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1 Introduction

The production of two isolated photons at hadron colliders, henceforth denoted dipho-
ton production and abbreviated as pp → γγ, is one among the most relevant Standard
Model (SM) processes, due, on one side, to the high production rate, and, on the other, to
the relative cleanliness of the experimental final state. Furthermore, diphoton production
is the dominant background for studies involving Higgs boson production decaying into a
photon pair, and, notably, it was one of the dominant backgrounds for the Higgs boson
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discovery [1, 2] at the Large Hadron Collider (LHC). In addition, it is a background for
searches for heavy neutral resonances that can arise in a variety of beyond the Standard
Model scenarios (see e.g. [3–6]), and for searches for extra dimensions or supersymmetry,
and a possible channel for their detection [7, 8].

Within the SM, photon pairs can be produced by means of several mechanisms, that
make this otherwise simple process particularly challenging to study. In this work we
restrict to prompt photon production,1 where photons are produced in the hard process.
Within this category, one can further distinguish two components: one arising from direct
photon production and the other from single and double fragmentation. In the former case,
the photons are directly produced in the hard scattering, whereas, in the latter case, one or
both photons are produced through the fragmentation of jets. The latter mechanism can
be suppressed by imposing the isolation of the photons from the hadronic activity through
a fixed or a smooth cone algorithm [9]. In spite of the fact that the fixed-cone isolation
criterion is simpler to apply (also at the experimental level), only the smooth-cone isolation
is suitable for theoretical calculations, as it allows to completely remove the fragmentation
component in an infrared-safe way.

Theoretical predictions for diphoton direct production at next-to-leading-order (NLO)
QCD accuracy, that consistently include also the fragmentation component, were obtained
for the first time in ref. [10], and made publicly available in the DIPHOX software. Next-to-
next-to-leading-order (NNLO) QCD corrections to pp→ γγ were obtained in refs. [11–14],
whereas NLO electroweak corrections have been studied in ref. [15]. More recently, even the
three-loop qq̄ → γγ amplitudes have been computed [16]. In order to include all the effects
up to α2

S accuracy, the gluon-induced production of a photon pair through a closed quark
loop has to be taken into account as well: such a contribution, that is particularly sizable
due to the gluon luminosity, was first computed in ref. [17], and it is by now known at the
next order, both for massless [18] and for massive quark loops [19, 20]. Substantial progress
has also been made for the computation of a photon pair in association with one or more
jets: predictions for diphoton in association with up to three jets, including NLO QCD
corrections, have been obtained in refs. [21–24], and NLO electroweak (EW) corrections
for photon pair with up to two jets are also known [25]. Very recently, the NNLO QCD
results for pp → γγ + j were obtained as well [26–28], and the two-loop amplitudes for
gg → γγ + j [29] were also computed. Finally, as far as all-order results are concerned,
Sudakov logarithms of soft and collinear origin, arising at all orders in the computation
of the diphoton transverse-momentum distribution, were resummed up to next-to-next-to-
leading-logarithmic (NNLL) accuracy in refs. [30–34]. More recently, results accurate up
to N3LL and N3LL′ have also been obtained within the RadISH formalism2 [37, 38] and
the CuTe-MCFM framework [39, 40], respectively.

Nowadays, NLO Monte Carlo simulations for pp → γγ, matched to parton show-
ers (PS), can be easily obtained with automated tools. A few dedicated studies have been
presented in the last decade: for instance, in ref. [41], hard tree-level matrix elements

1One refers to non-prompt photons to denote photons produced from hadron decays.
2This was shown in the plots in ref. [35] obtained with the Matrix+RadISH interface [36].
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with a variable photon multiplicity were merged with a QCD+EW parton shower, allow-
ing to take simultaneously into account the direct and the fragmentation component. In
ref. [42] these two components were also included in the simulation, in the context of an
exact matching of the NLO QCD corrections with parton showers (NLO+PS), using the
Powheg method [43].3

Due to the increasing precision of experimental measurements and the fact that NNLO
QCD corrections to photon-pair production are known and sizable, it is particularly im-
portant to match parton showers with the NNLO fixed order calculation (NNLO+PS). A
few methods have been developed to obtain NNLO+PS predictions for color-singlet pro-
duction at hadron colliders: “NNLO reweighted” MiNLO′ [45, 46] (sometimes also denoted
NNLOPS in the literature), Geneva [47, 48], UN2LOPS [49], and MiNNLOPS [50, 51].4 Using
these methods, many processes, that at leading order (LO) have only two external colored
legs, have been described with NNLO+PS accuracy [35, 46, 49–51, 55–74]. Recently, re-
sults for top-pair production at NNLO+PS were also published in refs. [75, 78]. As far as
diphoton production is concerned, the only NNLO+PS accurate results have been obtained
with the Geneva method in ref. [35].

In this paper we study diphoton production using the MiNNLOPS method, i.e. we build
a MiNLO′ simulation for pp → γγ + jet production, and we subsequently include NNLO
QCD corrections according to the procedure proposed in refs. [50, 51]. The resulting genera-
tor can be used to obtain NLO+PS accurate results for γγj production, as well as to predict,
with up to NNLO accuracy, observables that are inclusive with respect to the presence of
jets, such as the diphoton invariant mass and rapidity, or the transverse momentum of the
hardest and next-to-hardest photon, retaining a consistent matching with parton showers.

Together with the main phenomenological results for diphoton production, in the cur-
rent paper we also describe a few novelties introduced to deal with the presence of photons
in the final state, but that could also be useful for other (N)NLO+PS calculations. First
of all, already for the simulation of diphoton + jet production at NLO+PS accuracy, one
needs to deal with the fact that the Born-level γγj matrix elements are divergent whenever
a photon becomes soft or collinear to a quark. In the following, we refer to these divergences
as “QED divergences”.5 We describe and implement a general way to deal with this issue
in the Powheg formalism.6 Furthermore, the MiNNLOPS method for the process at hand
requires the evaluation of the qq̄ → γγ matrix-elements up to second order in the strong
coupling constant. Such matrix elements are divergent when the photons are collinear to
the beam axis: in order to avoid introducing any cutoff or isolation criteria at any stage
of the event generation, we have also devised a new mapping from the pp → γγ + j to
the pp → γγ kinematics, that preserves the direction of one photon with respect to the
beam axis, thereby allowing for a full control of the singular regions. The combined use

3NLO+PS results for diphoton production, including the s-channel exchange of a Kaluza-Klein reso-
nance, were also obtained in ref. [44].

4Ideas for going beyond NNLO+PS accuracy have been discussed as well (see refs. [52, 53]), and very re-
cently NNLO+PS matching with sector showers, for final-state parton showers, has been outlined in ref. [54].

5Since no cuts are applied at the generation level, we need to devise a treatment of QED-divergent regions
during the generation of the events, even though the final fiducial cuts will provide infrared-safe results.

6This method has already been used in ref. [68], following the suggestion of some of us.
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of the new mapping and of the method to deal with the QED divergences allowed us to
simulate diphoton production at NNLO+PS accuracy without introducing any generation
or technical cut, as done instead in refs. [35, 68]. This gives us the advantage that, on
one side, we do not have to worry about checking the independence of the fiducial physical
differential cross sections from the generation and technical cuts, and, on the other side,
we can use the same set of generated events for any choice of fiducial cuts.

In this paper we also propose a generalization of the MiNNLOPS method that allows
for greater flexibility in the choice of the renormalization and factorization scale used in
the evaluation of the non-singular term for F + 1 jet production, where F is the color-
singlet system. In the original formulation of the MiNNLOPS method, such a term is
evaluated with scales of the order of the transverse momentum of F . The prescription we
introduce here generalizes such aspect of the MiNNLOPS method, allowing one to treat
this term more similarly to a fixed-order computation. Such a choice turned out to be
desirable in γγ production, for comparisons with fixed-order results, where this term gives
an important contribution to the total cross section, unlike in previous studies, such as
those in refs. [50, 51], where it was small.

The paper is organized as follows: in section 2 we describe the ingredients used to build
the event generator and the details of the novel aspects we introduce here for the first time,
whose validation is discussed in section 3. In section 4 we show some phenomenological
results, and we compare our predictions with the ATLAS diphoton data [79]. Finally we
give our conclusions and outlook in section 5.

2 Outline of the calculation

In this section we review the theoretical formulation of our calculation. We first introduce
the basic notation used throughout the paper and describe the main theoretical issues
to be dealt with in the implementation of a NNLO+PS event generator for photon pair
production. Then we discuss in detail the handling of the QED singularities and introduce
the mapping used to project the Φγγj kinematics onto the Φγγ one. We conclude the section
with a description of the modifications we have introduced in the MiNNLOPS formalism in
order to reproduce more accurately the results of a fixed-order calculation for distributions
totally inclusive with respect to the QCD radiation.

