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Abstract
The LHCb experiment at the Large Hadron Collider (LHC) is designed to perform high-precision measurements of heavy-
hadron decays, which requires the collection of large data samples and a good understanding and suppression of multiple 
background sources. Both factors are challenged by a fivefold increase in the average number of proton–proton collisions 
per bunch crossing, corresponding to a change in the detector operation conditions for the LHCb Upgrade I phase, recently 
started. A further tenfold increase is expected in the Upgrade II phase, planned for the next decade. The limits in the storage 
capacity of the trigger will bring an inverse relationship between the number of particles selected to be stored per event and 
the number of events that can be recorded. In addition the background levels will rise due to the enlarged combinatorics. To 
tackle both challenges, we propose a novel approach, never attempted before in a hadronic collider: a Deep-learning based 
Full Event Interpretation (DFEI), to perform the simultaneous identification, isolation and hierarchical reconstruction of 
all the heavy-hadron decay chains per event. This strategy radically contrasts with the standard selection procedure used 
in LHCb to identify heavy-hadron decays, that looks individually at subsets of particles compatible with being products of 
specific decay types, disregarding the contextual information from the rest of the event. Following the DFEI approach, once 
the relevant particles in each event are identified, the rest can be safely removed to optimise the storage space and maxim-
ise the trigger efficiency. We present the first prototype for the DFEI algorithm, that leverages the power of Graph Neural 
Networks (GNN). This paper describes the design and development of the algorithm, and its performance in Upgrade I 
simulated conditions.
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Introduction

The Large Hadron Collider beauty Experiment (LHCb) 
is one of the four large experiments at the proton–proton 
collider LHC, at CERN [1]. It is dedicated to the study 
of beauty (b) and charm (c) hadron decays, performing 
high-precision measurements to test the validity of the 
Standard Model (SM) of particle physics and identify 
possible signatures of the presence of physics beyond the 
SM. To push the precision frontier, LHCb needs to record 
as many heavy-hadron decays as possible. One way to 
increase that quantity for a given period of data collection 
is to increment the average number of proton–proton col-
lisions that happen in each event (bunch crossing). Dur-
ing the LHC Run 1 and Run 2 periods, between 2010 and 
2018, each LHCb event contained an average of around 
one visible proton–proton collision, producing a flow 
of tens of particles to be reconstructed. The experiment 
has now undergone its Upgrade I, with the installation 
of new sub-detectors and a new data-collection software 
to allow the processing of events with around five visible 
proton–proton collisions each. These will be the condi-
tions for the ongoing Run 3 and for the future Run 4. In a 
decade from now, the Upgrade II [2] of LHCb will prepare 
the experiment to face another tenfold increase in proton-
collision multiplicity [3] to fully exploit the High-Lumi-
nosity (HL-LHC) Phase of the LHC during Runs 5 and 6. 
The approximated expected object multiplicities per event 
in the different conditions are shown in Table 1. Beyond 
upgraded sub-detectors, the much larger event complexi-
ties bring unprecedented challenges to LHCb, both for 
data-collection and for the eventual measurements. New 
strategies need to be devised and implemented to tackle 
those challenges and hence maximise the future physics 
reach of the experiment.

So far, the entire data flow of the LHCb experiment has 
been based on an exclusive approach, i.e. it was sufficient 
for a set of particles to be compatible with a certain type 
of decay to be identified as a signal candidate. While this 
approach has its merits, it ignores all the remaining parti-
cles produced in the collision during its selection process, 
which contain important information on the underlying 
physics process. Exceptions to this exclusive approach 
are found in flavour tagging algorithms [4] and isolation 

studies [5, 6]. However, both cases examine the rest of 
the event in relation to a specific candidate, e.g. flavour 
tagging aims to infer the flavour of the heavy-hadron asso-
ciated with a given signal candidate. While technically 
very challenging, significantly more information could be 
gained by an inclusive study of all the particles in the 
event. This would not only add discriminating power to 
disentangle true signal decays from multiple sources of 
background but also allow for the identification and sepa-
ration of groups of particles corresponding to multiple 
heavy-hadron decays in the event, all of which can be 
used for subsequent physics analyses. The gains of such 
an inclusive approach compared to the individual study of 
signal candidates become stronger with increasing event 
complexities, as the larger combinatorics problem makes 
it more complicated to identify and isolate signals [5, 6].

The individual study of heavy-hadron decays is also at 
the core of the LHCb strategy for data collection. The trig-
ger of the experiment aims at discerning between events 
that contain a signal decay and those that do not, by means 
of a combination of exclusive and partially inclusive [7, 8] 
particle selections. In previous LHC runs, the disk space 
available to store the information for the selected events was 
large enough to allow persisting all the objects in the event 
in many cases. This provided the flexibility to study offline 
particles other than the ones composing the signal candidate 
that triggered the event, which is a crucial feature for signal-
background separation in many analyses and for allowing the 
study of modes not considered when the trigger selections 
were made. This situation is completely different in the HL-
LHC era. First of all, the fraction of events containing decays 
of interest will saturate to around 100%, with each event 
typically containing several heavy-hadron decays. Second, 
the event sizes will be much larger than in the past due to 
increased particle multiplicity. This implies that the poten-
tial datasets to be collected are huge, while the available 
disk space is limited and imposes tight constraints. A trigger 
strategy based on selecting events in those conditions neces-
sarily leads to a signal inefficiency, impacting the potential 
physics reach of the experiment. Consequently, the trigger 
paradigm needs to shift from deciding “which events are 
interesting?” to “which parts of the event are interesting?”. 
Minimising the average event size will directly translate into 
maximising the number of events LHCb can record. When 

Table 1  Approximate average 
quantities per event for the 
different LHCb run conditions, 
as estimated from the simulation 
used in this work

Only objects in LHCb geometrical acceptance are considered

LHCb period Num. vis. pp 
collisions

Num. tracks Num. b hadrons Num. c hadrons

Runs 1–2 ∼ 1 ∼ 50 ≪ 1 ≪ 1

Runs 3–4 (Upgrade I) ∼ 5 ∼ 150 ≪ 1 ∼ 1

Runs 5 (Upgrade II) ∼ 50 ∼ 1000 ∼ 1 ∼ 5
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doing so, the trigger needs to ensure that the relevant parti-
cles (those produced in heavy-hadron decays) are amongst 
those to be kept for offline analysis, otherwise also impacting 
the potential physics reach. These problems are already par-
tially present in the current LHCb Upgrade I, as anticipated 
in Ref. [9]. In preparation, LHCb has developed a frame-
work that allows the persistency of part of the event, named 
turbo stream [10] (e.g. the persistency of the information 
associated to the identified signal candidates and the set of 
reconstructed particles associated to the same proton–proton 
collision). During the ongoing Run 3, for instance, about 
two-thirds of the recorded events follow such turbo data 
processing model. However, at present, there is no nominal 
strategy in LHCb to systematically identify which parts of 
the event may be interesting for physics analysis. This is a 
very complicated task affected by large particle combinato-
rics and a huge variability of types of signal decays.

