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Abstract

The simple group of Fischer and Griess, known as the Monster, is the largest of

the sporadic groups. Its order is huge and the only construction we have knowl-

edge of is as an automorphism group of the Griess (or Monster) algebra, a 196.884

dimensional commutative non-associative real algebra, see [23]. In this algebra

there are special idempotents, known as axes (see [17]), that are in bijection with

the involutions of the class 2A in the Atlas notation which generate the Monster.

In an effort to propose an axiomatic setting for the study of the Monster, A. A.

Ivanov presented the notions of Majorana algebra and Majorana representation

in 2009 (see [26]), taking inspiration from Sakuma’s results in [53].

Finding the subalgebras of the Griess algebra generated by axes is one of the

purposes of the study of Majorana algebras. As, by Norton-Sakuma’s classifi-

cation, Majorana algebras generated by two axes are completely known, it then

makes sense to look at the classification of algebras generated by three axes or by

an axis and a 3-axis. The subalgebras of the Griess algebra generated by an axis

and a 3-axis were classified by Norton in [48] and then Ivanov in [36] proposed

classifying these in the context of Majorana algebras as an important project.

This thesis is a contribution to these two problems.

In Chapter 3, we compute the dimension of some of the algebras in the Norton

list (see Tables 3.1 and 3.2) using the GAP Package “Majorana Algebras” [49].

The project of finishing the classification of Majorana algebras that admit the

group PSL(3, 2) as an automorphism group is examined in Chapter 5. As demon-

strated in [31], the group PSL(3, 2) has exactly two Majorana representations

that satisfy axiom 2A. Additionally, Table 5 in [41] indicates that there is at



least one Majorana representation of dimension 57 of PSL(3, 2) not satisfying

axiom 2A, and there may be more. We analyze the Majorana representation

of the group C2 × PSL(3, 2) with shape (2B, 3A, 4A), as the possibly missing

algebra has this shape.

Since C2 × S4 is one of the maximal groups in C2 × PSL(3, 2), in Chapter 4,

we first focus on the Majorana representation of the group C2 × S4 with shape

(2B, 3A).
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Notation

M the Monster simple group

VM the Griess or Monster algebra

mn the elementary abelian group of order mn

D2n the dihedral group of order 2n

Sn the symmetric group of degree n

An the alternating group of degree n

Ln(p
k) the projective special linear group of dimension n over the field of order pk

GL(V ) the general linear group of a vector space V

For two groups G and H:

⟨X⟩ the smallest subspace of G containing the set X ⊆ G

Gn the direct product of n ∈ N copies of G

G×H the direct product of G and H

G.H an extension of G by H

G : H the semidirect product of G and H

G wr H the wreath product of G and H

For a Majorana algebra A:

⟨X⟩ the smallest subspace of A containing the set X ⊆ A

⟨⟨X⟩⟩ the smallest subalgebra of A containing the set X ⊆ A

τ(a) the Majorana involution corresponding to the Majorana axis a

A
(a)
µ the µ-eigenspace of (the adjoint action of) the Majorana axis a
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Let G be a finite group.

1 the identity element of G

o(g) the order of g ∈ G

gh the product of g ∈ G composed with h ∈ G

gh := h−1gh the conjugate of g ∈ G by h ∈ G

gG the conjugacy class of g in G

Let X be a non-empty subset of G.

⟨X⟩ the subgroup of G generated by X

gX := {gx : x ∈ X} the set of conjugates of g by elements of X

Xg := {xg : x ∈ X} the set conjugate to X by g

Let Y be another non-empty subset of G.

XY := {xy : x ∈ X and y ∈ Y } the set of elements of X conjugated by elements of Y

CG(X) the centralizer of X in G

NG(X) the normalizer of X in G

Let G act on a finite set Ω.

|Ω| the cardinality of Ω

ωg the image of ω ∈ Ω under the action of g ∈ G

ωG the orbit of ω

∆g the image of a subset ∆ ⊆ Ω under g

Gω the stabilizer of ω

orb(G,Ω) the number of orbits of G on Ω
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Preliminaries

This chapter is a list of several basic results without any demonstrations. Refer

to [38] and [55] for further information.

Let G be a finite group and let Ω be a set.

Theorem 0.1 (Orbit-Stabilizer Theorem). Let G act on Ω. Then for any ω ∈ Ω

|ωG| = |G|
|Gω|

.

Theorem 0.2. Let G act on finite sets Ω1 and Ω2. If G acts transitively on Ω1,

then the orbits of G on Ω1 × Ω2 are in bijective correspondence with the orbits

of Gω on Ω2 for any fixed ω ∈ Ω1.

Let V be a vector space over a field F = R or C and let W ⊆ V .

Let (, ) : V × V → F be a inner product (i.e. a symmetric positive definite

bilinear form) on V .

Theorem 0.3 (Gram Determinant). Let S := {vi : 1 ≤ i ≤ n} be a finite set of

vectors in V , and let GrS be the Gram matrix of S (i.e. the matrix where the

(i, j)-entry is the value of the inner product (vi, vj)). Then the determinant of

GrS is non-zero if and only if S is linearly independent.

If · : V × V → V is a bilinear map, then (V, ·) is an algebra and V is said to

have an algebra product ·.

