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We provide a framework for detecting relevant insurance companies in a systemic risk 
perspective. Among the alternative methodologies for measuring systemic risk, we 
propose a complex network approach where insurers are linked to form a global 
interconnected system. We model the reciprocal influence between insurers calibrating 
edge weights on the basis of specific risk measures. Therefore, we provide a suitable 
network indicator, the Weighted Effective Resistance Centrality, able to catch which is 
the effect of a specific vertex on the network robustness. By means of this indicator, we 
assess the prominence of a company in spreading and receiving risk from the others. 

1. INTRODUCTION 

The concept of systemic risk has gained increasing atten-
tion from both regulators and academics. Since 2009, there 
has been an observable regulatory response to the vulner-
ability of the banking sector revealed in the financial cri-
sis of 2007–2008 and an attempt to find a solution to the 
'‘too big to fail’'interdependence between global systemi-
cally important banks (G-SIBs) and the economy of sover-
eign states. In particular, the Financial Stability Board (FSB) 
started to develop a method to identify G-SIBs for which a 
set of stricter requirements would apply (FSB 2010, 2011, 
2013). A first official version of the G-SIB list was published 
by FSB in November 2011, and it has been updated each 
year since. 

The debate regarding the systemic nature of financial in-
stitutions has been ongoing for many years and has also 
involved the insurance sector. The International Associa-
tion of Insurance Supervisors (IAIS) played an important 
role in this global initiative. The IAIS suggested that the 
specificities of insurance activity should be duly considered 
when attempting to extend the definition of systemic risk 
to the insurance sector, namely regarding the specificities 
of underwriting (IAIA 2009, 2011). Although it is recog-
nized that insurance is part of the financial sector with sig-

nificant links to the real economy, it differs from the other 
financial services by its business model (e.g., the ‘‘inverted 
cycle of production’’). However, under the leadership and 
steering of the FSB, the IAIS has focused on the analysis of 
the potential systemic relevance of insurers. 

Both the IAIS and several papers in the literature 
(Acharya and Richardson 2014; Cummins and Weiss 2013; 
Eling and Pankoke 2016; Geneva Association 2010; IAA 
(International Actuarial Association) 2013) have concluded 
that although insurance companies are less prone to sys-
temic risk and less vulnerable than banks, some nontradi-
tional activities may entail some risk due to the high lever-
age and implied guarantees associated with them. 

To address this risk, the IAIS has developed a method-
ology to assess and ultimately identify global systemically 
important insurers (G-SIIs), as well as a range of policy 
measures to be applied to them (IAIS 2013a, 2013b). An ini-
tial list of nine multinational insurance groups that have 
been classified as G-SIIs was released in 2013. These par-
ticular insurers were identified due to the assessment that 
there could be negative impacts on the stability of the 
global financial system should one of them become insol-
vent and fail in a disorderly manner. The IAIS assessment 
and FSB identification became an annual process, and the 
FSB and IAIS developed a framework of policy measures 
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to be applied to G-SIIs with the objective of reducing the 
negative externalities stemming from a potential disorderly 
failure of a G-SII. This framework of G-SII policy mea-
sures consists of three main elements: (1) higher loss-ab-
sorbency requirements, (2) enhanced group-wide supervi-
sion and group-wide recovery, and (3) resolution planning 
and regular resolvability assessments. 

In November 2019, the IAIS finalized a holistic frame-
work for the assessment and mitigation of systemic risk 
in the insurance sector (IAIS 2019). The framework moves 
away from a solely entities-based approach and sets out 
an activities-based approach for sector-wide risk monitor-
ing and management as a key component of the framework, 
and it includes tools for dealing with the build up of risk 
within individual insurers or groups of insurers. The goal is 
to appropriately implement a framework that will provide 
an enhanced method for mitigating systemic risk in the in-
surance sector. In this context, the annual identification of 
G-SIIs has been suspended and in November 2022, the FSB 
will determine whether to discontinue or reestablish an an-
nual identification of G-SIIs based on the results of the ini-
tial years of implementation of the holistic framework. 

One of the key points highlighted in this paper is the 
prominent role of interconnections in the financial system 
and the importance of measuring them in terms of risk. 
This is also apparent within the extensive and varied lit-
erature on systemic risk measurement in the banking sec-
tor; modeling the interconnections plays a leading role. On 
the one hand, statistical market-based measures of individ-
ual risk such as value at risk (VaR) and expected shortfall 
(ES)—traditionally employed in risk management but also 
used for regulation—have evolved to account for tail de-
pendence among banks (for recent survey examples in this 
field, see Benoit et al. 2016, Bisias et al. 2012, and de Bandt 
et al. 2013). On the other hand, the structure of financial 
and economic systems, which are characterized by interact-
ing agents, can be described as a complex system and net-
work indicators have been used to assess systemic risk in 
the banking sector (for recent surveys about networks and 
systemic risk, see Caccioli, Barucca, and Kobayashi 2017 or 
Neveu 2016). Additionally, network indicators have been 
used to identify the most relevant banks in the system (see, 
e.g., Clemente, Grassi, and Pederzoli 2019; Rovira Kalt-
wasser and Spelta 2018 and Spelta, Pecora, and Rovira Kalt-
wasser 2019). 