2.1 Description of the process

We consider the process of direct production of a photon pair in proton-proton scattering

pp → γγ +X, (2.1)

with the requirement that the two photons are isolated, i.e. each photon has a minimum
transverse momentum and is isolated with respect to the other photon and to the final-state
hadronic activity. These requirements are needed to make the process well-defined both
from the theoretical and the experimental point of view. We call pγ1 and pγ2 the momenta
of the hardest and next-to-hardest photons and denote the squared mass and transverse
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momentum of the diphoton system as

Q2 = m2
γγ = (pγ1 + pγ2)2, pT = (pγ1 + pγ2)T . (2.2)

The starting point for the MiNNLOPS method we use in this work is the NLO differential
cross section for diphoton plus one jet production

pp → γγ + j . (2.3)

The matrix elements for this process at NLO in QCD have been obtained from the auto-
mated interface of the Powheg Box Res [80] to OpenLoops2 [81–85].

Since the goal of the MiNNLOPS formalism is to reach NNLO accuracy for inclusive
observables in the diphoton system, one also needs the two-loop amplitudes for qq̄ → γγ,
that have been taken from refs. [86, 87] and implemented into the code.

In this paper, we work in the approximation of five light quarks and neglect the con-
tributions given by two-loop diagrams with the massive top quark. We consider instead
the contributions given by the massive top quark in the one-loop diagrams for the process
pp→ γγ + j.

2.2 Handling of the QED divergences

In this section, we describe a general way to deal with processes that present QED diver-
gences at the Born level within the Powheg formalism.7 Before illustrating the method,
we briefly review the relevant parts of the Powheg Box framework.

We start by introducing the general form of the Powheg [43] differential cross section
for a 2 → n Born process, using the notation of refs. [89, 90]. Indicating with dΦn the
phase space for the n-body final state, we write the (n + 1)-body phase space dΦn+1 in
terms of dΦn and three additional radiation variables, that we collectively label Φrad

dΦn+1 = dΦn dΦrad . (2.4)

We indicate with B(Φn), V (Φn) and R(Φn+1) the Born, virtual and real amplitudes, con-
voluted with the corresponding parton distribution functions (PDFs) and multiplied by the
flux factor, and we split R into two positive contributions: Rs(Φn+1), that contains all the
QCD singularities, and a QCD-finite term, Rf (Φn+1), such that8

R(Φn+1) = Rs(Φn+1) +Rf (Φn+1). (2.5)

In general we achieve this separation with the help of a suitable function F (Φn+1), such
that

Rs(Φn+1) = F (Φn+1)R(Φn+1) , Rf (Φn+1) = [1− F (Φn+1)]R(Φn+1) . (2.6)
7The way the Powheg Box deals with QCD divergences at Born level has already been illustrated in

several papers, e.g. ref. [88].
8Please notice that Rf (Φn+1) could well be set to zero, in which case Rs(Φn+1) = R(Φn+1), the whole

real contribution.

– 5 –



J
H
E
P
0
9
(
2
0
2
2
)
0
6
1

The detailed form for F (Φn+1) will be discussed in section 2.2.1. When R(Φn+1) is split
as in eq. (2.5), the Powheg differential cross section can be written as

dσ = B̄(Φn)
{

∆(Φn, k
min
T ) + θ(kT − kmin

T ) ∆(Φn, kT) Rs(Φn+1)
B(Φn) dΦrad

}
dΦn

+Rf (Φn+1) dΦn+1 , (2.7)

where kT is the transverse momentum of the Powheg jet,

B̄(Φn) = B(Φn) + V (Φn) +
∫

dΦrad Rs(Φn,Φrad) , (2.8)

and the Powheg Sudakov form factor

∆(Φn, kT) = exp
{
−
∫

dΦ′rad
Rs(Φn,Φ′rad)
B(Φn) θ

[
kT
′(Φn,Φ′rad

)
− kT

]}
(2.9)

contains only the QCD singular part of the real contributions Rs(Φn+1). In the expressions
above kmin

T acts as an infrared cutoff for unresolved radiation.
If the Born amplitude is divergent, the Powheg Box applies a suppression factor

SB(Φn) to B̄(Φn) such that the product SB(Φn)B̄(Φn) is integrable over the entire Born
phase space, and the Φn kinematics can be generated from the distribution SB(Φn)B̄(Φn)
without the need of any hard cut. At the end, each event is given a weight 1/SB(Φn) in
order to compensate for the suppression factor.

In general, this way of regularizing divergences by means of a suppression factor that
depends on Φn can be used every time QCD and/or QED singularities are present at
the Born level. While applying a suppression factor on B̄(Φn) is enough when only QCD
singularities are present at Born level, for diphoton production we also have to deal with the
QED singularities appearing in R(Φn+1). If one splits R(Φn+1) in Rs(Φn+1) and Rf (Φn+1)
(as in eq. (2.5)) without taking care of the QED singularities, such singularities will be
present in both terms. We cannot simply suppress them through a second suppression
factor (that would be a function of Φn+1) since Rs(Φn+1) is integrated in the radiation
variables inside B̄(Φn), preventing one to compensate for such a suppression factor, after
the events have been generated.

We then proceed as follows: taking advantage of the possibility to separate the real
contributions into two terms, we choose the function F (Φn+1) in eq. (2.6) so that Rs(Φn+1)
contains all the QCD singularities, whereas the QED singularities are all contained in
Rf (Φn+1). This last term is not integrated inside B̄(Φn) (see eq. (2.8)) and the generation
of Φn+1 according to Rf (Φn+1) is performed with a hit-and-miss technique. Hence we can
apply a QED suppression factor SR(Φn+1) only to Rf (Φn+1), and generate Φn+1 according
to the product SR(Φn+1)Rf (Φn+1), that is now integrable. Finally, we multiply the weights
of the generated events by the factor 1/SR(Φn+1).9

2.2.1 The damping function F

According to the FKS method [91, 92], the real contribution R is partitioned into a sum of
terms Rαr , each of them having at most one collinear and one soft singularity associated

9To the best of our knowledge, a similar procedure was used for the first time in ref. [42].
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with one parton
R =

∑
αr

Rαr . (2.10)

In each αr region, the radiated parton (r) can then become soft or be collinear to an
emitting one (e), and we can define the damping function

Fαr =

(
1
de,r

)p
(

1
de,r

)p
+
∑nc
i=1

∑nγ
j=1

(
1

dci,γj

)p , (2.11)

where

di,j =
{
p2

Tj if i is an initial-state particle,
2 min

(
E2
i , E

2
j

)
(1− cos θij) if i and j are final-state particles, (2.12)

and the sum in the denominator runs over the nc massless charged particles and the nγ
photons. In eq. (2.12), pTj and Ej are the transverse momentum and energy of the particle
j, and θij the angle between the particles i and j, computed in the partonic center-of-mass
frame.10

Every contribution Rαr to the real amplitude is then split into two terms

Rαr = Rαr
s +Rαr

f , (2.13)

where
Rαr
s ≡ FαrRαr , Rαr

f ≡ (1− Fαr)Rαr . (2.14)

In the limit where the radiated parton is soft or collinear to the emitter de,r is small, and
Fαr tends to 1, so that all the QCD singularities are in Rαr

s . When instead the photon γj
becomes soft or collinear to a massless charged particle ci, the term dci,γj is small, and Fαr

tends to 0, so that Rαr
s is free from QED singularities.

2.2.2 The suppression factors SB and SR

We have chosen as suppression factor SB(Φn) introduced in section 2.2 the following ex-
pression

SB =

(
p2

Tj

)a(
p2

Tj

)a
+
(
p̄2

Tj

)a
(
p2

Tγ1

)a(
p2

Tγ1

)a
+
(
p̄2

Tγ

)a
(
p2

Tγ2

)a(
p2

Tγ2

)a
+
(
p̄2

Tγ

)a
×

(
R2
jγ1

)a(
R2
jγ1

)a
+
(
R̄2
jγ

)a
(
R2
jγ2

)a(
R2
jγ2

)a
+
(
R̄2
jγ

)a , (2.15)

where pTi is the transverse momentum of the particle i with respect to the beam axis, Rij
the angular distance between the particles i and j in the azimuth-pseudorapidity plane

Rij =
√

(ηi − ηj)2 + (φi − φj)2, (2.16)
10In our simulation, we have set p = 2.
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and the barred quantities are arbitrary constant parameters needed to define the transition
point (from zero to one) of each factor in the product. The first three term of eq. (2.15)
suppress the limit where the final-state parton or the two photons are soft or collinear to
the beam axis, while the last two terms suppress the regions where the photons are collinear
to the final-state parton. The power a does not need to be the same for all the terms, but
we have chosen the common value a = 1 for simplicity. The expression for SR(Φn+1) can
be obtained by generalizing eq. (2.15), for the case with an extra jet.

