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A B S T R A C T

Artificial intelligence can standardize and automatize highly demanding procedures, such as manual segmen-
tation, especially in an anatomical site as common as the pelvis. This study investigated four automated seg-
mentation tools on computed tomography (CT) images in female and male pelvic radiotherapy (RT) starting from
simpler and well-known atlas-based methods to the most recent neural networks-based algorithms. The evalu-
ation included quantitative, qualitative and time efficiency assessments. A mono-institutional consecutive series
of 40 cervical cancer and 40 prostate cancer structure sets were retrospectively selected. After a preparatory
phase, the remaining 20 testing sets per each site were auto-segmented by the atlas-based model STAPLE, a
Random Forest-based model, and two Deep Learning-based tools (DL), MVision and LimbusAI. Setting manual
segmentation as the Ground Truth, 200 structure sets were compared in terms of Dice Similarity Coefficient
(DSC), Hausdorff Distance (HD), and Distance-to-Agreement Portion (DAP). Automated segmentation and
manual correction durations were recorded. Expert clinicians performed a qualitative evaluation. In cervical
cancer CTs, DL outperformed the other tools with higher quantitative metrics, qualitative scores, and shorter
correction times. On the other hand, in prostate cancer CTs, the performance across all the analyzed tools was
comparable in terms of both quantitative and qualitative metrics. Such discrepancy in performance outcome
could be explained by the wide range of anatomical variability in cervical cancer with respect to the strict
bladder and rectum filling preparation in prostate Stereotactic Body Radiation Therapy (SBRT). Decreasing
segmentation times can reduce the burden of pelvic radiation therapy routine in an automated workflow.

1. Introduction

In recent decades, artificial intelligence (AI) significantly affected
several areas of health care. Within clinical oncology, AI may have the
potential to transform the radiotherapy workflow, resulting in improved
quality, standardization, safety, accuracy, and timeliness of radio-
therapy delivery [1,2].

Manual image segmentation is a time-consuming task routinely
performed by radiation oncologists or radiation therapists to identify
each patient’s targets and adjacent organs-at-risk (OARs). Additionally,
the radiotherapy plan efficacy and safety require segmentation as ac-
curate as possible. However, even if segmentation is performed ac-
cording to the same guidelines, inter- and intra-observers’

inconsistencies and large heterogeneity may still exist and strongly
affect treatment outcomes [1,3,4,5]. A recent review across five trials
studied major delineation deviations [6], and Cox et al registered ‘un-
acceptable’ or ‘major’ deviations in 2.9–13.4 % of cases [7]. Further-
more, radiomics or treatment plan analyses, such as dose-volume
histograms (DVH) evaluation, can be affected by manual image seg-
mentation being strictly related to contouring accuracy. Automated
segmentation of targets and normal tissues might address all these
challenges.

The field of AI-based medical image segmentation has seen acceler-
ated growth also offering a solution to overcome several image-related
problems to get an accurate and efficient automated segmentation [1].
Firstly, medical images are affected by noise that can influence each
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voxel intensity [8]. Secondly, tissues within a patient typically exhibit
intensity non-uniformity, meaning that voxel intensities within a single
tissue may gradually vary over the image extent [9]. Furthermore,
especially in abdomen and pelvis CT scans, the scarce contrast between
soft tissue organs and the high anatomical variability usually limits
automated segmentation performances [9]. Lastly, images are recon-
structed during acquisition to have a predefined voxel size leading to
partial volume averaging [10].

In recent years, taking full advantage of Convolutional Neural
Network, automated segmentation tools have migrated from the
research domain to commercially available products. Although such
products may represent ideal solutions, their clinical deployment raises
significant considerations, including quality assurance and validation.
Guidance from the European Society for Radiotherapy and Oncology
(ESTRO) physics workshop on the AI implementation suggested
commissioning vendor’s validation report with combination of quanti-
tative and qualitative evaluation metrics by comparing automated to
manual segmentation set as Ground Truth (GT) [11–13]. Additionally,
the comparison with the Institution specific GT (Institution specific)
allows to deeply understand which are the pros and cons in the clinical
use of a specific tool.