Less attention has been paid to the measurement of sys-
temic risk in the insurance sector and to the identifica-
tion of most relevant insurers. A model for systemic risk 
of insurance companies and banks has been provided by 
Acharya, Philippon, and Richardson (2016). A rationale for 
the macroprudential regulation of insurance companies has 
been described by Gómez and Ponce (2018). Cummins and 
Weiss (2014) evaluated systemic risk for the U.S. insurance 
sector, focusing on the interconnectedness of the system. 
Systemic relevance of the European insurance industry has 
been explored in Bertin and Sottocornola (2015). The im-
portance of the identification of G-SIIs has been stressed by 
Guiné (2014). Denkowska and Wanat (2020) proposed com-
bining copula-garch models with minimum spanning trees 

and then analyzing the contribution of each institution us-
ing CoVaR (see also Adrian and Brunnermeier 2016). Fung 
and Yeh (2018) showed that the recent policy measures pro-
posed by the IAIS are perceived by the market as heading in 
the right direction and concluded that the regulation par-
tially achieved its intended objective of reducing the sys-
temic risk of G-SIIs. A review of different approaches is 
given by Jobst (2014). 

In this context, we propose to identify the most relevant 
insurers in the market, combining the network approach 
with standard risk measures that are based on market data. 
In this way, we integrate the full picture that is provided 
by network analysis and the forward-looking approach of 
market-based statistical measures. We model the insurance 
market via a weighted network in which vertices represent 
firms and edges are quantified via market-based measures. 
Each edge is indeed weighted considering the expected 
shortfall of the company and the marginal expected short-
fall (MES)—proposed by Acharya et al. (2016)—computed 
on each pair of firms. In this way, the weights allow us to 
exploit the tail relations between couples of insurers. 

To identify most relevant companies in the market, we 
make use of a suitable network indicator, the effective resis-
tance centrality as defined by Clemente and Cornaro (2020) 
for unweighted networks as the relative drop of the ef-
fective graph resistance (also known as Kirchhoff index) 
caused by the removal of a vertex from the network. In par-
ticular, we extend the version provided by Clemente and 
Cornaro (2020) to the weighted case. The proposed indica-
tor appears suitable for identifying critical vertices in the 
network and, therefore, relevant firms in the market. In-
deed, the Kirchhoff index has been widely used for assess-
ing the robustness of a network. For instance, Ellens et al. 
(2011) and X. Wang et al. (2014) showed that this indicator 
allows assessment of the ability of a network to continue 
performing well when it is subject to failure and/or attack. 
Therefore, vertices whose removal mainly affects the value 
of the Kirchhoff index are critical in terms of the vulnera-
bility of the network. Using this method of analysis, we fo-
cus on two aspects of network contagion (i.e., spreading or 
receiving risk): the local level of interconnection and the 
dominant position of a firm within a system. 

The results show that the networks well capture the be-
havior of interconnections over time. The pattern of net-
works’ weights appear to be strictly related to the financial 
condition of the market. Furthermore, current G-SIIs are 
identified by this network indicator with only a few excep-
tions. Indeed, this type of approach can be considered a 
complement to the more traditional approaches that are 
based on balance sheet and regulatory data. 

The remainder of this paper is organized as follows. Sec-
tion 2 provides some preliminaries about graph theory and 
the weighted Kirchhoff index. Section 3 explains how we 
obtain the network and the weights of edges and defines 
the weighted effective resistance centrality provided by 
Clemente and Cornaro (2020). Section 4 describes how we 
selected the sample of insurance companies over the 
2001–2005 period and how we constructed the network for 
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Figure 1. (a) A simple graph, with no multiedges or         
self-edges (b) A graph with both multiedges and self-        
edges  

each time period and then presents and discusses results. 
Section 5 offers conclusions. 

2. PRELIMINARIES 
2.1. AN INTRODUCTION TO GRAPH THEORY 

The scientific study of networks is an interdisciplinary field 
that brings together ideas from mathematics, physics, biol-
ogy, computer science, the social sciences, and many other 
areas. Scientists in a wide variety of fields have, over the 
years, developed an extensive set of tools—mathematical, 
computational, and statistical—for analyzing, modeling, 
and understanding networks. Many systems can be repre-
sented by networks and the use of an abstract structure can 
help capture the patterns of connections between compo-
nents. 

The concept of a network is very intuitive: in its simplest 
form, a network is a collection of points joined together 
in pairs by lines. In mathematics, the study of networks is 
known as graph theory: a graph is, in fact, the mathematical 
representation of a network (further details on graph the-
ory can be found in Estrada 2011, Harary 1969, and New-
man 2010). 

In graph theory, the points are referred to as vertices (or 
nodes) and the lines are referred to as edges (or links) as 
shown in Figure 1 (a). The number of vertices in a graph 
are denoted by  and the number of edges by . Usually, 
a graph has at most a single edge between any pair of ver-
tices, but there can be more than one edge between the 
same pair of vertices and those edges are collectively re-
ferred to as a multiedge. If there are also edges that con-
nect vertices to themselves, they are called self-edges or 
self-loops as shown in Figure 1 (b). 

A graph that has neither self-edges nor multiedges is 
called a simple graph. A graph with multiedges is called a 
multigraph. In the next section, we will neglect self-edges 
and multiedges. 

In a more formal way, a graph  can be de-
scribed as a pair of sets , where  is 
the set of vertices and  is the set of edges. We 
consider graphs with fixed order  and fixed size 

 The edge connecting vertices is denoted by  and 

Figure 2. A small directed graph with arrows       
indicating the directions of the edges       

by . When two vertices share an edge, they are called ad-
jacent. 