To tackle the previous challenges, we propose a new algo-
rithm to perform a Deep-learning based Full Event Interpre-
tation (DFEI) at LHCb. This innovative approach, which 
targets an inclusive analysis of the entire event, represents 
a shift of paradigm with important applications both at the 
trigger level and at the offline analysis level. The algorithm 
takes as input all the reconstructed particles in an event and 
aims to identify which of them originate from the decays of 
heavy-hadrons and at reconstructing the hierarchical decay 
chains through which they were produced. The possibility 
of accomplishing this difficult task leverages on some of the 
most recent developments in the field of machine learning. 
At the trigger level, DFEI can identify the part of each event 
which is interesting for physics analyses, allowing to safely 
discard the rest of the event and hence minimise the storage 
required. As an additional benefit, an automated identifi-
cation and classification of the decay chains could eventu-
ally replace the need for cut-based exclusive selections that 
need to be designed and carefully tuned independently for 
each signal decay type. At the offline analysis level, DFEI 
can offer a common tool for physicists to identify and clas-
sify the different types of backgrounds contributing to a 
broad spectrum of possible decays of interest. Leveraging 
the information from all the correlations in the event can 
enhance the background rejection power in many cases, 
increasing the precision of future LHCb measurements.

This document describes the conceptualisation, con-
struction, training and performance of the first prototype 
of the DFEI algorithm. The prototype is specialised for 
reconstructed charged particles produced in beauty-hadron 
decays. Extensions to include reconstructed neutral particles 
and charm-hadron decays can be considered in the future. 
All the studies are done using simulated datasets that emu-
late proton–proton collisions in the LHCb Run 3 environ-
ment. These datasets have been produced with a custom 
simulation framework and made publicly available for future 

benchmarking. The algorithm is based on a composition of 
Graph Neural Network (GNN) models, designed to handle 
the complexity of high-multiplicity events in a computation-
ally efficient way. Regarding the paper organisation, the state 
of the art is first presented in Sect. "Related Work". The 
development of the DFEI prototype is described in Sect. 
"Methods" , starting with an introduction to GNN models 
in Sect. "Usage of Graph Neural Networks", followed by the 
description of the employed dataset in Sect. "Dataset" for 
which additional details are provided in App. A, the struc-
ture of the algorithm in Sect. "Structure of the Algorithm", 
and finally the training in Sect. "Training". The performance 
of the algorithm is described in detail in Sect. "Results". In 
particular, the quality of the reconstruction is first evalu-
ated at the event level, in Sect. "Event-Level Performance", 
and then at the exclusive-signal level, in Sect. "Decay-Level 
Performance". A timing study is presented in Sect. "Tim-
ing Studies" (with additional details provided in App. B). 
The results are discussed in Sect. "Discussion" and future 
prospects are presented in Sect. "Future Work". Finally, the 
conclusions are summarised in Sect. "Conclusion".

Related Work

Even though the problem addressed in this paper is unique, 
it shares similarities with a variety of past efforts at the tech-
nical and/or scientific level. In this section, we conduct a 
review of those efforts and place our approach in the context 
of the field.

The first and so far only use of a machine learning-based 
approach on the full set of reconstructed tracks within 
LHCb is Ref. [11], where the authors employed a probabil-
istic model based on decision trees for the inclusive flavour 
tagging of signal beauty hadrons. The combined process-
ing of all the event information demonstrated better results 
compared to a combination of multiple classical flavour 
tagging algorithms, each using only a subset of the recon-
structed particles in the event. The task of flavour tagging is 
much simpler than the explicit decay chain reconstruction 
attempted by DFEI. Regarding isolation tools, past LHCb 
efforts [5, 6] are restricted to multivariate classifiers that aim 
to predict whether individual particles from the rest of the 
event originate or not from the same heavy-hadron decay as 
a signal candidate. The decision is based on a combination 
of features from the signal candidate and the extra particle, 
fully disregarding any correlation with the other particles 
in the event. Concerning trigger-oriented applications, the 
authors in Ref. [12] presented a study of the full information 
in the event in terms of the activity in the different LHCb 
sub-detectors, hence at a level prior to the reconstruction 
of the stable particles, which are considered as input in 
DFEI. Using machine learning techniques, they successfully 
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managed to predict the number of reconstructible proton-
proton collisions per event.1 They also studied the possible 
classification of events between those containing (at least) 
one b-hadron decay and those that do not, but this turned 
out to be a very complicated task when looking only at the 
sub-detector activity information.

Regarding other LHC experiments, a type of full event 
reconstruction is done in CMS  [13] and ATLAS  [14], 
through the usage of the particle flow algorithm. The imple-
mentation uses all the final state particles for a global event 
description, significantly improving the performance of jet 
reconstruction with respect to the previous baseline that used 
basic geometric cones to cluster particles. In order to further 
improve the performance, an approach with a GNN [15] was 
proposed in CMS, which takes all particles of an event as 
input and predicts variables such as particle identification 
and transverse momentum for each particle. While similar 
to DFEI at a technical level, the particle flow algorithm does 
not attempt to explicitly reconstruct the decay chains for all 
the relevant decays of interest.

The task of decay-chain reconstruction is conceptu-
ally close to the hierarchical reconstruction of jets, for 
which a variety of algorithms based on GNN were devel-
oped [16–30]. The ultimate goal of those algorithms, how-
ever, is typically focused on inferring quantities of the jet 
overall, for example doing a flavour tagging of the jet to 
determine the initial particle, and reconstructing the jet to 
infer its kinematics. The jet substructure is only studied to 
the extent in which it’s useful for those purposes. The limita-
tions of those algorithms for the task of reconstructing all 
the ancestors in particle decay chains are reviewed in detail 
in Ref. [31].

The effort closest to the one presented in this paper is 
being conducted at the Belle II experiment, where the FEI 
algorithm  [32] was developed for exclusive tagging of 
B-decays. This constitutes a similar approach to the one 
presented in this paper but with a different goal and in a sim-
pler environment. As Belle II is a hermetic detector situated 
at an electron-positron collider, the event is a fully recon-
structible system with known initial states and significantly 
less tracks, making the task of inference less challenging. 
In addition, only two species of b hadrons are studied, B0 
and B+ mesons,2 while LHCb is interested in all b-hadron 
species (for example Bs and Bc mesons, and Λb baryons) 
as well as c-hadron decays. From a probabilistic point of 
view, the FEI algorithm at Belle II is based on a fixed set 
of different boosted decision tree classifiers, one for each 

considered decay type. This approach would be unfeasible at 
LHCb, given the much larger variability in terms of different 
signal decay topologies, further compounded by the fact that 
a fraction of the particles produced in the decays may fall 
outside the LHCb geometrical acceptance, and hence not be 
reconstructed in the detector. Recently, an extension to the 
FEI algorithm based on GNN was proposed [31, 33], show-
ing a better performance than the previous implementation. 
This resembles the approach presented in this paper, but in 
a very different environment, as has been discussed.

