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Abstract

Pangenomes are becoming a powerful framework to perform many bioinformatics analyses

taking into account the genetic variability of a population, thus reducing the bias introduced

by a single reference genome. With the wider diffusion of pangenomes, integrating genetic

variability with transcriptome diversity is becoming a natural extension that demands spe-

cific methods for its exploration. In this work, we extend the notion of spliced pangenomes to

that of annotated spliced pangenomes; this allows us to introduce a formal definition of Alter-

native Splicing (AS) events on a graph structure. To investigate the usage of graph pangen-

omes for the quantification of AS events across conditions, we developed pantas, the first

pangenomic method for the detection and differential analysis of AS events from short RNA-

Seq reads. A comparison with state-of-the-art linear reference-based approaches proves

that pantas achieves competitive accuracy, making spliced pangenomes effective for con-

ducting AS events quantification and opening future directions for the analysis of popula-

tion-based transcriptomes.

Author summary

The ever increasing availability of complete genomes is advancing our comprehension of

many biological mechanisms and is enhancing the knowledge we can extract from

sequencing data. Pangenome graphs are a convenient way to represent multiple genomes

and the genetic variability within a population. Integrating genetic variability with tran-

scriptome diversity can improve our understanding of alternative splicing, a regulation

mechanism which allows a single gene to code for multiple proteins. However, many

unanswered questions are limiting our comprehension of the relationship between genetic

and trancriptomic variations. With this work, we start to fill this gap by introducing

pantas, the first approach based on pangenome graphs for the detection and differential

quantification of alternative splicing events. A comparison with state-of-the-art

approaches based on linear genome prove that pangenome graphs can be effectively used

to perform such an analysis. By integrating genetic and transcriptome variability in a
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single structure, pantas can pave the way to next generation bioinformatic approaches

for the accurate analysis of the relations between genetic variations and alternative

splicing.

Introduction

Pangenomics is emerging as a new powerful computational framework for analyzing the

genetic variability of a population without being negatively affected by the reference bias intro-

duced when considering a single genome as a reference. The recent release of the first draft

human pangenome reference [1] demonstrated that this richer reference can be used to per-

form many bioinformatics analyses, e.g. variant calling, with superior accuracy and precision,

especially in structurally complex loci of the genome. In particular, pangenomes have also

been showed to improve transcriptomic data analysis [2], thanks to the extension of the notion

of pangenomes to that of spliced pangenomes (or pantranscriptomes). A spliced pangenome is

obtained by enriching a pangenome, which is a graph structure representing the genetic diver-

sity of multiple individuals of a population, with transcript variability coming from gene anno-

tations. This complex but powerful graph structure is used to perform haplotype-aware

transcript quantification [2]. A comparison with reference-based approaches proves that

spliced pangenomes improve the accuracy of transcript quantification. Indeed, by incorporat-

ing both genetic variability and isoform diversity, spliced pangenomes allow to reduce the alle-

lic bias and increase the number of reads aligned over heterozygous variations [2]. Apart from

this seminal work, the usage of spliced pangenomes in the context of transcriptomic is fairly

unexplored and their full potential is still under investigation. Similarly to pangenomics, pan-

transcriptomics needs suitable bioinformatics tools to fulfill its biological potential. Encour-

aged by the results in [2], we explore the adoption of spliced pangenomes for performing a

classical transcriptomic task, namely the detection and differential quantification of Alterna-

tive Splicing (AS) events across conditions.

Alternative splicing (AS) is a regulation mechanism which allows a single gene to code for

multiple isoforms and express multiple proteins. Such a mechanism is the main contributing

factor for the overwhelming complexity of transcriptomes in eukaryotes. Alternative splicing

is associated with different diseases [3–5] and it also plays a key role in various biological pro-

cesses, like aging [6]. The advent of RNA-Sequencing technology (RNA-Seq) enabled the anal-

ysis of transcriptome and alternative splicing at an unprecedented speed and precision. A

typical RNA-Seq analysis consists of comparing two conditions (e.g., control vs tumor) and

checking for changes in terms of isoform abundances [7, 8]: a change in the relative abun-

dances of the isoforms of a gene is usually a strong evidence of differential splicing. An alterna-

tive approach consists of directly detecting and quantifying alternative splicing events. Instead

of focusing on entire isoforms quantification, several approaches work at a finer-grained level

and focus on exon-exon boundaries, also known as splice junctions, and check for changes in

their usage. By analyzing splice junctions, these approaches can directly detect and quantify AS

events providing more accurate results with respect to approaches based on transcript quanti-

fication [9]. Several tools have been proposed in the literature to differentially quantify AS

events from RNA-Seq datasets [10–17].

Differently from the state-of-the-art, where a single reference is considered and AS event

quantification is modeled without taking into account the genetic variability of the population

of the species under investigation, we propose to use a spliced pangenome and quantify AS

events using this more powerful structure that inherently represents multiple individuals and
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gene annotations. To this aim, we introduce the notion of annotated spliced pangenome, we

propose the first formalization of AS events on this richer structure, and we provide the first

method, pantas, to perform AS events differential quantification on a spliced pangenome.

Although the adoption of a graph structure is not new in computational transcriptomics,

where splicing graphs are commonly used to model isoform variability [11–13, 18–20], no

approach takes also into account the genetic variability of the population under investigation.

It is indeed well known that genetic variations alter splicing pattern in many diseases [21, 22].

However, establishing their impact on alternative splicing is still challenging [23]. Even though

the adoption of spliced pangenomes may shed more light on the relationship between genetic

variations and splicing, the current lack of efficient tools for pangenomic-based analysis of

RNA-Seq data is hindering this kind of investigation. Our work here is a first step in closing

this gap.

Experimental evaluation on simulated and real data from Drosophila and Human shows

that spliced pangenomes can be effectively adopted to perform AS events detection and quanti-

fication. A comparison with state-of-the-art tools based on linear reference or splicing graphs

shows that AS event quantification from spliced pangenome provides competitive results. Our

preliminary investigation paves the way to the adoption of spliced pangenomes for pantran-

scriptomic analysis, where genes are annotated w.r.t. a pangenome and not a single reference

genome [24].