When the MiNNLOPS formalism is used, the QCD initial-state singularity is already
regularized by the Sudakov form factor from the resummation formalism, and the first term
in eq. (2.15) is no longer needed. We give more details in section 2.4.1.

2.3 The Φγγj → Φγγ mapping

When applying the MiNNLOPS formalism, we need a mapping from the γγj phase space
to the γγ one. In fact, as will be recalled in the next section, the Sudakov form factor
(eq. (2.19)) and theD term (eq. (2.25)), at the core of the MiNNLOPS method, are functions
of Φγγ, as they contain the qq̄ → γγ amplitudes. One needs then to evaluate these quantities
while integrating over the Φγγj phase space upon which the Powheg B̄ function depends,
thereby requiring a smooth Φγγj → Φγγ mapping.

The qq̄ → γγ amplitudes are singular when the photons are collinear to the beam axis.
From the physics point of view, one does not expect to evaluate such amplitudes arbitrarily
close to their singularities, as such phase space points are discarded by the request of the
presence of two isolated photons in the final state. Since in the MiNNLOPS formalism the
Φγγ kinematics is obtained by a mapping from the Φγγj one, we need to make sure that
we never get too close to the singular regions, and without having to introduce an explicit
cut on the transverse momentum of the single photons in the Φγγ kinematics.

We have built such a mapping without having to introduce any cutoff or isolation
criteria, at any stage of the event generation, as done in other Monte Carlo simulations
dealing with photons [35, 68]. The mapping that we propose is such that the direction
of one of the photons with respect to the beam axis in the laboratory frame, for a given
phase space point Φγγj , is preserved in the projected point Φγγ. As a consequence, a point
in Φγγ with small pT always comes from a projection of a point in Φγγj where at least one
photon is close to the beam axis, and this configuration is suppressed by the factor SB of
eq. (2.15). A detailed derivation of such a mapping is given in appendix A.

2.4 MiNNLOPS differential cross section

In this section, after briefly recalling the general method, we discuss the modifications
that we have introduced in the definition of the MiNNLOPS differential cross section given
in refs. [50, 51]. Following the conventions introduced in those papers, we write the pT

spectrum of the cross section for diphoton production as
dσ

dΦγγdpT
= dσs

dΦγγdpT
+ dσf

dΦγγdpT
, (2.17)

where σs (also called singular contribution in the following) is obtained from the resumma-
tion of logarithmically enhanced contributions at small-pT, while σf (also called non-singular
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term) is the difference between the fixed-order differential cross section and the truncated
perturbative αS expansion of σs, till the second order. The singular contribution can be
written as

dσs
dΦγγdpT

= d
dpT

{
exp

[
−S̃(Φγγ, pT)

]
L(Φγγ, pT)

}
, (2.18)

where the Sudakov form factor is given by

S̃(Φγγ, pT) = 2
∫ Q

pT

dq
q

{
A
(
αS(q)

)
ln Q

2

q2 + B̃
(
αS(q)

)}
(2.19)

and L is a function of the PDFs, of the qq̄ → γγ Born, one- and two-loop matrix elements,
and of the collinear coefficient functions (see ref. [93]). The functions A and B̃ in eq. (2.19)
can be written as

A(αS) =
(
αS

2π

)
A(1) +

(
αS

2π

)2
A(2) +

(
αS

2π

)3
A(3) , (2.20)

B̃(αS) =
(
αS

2π

)
B(1) +

(
αS

2π

)2
B̃(2) , (2.21)

with
B̃(2) = B(2) + β0H

(1) + 2ζ3
(
A(1)

)2
, (2.22)

where H(1) is the ratio between the one-loop and the Born qq̄ → γγ amplitudes in the MS
subtraction scheme, and introduces a dependence on the phase-space kinematics in B̃(2).
The coefficients A(1), A(2), A(3), B(1), and B(2) for quark-initiated processes are collected,
for example, in ref. [50]. More details can be found in appendix B.

The non-singular contribution dσf is instead given by the difference

dσf
dΦγγdpT

=
dσNLO

γγj

dΦγγdpT

∣∣∣∣∣
Q

− αS(Q)
2π

[ dσs
dΦγγdpT

](1)

Q

−
(
αS(Q)

2π

)2[ dσs
dΦγγdpT

](2)

Q

, (2.23)

where dσNLO
γγj is the NLO differential cross section for γγj production, and [dσs](i) is the i-th

order of the expansion of dσs in the strong coupling constant. In this paper, we use the no-
tation [X](i) for the coefficient of the i-th term in the perturbative expansion of the quantity
X. The above difference is integrable, since the expansion of σs cancels the non-integrable
terms of dσNLO

γγj in the pT → 0 limit. At variance with refs. [50, 51, 68, 69, 75], we have
chosen to set the renormalization and factorization scales µR and µF in dσf to Q, instead
of pT. This is why we have added the subscript Q to the quantities appearing in eq. (2.23).
While formally any scale choice would be legitimate for evaluating this term, since the dif-
ference would be of order O(α3

S), beyond the accuracy of our calculations, setting the scale
to Q allows to follow more closely what is typically adopted in fixed-order calculations,
thereby allowing for a more accurate comparison with the latter. Moreover, the choice of
the central scale also plays a role in the estimation of the theoretical uncertainties. This is
particularly true for the process at hand, where the size of the non-singular contribution
is numerically relevant and, at variance with previously studied processes, scale variations
performed around the central scale pT give rise to bands larger than those generated using
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as central scale Q. We will give more quantitative details in section 3.2, where we compare
the new µ = Q and the µ = pT scale choices for dσf for the previously discussed cases of
Drell-Yan and Higgs boson production.11

Following refs. [50, 51], the singular contribution of eq. (2.18) can be rewritten as

dσs
dΦγγdpT

= exp
[
−S̃(Φγγ, pT)

]
D(Φγγ, pT) , (2.24)

where
D(Φγγ, pT) ≡ −dS̃(Φγγ, pT)

dpT
L(Φγγ, pT) + dL(Φγγ, pT)

dpT
. (2.25)

By expanding eq. (2.24) in αS(Q), we can write[ dσs
dΦγγdpT

](1)

Q

=
[
D(Φγγ, pT)

](1)

Q
(2.26)

[ dσs
dΦγγdpT

](2)

Q

=
[
D(Φγγ, pT)

](2)

Q
−
[
S̃(Φγγ, pT)

](1) [
D(Φγγ, pT)

](1)

Q
(2.27)

where all the terms are evaluated at µR = µF = Q.
The D(Φγγ, pT) term in eq. (2.24) has a formal expansion

D(Φγγ, pT) = αS(pT)
2π [D(Φγγ, pT)](1) +

(
αS(pT)

2π

)2
[D(Φγγ, pT)](2)

+
(
αS(pT)

2π

)3
[D(Φγγ, pT)](3) + . . . (2.28)

and, at difference with eqs. (2.26) and (2.27), all the terms are evaluated at µR = µF =
pT.12 The explicit expression of these terms are collected in appendix B, together with the
expressions of the other ingredients needed in the MiNNLOPS formulae.

We would like to stress that the cancellation of the divergences associated with the
small pT limit in eq. (2.23) is numerically challenging. For this reason, and following the
MiNLO original approach, we have chosen to multiply dσf by a Sudakov form factor, after
adding an additional term to preserve the nominal α2

S accuracy

dσf
dΦγγdpT

→ exp
[
−S̄(pT)

]{ dσf
dΦγγdpT

+
(
αS(Q)

2π

)2 [
S̄(pT)

](1)
[ dσf

dΦγγdpT

](1)
}
. (2.29)

At difference with [50, 51, 68, 69, 75], where S̄ = S̃, we apply a Sudakov form factor with
only the two leading terms, i.e.

S̄(pT) = 2
∫ Q

pT

dq

q

αS(q)
2π

[
A1 log

(
Q2

q2

)
+B1

]
. (2.30)

We stress that the two approaches are equivalent up to O
(
α2

S

)
.

11The use of different scales in the resummation formalism is nowadays a standard practice in the resum-
mation community (see e.g. refs. [76, 77]), although in a different context with respect to ours.

