
Well posedness of the nonlinear Schrödinger equation
with isolated singularities

Claudio Cacciapuotia, Domenico Fincob, Diego Nojac

aDipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy
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Abstract

We study the well posedness of the nonlinear Schrödinger (NLS) equation with a point
interaction and power nonlinearity in dimension two and three. Behind the autonomous
interest of the problem, this is a model of the evolution of so called singular solutions
that are well known in the analysis of semilinear elliptic equations. We show that
the Cauchy problem for the NLS considered enjoys local existence and uniqueness of
strong (operator domain) solutions, and that the solutions depend continuously from
initial data. In dimension two well posedness holds for any power nonlinearity and
global existence is proved for powers below the cubic. In dimension three local and
global well posedness are restricted to low powers.
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1. Introduction

In the present paper we want to define the dynamics of the nonlinear Schrödinger equa-
tion (or briefly NLS equation) in the presence of isolated singularities.
By isolated singularities we mean the solutions of the equation i∂tψ = −∆ψ ± |ψ|p−1ψ

ψ(0) = ψ0
(1.1)

where ψ ∈ H2(Rn \ {0}). The sign in front of the nonlinearity will be not important
in the sequel. Our main result is the local and global well posedness in dimension
n = 2 or n = 3 when the nature of admitted singularities is suitably restricted. To make
more clear the premises of our analysis we describe the analogous and well known
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problem in the time independent case. Isolated singularities of semi linear elliptic
equations constitute a subject of study flourished at the end of ’70s and still prolific,
with important ramifications toward quasilinear elliptic and parabolic equations (see
for an incomplete but representative bibliography [5, 14, 17, 21, 24, 25, 29, 30] and
references therein). An example especially relevant in our context is given by the
stationary equation associated to (1.1):

−∆u ± |u|p−1u − ωu = 0. (1.2)

Its positive solutions defined and regular on Rn \ {0} and vanishing at infinity are called
ground states or singular ground states according to their behavior at 0, respectively
bounded or diverging. Consider for example the equation with the minus sign in (1.1)
or (1.2), the so called focusing stationary NLS equation. A typical result is the follow-
ing. Let 1 < p < n

n−2 (p > 1 if n = 2); for any singular ground state u of (1.2) there
exist q > 0 depending on u such that

lim
x→0

u(x)|x|n−2 = q (n > 3) or lim
x→0

u(x)
1

log 1
|x|

= q (n = 2).

Moreover u solves as a distribution

−∆u − |u|p−1u − ωu = cnqδ0

for some positive constant cn depending on the dimension only and that can be absorbed
in the singularity. So the only singularities admitted have the behavior of the funda-
mental solution of the Laplacian G0. For n

n−2 < p < n+2
n−2 the singular ground state still

exists but with a different power type singularity up depending on p, and for p > n+2
n−2

equation (1.2) has neither a ground state nor a singular ground state (see [24, 25]). Re-
sults for the defocusing (plus sign in (1.1) or (1.2)) again show an alternative between
a ground state with the singularity of the fundamental solution of the Laplacian G0,
a different singularity up and finally no ground states at all. The difference with re-
spect to the focusing case is that the two different singularities can coexist in the range

n
n−2 < p < n+2

n−2 . We refer to the already quoted references and the detailed monograph
[30] for a complete analysis. In the present work we want to study the time dependent
NLS equation in the regime in which the singularities around the origin are of type of
the fundamental solution G0. It is by no means an obvious fact that this behavior, if
initially present, could be preserved by the NLS flow for some range of nonlinearities.
To analyze this problem and to achieve our main result, we choose to work in a Hilbert
space setting. It turns out that a convenient way to rewrite the equation in (1.1) is as
the abstract NLS equation

i∂tψ = Hαψ ± |ψ|
p−1ψ

whereHα is a self-adjoint operator in L2(Rn). The operatorHα is well defined only for
n 6 3 and it belongs to the class of point interactions (see [2] and references therein,
and Section 2.1 below for the essential facts). This well known class of operators is the
most suitable linear part for the abstract NLS equation because elements of the domain
ψ ∈ D(Hα) behave at the origin exactly as the fundamental solution, and they have
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H2 Sobolev regularity away from the origin. Namely, every element inD(Hα) has the
structure

ψ = φλ + qGλ (λ > 0)

where Gλ is the Green function of the Laplacian, (−∆ + λ)Gλ = δ0, and φλ ∈ H2(Rn)
and q is a complex coefficient.
Moreover a precise relation between the coefficient q and the regular part φλ ∈ H2 is
needed to have a self-adjoint operator with domainD(Hα). In this boundary condition
appears a real parameter α and for any such α one has a different self-adjoint operator
Hα. Complete definitions will be given in Section 2.1. These facts suggest to treat
the nonlinear term as a perturbation in the linear Schrödinger dynamics generated by
Hα and to search for strong solutions of the NLS equation, i.e. solutions of (1.1) with
initial data inD(Hα). The above considerations lead eventually to the Cauchy problem i∂tψ = Hαψ ± |ψ|

p−1ψ

ψ(0) = ψ0 ∈ D(Hα)
(1.3)

We are not aware of any result about this evolution problem in dimension n > 1. On
the contrary, some rigorous literature exists in the much simpler one dimensional case,
where the operator Hα can be interpreted, at least formally, as a Schrödinger operator
with a delta potential (see [1] and the treatment in the more general context of quantum
graphs given in [8]). We also mention the paper [23], where the Cauchy problem with
Hartree nonlinearity is treated. As usual the analysis of (1.3) is reduced via Duhamel
formula to the following integral equation:

ψ(t) = e−itHαψ0 − i
∫ t

0
e−i(t−s)Hα |ψ(s)|p−1ψ(s) ds, (1.4)

and afterwards we recovery the solutions of the differential equation, see Section 3.
Preliminary to the analysis of well posedness of (1.3) is the construction of some es-
sential technical tools. Namely one has to extend classical interpolation inequalities to
a scale of spaces modeled onD(Hα) (so including singular behavior), and to prove dis-
persive and Strichartz estimates. These properties, for the most part new, are discussed
and proved in Section 2. The local well posedness is our first main result, the proof of
which fills Section 3, including local existence, unconditional uniqueness, continuous
dependence and blow-up alternative. More precisely, we prove the following:

Theorem 1 (Local Well-Posedness in D(Hα)). Assume p > 1 if n = 2 and 1 6 p <
3/2 if n = 3 and let ψ0 ∈ D(Hα). Then the following properties hold true.
1) There exists T ∈ (0, 1] and a strong solution of (1.4) in C([0,T ];D(Hα))∩C1([0,T ]; L2).
2) The solution ψ ∈ W1,r((0,T ); Lp+1), where r is such that (r, p + 1) is admissible (as
in Def. 2.5).
3) The solution enjoys unconditional uniqueness in C([0,T ];D(Hα)).
4) There is continuous dependence on initial data, in the following sense. Let ψn

0 → ψ0
in D; then denoted as ψ and ψn the solutions of (1.4) corresponding to initial data ψ0
and ψn

0, one has ψn → ψ in C([0,T ];D(Hα)).
5) The following blow-up alternative holds. Let the maximal existence time be defined
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as
T ∗ = sup

T>0

{
ψ ∈ C([0,T ],D(Hα)) ∩C1([0,T ], L2) solves (1.4)

}
;

then
lim
t→T ∗
‖ψ(t)‖D(Hα) < ∞ =⇒ T ∗ = ∞.

See Section 2 for the definition of the graph norm ‖ψ‖D(Hα). While the proof of the
well posedness is insensitive to the actual value of α (which by this reason and by no-
tational simplicity will be discarded after Section 2.1), the result provides families of
singular solutions parametrized by the real α. More detailed analysis of the dynamics
can of course depend on it. The proof exploits the framework introduced by Kato (see
[18, 19, 20]) to study the standard case of the Laplacian, but with different conclusions.
In particular, we stress that the two and three dimensional cases display a rather differ-
ent behavior with respect to the nonlinearity power. The good news is that, as in the
standard case of the Laplacian, local well posedness holds for any power in the two
dimensional case. On the contrary, in the three dimensional case the admitted powers
are greatly restricted, being in the range p ∈ (1, 3/2), which means a rather mild non-
linearity. We recall that strong H2 solutions exist in the standard case for any power p.
It seems not possibile to overcome this limitation in the present framework: powers of
the logarithm are tame, inverse powers of |x| are not. We also notice that a consequence
of the well posedness for problem (1.3) is that its solutions solve in distributional sense
the equation

i∂tψ = −∆ψ ± |ψ|p−1ψ − qδ0 .

This is a NLS equation with a time dependent delta source (recall that q depends on
time for strong solutions of (1.3); see Remark 3.2). This fact gives a further and sug-
gestive interpretation of both (1.3) and the kind of evolution of singular solutions. In
Section 4, after showing conservation laws of L2 mass and energy, the second main
result of this paper is global well posedness of the dynamics. Namely, we prove

Theorem 2. Let 1 < p < 3 if n = 2 and 1 < p < 3
2 if n = 3 and consider the maximal

solution ψ ∈ C([0,T ∗);D(Hα))∩C1([0,T ∗); L2) of the problem (3.1).Then the solution
ψ is global, i.e. T ∗ = ∞.

Again, for the two dimensional case nothing changes with respect to the standard case
of the Laplacian: also in the presence of singular solutions, global existence is guar-
anteed for nonlinearities p < 3 for any initial datum. On the other hand, in the three
dimensional case global existence holds for the same powers in which local existence
is true, p < 3/2.
We conclude this introduction describing possible developments and perspectives raised
by the present results, not reduced to the always possible extensions and technical re-
finements of the results (among the latter we include for example well posedness in
L2 or in the form domain of the operator). The problem of singular solutions has an
autonomous mathematical interest; however, as recorded in the references cited above,
a not secondary physical motivation for their study originated in models of condensed
matter, in particular stationary Fermi-Thomas theory and examples of Yang-Mills the-
ories. Due to the considered models it was natural to limit the analysis to the elliptic
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stationary case. However, we notice that one could be interested in the dynamics of
Bose-Einstein condensates in the presence of defects, conveniently modeled as point
interactions. In this case the relevant equation is the time dependent one. In partic-
ular vortex solutions could fall within this description. A first step is the analysis of
existence of stationary solutions and their stability. The first, and in fact unique, result
about existence of stationary solutions in which use has been made of point interactions
appeared in [6] and [7]. In those papers a branch of singular ground states bifurcating
from the linear eigenstate of H was proved for the 3D stationary defocusing case in
equation (1.2). A more complete classification of standing waves would be desirable,
firstly as regards ground states, then including excited (non sign-definite) states and
eventually considering the interactions of several singularities (not treated in this pa-
per). Stability of the solutions with respect of the NLS flow is then a natural question.
In this respect, we also mention on the physical and modeling side the recent contribu-
tions in [26, 27] that seem to have raised an interest on “singular solitons”. A second
relevant question concerns a detailed analysis of the evolution for the critical (p = 3)
and supercritical (p > 3) nonlinearities in the n = 2 case. One expects blow-up and
it would be interesting to understand if and how the singularity plays a role. Finally,
scattering theory for the NLS in the presence of point defects is also a relevant issue.
About all these problems there is no previous analysis, and they seem to deserve some
interest.