A nonnegative -square matrix , representing the ad-
jacency relationships between vertices of , is associated 
to the graph and it is called the adjacency matrix. The ad-
jacency matrix  of a simple graph is the matrix with ele-
ments  such that 

If the graph has self-edges, the corresponding diagonal ele-
ments of  are equal to 1. 

In some contexts, it is useful to represent edges as hav-
ing a weight, or value—usually, a real number. Hence, a 
weight  can be assigned to each edge  and, in that 
case, it would be a weighted graph or valued graph. More-
over, the strength of a vertex  is denoted by , which equals 
the sum of the weights of the edges adjacent to it. 

A directed graph (or digraph) is a graph in which each 
edge (called arc) has a direction, pointing from one vertex 
to another as shown in Figure 2. More formally, it can be 
said that each edge is an ordered pair of vertices. In general, 
the adjacency matrix of a directed graph is asymmetric. 

An undirected graph is a graph in which if , then 
. A path in a network is any sequence of vertices 

such that every consecutive pair of vertices in the sequence 
is connected by an edge in the network, as in the red path 
in Figure 3. More precisely, a  path is a sequence of dis-
tinct adjacent vertices from vertex  to vertex . The length 
of a path in a graph is the number of edges traversed along 
the path (not the number of vertices). A shortest path (also 
called a geodesic path) is a path between two vertices such 
that no shorter path exists. If the graph is weighted, the 
weighted shortest path is the path with the minimum sum 
of edge weights. The distance  between  and  is the 
length of the shortest path joining them when such a path 
exists, and it is set to  otherwise. 
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Figure 3. A path of length four in a graph         

Figure 4. (a) A connected graph (b) A disconnected        
graph  

Figure 5. A complete graph with     n  = 5 vertices    

A graph  is connected if there is a path between every 
couple of vertices. Figure 4 (a) and 4 (b) show connected 
and disconnected graphs, respectively. 

A graph  is complete when every vertex is connected to 
every other as in Figure 5. 

The degree of a vertex in a graph is the number of edges 
connected to it. The degree of vertex  is denoted by 
and  denotes the degree sequence of 
arranged in nonincreasing order . 

Given the diagonal matrix  of vertex degrees 

the matrix  is known as the Laplacian matrix of 
, whose elements are defined as 

The Laplacian matrix is symmetric and positive semidef-
inite and the rows sum up to ; that is, its eigenvalues 
are real and nonnegative and the smallest eigenvalue is 
zero. The eigenvalues can be ordered and denoted as  for 

, such that . 
For a graph  with nonnegative edge weights , we 

denote the weighted adjacency matrix as . The 
weighted Laplacian matrix is defined as  where 

 is the diagonal matrix of strengths, with elements . 
To summarize, the elements of the weighted Laplacian are 
given by 

Since the weighted Laplacian matrix is symmetric and pos-
itive semidefinite and the rows sum up to , its eigenvalues 
are real and nonnegative and the smallest eigenvalue is 
zero. Hence, the eigenvalues can be ordered and denoted as 

 for , such that . 
Recall here a useful result we use in the sequel: 
Theorem 1 (Weyl’s Theorem)    Let a graph  be given 

and let  be obtained by increasing the weight of an edge, 
the Laplacian eigenvalues of the new graph satisfy 

. This means that increasing edge weights 
does not decrease the Laplacian eigenvalues. 

2.2. THE WEIGHTED KIRCHHOFF INDEX AND THE 
NORMALIZED WEIGHTED KIRCHHOFF INDEX 

The Kirchhoff index  of a simple connected graph 
was defined by Klein and Randić (1993) as: 

where  is the accumulated effective resistance between 
vertices  and . 

Briefly, in order to determine the effective resistance, a 
(simple, undirected, and connected) graph can be seen as 
an electrical circuit, where a resistor of  ohm is asso-
ciated to each edge . For each pair of vertices, the pair-
wise effective resistance between these vertices—that is, 
the resistance of the total system when a voltage source is 
connected across them—can be calculated by means of the 
well-known series and parallel manipulations (for further 
details, see Ellens 2011 and Klein and Randić 1993.) 
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In addition to its original definition, the Kirchhoff index 
can be rewritten as , in terms of the 
eigenvalues of the Laplacian matrix  (see Feng, Gutman, 
and Yu 2010 and Zhu, Klein, and Lukovits 1996). For a 
weighted and undirected graph, the weighted Kirchhoff in-
dex is defined as (see Klein and Randić 1993) 

Recall here a useful result (see Ellens 2011): 
Remark 1  strictly decreases when edges are 

added or weights are increased. 
Remark 1 displays strict monotonicity for  when 

a new edge is added to the graph or when the value of the 
weight of an edge is increased. This is obviously a desirable 
property for an indicator aimed at assessing the robustness 
of the network. 

In order to compare the value of the Kirchhoff index for 
networks with different orders, we can consider the normal-
ized weighted Kirchhoff index. Assuming , it can be 
defined in the following way, extending the indicator pro-
vided by H. Wang, Hua, and Wang (2010)to the weighted 
case: 

where the denominator considers the maximum sum of the 
weights. 