We write U = ⟨⟨W ⟩⟩ if U is the smallest subalgebra of V containing W ⊆ V ,

i.e. U is the smallest subspace of V which is closed under the algebra product

and it contains W .
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Motivation, background and main results

One of the great mathematical achievements of the twentieth century was the

classification of finite simple groups.

The classification consists of an explicit list of simple groups together with the

proof that every finite simple group is isomorphic to some member of the list.

The list is as follows:

• Groups of prime order (abelian simple groups)

• Alternating groups

• Finite groups of Lie type

• Sporadic groups

Every group in the first three classes is included in one or more infinite

families of finite simple groups. The fourth class consists of 26 finite simple

groups which are not members of any of the previous families. Sporadic groups

are by far the most interesting but also the most difficult to construct among

the finite simple groups.
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Notation Name Order

M11 Mathieu 24 · 32 · 5 · 11

M12 26 · 33 · 5 · 11

M22 27 · 32 · 5 · 7 · 11

M23 27 · 32 · 5 · 7 · 11 · 23

M24 210 · 33 · 5 · 7 · 11 · 23

J1 Janko 23 · 3 · 5 · 7 · 11 · 19

J2 = HJ Hall-Janko 27 · 33 · 52 · 7

J3 = HJM Higman-Janko-McKay 27 · 35 · 5 · 17 · 19

J4 Janko 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43

HS Higman-Sims 29 · 32 · 53 · 7 · 11

Mc McLaughlin 27 · 36 · 53 · 7 · 11

Sz Suzuki 213 · 37 · 52 · 7 · 11 · 13

Ly = LyS Lyons-Sims 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67

He = HHM Held-Higman-McKay 210 · 33 · 52 · 73 · 17

Ru Rudvalis 214 · 33 · 53 · 7 · 13 · 29

O′N = O′NS O’Nan-Sims 29 · 34 · 5 · 73 · 11 · 19 · 31

Co3 = ·3 Conway 210 · 37 · 53 · 7 · 11 · 23

Co2 = ·2 218 · 36 · 53 · 7 · 11 · 23

Co1 = ·1 221 · 39 · 54 · 72 · 11 · 13 · 23

M(22) = F22 Fischer 217 · 39 · 52 · 7 · 11 · 13

M(23) = F23 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23

M(24) = F24 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29

F3 = E Thompson 215 · 310 · 53 · 72 · 13 · 19 · 31

F5 = D Harada 214 · 36 · 56 · 7 · 11 · 19

F2 = B Baby Monster 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47

F1 = M Monster 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

Table 1: Sporadic groups
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The largest of the sporadic groups is the simple group of Fischer and Griess,

called the Monster, and twenty of the others are its subgroups or quotients

of subgroups. The fact that the Monster has connections to other parts of

mathematics and to theories in physics (like string theory) shows that there is

something very deep to discover and makes the Monster a very mysterious and

fascinating object.

The study of the Monster is difficult, first of all because its order is very huge:

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8× 1053

and secondly because the only construction we know is as an automorphism

group of a 196.8841 dimensional commutative, non-associative, real algebra known

as the Griess or Monster algebra VM, see [23] and [8]. VM is isomorphic (as a

R[M]-module) to the direct sum of the trivial 1-dimensional module V1M and the

smallest non-trivial complex module of the Monster V2M :

VM ∼= V1M ⊕ V2M .

Additionally, the Monster algebra has an inner product (, )M that is M-invariant.

The Monster has 194 conjugacy classes denoted NX where N is the order of

elements in the conjugacy class and X ∈ {A,B,C, ...}.

If there is more than one conjugacy class of elements of a certain order in M,

then the alphabetic order of X, depending on the orders of the centralizers,

differentiates the conjugacy classes.

In particular, in [9] we see that M has two conjugacy classes of involutions

denoted 2A and 2B where 2A is the class of involutions whose centralizer is the

double cover of the Baby-Monster F2.

The product of any two involutions in the class 2A has order at most 6, more

precisely, the conjugacy class of this product is one of the nine classes

1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, and 6A,

in particular the 2A involutions are 6-transpositions.

Moreover the 2A involutions generate M making it a 6-transposition group.

1The 196883 dimensional module has an algebra structure too but we consider the algebra

with the identity element.
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J. McKay in 1978 found that the Griess algebra’s dimension, 196,884, is equal

to the first coefficient of the q-expansion of the elliptic modular function j.

This relation suggested the “Monstrous Moonshine” conjecture:

there is an infinite-dimensional graded vector space V =
∞⊕
i=0

Vi where each Vi

carries a finite-dimensional representation of the Monster and the dimensions of

these representations relate to the coefficients of the j-function.

Borcherds in [1] demonstrated the monstrous moonshine conjecture by identify-

ing V with the moonshine module V ♮ which is an important example of vertex

operator algebra (VOAs) and it has the Monster as its automorphism group.

However, the origins of vertex operators can be found in physics, specifically in

string theory, rather than mathematics. Mathematicians became interested in

them because of their connections to Monstrous moonshine.

VOAs, on the other hand, do not simplify the study of the Monster because they

are extremely complicated.