Commercial deep learning (DL)-based tools were widely investigated
in the OARs automated image segmentation in several districts by now
[14–17]. In contrast, few examples were reported in the literature
investigating DL in the pelvic district [18–20]. Simpler algorithms-based
systems were preferred, especially the atlas-based in the female pelvis
[21]. In male pelvis, automated segmentation in prostate RT were
widely evaluated with atlas-based tools [22–24] and, recently, DL
models have been compared to manual segmentation [25–28]. To our
knowledge, this is the first study investigating and comparing four
different algorithms for OAR automated segmentation in both female
and male pelvis radiotherapy (RT), bringing a broad comparison moving
from the earliest widely used automated techniques to the actual so-
phisticated AI-based tools. The first one is an atlas-based model (STA-
PLE, Simultaneous Truth And Performance Level Estimation, Atlas-
Based Autosegmentation (ABAS), v2.01.01, Elekta AB, Sweden). The
second one is a conventional machine learning-based model which relies
on a combination of decision trees as a random forest (Admire, v 3.47,
Elekta AB, Sweden). The most recent algorithms are two DL-based tools
MVision (v1.2.2, MVision AI, Finland) and LimbusAI (v1.7.0-B3, Limbus
AI Inc, Canada). A comprehensive quantitative evaluation has been
performed including the Distance-to-Agreement Portion (DAP), the Dice
Similarity Coefficient (DSC) and Hausdorff Distance (HD). The study
comprehended a time-based evaluation collecting automated segmen-
tation times and radiation oncologists’ correction times. Finally, to
clinically assess automated tools, a qualitative evaluation of automated
contours has been performed.

2. Materials and methods

2.1. Automated segmentation tools

STAPLE is a statistical method of combining atlases from multiple
segmentations into a single result implemented in the Elekta ABAS tool.
This method is applied for each structure separately, taking as input the
structure set of selected atlases. It automatically estimates multiple
classifiers for each atlas and then it estimates the ground truth seg-
mentation, as a weighted combination of such classifiers. For this pur-
pose, a not so large atlases sample size is necessary to correctly auto-
segment CT images. Published studies proved that segmentation per-
formances improve with an increasing number of atlases, reaching a
plateau at about 5–10 atlases [24,29,30].

Random Forest is a conventional machine learning-based model
relying on a decision trees-combination implemented in the Elekta
Admire tool. Unlike STAPLE, the label decision is interpreted as a clas-
sification problem operating on ambiguous voxel labels by using the

intensity information from the previously deformed atlas images. Each
tree assesses a set of features to determine the class label and the ma-
jority voting is used to decide the final class label. Both STAPLE and
Random Forest run on a workstation with NVIDIA Quadro GP100 and
produced structure sets including the same structures included in the
used atlases.

On the other hand, both DL-tools, MVision and Limbus, use a Con-
volutional Neural Networks structure relying on a U-Net architecture,
widely used thanks to its segmentation capabilities [31–33]. Limbus
application run on a workstation with an NVIDIA Quadro P2000 and it
allows to choose the desired anatomical structures. On the other hand,
MVision is a web-based tool with no need for local installation and it
only proposes the anatomical district choice.

2.2. Patient cohort

A mono-institutional cohort of 80 patients, treated from November
2018 to November 2022, was retrospectively selected. 40 of them un-
derwent post-operative cervical cancer External Beam Radiotherapy
(EBRT) treatment (48–55 Gy in 25–27 fractions). The remaining 40
patients underwent prostate cancer SBRT. 20 out of 40 prostate cancer
patients were treated with 36.25 Gy in 5 fractions and 20 received 42.7
Gy in 7 fractions. All patients underwent a CT simulation in the supine
position with 120 kVp and images were reconstructed in a 512 × 512
matrix (0.98 × 0.98 mm2 pixel size) with the standard filtered back-
projection, a slice thickness of 3 mm and 1 mm and a median number
of slices of 128 [84–180] and 315 [229–414] for cervical cancer and
prostate cancer patients, respectively.