The Kirchhoff index can be highly informative as a ro-
bustness measure of a network, showing the ability of a 
network to continue performing well when it is subject to 
failure and/or attack. In fact, this measure can capture the 
vulnerability of a connection between a pair of vertices be-
cause it considers both the number of paths between the 
vertices and their lengths. A small value of the Kirchhoff in-
dex therefore indicates a robust network. 

3. MODELING THE INSURANCE SYSTEM 

In this section, we model the insurance market as a directed 
weighted network, which is formally defined as a weighted 
graph with  vertices, representing insurance companies in 
different countries, and  edges, representing the relations 
between firms. A positive weight, denoted by , is associ-
ated with each edge . 

In Section 3.1, we define how the weights on the edges 
are calibrated using market-based risk measures. In Section 
3.2, we provide a new network indicator useful to assess the 
relevance of each firm in terms of the robustness of the net-
work. 

3.1. RISK NETWORK OF THE INSURANCE MARKET 

Our purpose is to build a specific risk network that sum-
marizes the tail dependences between insurance companies 
by considering specific risk measures. The ‘‘tail impact’’ 
between financial institutions is indeed used in the con-
struction of a network for the insurance system by building 
on standard market-based measures of systemic risk. These 
measures are estimated on equity returns; therefore, our 

model shares various features with correlation networks 
that are applied to the financial sector and their evolution 
(e.g., Billio et al. 2012 and Kenett et al. 2012). 

In particular, we are interested in quantifying the impact 
of the distress of an insurance company on the others. This 
point of view is consistent with the definition of systemic 
risk. The proposed approach is to use mean expected short-
fall (MES) as a measure of the tail influence of a company 
on another (as proposed by Clemente, Grassi, and Peder-
zoli 2019). Considering a system with  firms, the MES of a 
firm , with , is defined by Acharya et al. (2016) 
in terms of the returns. In particular, we denote the random 
variables (r.v.) returns of the firm  and of the system as 
and , respectively. Hence, the MES is defined as the ex-
pected return of the firm conditional on the return of the 
system being below its VaR level ( ): 

It is noticeable that the definition is similar to the CoVaR, 
which instead quantifies the risk of the system conditional 
on the distress of a single firm. In this paper, we consider 
instead pairs of insurers and we define the ES of an insurer 
 conditional on insurer  being in distress as 

The VaR of a generic firm  at a confidence level  is here 
defined as 

where  denotes the realizations of the r.v.  and 
is the cumulative distribution function of  (see, e.g., 
Artzner et al. 1999). 

In particular, we consider the difference 
 to 

quantify the tail influence of an insurer  on the insurer . 
This difference is always nonnegative and values that are 
closer to zero indicate a stronger tail impact of the insurer 
 on insurer . In other words, we interpret previous differ-

ence as the risk of insurer  that is not driven by insurer . 
To assure comparability among institutions, we scale this 
quantity by a measure of the risk for the insurer , that is, 
the difference between the unconditional expected return 

 and the tail expected return . There-
fore, we define the following measure of the impact of  on 
 as 

 is always nonnegative since both the numerator and 
the denominator are nonnegative. It is noteworthy that in 
the case the inequality  is satis-
fied, we have a positive reaction of  to the distress of the 
company . Our purpose is to analyze systemic risk; there-
fore, we neglect the positive impact obtaining values of 
bounded between  and . 

Hence, we construct a network in which each insurance 
company is a vertex and weights on the edge are defined as 
follows: 

It is worth pointing out that in Equation (8), weights  re-
flect the impact of the insurer  on insurer . Since we are 

Assessing Systemic Risk in the Insurance Sector Via Network Theory

Variance 5



considering , a higher value of weight  means a 
high impact between institutions or, in other words, it cor-
responds to a lower portion of the risk not being driven by 
the company . 

3.2. A SUITABLE NETWORK INDICATOR: WEIGHTED 
EFFECTIVE RESISTANCE CENTRALITY 

To identify the most significant insurance companies in the 
system, we propose a suitable local network indicator that 
is an extension to weighted networks of the vertex-based 
effective resistance centrality provided by Clemente and 
Cornaro (2020, 2019). The vertex-based weighted effective 
resistance centrality can be defined as follows. 

Let  be a weighted and connected graph of 
vertices and  edges and  the graph obtained by remov-
ing the vertex  and all its related connections from . The 
eeighted effective resistance centrality  of the ver-
tex  is defined as 

In (9) we consider at the numerator the drop of the 
weighted normalized Kirchhoff index in order to provide a 
consistent comparison between graphs  and  that have 
different orders. Notice that the quantity  is not al-
ways positive, depending on the relevance of the specific 
vertex  in the network. This measure can be useful to iden-
tify strategic vertices, whose failure can affect the resilience 
of the network. Furthermore, the measure also allows the 
detection of vertices to be eventually removed in order to 
improve the robustness of the network. 

4. DATA, RESULTS, AND DISCUSSION 
4.1. DATA SET DESCRIPTION 

For our study, we selected the largest insurance companies 
in terms of asset size and market capitalization. The com-
panies in the sample are listed in Table 2. For each firm, eq-
uity returns were collected1 on a daily basis during the pe-
riod of January 2001 to the end of December 2015. 