Methods

The problem we want to tackle is detecting and quantifying alternative splicing events sup-

ported by an input RNA-Seq dataset comprising two conditions with optional replicates with

respect to a spliced pangenome. To this aim, we introduce the notion of annotated spliced pan-
genome and we describe how AS events can be detected from this graph structure. Finally, we

present the pantas tool we developed to detect and differentially quantify AS events. From a

high-level point of view, pantas is a set of utilities that helps the user to perform any step

required for alternative splicing events quantification on spliced pangenome graphs. pantas
builds and annotates a spliced pangenome starting from standard file formats (more details in

Appendix A in S1 Text) and, after RNA-Seq reads have been aligned to the graph using state-

of-the-art spliced aligners, it performs AS events detection and quantification against this

richer structure. pantas detection can be summarized as follows:

1. annotated spliced pangenome is augmented with alignment information.

2. events are detected by analyzing the graph and applying the definitions provided below.

3. events are differentially quantified by comparing the conditions.

More details on pantas implementation are available at the end of this section.

Annotated spliced pangenome graph

A variation graph, as defined in [25], is a directed graph whose vertices correspond to portions

of genomes and are labeled by nonempty strings, and edges represent consecutiveness between

two such portions of genomes. A spliced pangenome, introduced in [2], is a variation graph

with some distinguished walks. A walk in a graph is a sequence of vertices connected by edges.

In a spliced pangenome, we can identify the walks {H1, H2, . . ., Hh} representing the haplotypes

and the walks {T1, T2, . . ., Tt} representing the haplotype-aware transcripts. Although spliced

pangenome can contain cycle, in this work we will focus on acyclic graphs. Each haplotype is

the genomic sequence of a particular individual. We note that this sequence is usually a set of
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sequences (one per chromosome). However, without loss of generality, we will consider the

haplotype walks as single walks in the graph. Each haplotype-aware transcript is a transcript,

i.e., a sequence of the coding regions of a gene, known as exons, that belongs to a specific hap-

lotype in {H1, . . ., Hh}. We note that due to haplotype similarity, two haplotype-aware tran-

scripts can be the same sequence of vertices of the graph, i.e., the same walk. The edges that

belong to some transcript walks but do not belong to any haplotype walk correspond to anno-

tated splice junctions. These edges link two vertices of the graph that are not consecutive in the

haplotype walk due to the presence of intronic regions (non-coding regions) between the

exons. Notice that, in a spliced pangenome, a vertex v that belongs to at least a haplotype-

aware transcript walk represents an exonic region. All other vertices represent intronic or

intergenic regions that belong to some haplotype.

An annotated spliced pangenome is a spliced pangenome whose vertices and edges are

annotated (or labeled) with additional information that will be essential for formalizing and

detecting AS events. An example of annotated spliced pangenome is given in Fig 1. More pre-

cisely, each vertex v of an annotated spliced pangenome is annotated with two information:

the set EðvÞ of its exon labels (from now on simply exons) and the set T ðvÞ of its haplotype-

aware transcripts. We note that an exon is univocally identified by the haplotype-aware tran-

script it belongs to and by its order along that transcript. We note that a vertex can represent a

single exonic region but, in an annotated spliced pangenome, this region may belong to multi-

ple exons coming from different haplotype-aware transcripts, e.g., due to haplotype similarity

Fig 1. Annotated spliced pangenome example. (a) Reference genome with a purple box representing a gene locus and diamonds representing alternate

alleles of variations. In this example, we will consider two haplotypes, H1 containing the reference alleles and H2 containing the alternate alleles. (b) The

gene has two transcripts, namely T1 and T2, expressing an exon skipping event. There is a total of 4 haplotype-aware transcripts. The alternate alleles are

color-coded depending on the exon they fall in. (c) Spliced pangenome built from the reference genome, gene annotation, and set of variations. Colored

vertices and edges belongs to the transcript walks and they represent portions of exons and splice junctions. White vertices are genomic portions coming

from intron and intergenic regions that do not belong to the transcript walks. The two haplotypes are represented as colored bars above and below the

vertices. (d) Annotated spliced pangenome where each colored vertex (exon portion) is annotated by the transcripts and exons it belongs to and each

colored edge (junction) is annotated with the junction information. (e) Spliced alignments of two RNA-Seq reads to the annotated spliced pangenome.

Read A aligns over the reference allele of the first variation and supports the annotated splice junction between the first and second exons (blue edge). Read

B, instead, aligns over the alternate allele of the variations and then supports a novel splice junction between the two exons (the novel junction induces an

alternative donor events).

https://doi.org/10.1371/journal.pcbi.1012665.g001
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or to an alternative form of an exon in the case of an alternative splicing event. For this reason,

EðvÞ is a set of exons and not a single exon. To simplify the exposition, whenever EðvÞ or T ðvÞ
are empty, we say that the vertex v has no annotation—this can happen, e.g., for a vertex in an

intronic or intergenic region. Moreover, each edge e = hu, vi of an annotated spliced pangen-

ome that represents a splice junction is annotated with the set T ðeÞ of the haplotype-aware

transcripts it belongs to. As for vertices, the same splice junction can be shared by many haplo-

type-aware transcripts. In addition to this information that is required to fully represent the

known haplotype-aware transcripts encoded in a spliced pangenome, the elements of an anno-

tated spliced pangenome can be further annotated with additional data. For instance, following

a step of RNA-Seq read alignment, each edge e = hu, vi of the graph can be annotated with a

numeric value w(e), representing its support (or coverage).

Criteria for alternative splicing event detection

In this section we will provide the formal description of how alternative splicing events can be

detected from an annotated spliced pangenome. We will first focus on annotated events and

then we will formalize novel events. From a high level point of view, alternative splicing events

can be identified by locally comparing the splice junctions of two transcripts represented in

the annotated spliced pangenome. Thus pantas analyzes two sets of junctions, one coming

from the canonical transcript whereas the other from the alternative one. Event detection starts

from the alternative junctions and compares them to the canonical ones. An AS event is said

to be annotated if the junctions of the two transcripts involved in the event are already anno-

tated, i.e., the edges representing the junctions are already present and annotated in the input

graph. On the other hand, an event is said to be novel if the splice junctions of only one of the

two transcripts are already annotated and the junctions of the other transcript are supported

by read alignments only. Differently from other approaches that model AS events as coordi-

nates over a linear reference genome, we model the AS events directly on a graph structure

and we provide a formal definition of each event in terms of graph elements (i.e., vertices and

edges). The annotation introduced as distinctive property of annotated spliced pangenomes

helps in this formalization.

