10g2(1/10)
e log2‘(1200) (r/5>_% (T/S) log251r/5) < 9~ 1og24(1200) (2 000/5)_% (r/5) 10g2(r/5)
logp (r/5)
~H(r/5)

where the last inequality follows with a computation. Therefore,

logo (r/10)
4

(2,',, + 10)(7"/10) + (T/5 n 5)(r/5) 1og2iT/5) < <i(?; + 485> ( /5) 1og24([/5)

logz(r/S)

tr(r/5)

Recall rlog2(m)/4 — 2(1082(r)*/4_ We show that

(log(r/5))? _ (o8, (r))? (A.16)

-1+ lOgQ(T’) + 4 4 )

from which (3) immediately follows. Rearranging the summands in (A.16) and using
log,(r/5) = log,(r) — logs(5), we obtain the equivalent inequality

(0] (0] 2
(950 1oy S0,

that is,

-1 + (10g24(5))2 - 10g2(5)

= 1 =2.16. A7
—1 4 L) > " (A.17)

logy(r) >
As r > 2000, we have log,(r) > 10.96 and hence (A.17) is satisfied.
We prove part (4). We have

logs (1 2 logg (1))2 o 2 log logg (1
+( 22(4/17)) (r)+< 324( ) +(1 g24(p)) _ .%2(17)2 g2 (1)

2p(r /p)lo82(r/p) = gl+loga(p) — 9ltlog,

Therefore, (4) is equivalent to the inequality

(logy(r))? | (l0gy(p))? _ logy(p) logy(r) _ (logy(r))*
1 4 2 =T

1+ logy (1) +
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In turn, this is equivalent to

0, O, 2
(1 g;(p) 3 1) log, (1) > (1 gz(p)) ey

that is,

1 2
1+ (0g24(p)) - 10g2(p)

14+ logg(;n) - 2

logy(r) > +1. (A.18)

As r > 2p, we have log,(r) > log,(p) + 1 and hence (A.18) is satisfied.

References

[1] A. Ballester-Bolinches, R. Esteban-Romero, P. Jiménez-Seral, Bounds on the number of maximal
subgroups of finite groups: applications, Mathematics 10 (2022) 1-25.

[2] A.V. Borovik, L. Pyber, A. Shalev, Maximal subgroups in finite and profinite groups, Trans. Am.
Math. Soc. 348 (1996) 3745-3761.

[3] Y. Bugeaud, Z. Cao Zhenfu, M. Mignotte, On simple K4-groups, J. Algebra 241 (2001) 658-668.

[4] C. Bosma, J. Cannon, C. Playoust, The magma algebra system. I. The user language, J. Symb.
Comput. 24 (1997) 235-265.

[5] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, An ATILAS of Finite Groups,
Oxford University Press, Eynsham, 1985.

[6] R.M. Guralnick, G. Malle, G. Navarro, Self-normalizing Sylow subgroups, Proc. Am. Math. Soc.
132 (4) (2004) 973-979.

[7] M.W. Liebeck, L. Pyber, A. Shalev, On a conjecture of G. E. Wall, J. Algebra 317 (2007) 184-197.

[8] A. Shalev, Growth functions, p-adic analytic groups, and groups of finite coclass, J. Lond. Math.
Soc. (2) 46 (1992) 111-122.

[9] P. Spiga, An explicit upper bound on the number of subgroups of a finite group, J. Pure Appl.
Algebra 227 (2023), https://doi.org/10.1016/j.jpaa.2022.107312.


http://refhub.elsevier.com/S0021-8693(23)00413-1/bib40E78F7EFEA5094AB5909AAAAE223992s1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bib40E78F7EFEA5094AB5909AAAAE223992s1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bibB9B121FA6F87149643648BDF6A8C2917s1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bibB9B121FA6F87149643648BDF6A8C2917s1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bibE2CC0CDACCB483CF829036EC7F5EC031s1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bibCC8F15265A61D147189AC41C1C8E0A0Ds1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bibCC8F15265A61D147189AC41C1C8E0A0Ds1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bib5C59736B84CBDB1EB0E43A8D0F124A12s1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bib5C59736B84CBDB1EB0E43A8D0F124A12s1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bib2BCB5244CAD9AB9ED45E4F6CFA18E982s1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bib2BCB5244CAD9AB9ED45E4F6CFA18E982s1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bibF0BD8FFE783F0CE4BF0FB76C508284F7s1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bib9B5A67295E5540C6368D6F3A67984FADs1
http://refhub.elsevier.com/S0021-8693(23)00413-1/bib9B5A67295E5540C6368D6F3A67984FADs1
https://doi.org/10.1016/j.jpaa.2022.107312

	On the maximum number of subgroups of a finite group
	1 Introduction
	2 Preliminaries
	2.1 The function S(p,a)
	2.2 Small groups and computations

	3 Solvable groups
	4 Notation and arithmetic reductions
	4.1 Notation
	4.2 Arithmetic reductions

	5 The case l=3
	6 The final cases
	6.1 An algorithm: step 1
	6.2 An algorithm: step 2
	6.3 The case l=6
	6.4 The case l=5
	6.5 The case l=4

	Data availability
	References