Returns were split using monthly windows and then used 
to construct a time-varying weighted network for each pe-
riod. To compute weights as defined in Equation (8), ES 
and MES at the 95% confidence level were estimated for 

each firm via historical simulation. Additionally, the net-
work was symmetrized using the average effect between the 
pair of firms involved as the edge weight. To justify this 
choice, we applied the scaled  measure2 proposed by Fa-
giolo (2006) to assess whether an empirically observed net-
work is sufficiently symmetric to justify an undirected net-
work analysis. Results provided a negative value of  for 
the whole time period, indicating that the network was only 
weakly asymmetric and an undirected network analysis was 
justified. 

Hence, we have a network  (with 
), where insurance companies are vertices and 

the weights of the edges are related to the impact between 
institutions. Notice that the number of assets can vary over 
time. We considered the 118 firms listed in Table 2, but 
there was no information available for some of the firms 
during specific time periods. Therefore, we considered only 
those insurers for whom the number of observations was 
sufficiently high to ensure a significant estimation of 
weights. Specifically, we considered only insurers with a 
number of observations higher than 90% of trading days. 
We observed that 14 companies were frequently excluded 
(i.e., present not more than 75%).3 

Therefore, we dealt with 180 different networks. On av-
erage, they had 105 vertices and more than 4,000 edges. 
In several windows, the networks were composed by all the 
firms with more than 6,000 edges. As better detailed in the 
next subsection, the networks were on average very dense 
and well clustered, confirming the presence of several tri-
angles. Both binary and weighted assortativity indexes were 
very close to zero. 

4.2. PRELIMINARY RESULTS 

Figure 6 shows 4 of the 180 networks that were analyzed. As 
previously discussed, each vertex represents an insurance 
company and the weighted edge  measures the average 
MES-based impact between a company  and a company . 
In a preliminary visual inspection, the networks appear to 
be very dense. Indeed, the density—computed as the ratio 
of the number of observed edges to the number of potential 
edges—is equal to 0.7 in the first network (January 2001) 
and to 0.81 in the last network at the end of the period 
(December 2015). Although the networks are densely con-
nected, they are not complete because we set a weight equal 
to zero when minus MES exceeds the expected returns of 
insurance company  in the same time period (see Equation 
(7)). 

The equity returns were collected from Bloomberg only for firms for which that information was available. 

The  measure for a weighted graph  is defined by Fagiolo (2006) as follows: 
. A scaled score is then obtained by subtracting to  the theoretical mean and by dividing by the theoretical 

standard deviation. Therefore, an empirical value lower than zero is typically used to assume that the network could be treated as undi-
rected. 

The 14 firms were Brighthouse Financial, Direct Line, Fidelity and Guaranty, HDFC, Japan Post Insurance, Mutual of Omaha, National 
Life, New China Life Insurance, New York Life Insurance, NN Group, Northwestern Mutual, Talanx AG, TIIA, and Voya Financial. 

1 

2 

3 
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Figure 6. Networks of the insurance market in four time periods          
Note: The edge opacities are proportional to the weights (each of which represents the intensity of the impact of a firm on another firm). The sizes of vertices are proportional to the 
ESs of the firms. 

Moreover, the networks are denser in periods of crisis, 
for example, the networks covering data for years 2007 and 
20084, because of both lower returns and higher depen-
dency (and, hence, higher MES) between companies.5 In 
particular, it is noticeable that the situation at the end of 
2008—where a very dense subgraph is observed—was char-
acterized by a subset of insurers (mainly U.S. firms) that 
were highly correlated and had high ES values. 

The main measures involved in the computation of 
are summarized in Figure 7. We analyze how the distribu-
tions of the average returns and ESs vary over time. 

In this regard, the Distributions of Returns (Figure 7, left) 
shows the fluctuations of average returns of each company 
in the sample. As expected, in the periods of the Lehman 
Brothers failure and the sovereign debt crisis, the average 
returns are negative and there is higher volatility among 
firms. According to the Distribution of ES (Figure 7, right), 
the 2007–2009 crisis is outstanding in terms of the size 

and frequency of the extreme daily market losses. During 
2008, the median of the distribution reaches values close to 
10.5%, significantly higher than the values around 3.0% ob-
served in quiet periods. The sovereign debt crisis period (in 
2011) is also characterized by a slight increase in the me-
dian of ESs distribution (equal to approximately 5.0%). 

In Figure 8, we report the distributions of edge weights 
at four different time periods. The distributions capture the 
effects of the increased distress that already affected the 
market in 2007; that is, both MES and ES slowly increased 
with respect to previous years. The average ratio between 
MES and ES increased in 2007 and reached a peak in the 
second half of 2008. 

To provide a visualization of the pattern of weights for 
the whole period, Figure 9 reports mean and confidence in-
tervals at 90% of weights distribution for each year. An-
other important effect can be detected in 2010 and 2011. 
There was an average increase in the weights because MES 

Density exceeds 0.8 in these years with a maximum value of 0.88. 

This point will become more evident later via analysis of Figure 7. 

4 
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Figure 7. Distributions of average returns and ES at various time periods           
Note: Each distribution is displayed as a classical box-and-whisker plot. Each rectangle includes data between the first and third quartiles, and the horizontal line inside indicates the 
median value. The whiskers go from the first and third quartiles to 1.5 times the interquartile range (including data that are within 1.5 times the interquartile range). Observations 
that fall outside 1.5 times the interquartile range are plotted as dots. 

was growing faster than ES and, in particular, the differ-
ences in the patterns among the firms in the sample in-
duced higher volatility. At the end of 2011, the standard de-
viation of the weights was higher than in previous periods. 
This is mainly because the sovereign debt crisis affected five 
countries of the Eurozone in a more substantial way. The 
pattern of the weights also captures the level of contagion 
for other Eurozone countries, which diminished in the sec-
ond half of 2012 because of the successful consolidation 
and implementation of structural reforms in the countries 
that were most at risk. 