12We stress the fact that we do not compute separately the [D(Φγγ , pT)](i) terms, but we compute
numerically the whole function D, as discussed, for the first time, in ref. [51].
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Summarizing, the MiNNLOPS differential cross section for pp → γγ + X production
can be written as

dσγγj
dΦγγj

= exp
[
−S̃(Φγγ, pT)

]
D(Φγγ, pT)F corr(Φγγj) (2.31)

+ exp
[
−S̄(pT)

]{ dσNLO
γγj

dΦγγj

∣∣∣∣∣
Q

+
(
αS(Q)

2π

) [
S̄(pT)

](1) dσLO
γγj

dΦγγj

∣∣∣∣∣
Q

−
[
αS(Q)

2π
[
D(Φγγ, pT)

](1)

Q
+
(
αS(Q)

2π

)2[
D(Φγγ, pT)

](2)

Q

]
F corr(Φγγj)

}
,

where we have introduced the symbol dσLO
γγj/dΦγγj to denote the LO differential cross

section for pp → γγj production, and the function F corr(Φγγj), needed to spread the
contributions proportional to the D(Φγγ, pT) terms over the entire Φγγj phase space. It has
the property that, given an arbitrary function G(Φγγ, pT),∫

dΦγγj G(Φγγ, pT)F corr(Φγγj) =
∫

dΦγγ dpT G(Φγγ, pT) . (2.32)

For the explicit expression we have used for F corr(Φγγj) we refer to ref. [50].
Equation (2.31) is the main result of this section and it summarizes the novel aspects

we introduced to the MiNNLOPS method, as can be evinced by comparing it against, e.g.,
eq. (3.7) of ref. [50]. In the rest of the manuscript, we will denote the MiNNLOPS results
obtained according to eq. (2.31) with the acronym FOatQ. We also recall that the mapping
introduced in section 2.3 guarantees that all the Φγγ-dependent terms in eq. (2.31) are
evaluated in kinematic points away from the singular regions.

By rewriting the NLO differential cross section for γγj production in the following
compact form

dσNLO
γγj = (B + V ) dΦγγj + (Rs +Rf) dΦγγjj , (2.33)

and introducing the MiNNLOPS improved B̄ function

B̄(Φγγj)MiNNLOPS
= exp

[
−S̃(Φγγ, pT)

]
D(Φγγ, pT)F corr(Φγγj) (2.34)

+ exp
[
−S̄(pT)

]{[
1 + αS(Q)

2π
[
S̄(pT)

](1)
]
B
∣∣
Q

+ V
∣∣
Q

+
∫

dΦrad Rs
∣∣
Q

−
[(
αS(Q)

2π

)[
D(Φγγ, pT)

](1)

Q
+
(
αS(Q)

2π

)2[
D(Φγγ, pT)

](2)

Q

]
F corr(Φγγj)

}
,

our final expression for the differential cross section dσγγ reads

dσγγ = B̄(Φγγj)MiNNLOPS

{
∆(Φγγj, k

min
T ) dΦγγj + θ(kT − kmin

T ) ∆(Φγγj, kT) Rs

B

∣∣∣∣
kT

dΦγγjj

}
+Rf

∣∣
Q

dΦγγjj . (2.35)
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2.4.1 The suppression factors with MiNNLOPS

As already discussed in section 2.2.2, we do not need to suppress the small pT region of
the first jet while the Powheg Box Res integrates the B̄(Φγγj)MiNNLOPS

function over the
whole phase space, since the presence of the MiNNLOPS Sudakov form factor suppresses
such a region. In this case, the Born suppression factor SB in eq. (2.15) can be replaced by

SMiNNLO
B =

(
p2

Tγ1

)a(
p2

Tγ1

)a
+
(
p̄2

Tγ

)a
(
p2

Tγ2

)a(
p2

Tγ2

)a
+
(
p̄2

Tγ

)a
(
R2
jγ1

)a(
R2
jγ1

)a
+
(
R̄2
jγ

)a
(
R2
jγ2

)a(
R2
jγ2

)a
+
(
R̄2
jγ

)a .
(2.36)

2.4.2 Scale settings in the small-pT limit and modified logarithms

We freeze the renormalization and factorization scales at values below Q0 = 2GeV to avoid
the Landau pole and further non-perturbative effects, connected with the PDF evolution
to lower scales. We stress that this scale does not act as a cutoff in the integration over the
physical space but only enters in the evaluation of the singular contribution in eq. (2.24),
since all the other terms in our formulation of the MiNNLOPS differential cross section are
evaluated at the hard scale Q. We also highlight that, due to the presence of an overall
Sudakov form factor, the dependence of the differential cross section on Q0 is strongly
suppressed.13

In addition, following what was done in refs. [50, 51], we smoothly turn off the con-
tribution of the logarithms in the D functions at large transverse momentum with the
replacement

log Q

pT
→ 1

p
log
(

1 +
(
Q

pT

)p)
, (2.37)

so that the pT → 0 limit remains unaffected, while at pT > Q, the modified logarithm tends
to zero. In our simulation we have set p = 6.14

3 Validation

In this section we discuss the validation of our MiNNLOPS predictions. We first briefly
present the setting of the physical and technical parameters of the calculation and the
isolation criterion used to define the diphoton process. We then study the effects that the
modifications to the MiNNLOPS differential cross section described in section 2.4 have on
two previous implementations of the method (i.e. the Drell-Yan and Higgs production pro-
cesses). Finally, we present a validation of the MiNNLOPS results for diphoton production
against the fixed-order distributions produced with the public version of the Matrix code.

13We have found no visible dependence on Q0 of our results by lowering its value down to values of 1GeV.
14We have explicitly checked that the phenomenological results we present in section 4 are independent

of the exact value of p, for p & 3, within the statistical errors. When p is less than 3, visible differences
arise mainly in the spectrum of the diphoton transverse-momentum distribution, as expected. In fact, if
p gets too small, the expansion of the modified logarithm at large pT induces a spurious distortion of the
fixed-order spectrum, thereby implying that too-small values of p should not be used. More quantitatively,
for p equal 2, we have discrepancies in the diphoton transverse momentum of the order of 5% with respect
to the fixed-order result, that grow to more than 20% for p equal 1, and get worse for smaller values of p.
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3.1 Physical and technical parameters and photon isolation criterion

The phenomenological results presented in this paper have been obtained for a proton-
proton collider with a hadronic center-of-mass energy of 13TeV. We have used the
Lhapdf [94] parton distribution function set NNPDF31_nnlo_as_0118 and the evolution
of αS provided by the same package. The electromagnetic coupling for the final-state
photons has been set to α = 1/137, and the mass of the top quark to mtop = 173.2 GeV.

The fixed-order results have been obtained with the public version of the Matrix
code [11, 82, 86, 93, 95–97], setting the central renormalization and factorization scales
equal to the invariant mass of the diphoton system µR = µF = Q. The uncertainty band
has been estimated via a seven-point scale variation obtained by multiplying and dividing
the central renormalization and factorization scales by a factor of 2.

We apply the photon isolation prescription of ref. [9] to the two final-state photons.
For each photon, we compute the angular distance Riγ with respect to the i-th final-state
parton. We discard the event unless, for every photon and every R < Rc,

ni∑
i=1

piT θ(R−Riγ) < Emax
T χ(R), (3.1)

where ni is the number of final-state partons, piT is the transverse momentum of i with
respect to the beam, and

χ(R) =
( 1− cosR

1− cosRc

)n
. (3.2)

In our analysis, we have set

Emax
T = 4 GeV, Rc = 0.4 , n = 1 . (3.3)

In addition, the two photons have to fulfill

pTγ1 > pmin
Tγ1 , pTγ2 > pmin

Tγ2 , mγγ > mmin
γγ , (3.4)

where pTγ1 and pTγ2 are the transverse momenta of the hardest and next-to-hardest pho-
tons, mγγ is the diphoton mass, and

pmin
Tγ1 = 25 GeV, pmin

Tγ2 = 22 GeV, mmin
γγ = 25 GeV. (3.5)

The values of the barred quantities in eq. (2.36) and of the power a have been set to

p̄Tγ = 22 GeV, R̄jγ = 0.4 , a = 1 . (3.6)

In addition, the Powheg Box Res code has been run with the flag doublefsr set to 1.
This parameter was first introduced in ref. [98], and we refer the interested reader to this
paper for further details.
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Figure 1. Comparison between fixed-order predictions from Matrix against the two MiNNLOPS
results (at “Les Houches” level) obtained using the original formulation of the method (labelled as
no FOatQ) and the new one presented in this work (labelled as FOatQ). In the left pane we show the
rapidity distribution of the dilepton system in Drell-Yan production, whereas in the right pane we
show the Higgs boson rapidity. The ratios with respect to the Matrix results are also shown in
the lower panel.

3.2 Validation for Drell-Yan and Higgs boson production

In this section, we compare the results obtained with the original MiNNLOPS method
used in ref. [51] for Drell-Yan and Higgs boson production against those obtained with the
new formulation spelled in section 2.4. As discussed in that section, one expects the new
formulation to yield results compatible with the original method for processes where the
size of non-singular corrections is small compared to the total cross section.