As exemplified by previous efforts, GNNs have become 
popular for replacing other machine learning algorithms 
within particle physics experiments  [34, 35], as they can 
naturally capture the structure and spatial sparsity of the 
problem. A challenge, however, is the GNN’s performance 
in deployment, such as in real-time computing for trigger 
purposes. Achieving a fast inference with GNNs would 
require sparse operations and standards of representing such 
operations in protocols that would allow the automatic opti-
misation of the networks. This is a matter of broad interest 
and front-line research. Very recently, there have been mul-
tiple successful efforts in this direction within other CERN 
experiments  [36–42], for example by reducing the complex-
ity of the networks and using FPGAs or GPUs as hardware 
accelerators.

Methods

Usage of Graph Neural Networks

Machine learning and especially neural networks usage 
in particle physics has been growing exponentially in the 
last decade [43]. The major motivation to explore new and 
increasingly complex machine learning techniques is to 
optimally incorporate the structure of the underlying prob-
lem into the model itself. This includes incorporating vari-
able input sizes, representing different types of connections 
between inputs and embedding invariances into the architec-
ture. Graph Neural Networks are a class of neural networks 
built around the concept of a graph, which is an unordered 
and variable-sized collection of nodes ( v ∈ V  ), edges con-
necting those nodes ( e ∈ E ), and possibly a vector of graph-
level features ( u ). The relations between the nodes occur in 
a high-dimensional latent space, allowing for a more com-
plete description of the data. This architecture is especially 
well-fitted to capture problems with sparse connections and 
invariance under input permutation, as is the case for the set 
of reconstructed particles in a collision event.

In general, GNNs implement “graph-to-graph” transfor-
mations, by the application of multiple layers that operate 
on the graph constituents. At each layer, input vectors of 
features at the node, edge and/or graph level are used and 2 Charge conjugation is implied throughout this paper.

1 The DFEI algorithm assumes the proton-proton collision points 
have already been reconstructed, and usses information of their meas-
ured positions as input, as discussed in the following sections.
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returned to the next layer, with the output of the last layer 
fulfilling the goal of a certain task. This work is based on 
the usage of message-passing GNNs [44], in which the 
information is propagated through the graph at each layer 
by exchanging information between adjacent nodes. Spe-
cifically, we use the so-called full GN block in Ref. [45], 
depicted in Fig. 1. This block is composed of three feature-
update functions, �v , �e and �u , and three information-
aggregation functions, �e→v , �e→u and �v→u . Each of the three 
update functions is implemented by a multilayer perceptron 
(MLP), and the aggregation functions are element-wise 
summations.

These blocks are then applied multiple times, and what 
is returned is a new representation of the graph. As the 
final layer, each output element–nodes, edges or the entire 
graph—has a sigmoid for binary activation function and a 
softmax for multilabel classification. The output is then up 
to interpretation as further described in Sect. "Structure of 
the Algorithm".

Dataset

The DFEI prototype is trained on simulated data. Since 
the LHCb simulation samples are restricted to internal 
member access only, and there is no publicly available 
dataset that fully captures the essence of the problem at 
hand, we have created a new simulation environment and 
produced datasets which we have made publicly avail-
able [46]. The datasets are generated with PYTHIA8 [47] 
and EvtGen [48], replicating the particle-collision con-
ditions expected for the LHCb Run 3. In addition, an 
approximate emulation of the LHCb detection and recon-
struction effects is applied, as described in App. A. In 
the generated dataset, each event is required to contain 
at least one b-hadron, which is subsequently allowed to 
decay freely through any of the standard decay modes 
present in PYTHIA8. In these conditions, around 40% of 
the events contain more than one b-hadron decay within 
LHCb acceptance, and the maximum observed number of 

b-hadrons is five. All the studies presented in this paper 
refer only to reconstructed particles that have been pro-
duced inside the LHCb geometrical acceptance and in the 
Vertex Locator region (as defined in App. A). Other par-
ticles are not considered, which also implies they are not 
included as part of the ground truth heavy-hadron decay 
chains.

A total of 100,000 simulated events have been used to 
develop this first prototype of the DFEI algorithm. They 
are divided into: training dataset (40,000 events), test data-
set (10,000 events) and evaluation dataset (50,000 events). 
In addition to this inclusive dataset, several other smaller 
samples (of a few thousand events each) have also been gen-
erated simulating specific signal decay types. These decay 
types have been chosen to be representative of the most com-
mon signal topologies studied in physics analyses at LHCb, 
and are used to evaluate the performance of DFEI focused 
on typical use cases. These samples contain only events in 
which all the particles originating from each of the consid-
ered exclusive decays have been produced inside the LHCb 
geometrical acceptance and in the Vertex Locator region.

The input features used in the DFEI GNN modules are 
described in the following. Regarding geometrical variables, 
a cartesian right-handed coordinate system is adopted, with 
the z axis along the beam, the y pointing upwards and the x 
axis parallel to the horizontal.

• Node variables:

– Transverse momentum ( pT ): component of the three-
momentum transverse to the beamline.

– Impact parameter (IP) with respect to the associated 
primary vertex (PV): distance of closest approach 
between the particle trajectory and its associated pri-
mary vertex (proton-proton collision point), defined 
as the one with the smallest IP for the given particle 
amongst all the primary vertices in the event.

– Pseudorapidity ( � ): spatial coordinate describing the 
angle of a particle relative to the beam axis, com-
puted as  � = arctanh(pz∕‖p‖).

– Charge (q): since only charged reconstructed par-
ticles are considered, the charge can only take the 
values 1 or -1.

– Ox,  Oy,  Oz : cartesian coordinates of the origin point 
of the particle.

– px,    py,    pz : cartesian coordinates of the three-
momentum of the particle.

– PVx,  PVy,  PVz : cartesian coordinates of the position 
of the associated primary vertex.

• Edge variables:

– Opening angle ( � ): angle between the three-momen-
tum directions of the two particles.

Fig. 1  Graph processing block at each message-passing step, as pre-
sented in Ref. [45]
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– Momentum-transverse distance ( d
⟂P ): distance 

between the origin point of the two particles pro-
jected onto a plane which is transverse to the com-
bined three momentum of the two particles.

– Distance along the beam axis ( Δz ): difference 
between the z-coordinate of the origin points of the 
two particles.