2. Preliminaries

In this section we fix notations and we prove some technical results used in the follow-
ing.
We denote by x, k and so on, points in Rn, n = 2, 3. Correspondingly, we use the
notation x ≡ |x|, k ≡ |k|.
We denote by f̂ the Fourier transform of f , defined to be unitary in L2(Rn):

f̂ (k) :=
1

(2π)n/2

∫
Rn

dx e−ik·x f (x) k ∈ Rn.

We denote by ‖ · ‖ the L2(Rn)-norm associated with the inner product 〈·, ·〉 and with
‖ · ‖p the Lp(Rn)-norm while we use ‖ · ‖Hs for the norm in the Sobolev spaces Hs(Rn),
s ∈ R.
As customary, we denote with the same symbol 〈·, ·〉 the duality between Banach spaces
or evaluation of distributions. We use sometimes Dirac notation, that is |u〉〈v| stands
for the 1-rank operator f ; u〈v, f 〉.
For all λ > 0 we denote by Gλ the L2 solution of the distributional equation (−∆ +

λ)Gλ = δ0, where δ0 is the Dirac-delta distribution centered in x = 0. Hence, the
integral kernel of the resolvent of the Laplacian is given by

Gλ(x − y) = (−∆ + λ)−1(x − y) λ ∈ R+.
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Explicitly we have:

Gλ(x) =


1

2π
K0(
√
λ x) n = 2;

e−
√
λ x

4πx
n = 3.

Here K0 is the Macdonald function of order zero. We recall the relation 1
2πK0(

√
λ x) =

i
4 H(1)

0 (i
√
λ x), where H(1)

0 (z) is the Hankel function of first kind and order zero (also
known as zeroth Bessel function of the third kind), see, e.g., [32] Eq. (8) p. 78).
We use c and C to denote generic positive constants whose dependence on the param-
eters of the problem is irrelevant, their value may change from line to line.

2.1. Point interactions
We denote by Hα the self-adjoint operator in L2(Rn), n = 2, 3, given by the Laplacian
with a delta interaction of “strength” α placed in the origin.
We recall that, see [2], both for n = 2 and n = 3 the structure of the domain of Hα is
the same:

D(Hα) =
{
ψ ∈ L2(Rn)| ψ = φλ + q Gλ, φλ ∈ H2(Rn), q = Λλ

α φ
λ(0)

}
(2.1)

with

(Λλ
α)−1 =


2π

2πα + γ + ln(
√
λ/2)

n = 2,

1

α +
√
λ

4π

n = 3;
α ∈ R.

Here λ can be taken in R+ (possibly excluded one point which we denote by −Eα,
where Eα is the negative eigenvalue of Hα, see below for the details). For n = 2, γ is
the Euler-Mascheroni constant. The constant α is real and it parametrizes the family
of operators through q = Λλ

α φ
λ(0), which plays the role of a boundary condition at the

singularity. For both n = 2 and 3 the free dynamics is recovered in the limit α→ +∞.
The action of the operator is given by

(Hα + λ)ψ = (−∆ + λ)φλ ∀ψ ∈ D(Hα). (2.2)

The HamiltonianHα has [0,∞) as continuous spectrum furthermore there is no singular
continuous spectrum. For n = 2, Hα has a simple negative eigenvalue {Eα} for any
α ∈ R. For n = 3, if α > 0 there is no point spectrum, while for α < 0 there is a
simple negative eigenvalue {Eα}. Whenever the eigenvalue Eα exists, we denote by ψα
the corresponding eigenvector. Explicitly one has:

Eα = −4e−2(2πα+γ) ψα(x) =
1

2π
K0(2 e−(2πα+γ)x) n = 2;

Eα = −(4πα)2 ψα(x) =
e4πα x

4πx
, α < 0 n = 3.

The resolvent ofHα is given by the abstract Kreı̆n resolvent formula

(Hα + λ)−1 = (−∆ + λ)−1 + (Λλ
α)−1|Gλ〉〈Gλ| λ ∈ R+\{|Eα|} (2.3)
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(λ ∈ R+ if n = 3 and α > 0 and R+ = (0,+∞)).
For λ > |Eα| (take λ > 0 if n = 3 and α > 0) we define

Ds
α := D

(
(Hα + λ)s), s ∈ R

where (Hα+λ)s is a self-adjoint operator on L2(Rn) defined through functional calculus.
We equip Ds

α with the norm ‖ψ‖Ds
α

:= ‖(Hα + λ)sψ‖, equivalent to the graph norm of
the operator (Hα + λ)s. Consistently we set

Dα ≡ D
s=1
α = D(Hα) (2.4)

defined in Eq. (2.1).

Remark 2.1. Given a function ψ ∈ Dα, we refer to φλ (defined in Eq. (2.1)) as its
regular part. By Eq. (2.2), ‖ψ‖Dα

= ‖(Hα + λ)ψ‖ = ‖(−∆ + λ)φλ‖ which is equivalent
to ‖φλ‖H2 . Since ‖ · ‖Dα

is also equivalent to the graph norm of Hα, then ‖ · ‖Dα
is

equivalent to the H2-norm of the regular part. From now on we shall always use the
notation (2.4) for the set D(Hα), and work with the norm ‖ · ‖Dα

.

From now on, to simplify the notation, and since α is regarded as a fixed parameter,
we omit α from the notation for objects that may depend on it and we simply write, for
example,H ≡ Hα, Λ ≡ Λα, andD ≡ Dα.

2.2. Embeddings and interpolation inequalities

We recall the Sobolev embedding (see, e.g., [28, Th. 2.8.1 b) and e), and Rem. 2 to the
theorem]):

Hs(Rn) ↪→ Lq(Rn) 2 6 q < ∞, s > sc;
Hs(Rn) ↪→ CB(Rn) s > n/2;

(2.5)

where sc = n( 1
2 −

1
q ) and CB(Rn) denotes the space of bounded, continuous functions

on Rn. We will need further embedding properties involving the domains of operators
H + λ and the domains of their fractional powers. Recall that, for all λ > 0,

Gλ ∈ Ls(R3) 1 6 s < 3;

Gλ ∈ Ls(R2) 1 6 s < ∞.

Hence, by the definition of the operator domainD, see Eq. (2.1), it follows that

D ↪→ Lq(Rn) where 2 6 q < 3 if n = 3, and 2 6 q < ∞ if n = 2. (2.6)

A less obvious property is given in the following:

Proposition 2.2. We haveDs/2 ↪→ Hs with continuous embedding when:

0 < s < 1 if n = 2;
0 < s < 1/2 if n = 3.
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Proof. Let us start from an abstract result. Recall the integral identity (see, e.g., [4,
Ch. 10.4]):

xs/2 =
sin( s

2π)
π

∫ +∞

0
dt t

s
2−1 x

t + x
x > 0, s ∈ (0, 2).

The latter, applied to x = (y + λ)−1, (y + λ) > 0, an by means of the change of variables
t → 1/t, gives

(y + λ)−s/2 =
sin( s

2π)
π

∫ +∞

0

dt
ts/2 (y + λ + t)−1 (y + λ) > 0, s ∈ (0, 2).

Hence, by functional calculus and by the Kreı̆n resolvent formula (see Eq. (2.3)), one
infers (see [13]):

(H + λ)−s/2 = (−∆ + λ)−s/2 +
sin s

2π

π

∫ +∞

0

dt
ts/2 (Λλ+t)−1|Gλ+t〉〈Gλ+t | λ > |Eα|

(λ > 0 if n = 3 and α > 0).
Starting from the latter identity, for n = 3 and α > 0 a stronger result was proven in
[13], see Theorem 3.2, namely thatDs/2 = Hs for 0 < s < 1/2 and that the graph norm
associated to (H + λ)s/2 is equivalent to the standard Sobolev norm.
Being ψ ∈ Ds/2 iff ψ = (H + λ)−s/2 f for f ∈ L2, any function inDs/2 can be written as
ψ = ψ1 + ψ2 with ψ1 = (−∆ + λ)−s/2 f and

ψ2 =
sin s

2π

π

∫ +∞

0

dt
ts/2 (Λλ+t)−1Gλ+t g(t) g(t) = 〈Gλ+t, f 〉.

Since ψ1 manifestly belongs to D((−∆ + λ)s/2) and the graph norm of (−∆ + λ)s/2 is
equivalent to the Hs-norm, we turn our attention to ψ2. Taking the Fourier transform
we have

ψ̂2(k) =
sin s

2π

π

∫ +∞

0

dt
ts/2 (Λλ+t)−1 g(t)

k2 + λ + t
, g(t) =

∫
R3

dk
1

k2 + λ + t
f̂ (k).

We want to prove that ψ2 ∈ Hs. For n = 3 and α < 0 notice that proofs of Lemma 5.1
and Proposition 5.2 of [13] hold true without modifications if one assumes λ > |Eα|.
Lemma 5.1 is actually unrelated to the value of α and Proposition 5.2 uses only the fact
that supt>0(Λλ+t)−1 < ∞, which is indeed the case if λ > |Eα|. This completes the proof
of the three dimensional case.
Let us consider the two dimensional case. First we prove that∫ +∞

0
dt |g(t)|2 6 c‖ f ‖2. (2.7)

We start by noticing that∫ +∞

0
dt

∣∣∣∣∣∫
R2

dk
1

k2 + λ + t
f̂ (k)

∣∣∣∣∣2 =

∫ +∞

0
dt

∣∣∣∣∣∣
∫ +∞

0
dk

√
k

k2 + λ + t

√
kA f̂ (k)

∣∣∣∣∣∣
2
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where

A f̂ (k) =

∫ 2π

0
dθ f̂ (k, θ).