In both the construction of Conway and the VOA approach to the Monster,

a crucial role is played by the 2A-involutions. Conway showed that to each invo-

lution 2A in the Monster, there corresponds an idempotent (called axis) in the

Griess algebra VM. In 1996 Norton classified the subalgebras of VM generated by

two axes (see [48]) and proved that there are exactly nine such algebras, up to

isomorphism, corresponding to the nine conjugacy classes of dihedral subgroups

of the Monster generated by 2A involutions. These algebras are denoted by

the corresponding conjugacy class of the product of the two involutions in M,

namely, 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

In 2007, S. Sakuma, obtained the same classification in the more general

context of VOA’s. For this reason, the nine dihedral algebras found by Norton

are now referred to as Norton-Sakuma algebras.

Inspired by Sakuma’s result and methods, in 2009 A. A. Ivanov introduced

the concepts of Majorana algebra and Majorana representation, as an attempt

to create an axiomatic setting for the study of the Monster, see [26].
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In [27], the classification of Norton-Sakuma algebras was obtained within the

axiomatics of Majorana algebras, thus showing the power of the new theory.

The concept of Majorana algebras was further extended by Hall, Rehren and

Shpectorov, who defined axial algebras [24].

Interest and results in this area increased rapidly. In particular, Majorana

representations of several finite groups have been constructed, and consequently

various Majorana algebras (see [4] ,[5] ,[7] ,[10], [12], [13], [17], [19], [22], [27],

[28], [29], [30], [31], [32], [35], [41], [43], [45], [54], [56], [57], [58]).

It turns out that just a few of the known Majorana algebras exist indepen-

dently (see [29] and [58]), in fact, in general they show a remarkable tendency to

be embedded in the Griess algebras. Indeed, A.A. Ivanov proposed in [32] the

following conjecture:

Conjecture 0.4 (Straight Flush Conjecture). Suppose A is an indecompos-

able Majorana algebra containing a Norton-Sakuma subalgebra NA, for every

N ∈ {1, 2, 3, 4, 5, 6}. Then A embeds into the Monster algebra.

If confirmed, the conjecture would support the belief that Majorana theory is an

essential tool for understanding the Monster and the Griess algebra and it would

designate the Griess algebra as the universal object in the class of the Majorana

algebras.

One of the goals of the study of Majorana algebras is to identify the subalge-

bras of the Griess algebra generated by axes. Then it makes sense to think about

the classification of algebras generated by three axes since Norton-Sakuma’s clas-

sification of Majorana algebras generated by two axes is complete.

In this direction there are results by Whybrow in [56], by Mamontov, Starole-

tov, Whybrow in [43], by McInroy and Shpectorov in [45], by Khasraw, McInroy

8



and Shpectorov in [41] and by Ivanov in [35].

Other interesting Majorana algebras are the algebras generated by an axis

and a 3-axis (see Chapter 1 for the definition of 3-axis). Norton in [48] classified

those contained in the Griess algebra and Ivanov in [36] proposes their study in

the context of Majorana algebras as an important project.

This thesis is a contribution to these two problems. Namely, in Chapter 3, using

the GAP Package “Majorana Algebras” [49] we determine the dimension of some

of the algebras in the Norton list (see Table 3.1 and Table 3.2).

In Chapter 5 we address the problem of completing the classification of Ma-

jorana algebras which admit the group PSL(3, 2) ∼= PSL(2, 7) as automorphism

group. In fact, in [31] it is shown that the group PSL(3, 2) has exactly two

Majorana representations satisfying axiom 2A (see 2.2 for the definition), and,

according to Table 5 in [41], there is at least one faithful Majorana represen-

tation of dimension 57 not satisfying axiom 2A and there could be one more.

Since the possibly missing algebra has shape (2B, 3A, 4A), we study a Majorana

representation R of the group 2× PSL(3, 2) with shape (2B, 3A, 4A).

Note that two computer programs which construct Majorana algebras are avail-

able, one for GAP (GAP Package “MajoranaAlgebras” [49]) and one for MAGMA

[44]. None of them concludes the computation of the Majorana representation

R in a reasonable time. This clearly suggests that the task of determining R is

not easy at all. On the other hand, a Majorana algebra affording the represen-

tation of the group 2 × PSL(3, 2) with shape (2B, 3A, 4A) can be found inside

the saturated Majorana representation of A12 [19] and has dimension 80 [20].

The main result of our work is the following:

Theorem 0.5. Let A be a Majorana algebra affording a Majorana representation

of the group 2×PSL(3, 2) with shape (2B, 3A, 4A). Then A contains a subspace

W , containing the 2-closure of A, of dimension 80. Moreover, the inner product

on W is uniquely determined.

9



To prove our result, in Chapter 4, we first completely describe the Majorana

representation of the group C2 × S4 with shape (2B, 3A), since it is one of the

maximal groups in C2 × PSL(3, 2). This representation has dimension 26 and

it is well known to exist. Nevertheless, we couldn’t find an explicit description

of it in literature and moreover, extracting information from the construction

obtained with the GAP Package “Majorana Algebras” is quite complicated.

We obtain that the inner product on W is uniquely determined, as stated in

the Theorem 0.5, but when we look at the algebra products, things become much

more complex. We don’t have knowledge of large 2-closed subalgebras of A gen-

erated by 2-axes, in fact, the maximal subgroups of 2× PSL(3, 2) generated by

involutions are only those that are isomorphic to 2×S4, and according to Chap-

ter 4’s results, the subalgebras corresponding to these subgroups are not 2-closed.