Annotated alternative splicing events

To detect annotated alternative splicing events we consider every annotated splice junction

independently as a potential event for which we check whether the following conditions apply.

The definitions below are all referred to a splice junction e = ha, bi between two exonic regions

having a transcript T1 2 T ðaÞ \ T ðbÞ, and the junction coverage w(e) is greater than a user-

specified threshold, i.e., there is enough evidence for the event. In the following, given a vertex

v, we denote with next(v) and prev(v) the set of successors and predecessors of v, respectively.

Exon skipping. We call an annotated exon skipping for the annotated splice junction j =

ha, bi when there is a transcript T2 (of the same gene) with an exon between the two vertices a
and b—notice that T1 6¼ T2 since the transcript T1 uses the junction ha, bi, therefore it cannot

have any exon between a and b. Formally, there exists a transcript T2 2 T ðaÞ \ T ðbÞ n T ðjÞ
with two exons ea 2 EðaÞ, eb 2 EðbÞ that are not consecutive in t. Fig 2.a shows an example in

which a = n1, b = n4 and T1.e2 is the skipped exon for the transcript T2.

Alternative 5’ splicing site. We call an annotated alternative 5’ splicing site for the anno-

tated junction j = ha, bi when there is another transcript (of the same gene) for which the first

exon extends further towards the 3’, but does not incorporate the second exon of the junction

j. Formally, there exists a vertex v 2 next(a) and an exon e 2 EðaÞ \ EðvÞ n EðbÞ (i.e., the exon

e covers both the vertex a and one of its successors v, but does not cover b) such that
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T ðeÞ \ T ðbÞ 6¼ ∅. By construction, this implies that there is a transcript T2 2 T ðeÞ, T1 6¼ T2,

that does not cover the junction j, but cover both exons joined by j. Fig 2.b shows an example

in which a = n1, b = n3 and there are vertices (n1, . . ., n2] would be extending exonic vertices of

T1.e1 but not of T2.e1.

Alternative 3’ splicing site. The definition of an annotated alternative 3’ splicing site is

symmetrical to that of 5’ splicing sites. It suffices to identify a predecessor v 2 prev(b) and an

exon e 2 EðbÞ \ EðvÞ n EðaÞ such that T ðeÞ \ T ðbÞ 6¼ ∅. Fig 2.c shows an example in which a
= n1, b = n3 and [n2, . . ., n3) would be extending exonic vertices of T1.e2 but not of T2.e2.

Intron retention. We call an annotated intron retention for the annotated junction j = ha,

bi when there is another transcript (of the same gene) for which a, b are in the same exon, i.e.,

there is a third exon spanning both exon a and b and including the intron in between them.

Formally, there exist two edges ha, ui and hv, bi such that EðaÞ \ EðbÞ \ EðuÞ \ EðvÞ 6¼ ∅.

Notice that u and v are not necessarily distinct. Fig 2.d shows an example in which a = n1, b =

n4 which are part of exons e1 and e2 for transcript T1 and of e1 for T2, n2 and n3 are intronic

for T2.

Novel alternative splicing events

In the definitions given below we consider an edge e = ha, bi between two vertices such that

T ðaÞ \ T ðbÞ is not empty, except for the alternative 3’/5’ intronic cases. This edge can be a

novel junction if it is not annotated as such in the annotated spliced pangenome; such edges

will be used to classify events by verifying the following conditions, alongside having the

weight w(e) greater than a user-specified threshold. Note that for every definition that requires

a range of vertices [x, . . .y] to be covered, we do not always perform a complete graph traversal

but we iteratively check that there exist a covered vertex xi+1 2 next(xi) and a covered vertex yi
+1 2 prev(yi) for i< w (for a user-specified w-long window) or until the sets of vertices con-

verge. While this heuristic is less robust than an actual graph traversal, it is more computation-

ally efficient and empirically proven to be effective.

Exon skipping. In this case, edge ha, bi is a novel junction and there is a transcript (of the

same gene) for which none of the exons from EðaÞ and from EðbÞ are consecutive. Fig A.a in

S1 Text shows an example in which a = n1, b = n4 which are part of exons e1 and e3 for tran-

script T1, meaning that according to it one exon was skipped. More formally, we call a novel

Fig 2. Annotated events in a spliced pangenome. All the annotated events expressed within the annotated spliced pangenome showing the different tags

used: exon skipping (a), alternative donor splicing site (b), alternative acceptor splicing site (c), and intron retention (d). Haplotype information and

weights are omitted for readability. Blue squares represent exons with their tags, green and purple edges are the annotated junctions with their tags, grey

vertices are exonic and white are intronic. Exons are labeled with the transcript walks that are represented in the figure.

https://doi.org/10.1371/journal.pcbi.1012665.g002
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exon skipping for the novel junction ha, bi if there is at least one transcript in T ðaÞ \ T ðbÞ in

which exons from EðaÞ and EðbÞ are not consecutive.

Cassette Exon. We call a novel cassette exon for the junction ha, bi if it is annotated, there

exist an exon from EðaÞ and one from EðbÞ that are consecutive for a transcript, and there are

two novel covered edges ha, xi, hy, bi. Fig A.b in S1 Text shows an example in a = n1, b = n4

being in two consecutive exons and x = n2, y = n3 the intronic covered vertices in between.

More formally, it holds that (i) there exist two exons ea 2 EðaÞ; eb 2 EðbÞ such that ea, eb are

consecutive for (at least) one transcript in I and (ii) there are two novel covered junctions ha,

xi, hy, bi.
Alternative 5’ exonic. We call a novel alternative 5’ exonic splicing site for the novel edge

ha, bi if there exist an exon from EðaÞ and one from EðbÞ that are consecutive for a transcript,

there is a transcript (of the same gene) for which the first exon extends further towards the 3’.