– FromSamePV: Boolean variable indicating whether 
the two particles share the same associated primary 
vertex.

– IsSelfLoop: Boolean variable indicating whether the 
edge is connecting a particle with itself or not (i.e. it 
connects two different particles).

Structure of the Algorithm

A full-sized event graph with all necessary features can 
grow quite large, possibly exceeding the available comput-
ing resources in online applications. To improve the scal-
ability of the algorithm, a sequential approach is adopted: 
several event pre-filtering steps are applied before the decay 
chain reconstruction is performed, with tunable thresholds 
depending on the available resources. It should be noted 
that the GNN-based FEI algorithm used at Belle II uses a 
dense network, that would not scale well to LHC conditions. 
Each collision event is transformed into a graph, where the 
charged reconstructed particles are represented as nodes and 
the relations between them are represented as edges. Edges 
are established between particles that either share the same 
associated primary vertex or have an opening angle smaller 
than a given threshold, to reduce the graph size and the time 
needed to build it. Requiring that the edge selection keeps 
99% of the connections between particles that originate 
from the same b-hadron decay corresponds to choosing a 
threshold value for � of 0.26 rad. This requirement removes 
around 11% of all the other connections. Further tuning of 
this parameter goes beyond the scope of this paper, which 
privileges a loose preselection in order not to compromise 
the subsequent performance of the algorithm.

The input graph is passed subsequently through three 
GNN modules, built using the graph_nets library [45]. 
The modules are schematically represented in Fig. 2 and 
described in the following. The input features used by each 
module are specified in Table 2.

• Node pruning (NP). The first GNN module has the goal 
of removing most of the particles (nodes) that have not 
been produced in the decay of any b-hadron. It mostly 
exploits the fact that particles produced in the decay of a 
b-hadron typically have large IP and pT values. Since the 
main contributing factor to the prediction of each node 
in this case comes from the same node’s features, self-
loop connections are included in the graphs. The model 

is trained using binary cross-entropy loss function to pre-
dict whether a node originates from beauty hadrons or 
not. Nodes with an output score below a certain threshold 
are removed from the graph.

• Edge pruning (EP). The output graph of the previous 
step still has a large number of edges, which are fur-
ther reduced by a second GNN module. This one aims 
to remove edges between particles that do not share the 
same beauty-hadron ancestor. Amongst other relations, 
this exploits the fact that particles coming from the same 
b-hadron decay tend to be closer in space and their three-
momenta tend to form a small opening angle. The model 
is trained using binary cross-entropy loss function to 
predict whether an edge connects two particles from the 
same beauty-hadron decay. Edges with an output score 
below a certain threshold are removed from the graph.

• Lowest common ancestor inference (LCAI). Finally, 
a third GNN module takes the output of the previous 
algorithm, and aims at inferring the so-called “lowest 
common ancestor” of each pair of particles (a technique 
similar to the recently proposed LCA-matrix recon-
struction for the Belle II experiment [33]). The limited 
coverage of the LHCb geometrical acceptance and the 
fact that only charged reconstructed particles are con-
sidered in this prototype implies that a large fraction of 
the decay chains can only be partially reconstructible. 

Fig. 2  Schematic representation of an event processing by the algo-
rithm. Green (red) graph nodes represent particles originated in the 
decay chain of a b-hadron (from the rest of the event). The recon-
structed ancestors are represented in blue
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To circumvent this limitation, the target decay chains for 
this prototype are not the ones output by the PYTHIA8 
simulation but a “topological” version of them, con-
structed from the separable decay vertices in the decay 
chain. In practice, this amounts to a transformation of the 
ground truth decay chain, removing the ancestors that 
either correspond to very-short-lived resonances or do 
not have enough charged-particle descendants to allow 
the formation of a vertex. From a technical perspective, 
the GNN module performs a multi-class classification on 
the edges. The model is trained using multi-class cross-
entropy loss function outputting a score associated to the 
“topological” LCA relation between the two connected 
particles, e.g. particles that share an ancestor at the low-
est level will have 1st order LCA (class-1), particles that 
share an ancestor at the next-to-lowest level will have 
2nd order LCA (class-2), etc. The fraction of edges with 
a ground-truth order larger than 3 in the simulation is 
very small, so the target classes considered are class-
1, class-2 and class-3. In addition, a class with an LCA 
value of 0 is included (class-0), to identify the case in 
which the two particles do not originate from the same 
decay chain. As a side product of the addition of this last 
class, the LCAI provides a final step of node filtering, by 
allowing to remove fully disconnected particles (those 
whose edges are all predicted to have an LCA value of 0).

Each of the previous modules uses independent MLPs for 
the node-, edge- and global-update functions introduced in 
Sect. "Usage of Graph Neural Networks". Each MLP is com-
posed of a certain number of layers, all of which have the 
same latent size. The number of GN block iterations is also 
configured separately for each module. The hyperparameters 
chosen for this prototype are written in Table 3.

The output of the DFEI processing chain can be directly 
translated into a set of selected charged reconstructed 

particles and their inferred ancestors, with the predicted 
hierarchical relations amongst them.

Training

The training is done in stages, following the algorithm 
sequence. Each model is trained in a supervised way, using 
a weighted cross-entropy as loss function, where the weights 
(corresponding to the inverse of the number of elements in 
each true class) compensate for the imbalance across classes 
present in the dataset. The minimisation is done using Adam 
with the hyperparameter configuration reported in Table 3.

Thresholds are defined for the output score of the NP 
and EP models, as those resulting into a ∼ 99% efficiency 
of selecting the desired nodes and edges, respectively. This 
loose requirement is chosen to minimise the potential nega-
tive impact on the performance of the subsequent steps. The 
working point corresponds to a ∼ 70% background rejection 
power for nodes from the NP algorithm and a ∼ 68% back-
ground rejection power for edges from the EP algorithm. In 
this setup, the ROC AUC for the NP module is 0.977, and 
the one for the EP module is 0.974. A consistent perfor-
mance is observed between the training and test samples, 
showing no overtraining of these modules. The average 
reduction of the total event size after each processing step 
is shown in Table 4.