Notice that
√

kA f̂ ∈ L2(R+) and that ‖
√

kA f̂ ‖L2(R+) 6
√

2π‖ f ‖. Then, to complete the
proof of Eq. (2.7), it is sufficient to prove that

T1(t, k) =

√
k

k2 + λ + t

is the integral kernel of a bounded operator T1 : L2(R+) → L2(R+). To this aim, let us
notice that, by scaling t → t/(k2 + λ) in the integral we have

sup
k>0

∫ +∞

0
dt T1(t, k)

1
t1/4 6 sup

k>0

√
k

(k2 + λ)
1
4

∫ +∞

0
dt

1
t + 1

1
t1/4 < ∞

and, by scaling k → k/
√

t in the integral,

sup
t>0

t1/4
∫ +∞

0
dk T1(t, k) < sup

t>0
t1/4

∫ +∞

0
dk

√
k

k2 + t
=

∫ +∞

0
dk

√
k

k2 + 1
< ∞,

then the claim follows from Schur’s test, see, e.g., [15].
Next we prove that ψ̂2 is in Hs. Precisely, we are going to prove that (−∆+λ)s/2ψ2 ∈ L2.
To this aim we shall show that ‖(−∆ +λ)s/2ψ2‖ 6 c‖g‖2L2(R+) and then use the inequality

(2.7). Since ψ̂2 is spherically symmetric, this is equivalent to prove that
√

k(k2 +λ)s/2ψ̂2
belongs to L2(R+). Using the above definitions, we have

√
k(k2 + λ)s/2ψ̂2(k) =

√
k

sin s
2π

π

∫ +∞

0

dt
ts/2

2π

2πα + γ + ln(
√
λ + t/2)

(k2 + λ)s/2

k2 + λ + t
g(t).

Since t > 0, for all λ > |Eα| there exists a constant c such that

0 <
2π

2πα + γ + ln(
√
λ + t/2)

<
2π

2πα + γ + ln(
√
λ/2)

6 c.

Hence, it is sufficient to prove that T2 : L2(R+)→ L2(R+) defined by the integral kernel

T2(t, k) =
k

1
2 (k2 + λ)s/2

ts/2(k2 + λ + t)

is a bounded operator. By scaling t → t/(k2 + λ) in the integral we have, on one hand,

sup
k>0

√
k
∫ +∞

0
dt T2(t, k)

1
√

t
= sup

k>0

k
√

k2 + λ

∫ +∞

0
dt

1

t
s
2 + 1

2 (1 + t)
< ∞.

On the other hand, by scaling k → k/
√
λ + t it is easy to see that

sup
t>0

√
t
∫ +∞

0
dk T2(t, k)

1
√

k
6 c

(
sup
t>0

t
1
2−

s
2

∫ +∞

0
dk

ks

k2 + λ + t
+ λs/2 sup

t>0
t

1
2−

s
2

∫ +∞

0
dk

1
k2 + λ + t

)
=c

sup
t>0

( t
λ + t

) 1
2−

s
2
∫ +∞

0
dk

ks

k2 + 1
+ λs/2 sup

t>0

t
1
2−

s
2

(t + λ)
1
2

∫ +∞

0
dk

1
k2 + 1


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here the constant c depends on s. Hence, the claim follows from Schur’s test.
Then we have

‖(−∆ + λ)s/2ψ2‖
2 = 2π

∫ +∞

0
dk

∣∣∣∣√k(k2 + λ)s/2ψ̂2(k)
∣∣∣∣2 6 c‖g‖2L2(R+) 6 c‖ f ‖2

and the proof is complete.

Thanks to Sobolev embeddings, see Eq. (2.5), and the results in Proposition 2.2 one
has the continuous embeddings

Ds/2(R2) ↪→ Hs(R2) ↪→ Lq(R2) 2 6 q < ∞ s ∈ [sc, 1);

Ds/2(R3) ↪→ Hs(R3) ↪→ Lq(R3) 2 6 q < 3 s ∈ [sc, 1/2);
(2.8)

where sc = n( 1
2 −

1
q ), and the corresponding inequalities

if n = 2 ‖ψ‖Lq 6 c‖ψ‖Hs 6 c2‖ψ‖Ds/2 2 6 q < ∞ s ∈ [sc, 1);
if n = 3 ‖ψ‖Lq 6 c‖ψ‖Hs 6 c3‖ψ‖Ds/2 2 6 q < 3 s ∈ [sc, 1/2).

(2.9)

On the other handH+λ is a self-adjoint and positive operator, and the spectral theorem
allows to build the scale of Hilbert spaces Ds/2 with the inner product 〈ψ1, ψ2〉Ds/2 :=
〈(H +λ)s/2ψ1, (H + λ)s/2ψ2〉. This is a family of real interpolation spaces, in particular
this means that (see, e.g., Section 4.3.1 in [22])

‖ψ‖D(1−θ)a+θb 6 c‖ψ‖1−θDa ‖ψ‖
θ
Db a, b > 0, θ ∈ (0, 1). (2.10)

For a = 0, b = 1/2, θ = s one in particular obtains the inequality

‖ψ‖Ds/2 6 c‖ψ‖1−s
L2 ‖ψ‖

s
D1/2 s ∈ (0, 1);

and, for a = 0, b = 1, θ = s, the inequality

‖ψ‖Ds 6 c‖ψ‖1−s
L2 ‖ψ‖

s
D s ∈ (0, 1).

From (2.10) and (2.9) we finally obtain the Gagliardo-Nirenberg inequalities adapted
to the scale of Hilbert spacesDs:

if n = 2 ‖ψ‖Lq 6 c‖ψ‖1−s
L2 ‖ψ‖

s
D1/2 2 6 q < ∞ s ∈ [sc, 1);

if n = 3 ‖ψ‖Lq 6 c‖ψ‖1−s
L2 ‖ψ‖

s
D1/2 2 6 q < 3 s ∈ [sc, 1/2).

(2.11)

2.3. Evolution operators and space-time estimates
Let us now introduce space-time Banach spaces and several properties of the evolution
operators generated byH needed in the sequel.
For any exponent ρ ∈ [1,+∞] we denote by ρ′ ∈ [1,+∞] its Hölder conjugate:

1
ρ

+
1
ρ′

= 1.
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We will denote Lρ([0,T ]; Lσ(Rn)) by Lρt Lσx and the corresponding norm by ‖ · ‖Lρt Lσx .
The unitary group generated by the operatorH is denoted by:

U(t)φ := (Uφ)(t) = e−itHφ. (2.12)

The corresponding Duhamel operator is

Γu(t) :=
∫ t

0
U(t − s) u(s) ds. (2.13)

By subsection 2.1, the operatorH = Hα, whose domain of definition is D(H), is self-
adjoint and by the spectral theorem the space L2(Rn) splits as orthogonal sum of the
absolutely continuous subspace, the singular continuous subspace (trivial in this case)
and the pure point subspace:

L2(Rn) = Hac(H)
⊕

Hsc(H)
⊕

Hpp(H), Hsc(H) = {0}.

Let Pac(H) be the spectral projector on the absolutely continuous space Hac(H).

Definition 2.3 (Admissible pair). We say that a pair of (time,space) exponents (ρ, σ)
is admissible if

2
ρ

+
n
σ

=
n
2
,

and
σ ∈ [2,+∞) if n = 2;
σ ∈ [2, 3) if n = 3.

Correspondingly ρ ∈ (2,+∞] if n = 2 or ρ ∈ (4,+∞] if n = 3.

Proposition 2.4 (Strichartz estimates for H). For all the admissible pairs (ρ, σ) and
(µ, ν) there exists a positive constant C such that

‖UPac(H)φ‖Lρt Lσx 6 C‖φ‖ (2.14)

and
‖ΓPac(H)u‖Lρt Lσx 6 C‖u‖Lµ′t Lν′x

(2.15)

for all T > 0.

These bounds are a direct consequence of the fundamental bound

‖UPac(H)φ‖σ 6 C|t|−n( 1
2−

1
σ )‖φ‖σ′ t ∈ R\{0}. (2.16)

The proof of the bound (2.16) appeared in [12] for n = 3 and [10] for n = 2 (together
with the Strichartz estimates (2.14) and (2.15), with the time interval [0,T ] replaced
by R), see also [11] and [16]. Notice that the constants appearing in (2.14), (2.15) and
(2.16) do not depend on T but depend on ρ, σ, µ, ν.
In the rest of the paper we will find convenient a different parametrization and notation
for the admissible pair, obtained changing ρ to r and σ to p + 1.
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Definition 2.5. For any p ∈ [1,+∞) if n = 2 or p ∈ [1, 2) if n = 3, we set

r =
4(p + 1)
n(p − 1)

so that (r, p + 1) is a pair of admissible exponents.

We summarize in the following proposition the properties of the linear dynamics needed
in the proof of the main theorems (see [18, 31]).

Proposition 2.6. Let
p ∈ (1,+∞) if n = 2;
p ∈ (1, 2) if n = 3.

and let (r, p + 1) an admissible pair.
Then, the operators U and Γ are defined and bounded between the following spaces
with norms uniformly bounded for T 6 1:

a) U : L2(Rn)→ L∞([0,T ]; L2(Rn))

b) U : L2(Rn)→ Lr([0,T ]; Lp+1(Rn))

c) Γ : L1([0,T ]; L2(Rn))→ L∞([0,T ]; L2(Rn))

d) Γ : L1([0,T ]; L2(Rn))→ L2 → Lr([0,T ]; Lp+1(Rn))

e) Γ : L2 → Lr′ ([0,T ]; L1+1/p(Rn))→ L∞([0,T ]; L2(Rn))

f ) Γ : Lr′ ([0,T ]; L1+1/p(Rn))→ Lr([0,T ]; Lp+1(Rn))

Proof. Properties a) and c) hold true since U is a unitary operator in L2. The other
properties follow from the spectral theorem together with Strichartz estimates for the
continuous part of the spectrum. Let us give few additional details about the proof. Let
us consider the two dimensional case and write

U = U1 + U2 U1 = e−itHPac(H) U2 = e−iEαt |ψα〉〈ψα|

‖ψα‖2
. (2.17)

We decompose Γ = Γ1 +Γ2 accordingly. For the two dimensional case, it was proved in
[10] that U1 and Γ1 satisfy Strichartz estimates and therefore the remaining properties
b) and c)–f) are true since the indexes (r, p + 1) are admissible. Concerning U2 and Γ2,
it is sufficient to notice that ψα ∈ Lσ for 1 6 σ < ∞ and that we are assuming T 6 1;
then straightforward calculations using Hölder’s inequality give:

for n = 2
‖U2 f ‖Lρt Lσx 6 T 1/ρ ‖ψα‖σ‖ψα‖ν

‖ψα‖2
‖ f ‖ν′

‖Γ2u‖Lρt Lσx 6 T 1/ρ+1/µ ‖ψα‖σ‖ψα‖ν

‖ψα‖2
‖u‖µ′,ν′

σ, ν ∈ [1,+∞); ρ, µ ∈ [1,+∞].