4.3. NETWORK ROBUSTNESS INDICATORS AND G-SII 
CLASSIFICATION 

To measure the level of interconnectedness in the network, 
at each time period, we computed the clustering coefficient, 
a well-known network indicator introduced by Barrat et 
al. (2004) for weighted networks. This indicator has been 
widely used as a measure of the state of stress of the finan-
cial market (see, e.g., Minoiu and Reyes 2013 and Tabak et 
al. 2014). Since our time span covered very turbulent peri-
ods that affected countries in different ways and with dif-
ferent timing, we divided the time period into four different 
subperiods. Following Lo Duca et al. (2017) and Clemente, 
Grassi, and Pederzoli (2019), without any pretense of being 
exhaustive, we defined our four subperiods: pre-crisis (Jan-
uary 2001–December 2007), Lehman Brothers failure (Jan-
uary 2008–December 2009), sovereign debt crisis (January 
2010–December 2012) and post-crisis (January 2013–De-
cember 2015). 

Distributions of clustering coefficients are reported in 
Figure 10. We observed that the median coefficient evolved 

consistently with the underlying financial events. It tends 
to be lower in calm periods and rise before crises. Sharper 
spikes occur around big events that caused severe stress 
in the global financial system: for instance, the 2008–2009 
Lehman Brothers failure stands out as an unusually large 
perturbation to the network. Then a decline can be ob-
served until 2010, when a greater focus emerged on sover-
eign debt in the Eurozone. A smaller peak can be observed 
in 2011 due to the presence in the sample of several insur-
ance companies from countries that were most severely af-
fected by the sovereign debt crisis. 

To assess the relevance of each firm in the system, we 
computed the weighted effective resistance centrality for 
each vertex. The aim was to catch the importance of each 
firm by measuring the relative variation of the normalized 
weighted Kirchhoff index given by the removal of that ver-
tex from the network. We repeated the procedure for each 
time period and we ranked firms according to this index. 
Since the edge weights are based on market-based mea-
sures, which are forward looking by nature, our purpose 
was to identify which firms were the most relevant from a 
systemic risk perspective. 

Figure 11 shows the pattern of the normalized weighted 
Kirchhoff index over time computed at the network level. 
Periods such as 2007–2008 and 2011 with higher levels of 
interconnection in Figure 10 are characterized by a network 
with a lower degree of robustness in Figure 11. A higher 
value of  means a higher level of network vulnera-
bility, so, in these periods, the failure of a firm can have a 
larger impact on the whole market. 

To focus on the behavior of each insurance company in 
terms of weighted effective resistance centrality (see Table 
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Figure 8. Distributions of edge weights at different time periods         
Note: In each figure, the dotted blue line represents the median and the dotted red line represents the 90% quantile. 

1), we ranked firms in decreasing order according to the av-
erage assumed by this index for each of the four subperiods. 
Since we are using a measure of robustness computed on a 
network that implicitly takes into account the tail depen-
dence between equity returns, the firms in the top quan-
tile can be interpreted to be the most interconnected in the 
network. We compared them with the insurance companies 
that were classified as G-SIIs (reported in italics in Table 1). 
Since Aegon replaced Generali Assicurazioni on the list in 
November 2015, we labeled all firms that belonged to the 
list at any time during the period as G-SIIs. 

The methodology used by IAIS for identifying system-
ically important insurers is based on various characteris-
tics, but the sizes of the firms and their interconnectedness 
with the system are two relevant issues. However, other 
points, such as global activity, asset liquidation, and substi-
tutability have been considered (see, e.g., EIOPA 2017 and 
International Association of Insurance Supervisors (IAIS) 
2013a). In our comparison, we have taken into account only 

a single aspect of this classification; namely, we deal with 
interconnections measured in the tails. We do not intend to 
propose a new methodology for assessing a G-SII. 

It is interesting to note that insurance companies that 
are classified as G-SIIs also have a relevant impact on the 
robustness of the network. For instance, considering the 
whole period, we noticed that AXA, MetLife, AIG, Allianz, 
and Prudential belong in the top 10 in our ranking. Addi-
tionally, we also observed that Aegon increased its ranking, 
reaching a higher level of importance in the network than 
Assicurazioni Generali. This seems in line with IAIS’s re-
placement of Assicurazioni Generali with Aegon in the list 
of G-SIIs. 

The main exception we found was Ping An Insurance, a 
company that is classified as a G-SII but belongs to very low 
quartiles of the distribution of the effective weighted re-
sistance centrality in all periods. However, the presence of 
Ping An Insurance in the G-SII list is mainly justified by its 
size, which is not considered in our approach.6 

In 2018, the company was classified by AM Best as the third-largest insurer in the world in terms of net premiums and in the top 10 in 
terms of nonbanking assets. 