Table 2  Input variables used by 
each of the DFEI modules

In addition, the total number of stable particles per event (NumParts) is included as an input variable. 
Where relevant, edges connecting two different particles are differentiated from edges connecting a particle 
with itself (self-loops) by the Boolean variable IsSelfLoop

Model Node variables Edge variables Global variables

NP pT , IP, � , q FromSamePV, � , d
⟂P

 , Δz , IsSelfLoop NumParts
EP pT , IP, � , q FromSamePV, � , d

⟂P
 , Δz NumParts

LCAI O(x,y,z) , p(x,y,z) , PV(x,y,z) , q FromSamePV, � , d
⟂P

 , Δz NumParts

Table 3  Hyperparameters used 
in the construction and training 
of the different GNN modules

Model # Layers Latent size # GN blocks Batch size Learning rate # Training steps

NP 3 50 3 32 5 ⋅ 10−4 500
EP 4 100 5 32 10−4 500
LCAI 5 100 5 128 10−3 2 ⋅ 105

Table 4  Cumulative average efficiencies on the total number of nodes 
and edges in the graph after each pre-filtering step, illustrating the 
graph reduction power achieved in each case

Filtering step Node eff Edge eff

Edge pre-selection ∼100 % ∼89 %
NP ∼29 % ∼6 %
EP ∼27 % ∼2 %
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The training of the LCAI module requires significantly 
more training iterations than the previous steps, given the 
much higher complexity of the task. A certain level of over-
training is found for the least populated classes, and the 
training is stopped once the average classification accuracy 
for the test sample reaches a plateau. Since the goal of this 
paper is demonstrating the feasibility of the approach by 
presenting a first working prototype, rather than obtaining 
the maximum possible performance, we leave the improve-
ments in the training as future work.

Results

In this section, the performance of the current DFEI proto-
type is described, both at an event level (relevant for trigger) 
and at an individual-decay-chain level (relevant for trigger 
and offline analysis).

Event‑Level Performance

Different metrics are defined and evaluated in the following 
section to characterise the performance of DFEI at event 
level, from multiple perspectives.

Event-size-reduction capabilities. Three different quan-
tities are studied, as a function of the particle multiplicity 
per event: efficiency of selecting particles from a b-hadron 
( Hb ) decay, efficiency of rejecting particles from the rest of 
the event (background), and total number of selected parti-
cles in the event. The obtained values are shown in Figs. 3 
and  4. The average efficiency for selecting particles truly 
produced in b-hadron decays is 94%, and the average back-
ground rejection power is 96%. The selection efficiency of 

particles from b-hadron decays is found to be independent 
on the total number of particles in the event. The average 
number of selected particles per event is ∼10, from the 
initial number of ∼140. A good event reduction is obtained 
irrespectively of the number of particles originating from 
b-hadron decays per event, as demonstrated by the linear 
behaviour of the confusion matrix presented in Fig. 4. For 
the set of selected particles per event, an average purity of 
60% is found, defined as the number of selected particles 
that truly originate from b-hadron decays over the total 
number of selected particles.

Quality of the decay-chain reconstruction. Apart from 
helping in background suppression in offline analysis, 
being able to accurately reconstruct and classify the decay 
chains in an event can allow DFEI to allow a further level 
of automation to the LHCb trigger, as introduced in Sect. 
"Introduction".

A first metric that can serve for characterising the 
overall understanding of the event in this regard, and 
be used for benchmarking purposes, is the fraction of 
events in which DFEI achieves a perfect event reconstruc-
tion (PER). For an event to fulfil this condition, all the 
b-hadron decays in the event need to have been found, 
all the charged reconstructed particles produced in them 
been selected, the associated “topological” decay chains 
been exactly reconstructed, and all the particles from the 
rest of the event been removed. An example of a PER 
case found by DFEI in the evaluation dataset is shown in 
Figs. 5 and  6, from the points of view of the ancestor-
chain reconstruction and of the reconstructed-particle 
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Fig. 3  Average particle-selection efficiency as a function of the total 
number of particles per event, shown separately for (blue) particles 
originating from a b-hadron decay and (red) particles from the rest of 
the event

Fig. 4  Confusion matrix for the true vs. predicted number of particles 
from b-hadron decays per event, computed in terms of percentages 
normalised for each row (true value) and shown for the square subre-
gion corresponding to a number of particles between 2 and 16



Computing and Software for Big Science            (2023) 7:12  

1 3

Page 9 of 16    12 

filtering, respectively. The average fraction of PER found 
in the evaluation dataset is (2.14 ± 0.07)%.

It should be noted that the PER is an extremely chal-
lenging case, and that even a partially good reconstruction 
can be used for trigger purposes. For example, the selec-
tion of extra particles from the rest of the event will break 
the conditions for a PER, but will not impact the efficiency 
for selecting all the particles produced in b-hadron decays.

Decay‑Level Performance

The performance shown in the previous section refers inclu-
sively to all the heavy-hadron decays per event. For each of 
them, it considers an average over all the known b-hadron 
species and their known decay types. In this section, the 
DFEI output is processed to obtain predictions for indi-
vidual decays. First, all the true decay chains of a certain 
type are identified in the simulation dataset, taking note 
of the events in which they were produced. Then, DFEI is 
run for each of those events, outputting a set of candidate 
decay chains (connected sub-graphs) per event. Each true 
decay chain is finally compared with the corresponding set 
of candidate decay chains, to classify the DFEI reconstruc-
tion into one of the following mutually exclusive categories:

• Perfectly reconstructed decay: all the reconstructed par-
ticles originating from the b-hadron decay have been 
predicted to be part of the same connected sub-graph, 
which is disconnected from all the other particles in the 
event, and the “topological” ancestor decay chain has 
been perfectly reconstructed.

• Wrong hierarchy: same as before, but there is at least one 
mistake in the reconstruction of the “topological” ances-
tor decay chain.

• Not isolated: all the reconstructed particles originating 
from the b-hadron decay have been predicted to be part of 
the same connected sub-graph, but there is at least one extra 
particle from the rest of the event which is also contained in 
that sub-graph. This category does not consider the specific 
“topological” decay chain reconstruction of the sub-graph, 
and is solely based on the association with extra particles.

• Partially reconstructed: not all of the reconstructed parti-
cles originating from the b-hadron decay have been pre-
dicted to be part of the same connected sub-graph. As 
before, this category does not consider the specific “topo-
logical” decay chain reconstruction, and is solely based 
on the impossibility to group all the desired particles 
in a single sub-graph. It should be noted that this type 
of reconstruction does not necessarily imply an overall 
inefficiency in selecting the particles from the b-hadron 
decay since they can have been selected in multiple sub-
graphs.

Fig. 5  Example of a PER from the evaluation dataset. The (top) 
reconstructed and (bottom) ground truth b-hadron decay chains in 
the event are shown. Apart from the reconstructed particles produced 
in those decays, the event contains 106 particles from the rest of the 
event (not shown for simplicity), all of which are correctly removed 
by DFEI. The dark-green (light green) circles represent the recon-
structed particles (topological ancestors). The key (k) numbers cor-
respond to unique identifiers for each reconstructed particle produced 
in the simulation. The cluster (c) numbers correspond to unique iden-
tifiers assigned to each ancestor during the construction of the decay 
chains. The true identity of the particles is shown in the ground-truth 
case

Particles from b-hadron decays 
Particles from the rest of the event

Fig. 6  Example of a PER from the evaluation dataset, same as in 
Fig.  5. Two-dimensional view of the charged reconstructed particle 
trajectories in the proton–proton interaction region. Red lines repre-
sent particles produced in b-hadron decays, that DFEI has correctly 
selected, and gray lines represent particles from the rest of the event, 
that DFEI has correctly removed
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Examples of the different types of reconstruction for a given 
true decay chain are shown in Fig. 7.