(2.18)
Which imply (b), (d), (e), and ( f ) for U2 and Γ2.
In the three dimensional case, for α < 0 we argue in the same way using again (2.17).
Strichartz estimates for U1 and Γ1 have been proved in [12], while for U2 and Γ2 it is
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important to notice that ψα ∈ Lσ only for 1 6 σ < 3. Hence, for n = 3 bounds of the
form (2.18) still hold true but with the constraint σ, ν ∈ [1, 3), which causes no problem
since to prove (b), (d), (e), and ( f ) one needs to set σ = 2 or σ = p + 1, and similarly
for ν. If α > 0 then there is no point spectrum and both U2 and Γ2 are absent.

Remark 2.7. The statement of Proposition 2.6 holds true if T 6 1 is changed in
T 6 T0, for any positive T0. Obviously, in this case the norms of the operators U and
Γ would depend on T0. Since in what follows we shall use Proposition 2.6 to study the
local well-posedness, there is no loss of generality in restricting to the choice T0 = 1.
In the rest of the paper we always make this choice, so that the various norms of U and
Γ can be taken uniformly in T .

Remark 2.8. Some of the above properties can be strengthened. In particular, in
Proposition 2.6 c) the target space is actually C([0,T ], L2). See Proposition 7.3.4 in
[9]).

We end this section introducing four Banach spaces needed in the following, and we
reformulate dispersive estimates in these spaces. In what follows we assume that (r, p+

1) is an admissible couple, according to Definition 2.5. The first couple is given by:

XT =L∞([0,T ]; L2(Rn))
⋂

Lr([0,T ]; Lp+1(Rn))

X̃T =L1([0,T ]; L2(Rn)) + Lr′ ([0,T ]; L1+1/p(Rn))

with norms defined by

‖ f ‖XT = max{‖ f ‖L∞t L2
x
, ‖ f ‖Lr

t Lp+1
x
} ‖ f ‖X̃T

= inf
g+h= f

{‖g‖L1
t L2

x
+ ‖h‖Lr′

t L1+1/p
x
}.

Notice that XT is the topological dual of X̃T , i.e. XT = X̃T
′, and that Proposition 2.6

has the following immediate corollary:

Corollary 2.9. Under the same assumptions of Proposition 2.6 the following holds
true:

U : L2 → XT and Γ : X̃T → XT , (2.19)

as bounded operators and the operator norms are uniformly bounded for every finite
T .

A second couple of useful spaces is given by:

ZT = {v ∈ XT |∂tv ∈ XT , Hv ∈ L∞([0,T ]; L2(Rn))}

Z̃T = {v ∈ L∞([0,T ]; L2(Rn))|∂tv ∈ X̃T }

with norms given by

‖v‖ZT = max{‖v‖XT , ‖∂tv‖XT , ‖Hv‖L∞t L2
x
} ‖v‖Z̃T

= max{‖v‖L∞t L2
x
, ‖∂tv‖X̃T

}.

In the previous definitions and in the following, the expression ∂tv is to be interpreted
as the distributional derivative of the Y-vector valued distribution v ∈ D ′(I,Y) :=
L(D(I),Y), where I is an open interval, D := C∞0 (I) and Y is a relevant Banach space
(see for example [9], sections 1.4.4 and 1.4.5 for details).
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Proposition 2.10. Assume that p > 1 if n = 2 and 1 < p < 2 if n = 3. Then, the
operators U and Γ are defined and bounded between the following spaces:

U : D → ZT Γ : Z̃T → ZT

with norms uniformly bounded in T:

‖Uφ‖ZT 6 c‖φ‖D; (2.20)
‖Γ f ‖ZT 6 c‖ f ‖Z̃T

. (2.21)

Proof. By Corollary 2.9 we have ‖Uφ‖XT 6 c‖φ‖, then by spectral theorem and again
Corollary 2.9 we have

‖HUφ‖L∞t L2
x
6 ‖HUφ‖XT = ‖∂tUφ‖XT = ‖UHφ‖XT 6 c‖Hφ‖,

which proves (2.20).
We note that the obvious inclusion L∞t L2

x ⊂ L1
t L2

x implies Z̃T ⊂ X̃T , hence, for f ∈ Z̃T ,
we have Γ f ∈ XT by Corollary 2.9. In particular we have

‖Γ f ‖XT 6 c‖ f ‖X̃T
6 c‖ f ‖L1

t L2
x
6 c‖ f ‖L∞t L2

x
6 c‖ f ‖Z̃T

.

Notice that
∂tΓ f = Γ∂t f + U f (0). (2.22)

This identity is justified as an identity in XT , whenever f ∈ Z̃T by the following argu-
ment. Firstly note that by Sobolev embeddings there holds true H1(Rn) ↪→ Lp+1(Rn),
hence, by duality, L1+1/p(Rn) ↪→ H−1(Rn). Which in turn implies Lr′ ([0,T ]; L1+1/p) ↪→
L1([0,T ]; H−1) (because Ls([0,T ]) ↪→ L1([0,T ]) for all s > 1). Moreover, triv-
ially, L1,2 ↪→ L1([0,T ]; H−1). Hence, X̃ ↪→ L1([0,T ]; H−1). As a consequence,
∂t f ∈ X̃T ⊂ L1([0,T ]; H−1) and then f ∈ C([0,T ]; H−1). In particular f (0) is well
defined and f (0) ∈ L2 since f ∈ L∞t L2

x. Then, again by Corollary 2.9 we have

‖∂tΓ f ‖XT 6 c(‖∂t f ‖X̃T
+ ‖ f (0)‖) 6 c‖ f ‖Z̃T

.

Notice also that we have
HΓ f = i(∂tΓ f − f ), (2.23)

hence,
‖HΓ f ‖L∞t L2

x
6 ‖∂tΓ f ‖L∞t L2

x
+ ‖ f ‖L∞t L2

x
6 ‖ f ‖Z̃ ,

and the proof of (2.21) is complete.

3. Well Posedness

We want to study strong solutions of the Cauchy problem for the abstract NLS equationi∂tψ(t) = Hψ(t) + F(ψ)(t)
ψ(0) = ψ0 ∈ D

(3.1)
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where F(ψ) = ±|ψ|p−1ψ.
By strong solution of (3.1) we mean a function ψ ∈ C([0,T ];D)∩C1([0,T ]; L2) which
satisfies the equation and the initial value as L2 identities.
Through the Duhamel formula we replace the differential equation with its integral
version. More explicitly, we formulate the subsequent proposition. The proof straight-
forwardly follows the lines of the standard situation and we omit it (see section 4.1 in
[9] for a detailed analysis in the abstract setting).

Proposition 3.1. A function ψ ∈ C([0,T ];D) ∩ C1([0,T ]; L2) is a strong solution of
(3.1) if and only if it solves in L2(Rn) for every t ∈ [0,T ] the integral equation

ψ(t) = U(t)ψ0 − i
∫ t

0
U(t − s)F(ψ)(s) ds.

We will often refer to the integral version in the following shortened form

ψ = Uψ0 − iΓF(ψ), (3.2)

where U and Γ are defined in (2.12) and (2.13).
The main result we want to prove in this section is Theorem 1 regarding 3.1 and stated
in the Introduction. Before beginning the proof some comments are in order.

Remark 3.2. Let ψ ∈ D(H) be a solution of (3.1), and let ζ ∈ C∞((0,T )×Rn) be a test
function. The function ψ can be considered a (regular) distribution. Testing against ζ
the distribution

i∂tψ + ∆ψ ∓ |ψ|p−1ψ

and recalling that ψ = φλ + q Gλ and (−∆ + λ)Gλ = δ0, we obtain

〈i∂tψ, ζ〉 − 〈ψ, (−∆ + λ)ζ〉 + λ〈ψ, ζ〉 ∓ 〈|ψ|p−1ψ, ζ〉

=〈i∂tψ, ζ〉 − 〈φ
λ + q Gλ, (−∆ + λ)ζ〉 + λ〈ψ, ζ〉 ∓ 〈|ψ|p−1ψ, ζ〉

=〈i∂tψ, ζ〉 − 〈(−∆ + λ)φλ, ζ〉 − 〈qδ0, ζ〉 + λ〈ψ, ζ〉 ∓ 〈|ψ|p−1ψ, ζ〉

=〈i∂tψ, ζ〉 − 〈(H + λ)ψ, ζ〉 − 〈qδ0, ζ〉 + λ〈ψ, ζ〉 ∓ 〈|ψ|p−1ψ, ζ〉

=〈i∂tψ −Hψ ∓ |ψ|
p−1ψ, ζ〉 − 〈qδ0, ζ〉 = −〈qδ0, ζ〉 .

This means that a strong solution of (3.1) solves as a distribution the NLS equation
with a Dirac delta source

i∂tψ = −∆ψ ± |ψ|p−1ψ − qδ0 .

Notice that at this level the special form of q = q(t) given by the boundary condition is
not important.

Remark 3.3. The case p = 1 corresponds to the linear equation and it is well known.
Hence in the forthcoming analysis we shall always assume p > 1.

Remark 3.4. The presence of T ∈ (0, 1] in part 1) of the statement of the Theorem 1
is only due to avoiding constants depending on the existence time in the many bounds
appearing in the proof. This limitation is inessential as regards local existence (see
also remark 2.7).
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Remark 3.5. According to a usual and convenient strategy, we will prove existence
and uniqueness of solution of the integral equation (3.2) in weaker norms than the
ones stated and then the further regularity will follow from the equation.