Cervical cancer patients received bladder and rectum preparation
indications to be followed at home. On the other hand, prostate cancer
patients followed a strict SBRT preparation protocol at the Department
that included drinking 0.5 L of water and rectal micro-enema 30 min
before the CT images acquisition. Patients’ original structure sets were
manually segmented on CT images by two cervical cancer and a prostate
cancer expert radiation oncologists at the Monaco TPS (v5.51.11, Elekta
AB, Sweden). Manual-segmented structure sets have been set as the
Ground Truth to evaluate OAR-automated segmentation performances:
rectum, bladder, and femoral heads for both cervical and prostate cancer
structure sets with the addition of bowel bag for the first onesmentioned.

2.3. Datasets preparation

Selected structure sets have been subdivided into a preparatory and a
testing dataset. 20 cervical cancer patients and 20 prostate cancer pa-
tients had been carefully selected with a sufficient size and shape vari-
ability for each structure and included in the preparatory set for ATLAS-
based and Random Forest models. The inclusion of standard patients
only could affect the algorithm robustness: it is in fact necessary to cover
the anatomical variations as much as possible (i.e. thin/obese, empty/
full bladder or rectum).

To avoid any bias, the remaining 20 cervical cancer and 20 prostate
cancer sets constituted the so-called testing dataset, used to evaluate all
the four selected tools.

Firstly, STAPLE and Random Forest underwent a validation phase
aiming to determine the minimum numerosity of the preparatory set in a
closed-loop evaluation (one-in-one-out) of automated segmentation re-
sults. This meant to determine the minimum number of atlases for
STAPLE and the minimum available training sample size for Random
Forest. While STAPLE results were not improved by the increasing atlas
number, the Random Forest-based algorithm showed an accuracy gain
moving from 10 to 20 cases. This led to the use of the whole available
preparatory set for both algorithms.

Instead, it was not necessary to perform a training phase for the two
selected Convolutional Neural Networks-based software: these com-
mercial tools were trained by producers taking advantage of very large
available training image datasets [34,35].
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2.4. Evaluation metrics

2.4.1. Time metrics
Firstly, automated segmentation times per set of structures were

registered for each of the four analyzed tools. 5 out of 20 cervical cancer
structure sets and 5 out of 20 prostate cancer structure sets were
randomly selected to register the contouring correction times needed by
two cervical cancer-expert radiation oncologists and a prostate cancer-
expert radiation oncologist, respectively.

2.4.2. Quantitative metrics
All metrics have been calculated through Golden Rule software

(Canis Lupus LLC, 2023). In particular, the algorithm performances were
assessed by computing the slice-wise DSC and the volumetric HD, being
the most popular metrics for the evaluation of segmentation [12]. As
institutional criteria, an acceptable DSC score was set at 0.9 and 0.8 for
bony structures and soft tissues, respectively [12,36]. Furthermore,
performances were also compared by means of the DAP, i.e., the per-
centage of automatic contours standing 1 mm-, 3 mm-, and 5 mm-far
from the manual Ground Truth (DAP1mm, DAP3mm, DAP5mm). The DAP is
a Golden Rule original metric which can be compared to the added path
length (APL) [37]. Both DAP and APL focus on automated segmentation
discrepancies from the manual Ground Truth in terms of shrinkage and
expansion.

2.4.3. Qualitative clinical evaluation
Finally, a qualitative evaluation has been performed by two cervical

cancer-expert radiation oncologists and a prostate cancer-expert radia-
tion oncologist for a subset of 5 cases for each investigated district by
means of a five degrees-score table as follows:

1. GOOD AGREEMENT for acceptable structures to treat “as is”
2. MINOR DIFFERENCES for modest non-critical edits required (10–20

% of the volume) far from the target
3. EDITS REQUIRED for modest non-critical edits required (10–20 % of

the volume) in the area of the target
4. MODERATE EDITS REQUIRED for moderate changes required

(20–50 % of the volume)
5. GROSS ERROR in case of no resemblance to the clinical structure or

75 % slices needing edit [19].

2.5. Statistical analysis

Quantitative results have been compared to determine the presence
of statistical differences between algorithm performances. The Shapiro-
Wilk test established whether to perform the parametric t-test or the
non-parametric Wilcoxon-Mann-Whitney rank-sum test. The Bonferroni
correction for multiple tests has been applied with a selected signifi-
cance level at 5 % (p = 0.05). All the statistical tests have been per-
formed using the software Rstudio (2021.09.0).

