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Abstract

This study investigates Large Language Mod-
els (LLMs) as dynamic Bayesian filters through
question-asking experiments inspired by cog-
nitive science. We analyse LLMs’ inference
errors and the evolution of uncertainty across
models using repeated sampling.

Building on Bertolazzi et al. (2023), we trace
LLM belief states during repeated queries, find-
ing that entropy decreases with each interac-
tion, signaling reduced uncertainty. However,
issues like “resurrection” (reassigning proba-
bilities to invalidated outcomes) and “Bayesian
apocalypse” (probabilities approaching zero)
reveal significant flaws. GPT-40 consistently
outperforms GPT-3 in probabilistic reasoning.
These results underscore the need for improved
architectures for reliability in high-stakes con-
texts and suggest a link between token-level
and task-level uncertainty dynamics that can be
leveraged to enhance LLM performance.

1 Introduction

Large Language Models (LLMs) act as reactive
agents, primarily engaging in one-step predictions
without explicit planning or deliberation mecha-
nisms. This reactivity, often viewed as a limitation
(van Lier, 2023; Floridi, 2023; Wu et al., 2024; Ma-
howald et al., 2024), does not inherently negate the
presence of underlying objectives that the agent
may pursue (Brooks, 1991). The behaviour of re-
active agents is driven directly by their immediate
input, thus their ability to find and select infor-
mation, and deal with uncertainty has been seen as
limited (Kaelbling et al., 1998). Yet, they have been
shown to be able to determine their inputs in certain
cases (Nolfi, 2002; Bonet, 2010). Indeed, reactive
systems can perform effective information-seeking
behaviours, crucial under uncertainty such as when
communicating with hard-to-interpret agents hav-
ing different knowledge of the interaction context
(Paek and Horvitz, 2000; Ognibene and Demiris,

2013), and traditionally associated with more com-
plex deliberative systems and explicit uncertainty
reasoning (Beer and Di Paolo, 2023). Studies have
shown that even simple reactive systems can en-
gage in exploration and reduce uncertainty through
epistemic actions, even without internal simula-
tions or memory (Ognibene et al., 2013). These
findings suggest that LLMs, despite lacking explicit
internal reasoning capabilities, may still engage in
goal-oriented behaviors and possess information-
gathering capabilities.

Uncertainty management is crucially connected
with information seeking in normative decision sys-
tems and also plays an important role in the com-
putations ascribed to the brain (Friston et al., 2015;
Kaelbling et al., 1998). However, how task-level
uncertainty is processed in multi-layered deep gen-
erative models, particularly auto-regressive LLMs
(Brown et al., 2020; Radford et al., 2019), and how
they compare to normative systems remains largely
unexplored. This is particularly interesting given
the breadth of information they contain across dis-
parate domains, in contrast to the limited domain
variables usually dealt with by normative models.

LLMs learn the conditioned probability distribu-
tion of the next token given the sequence of pre-
vious tokens (input context) and produce output
tokens sampling sequentially from the learnt dis-
tribution model (Radford et al., 2018). While un-
certainty regarding the next output may be known
and represented by the last layer of the model, the
long-term evolution of generation or semantic un-
certainty is not immediately available (Farquhar
et al., 2024; Kuhn et al., 2023; Chen and Mueller,
2023). In fact, when LLMs are used in chatbots,
text generation or other non single token output
tasks, the stochastic production of a single output is
appended to current context input and participates
in the generation of successive outputs. Concate-
nating stochastic processes may result in extended
non factual responses or "hallucinations", starting
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from one first ambiguous output (Ji et al., 2023;
LeCun, 2023).

An important contributing factor is that infor-
mation about the mental state, knowledge, beliefs,
and desires of the writer at the moment of writing
the text is not directly available for LLMs during
training. This may reduce learning performance
(Bianco and Ognibene, 2022) and lead to semanti-
cally different next token to have the same proba-
bility and contribute to generating hallucinations.
Moreover, many LLMs in chatbots appear trained
to present overconfident responses even when un-
informed and produced in an uncertain state (Chen
and Mueller, 2023).