We split the proof of the local well posedness for strong solutions in separate subsec-
tions.

3.1. Local Existence and conditional uniqueness

The first proposition collects some simple and useful properties of the nonlinearity F
used often in the subsequent analysis; the first two are well known, while the third is
specific of the present problem.

Proposition 3.6. Let q > p > 1 and consider the map v 7→ F(v) = ±|v|p−1v. Then the
following holds true.
1) F : Lq → Lq/p is continuous and

‖F(v)‖q/p 6 C‖v‖pq

2) F is continuously differentiable in the real sense and its derivative at the point v ∈ Lq

is given by

F′(v)w = |v|p−1w + (p − 1)|v|p−3v Re (vw) ∀v,w ∈ Lq. (3.3)

Moreover the derivative map satisfies the bounds

‖F′(v)‖Lq→Lq/p 6 C‖v‖p−1
q and ‖F′(v)w‖q/p 6 C‖v‖p−1

q ‖w‖q . (3.4)

3) Let p > 1 if n = 2, 1 < p < 3/2 if n = 3 and let v ∈ D. Then

‖F(v)‖ 6 c‖v‖p
D
. (3.5)

Proof. The fact that F : Lq → Lq/p is an easy check, as it is formula (3.3) by using
the formula F′(v)w = d

ds F(v + sw)|s=0. Continuity and differentiability are well known
properties of the Nemitskii operator v 7→ F(v) (see for example [3], Section 1.3 and
[19], Section 4). Concerning 3), notice that, by the definition ofD, v = φλ + φλ(0) Gλ,
hence

|F(v)| 6 c
(
|φλ|p + |φλ(0)|p |Gλ|p

)
.

By (2.5), ‖ |φλ|p ‖ = ‖φλ ‖
p
2p 6 c‖φλ‖pH2 and ‖φλ‖∞ 6 c‖φλ‖H2 . Moreover |Gλ|p ∈ L2(Rn)

for the considered range of p. Hence, recalling that ‖v‖D = ‖φλ‖H2 , (3.5) immediately
follows.

Remark 3.7. We will often use property 2) of Proposition 3.6 in the case q = p + 1,
obtaining

‖F′(v)‖Lp+1→L1+1/p 6 C‖v‖p−1
p+1 and ‖F′(v)u‖1+1/p 6 C‖v‖p−1

p+1‖u‖p+1.
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Remark 3.8. Validity of Proposition 3.6 is not restricted to the pure power nonlinear-
ity. Let F : C→ C be a C1 function in real sense which satisfies the bounds

|F(z)| 6 C|z|p and |F′(z)| 6 C|z|p−1 z ∈ C,

then Proposition 3.6 still holds true. The proof is analogous to the one given above for
part 1) and for 2) and 3) see [19], Section 4).

In the following Proposition recall that r =
4(p+1)
n(p−1) (see Def. 2.5) and that r > 2.

Proposition 3.9. Assume that p > 1 if n = 2 and 1 < p < 3/2 if n = 3. Set β = 2
r . We

have F : ZT → Z̃T and for T 6 1 there holds true:

‖F(v) − F(v)(0)‖Z̃T
6 cT 1−β‖v‖p

ZT
∀v ∈ ZT .

Proof. We prove first that ∂tF(v) ∈ X̃T . To this aim we shall prove that

F(v) ∈ W1,r′ ((0,T ); L1+1/p),

which implies the claim. Note that v ∈ ZT implies v ∈ L∞([0,T ];D), hence, by the
embedding (2.6), there holds ‖v‖L∞t Lp+1

x
6 c‖v‖ZT . Moreover, ‖F(v)‖1+1/p = ‖v‖pp+1. If

p < r − 1, by Hölder inequality, one has ‖F(v)‖Lr′
t L1+1/p

x
6 T

r−1−p
r ‖v‖p

Lr
t Lp+1

x
, while for

p > r− 1 one obtains ‖F(v)‖Lr′
t L1+1/p

x
6 c‖v‖p−r+1

ZT
‖v‖r−1

Lr
t Lp+1

x
. So, ‖F(v)‖Lr′

t L1+1/p
x

6 c‖v‖p
ZT

,

and F(v) ∈ Lr′ ([0,T ]; L1+1/p). To proceed, note that

|F(v)(t′, x) − F(v)(t, x)| 6 c(|v(t′, x)|p−1 + |v(t, x)|p−1) |v(t′, x) − v(t, x)|. (3.6)

Taking into account that ‖ f p−1g‖1+1/p 6 ‖ f ‖p−1
p+1‖g‖p+1, we have∥∥∥F(v)(t′) − F(v)(t)

∥∥∥
1+1/p 6 c

(
‖v(t′)‖p−1

p+1 + ‖v(t)‖p−1
p+1

) ∥∥∥v(t′) − v(t)
∥∥∥

p+1.

Since
∥∥∥v(t′) − v(t)

∥∥∥
p+1 6

∫ t′

t ‖∂sv(s)‖p+1ds, setting ϕ(s) = c‖v‖p−1
L∞t Lp+1

x
‖∂sv(s)‖p+1 (for

some constant c large enough) one has

∥∥∥F(v)(t′) − F(v)(t)
∥∥∥

1+1/p 6

∣∣∣∣∣∣
∫ t′

t
ϕ(s)ds

∣∣∣∣∣∣
for almost all t, t′ ∈ [0,T ]. By Theorem 1.4.40 in [9] it follows that F ∈ W1,r′ ((0,T ); L1+1/p)
and ‖∂tF(v)‖Lr′

t L1+1/p
x

6 ‖ϕ‖Lr′ [0,T ]. Additionally, by Hölder inequality in time,

‖ϕ‖Lr′ [0,T ] 6 c‖v‖p−1
L∞t Lp+1

x
T 1−β‖∂tv‖Lr

t Lp+1
x

6 cT 1−β‖v‖p
ZT
,

and ∥∥∥∂t
(
F(v) − F(v(0))

)∥∥∥
X̃T

= ‖∂tF(v)‖X̃T
6 ‖∂tF(v)‖Lr′

t L1+1/p
x

6 cT 1−β‖v‖p
ZT
.
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Note that ‖F(v)‖L∞t L2
x
6 c‖v‖p

ZT
by Prop. 3.6. Hence, F : ZT → Z̃T .

Next we prove that
‖F(v) − F(v)(0)‖L∞t L2

x
6 cT 1−β‖v‖p

ZT
. (3.7)

By interpolation (see Eq. (2.10), with a = 0, b = 1, θ = s/2, s ∈ (0, 2)), it follows that

‖v(t) − v(t′)‖
D

s
2
6 c‖v(t) − v(t′)‖

s
2
D
‖v(t) − v(t′)‖1−

s
2 ,

for all s ∈ (0, 2). Since ∂tv ∈ L∞t L2
x, there holds true ‖v(t) − v(t′)‖ 6 |t − t′|‖∂tv‖L∞t L2

x

for all t, t′ ∈ [0,T ]. Moreover, v ∈ L∞([0,T ];D), hence, after a possibile modification
on a set of measure zero, v is a bounded mapping of [0,T ] → D which satisfies the
inequality

‖v(t) − v(t′)‖
D

s
2
6 c|t − t′|1−

s
2 ‖v‖

s
2
L∞([0,T ];D)‖∂tv‖

1− s
2

L∞t L2
x
6 c|t − t′|1−

s
2 ‖v‖ZT s ∈ (0, 2).

(3.8)
The latter inequality implies that the representative of v ∈ ZT which is a bounded map
from [0,T ] → D is a Hölder continuous map from [0,T ] → D

s
2 ; from now on we

denote by v(0) its value in t = 0. The function v(0) can be understood as function in
L∞([0,T ];D

s
2 ), independent on t. Setting t′ = 0 in Eq. (3.8), and taking the essential

supremum we infer

‖v − v(0)‖L∞([0,T ];D
s
2 ) 6 cT 1− s

2 ‖v‖ZT s ∈ (0, 2).

Next we use the embeddings D
s
2 ↪→ Hs ↪→ L2p, see Eq. (2.8), with s = sc(2p) =

n(p−1)
2p . To proceed, recall the inequality (3.6) and notice that, by Hölder inequality, it

follows that
‖ f p−1g‖ 6 ‖ f ‖p−1

2p ‖g‖2p. (3.9)

Hence,

‖F(v) − F(v)(0)‖L∞t L2
x
6 c

(
‖v‖p−1

L∞t L2p
x

+ ‖v(0)‖p−1
L∞t L2p

x

)
‖v − v(0)‖L∞t L2p

x
(3.10)

6 c
(
‖v‖p−1

L∞([0,T ];D
s
2 )

+ ‖v(0)‖p−1

L∞([0,T ];D
s
2 )

)
‖v − v(0)‖L∞([0,T ];D

s
2 )

where in the latter inequality we used 1 − s
2 > 1 − 2

r . This concludes the proof of
inequality (3.7).

Remark 3.10. As pointed out in the proof of Prop. 3.9, if v ∈ ZT then one has
v ∈ C0,1− s

2 ([0,T ],D
s
2 ), i.e., v is a Hölder continuous map from [0,T ] → D

s
2 . More

precisely, there holds true

v ∈ Lip([0,T ]; L2) ∩C0,1− s
2 ([0,T ];D

s
2 ) ⊂ Lip([0,T ]; L2) ∩C0,1− s

2 ([0,T ]; L2p).

As a consequence of inequalities (3.6) and (3.9) one has F(v) ∈ C0,1− s
2 ([0,T ]; L2).

For v ∈ ZT and ψ0 ∈ D let us define the map

Φ(v) = Uψ0 − iΓF(v). (3.11)

and set BZT (R) = {v ∈ ZT | ‖v‖ZT 6 R}.
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Proposition 3.11. Let ψ0 ∈ D and define

E = {v ∈ BZT (R)| v(0) = ψ0}.

Then:
1) E is a complete metric space with respect to the metric induced by the XT -norm.
2) Assume that p > 1 if n = 2 and 1 < p < 3/2 if n = 3. Then there exist R big enough
and T sufficiently small such that Φ : E → E.