Finally, the Linear Weighted Cohen’s Kappa coefficient was

evaluated with MatLab (R2023b) to assess the inter-rater reliability of
the two cervical cancer-experts in the qualitative evaluation. Cohen’s
kappa scores were defined as poor (k < 0.20), fair (0.21 < k < 40),
moderate (0.41 < k < 0.60), good (0.61 < k < 0.80), and excellent (k >

0.81) [38].

3. Results

3.1. Time evaluation

The registered automated segmentation time ranges for the testing
set were listed in Table 1 along with manual correction times. For
technical reasons, the STAPLE automated segmentation times in pros-
tate cancer patients were not recorded for the whole group of 20
structure sets. For the sake of completeness, values were reported for the
registered subset. At our Institution, typical expert manual segmentation
times for cervical cancer EBRT and prostate cancer SBRT have been
estimated at 30–45 min and 90 min, respectively. On the other hand,
typical junior radiation oncologists manual segmentation times for
pelvic RT can be up to 2 h.

3.2. Quantitative evaluation

The Shapiro test established the non-normality of data distributions:
DSC and HD were summarized as median and range values in Table 2
and p-values from Wilcoxon-Mann-Whitney rank-sum test, corrected by
Bonferroni, were reported in Table 3. In cervical cancer patients, bladder
DSC and HD values improved passing from STAPLE and Random Forest
to DL tools. It is worth noticing that the median STAPLE bladder DSC did
not reach a DSC > 0.8. The DL’s better automatic segmentation per-
formances were confirmed by the DAP comparison, as reported in
Table 4. A similar trend was observed for rectum, with lower values for
STAPLE and significantly better DL performance. STAPLE and Random
Forest did not reach the soft tissue threshold set to 0.8 for DSC metric in
rectum delineation for cervical cancer. As for the bladder, DL models
showed higher DAP results (Table 4).

On the other hand, in prostate cancer patients, a good agreement
between manual and automatic contours was globally registered in
bladder and rectum definition and these results were confirmed at the
DAP comparison. No statistically significant differences were registered
in algorithm performances. It is worth noticing that the minimum DSC
values recorded in rectum DL delineation could be due to the inaccurate
distinction of rectum from sigmoid colon.

In cervical cancer cases, bowel bag contouring registered differences
in cranio-caudal extent. To reduce this bias and focus on the interesting
volume, the extent was redefined as limited to the manual last cranial
slice at maximum. The evaluation has then been repeated on cropped
automatic contours. The recorded maximum HD values were investi-
gated: discrepancies were mainly in the caudal part of the bowel bag and
due to identification correctness of rectum/bladder/bowel borders. As
shown in Table 2, Limbus and STAPLE showed a slightly lower

Table 1
Automated segmentation times and manual correction times per structure set (testing set). Median values and [minimum–maximum] ranges are reported.

TIME (minutes) ST RF MV LI

CC
AS 21.9 [16.8–36.2] 20.9 [18.1–24.7] 0.7 [0.5–1.1] 1.1 [0.8–1.3]
MC (1) 23.0 [17.0–37.0] 24.0 [13.0–25.0] 10.0 [5.0–16.0] 12.0 [9.0–16.0]
MC (2) 30.0 [20.0–60.0] 30.0 [20.0–30.0] 5.0 [3.0–12.0] 7.0 [5.0–20.0]

PC
AS 28.7 [24.0–33.0] 22.0 [18.0–28.0] 1.8 [1.2–2.6] 2.0 [1.5–3.0]
MC 16.0 [14.0–23.0] 20.0 [18.0–21.0] 16.0 [14.0–21.0] 15.0 [14.0–19.0]

Abbreviations: CC: cervical cancer, AS: automated segmentation, MC: manual correction, (1): expert 1, (2): expert 2, PC: prostate cancer, ST: STAPLE, RF: random forest, MV:
MVision, LI: Limbus.
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Table 2
Comparison of automatic segmentation performance in terms of quantitative metrics in cervical and prostate cancer patients (testing set). Median values and ranges are
reported.