An estimate of the size of the non-singular correction can be obtained by comparing
the total NNLO cross section against the integral of the first term on the right-hand side
of eq. (2.31) over the full phase space. The results obtained for diphoton, Drell-Yan and
Higgs boson production are the following

σγγNNLO = 155.7± 1.0 pb , σγγs = 55.7± 0.6 pb ,
σDY

NNLO = 1919± 1 pb , σDY
s = 1904± 3 pb ,

σH
NNLO = 39.64± 0.01 pb , σH

s = 34.03± 0.07 pb .
(3.7)

For diphoton production, σγγs contributes to only about one third of the total cross section,
at difference with Drell-Yan and Higgs boson production, thereby justifying the choices
made in this paper.

As a further validation, in figure 1 we compare the rapidity distribution of the color
singlet for Drell-Yan and Higgs boson production. We show the distributions obtained
with the original formulation, where the finite terms are evaluated at µ = pT (labelled as
no FOatQ), and the new one, where such terms are evaluated at µ = Q, with Q the invariant
mass of the color singlet (labelled as FOatQ). The MiNNLOPS results shown in the figure
are obtained after generating the Powheg hardest emission, i.e. at the “Les Houches” level.
In the plots we also show the NNLO results from Matrix, obtained setting µ = Q. For this
comparison only, we use the same PDF sets as those used in ref. [51]. In the lower inserts of
the figure we plot the ratio of the displayed distributions with respect to the Matrix result.
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Figure 2. Comparison between fixed-order results from Matrix and MiNNLOPS for the diphoton
invariant mass and rapidity, for the default central value of the renormalization and factorization
scales. The statistical errors are also shown.

The curves show a very good agreement between the NNLO and the MiNNLOPS results
obtained with either formulations, both for the central scale and the uncertainty band. In
particular, since the Drell-Yan process features a very small perturbative uncertainty band,
the remarkable agreement between the NNLO and FOatQ curves displayed in the left pane
of figure 1 is a robust validation of the new formulation of the MiNNLOPS method.

3.3 Diphoton production: comparison with Matrix

In this section we validate the differential cross section of eq. (2.31) against the fixed-order
NNLO one implemented within the public version of the Matrix code. We expect the
two results to agree up to terms beyond the NNLO accuracy. The Matrix results have
been obtained setting the slicing parameter rcut = 0.0005 and for a central scale choice
µR = µF = Q. Using the isolation criteria and the fiducial cuts reported in section 3.1,
the total cross section computed by Matrix and MiNNLOPS are in agreement within the
statistical errors, and they read respectively

σMatrix
tot = 155.7± 1.0 pb , σMiNNLO

tot = 154.9± 0.2 pb . (3.8)

In figure 2 we plot the distributions for the invariant mass and rapidity of the diphoton
system computed with Matrix and MiNNLOPS, in the top panes, and the ratio of the two
curves in the lower ones. The figure shows a reasonably good agreement between the two
curves within the statistical errors. We ascribe the mild difference in the high invariant-
mass region to effects beyond the nominal accuracy of our result, which can differ from
the purely fixed-order Matrix one by higher-order effects, present in eq. (2.31). We have
explicitly verified that, by applying a transverse momentum cut on the diphoton system,
the same trend is also present when we compare the exact fixed-order NLO result for γγj
production against the MiNNLOPS one: when we move away from the region of small
transverse momentum of the diphoton system that is affected by large logarithms, we still
observe a mild difference between the central values of the two distributions, but still within
the scale-variation bands.
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Figure 3. Comparison between fixed-order results from Matrix and MiNNLOPS for the diphoton
invariant mass and rapidity, as in figure 2. Uncertainty bands from scale variations are also shown.
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Figure 4. Comparison between fixed-order results from Matrix and MiNNLOPS for the trans-
verse momentum of the hardest and next-to-hardest photon. Uncertainty bands from scale varia-
tions are also shown.

The theoretical uncertainties on the Matrix and MiNNLOPS total cross sections, es-
timated through a seven-point scale variation obtained by multiplying and dividing the
central renormalization and factorization scales by a factor of 2, are given by15

σMatrix
tot = 155.7 +5%

−4% pb σMiNNLO
tot = 154.9 +6%

−5% pb , (3.9)

and are in good agreement. In figures 3 and 4 we compare the scale variation bands obtained
from the two codes for the invariant mass and rapidity distributions of the diphoton system
and the transverse momentum of the hardest and next-to-hardest photon. We find an
overall good agreement among the different curves, and compatible size for the scale-
variation bands.

15Matrix provides also extrapolated values for the total cross section down to rcut = 0, that, for the
central scale, is equal to σMatrix

tot = 153.9 ± 1.9 pb. We notice that, with the extrapolation process, the
associated statistical error is larger than in the non-extrapolated one. For comparison with eq. (3.9), the
extrapolated scale variation band is ±4%.
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Figure 5. Comparison between the distributions obtained from the fixed-order calculation from
Matrix and the results after the generation of the hardest emission, for the diphoton invariant
mass and rapidity.

4 Phenomenological results

After validating the implementation of the MiNNLOPS differential cross section for diphoton
production given in eq. (2.31), in this section we present some distributions of physical
interest obtained from the generated events, before and after passing them through a
parton shower. We have generated about 16 million events without any generation cut,
except for a minimum invariant mass of the diphoton system of 10GeV.16 As stressed
previously, except for this last constraint on the invariant mass, no other cuts have been
imposed, so that these events can be used to make predictions with arbitrary fiducial cuts.

4.1 Results at partonic level

In this section we compare the Matrix results against those obtained after generating the
Powheg hardest emission of eq. (2.35), often denoted as “Les Houches events” (LHE), and
labelled in the figures as “MiNNLOPS (LHE)”.

In figure 5 we show results for the invariant mass and the rapidity of the diphoton
system, whereas in figure 6 we display the transverse momentum of the hardest and next-to-
hardest photon. We find good agreement between the Matrix and the MiNNLOPS (LHE)
predictions, both for the central value and for the uncertainty bands due to scale variations.
Notice that, at variance with similar comparisons for other processes not involving photons
(like Drell-Yan or massive diboson production), this is not trivial due to the presence of an
isolation criterion in the definition of the process.

4.2 Results after parton showering

In this section we show results obtained after the completion of the parton shower per-
formed by Pythia8 [99, 100]. We rely on the Pythia8 interface to the Powheg Box Res,
provided by the main31 configuration file, distributed with Pythia8. The results presented

16We point out that such a generation cut has no effect on the final kinematic distributions if the fiducial
cut on the diphoton invariant mass at the analysis stage is greater than it.
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Figure 6. Comparison between the distributions obtained from the fixed-order calculation from
Matrix and the results after the generation of the hardest emission, for the transverse momentum
of the hardest and next-to-hardest photon.
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Figure 7. Comparison between the distributions obtained from the Powheg events before and
after the Pythia8 parton shower for the diphoton virtuality and rapidity.

in this section are obtained after switching off multi-parton interactions, QED radiation
and hadronization effects, using the Monash tune [101]. We set the Pythia8 parameter
POWHEG:pThard to 2 (i.e. we use the prescription introduced in section 4 of ref. [98]), and
the SpaceShower:dipoleRecoil to 1.

In figures 7 and 8, we present the same distributions of the previous sections, but after
the Pythia8 shower. We observe a reduction of around 5–10% of the differential cross
sections, compared to the MiNNLOPS (LHE), with the largest values in the region of high
transverse momenta of the two photons. We ascribe this behaviour to the fact that, with
the increased multiplicity of the partonic/hadronic activity due to the Pythia8 shower, the
photons in the showered events are less likely to satisfy the isolation criteria, giving a smaller
cross section. We observed such a pattern also for similar distributions computed with a
completely independent code for diphoton production, built with the standard Powheg
NLO+PS formalism, reassuring us that the above interpretation is correct, and that this
behaviour is not due to some MiNNLOPS features. We leave further investigation on this
aspect for future studies.
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Figure 8. Comparison between the distributions obtained from the Powheg events before and
after the Pythia8 parton shower for the transverse momentum of the hardest and next-to-hardest
photon.