Proof. Let us prove that E, with the metric induced by the XT -norm, is a complete
metric space. One has E ⊂ ZT ⊂ XT . XT is a Banach space, hence, to prove that it
E is complete it is enough to prove that it is a closed subset in XT . Let u be a limit
point of E so that there exists {un} with un ∈ E and ‖un − u‖XT → 0; we want to prove
that u ∈ E. Obviously, u ∈ XT and ‖u‖XT 6 R. We are left to prove that ‖∂tu‖XT 6 R,
‖Hu‖L∞t L2

x
6 R, and u(0) = Ψ0. We recall that ∂tu is defined as a distribution on the test

functions ϕ ∈ C∞0 ((0,T )) by 〈ϕ, ∂tu〉 = −〈∂tϕ, u〉. Notice that by hypothesis we have
un ∈ W1,r((0,T ), Lp+1) and ‖∂tun‖Lr

t Lp+1
x

6 R . By well known properties of vector val-
ued Sobolev spaces (see for example Corollary 1.4.42 in [9]) one concludes that there
exists a subsequence unk ⇀ v ∈ W1,r((0,T ), Lp+1) and ‖∂tv‖Lr

t Lp+1
x

6 lim inf ‖unk‖ 6 R .
Finally by uniqueness u = v . In order to prove that ∂tu ∈ L∞t L2

x and ‖∂tu‖L∞t L2
x
6 R,

the same reasoning works replacing weak convergence with weak-* convergence and
invoking again Corollary 1.4.42 in [9]. Now we prove that ‖Hu‖L∞t L2

x
6 R. Since

‖Hun(t)‖ 6 R for a.e. t ∈ [0,T ] then there exists v(t) ∈ L2 and a subsequence that we
denote withHunk (t) such thatHunk (t) ⇀ v(t) a.e. in [0,T ] and ‖v(t)‖ 6 R. Recall that
C∞0 (Rn \ {0}) is a dense subset in L2(Rn) n = 2, 3 and let ϕ ∈ C∞0 (Rn \ {0}). We have
〈ϕ,Hunk (t)〉 → 〈ϕ, v(t)〉, where now 〈 , 〉 is the L2 scalar product. Moreover

〈ϕ,Hun(t)〉 = 〈Hϕ, un(t)〉 → 〈Hϕ, u(t)〉 = 〈ϕ,Hu(t)〉

since u(t) ∈ D a.e. in [0,T ]. ThenHu(t) = v(t) and ‖Hu(t)‖ 6 R a.e. in [0,T ].
We are left to prove that u(0) = ψ0 as an L2 identity. We know that un(t) ∈ W1,∞((0,T ); L2)
and un(0) = ψ0. Being W1,∞((0,T ); L2) ↪→ C([0,T ]; L2) one has that un converges in
C([0,T ]; L2) and u(0) = ψ0 as an identity in L2.
Now we prove that Φ : E → E. Notice that, by Proposition 2.10, Uψ0 ∈ ZT . More-
over since F(ψ0) ∈ L2 (by Proposition 3.6), we can say F(ψ0) ∈ Z̃T since it de-
pends on t in a trivial way; therefore ΓF(ψ0) ∈ ZT by Proposition 2.10. We choose
R > ‖Uψ0‖ZT + ‖ΓF(ψ0)‖ZT such that E is not empty since Uψ0 ∈ E. Adding and
subtracting ΓF(ψ0) = ΓF(v)(0) to the r.h.s. of Eq. (3.11), we have by Proposition 3.9

‖Φ(v)‖ZT 6 ‖Uψ0‖ZT + ‖ΓF(ψ0)‖ZT + ‖Γ(F(v) − F(v)(0))‖ZT

6 ‖Uψ0‖ZT + ‖ΓF(ψ0)‖ZT + ‖F(v) − F(v)(0)‖Z̃T

6 ‖Uψ0‖ZT + ‖ΓF(ψ0)‖ZT + cT 1−βRp

Then Φ : E → E if T is sufficiently small.

Now we can prove part 1) and 2) of Theorem 1.
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Proof of Theorem 1. Parts 1) and 2). For sufficiently small T , Φ is a contraction in
the XT -norm. Indeed by (2.19), we have

‖Φ(u) − Φ(v)‖XT = ‖Γ(F(u) − F(v))‖XT 6 c‖F(u) − F(v)‖X̃T
.

Notice that

|(F(u) − F(v))(t, x)| 6 c(|u(t, x)|p−1 + |v(t, x)|p−1) |u(t, x) − v(t, x)|.

Using the inequality ‖ f p−1g‖1+1/p 6 ‖ f ‖p−1
p+1‖g‖p+1, we have

‖(F(u) − F(v))(t)‖1+1/p 6 c(‖u(t)‖p−1
p+1 + ‖v(t)‖p−1

p+1) ‖u(t) − v(t)‖p+1.

Therefore we have

‖F(u)−F(v)‖Lr′
t L1+1/p

x
6 T 1−β‖F(u)−F(v)‖Lr

t L1+1/p
x

6 cT 1−β(‖u‖p−1
L∞t Lp+1

x
+‖v‖p−1

L∞t Lp+1
x

) ‖u−v‖Lr
t Lp+1

x

(3.12)
with β = 2/r (as in Proposition 3.9). Hence, by the embedding (2.6), for u, v ∈ E we
obtain

‖Φ(u) − Φ(v)‖XT 6 c T 1−β Rp−1‖u − v‖XT . (3.13)

For sufficiently small T , Φ is a contraction in the XT -norm. Since E is complete with
respect to the metric induced by the XT -norm then the fixed point equation

u = Φ(u)

admits a solution ψ ∈ E. In particular, ψ ∈ L∞([0,T ];D), ∂tψ ∈ L∞([0,T ]; L2), ψ ∈
W1,r((0,T ); Lp+1) and ψ satisfies the identity ψ = Uψ0 − iΓF(ψ). We are left to prove
that ψ ∈ C([0,T ];D)∩C1([0,T ]; L2). Obviously, Uψ0 has the required properties, since
ψ0 ∈ D and thanks to the properties of the linear evolution. Concerning ΓF(ψ), we start
by noticing that F(ψ)(t) ∈ L2 (a.e. in [0,T ]), by Proposition 3.6, hence F(ψ) ∈ L∞t L2

x
and finally U(t − ·)F(ψ)(·) ∈ L1([0,T ]; L2). So, by absolute continuity of the integral,
one concludes ψ ∈ C([0,T ]; L2). From the Duhamel formula it is also immediate that
ΓF(ψ) ∈ C([0,T ]; L2). By the identity (see also (2.22))

∂tΓF(ψ)(t) = UF(ψ)(0) +

∫ t

0
U(t − s)∂sF(ψ)(s) ds.

using Proposition 2.6 e) and taking into account that ∂sF(ψ)(s) ∈ Lr′,1+1/p we have
that ∂tΓF(ψ)(t) ∈ L∞t L2

x. On the other hand it is well known that it actually holds
the stronger result Γv ∈ C([0,T ], L2) for v ∈ Lr′

t L1+1/p
x with (r, p + 1) admissible (see

Remark 2.8). Finally, exploiting the fact that H is the infinitesimal generator of U(t)
(see also (2.23)) we have the identity

HΓF(ψ)(t) = i∂tΓF(ψ) − iF(ψ) .

The r.h.s. belongs to C([0,T ]; L2), or equivalently ΓF(ψ) ∈ C([0,T ];D).
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Corollary 3.12 (Local well-posedness for strong solutions). Let p > 1 if n = 2 and
1 < p < 3/2 if n = 3. For any ψ0 ∈ D(H) there exists T ∈ (0,+∞) s.t. the initial value
problem (3.1) has a unique solution ψ ∈ C([0,T );D) ∩C1([0,T ); L2(R)).

Remark 3.13. Notice that for a strong solution of the equation ψ ∈ C([0,T );D) ∩
C1([0,T ); L2), the existence time given in the local well-posedness Theorem actually
depends only on ‖ψ0‖D. In fact, the L2-norm of ∂tψ can be bounded in terms of the
graph norm of ψ just taking into account that equation in (3.1) holds as an L2 identity
and using the estimate (3.5).

3.2. Unconditional Uniqueness.
Proof of Theorem 1. Part 3). In the proof of local existence, the fixed point technique
guarantees uniqueness only for those solutions ψ ∈ C([0,T ];D) that belong to the
auxiliary space Lr,p+1. In this paragraph we show that actually the latter condition is
not needed.

Proposition 3.14. Assume that p > 1 if n = 2 or 1 < p < 3
2 if n = 3. Take ψ0 ∈ D. If

ψ1 and ψ2 are in L∞([0,T ];D) for some T > 0 and are two solutions of Eq. (3.2), then
ψ1 = ψ2.

Proof. Let τ be any time in (0,T ]. Reasoning as in the derivation of (3.12) we obtain∥∥∥F(ψ1) − F(ψ2)
∥∥∥

Lr′ ([0,τ];L1+ 1
p )
6 C

(
‖ψ1‖

p−1
L∞([0,τ];Lp+1) + ‖ψ2‖

p−1
L∞([0,τ];Lp+1)

)
‖ψ1 − ψ2‖Lr′ ([0,τ];Lp+1)

with r =
4(p+1)
n(p−1) as in Definition 2.5 so that we can apply Proposition 2.6 (for any T > 0,

see Remark 2.7).
By Eq. (3.2),

|ψ1 − ψ2| =
∣∣∣Γ(F(ψ1) − F(ψ2))

∣∣∣.
Hence, using Prop. 2.6. f ) and the inequality above, we infer

‖ψ1 − ψ2‖Lr([0,τ];Lp+1) 6C‖F(ψ1) − F(ψ2)‖
Lr′ ([0,τ];L1+ 1

p )

6C
(
‖ψ1‖

p−1
L∞([0,τ];Lp+1) + ‖ψ2‖

p−1
L∞([0,τ];Lp+1)

)
‖ψ1 − ψ2‖Lr′ ([0,τ];Lp+1).

(3.14)

Since, by assumption, ψ1, ψ2 ∈ L∞([0, τ];D), the embedding (2.6), together with the
inequality (3.14), give

‖ψ1 − ψ2‖Lr([0,τ];Lp+1) 6 C‖ψ1 − ψ2‖Lr′ ([0,τ];Lp+1) ∀τ ∈ (0,T ]. (3.15)

Let φ(t) := ‖ψ1(t)−ψ2(t)‖Lp+1 . By the inequality above, together with Hölder’s inequal-
ity, we infer

‖φ‖Lr([0,τ∗]) 6 Cτ1− 2
r

∗ ‖φ‖Lr([0,τ∗]).