CC METRICS ST RF MV LI

Bladder
DSC 0.77 [0.12–0.90] 0.89 [0.58–0.97] 0.95 [0.89–0.98] 0.94 [0.79–0.98]
HD (mm) 25.91 [15.84–173.62] 19.26 [9.52–45.35] 13.30 [5.15–25.82] 13.81 [5.90–53.02]
Rectum
DSC 0.61 [0.34–0.77] 0.78 [0.47–0.89] 0.87 [0.11–0.93] 0.84 [0.75–0.92]
HD (mm) 37.29 [18.35–106.15] 26.39 [12.32–52.32] 23.81 [6.99–51.84] 23.32 [8.68–37.10]
LFH
DSC 0.94 [0.89–0.96] 0.95 [0.92–0.97] 0.95 [0.87–0.97] 0.94 [0.89–0.95]
HD (mm) 13.59 [8.89–63.09] 13.21 [8.32–64.08] 16.23 [6.36–66.7] 15.98 [9.16–63.37]
RFH
DSC 0.94 [0.66–0.96] 0.96 [0.92–0.97] 0.95 [0.84–0.97] 0.95 [0.90–0.96]
HD (mm) 13.48 [9.47–157.22] 13.26 [8.93–56.22] 16.34 [6.77–55.28] 15.45 [6.70–58.62]
Bowel bag
DSC 0.84 [0.10–0.91] 0.88 [0.75–0.93] 0.88 [0.74–0.94] 0.79 [0.55–0.91]
HD (mm) 40.32 [26.81–133.17] 37.16 [27.58–65.44] 33.07 [25.96–80.92] 48.19 [26.47–118.29]

PC METRICS ST RF MV LI

Bladder
DSC 0.91 [0.70–0.97] 0.88 [0.63–0.96] 0.94 [0.91–0.98] 0.93 [0.86–0.98]
HD (mm) 14.27 [6.95–38.55] 17.68 [8.08–40.55] 11.42 [7.49–18.87] 12.43 [4.79–20.58]
Rectum
DSC 0.85 [0.76–0.89] 0.87 [0.79–0.90] 0.87 [0.78–0.92] 0.87 [0.74–0.91]
HD (mm) 16.50 [9.65–36.46] 16.55 [10.00–30.62] 19.57 [11.86–36.46] 18.64 [7.25–46.37]
LFH
DSC 0.96 [0.87–0.98] 0.97 [0.88–0.98] 0.97 [0.92–0.98] 0.97 [0.93–0.97]
HD (mm) 11.46 [4.81–35.72] 12.03 [4.91–34.74] 10.55 [4.41–26.54] 7.91 [3.13–20.42]
RFH
DSC 0.97 [0.88–0.97] 0.97 [0.89–0.98] 0.97 [0.92–0.98] 0.97 [0.95–0.98]
HD (mm) 15.34 [5.25–32.54] 16.73 [4.87–31.95] 8.20 [6.38–25.70] 10.62 [3.70–18.76]

Abbreviations: CC: cervical cancer, PC: prostate cancer, LFH: Left femoral head, RFH: right femoral head, ST: STAPLE, RF: random forest, MV: MVision, LI: Limbus, DSC: dice
similarity coefficient, HD: Hausdorff distance.

Table 3
Statistical analysis: p-values from Wilcoxon-Mann-Whitney rank-sum test corrected by Bonferroni for multiple tests were reported. Bold: statistical significance.

CC DSC HD PC DSC HD

Bladder Bladder

ST RF MV LI ST RF MV LI ST RF MV LI ST RF MV LI
ST / 0.240 < 0.001 < 0.001 / 1.000 < 0.001 0.003 ST / 1.000 0.336 1.000 / 1.000 1.000 1.000
RF / / 0.017 0.240 / / 0.180 1.000 RF / / 0.768 1.000 / / 0.029 0.288
MV / / / 1.000 / / / 1.000 MV / / / 1.000 / / / 1.000
LI / / / / / / / / LI / / / / / / / /
Rectum Rectum

ST RF MV LI ST RF MV LI ST RF MV LI ST RF MV LI
ST / 0.003 < 0.001 < 0.001 / 0.240 0.300 0.008 ST / 1.000 0.576 1.000 / 1.000 1.000 1.000
RF / / 0.240 0.300 / / 1.000 1.000 RF / / 1.000 1.000 / / 1.000 1.000
MV / / / 1.000 / / / 1.000 MV / / / 1.000 / / / 1.000
LI / / / / / / / / LI / / / / / / / /
LFH LFH