Fig A.c in S1 Text shows an example in which a = n1, b = n3 and (n1, . . ., n2] would be extend-

ing exonic vertices of T1.e1. More formally, it holds that (i) there exist two exons ea 2
EðaÞ; eb 2 EðbÞ such that ea, eb are consecutive for (at least) one transcript in I and (ii)

EðaÞ � [v2nextðaÞEðvÞ.
Alternative 5’ intronic. We call a novel alternative 5’ intronic splicing site for the novel

edge ha, bi, if a is intronic and EðbÞ is exonic, there is an annotated junction hx, bi such that

one exon from EðxÞ and one from EðbÞ are consecutive for a transcript, and the vertices [x, . . .,

a] are covered. Fig A.d in S1 Text shows an example in which a = n3, b = n4, x = n1 and the ver-

tices [n2, . . ., n3] need to be covered. More formally, it holds that (i) T ðaÞ \ T ðbÞ is empty (ii)

there exists an annotated junction hx, bi, (iii) I ¼ T ðxÞ \ T ðbÞ is not empty, (iv) there exist

two exons ea 2 EðaÞ; eb 2 EðbÞ such that ea, eb are consecutive for (at least) one transcript in I
and (v) each vertex in [x, . . ., a] is covered.

Alternative 3’ exonic. We call a novel alternative 3’ exonic splicing site for the novel edge

ha, bi, if there is a transcript (of the same gene) for which the second exon extends further

towards the 5’. Fig A.e in S1 Text shows an example in which a = n1, b = n3 and [n2, . . ., n3)

would be extending exonic vertices of T1.e2. More formally, it holds that (i) there exist two

exons ea 2 EðaÞ; eb 2 EðbÞ such that ea, eb are consecutive for (at least) one transcript in I and

(ii) EðbÞ � [v2prevðbÞEðvÞ.
Alternative 3’ intronic. We call a novel alternative 3’ intronic splicing site for the novel

edge ha, bi such that b is intronic and EðaÞ is exonic, if there is an annotated junction ha, xi
such that one exon from EðxÞ and one from EðaÞ are consecutive for a transcript and the verti-

ces [b, . . ., x] are covered. Fig A.f in S1 Text shows an example in which a = n1, b = n3, x = n4

and the vertices [n3, . . ., n4] need to be covered. More formally, it holds that (i) T ðaÞ \ T ðbÞ is

empty (ii) there exists an annotated junction ha, xi, (iii) I ¼ T ðaÞ \ T ðxÞ is not empty, (iv)

there exist two exons ea 2 EðaÞ; eb 2 EðbÞ such that ea, eb are consecutive for (at least) one

transcript in I and (v) each vertex in [b, . . ., x] is covered.

Intron retention exonic. We call a novel intron retention exonic for the novel edge ha, bi,
if a and b belong to the same exon, there is at least one successor of a and one predecessor of b
that are in the same exon as a and b. Fig A.g in S1 Text shows an example in which a = n1, b =

n4 which are part of exons e1 for transcript T1 and n2, n3 would be the vertices belonging to

the same exon. More formally, it holds that (i) EðaÞ \ EðbÞ is not empty, (ii) EðaÞ \ EðbÞ \
[v2nextðaÞEðvÞ \ [e2prevðbÞEðvÞ is not empty.

Intron retention intronic. Given a covered annotated junction ha, bi if the vertices [a,

. . ., b] are sufficiently covered we call it an intron retention for each transcript in T ðaÞ \ T ðbÞ.
Fig A.h in S1 Text shows an example in which the annotated junction is a = n1, b = n4 and [n2,

. . ., n3] are the intronic vertices.
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pantas toolkit

To quantify alternative splicing events across conditions using annotated spliced pangenomes,

we developed pantas. The pantas toolkit is freely available at github.com/algolab/pantas.

pantas takes as input a spliced pangenome in GFA format and the spliced alignments to the

graph in GAF format. Since the input of pantas are not always readily available, we designed

a Snakemake pipeline [26] that can be used to prepare the required input starting from stan-

dard file formats. The pipeline is described in Appendix A in S1 Text and is based on the vg
toolkit, since it is the only toolkit that currently provides a spliced aligner for pangenome

graphs. However, in the future, the annotation and quantification performed by pantas can

be easily adapted to work with any other approach. We note that spliced alignments are com-

puted against a spliced pangenome and take advantage of all the elements of the graph, e.g., a

read can be aligned to any vertex of the graph (e.g., alternate alleles) and to any edge of the

graph, even those not initially annotated. For instance, as shown by the alignment of “Read B”

in Fig 1, a read can be aligned over the alternate allele of a variation and can also support novel

splice sites by inducing novel edges not present in the graph. This allows to improve the accu-

racy of AS event discovery when variations occur close to splice junctions.

pantas starts by annotating the spliced pangenome and weighting its edges based on how

many times they are used by the input alignments of each replicate. By default, pantas con-

siders all alignments with alignment score� 20. This step is necessary to compute the coverage

of each splice junction and successively quantify AS events. Moreover, pantas augments the

original graph with novel splice junctions (i.e., new edges) supported by the alignments and

not originally present in the annotated spliced pangenome. Since a novel splice junction can

start or end inside a vertex (e.g., due to an alternative 5’ event), we need to precisely locate the

novel AS events corresponding to that junction and store such locations—an alternative way

to view this novel splice junction is to split a vertex into two. Then, by analyzing the annotated

spliced pangenomes that has been augmented with read alignment information, pantas pro-

ceeds to detect the AS events using the criteria previously described. To keep the AS detection

as efficient as possible, pantas considers any splice junction supported by at least w align-

ments. This is a user-defined parameter that, by default, is set to 3. A higher value of this

parameter makes the computation faster but less accurate (since most events will be filtered

out). From our experimental evaluations, a value of 3 resulted in a good trade-off between effi-

ciency and accuracy. After detecting the AS events from each replicate, pantas quantifies the

events by combining the results obtained from each replicate. pantas represents each AS

event as a pair of sets of edges, representing the two junctions sets (the first one from the con-

stitutive isoform and the second one from the alternative isoform) involved in the event. By

analyzing the support of the junctions in each replicate, pantas computes the Percent

Spliced-In (ψ) of the event by computing the ratio between the support of the constitutive iso-

form and the alternative isoform [27]. Once each replicate has been analyzed, pantas per-

forms differential quantification of the events supported by both conditions by computing the

Δψ of each event as the difference between the absolute value of the ψ means in the two

conditions.