The next step might be to add vectors for each maximal subgroup of 2×PSL(3, 2)

that is isomorphic to 2×S4 and use standard techniques to find relations. Unfor-

tunately, there are many unknown products in every equation we found, making

it unclear whether the system can be solved or not. A different strategy would

be to find every inner product involving every element in the vector space W

and each of the new vectors. This would allow us to determine the dimension

of the resulting subspace and check whether the new vectors belong to W (as

conjectured 5.20) or not. However, this work is expected to require some algebra

products, therefore it’s not an easy task.

10



Chapter 1

AXIAL ALGEBRAS

Let F be a field and let A be a (non-associative) commutative F-algebra.

For a ∈ A, let

ada :

A→ A

v 7→ av

be the adjoint map of a.

For λ ∈ F let Aλ(a) = {v ∈ A : av = λv} be the λ-eigenspace of ada.

Note that Aλ(a) = 0 if λ is not an eigenvalue of ada.

For Λ ⊆ F we define AΛ(a) =
⊕
λ∈Λ

Aλ(a).

Remark 1.1. In the sequel, in order to simplify the notation, if v ∈ Aλ(a) we

will just say that v is a λ-eigenvector of a, or an a-eigenvector.

Definition 1.2. A fusion law is a pair (F, ∗) where F is a set and ∗ : F×F →

2F is a symmetric binary operation, where 2F denotes the power set of F .

For example, given a group G, define (F, ∗) as:

F = G and g ∗ h = {gh}.

This is what we call a group fusion law.

The elements of F can be used to build a matrix whose rows and columns

are indexed by those same elements, and where the entry for row a and column

b is a ∗ b. This is known as the Pythagorean table of ∗.

11



Definition 1.3. Let A be a commutative non-associative algebra over F and let

F be a fusion law with 1 ∈ F ⊆ F. An F -axis a ∈ A is a non-zero idempotent

(i.e. a2 = a) such that

• A = AF (a) =
⊕
λ∈F

Aλ(a)

• the above decomposition respects the fusion law F in the sense that

Aλ(a)Aµ(a) ⊆ Aλ∗µ(a) =
⊕
γ∈λ∗µ

Aγ(a) for all λ, µ ∈ F .

Since a is an idempotent, 1 is always an eigenvalue of ada, therefore from now

on we assume 1 ∈ F .

Definition 1.4. An F-axis a ∈ A is called primitive if A1(a) = Fa.

Definition 1.5. Suppose F is a fusion law with 1 ∈ F ⊆ F.

An F -axial algebra is a pair (A,X), where A is a commutative (non-associative)

F-algebra and X is a set of F -axes generating A (i.e. A = ⟨⟨X⟩⟩).

Definition 1.6. An F -axial algebra (A,X) is called primitive if every element

of X is a primitive axis.

Definition 1.7. An F -axial algebra (A,X) is called dihedral if |X| = 2.

Definition 1.8. A Frobenius form on an axial algebra (A,X) is a (non-zero)

bilinear form (·, ·) : A×A→ F which associates with the algebra product, in the

sense that ∀u, v, w ∈ A:

(uv,w) = (u, vw).

The usual fact that eigenvectors relative to different eigenvalues are orthog-

onal holds also in this setting.

Lemma 1.9. Let A be an F-axial algebra with a Frobenius form (, ), let a be

an F-axis and let λ, µ ∈ F. If u, v ∈ A are eigenvectors for ada, relative to the

eigenvalues λ and µ respectively with λ ̸= µ, then (u, v) = 0.

Proof. Since u is a λ-eigenvector of a then au = λu and similarly av = µv.

Then λ(u, v) = (λu, v) = (au, v) = (u, av) = (u, µv) = µ(u, v).

We know that λ ̸= µ hence (u, v) must be 0.

12



The fusion law provides much of the structure of axial algebras and play an im-

portant role in their construction.

We give now some important examples of axial algebras and their correspond-

ing fusion laws.

First we see a case with only eigenvalues 0 and 1.

1.1. AXIAL ALGEBRAS WITH FUSION LAW A

In this case the axial algebras satisfy the fusion law A:

Note that instead of writing the empty set, we just leave a space.

Usually we omit the set brackets in these tables and just write, for example,

1 for the set {1} and 1, 0 for the set {1, 0} which means the direct sum of the

1-eigenspace and the 0-eigenspace.

Associative algebras are examples of this kind of algebras. In fact, if A is an

associative algebra and a ∈ A is an idempotent (a · a = a), then for every v ∈ A,

a · (a · v) = (a · a) · v = a · v.

But also, if v is an eigenvector with eigenvalue λ, then

λv = a · v = a · (a · v) = a · (λv) = λ2v.

Therefore λ2 = λ and so λ can be only 0 or 1.

Now let v, w be 0-eigenvectors of a and let z be a 1-eigenvector of a, then:

a · (v · w) = (a · v) · w = (0v) · w = 0

13



a · (w · v) = (a · w) · v = (0w) · v = 0

Then the product of two 0-eigenvectors of a is again a 0-eigenvector of a.

v · z = v · (a · z) = (v · a) · z = 0z = 0

z · v = (z · a) · v = z · (a · v) = z0 = 0

Then the product of a 0-eigenvector and a 1-eigenvector of a is always 0, hence

A satisfies the fusion law A.

Indeed, A-axial algebras are all associative algebras and are isomorphic to a

direct sum of copies of the field (see [25]).