ST RF MV LI ST RF MV LI ST RF MV LI ST RF MV LI
ST / 1.000 1.000 1.000 / 1.000 0.720 0.960 ST / 1.000 0.672 1.000 / 1.000 1.000 1.000
RF / / 1.000 0.180 / / 0.120 0.240 RF / / 1.000 1.000 / / 1.000 1.000
MV / / / 1.000 / / / 1.000 MV / / / 1.000 / / / 1.000
LI / / / / / / / / LI / / / / / / / /
RFH RFH

ST RF MV LI ST RF MV LI ST RF MV LI ST RF MV LI
ST / 0.120 1.000 1.000 / 1.000 1.000 1.000 ST / 1.000 1.000 1.000 / 1.000 1.000 1.000
RF / / 1.000 0.780 / / 0.480 0.180 RF / / 1.000 1.000 / / 1.000 1.000
MV / / / 1.000 / / / 1.000 MV / / / 1.000 / / / 1.000
LI / / / / / / / / LI / / / / / / / /
Bowel bag

ST RF MV LI ST RF MV LI
ST / 1.000 0.420 1.000 / 1.000 1.000 1.000
RF / / 1.000 0.059 / / 1.000 1.000
MV / / / 0.003 / / / 0.120
LI / / / / / / / /

Abbreviations: CC: cervical cancer, PC: prostate cancer, ST: STAPLE, RF: random forest, MV: MVision, LI: Limbus.
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performance. In particular, Limbus recorded a median DSC just below
the institutional threshold having the shortest cranial extension.

Similarly, automated segmentation of the femoral heads was limited
in the caudal direction to the last slice of manual segmentation at most:
all systems registered similar and optimal performances in both cervical
and prostate cancer cases.

It is worth noticing the maximum HD values registered in STAPLE
performance in cervical cancer patients: a detailed observation led to the
identification of the algorithm failure in the contouring of a single obese
patient.

3.3. Qualitative clinical evaluation

An automated segmentation example in a cervical and prostate case
is reported in Fig. 1. Results of the qualitative evaluation are reported in
Fig. 2, globally confirming the quantitative results. DL outperformed
STAPLE and Random Forest, showing small edits requirement and
MVision registering the best scoring. Cervical cancer-expert radiation
oncologists expressed the exact same score in 4 out of 20 evaluations (5
patients contoured with the four evaluated segmentation tools). This led
to a poor agreement with a Cohen’s Kappa coefficient of 0.2 (poor).
However, scores were also gathered in a three-points scale: significant
corrections are needed (score 1 or 2), edits required (score 3), no sig-
nificant corrections (score 4 or 5). This scale reduction proved the ex-
istence of a better agreement with a Cohen’s Kappa coefficient increase
(0.7, good). Furthermore, prostate cancer DL excellent performances
have been confirmed, with Limbus proving to have the most desirable
contours by having a good agreement in 4 out of 5 cases, although
STAPLE and Random Forest showed just small differences to be edited.

4. Discussion

In this study, four different auto-segmentation tools were evaluated
in the OAR delineation in cervical cancer EBRT and prostate cancer
SBRT covering from the earliest automated segmentation techniques to
the more recent AI-based tools. A comprehensive evaluation has been
performed including a qualitative assessment to assess automated seg-
mentation tools for clinical use.

In cervical cancer RT, DL showed better results than the atlas-based
model and Random Forest in terms of quantitative evaluation metrics
and in shorter segmentation times per single structure sets. Previous
studies reported segmentation duration shortening thanks to DL tools

[15]. Gambacorta et al. evaluated segmentation times by means of
automated delineation duration and time required by radiation oncol-
ogists to validate and correct automatic contours in prostate RT with 5
mm-thick CT slices [39]. A total segmentation time of about 25 min and
37 min was registered for 2 different automated segmentation tools
based on Convolutional Neural Networks. In Table 1, reported data on
manual correction times led to an estimation of global segmentation
time of about 17 min for prostate SBRT with a slice thickness of 1 mm,
suggesting a possible significant shortening of radiation oncologist’s
contouring burden. Even shorter DL times in cervical cancer sets with
respect to prostate cancer sets could be explained by the lower number
of slices dictated by the thicker slices. In particular, the MVision auto-
mated segmentation times were comparable to Limbus ones despite a
higher number of structures to delineate: it has in fact been highlighted
how MVision did not allow the selection of desired OARs. DL automated
segmentation would shorten cervical cancer contouring duration from
about 45 min to 10–15 min.