Additionally, to simplify the downstream analysis of its results, pantas can also surject

the positions of the splice junctions involved in the events back to a reference haplotype.

Where possible, this is simply done by reporting the positions of the splice junctions w.r.t. the

selected walk. This approach works well when the junctions are already annotated. In the case

of novel events, pantas can easily surject only the junctions coming from the annotated iso-

forms whereas the novel junctions are not surjected. Indeed, novel AS events need more care

since they usually involve novel splice sites and a novel splice junction induced by the
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alignments may split a vertex of the graph in two parts. However, thanks to the information

stored while augmenting the annotated spliced pangenome graph with alignment information,

the correct breaking positions can be precisely identified. However, as we observed from our

experimental evaluation, the lack of surjection for novel junctions does not impact the overall

results of pantas since having at least a junction surjected to the reference haplotype allows

for a more comprehensive visual inspection of the genomic locus via state-of-the-art tools,

such as the Integrative Genomics Viewer [28].

Results

To evaluate pantas efficacy and correctness in quantifying AS events across conditions, we

performed three experimental evaluations on simulated and real data. In the first experiment,

we used simulated data to evaluate the correctness of pantas in detecting both annotated

and novel AS events. In the second experiment, we considered a real RNA-Seq dataset from

Drosophila Melanogaster and we evaluated the accuracy of pantas in differentially quantify-

ing annotated AS events. Finally, we evaluated the accuracy of pantas in quantifying

RT-PCR validated AS events from a real human RNA-Seq dataset. To put our results in per-

spective, we compared pantas with three state-of-the-art approaches, namely rMATS [10],

SUPPA2 [14], and whippet [17]. The first quantifies AS events by analyzing spliced align-

ments to a reference genome (e.g., computed with STAR [29]), the second by analyzing tran-

script quantification computed with salmon [30], and the last by analyzing alignments to a

custom graph, called Contiguous Splice Graph, which represents all non-overlapping exons

coming from the gene annotation. We ran all tools with their default parameters and then,

where indicated, we filtered the resulting set of AS events based on the reported statistical sig-

nificance (as suggested by the tools’ authors). However, since pantas does not perform any

statistical validation of its events yet, in all scenarios, we considered all the events reported

without any post-filtering.

pantas event detection is correct and accurate

The goal of the first experimental evaluation was to assess the accuracy of pantas in detecting

annotated and novel alternative splicing events. To do so, we simulated a RNA-Seq dataset

using asimulator [31], a tool that simulates RNA-Seq datasets while introducing AS events.

We considered the Drosophila Melanogaster reference and gene annotation (FlyBase r6.51

[32]) and the Drosophila Genetic Reference Panel (v2) [33]. As detailed in Appendix B in S1

Text, in this first experimental analysis, we considered non-overlapping genes from the gene

annotation and single nucleotide polymorphisms from the reference panel. Not dealing with

indels allowed us to use the state-of-the-art asimulator for reads and events simulation

without requiring additional (and more error-prone) steps. Future works will be devoted to

the development of a full-fledged pangenomic simulator for RNA-Seq reads and AS events. To

simulate a real-case scenario, where the sequenced sample is typically not present in the refer-

ence panel, we randomly selected a sample from the panel, we simulated reads from both its

haplotypes, and then removed the considered sample from the reference panel. We used this

reduced panel while preparing the input for pantas. We ran the 4 tools (pantas, rMATS,

SUPPA2, and whippet) with their default parameters and we evaluated their accuracy in

terms of Precision, Recall, and F1-Measure computed by comparing the true events reported

by asimulator with the events reported by the tools. Since asimulator reports the simu-

lation locus for each read, we used this information to compute the true support of each AS

event, i.e., the number of reads supporting the junctions involved in the event. We then created

several truth sets varying the minimum support value W of the events and we computed the
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accuracy of the tools at each point. In order to avoid penalizing the tools’ precision for calling

an event that is actually a true event but supported by less than W reads, we computed the

false positives of each tools with respect to the original truth set and we considered the W-fil-

tered truth sets when computing true positives and false negatives. More details on the simula-

tion settings can be found in Appendix B in S1 Text. Fig 3 reports the results of this analysis on

annotated events.

Fig 3. Results on simulated data from Drosophila Melanogaster (annotated events). Precision and recall are computed by comparing asimulator
truth (filtered based on W, that is the minimum number of reads supporting an event) with the output of each tool. Results are broken down by event type

(ES: Exon Skipping, IR: Intron Retention, A3: Alternative 3’, A5: Alternative 5’).

https://doi.org/10.1371/journal.pcbi.1012665.g003
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As expected, when considering all events reported by asimulator without any filtering

on their true support (i.e., W ¼ 1), all tools achieved higher precision at the expense of their

recall. Filtering out lowly supported events allowed to increase the recall of the tools while low-

ering their precision. Indeed, as reported in Table A in S1 Text), a higher threshold W resulted

in a smaller truth set of events (hence in a lower number of true positives). The increase of per-

formance is more pronounced for pantas than for other tools, especially when moving from

W ¼ 1 to 3. This is due to the lack of a statistical validation of pantas results. Indeed, we

recall that pantas does not perform any statistical validation of its events and its calling step

is mainly guided by the parameter w: pantas considers all junctions with at least w align-

ments (3, by default) supporting it. This matches the results presented in Fig 3: when we con-

sider all events reported by asimulator with coverage at least 3, pantas achieved the best

accuracy results for almost all event types. Only on intron retentions, pantas did not manage

to achieve the same recall of the other best approach (rMATS). However, it always achieved

the best precision. As reported in Table B in S1 Text, when W ¼ 3, pantas achieved a recall

of 0.725 (-0.045 w.r.t. rMATS) but a precision of 0.563 (+0.07 w.r.t. rMATS), making it the

most accurate approach, with an F1 of 0.634. Overall, in the annotated event setting, when

considering all events with good support (W > 1), pantas and rMATS resulted the most

accurate tools for detecting alternative splicing events, followed by SUPPA2. We notice that in

this analysis we were interested in evaluating the capability of each tool in detecting AS events

and not in quantifying them. Therefore, we did not perform any post-filtering of the events

reported by the tools based on their statistical significance (when available). Such a post-filter-

ing would have improved the precision of the tools while lowering their recall.