4.3 Comparison with ATLAS results

In this section we compare our results with those presented by the ATLAS Collaboration
in ref. [79] obtained at 13TeV. In order to make a fair comparison with the experimental
data, we have added to the MiNNLOPS diphoton contribution, presented in this paper,
the leading-order contribution coming from the gluon-induced production of a photon pair
through a closed quark loop (denoted by gg → γγ in the following), which is of the same
order of the NNLO corrections and is further enhanced by the particularly sizable gluon
luminosity. As we consider this contribution only at leading order, we simulate it at LO+PS
accuracy, setting the renormalization and factorization scales, and the upper limit for the
transverse momentum of the subsequent shower evolution, equal to the invariant mass
of the diphoton system. The analytic amplitudes for this process have been taken from
ref. [18] and implemented in the POWHEG BOX RES framework, neglecting the top-quark loop
contribution [17]. This contribution amounts for at most a few percent in certain regions
of the kinematic distributions we are plotting (see e.g. figure 3 of ref. [12]). Its inclusion
would improve the agreement with data.

The analysis of our events is performed using Rivet [102], with the same Pythia8
settings as those in the previous section. The fiducial volume is defined by the following
requirements

pTγ1 > 40 GeV, pTγ2 > 30 GeV, ∆Rγγ > 0.4 ,
|yγ | < 1.37 , 1.52 < |yγ | < 2.37. (4.1)

We do not report here the exact photon-isolation criteria which are described in detail in
section 4.1 of ref. [79].

In figures 9 and 10 we show the invariant mass and the transverse momentum of the
diphoton system, and the transverse momentum of the leading and subleading photon,
respectively. Overall we find a reasonably good agreement between data and theoretical
predictions.

– 19 –



J
H
E
P
0
9
(
2
0
2
2
)
0
6
1

b

b
b b

b b b
b b b b

b b b b
b b

b

b

b

b b b b b b b b
b
b b

b
b
b
b
b
b
b
b b
b
b
b
b b
b
b
b
b
b
b b
b
b
b
b b b

b b
b
b
b b
b b
b

b b

b

b

b ATLAS data
MiNNLOPS+Pythia8

10−4

10−3

10−2

10−1

d
σ
/
d
m

γ
γ
[p
b
G
eV

−
1 ]

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

20 50 100 200 500 1000
0.6
0.8
1

1.2
1.4
1.6
1.8
2

mγγ [GeV]

M
C
/D

at
a

b

b
b b b b b b b b b b b b b b b b b b b b b

b b
b
b
b
b
b
b b
b
b
b
b
b
b
b
b b
b b
b
b b b
b
b b b

b b b
b
b
b

b

b ATLAS data
MiNNLOPS+Pythia8

10−4

10−3

10−2

10−1

1

d
σ
/
d
p T

γ
γ
[p
b
G
eV

−
1 ]

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

0 4 10 50 100 500
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

pTγγ [GeV]

M
C
/D

at
a

Figure 9. Comparison between the ATLAS data and the distributions obtained with
MiNNLOPS+Pythia8, for the diphoton invariant mass and its transverse momentum. Scale-
variation bands are also shown, together with the statistical errors of the central value.
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Figure 10. Comparison between the ATLAS data and the distributions obtained with
MiNNLOPS+Pythia8, for the transverse momentum of the leading and subleading photon. Scale-
variation bands are also shown, together with the statistical errors of the central value.

For the invariant mass distribution mγγ we observe a good agreement in the bulk of
the cross section. Given the cuts of eq. (4.1), the region where mγγ < 80GeV is populated
only by γγ + jet(s) events, therefore our results are only NLO+PS accurate, as confirmed
also by the wider uncertainty bands. For mγγ . 40GeV, MiNNLOPS results overshoot
ATLAS data by an amount compatible with what has been observed, for other predictions
of similar accuracy, in ref. [79]. This is particularly true for the first bin. The fact that
this region is characterized by a large NLO K-factor [13] hints at the possibility that the
inclusion of higher-order corrections will improve the agreement with data. At large mγγ
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Figure 11. Comparison between the ATLAS data and the distributions obtained with
MiNNLOPS+Pythia8, for the azimuthal separation of the two photons ∆φγγ and for φ∗η, as
defined in eq. (4.2). Scale-variation bands are also shown, together with the statistical errors of the
central value.

values we observe differences up to about 15%. Such differences might be due to the absence
of higher-order effects. Top-quark mass effects above the threshold mγγ ' 2mt, that we
are neglecting in the quark-induced 2-loop amplitudes as well as in the gg → γγ channel,
can also induce differences at the percent level.

As far as the transverse-momentum spectrum of the diphoton pair is concerned, our
predictions are compatible with experimental data across most of the pTγγ spectrum, within
the estimated theoretical uncertainties. Due to the all-order treatment of soft and collinear
radiation encoded in the MiNNLOPS Sudakov form factor and in the subsequent matching
to Pythia, the region of small pTγγ is in a fair agreement with the data, within the statistical
error and the scale-variation band. For large values of pTγγ , data and theoretical predictions
agree well in shape but display a flat offset of about 10%.

The comparison of our results against ATLAS data for the pT spectrum of the leading
and subleading photon is shown in figure 10. Data and theoretical predictions agree quite
well over the full range of the transverse momentum.

We would also like to point out that the choices for the central value of the renormal-
ization and factorization scales, in a fixed-order computation, can have a sizable impact on
the theory predictions at large invariant mass and transverse momentum of the diphoton
system, as discussed in detail e.g. in ref. [14]. The size of these effects are a consequence of
a slowly convergent perturbative series. Assessing this type of effects by exploring different
scale choices in our MiNNLOPS simulation goes beyond the scope of this paper, although
this is a-priori possible, both for the handling of the large-pT limit of the singular compo-
nent (first term of eq. (2.31)), as discussed for instance in ref. [78], as well as for the scales
used in the non-singular contribution (last term in the same equation).
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In figure 11 we show the differential cross section as a function of two angular observ-
ables: the azimuthal separation ∆φγγ of the two photons and φ∗η, defined as

φ∗η = tan π −∆φγγ
2 sin θ∗η = tan π −∆φγγ

2

√
1−

(
tanh ∆yγγ

2

)2
, (4.2)

where ∆yγγ is the azimuthal angular separation of the two photons. Such a variable,
first introduced for Drell-Yan processes in ref. [103], is known to be sensitive to the same
dynamics governing the pTγγ spectrum, but it allows for a better resolution at small values
of pTγγ . The agreement between data and the theoretical predictions is rather good on the
whole range within the statistical and scale-variation bands. We stress that, for ∆φγγ → π,
the NNLO fixed-order results for the above distributions are divergent, while we get a finite
distributions due to the MiNNLO Sudakov form factor.

5 Conclusions

In this paper we have presented the implementation of a new MiNNLOPS event generator
accurate at NNLO in QCD for the production of a photon pair in hadronic collisions,
within the Powheg Box Res framework. This implementation is based on the MiNNLOPS

formalism presented in refs. [50, 51], that we have modified in order to deal with the new
features needed to describe a process with photons at the Born level. We have devised
and implemented a general method to deal with the presence of QED singularities at the
Born level within the Powheg Box Res, and we have presented a new mapping from
γγj to the γγ. The combined use of the new mapping and of the method to deal with
the QED divergences allowed us to simulate diphoton production at NNLO+PS accuracy
without introducing any generation or technical cut. Our generator produces weighted
events that cover the entire phase space, thereby allowing the generated sample to be used
with arbitrary fiducial cuts.

Furthermore, we have introduced a few modifications to the MiNNLOPS formalism,
that do not change the formal accuracy of the method and reduce the numerical impact of
higher-order terms, thus leading to better agreement with fixed-order computations. We
have also verified that the new formulation of MiNNLOPS, when applied to the original
MiNNLOPS implementations with massive bosons, gives results fully compatible with the
original one.

Finally, we have presented some distributions of physical interest obtained from the
generated events both before and after passing them through the parton shower, and com-
pared them with the ATLAS results at 13TeV. Using the standard settings of Pythia8
when interfacing it with the Powheg Box Res, we observe a reduction of about 5–10% of
the inclusive differential cross sections compared to the NNLO fixed-order ones. We ascribe
this effect to the increased multiplicity of the partonic/hadronic activity coming from the
shower causing the photons to less likely satisfy the isolation criteria. Further investigation
of the matching procedure between Powheg Box Res+MiNNLOPS and Pythia8 is left for
future studies.
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A The Φγγj → Φγγ phase space projection

In section 2.3 it was shown that one needs a mapping from the Φγγj phase space to the Φγγ

one, and this mapping should be smooth when pT → 0, i.e. when the final-state jet is soft
or collinear with the incoming beams.

This projection plays a more important role for the process under study than in previ-
ous processes dealt within the MiNNLOPS procedure. In fact, for diphoton production, we
would like to avoid that the kinematics of a γγj event that is away from any collinear diver-
gence is projected on a kinematics for γγ production, where the photons are quasi-collinear
with the incoming beams, which would give divergent contributions for the pp→ γγ matrix
elements needed in the MiNNLOPS D terms (see section 2.4). This projection is determined
by the requirements that it preserves the mass and rapidity of the color singlet, and the
direction of one of the photons in the laboratory frame.