Since r > 2, for τ∗ small enough (such that Cτ1− 2
r

∗ < 1), the latter inequality implies
φ(t) = 0 a.e. in [0, τ∗]. Next, assume that φ(t) = 0 a.e. in [0, kτ∗] for some positive
integer k, then, inequality (3.15) (applied for τ = (k + 1)τ∗) is equivalent to

‖φ‖Lr([kτ∗,(k+1)τ∗]) 6 C‖φ‖Lr′ ([kτ∗,(k+1)τ∗]).
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Hence, by using again Hölder’s inequality, we infer φ(t) = 0 a.e. in [0, (k + 1)τ∗]. We
proceed in this way, by induction, until (k∗ + 1)τ∗ > T , for some positive integer k∗. In
the final step we address the interval [k∗τ∗,T ]. In this way we prove φ(t) = 0 a.e. in
[0,T ], henceforth ψ1 = ψ2 a.e. This concludes the proof of the proposition.

3.3. Continuous dependence on initial data
Proof of Theorem 1. Part 4). Assume that ‖ψ0 −ψ

n
0‖D → 0; let ψ be the solution cor-

responding to the initial datum ψ0 and ψn the solution corresponding to ψn
0 according

to the local existence result proved in the previous section. Notice preliminarily that
by hypothesis we have ‖ψn

0‖D 6 2‖ψ0‖D and from the local existence we obtain that
there exists a time T = T (‖ψ0‖D) and n0 such that both ψ and ψn are defined in [0,T ]
for n > n0; moreover the following uniform bound holds

‖ψ‖L∞([0,T ];D) + ‖ψn‖L∞([0,T ];D) 6 C‖ψ0‖D . (3.16)

From (3.2) and the analogous

ψn = Uψn
0 − iΓF(ψn)

we obtain
ψ − ψn = U(ψ0 − ψ

n
0) − i(ΓF(ψ) − ΓF(ψn)).

From Strichartz estimates and contractivity in the XT - norm of ψ 7→ ΓF(ψ) given in
(3.13) it follows that, choosing possibly a T ′ < T ,

‖ψ − ψn‖XT 6 C‖ψ0 − ψ
n
0‖ +

1
2
‖ψ − ψn‖XT 6 C‖ψ0 − ψ

n
0‖D +

1
2
‖ψ − ψn‖XT

and hence
‖ψ − ψn‖XT 6 2C‖ψ0 − ψ

n
0‖D.

This gives continuity of the solution map in XT and in particular in Lr([0,T ′]; Lp+1).
Let us show that we also have ‖∂tψ−∂tψ

n‖r,p+1 6 C‖ψ−ψn
0‖D, so that the solution map

ψ0 → ψ(t, ψ0) is continuous as a map fromD to W1,r((0,T ′); Lp+1) for suitable T ′ 6 T .
Taking the time derivative of the integral equation both for ψ and ψn, subtracting and
rearranging we obtain

∂t(ψ − ψn) = −iΓF′(ψn)∂t(ψ − ψn) + R1 + R2 (3.17)

where

R1 = −iU(H(ψ0 − ψ
n
0)) − iU(F(ψ0) − F(ψn

0))
R2 = −iΓ

(
F′(ψ) − F′(ψn)

)
∂tψ.

By means of dispersive estimates 2.6-b) and 2.6- f ) on (0,T ′) we obtain

‖∂t(ψ − ψn)‖Lr([0,T ′];Lp+1) 6C(T ′)‖F′(ψn)∂t(ψ − ψn)‖Lr′ ([0,T ′];L1+1/p)

+ C(T ′)
(
‖H(ψ0 − ψ

n
0)‖ + ‖F(ψ0) − F(ψn

0)‖
)

+ C(T ′)‖
(
F′(ψ) − F′(ψn)

)
∂tψ‖Lr′ ([0,T ′];L1+1/p)
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where C(T ′) is a constant which is uniformly bounded for T ′ ∈ (0, 1]. Let us consider
the first addendum in the previous inequality. By the bound in Eq. (3.4) we have

‖F′(ψn(t))∂t(ψ − ψn)(t)‖1+1/p 6 C‖ψn(t)‖p−1
p+1‖∂t(ψ − ψn)(t)‖p+1.

Hence, by Hölder inequality in time,

‖F′(ψn)∂t(ψ − ψn)‖Lr′ ([0,T ′];L1+1/p) 6 CT ′1−
2
r ‖∂t(ψ − ψn)‖Lr([0,T ′];Lp+1)

where the bound is uniform in n thanks to (3.16) and embedding (2.6). Taking a smaller
T ′ if needed, one gets

‖∂t(ψ − ψn)‖Lr([0,T ′];Lp+1) 6
1
2
‖∂t(ψ − ψn)‖Lr([0,T ′];Lp+1)

+ C(T ′)
(
‖H(ψ0 − ψ

n
0)‖ + ‖F(ψ0) − F(ψn

0)‖
)

+ C(T ′)‖
(
F′(ψ) − F′(ψn)

)
∂tψ‖Lr′ ([0,T ′];L1+1/p)

and hence

‖∂t(ψ − ψn)‖Lr([0,T ′];Lp+1) 62C(T ′)
(
‖H(ψ0 − ψ

n
0)‖ + ‖F(ψ0) − F(ψn

0)‖
)

+ 2C(T ′)‖
(
F′(ψ) − F′(ψn)

)
∂tψ‖Lr′ ([0,T ′];L1+1/p).

We have to show that the three terms on the r.h.s vanish when ‖ψ − ψn‖D → 0. For the
first term this is obvious. For the second term we have

‖F(ψn
0) − F(ψ0)‖ 6 C‖ψn

0 − ψ0‖2p 6 C‖ψn
0 − ψ0‖D

where the first inequality is obtained as in (3.10) and the last inequality follows from
(2.6). One concludes that ‖F(ψn

0) − F(ψ0)‖ → 0 as ‖ψn
0 − ψ0‖D → 0. For the last

term, exploiting again Proposition 3.6-2), in particular the continuity of F′, one has
that ‖

(
F′(ψ) − F′(ψn)

)
∂tψ‖1+1/p → 0 point-wise a.e. in time. Moreover, notice that

‖
(
F′(ψ) − F′(ψn)

)
∂tψ‖1+1/p 6 C(‖ψ‖p−1

p+1 + ‖ψn‖
p−1
p+1)‖∂tψ‖p+1 6 C‖∂tψ‖p+1

where the latter bound is uniform in n thanks again to (2.6) and (3.16). Now we know
from local existence part that ∂tψ ∈ Lr

t Lp+1
x , and being r′ < r, it also holds ∂tψ ∈

Lr′
t Lp+1

x , so that by dominated convergence theorem (on the time integral) ‖
(
F′(ψ) −

F′(ψn)
)
∂tψ‖Lr′

t L1+1/p
x
→ 0 as n → ∞. We conclude that ‖ψ − ψn‖W1,r((0,T ′);Lp+1) → 0 as

‖ψ − ψn‖D → 0. An almost identical analysis, starting again from (3.17), but this time
making use of 2.6-a) and 2.6-e) shows that ‖∂tψ − ∂tψ

n‖L∞t L2
x
→ 0 as ‖ψ0 − ψ

n
0‖D → 0.

From this last property and again exploiting the equation, we want to deduce finally
that ‖ψ − ψn‖D → 0 as ‖ψ0 − ψ

n
0‖D → 0 . To this end, notice that we have

‖i∂tψ − i∂tψ
n‖L∞t L2

x
= ‖Hψ + F(ψ) −Hψn − F(ψn)‖L∞t L2

x
→ 0 (3.18)

Notice that from (2.8) we have Ds ↪→ L2p with s at least equal to n
4 (1 − 1/p) (and

at most 1/2 or 1/4 according to dimension 2 or 3). From this and 3.6-1)) we obtain
continuity of F : Ds → L2. On the other hand (see the following Remark 3.15) from
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continuity of solution with respect to data in XT , already shown, it follows continuity
inDs, so that from ‖ψn

0 − ψ0‖Ds → 0 we get ‖F(ψn) − F(ψ)‖L∞t L2
x
→ 0 and from (3.18)

we conclude. Finally, to cover the whole interval [0,T ] we iterate the argument a finite
number of times, possibly extracting a different subsequence from {ψn

0}.

Remark 3.15. Notice that from the sole continuity of the solution map in XT , by inter-
polation and use of the uniform bound (3.16) we obtain

‖ψ − ψn‖Ds 6 ‖ψ − ψn‖sD‖ψ − ψ
n‖1−s 6 C‖ψ0 − ψ

n
0‖

1−s s ∈ (0, 1)

which assures continuity of the solution map with values in Ds. This does not use the
differentiability of the nonlinearity F, needed to derive continuity inD.

Remark 3.16. Concerning continuity with respect to initial data several results are
possible, depending on the functional spaces where continuity is desired. In the previ-
ous proof we actually proved that ‖ψn − ψ‖ZT → 0 as ‖ψn

0 − ψ0‖D → 0 , which more
than stated in Theorem 1.

3.4. Blow-up alternative
Proof of Theorem 1. Part 5). Let us define

M∗ := sup
t∈[0,T ∗)

‖ψ(t)‖D

and suppose that M∗ < ∞ .
It follows that there exists a sequence of times {tn} ⊂ R+, tn → T ∗, such that

lim
n→∞
‖ψ(tn)‖D = M 6 M∗.

Let T ∗ < +∞. The local well-posedness proof does not depend on the initial time t0,
but only on the fact that ψ(t0) ∈ D. In particular, one sees that from the definition of
M∗, ‖ψ(t0)‖D 6 M∗ for every t0 ∈ (0,T ∗). As a consequence the existence time T (t0)
obtained starting from any t0 ∈ (0,T ∗) satisfies

T (t0) > C(M∗) > 0,

for some suitable constant C(M∗) depending only on M∗. Setting now t0 := tn0 with
tn0 > T ∗ − C(M∗), one concludes that the solution exists beyond T ∗, which contradicts
its definition.