To correct belief tracking (MrkSic et al., 2017)
and uncertainty estimation, i.e. estimating how
much an agent knows and does not know about the
environment, the domain and the current situation,
can be useful to adopt effective uncertainty reduc-
tion strategies (Kaelbling et al., 1998; Friston et al.,
2015; Taniguchi et al., 2023) such as the generation
of questions and clarifications (Varges et al., 2010;
Kominis and Geffner, 2017; Tellex et al., 2012).
However, models that explicitly reason about uncer-
tainty and lack of knowledge have to face challeng-
ing computational complexity due to the expansion
of the state space (Kaelbling et al., 1998). Various
approximations have been developed also based
on neural architectures and reinforcement learning
(Ognibene and Baldassare, 2014; Wu et al., 2021;
Xu et al., 2022; Wang et al., 2020), and, while
these approaches may be particularly data hungry
(Schatzmann et al., 2007; Wang et al., 2020), it
is worth investigating if and how different LLMs
learn similar information-gathering strategies as
well as implicitly encode beliefs and uncertainty.

However, unveiling how LLMs may couple
information integration and acquisition is chal-
lenging due to the limited accessibility and inter-
pretability of LLMs and the stochastic recursive
process they use to produce output. Similarly to
other approaches (Kuhn et al., 2023; Chen and
Mueller, 2023), we use a repeated sampling ap-
proach through prompts, or repeated zero shots
tests (Brown et al., 2020), to retrieve probabilistic
information on the information integration process
inside the LLM, i.e. how information in previ-
ous dialogue exchanges is integrated into a belief
and how this belief determines the output selec-
tion strategy. We estimate the evolution of this
belief state during the interaction and information

acquisition using information theoretic methods,
i.e. we measure the entropy of the responses dis-
tribution (Ognibene and Demiris, 2013; Friston
et al., 2015; Ognibene et al., 2019), an approach
already tested analysing information integration in
black box models (Lungarella and Sporns, 2006).
In other words, we aim to observe if the low-level
stochastic process of token production of the LLM
can be connected to the dynamic process of task-
level information integration. This may later lead
to novel and more effective task-level uncertainty
management for LLMs.

Building on the experiments from cognitive sci-
ence on information acquisition strategies (Ruggeri
and Lombrozo, 2015) and the analysis of Berto-
lazzi et al. (2023), our study will computationally
trace the belief states of LLMs through repeated
queries. By examining the probabilistic responses
of these models, we aim to gain deeper insights
into their inference processes and uncertainty man-
agement. Our approach is inspired by Bayesian
filtering, which involves continuously updating the
probability distributions of candidate items based
on new information from each interaction. This
approach allows the models to refine their predic-
tions dynamically, integrating new data to reduce
uncertainty over time. When the model is correct,
Bayesian models estimations are optimal (Sarkka
and Svensson, 2023).

Bayesian filtering, commonly used in dynamic
systems for state estimation, applies here as we
treat the sequence of interactions as a time series.
The model updates its belief state with each dia-
logue step, combining prior knowledge with new
evidence. This method enhances the model’s abil-
ity to manage and process evolving information,
mirroring the cognitive processes involved in hu-
man decision-making.

Additionally, we will explore the performance
difference between GPT-3 and GPT-4o0, investigat-
ing how these models handle probabilistic data
differently. This study will help frame LLMs as
complex systems with significant probabilistic rea-
soning capabilities, albeit with notable flaws. Ad-
dressing these limitations is crucial for enhancing
the reliability and accuracy of LLMs, particularly
in high-stakes environments such as clinical diag-
nostics and financial forecasting. In chatbots un-
certainty about users’ requests, context or domain
knowledge affects dialog and could elicit queries
aimed at resolving it, but such capabilities are lim-
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ited at the moment.

2 Related Work

In recent years, various methods have been pro-
posed to define and quantify uncertainties in the
context of Large Language Models (LLMs).