As far as the MiNNLOPS formulae are concerned, we just need to define a Φγγj →
Φγγ mapping that projects a Φγγj phase-space point to a Φγγ one. In addition to this,
we also provide the inverse mapping, that will be used to compute the Jacobian of the
transformation in section A.3.

A.1 The Φγγj kinematics

In the partonic center-of-mass frame, momentum conservation reads

p⊕ + p	 = pγ1 + pγ2 + pj , (A.1)

where
p⊕ =

√
s

2 (1, 0, 0, 1) , p	 =
√
s

2 (1, 0, 0,−1) , (A.2)

and s is the squared center-of-mass energy. In this section, at difference with the rest of
the paper, we denote with pγ1 and pγ2 the momenta of the two photons, irrespectively of
which one is the hardest or the softest. Using the standard FKS [91] radiation variables ξ,
y and φj, we write the jet momentum as

pj =
√
s

2 ξ (1, sin θj sinφj, sin θj cosφj, cos θj) , (A.3)
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where cos θj = y. Using eq. (A.1), the momentum of the diphoton system is then given by

pγγ =
√
s

2

(
2− ξ, −ξ

√
1− y2 sinφj, −ξ

√
1− y2 cosφj, −ξy

)
, (A.4)

that has invariant mass and rapidity given by

mγγ =
√
s (1− ξ) , yCM

γγ = 1
2 log

(2− ξ − ξy
2− ξ + ξy

)
. (A.5)

A.2 From Φγγ to Φγγj

In order to preserve the direction of one photon, we need to express the momenta of the
involved particles in two frames where the diphoton system has the same rapidity. We
choose to work in the center-of-mass frame of the γγj system because, in this frame,
the momentum of the final-state parton has a simple representation in terms of the FKS
variables, as given in eq. (A.3). We parametrize the momenta of the two photons in their
center-of-mass frame as p̄γ1 = mγγ

2

(
1, sin θ̄ sin ϕ̄, sin θ̄ cos ϕ̄, cos θ̄

)
,

p̄γ2 = mγγ
2

(
1, − sin θ̄ sin ϕ̄, − sin θ̄ cos ϕ̄, − cos θ̄

)
,

(A.6)

and we then perform a longitudinal boost with rapidity yCM
γγ of eq. (A.5) to obtain p̄′γ1 = mγγ

2

(
2−ξ−ξy cos θ̄

r , sin θ̄ sin ϕ̄, sin θ̄ cos ϕ̄, (2−ξ) cos θ̄−ξy
r

)
,

p̄′γ2 = mγγ
2

(
2−ξ+ξy cos θ̄

r , − sin θ̄ sin ϕ̄, − sin θ̄ cos ϕ̄, −(2−ξ) cos θ̄−ξy
r

)
,

(A.7)

where
r =

√
(2− ξ)2 − ξ2y2 . (A.8)

We now impose that the momentum pγ1 in the partonic center-of-mass frame of γγj has
the same direction as p̄′γ1 . In this way, if the photon γ1 of Φγγ becomes too close to the
incoming beams, then also the photon γ1 of Φγγj will be close to the beams, and will be
suppressed by the Born suppression factors of eq. (2.36). To achieve this, we change the
energy of p̄′γ1 , introducing the dimensionless parameter E , such that the momentum of γ1
in the center-of-mass frame kinematics of Φγγj is given by

pγ1 = E
√
s

(
2− ξ − ξy cos θ̄

r
, sin θ̄ sin ϕ̄, sin θ̄ cos ϕ̄, (2− ξ) cos θ̄ − ξy

r

)
. (A.9)

We fix the value of E by imposing that the second photon stays massless. In fact, from the
momentum conservation of eq. (A.1)

pγ2 = p⊕ + p	 − pγ1 − pj

=
√
s

(
1− ξ

2 − E
2− ξ − ξy cos θ̄

r
, −ξ2

√
1− y2 sinφj − E sin θ̄ sin ϕ̄,

−ξ2

√
1− y2 cosφj − E sin θ̄ cos ϕ̄, −ξy2 − E

(2− ξ) cos θ̄ − ξy
r

)
, (A.10)
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and by imposing p2
γ2 = 0 we have

E = 1− ξ
r + ξ

√
1− y2 sin θ̄ cos(φj − ϕ̄)

. (A.11)

Once the momenta pj, pγ1 and pγ2 , given by eqs. (A.3), (A.9) and (A.10) are known in their
partonic center-of-mass frame, we can obtain their expression in the laboratory system by
performing a longitudinal boost with the rapidity of the center-of-mass system.

A.3 The Jacobian of the mapping

In order to conclude the procedure to build Φγγj from Φγγ, we need to compute the Jacobian
of the transformation we have outlined in the previous section. Following the Powheg
notation [89, 90], we write the infinitesimal phase space volume in terms of the Bjorken x as

dΦ3 ≡ dx⊕ dx	 dΦγγj = dx̄⊕ dx̄	 dΦrad dΦγγ , (A.12)

where
dΦrad ≡

s

(4π)3
ξ

1− ξ dξ dy dφj , (A.13)

is written using the FKS radiation variables. We would like to express dΦγγ using the
polar and azimuthal angle of one photon in the center-of-mass frame of the diphoton
system, i.e. θ′ and ϕ′, where it can be written as

dΦγγ = 1
32π2 d cos θ′ dϕ′ , (A.14)

in terms of the angles of our mapping, i.e. θ̄ and ϕ̄, that we have used to write eqs. (A.9)
and (A.10). Using the fact that dΦγγ is a Lorentz scalar, we need to compute the Jacobian
J that relates the change of variables

dΦγγ = J

32π2 d cos θ̄ dϕ̄ . (A.15)

In order to do this, we find the sequence of boosts from the partonic center-of-mass
frame of γγj to the center-of-mass frame of the diphoton system. We first perform a
longitudinal boost of the momenta pγ1 and pγ2 of eqs. (A.9) and (A.10) to the frame where
the diphoton system has zero rapidity. The longitudinal rapidity of the boost is given by
eq. (A.5) and we obtain

pL
γ1 = E

√
s
(
1, sin θ̄ sin ϕ̄, sin θ̄ cos ϕ̄, cos θ̄

)
,

pL
γ2 =

√
s

(
r

2 − E , −
ξ

2

√
1− y2 sinφj − E sin θ̄ sin ϕ̄,

−ξ2

√
1− y2 cosφj − E sin θ̄ cos ϕ̄, −E cos θ̄

)
. (A.16)

Then we perform a transverse boost to the diphoton rest system with transverse velocity

vT = −ξ
√

1− y2

r
(sinφj, cosφj, 0) , (A.17)
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and we get
pT
γ1 = mγγ

2
(
1,pT

γ1

)
, pT

γ2 = mγγ

2
(
1,−pT

γ1

)
, (A.18)

where

pT
γ1

= 1
r + ξ

√
1− y2 sin θ̄ cos(φj − ϕ̄)

×
(

sinφj
(
r sin θ̄ cos(ϕ̄− φj) + ξ

√
1− y2

)
+ 2

√
1− ξ cosφj sin θ̄ sin(ϕ̄− φj) ,

cosφj
(
r sin θ̄ cos(ϕ̄− φj) + ξ

√
1− y2

)
− 2

√
1− ξ sinφj sin θ̄ sin(ϕ̄− φj) ,

2
√

1− ξ cos θ̄
)
. (A.19)

In the diphoton rest system, pT
γ1
, written as a function of θ′ and ϕ′, has components

pT
γ1
≡
(
sin θ′ sinϕ′, sin θ′ cosϕ′, cos θ′

)
. (A.20)

By comparing eqs. (A.19) and (A.20), we can write

cos θ′ = 2
√

1− ξ cos θ̄
r + ξ

√
1− y2 sin θ̄ cos(φj − ϕ̄)

(A.21)

tanϕ′ =
sinφj

(
r sin θ̄ cos(ϕ̄− φj) + ξ

√
1− y2

)
+ 2
√

1− ξ cosφj sin θ̄ sin(ϕ̄− φj)

cosφj
(
r sin θ̄ cos(ϕ̄− φj) + ξ

√
1− y2

)
− 2
√

1− ξ sinφj sin θ̄ sin(ϕ̄− φj)
(A.22)

and from these expressions, we can compute the Jacobian J

J = ∂(cos θ′, ϕ′)
∂
(
cos θ̄, ϕ̄

) = 4(1− ξ)(
r + ξ

√
1− y2 sin θ̄ cos(ϕ̄− φj)

)2 . (A.23)

This completes the calculation of the direct and inverse mapping Φγγj ↔ Φγγ and the
construction of the three-body phase space, from one side, and of its inverse mapping, on
the other.