The decay-level performance is first computed in an 
inclusive way using the evaluation dataset, by measur-
ing individually the response for all the b-hadron decays 

contained in the simulation and then looking at the fraction 
of decays reconstructed in each of the four possible catego-
ries. The numbers are reported in Table 5. Complementary 
to the inclusive case, the DFEI response is evaluated in a 
second stage restricted to specific decay types, by using the 
additional datasets introduced in Sect. "Dataset". The result-
ing numbers are also reported in Table 5. Those modes are 
representative of the most typical case studies of LHCb, with 
the inclusive sample also containing decays to many parti-
cles and more complicated decay topologies, for which the 
reconstruction is more challenging.

The performance evaluated on the exclusive modes is 
significantly better than the inclusive case, with fractions 
of perfectly reconstructed decays in the range 20–40%. The 
comparative study of the performance on the different exclu-
sive modes helps to understand which cases are easier or 
harder for DFEI to reconstruct, and in general to analyse the 
dependencies of the DFEI response. The most complicated 
cases are found to be B0

→ D−[K+�−�−]D+[K−�+�+] (with 
two three-particle vertices very separated in space, given the 
long lifetime of the D+ meson), and Λ0

b
→ Λ+

c
[pK−�+] �− 

(with a single �+ that needs to be associated to a spatially 
separated three-particle vertex. The difference in per-
formance between the second of the previous decays and 
B0

s
→ D−

s
[K−K+�−] , which has a similar topology, is due to 

the Λ+
c
 flying more on average than the D−

s
 , due to a signifi-

cantly larger Lorentz boost. The fraction of partial recon-
struction is below 10% in all the exclusive cases except for 
the Λ0

b
→ Λ+

c
[pK−�+] �− decay, which translates into an effi-

ciency for selecting all the reconstructed particles produced 
in those decays above 90%.

Timing Studies

Detailed timing studies and an optimisation of the inference 
speed of the DFEI algorithm are out of the scope of this 
paper, and are left for future research. However, a first, sim-
plified, timing study of the current prototype is shown in this 
section. The first motivation for the study is to understand 

Table 5  Decay-level 
performance of DFEI for the 
inclusive ( Hb ) case and for 
several exclusive decay types

In the cases in which the fraction is measured to be zero, the frequentist Wilson upper limit [49] for a 68% 
coverage is provided. In the other cases, we show the binomial uncertainty related to fraction of events

Decay mode Perfect (%) Wrong hierarchy (%) Not iso. (%) Part. reco. (%)

Inclusive Hb decay 4.6 ± 0.1 5.9 ± 0.1 76.0 ± 0.2 13.4 ± 0.1
B
0
→ K

∗0[K+�−]�+�− 35.8 ± 0.7 19.2 ± 0.6 44.9 ± 0.7 <0.02
B0

→ K+�− 38.0 ± 0.7 − 54.7 ± 0.7 7.2 ± 0.4
B0
s
→ D−

s
[K−K+�−] �+ 32.8 ± 0.7 7.1 ± 0.4 53.7 ± 0.8 6.4 ± 0.4

B0
→ D−[K+�−�−]D+[K−�+�+] 22.7 ± 0.6 22.4 ± 0.6 54.9 ± 0.8 <0.02

B+
→ K+K−�+ 35.7 ± 0.7 10.2 ± 0.4 46.4 ± 0.7 7.7 ± 0.4

Λ0

b
→ Λ+

c
[pK−�+] �− 21.7 ± 1.0 8.9 ± 0.7 36.8 ± 1.2 32.6 ± 1.1

B0
s
→ J∕�[�+�−] �[K+K−] 26.9 ± 0.6 20.5 ± 0.5 52.5 ± 0.6 <0.02

Fig. 7  Examples for the types of decay-chain reconstruction defined 
in the text. Green (red) nodes represent particles created in the true 
decay chain (from the rest of the event). Blue (orange) nodes repre-
sent true (candidate) ancestors
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the scalability of the response with the object multiplicity 
per event. The second goal is to estimate how the current 
event-processing rate achievable by the algorithm compares 
with the requirements to run DFEI in the LHCb Run 3 trig-
ger. Since the algorithm runs over reconstructed tracks, at 
the moment the target would be the Run 3 HLT2 trigger, 
which runs on CPU. As explained in App. B, this would 
imply a processing rate in the ballpark of 500 Hz per com-
puting node (the precise target number would depend on 
internal LHCb considerations).

The timing study is done on a CentOS Linux 7 (Core) x86 
architecture, using a 2.2 GHz Intel Core Processor (Broad-
well, IBRS). No parallelisation scheme is employed. The 
average computing time required for the evaluation of the 
NP, EP and LCAI modules as a function of the total number 
of particles in the event is computed and reported in Fig. 8. 
In this configuration, the NP is both the slowest module and 
the one that presents the strongest scaling as a function of 
the event size, hence the one that can profit the most from 
a future optimisation in terms of timing. The average of the 
combined NP + EP + LCAI times is approximately 1 s per 
event.

The time needed to create the input graph3 for each of the 
three modules and to post-process their output (i.e. filtering 
nodes and edges and interpreting the predicted LCA values 
in terms of reconstructed decay chains) is not included in the 
previous study. From all these auxiliary tasks, the only one 
that does not have a processing time significantly under 1 s 
is the graph construction of the NP module, that requires an 
average of 2 s per event.

Taking into account these first studies, a strategy to speed 
up the full algorithm in order to meet the trigger constraints 
is outlined in Sect. "Future Work".

Discussion

The proposed approach for a multi-heavy-hadron-decay 
reconstruction of b-hadron decays in a hadronic environ-
ment is the first of its kind. To allow the benchmarking 
of future efforts in this new scenario, all the datasets used 
for the training and evaluation performance of DFEI have 
been made publicly available [46]. In this section, the per-
formance obtained with this first prototype is discussed, in 
reference to the global context.