In the novel event scenario, instead, we could not include SUPPA2 and whippet in the

analysis. Indeed, SUPPA2 can detect only annotated events. On the other hand, whippet
allows for augmenting the Contiguous Splice Graph with novel splice sites supported by read

alignments, but we did not manage to run this augmentation successfully: whippet crashed

when we asked to include novel splice sites from a BAM file. Without novel splice sites,

whippet has been able to detect only novel exon skipping events, hence we decided to not

include it in this analysis. Fig B and Table C in S1 Text report the results of the analysis on

novel events. As expected, on novel events, due to the higher complexity of the task of detect-

ing events not already present in the given annotation, the two tools achieved lower accuracy.

However, the results follow the same trend of the results on annotated events, with pantas
achieving the best trade-off between precision and recall when the true support threshold is set

to 3. Differently from annotated events, pantas did not manage to reach the accuracy of

rMATS when calling exon skipping events (-0.014 loss in F1 when W ¼ 3) while it managed

to achieve the best precision and recall for all other event types, especially when the true events

are highly supported. Remarkably, in this setting, pantas resulted the most accurate

approach for detecting novel intron retentions, which are the hardest events to detect correctly

[34]. Overall, the good accuracy achieved by pantas in both annotated and novel scenarios

proves its validity and the efficacy of its precise formalization of alternative splicing events on

annotated spliced pangenomes.

Even though the accuracy of pantas heavily depends on the chosen value of its w parame-

ter, these results show that, when properly set, it enables accurate AS event detection. Indeed,

when the w parameter is properly set to match the expected coverage of the events, pantas
achieved the best trade-off between precision and recall. However, even when this parameter

does not match the expected coverage, pantas has proved to be still able to achieve competi-

tive (if not superior) accuracy (especially for highly supported events). To test this claim, we

reran all the analyses increasing the w parameter to 5 (results for annotated and novel events

reported in Fig C and D in S1 Text, respectively). As expected, this time pantas managed to
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achieve the best trade-off between precision and recall when the true event support (W) is� 5.

However, setting this parameter is not easy since RNA-Seq coverage is not always uniform.

Anyway, we believe that the default value (3) should be used in most of the scenarios. Future

efforts will be focused in removing this dependency on the w parameter by including a statisti-

cal validation of pantas results.

pantas quantification shows good correlation with state-of-the-art

In the second part of our experiments, we evaluated the quality of pantas differential quanti-

fication of AS events from real RNA-Seq data. To this aim, we considered a recent study [35]

that performed a genome wide transcriptome analysis of the ageing process in Drosophila

Melanogaster (SRA BioProject ID: PRJNA718442). We considered the FlyBase (r6.51)

genome and gene annotation and the SNPs and indels from the Drosophila Genetic Reference

Panel (v2). In this analysis, we considered only non-overlapping genes to allow for a more pre-

cise comparison. Indeed, overlapping genes increase the noise in the output of all tools and

add further complexity in the AS quantification step since usually short RNA-Seq alignments

in these regions is not sufficient to discern the different transcripts (coming from different

genes) expressed in the dataset. Differently from the previous experimental evaluation, where

we used the default simplification provided by pantas, in this analysis, to reduce the com-

plexity of spliced pangenome indexing, we opted for its more aggressive simplification which

can alter complex haplotype-aware transcripts to reduce graph complexity. Nevertheless, we

had to perform a subsampling of the input RNA-Seq dataset and we randomly extracted 1/3 of

the reads (approximately 8 750 000) from each replicate using seqtk. We have not been able

to consider the entire samples since vg mpmap required more than 3 days to align a single

replicate (using 32 threads). This time requirement made any analysis infeasible. Unfortu-

nately, vg mpmap is currently the only approach available to perform spliced alignment

against a spliced pangenome, but this does not restrict pantas usability, which has been

devised and developed as a general approach that can potentially analyze the spliced align-

ments to a spliced pangenome computed by any spliced aligner. Overall, pantas (without

taking into account the input preparation step) completed its differential analysis in less than 2

hours using 32 threads and required 16GB of RAM, making it a practical solution. Extended

results on the efficiency of pantas and other tools are reported in Table F in S1 Text.

As done in our previous experiment, we ran all tools with their default parameters. Since in

this scenario we used real data without any wet-lab validation, we could not compare the

results of the tools with a ground-truth but we performed an all-vs-all comparison of the Δψ
provided by the 4 tools (pantas, rMATS, whippet, and SUPPA2). We considered only

annotated events (in order to include all tools) and we removed all events without a strong evi-

dence of differential change between the two conditions, i.e., events with |Δψ|� 0.05. More-

over, since most approaches compute the significance of differential splicing by performing

tests on read counts supporting the event junctions, we also filtered out from the resulting set

of events all those events reported as non statistically significant by the tool (when available).