For instance, Chen and Mueller (2023) propose
a technique to estimate a numeric confidence score
for any LLM output generated by a black-box APIL.
This method involves multiple API calls with vary-
ing prompts and sampling temperatures, providing
users with a confidence estimate that highlights
unreliable outputs. Similarly, Yang et al. (2023) in-
troduce a framework to produce uncertainty-aware
LLMs capable of estimating aleatoric, epistemic,
or composed uncertainty for each prediction in a
model- and data-agnostic manner. Their models
learn data-dependent thresholds, enhancing predic-
tion reliability.

Huang et al. (2024) present a unified calibration
framework that treats both response correctness
and associated confidence levels as distributions.
Their approach improves calibration through fine-
tuning, integrating relevant documents, and adjust-
ing sampling temperatures. Additionally, Zhang
et al. (2024) develop LUQ, a sampling-based un-
certainty quantification approach for long texts.
LUQ identifies LLMs’ lack of confidence in gen-
erating factual long texts and proposes the LUQ-
ENSEMBLE method, which enhances factuality
by ensembling responses from multiple models to
select the least uncertain response.

Nevertheless, these methods face limitations in
interactive settings due to challenges in measuring
the evolution of uncertainty and integrating infor-
mation throughout interactions (Bertolazzi et al.,
2023).

Further contributions addressing these limita-
tions include Ren et al. (2023), who propose a
framework for measuring and aligning the uncer-
tainty of LLM-based planners. Their approach
ensures that planners recognise their uncertainty
and request assistance when necessary, utilising
conformal prediction theory to provide statistical
guarantees on task completion while minimising
human intervention in complex multi-step planning
scenarios. This method effectively measures the
evolution of uncertainty and integrates information
dynamically during interactions. Similarly, Hou
et al. (2023) present a method that, instead of en-
sembling models with different parameters, gener-

ates a set of clarifications for the input, processes
these through fixed LLMs, and ensembles the corre-
sponding predictions. This approach addresses the
integration of information across interactions by
generating and processing multiple clarifications.

It is pivotal to highlight that uncertainty handling
requires considering both token-level and task-level
processes. Information theory approaches, like
those discussed by Lungarella and Sporns (2006),
can provide valuable insights into how information
flow and entropic measures at different levels can
be used to analyse and manage these uncertainties
effectively.

Our work builds upon these foundational studies
by investigating the probabilistic reasoning capa-
bilities of LLMs in dynamic and interactive envi-
ronments. We aim to fill the gap in understanding
how uncertainty evolves throughout interactions
and how belief states of LLLMs are affected by re-
peated queries. By comparing the performance
of different LL.Ms, specifically GPT-3 and GPT-
40, we seek to provide deeper insights into their
strengths and limitations in managing uncertainty.
Our approach leverages repeated sampling and be-
havioural analysis to develop a comprehensive un-
derstanding of LLMs’ inference processes, con-
tributing to the broader goal of enhancing the ro-
bustness and reliability of LLMs in real-world ap-
plications.

3 Experiments

Firstly, we quantified the uncertainty of the model
at each step of a dialogue between the Ques-
tioner and Oracle. Drawing from the "20 Ques-
tions game" (Bertolazzi et al., 2023), we measured
the uncertainty associated with both the questions
posed and the responses received during the inter-
actions, generated with GPT-3 and GPT-4o.

In order to illustrate a typical interaction in the
mentioned game, we provide an example of a
prompt supplied to a LLM.

You will be given of a dialogue of the 20 questions
game. You have to list out absolutely all the items from
the given candidates set that satisfy each <question, an-
swer> in the given dialogue. The output should strictly
use the following template:

EXPLANATION:
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CANDIDATES: item1, item2, item3
Dialogue: target = dalmatian

- Answerer: This is the list of candidates: dog, bear,
flamingo, hawk, toucan, dalmatian, hippopotamus,
chick.

- Questioner: Is the item you have assigned an animal?
- Answerer: Yes.

- Questioner: Is the animal you have assigned a mam-
mal?
- Answerer: Yes.

- Questioner: Is the mammal you have assigned a carni-
vore?
- Answerer: Yes.

- Questioner: Is the carnivorous mammal you have as-
signed typically found in water?
- Answerer: No.

- Questioner: Does the carnivorous mammal you have
assigned have spots on its body?
- Answerer: Yes! That’s correct.