1.2. AXIAL ALGEBRAS OF JORDAN TYPE η

Definition 1.10. A primitive axial algebra over F is said to be of Jordan type

η ∈ F if it satisfies the fusion law J(η) with η ̸= 0, 1.

Axial algebras of Jordan type have been defined by Hall, Rehren, and Shpec-

torov in [24]. The name comes from their link to Jordan algebras, non-associative

algebras introduced by Pascual Jordan in [39] to study observables in quantum

mechanics with this definition:

Definition 1.11. A Jordan algebra is a commutative non-associative algebra

which satisfies (xy)(xx) = x(y(xx)) for all x and y.

It follows at once from the Peirce decomposition of Jordan algebras (see [37])

that Jordan algebras generated by idempotents are examples of axial algebras

for the fusion law J(η) with η = 1
2 .
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1.3. AXIAL ALGEBRAS OF MONSTER TYPE (α, β)

Definition 1.12. An axial algebra over F is said to be of Monster type (α, β)

if it satisfies the fusion law M(α, β) with α, β ∈ F\{0, 1} and α ̸= β.

Axial algebras of Monster type (α, β) have been introduced by Rehren in [51].

The Griess algebra is a real axial algebra with fusion lawM(α, β) with α = 1
4

and β = 1
32 as demonstrated in [48].

1.4. MAJORANA ALGEBRAS

Definition 1.13. Majorana algebras are primitive real axial algebras of Mon-

ster type M(14 ,
1
32) with a positive definite inner product (, ).

Moreover it is also required that (, ) satisfies the Norton inequality:

for every u, v ∈ A

(uu, vv) ≥ (uv, uv).

The Monster fusion law M(14 ,
1
32) is also called Ising fusion law and the idem-

potents in X generating the algebra are called Majorana axes (or simply axes).

Since the Griess algebra has a positive definite Frobenius form which also

satisfies Norton inequality, it is a real Majorana algebra.

Definition 1.14. Two Majorana algebras (A1, X1) and (A2, X2) are isomor-

phic if there exists a linear map ϕ from A1 to A2 which preserves the inner and

15



the algebra products and which induces a bijection from the Majorana axes of A1

to the Majorana axes of A2. If A1 = A2 then ϕ is an automorphism of A1.

Note that an automorphism of the vector space and of the algebra A defined

as above is an isometry of a Majorana algebra A.

Clearly, the set of automorphisms of a Majorana algebra is a group and it will

be denoted by Aut(A).

For a Majorana algebra A the Ising fusion law implies that the setting

A+ := A0 ⊕A1 ⊕A 1
4
and A− := A 1

32

is a Z2-grading on A.

Miyamoto noticed (in the context of VOA’s) that a Z2-grading of the algebra

naturally ‘produces’ automorphisms of order 2.

The map τa, for each axis a, that negates every element of its 1/32-eigenspace

and fixes each element of the other eigenspaces is an involutory isometry of the

algebra A.

Definition 1.15. The automorphism τa is called the Miyamoto involution

associated to the axis a.

Definition 1.16. Let k ∈ N, for Y ⊆ X, the subalgebra ⟨⟨Y ⟩⟩ is k-closed

(with respect to Y ) if it is the linear span of k-long products, i.e. ⟨⟨Y ⟩⟩ =

⟨y1 · y2 · · · yk|yi ∈ Y ⟩ where y1 · y2 · · · yk denotes all possible bracketing of k

vectors.

For example, A = ⟨⟨X⟩⟩ is 2-closed if A = ⟨ai · aj |ai, aj ∈ X⟩.

We point out that a Majorana algebra could have infinite dimension. How-

ever, no non-trivial examples of such an algebra are known to exist. In fact,

almost all the known examples of Majorana algebras are equal to the linear span

of a finite set of elements and they are at most 3-closed.

We close this section with some lemmas which will be often used in the sequel.

16



Recall that we said that two elements u, v ∈ A associate if

∀w ∈ A : v · (w · u) = (v · w) · u.

Lemma 1.17. [27, Lemma 1.10] A Majorana axis a associates with every ele-

ment in A0(a).

Proof. Let w be a 0-eigenvector for a and v a µ-eigenvector of a.

On the one hand we have

(a · v) · w = (µv) · w = µ(v · w).

On the other hand, by the fusion rules, v ·w is also a µ-eigenvector for a and so

a · (v · w) = µ(v · w).

Lemma 1.18. Let A be an axial algebra of Monster type (α, β) with a Frobenius

form ( , ), let a be an axis and w ∈ A+(a). Then

1

α
(a · w − (a,w)a)

is an α-eigenvector for a and

w − (a,w)a− 1

α
a · (w − (a,w)a)

is a 0-eigenvector for a.

Proof. This follows from formulas (3.6) and (3.7) in the article [52].

The resurrection principle is a significant result of the fusion rules. It gets

its name from the fact that the vector v vanishes at the beginning of the proof

before reappearing at the conclusion.

Proposition 1.19. (The Resurrection Principle) [27] Let A be a Majorana al-

gebra and let a ∈ A be a fixed Majorana axis. Let W be an a-stable subspace of

A (i.e. a subspace such that a · w ∈W for all w ∈W ). For v ∈ A suppose that

αv = v + wα ∈ A0(a) and βv = v + wβ ∈ A 1
4
(a)

for some wα, wβ ∈W . Then

v = −[4a · (wα − wβ) + wβ]

in particular v ∈W .