DL results are certainly due to the proven capabilities of innovative
AI technology, thanks to recent technological development and their
training on large datasets. Conversely, different studies showed that a
wide preparatory dataset is not improving accuracy in atlas-based
automated segmentation on CT images [24,29,30]. It is worth noticing
that an outlier case in STAPLE automated contours has been found
among cervical cancer patients and its addition to atlas Ground Truth
dataset could be suggested to include an even larger atlas variability.

On the other hand, model training for image classification with
Random Forest would require training datasets of at least 50–100 cases,
limiting the here presented performances [22,40]. The preparatory set
of only 20 cases could explain the limited performances in female pelvis,
comparable with STAPLE and significantly lower than DL algorithms.

It is worth highlighting that performance differences taper off in
prostate cancer contouring. This may be due to the thinner slices leading
to better cranio-caudal resolution. Furthermore, prostate cancer patients
followed a rigid rectum and bladder preparation before image acquisi-
tion giving a strongly reduced OAR variability in filling and shapes.
Despite preparatory dataset limitations, all these aspects could help
STAPLE and Random Forest correctly defining filled OARs, closing the
gap with DL capabilities.

Comparing the results presented here with the recent literature,
similar STAPLE DSC values were found in a previous study on a mono-
institutional cohort of 21 prostate cancer patients undergoing a similar
rectum and bladder preparation [41]. Moreover, DL widely

Table 4
Percentage of automated contours (testing set) standing 1 mm-, 3 mm-, and 5 mm-far from the manual Ground-Truth OARs. Median values are reported.

CC PC

DAP ST RF MV LI DAP ST RF MV LI

Bladder Bladder
1 mm (%) 11.2 25.6 45.3 35.2 1 mm (%) 32.3 21.6 45.0 41.2
3 mm (%) 27.1 53.1 74.5 62.4 3 mm (%) 74.6 49.7 84.7 82.5
5 mm (%) 44.2 75.3 87.9 79.0 5 mm (%) 88.1 65.9 94.0 93.4
Rectum Rectum
1 mm (%) 10.9 21.0 29.4 24.4 1 mm (%) 27.4 31.5 33.9 32.3
3 mm (%) 26.7 44.1 47.4 48.2 3 mm (%) 57.4 64.7 56.1 56.9
5 mm (%) 44.2 61.8 59.2 66.4 5 mm (%) 76.5 77.9 62.5 66.3

Left femoral head Left femoral head
1 mm (%) 44.8 50.4 40.8 44.2 1 mm (%) 67.1 68.6 78.1 76.5
3 mm (%) 60.1 66.9 54.5 57.3 3 mm (%) 87.4 86.2 92.8 94.3
5 mm (%) 77.2 84.1 68.5 74.0 5 mm (%) 92.7 90.3 97.4 98.6

Right femoral head Right femoral head
1 mm (%) 47.3 54.3 38.2 45.0 1 mm (%) 70.9 72.0 79.8 73.8
3 mm (%) 59.9 70.1 51.3 61.8 3 mm (%) 87.4 85.6 93.1 91.9
5 mm (%) 75.9 84.4 66.1 78.4 5 mm (%) 92.2 90.3 97.9 96.8
Bowel bag
1 mm (%) 14.7 15.9 17.1 8.5
3 mm (%) 34.1 39.6 41.3 19.3
5 mm (%) 51.2 55.3 58.3 30.3

Abbreviations: CC: cervical cancer, PC: prostate cancer, DAP: Distance-to-Agreement Portion, ST: STAPLE, RF: random forest, MV: MVision, LI: Limbus.
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demonstrated its segmentation capabilities on MRI images achieving
good results for prostate RT [42–44] and several studies obtained good
results in prostate and OAR automated segmentation through UNet al-
gorithms, achieving up to 0.95 and 0.85 DSC values in bladder and
rectum, respectively [25]. In very recent studies, two other DL com-
mercial algorithms reached DSC values over 0.90 for both bladder and

rectum in prostate radiotherapy on CT images [27,28] and similar DSC
results have been achieved by a homemade combination of a multi-
channel 2D U-Net followed by a 3D U-Net [45]: 0.84 and 0.95 for
bladder and rectum, respectively.