Remark 3.17. According to the definition of T ∗, there exists a unique function ψ ∈
C([0,T ∗);D) ∩ C1([0,T ∗); L2) coinciding for every T < T ∗ with the solution ψ ∈
C([0,T ];D) ∩ C1([0,T ]; L2) of (3.2) as defined by the local existence theorem. The
function ψ so defined on [0,T ∗) is called the maximal solution of (3.2).

4. Conservation laws and global well posedness

In this section we prove Theorem 2. We preliminarily show conservation laws for the
model.
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4.1. Mass and Energy conservation
Proposition 4.1. (Conservation of Mass and Energy) In the hypotheses of Theorem 1
we have:

1. L2- mass is conserved along the evolution: ‖ψ(t)‖2 = ‖ψ0‖
2 ∀t ∈ [0,T ∗);

2. Energy is conserved along the evolution: E(ψ(t)) = E(ψ0) ∀t ∈ [0,T ∗)
where

E(ψ) =
1
2
〈ψ,Hψ〉 ±

1
p + 1

‖ψ‖
p+1
p+1 ψ ∈ D.

Proof. Thanks to Corollary 3.12, the equation i∂tψ = Hψ±|ψ|p−1ψ holds as an identity
in L2. After taking the inner product with ψ and then the imaginary part of the resulting
equation one gets mass conservation.
Consider now the energy. Recall thatH is self-adjoint onD, the corresponding quadratic
form

Elin : D → R, ψ 7→ Elin(ψ) :=
1
2
〈ψ,Hψ〉

is continuous with respect to the graph norm and differentiable with respect to the L2

norm, with gradient given byHψ.
Being p > 1, the same holds true for the nonlinear functional

Enl : D → R, ψ 7→ Enl(ψ) := ±
1

p + 1
‖ψ‖

p+1
p+1

with gradient given by ±|ψ|p−1ψ .
We can now differentiate with respect to time the total energy along a solution ψ(t) of
(3.1) and we get

d
dt

E(ψ(t)) = Re {〈∂tψ(t),Hψ(t) ± |ψ(t)|p−1ψ(t)〉}

= Re {〈∂tψ(t), i∂tψ(t)〉} = 0 ∀t ∈ (0,T ∗) .

4.2. Energy bound
Let us consider the focusing case. Replacing in (2.11) q = p + 1 we obtain

‖ψ‖
p+1
Lp+1 6 c‖ψ‖(1−s)(p+1)

L2 ‖ψ‖
s(p+1)
D1/2 s ∈

( p − 1
p + 1

, 1
)

n = 2;

‖ψ‖
p+1
Lp+1 6 c‖ψ‖(1−s)(p+1)

L2 ‖ψ‖
s(p+1)
D1/2 s ∈

(3p − 3
2p + 2

, 1/2
)

n = 3.
(4.1)

From mass and energy conservation and inequalities (4.1) we conclude that both the
linear energy 〈ψ,Hψ〉 := ‖ψ‖2

D1/2 −λ‖ψ‖
2 and the nonlinear term ‖ψ‖p+1

Lp+1 , are uniformly
bounded in terms of the mass and energy of the initial datum if the quantity s(p+1) < 2.
From the limitation on s this occurs in the n = 2 case for p < 3 and in the n = 3 case
for p < 7/3. These limitations coincide with the ones of the standard NLS equation.
Notice however that in the n = 3 case well posedness inD prevents p > 3/2.
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4.3. Global existence.
Proof of Theorem 2. From Cor. 3.12 we know that the solution ψ is in C([0,T ∗),D)∩
C1([0,T ∗), L2(R)), here T ∗ is the maximal time of existence of the solution. By rephras-
ing the blow-up alternative, we know that if T ∗ < ∞ it must be limt→T ∗ ‖ψ(t)‖D = ∞.
To prove that the solution is global we reason by absurd: we show that if T ∗ < ∞
it must hold limt→T ∗ ‖ψ(t)‖D < ∞; but this contradicts the blow-up alternative and so
T ∗ = ∞.
Let us assume that T ∗ < ∞. The first observation is that conservation laws imply that

‖ψ‖L∞((0,T ∗);L2) < ∞ and ‖ψ‖L∞((0,T ∗);D1/2) < ∞. (4.2)

Hence, to prove that limt→T ∗ ‖ψ(t)‖D < ∞ it is enough to show that ‖Hψ(t)‖ does not
blow-up in finite time. In particular, we are going to show that

‖Hψ‖L∞((0,T ∗);L2) < ∞,

then, by continuity of ‖Hψ(t)‖, this guarantees that limt→T ∗ ‖Hψ(t)‖ < ∞.
Since ψ is a strong solution we have

Hψ(t) = i∂tψ(t) − F(ψ(t)).

Hence,
‖Hψ(t)‖ 6 ‖∂tψ(t)‖ + ‖ψ(t)‖p2p ∀t ∈ (0,T ∗),

and,
‖Hψ‖L∞((0,T ∗);L2) 6 ‖∂tψ‖L∞((0,T ∗);L2) + ‖ψ‖

p
L∞((0,T ∗);L2p).

By the Gagliardo-Nirenberg inequalities in Eq. (2.11) we infer

‖ψ(t)‖2p 6 c‖ψ(t)‖D1/2 ∀t ∈ (0,T ∗),

hence, ‖ψ‖L∞((0,T ∗);L2p) < ∞ and we are left to prove that ∂tψ ∈ L∞((0,T ∗); L2). Prelim-
inarily we prove that ∂tψ ∈ Lr((0,T ∗); Lp+1). We start by noticing that from part 2) of
Th. 1 it follows that

∂tψ ∈ Lr((0, τ); Lp+1) ∀0 < τ < T ∗.

Hence, by Hölder inequality in time,

‖∂tψ‖Lr′ ((0,τ);Lp+1) 6 T ∗1−
2
r ‖∂tψ‖Lr((0,τ);Lp+1) < ∞,

and
∂tψ ∈ Lr′ ((0, τ); Lp+1) ∀0 < τ < T ∗. (4.3)

Then, by (2.22), (2.23) and (3.2) we infer

∂tψ(t) = −iU(t)Hψ0 − iU(t)F(ψ0) − i(Γ∂tF(ψ))(t). (4.4)

Next we apply Prop. 2.6-b) and 2.6- f ) on (0, τ) to obtain

‖∂tψ‖Lr((0,τ);Lp+1) 6 C(τ)
(
‖Hψ0‖ + ‖F(ψ0)‖ + ‖∂tF(ψ)‖Lr′ ((0,τ);L1+1/p)

)
.

26



where C(τ) is bounded by a constant that depends on T ∗. Since ψ0 ∈ D, also ‖Hψ0‖

and ‖F(ψ0)‖ are bounded and can be absorbed in the constant. Hence, we have the
bound

‖∂tψ‖Lr((0,τ);Lp+1) 6 C
(
1 + ‖∂tF(ψ)‖Lr′ ((0,τ);L1+1/p)

)
(4.5)

where the constant C depends on T ∗ and ψ0 but not on τ.
By the inequality already used several times before,

‖F(ψ)(t′) − F(ψ)(t)‖1+1/p 6 C(‖ψ(t′)‖p−1
p+1 + ‖ψ(t)‖p−1

p+1) ‖ψ(t′) − ψ(t)‖p+1,

we obtain

‖∂tF(ψ)(t)‖1+1/p 6 C‖ψ(t)‖p−1
p+1‖∂tψ(t)‖p+1 ∀t ∈ (0,T ∗).

Hence, the bound (4.1) and the a-priori bounds (4.2) give

‖∂tF(ψ)‖Lr′ ((0,τ);L1+1/p) 6 C‖∂tψ‖Lr′ ((0,τ);Lp+1), (4.6)

so that, by inequality (4.5) we infer

‖∂tψ‖Lr((0,τ);Lp+1) 6 C
(
1 + ‖∂tψ‖Lr′ ((0,τ);Lp+1)

)
. (4.7)

Fix 0 < ε < τ < T ∗, and notice that

‖∂tψ‖Lr′ ((0,τ);Lp+1) 6C
(
‖∂tψ‖Lr′ ((0,τ−ε);Lp+1) + ‖∂tψ‖Lr′ ((τ−ε,τ);Lp+1)

)
6C

(
‖∂tψ‖Lr′ ((0,T ∗−ε);Lp+1) + ε1− 2

r ‖∂tψ‖Lr((τ−ε,τ);Lp+1)
)

6C
(
‖∂tψ‖Lr′ ((0,T ∗−ε);Lp+1) + ε1− 2

r ‖∂tψ‖Lr((0,τ);Lp+1)
)

Inserting the latter bound in Eq. (4.7), we obtain the inequality

‖∂tψ‖Lr((0,τ);Lp+1) 6 C
(
1 + ‖∂tψ‖Lr′ ((0,T ∗−ε);Lp+1) + ε1− 2

r ‖∂tψ‖Lr((0,τ);Lp+1)
)
.

For ε small enough the latter term at the r.h.s. can be absorbed in the l.h.s. to obtain

‖∂tψ‖Lr((0,τ);Lp+1) 6 C
(
1 + ‖∂tψ‖Lr′ ((0,T ∗−ε);Lp+1)

)
.

Since ∂tψ ∈ Lr′ ((0,T ∗ − ε); Lp+1) by Eq. (4.3), and C does not depend on τ, taking the
limit τ→ T ∗ we obtain the desired claim ∂tψ ∈ Lr((0,T ∗); Lp+1).
To conclude we go back to Eq. (4.4) and use Prop. 2.6-a) and e) to obtain

‖∂tψ‖L∞((0,T ∗);L2) 6 C
(
‖Hψ0‖ + ‖F(ψ0)‖ + ‖∂tF(ψ)‖Lr′ ((0,T ∗);L1+1/p)

)
As before, see Eq. (4.6), the bound (4.1) and the formula above give

‖∂tF(ψ)‖Lr′ ((0,T ∗);L1+1/p) 6 C‖∂tψ‖Lr′ ((0,T ∗);Lp+1) 6 CT ∗1−
2
r ‖∂tψ‖Lr((0,T ∗);Lp+1),

hence, ∂tF(ψ) ∈ Lr′ ((0,T ∗); L1+1/p), which in turn implies ∂tψ ∈ L∞((0,T ∗); L2) and
concludes the proof.
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