On a first stage, the reconstructed-particle selection capa-
bilities can be compared with previous studies in LHCb. The 
closest case study, reported in Ref. [10], considers the subset 
of reconstructed particles that have been selected by a stand-
ard LHCb inclusive trigger algorithm, and attempts to dis-
cern whether each of the other particles in the event has been 
produced in the same b-hadron decay or not. By combining 
vertex-quality requirements and the output of a multivariate 
algorithm trained on individual-particle features, the authors 
estimate an approximate selection efficiency for particles 
from the same b-hadron decay of 90% for an approximate 
background rejection power of 90%. That study is based on 
official LHCb simulation, which contains material-interac-
tion backgrounds and fake-track backgrounds, not included 
in the simulated dataset used in this paper. Both simulations, 
however, aim at representing inclusive b-hadron decays in 
LHCb Run 3-like conditions. The performance of DFEI (94% 
selection efficiency for particles from b-hadron decays and 
96% background rejection power) is similar and numerically 
higher, within the caveats of the comparison. Most impor-
tantly, it shows a powerful discrimination consistently for all 
the b-hadron decays present in the event at the same time, 
instead of focusing on an individual decay. It should be noted 
that the strategy presented in Ref. [10] is not used in produc-
tion by LHCb. The difference between the two approaches 
will only increase in the much harsher object-multiplicity 
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Fig. 8  Average evaluation time per event of the different DFEI mod-
ules as a function of the total number of reconstructed particles in the 
event. The error bars correspond to the standard deviation

3 The values of the input features are assumed to be already available 
at the time DFEI is evaluated, as is the case in the datasets used in 
this paper.
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conditions expected for LHCb Upgrade II. The almost flat 
response found in DFEI for the particle-selection efficiencies 
as a function of the number of particles in the event also sug-
gests good prospects for the Upgrade II conditions.

On a second level, regarding decay-chain reconstruction, 
DFEI has demonstrated for the first time that this kind of 
reconstruction can be done successfully both in a hadronic 
environment and in a multi-decay-chain scenario. Given the 
novelty of the approach, the performance at this level can 
only be partially compared with the one achieved by the FEI 
algorithm at the Belle II experiment, and with significant 
caveats. On one side, as explained in Sect. "Introduction", 
the reconstruction in LHCb is a much more difficult task 
than in Belle II. On the other side, the DFEI prototype for 
LHCb makes use of several, previously introduced, simplifi-
cations: omitting particles produced outside the geometrical 
acceptance, not including neutral reconstructed particles and 
reconstructing only the “topological” decay chains, not the 
full ones. Keeping the previous caveats in mind, the frac-
tion of perfect decay reconstruction obtained in this paper 
can be approximately compared to the so-called tag-side 
reconstruction efficiency determined in Ref. [32] using a 
Belle simulated dataset, which is of the order of few per 
cent for semileptonic decays and of few per mille for had-
ronic decays. The conclusion that can be drawn from this 
comparison is that DFEI manages a level of reconstruction 
of decay chains in a hadronic environment which is in the 
ballpark of that achieved in Belle (II), hence demonstrating 
not only the feasibility but also the competitiveness of a Full 
Event Interpretation approach at the LHC.

Concerning offline analysis applications, a study of dif-
ferent possible types of DFEI reconstruction for specific 
ground truth decay chains is reported in Sect. "Decay-Level 
Performance". A technically similar but conceptually differ-
ent study could be done on a collision dataset, focusing this 
time on the DFEI prediction for the reconstructed particles 
output by any standard LHCb analysis preselection. Those 
preselections aim at identifying particles that are compatible 
with having been produced in a specific type of decay chain, 
which are denoted as signal candidates. The DFEI output 
can be used to classify each signal candidate in one of the 
following categories: “signal” (if the reconstruction matches 
the expected decay chain), background with a different reso-
nance structure (if the selected reconstructed particles are 
deemed to be correct but the predicted hierarchy is not), 
background from decays with extra particles (some of which 
are not part of the signal candidate) and combinatorial back-
ground (where the candidate particles are predicted to origi-
nate from multiple sources). This implies that DFEI could 
virtually be used in every LHCb analysis to suppress/study 
the different possible types of contributing backgrounds with 
a potentially higher background separation power, by lever-
aging all the information in the event.

Future Work

The work in this paper opens the door for multiple future 
research lines. Natural follow up steps are detailed perfor-
mance studies on official LHCb simulation and Run 3 colli-
sion data. This will allow to assess the impact of the DFEI 
reconstruction in a broad spectrum of decay distributions, 
to understand the potential needs for further optimisations/
calibrations of the algorithm. Another natural continuation is 
the extension of the developments and studies to Upgrade II 
conditions. Additionally, the DFEI functionality is expected 
to be expanded, to include neutral reconstructed particles, 
charm-hadrons decays and particle-identity information. 
This can bring potential new complementary applications 
of DFEI, such as providing enhanced flavour-tagging capa-
bilities to LHCb.

Regarding speeding up the inference, a design optimisa-
tion of the NP module, for example substituting the GNN 
by a combination of independent multi-variate classifiers 
per particle or by a nearest-neighbour selection in a learnt 
embedding, together with an overall hyperparameter opti-
misation can bring large reductions to the evaluation time. 
Significant additional speed ups can be gained by converting 
the full DFEI pipeline into C++ [50, 51] (which is by itself 
a technical requirement to run DFEI in the current LHCb 
trigger). The combination of the suggested improvements 
gives a good hope to achieve the target event-processing 
rate discussed in Sect. "Timing Studies". Finally, regarding 
the utilisation of DFEI in the LHCb Upgrade II, the infer-
ence of the GNN modules could become much faster by the 
usage of GPUs [41, 42, 50] or FPGAs [37–40] as hardware 
accelerators in the trigger system. For example, in Ref. [50], 
graphs of order 100,000 nodes are segmented with GNNs 
(in a technically similar way to this work) in less than 1 s.

Conclusion

This is the first proof of concept for an inclusive event 
processing at the LHC in a high-multiplicity environment 
focused on the identification and explicit reconstruction of 
all the heavy-hadron decay chains in the event. It is heavily 
based on deep learning and uses GNNs to optimally capture 
the event structure. To keep the approach computationally 
scalable, the algorithm is divided into three stages: node 
pruning removes all the nodes that are not associated with 
a heavy-hadron decay, edge pruning removes all the edges 
that do not share the same ancestor inference and finally 
the lowest-common-ancestor that predicts the hierarchical 
decay relations of particles, allowing to completely recon-
struct all decays. The algorithm has been trained using a 
simulated dataset that emulates LHCb Run 3 conditions, and 
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is specialised for beauty hadron decays and charged recon-
structed particles.

The algorithm is able to separate between particles origi-
nating from b-hadron decays and those from the rest of the 
event better than previous approaches in similar conditions 
at LHCb. The resulting fraction of perfectly reconstructed 
b-hadron decay chains is in the ballpark of the one obtained 
by the FEI algorithm in an electron-positron environment, 
showing not only the feasibility but also the competitiveness 
of this approach at the LHC.