B MiNNLOPS formulae

In this section, we provide the explicit expressions for the ingredients needed in the
MiNNLOPS formulae, focussing in particular on their renormalization and factorization
scale dependence. We use the same notation as ref. [50], and we refer the interested reader
to this paper for further details. For ease of notation, we drop all the dependences on the
kinematic variables, and we retain only that on the scales, which we assume to be equal,
µR = µF = µ. In section 2.4, a physical quantity G computed at scale µ was indicated with
[G(Φγγ, pT)]µ. In the compact notation of this section, it is now simply written as G(µ).

– 26 –



J
H
E
P
0
9
(
2
0
2
2
)
0
6
1

Using this notation, from the definition of D in eq. (2.25) and of its expansion in
eq. (2.28), we have

[D(pT)](1) =
[
dL(pT)
dpT

](1)
− [L(pT)](0)

[
dS̃(pT)
dpT

](1)

(B.1)

[D(pT)](2) =
[
dL(pT)
dpT

](2)
− [L(pT)](0)

[
dS̃(pT)
dpT

](2)

− [L(pT)](1)
[
dS̃(pT)
dpT

](1)

. (B.2)

The explicit expression for the luminosity L, evaluated at scales pT, is

L(pT) =
∑
cd

|Mcd→γγ |2 H̃cd→γγ
∑
ij

(
C̃ci ⊗ f [a]

i

) (
C̃dj ⊗ f

[b]
j

)
, (B.3)

where |Mcd→γγ |2 is the Born squared amplitude for the process cd → γγ (in this case c and
d are a quark-antiquark pair), H̃cd→γγ encodes its virtual corrections up to two loops,17

the C̃ij are the collinear coefficient functions and f
[a]
i is the PDF for the parton i in the

hadron a. Both H̃cd→γγ and C̃ij can be written as an expansion in αS as

H̃cd→γγ = 1 +
(
αS

2π

)
H(1) +

(
αS

2π

)2
H̃(2) +O

(
α3

S

)
, (B.4)

and
C̃ij(z) = δ(1− z) δij +

(
αS

2π

)
C

(1)
ij (z) +

(
αS

2π

)2
C̃

(2)
ij (z) +O

(
α3

S

)
. (B.5)

In the above formula H(1) and H̃(2) are the one- and two-loop virtual corrections for the
process qq̄ → γγ written in the MS renormalization and subtraction schemes.18 If we
introduce the usual definitions for the Mandelstam variables

s = (p⊕ + p	)2 t = (p⊕ − pγ1)2 u = (p⊕ − pγ2)2 , (B.6)

and define
v = −u

s
, (B.7)

the explicit expression for H(1) is [104]

H(1) = CF

{
π2 − 7 + 1 + (1− v)2

v2 + (1− v)2 log2(1− v) + 1 + v2

v2 + (1− v)2 log2(v)

+ v (2 + v)
v2 + (1− v)2 log(1− v) + (1− v) [2 + (1− v)]

v2 + (1− v)2 log(v)
}
. (B.8)

We stress again that the renormalization and factorization scales in eq. (B.3) are both set
to pT, as indicated by the argument of the luminosity L. Finally, the convolution operator
is defined, as usual, as

(f ⊗ g)(x) ≡
∫ 1

x

dz

z
f(z) g

(
x

z

)
. (B.9)

17In the two-loop contributions, all effects from massive quarks have been neglected.
18The H̃(2) term is obtained from the two-loop contribution H(2) of refs. [86, 87], by the manipulations

required by the MiNNLOPS method, as explained in ref. [50].

– 27 –



J
H
E
P
0
9
(
2
0
2
2
)
0
6
1

The expansion of D at a scale µ can be written as

D(µ) = αS(µ)
2π [D(µ)](1) +

(
αS(µ)

2π

)2
[D(µ)](2) +O

(
α3

S

)
(B.10)

where

[D(µ)](1) =
[
dL(µ)
dpT

](1)
− [L(µ)](0)

[
dS̃(µ)
dpT

](1)

(B.11)

[D(µ)](2) =
[
dL(µ)
dpT

](2)
− [L(µ)](0)

[
dS̃(µ)
dpT

](2)

− [L(µ)](1)
[
dS̃(µ)
dpT

](1)

. (B.12)

All the needed ingredients to compute eqs. (B.11) and (B.12) can be obtained by applying
the DGLAP evolution equations

d

d logµ2
F
f [a]
c (µF) = αS

2π
∑
i

(
P

(0)
ci ⊗ f

[a]
i

)
+
(
αS

2π

)2∑
i

(
P

(1)
ci ⊗ f

[a]
i

)
+O

(
α3

S

)
, (B.13)

to compute the scale dependence of the parton distribution function

f [a]
c (µF) = f [a]

c (pT) + αS

2π
∑
i

(
P

(0)
ci ⊗ f

[a]
i

)
log µ

2
F

p2
T

+O
(
α2

S

)
, (B.14)

and the renormalization group equation

d

d logµ2
R

αS (µR)
2π = −

(
αS

2π

)2
β0 +O

(
α2

S

)
(B.15)

with
β0 = 11CA − 4TRnf

6 , (B.16)

to compute the running of αS

αS (µR)
2π = αS (pT)

2π −
(
αS

2π

)2
β0 log µ

2
R

p2
T

+O
(
α3

S

)
. (B.17)

We then obtain

[L (µ)](0) =
∑
cd

|Mcd→γγ |2 f [a]
c f

[b]
d (B.18)

[L (µ)](1) =
∑
cd

|Mcd→γγ |2
{∑

i

[(
C

(1)
ci ⊗ f

[a]
i

)
f

[b]
d + f [a]

c

(
C

(1)
di ⊗ f

[b]
i

)]

−
∑
i

[(
P

(0)
ci ⊗ f

[a]
i

)
f

[b]
d + f [a]

c

(
P

(0)
di ⊗ f

[b]
i

)]
log
(
µ2

F

p2
T

)

+H
(1)
cd→γγ f

[a]
c f

[b]
d

}
, (B.19)

where the parton distribution functions on the right-hand side are evaluated at scale µF.
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In addition, from the corresponding expressions evaluated at scale pT given in refs. [50,
51], we can compute

[
dL(µ)
dpT

](1)
=
∑
cd

|Mcd→γγ |2
∑
i

[(
P

(0)
ci ⊗ f

[a]
i

)
f

[b]
d + f [a]

c

(
P

(0)
di ⊗ f

[b]
i

)]
(B.20)

[
dL(µ)
dpT

](2)
=
∑
cd

|Mcd→γγ |2
{∑

i

[(
P

(1)
ci ⊗ f

[a]
i

)
f

[b]
d + f [a]

c

(
P

(1)
di ⊗ f

[b]
i

)]
+
∑
ij

[ (
P

(0)
ci ⊗ C

(1)
ij ⊗ f

[a]
j

)
f

[b]
d +

(
C

(1)
ci ⊗ f

[a]
i

) (
P

(0)
dj ⊗ f

[b]
j

)
+
(
P

(0)
ci ⊗ f

[a]
i

) (
C

(1)
dj ⊗ f

[b]
j

)
+ f [a]

c

(
P

(0)
di ⊗ C

(1)
ij ⊗ f

[b]
j

) ]
−
∑
ij

[ (
P

(0)
ci ⊗ P

(0)
ij ⊗ f

[a]
j

)
f

[b]
d +

(
P

(0)
ci ⊗ f

[a]
i

) (
P

(0)
dj ⊗ f

[b]
j

)

+
(
P

(0)
ci ⊗ f

[a]
i

) (
P

(0)
dj ⊗ f

[b]
j

)
+ f [a]

c

(
P

(0)
di ⊗ P

(0)
ij ⊗ f

[b]
j

) ]
log
(
µ2

F

p2
T

)

+H(1)
cd→γγ

∑
i

[(
P

(0)
ci ⊗ f

[a]
i

)
f

[b]
d + f [a]

c

(
P

(0)
di ⊗ f

[b]
i

)]}

−β0 [L (µ)](1) + β0

[
dL(µ)
dpT

](1)
log
(
µ2

R

p2
T

)
, (B.21)

and [
dS̃(µ)
dpT

](1)

= A(1) log
(
Q2

p2
T

)
+B(1) (B.22)

[
dS̃(µ)
dpT

](2)

= A(2) log
(
Q2

p2
T

)
+ B̃(2) + β0

[
dS̃(µ)
dpT

](1)

log
(
µ2

R

p2
T

)
. (B.23)

where A(i) and B(i) are given, for example, in ref. [50].
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