Building upon further analyses from the 20 Ques-
tions game paper, we implemented an additional
method to assess each candidate item’s consistency
with every question-answer pair throughout the di-
alogue d; (with ¢ € [0, T')). Firstly, this methodol-
ogy allows us to determine which items are system-
atically excluded at each step ¢ of the dialogue.

To execute this, we employed an additional LLM
agent tasked with verifying, given a dialogue d; up
to a certain point ¢ and a candidate item, whether
the item was deemed to satisfy all the question-
answer pairs of d;. This query was sampled k times,
recording the number of positive occurrences. Con-
sequently, at a given moment ¢, each ¢-th item was
assigned a probability score computed as follows:

1 k
pilt) = 2 > 0 (®) (1
j=1

where 0;;(t) is an indicator function that is 1 if
the ¢-th item satisfies all the question-answer pairs
of d; in the j-th query, and 0 otherwise.

After computing these scores and normalising
them, we further calculated the probability distribu-
tion across all candidate items. This comprehensive
approach provides a dynamic view of the model’s
uncertainty management and enhances our under-
standing of the probabilistic reasoning capabilities
of LLMs within interactive scenarios, effectively

demonstrating the principles of Bayesian filtering
by continuously updating beliefs based on incom-
ing data.

Once the probability distributions for each di-
alogue were calculated, we proceeded to analyse
the entropy to assess task-level uncertainty. This
analysis involved examining the entropy levels of
the distributions at various stages of the dialogue
to assess the degree of uncertainty and information
gain as the dialogue progressed. The entropy is cal-
culated for the distribution over the items for each
dialogue, and then the mean entropy is computed
by averaging over all dialogues, resulting in a mean
entropy for each step of the dialogue. The mean
entropy at each stage ¢ of the dialogue is given by:

H() = 5 > HpW (1) @)

where p(?) (t) represents the probability distribution
of the items at stage ¢ in dialogue d.

By measuring the changes in entropy, we could
evaluate how effectively the LLM was processing
and refining information through its interactions,
and identify any patterns or anomalies in its ap-
proach to reducing uncertainty.

We also tested an alternative approach by asking
both GPT-3 and GPT-40 to evaluate the validity of
items given a dialogue d at step ¢. Instead of query-
ing each candidate item individually, we presented
the entire list of items to the models simultaneously
and requested them to identify the valid items (si-
multaneous approach). This method allows LLM
models to consider all options at once, potentially
using their comparative reasoning capabilities.

In this approach, the models provided items
deemed consistent with the dialogue context up
to step t. This method offers a different perspective
on assessing candidate items, focusing on the mod-
els’ ability to process and filter multiple options in
parallel.

4 Results

Our analysis identifies a "resurrection" phe-
nomenon, where LL.Ms reassign non-zero prob-
abilities to outcomes previously deemed invalid.
This occurs in about 80% of GPT-3 dialogues. Fig-
ures 1 and 2 quantify this for GPT-3. For GPT-4o,
Figures 3 and 4 show similar results. Interestingly,
the phenomenon appears to be significantly influ-
enced by the approach used, with the simultaneous
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Number of resurrected items by dialogue length (k=5)

—8— GPT3 - singular approach
GPT4o - singular approach

-®- GPT3 - simultaneous approach

—M- GPT4o - simultaneous approach

f=)} o]
o o
L L

Number of resurrected items
N
o
L

0 2 4 6 8 10 12 14 16
Step of dialogue

Figure 1: Number of resurrected items for each model
and approach as a function of dialogue length on GPT-3
dialogues.

Probability of resurrected items by dialogue length (k=5)
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Figure 2: Mean probability absorbed by resurrected
items at each step of the dialogue on GPT-3 dialogues.

approach being more affected by the resurrection
phenomenon for GPT-40 dialogues.

The duration of the dialogues varies significantly
across the dataset. This variation is illustrated in
the graph presented in Figure 5, where we com-
pare GPT-3 and GPT-4o for the task, which in this
context corresponds to the duration of the dialogue,
as a shorter duration implies arriving at a solution
with fewer questions.