We considered all events reported by rMATS and SUPPA2 with a p-value strictly smaller than

0.05 and all events reported by whippet with a probability greater or equal to 0.9. As shown

in Fig 4a, the resulting set of events considered in our analysis consists in 1396 events for

pantas, 932 events for rMATS, 4322 events for whippet, and 513 events for SUPPA2
(Table D in S1 Text reports these numbers broken down by event type). Out of these events,

164 are shared among the 4 tools. When comparing the quantification (Δψ) reported by the

tools on this subset of events, we noticed a strong correlation (Fig 4b). pantas achieved very

high correlation with rMATS (Pearson correlation: 0.948) and whippet (0.921) while lower
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correlation with SUPPA2 (0.843). Remarkably, pantas, rMATS, and whippet achieved

higher correlation when compared among them but lower correlation when compared with

SUPPA2. This was somehow expected since SUPPA2 quantifies AS events starting from tran-

script quantification (based on k-mer analysis) and not from read alignment. As expected, con-

sidering all events reported by the tools, i.e., without any post-filtering on the statistical

significance (when available), leads to an increase in the number of events (Fig F.a and Table E

in in S1 Text) and a strong loss of correlation (Fig F.b in S1 Text). However, also in this sce-

nario, pantas and rMATS have been able to achieve the strongest correlation (0.832). The

correlation achieved by pantas and all other approaches based on read alignment proves

that read alignment to spliced pangenome is effective and can be confidently used for AS event

differential quantification.

pantas is effective in quantifying RT-PCR AS events

In the last part of our experimental evaluation, we considered a real human RNA-Seq dataset

and we assessed the performance of pantas in detecting and quantifying RT-PCR validated

AS events. Similarly to some recent studies [12, 14, 17], we analyzed the RNA-Seq dataset pro-

vided by [36] (SRA BioProject ID: PRJNA255099) and we evaluated pantas accuracy in

quantifying RT-PCR validated events. The RNA-Seq dataset consists of three replicates for two

conditions (control condition versus double knockdown of the TRA2 splicing regulatory pro-

teins, TRA2A and TRA2B). We considered the human genome and gene annotation from

Ensembl [37] (release 109) and the 1000 Human Project phase 3 VCF files [38]. We considered

128 random samples from the EUR superpopulation, arbitrarily chosen, i.e., 128 individuals of

European ancestry (for a total of 256 haplotypes encoded in the graph, which is almost three

times the amount of haplotypes provided by the Human Pangenome Reference Consortium

Fig 4. Results on real data from Drosophila Melanogaster. (a) Venn diagram showing the number of AS events reported by each tool. (b) All-

vs-all correlation plots of the Δψ reported by the considered tools for the 164 events shared among the tools. Detailed version where each point

is color coded based on the event type is available at Fig E in S1 Text.

https://doi.org/10.1371/journal.pcbi.1012665.g004
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[1])) and all variations (SNPs and indels) with at least one alternate allele expressed in the con-

sidered population. Since this analysis focuses on a small panel of genes (77 RT-PCR validated

genes), in order to reduce the time complexity of the entire pantas pipeline, we constructed

a spliced pangenome limited to the genomic loci of interest. We did this by using the third

simplification methodology provided by pantas (described in Appendix A in S1 Text). This

procedure is especially effective when the user is interested in analyzing a panel of genes, that

is a common scenario in transcriptomics [39]. This gene-centric pipeline is provided alongside

the main pantas code base as a companion approach that can be used by the user when the

focus of the analysis is a set of genes. We note that we did not manage to build the full human

spliced pangenome GCSA2 index due to the limited amount of RAM available on our server

(256GB). For this reason, we decided to adopt the alternative procedure we developed to ana-

lyze a panel of genes. In any case, this does not limit the applicability of pantas since, when a

more powerful infrastructure is available, it can be effectively used to analyze the full spliced

pangenome. By retaining only the genes of interest, we managed to reduce the times of the

entire pipeline to less than 3 hours and the RAM requirements to less than 8GB, without

degrading the AS events detection accuracy. Detailed results are reported in Table G in S1

Text. However, aligning a full input RNA-Seq dataset against a reduced graph deteriorates the

mapping accuracy (reads may be placed on the wrong gene since the correct gene is not in the

graph) and the running times (the aligner tries to find the best spot for all the reads, also those

not coming from the genes of interest). For this reason, we decided to filter the input RNA-Seq

dataset using shark [39]. This step retains only those reads that potentially come from the

genes of interest. Since this preprocessing may alter the quantification, we used it only with

pantas. All other tools (rMATS, SUPPA2, whippet) have been run on the original inputs,

without any preprocessing. Anyway, as shown in [39] and as proven by our results, this pre-

processing based on accurate read filtering does not affect the quantification step.

In this scenario, we ran all tools with their default parameters. We evaluated each tool accu-

racy in terms of correctly detected events w.r.t. the RT-PCR validated events, then we compared

the predicted Δψ with the experimental Δψ provided by RT-PCR validation. Our evaluation

focused on 77 RT-PCR validated exon skipping events (details on preprocessing of the truthset

can be found in Appendix C in S1 Text). Fig 5 reports the results of our analysis when consider-

ing only events reported as statistically significant by the tools (using the same criteria applied

Fig 5. Results on real data from human. (a) Venn diagram showing the number of statistically significant differential

AS events reported by each tool. The legend reports the total number of events reported by the tool. (b) Boxplot

showing the distribution of the difference between the Δψ predicted by each tool and the Δψ provided by RT-PCR. The

x axis labels report the tool name and the Pearson correlation (r) between the predicted Δψ and the RT-PCR Δψ. Note

that since pantas do not compute statistical significance, we filtered only by the reported Δψ.

https://doi.org/10.1371/journal.pcbi.1012665.g005
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in our previous experiment on real data from Drosophila Melanogaster) and with an absolute

magnitude of change greater than 0.05 between the two conditions, i.e., events with |Δψ|� 0.05.

Since pantas does not perform statistical validation, we filtered its set of events based only on

the reported Δψ. Fig G in S1 Text reports the same results obtained without any filtering.

Regarding the number of events detected by each tool, pantas reported the highest number of

events (64 out of 77 RT-PCR validated events), followed by rMATS (61), SUPPA2 (44), and

whippet (40). Notice that SUPPA2 and whippet reported fewer events since 14 out of the

77 RT-PCR events are novel events and, as previously shown, they cannot correctly detect novel

events. Remarkably, only 25 events were reported by all 4 tools, 1 event was only reported by

pantas whereas 3 events were missed by our approach. The reason behind these results needs

to be sought in the filtering step we performed. Indeed, as shown in Fig G.a in S1 Text, when

considering all events, each tool reported a higher number of events (as expected) and the num-

ber of events reported by all 4 tools increased to 43. When removing whippet from this analy-

sis, the number of events reported by pantas, rMATS, and SUPPA2 increased even more

(61), showing good agreement among the three tools. Moreover, in this setting no event was

reported by pantas only. However, 9 events remained undetected by pantas. By manually

investigating both STAR and vg mpmap alignments over the loci of these events, we noticed

that the two aligners show good agreement: the skipping junction of all events show no support

in the control replicates and very small support (1 or 2 alignments) in the knockdown replicates.