The performance of DFEI is studied in detail both at the 
global event level and at the individual b-hadron decay level, 
using both inclusive and exclusive samples containing typi-
cal decays of interest for LHCb. A particularly good per-
formance is found in the exclusive modes, in terms of both 
the efficiency of a perfect decay-chain reconstruction (in the 
range 20–40%) and the efficiency to identify all the recon-
structed particles originated from the decay (above 90% in 
most of the cases).

The application of the algorithm for data analysis at 
offline level is discussed, explaining how DFEI can be used 
as a common tool to identify and classify different types 
of background. These capabilities can already be explored 
with the Run 3 dataset, which is currently being collected. In 
terms of charged reconstructed particles, the current DFEI 
algorithm achieves a 14× event reduction factor in Run 3 
conditions, for a 94% efficiency in the selection of particles 
from b-hadron decays in the event. For illustration, if this 
kind of performance was achieved in Upgrade II conditions 
and all the event information was solely related to charged 
particles, the saving factor would translate into a 14× larger 
integrated luminosity that could be recorded, compared to 
storing the full event information. This shows the strong 
potential of the DFEI approach, while accurate estimates of 
the gaining factor in Upgrade II conditions will be the focus 
of future research.

To be used in the trigger, the DFEI algorithm needs to be 
able to process events at high rate. A first timing study of 
the DFEI algorithm is performed and several steps towards 
achieving the target event-processing rate are identified.

Finally, the successful development of the DFEI proto-
type opens the door to future research towards expanding its 
functionality and use cases in LHCb and can inspire similar 
developments in other LHC experiments for the HL-LHC 
Phase.

Appendix A: Construction of the dataset

To approximately emulate the topology of a Run 3 event in 
LHCb, single proton-proton collisions at a centre-of-mass 
energy of 13 TeV are first generated with PYTHIA8, using 
an inclusive softQCD interaction model. Then, several 

collisions are combined in each event, such that their number 
follows a poisson distribution with an average of 7.6, corre-
sponding to the average multiplicity expected in Run 3 con-
ditions [52]. For all the studies done on inclusive b-hadron 
decays, at least one collision that has produced b-hadrons 
is included in each event. For the studies done on exclusive 
decays of interest, the dataset generated in the previous con-
figuration is reused, substituting a collision that produced an 
inclusive b-hadron decay by a new one, that produced the 
specified exclusive decay. This new collision is generated by 
combining the PYTHIA8 and EvtGen generators.

To place those collisions in the space, a coordinate system 
is defined with its centre on the nominal collision point, con-
sidered here to be the centre of the Vertex Locator of LHCb. 
The true position of each proton-proton collision point is 
sampled from a three-dimensional gaussian distribution, 
centred on the origin of coordinates, with widths of 0.05 
mm, 0.05 mm and 10 mm, respectively along the x, y and 
z axes (see Ref. [52] for discussions on the expected beam 
geometry).

Charged stable particles (pions, kaons, protons, electrons 
and muons) produced in the collisions are only kept if their 
pseudorapidity is in the range 1.9 ≤ � ≤ 4.9 , correspond-
ing to the geometric acceptance of LHCb [1], and if their 
origin position along the z direction is within a distance of 
±500 mm from the origin of coordinates, which emulates 
an approximate coverage of the Vertex Locator [53]. The 
measurement of the relevant properties for each particle per-
formed by the LHCb detection and reconstruction process is 
emulated by modifying the particle properties generated by 
PYTHIA8, as discussed in the following.

As a first step, the measurement of primary vertices is 
considered. Those which result in a number of charged par-
ticles less than four are considered not to be reconstructi-
ble, and hence are discarded. For all the others, a gaussian 
smearing is applied to their position in each of the three 
dimensions. The resolution for that smearing as a function 
of the total number of charged particles in the collision is 
assumed to be the same as the one measured by LHCb in 
Run 2 as a function of the number of tracks, that is reported 
in Fig. 5 of Ref. [54]. The resolution for the x and y coordi-
nates is assumed to be identical.

In a second step, the determination of the origin point 
of each particle is studied, which in real life would corre-
spond to the measurement of the position of the first hit 
from the associated track in the Vertex Locator. The Vertex 
Locator is segmented into 52 measurement planes along the 
z-direction [53], which in this study are approximated to be 
equally spaced for simplicity. The z-coordinate of the origin 
point is therefore assigned to that of the closest plane to the 
true origin position, looking in the positive direction of the 
z axis. The values for the x and y coordinates are determined 
by obtaining the true position of the particle at the given z 
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plane, assuming constant velocity, and applying a gaussian 
smearing with a resolution of 8.5 µm in both the x and y 
directions (see Ref. [55] for discussions on expected resolu-
tions in Run 3 conditions).

Finally, the measurement of the three-momentum of the 
particles is emulated. The momentum slope in the x and y 
directions relative to the z axis is smeared using a gauss-
ian function, using the momentum-dependent resolution 
reported in Fig. 1 of Ref. [55]. The modulus of the momen-
tum is smeared using a gaussian function assuming a relative 
resolution of 0.4% [56].

It should be noted that this emulation does not include 
additional particles produced in material interactions within 
the detector or fake particles resulting from wrongly recon-
structed tracks, both of which are present in the official 
LHCb simulation.

Appendix B: Data taking conditions at LHCb 
Run 3

In Run 3, the trigger system of LHCb is fully software 
based and composed of two consecutive levels, HLT1 and 
HLT2 [57]. The first level performs a partial reconstruction 
of charged particles, reconstructs primary vertices and per-
forms muon identification, pre-selecting the events to reduce 
a 30 MHz input rate to 1 MHz [58]. The raw event informa-
tion for each passing event is temporarily written to a disk 
buffer, which allows to perform the next trigger steps in an 
asynchronous way, and hence with an enlarged computing-
time budget. Running on the data in the disk buffer, the HLT2 
level performs a full reconstruction of the objects in each 
event, followed by a combination of inclusive and exclusive 
selections. Those selections primarily identify interesting 
events, but can also be used to decide which elements inside 
them (particles, raw-event information, etc.) will be stored 
for future processing [10]. The HLT2 output is saved on a 
permanent tape storage. Before being moved to disk storage, 
the only one which is accessible for data analysis, the events 
on the tape undergo a further filtering stage offline [59].

The DFEI algorithm can ideally be run at the HLT2 stage, 
if its inference is fast enough. This would imply event-pro-
cessing frequencies per computing node in the ballpark 
of the current HLT2 sequence, which amounts to around 
500 Hz excluding selection algorithms [60]. Determining 
the accurate time requirements is outside the scope of this 
work, since it would require including the algorithm in the 
LHCb HLT2 sequence and testing it in realistic data-taking 
conditions. It should be noted that, if this requirement even-
tually turned out to be too difficult, DFEI could run instead 
in the Run 3 offline filtering stage before data is sent to disk 

storage. This would however require persisting the informa-
tion of all the reconstructed particles to tape.
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