Figure 6 compares entropy trends for GPT-3
and GPT-4o. The graph includes the ideal entropy
curve, which represents the evolution of the prob-
ability distribution entropy if the search for the
item is carried out optimally, using a binary search
approach. GPT-40 outperforms GPT-3, showing
less sensitivity to varying k. GPT-3’s performance
improves with higher &, though it remains more

Number of resurrected items by dialogue length (k=5)
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Figure 3: Number of resurrected items for each model
and approach as a function of dialogue length on GPT-
4o dialogues.
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Figure 4: Mean probability absorbed by resurrected
items at each step of the dialogue on GPT-4o dialogues.

uncertain. Please note that GPT-40 is not tested
with k& > 10 as the results for ¥ = 5 and £ = 10
are very similar, indicating that it is not necessary
to increase the sample size.

Figures 7 to 9 detail entropy and cross-entropy
results for different models and dialogue sources.
While cross-entropy is seemingly a more precise
measure of model performance, as it takes into
account the correct response, it is important to con-
sider that entropy is a more appropriate measure
in our context. This is because we are primarily
interested in the overall reduction of uncertainty,
and thus in the strategies the model employs to
achieve this effectively, rather than its ability to
approximate the correct answer. Although, as the
figures suggest, these two aspects tend to go hand
in hand.
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Comparison of GPT4 and GPT3 dialogues by number of steps
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Figure 5: Comparison of dialogue durations for GPT-3
and GPT-4o.

Entropy on GPT3 dialogues for varying ks (singular approach)
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Figure 6: Comparison of entropy trends for GPT-3 and
GPT-40 from the beginning of the dialogue, across vari-
ous k values, with the ideal entropy curve.

Additional insights were gained by analysing di-
alogue steps in which the model either erroneously
confirmed a target (entropy = 0) or generated dis-
tributions with only zero values. These instances,
observed only in dialogues processed by GPT-4o,
were marked by significant ambiguities or errors,
often resulting in the incorrect elimination of the
true target. This error analysis also extended to
GPT-3 and GPT-40’s ability to consistently list
valid candidates at each step, revealing differences
in their performance throughout the dialogues.

Figures 11 and 12 display the probability of zero
distributions by dialogue step for GPT-3 and GPT-
4o dialogues, respectively. The results suggest that
the phenomenon of Bayesian apocalypse, where all
item probabilities approach zero, is more prevalent
at specific dialogue steps and is sensitive to the
approach used.

Finally, Figures 13 and 14 compare entropy
results between simultaneous and singular ap-
proaches. The simultaneous approach improves

Median Cross-Entropy and Entropy per dialogue step (GPT-3 on GPT-3 dialogues, singular approach)

30 v

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
dialogue step

Figure 7: Entropy and Cross-Entropy levels for GPT-3
on dialogues generated by GPT-3.

Median Cross-Entropy and Entropy per dialogue step (GPT-4 on GPT-3 dialogues, singular approach)

3 . . . . . —e— Cross-Entropy
—=— Entropy

median value

dialogue step

Figure 8: Entropy and Cross-Entropy levels for GPT-4
on dialogues generated by GPT-3.

GPT-3 performance but degrades GPT-40 results at
the most significant steps, which are those with the
highest number of samples (see Figure 5). GPT-40
consistently outperforms GPT-3, with the simulta-
neous approach proving to be more beneficial for
GPT-3 while negatively impacting GPT-40 perfor-
mance.

5 Discussion

Our study extends the analysis of Bertolazzi et al.
(2023) by computationally tracking LLM belief
states through repeated queries. This reveals that
entropy decreases with each interaction, and de-
cisions are made when uncertainty is minimised,
consistent with normative models (Friston et al.,
2015; Ognibene and Demiris, 2013). This suggests
a link between the low-level stochastic processes of
token production and the integration of higher-level
task information. Future work could explore the
extraction of uncertainty and information gain pre-
dictions from LLM internal states. However, the
significant noise in the process suggests that cur-
rent LLMs, particularly GPT-3, may benefit from
targeted training to improve performance.
GPT-40’s better performance compared to GPT-
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Median Cross-Entropy and Entropy per dialogue step (GPT-4 on GPT-4 dialogues, singular approach)
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Figure 9: Entropy and Cross-Entropy levels for GPT-4
on dialogues generated by GPT-4.