The same holds for the 3 events missed by only pantas in the filtered analysis. In this case, 2

events show no support in the control replicates while 1 events has been reported with Δψ =

0.04. A more polished statistical analysis of pantas results might allow to recover these events.

Surprisingly, when considering the filtered set of events reported by the tools, 10 RT-PCR

events were not reported by any tool. On the other hand, when considering all events reported

by the tools, all RT-PCR validated events were detected.

We then evaluated the correctness of the quantification provided by each tool by comparing

the predicted Δψ with the experimental Δψ provided by the RT-PCR validation. As shown in

Fig 5, whippet quantification showed the best correlation with the RT-PCR expected quanti-

fication (Pearson correlation: 0.767) followed by pantas (0.709). Anyway, all the correlations

are weak. Moreover, whippet reported fewer events than pantas (40 against 64). Remark-

ably, although the distributions of the differences between the RT-PCR Δψ and the quantifica-

tions provided by pantas and rMATS are very similar (with a 0.01 average difference

advantage for pantas), rMATS showed lower correlation than pantas. However, as previ-

ously reported [14], all tools struggle in achieving a good correlation with the RT-PCR quanti-

fication. The same trend can be observed when considering all events reported by the tools

(Fig G.b in S1 Text). Remarkably, in this scenario, the correlation between pantas quantifi-

cation and RT-PCR quantification increased and reached the correlation achieved by

whippet. This indicates that a more statically robust confidence score for pantas quantifi-

cation is an interesting and compelling focus for future efforts. Finally, as done in [14], we

evaluated the false positive rate of each tool using 44 RT-PCR negative exon skipping events

that did not show any relevant change between the two conditions. Remarkably, pantas
reported only one false positive, followed by SUPPA2 (28), whippet (32), and rMATS (37).

When filtering the sets of events reported by the tools using the aforementioned criteria,

pantas did no report any false event. SUPPA2 reported 2 false events, followed by

whippet (4) and rMATS (10). In conclusion, although pantas statistical validation is still

not fully polished, the differential quantification computed from alignments to an annotated

spliced pangenome is robust: pantas is able to retrieve a good amount of RT-PCR validated

events without introducing false calls. Overall, the results described in this section suggest a
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strong agreement between the different approaches for the differential quantification of AS

events with no method clearly outperforming the others.

Discussion

The recent adoption of a reference pangenome for analyzing genetic variability in humans

opens the perspective of building a pantrascriptome that provides a complete picture of gene

annotation in human population. However, moving from a reference-based gene annotation

to a haplotype-aware gene annotation, where genes are annotated w.r.t. multiple genomes, as

recently proposed in [24], requires to rethink tools for transcriptomic analysis, similarly to

what has been done in computational graph pangenomics for analyzing genomic variants in a

population. In this paper, we advanced the investigation started in [2] of spliced pangenomes

by proposing pantas, the first pangenomic approach for detecting and quantifying AS events

across RNA-Seq conditions. Our approach is based on the novel notion of annotated spliced

pangenome, introduced here as an enhanced version of a spliced pangenome, and on the pre-

cise formalization of AS events on this structure. An extensive experimental evaluation on sim-

ulated data shows that pantas achieves higher accuracy than competitors, also thanks to its

formal definitions of AS events on a graph structure. On real data, pantas obtains results

that are comparable to those of state-of-the-art methods based on a linear reference, while

being able to take into account the genetic variability of the population under investigation. In

the experiments carried out in this paper, we considered haplotype-aware gene annotations,

where genes are annotated w.r.t. individual genomes of a population. pantas exploits vari-

ants information to obtain more accurate read alignments and to improve AS predictions. An

interesting future direction consists in analyzing the impact of haplotype-aware annotation on

reference bias reduction while performing AS events quantification. pantas can be the right

tool to perform such an analysis. However, the definition of haplotype-aware annotations is

still not settled and many interesting questions are still unanswered. For instance, if an in-

frame insertion on a haplotype leads to a longer exon, it is still not clear if the longer exon

needs to be classified as a new exon or an alternative to the “reference” one. This also affects

AS events detection and it may require the introduction of new definitions, such as those of

haplotype-specific AS events. Currently, pantas adopts the “classic” reference-based AS

events definitions and extend them to work with haplotype-aware annotations. However, we

observe that those definitions are not “haplotype-specific” yet, since they might mix transcripts

coming from different individuals and do not take into account complex scenarios such that

those previously described.

Future work will focus on extending pantas to cyclic graphs in order to take into account

more complex chromosomal rearrangements and on incorporating more complex AS events

(such as mutually exclusive exons) and Local Splicing Variations [15, 16]. The main limitation

of pantas is its dependency on external tools for the preparation of the required input. The

heavy computational load required by vg index to index an annotated spliced pangenome

and the long running times of the vg mpmap spliced aligner potentially limit the applicability

of pantas. To solve this problem, we designed an alternative strategy that reduces the

computational complexity without affecting the accuracy of pantas. This new procedure is

especially effective when the analysis focuses on a panel of genes. We plan to focus future

research efforts on the development of novel approaches for building and indexing a spliced

pangenome as well as for mapping RNA-Seq reads to the graph, with the goal of reducing the

computational requirements. Compelling alternatives to the current index for spliced pangen-

omes can be sought in repeat-aware indices for collections of linear strings, such as the r-index

[40, 41] and the Movi index [42]. The extension of these indexes to spliced pangenomes or the
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development of new indices will benefit pantas and any future tool for the analysis of a

pantranscriptome.
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26. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;

28(19):2520–2522. https://doi.org/10.1093/bioinformatics/bts480 PMID: 22908215

27. Schafer S, Miao K, Benson CC, Heinig M, Cook SA, Hubner N. Alternative splicing signatures in RNA-

seq data: percent spliced in (PSI). Current protocols in human genetics. 2015; 87(1):11–16. https://doi.

org/10.1002/0471142905.hg1116s87 PMID: 26439713
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