6 
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It is also notable that these results are in line with those 
of Denkowska and Wanat (2020). Although Denkowska and 
Wanat used a smaller sample of firms and a different ap-
proach based on copula Garch models and a minimum 
spanning tree, common points are our use of market-based 
indicators computed on equity returns and application of 
methodologies to catch the dependence in the tails. As in 

Figure 9. Mean and confidence intervals at 90% of weights distribution for each year             

Figure 10. Distributions of clustering coefficients at different time periods         
Note: The four subperiods characterized by different events are identified by the red dotted lines. 

our case, the authors confirmed the relevance of several 
firms that belong to the list (as AXA, Allianz, Aegon, Aviva, 
and Prudential) and the presence of other firms (as Zürich 
and Legal & General) that are not included in the list. 

We also noticed in our analysis that some relevant firms 
of the U.S. market (see, e.g., Berkshire Hathaway and State 
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Figure 11. Pattern of normalized weighted Kirchhoff index         at different time periods     
Note: The four subperiods characterized by different events are identified by the red dotted lines. 

Farm) appear to be top players in terms of robustness of the 
network. 

The systemic relevance of reinsurance companies as well 
as their possible inclusion in the G-SII list (see, e.g., ESRB 
2015, Annex 4) was the subject of much discussion. Al-
though we did not consider risk transfer between insurers 
and reinsurers in this paper, it is interesting to note the 
presence of the largest reinsurance companies (Munich Re, 
Swiss Re, and Hannover Re) in Table 1. We can interpret 
this presence as a confirmation of the relevance of these 
firms in the market. 

We also performed a specific analysis to evaluate possi-
ble similarities between the results displayed in Table 1 and 
the level of interconnection of the firms. To this end, we 
computed the local clustering coefficients (see Barrat et al. 
2004) on each weighted network and we ranked firms ac-
cording to this indicator. We noticed a general consistency 
between the results in Table 1 and the ranking based on lo-
cal clustering coefficient. The correlation between the two 
rankings is equal to 0.7 if we consider the whole period. 
In particular, the two methodologies show higher correla-
tion in the '‘pre-crisis’'period (equal to 0.8) and lower cor-
relation in both periods of crisis. In particular, focusing on 
the G-SII list, we observed that relevant firms in terms of 
robustness are also highly interconnected in the network. 
Similarly, the largest reinsurance companies were also well 
clustered on average. On the other hand, other firms, such 
as Zürich and Legal & General, that assumed a relevant role 
both in Table 1 and in the results provided by Denkowska 
and Wanat (2020), showed lower levels of clustering. 

Finally, it is noteworthy that some firms (e.g., Unum 
Group, Thrivent Financial for Lutherans, and Lincoln Na-
tional) are clustered at a local level in specific subperiods 

but have a lower importance when robustness is consid-
ered. 

CONCLUSIONS 

Systemic risk is an widely studied issue. In this context, 
a relevant topic that has been addressed is the need to 
tighten up supervision on global systemically important fi-
nancial institutions. We focus in this paper on the insur-
ance sector and we provide a methodology based on a com-
bination of market-based measures and a network approach 
for assessing relevant firms in the market. 

In particular, our aim is to propose a specific network 
indicator, the weighted effective resistance centrality, that 
can capture the effect of the removal of a specific firm on 
the robustness of the network. 

Empirical analysis shows how the insurance companies 
classified as G-SIIs by the IAIS are identified as relevant 
firms by our indicator with very few exceptions. Our pro-
posal offers a complement to the more traditional ap-
proaches based on balance-sheet and regulatory data, not 
an alternative to the methodology provided by IAIS. Indeed, 
our results focus on the too-interconnected-to fail perspec-
tive using market-based measures whereas the method-
ology used by IAIS is also driven by size and by overall 
exposure, focusing on the too-big-to-fail concept and con-
sidering balance-sheet data. 

Even if size is obviously relevant, the IAIS approach 
could be improved by combining market and balance-sheet 
data. For instance, in banking, Varotto and Zhao (2018) 
suggest classifying as globally relevant only those banks 
deemed '‘systemic’'by both approaches and focusing on 
banks for which there is no consistency between the ap-
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Table 1. Top insurers (first quartile) in terms of average weighted effective resistance centrality             

Top insurers according to higher average of the weighted effective resistance centrality 