Median Cross-Entropy and Entropy per dialogue step (GPT-3 on GPT-4 dialogues, singular approach)

30 3 '
H

median value

dialogue step

Figure 10: Entropy and Cross-Entropy levels for GPT-3
on dialogues generated by GPT-4.

3 on the same dataset likely reflects GPT-3’s limi-
tations in retaining and analysing critical informa-
tion. Although GPT-3 appears to perform better
with the alternative approach, this could be mislead-
ing. GPT-4o typically reaches solutions faster with
shorter dialogues, as shown in Figure 5, where only
25% of GPT-4o0 dialogues exceed the fifth step,
while GPT-3 dialogues often extend to the sixth
step. The perceived advantage of GPT-3 in later
steps may thus stem from different dialogue lengths
rather than actual performance improvements.

The "resurrection” phenomenon, in which LLMs
reassign nonzero probabilities to previously inval-
idated outcomes, is quantified by tracking the fre-
quency and magnitude of these probabilities. As
shown in Figure 2, GPT-3’s probability for resur-
rected items slightly decreases over time, indicating
how the model handles uncertainty. Figure 4 shows
that this phenomenon is less pronounced in GPT-4o.
However, the simultaneous approach exacerbates
this issue.

The "Bayesian apocalypse", where all proba-
bilities approach zero, results in high uncertainty
and challenges in distinguishing valid from invalid
hypotheses (Bengtsson et al., 2008). This phe-

Probability of zero distributions by dialogue step (k=5)
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Figure 11: Probability of zero distributions (Bayesian
apocalypse) by dialogue length for GPT-3 and GPT-40
on GPT-3 dialogues.
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Figure 12: Probability of zero distributions (Bayesian
apocalypse) by dialogue length for GPT-3 and GPT-40
on GPT-40 dialogues.

nomenon mirrors issues in particle filtering, where
insufficient particles fail to represent the true state
distribution, leading to similar collapses in prob-
ability. This exacerbates model uncertainty and
impairs decision-making.

Probability collapses may also indicate halluci-
nations within dialogues, especially when options
are finite. This issue is critical in interactive set-
tings where consistent tracking of candidates is
necessary. Hallucinations can lead to incorrect re-
sponses and premature elimination of valid options,
highlighting the need for better uncertainty man-
agement and handling of incomplete or noisy data.

Comparing GPT-3 and GPT-40, we used both
singular and simultaneous sampling approaches.
GPT-40’s superior performance likely stems from
better information retention and analysis compared
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Entropy by distance from beginning (k=5)
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Figure 13: Comparison of entropy trends across models
and approaches with GPT-3 dialogues.

Entropy on GPT4 dialogues (k=5)
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Figure 14: Comparison of entropy trends across models
and approaches with GPT-40 dialogues.

to GPT-3. However, GPT-3’s apparent advantage
with the singular approach after six steps (Figure
13) may be misleading. GPT-40’s shorter dialogues
often mean it reaches solutions more quickly, as
indicated by Figure 5. Therefore, the perceived
benefit of GPT-3 in subsequent steps may reflect
differences in dialogue length rather than true per-
formance.

Our findings show that LLMs can effectively
explore and identify relevant information without
extensive task-specific training, aligning with re-
active systems research (Beer and Di Paolo, 2023;
Ognibene et al., 2013). Although the entropy reduc-
tion approach is effective, current strategies for in-
formation integration are still suboptimal. GPT-40
demonstrates more robust performance, but issues
in managing probabilistic data and avoiding prob-
ability collapses persist. Addressing these chal-

lenges is crucial for improving the reliability and
accuracy of LLMs, especially for high-stakes ap-
plications.

Our results align with Bayesian inference princi-
ples, where uncertainty is minimised by updating
probability distributions with new evidence. Sim-
ilarly, LLMs update token predictions based on
preceding context, aiming to reduce output uncer-
tainty. Despite lacking explicit task-level uncer-
tainty representation, LLMs dynamically integrate
new information, reflecting a Bayesian-like process
in their operation.
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