17



1.5. NORTON-SAKUMA ALGEBRAS

Norton in [48] studied the dihedral subalgebras of the Griess algebra and dis-

covered nine different isomorphism classes of these algebras, which are known as

Norton-Sakuma algebras.

The isomorphism class of the algebra generated by the axes a and b de-

pends only on the conjugacy class in the Monster of the product τaτb of the two

Miyamoto involutions associated to the generating axes a and b.

The same nine algebras were obtained by Sakuma [53] in the context of VOA’s

and Ivanov, Pasechnik, Seress, and Shpectorov proved in [27] that every dihedral

Majorana algebra is isomorphic to one of those nine.

Hence, we use the names of the conjugacy classes in the Monster to identify

the isomorphism classes.

Their complete classification is known under the name Norton-Sakuma The-

orem:

Theorem 1.20 ([53],[27]). There are nine isomorphism classes of dihedral Ma-

jorana algebras labelled: 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A and 6A.

This result has been generalized to dihedral algebras of Monster type (14 ,
1
32) over

a field of characterisic zero.

Theorem 1.21 ([24],[33]). Let char(F) = 0 and A be a primitive dihedral axial

algebra of Monster type (14 ,
1
32). Then, A is isomorphic to one of the nine algebras

1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A and 6A given in Table 1.1.

This result, in particular, confirms the well known fact that the Monster

is a 6-transposition group with respect to its 2A-involutions, meaning that the

Monster is generated by the 2A conjugacy class and that the product of any two

2A-involutions has a maximum order of 6.
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In Table 1.1 we list the nine Norton-Sakuma algebras. For each of them we

give, as usual, a basis and the basic algebra and inner products. All the other

products can be obtained using the symmetries of the algebra.

The two generating axes are labelled a0 and a1, ρ := τa0τa1 and for i ∈ Z,

ε ∈ {0, 1},

a2i+ε := (aε)
ρi .

If ρ (resp. ρ2 or ρ3) happens to be a Miyamoto involution, its associated axis is

aρ (resp. aρ2 or aρ3).

In addition, the vectors uρ, vρ, wρ and uρ2 that appear in algebras of type NA,

for N ∈ {3, 4, 5, 6} are particular vectors needed to complete the basis. These

vectors are referred to as odd axes, or to be more precise, 3-axis for N = 6 and

N-axes for N < 6.

Note that, in the Griess algebra and the Monster, odd axes depend only on

the cyclic subgroup ⟨ρ⟩.
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Table 1.1: Norton-Sakuma algebras.
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Lemma 1.22. Let U be an algebra of type NX that is generated by Majorana

axes a0 and a1. Then

• if U is of type 4A, 4B or 6A then the subalgebra generated by a0 and a2 is

of type 2B, 2A or 3A respectively;

• if U is of type 6A then the subalgebra generated by a0 and a3 is of type 2A.

We end this chapter by listing in Table 1.2 a basis of eigenvectors of a0

for each of the Norton-Sakuma algebras. We will extensively make use of such

eigenvectors in Chapters 4 and 5.
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Table 1.2: The eigenspace decomposition of the dihedral Majorana algebras.
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Chapter 2

MAJORANA REPRESENTATIONS

Definition 2.1. A Majorana representation (G,T,A,ψ,ϕ) of G is defined as

follows:

• G is a group

• T is a G-invariant set of involutions generating G (the Majorana set)

• A is a Majorana algebra

• ψ is an injective map from T to the set of axes of A

• ϕ : G→ Aut(A) is a group homomorphism

such that:

1) Tψ generates A as an algebra

2) for every t ∈ T and every g ∈ G, (tg)ψ = (tψ)g
ϕ

3) for every t ∈ T , tϕ is the Miyamoto involution associated to the axis tψ.

There are also some very natural extra conditions that are known to hold in

the Griess algebra, and then they are assumed in almost all papers on Majorana

theory that have been published (see [3]).

Definition 2.2. Let t1, t2, t3, t4 ∈ T with corresponding Majorana axes a1, a2, a3, a4 ∈

A, respectively. If the following conditions hold:

• t1t2 ∈ T if and only if ⟨⟨a1, a2⟩⟩ has type 2A;

• if t1t2 = t3, then a3 coincides with at1t2, i.e. a3 = a1 + a2 − 8a1 · a2
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then the Majorana representation is said to satisfy the 2A-condition.

If ⟨t1t2⟩ = ⟨t3t4⟩, both ⟨⟨a1, a2⟩⟩ and ⟨⟨a3, a4⟩⟩ are of type 3A, 4A or 5A,

and ut1t2 = ut3t4, vt1t2 = vt3t4 or wt1t2 = ±wt3t4 respectively, then the Majorana

representation is said to satisfy the 3A-, 4A- or 5A-condition respectively.

The Majorana representation of the Monster on the Griess algebra satisfies all

conditions of Definition 2.2. On the other hand, A.A. Ivanov and A. Seress in [30]

have shown that the 2A-condition cannot be deduced from the other axioms and

show an example of Majorana representation that does not satisfy this condition.

Note that, by the Norton-Sakuma theorem, the Majorana set must be a set

of 6-transpositions.

In general, there are various options for selecting the Majorana set T if the group

G has distinct conjugacy classes of 6-transpositions.

If the corresponding Majorana set is maximal (by inclusion), we refer to a Ma-

jorana representation as saturated.