In addition, a recent study on cervical cancer segmentation was
performed by training a homemade DL-algorithm by selecting 104

Fig. 1. A comparison example of cervical cancer (a) and prostate cancer (b) automated segmentation of bladder (1), rectum (2), and left femoral head (3). An
example of bowel bag segmentation is reported (4). Legend: Yellow = STAPLE, Orange = Random forest, Blue = MVision, Green = Limbus. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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cervical cancer cases [46]. High DSC values have been reached for
bladder (0.83) and rectum (0.82). Liu et al. obtained higher bladder DSC
values (0.90) exploiting a Convolutional Neural Network architecture
for OAR segmentation in locally advanced cervical cancer RT [47].

As already known, bone delineation is an easier task considering the
soft tissue-bone interface contrast. Femoral heads automated segmen-
tation succeeded confirming excellent results presented by Wang et al.
[48]. The remaining critical point in femoral heads delineation is their
caudal extension which may influence the already high DSC value. On
the other hand, performances in bowel bag contouring were mainly
affected by its cranial extension depending on the extent of training
images and the treatment demands, i.e., the target cranial extension.
Bowel bag caudal definition is instead affected by rectum and bladder
delineation. The bowel bag registered values were comparable with the
median DSC median of 0.88 obtained with a Convolutional Neural
Network-based tool [49].

It is thus worth noticing that automated segmentation evaluation is
strongly dependent on institution specific requirements, i.e., the chosen
Ground-Truth, the Institution preparation protocol, and the target
extension. From this point of view, atlas-based models benefit from
homemade training even if affected by a smaller preparatory sample. In
contrast, commercial DLs depend on a dedicated training set, often
commercially sealed. All these aspects converge affecting the radiation
oncologists’ manual correction times. In other words, radiation oncol-
ogists will also have to delete delineations in not useful slices spending
more time than that required to correct any inaccuracies in the slices of
interest.

The last part of this study focused on clinical qualitative evaluation
resulting in a globally positive score, especially for automatic contours
in prostate cancer cases.

In male pelvis, a four or a five degrees-scale was often used to run an
automated segmentation qualitative evaluation [17,50–52]. Gibbons
et al. performed a four point-qualitative scale evaluation then grouping
them into two categories of clinical and rejectable automatic contours
[17]. They observed DL OARs clinical acceptable contours in 81.7 % of
pelvic OARs automatic contours. Huyskens et al., for example, proposed
to evaluate the number of slices to be corrected in 39 auto-segmented
prostate cases: rectum delineation resulted in a not acceptable score in
45 % of the cases [51]. To compare those different four level-scales with
the here reported qualitative evaluation scores, it is possible to group
scores 4 and 5 as unacceptable. In this case, all here analyzed algorithms
resulted in acceptable contours in 100 % of prostate cases. Conversely, a
five-level scale to assess the clinical use of DL automatic contours in
male pelvis RT has been used by Duan et al. Considering level 3 and
above as clinically acceptable, they found that the percentage of auto-
matic contours that has been scored equal to or better than the manual
segmentation exceeded 50 % [52].

The here reported optimal scores could be explained in terms of
organs filling preparation, as already mentioned in the discussion of
quantitative metrics. It is worth noticing that the reduced number of
available expert ROs may offer a not largely-shared view on the quali-
tative contour evaluation. Furthermore, this prevents a robust pre-
liminary analysis of inter-operator variability in manual Ground Truth.

In conclusion, this broad comparison of the earliest automated seg-
mentation and the actual AI-based tools showed how clinically advan-
tageous the use of DL-based models can be for CT images automated
segmentation. Especially in female pelvis, DL registered better quanti-
tative results, shorter times and higher QE scores with the expected
highest scores in high-contrast bony structures. On the other hand, in
male pelvis, a strict filling preparation strongly reduced inter-patient
variability helping traditional algorithms getting very good
performances.

These excellent performance and significantly reduced segmentation
times would allow for faster RT workflow and high-quality treatments.
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