Pre-crisis Lehman failure Sovereign debt crisis Post-crisis All periods 

AXA Sumitomo Life Legal & General 
Berkshire 
Hathaway 

MetLife 

MetLife MetLife American Financial Group RGA AXA 

AIG AIG Berkshire Hathaway AIG 
Massachusetts 

Mutual 

Prudential Financial AXA State Farm Allstate RGA 

Massachusetts 
Mutual 

Principal Financial Ageas State Farm Allstate 

Allianz Prudential Financial Prudential Financial Chubb AIG 

Allstate RGA Hannover Re MetLife Allianz 

The Travelers 
Companies 

CNA Massachusetts Mutual 
Massachusetts 

Mutual 
Prudential 
Financial 

Munich Re Allianz RGA 
Principal 
Financial 

State Farm 

Swiss Re Zürich MetLife 
Prudential 
Financial 

Chubb 

Chubb Aviva Allstate Aegon Legal & General 

CNA 
Massachusetts 

Mutual 
CNA Aviva 

Principal 
Financial 

XL Group XL Group RSA Ageas Prudential PLC 

Principal Financial State Farm Prudential PLC Legal & General CNA 

American Financial 
Group 

Sampo Oyj Bäloise AXA 
Berkshire 
Hathaway 

Prudential PLC Munich Re Principal Financial Hannover Re Swiss Re 

State Farm 
American Financial 

Group 
Munich Re Swiss Re Munich Re 

RGA Allstate Allianz Bäloise XL Group 

Bäloise Chubb Chubb Allianz Bäloise 

RSA 
The Travelers 

Companies 
Swiss Re Prudential PLC Zürich 

Ageas CNP Assurances AXA 
Assicurazioni 

Generali 
Aviva 

Legal & General Old Mutual AIG CNA Hannover Re 

Zürich Prudential PLC SCOR Zürich Ageas 

Assicurazioni 
Generali 

Swiss Re Aegon Groupama 
Assicurazioni 

Generali 

Aviva Helvetia Zürich Sampo Oyj Aegon 

Hannover Re 
Assicurazioni 

Generali 
Aviva Helvetia Sumitomo Life 

Ranking of G-SIIs that do not belong to the top quartile 

Pre-crisis Lehman failure Sovereign debt crisis Post-crisis All periods 

 

Aegon (38) Ping An 
(73) 

Aegon (85) Ping An 
(95) 

Assicurazioni Generali (57) Ping 
An (101) 

Ping An (96) Ping An (96) 

Note: Insurers that are classified as G-SIIs are indicated by italics. The rankings of the G-SIIs that do not belong to the first quartile of the distribution are reported at the bottom of 
the table. 

proaches. This type of integration could also help regula-
tors capture the multiple facets of systemic risk in the in-
surance field. 
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Table 2. List of insurance companies in the sample        

Achmea Holding N.V. Aegon N.V. 

Aflac Inc. Ageas S.A./N.V. 

AIA Group Ltd. AIG Inc. 

AIG Europe Ltd. Alleghany Corp. 

Allianz SE Allstate Corp. 

American Equity Investment Life Insurance Co. American Financial Group Inc. 

American National Group Inc. MS Amlin Ltd. 

AmTrust Financial Services Inc. Asahi Mutual Life Insurance Co. 

Assicurazioni Generali S.p.A. Assurant Inc. 

Aviva PLC AXA S.A. 

Bâloise Holding AG Berkshire Hathaway Inc. 

Brighthouse Financial Inc. Cathay Financial Holding Co. Ltd. 

Chesnara PLC China Life Insurance Company Ltd. 

China Pacific Insurance Co. Ltd. China Taiping Insurance Group Ltd. 

Chubb Ltd. CNA Financial Corp. 

CNO Financial Group Inc. CNP Assurances S.A. 

Dai-ichi Life Holdings Inc. Delta Lloyd N.V. 

Direct Line Insurance Group PLC DB Insurance Co. Ltd. 

Fidelity and Guaranty Life Insurance Co. Fubon Insurance Co. Ltd. 

Genworth Financial Gjensidige Forsikring 

Groupama Holding S.A. Guardian Life Insurance Inc. 

Hannover Re Hanwha Life Insurance Co. Ltd. 

Hartford Life and Accident Insurance Co. HDFC Life Insurance Co. Ltd. 

Helvetia Holding AG Insurance Australia Group Ltd. 

Japan Post Insurance Co. Ltd. KB Insurance Co. Ltd. 

Legal & General Group PLC Lincoln National Corp. 

Manulife Financial Corp. MAPFRE Insurance Co. 

Markel Corp. Massachusetts Mutual Life Insurance Co. 

Mediolanum Assicurazioni S.p.A. Meiji Yasuda Life Insurance Co. 

MetLife Inc. MS&AD Insurance Group 

Munich Re Mutual of Omaha Insurance 

National Life Group New China Life Insurance Co. 

New York Life Insurance Co. NFU Mutual 

NN Group N.V. Northwestern Mutual Life Insurance Co. 

Nuernberger Beteiligungs AG Ohio National Life Insurance Co. 

Old Mutual PLC OneAmerica Financial Partners Inc. 

Penn Mutual Life Insurance Co. Phoenix Group Holdings PLC 

PICC Property & Casualty Co. Ltd. Ping An Insurance Group Co. of China Ltd. 

Power Financial Corp. Principal Financial Group 

Prudential Financial Inc. Prudential PLC 

PZU S.A. Insurance QBE Insurance Group Ltd. 

RGA RSA Insurance Group 

Sampo Oyj Samsung Fire & Marine Insurance Co. Ltd. 

Samsung Life Insurance Co. Ltd. SCOR SE 

Shin Kong Insurance Co. Ltd. Società Cattolica di Assicurazioni S.C. 

Sompo International Insurance Sony Life Insurance Co. Ltd. 

Standard Life Aberdeen PLC State Farm Mutual Automobile Insurance Co. 

Storebrand ASA Sumitomo Life Insurance Co. 
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Sun Life Financial Inc. Suncorp Group Ltd. 

Swiss Life Group Swiss Reinsurance Company Ltd. 

Symetra Financial Corp. T&D Life Group 

Talanx AG Progressive Corp. 

The Travelers Companies, Inc. Thrivent Financial for Lutherans 

TIAA Tokio Marine Holdings Inc. 

Topdanmark A/S Tryg A/S 

UnipolSai Assicurazioni S.p.A. Uniqa Insurance Group 

Unum Group Vienna Insurance 

Voya Financial Inc. XL Group Ltd. 

Zenkyoren (National Mutual Insurance Federation of Agricultural Cooperatives) Zürich Insurance Group 
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