The next result follows immediately from the definition of a Majorana represen-

tation (as stated in [19]).

Lemma 2.3. If T0 is a nonempty subset of T such that T0 is ⟨T0⟩-invariant,

then ϕ|⟨T0⟩ is again a Majorana representation of ⟨T0⟩ on the subalgebra A⟨T0⟩ of

A generated by Tψ0 with respect to ψ|T0 .

In general, consider H to be any finite group, TH to be an H-invariant generating

set of involutions of H and ϵ to be an embedding of H in the Monster M such

that THϵ is the intersection of Hϵ with the set of involutions of type 2A of M.

According to Lemma 2.3, the standard action of M on the Griess algebra there-

fore induces on Hϵ (and so on H) a Majorana representation with respect to

THϵ (resp. TH) on the subalgebra of the Griess algebra generated by the set

of axes associated to the elements of THϵ . It is said that the Majorana repre-

sentations ofH produced in this manner are based on the embedding ϵ ofH inM.
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2.1. SHAPE

Definition 2.4. Given a Majorana representation R:=(G,T,A,ψ,ϕ), the shape

of R is a function sh from the set of the nondiagonal orbitals of G on T to the

set {2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A} so that

• sh((t, s)G) = NX if and only if ts has order N and the algebra ⟨⟨tψsψ⟩⟩ is

a Norton–Sakuma algebra of type NX .

• sh must respect the embeddings of the algebras:

2A ↪→ 4B, 2B ↪→ 4A, 2A ↪→ 6A and 3A ↪→ 6A.

in the sense that, for t, r1, r2 ∈ T , if ⟨⟨tψ⟩⟩ < ⟨⟨tψ, rψ1 ⟩⟩ < ⟨⟨tψ, rψ2 ⟩⟩, then

(sh((t, r1)
G), sh((t, r2)

G)) ∈ (2A, 4B), (2A, 6A), (2B, 4A), (3A, 6A).

Remark 2.5. The shape is often denoted simply as a list (N1X1, ..., NnXn),

where NiXi are the types of Norton-Sakuma algebras that are present.

The following strategy became quite standard in the process of studying

Majorana representations (see [57], [42], [36]).

2.2. GENERIC STRATEGY

Let G be a finite group generated by a set of involutions T , such that T is a

union of conjugacy classes of G.

We consider the tuple (G,T,A, ψ, ϕ) to be the Majorana representation of the

group G that we want to construct.

2.2.1 Step 1. Shape of the representation

The first step is to choose the shape of the Majorana representation (G,T,A, ψ, ϕ).

To do this, representatives of the orbitals of G on T × T must be identified (for

all g ∈ G ⟨⟨a1, a2⟩⟩ ∼= ⟨⟨a2, a1⟩⟩ ∼= ⟨⟨aϕ(g)1 , a
ϕ(g)
2 ⟩⟩ as ϕ(g) ∈ Aut(A)). Then the

potential types of dihedral algebras generated by the Majorana axes correspond-

ing to each of these representatives must be determined.
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Recall that, ⟨⟨a1, a2⟩⟩ has type NX for some X if |t1t2|= N .

By Norton-Sakuma theorem, N ≤ 6, and so, in particular, T must be a 6-

transposition set. Moreover, the choice of the different types of dihedral algebras

must respect the inclusion of algebras required by the definition of shape.

2.2.2 Step 2. Spanning set for A

Based on the shape chosen in step 1, let X be the set of all Majorana axes in A

plus the NA-axes (3 ≤ N ≤ 5) identified in the Norton-Sakuma algebras gener-

ated by the pairs of Majorana axes in A.

If the algebra product of any two vectors in X is a linear combination of

elements of X then X is a spanning set for A and the Majorana representation

is 2-closed.

If the Majorana representation is not 2-closed one has to extend the set X of

the algebra, adding, for example, the products of one axis with each of the odd

axes and try again until all the algebra products of any two vectors in X stays

inside the linear span of X.

2.2.3 Step 3. Identify pairs of vectors in X whose products are

unknown

From the Norton-Sakuma algebras some of the inner and algebra products be-

tween vectors in X are already known.

Furthermore, the products between vectors in the subalgebra ⟨⟨ψ(T ∩H)⟩⟩ are

known if G has a subgroup H generated by involutions in T ∩H such that the

Majorana representation (H,T ∩H, ⟨⟨(T ∩H)ψ⟩⟩, ψ|T∩H , ϕ|H) has already been

constructed and it is only influenced by the shape.

Under the action of ϕ(G), the couples with unknown products may be organ-

ised into orbits on pairs. Determining the product for one orbit representative

is sufficient for deducing the products of the other couples in the orbit because

ϕ(G) preserves the products.

26



2.2.4 Step 4. Compute the unknown inner products

Inner products between two Majorana axes are given by the Norton-Sakuma

Theorem and Table 1.1. The other unknown inner products can be obtained

combining the following two methods:

1. use the associativity of the inner product and the algebra product. If u and

v are two axes (Majorana or odd axes) and v = v0+λat · as, where v0 is a linear

combination of Majorana axes, then

(u, v) = (u, v0) + λ(u, at · as) = (u, v0) + λ(u · at, as).

If (u, v0) is known and we know how to express u · at as a linear combination of

Majorana axes, then we are able to compute (u, v).

2. use the orthogonality between eigenvectors relative to different eigenvalues.

These conditions lead to a system of linear equations that then we solve.

2.2.5 Step 5. Compute the unknown algebra products

Like the unknown inner products, the unknown algebra products can be deter-

mined by solving a system of linear equations obtained by applying the resurrec-

tion principle or other relations between eigenvectors deduced from the fusion

law.

Note that this generic strategy is not always successful as shown by an ex-

ample given by Whybrow.
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Chapter 3

NORTON’S LIST

The key element for creating new Majorana representations has been the classi-

fication of algebras generated by pairs of Majorana axes.

Constructing algebras generated by an axis and a 3-axis and possibly classifying

them is the logical next step. In [48] Norton did it in the case of the Griess

algebra: his result is summarized in Table 3.1. There are 22 of such algebras,

each one corresponding to one of the orbits of (2A, 3A)-pairs in M. In Table

3.1 we list the representatives for each pair in the first 18 cases, where it can be

found inside a subgroup of M isomorphic to A12. For each pair, the value of the

inner product between the corresponding axes is given (note that it is rescaled

respect to Norton’s computation).

The first two columns of Table 3.1 provide the representatives for (2A, 3A)-

pairs (t is a 2A-involution and h is a 3A-element).

The isomorphism class of the group generated by t and h is given in the third

column ⟨t, h⟩.

The conjugacy class of the product th in the Monster is represented by (th)M.

The value of the inner product between the 2A-axis at associated with t and the

3A-axis uh associated with h is indicated in the last column.

Representatives are shown as components of the A12 standard form, i.e. as

even permutations of the set {1, ..., 12}, in the first 18 rows of the table.
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Table 3.1: Norton list.

According to Ivanov in [36] a very important project is to describe the alge-

bras ⟨⟨at, uh⟩⟩ both as subalgebras of the Monster algebra and within Majorana

theory as subalgebras of 3-generated Majorana algebras.

Some partial results for example can be found in Lim’s thesis ([42]).
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Using the GAP free package “MajoranaAlgebras” by M. Pfeiffer and M. Why-

brow (see [49]), we determined the dimension of some of these algebras.

We list the results in the Table 3.2. Here, H0 is one of the groups in Table 3.1

generated by the 2A-involution t and a 3-element h (corresponding to a 3-axis).

We find two involutions t1 and t2 in A12, corresponding to 2A-involutions in M,

such that t1t2 = h and set H = ⟨t, t1, t2⟩. Thus H is a subgroup of A12 generated

by 2A-involutions and we can look for the Majorana representation of H with

the same shape induced by an embedding of A12 into the Monster (see [19]).

Such a shape is indicated in the fourth column of Table 3.2.

In the last case considered, when H0 = ⟨t, h⟩ ∼= GL(2, 3) ∼= 2S4, H0 is not

embedded into A12. One can check that there is a unique group 2S5 with a

maximal subgroup isomorphic to GL(2, 3) (in GAP it corresponds to Small-

Group(240,90)). Hence, we compute a Majorana representation of this group,

using its permutation representation of degree 40 given by GAP.

In order to determine the dimensions of the different AH0 , we first compute

the Majorana representation of the corresponding group H with the given shape.

Then with the functionMAJORANA Subalgebra we determined the dimension of

the subalgebra generated by the 2-axis at and the 3-axis uh in the largest algebra.

Some informations, such as the dimensions of the algebras AH with H one

of the following groups:

- S3

- S4

- 2× S4 with shape (2A, 2B, 3A)

- S2
3 with shape (2A, 3A)

- S3 × S4 with shape (2A, 2B, 3A)

are already known and can be found in [42].
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H0 H Embedding Shape (at, uh) dim(AH0)

S3 S3

t = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

t1 = (1, 2)(3, 4)(5, 6)(7, 10)(8, 12)(9, 11)

t2 = (1, 2)(3, 4)(5, 6)(7, 11)(8, 9)(10, 12)

(1A,3A) 1
4

3

C6 D12

t = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

t1 = (7, 9)(8, 10)

t2 = (7, 11)(8, 12)

(1A,2A,3A,6A) 0 2

A4 S4

t = (1, 2)(3, 4)

t1 = (3, 4)(10, 11)

t2 = (2, 3)(9, 10)

(1A,2A,3A,4B) 1
9

5

S4 S4

t = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

t1 = (1, 2)(3, 4)(5, 6)(7, 12)(8, 11)(9, 10)

t2 = (1, 2)(3, 4)(5, 6)(7, 10)(8, 12)(9, 11)

(1A,2A,3A,4B) 1
36

9

A5 A5

t = (1, 2)(3, 4)

t1 = (1, 2)(5, 6)

t2 = (2, 3)(4, 6)

(1A,2A,3A,5A) 1
18

17

2×A4 2× S4

t = (1, 2)(3, 4)

t1 = (3, 5)(4, 6)

t2 = (5, 7)(6, 8)

(1A,2A,2B,3A,4B) 1
45

7

3× S3 S3 × S3

t = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

t1 = (1, 7)(2, 8)(3, 11)(4, 12)(5, 10)(6, 9)

t2 = (1, 7)(2, 9)(3, 8)(4, 12)(5, 10)(6, 11)

(1A,2A,3A,6A) 1
20

7

L2(7) = L3(2) L3(2)

t = (1, 2)(3, 4)

t1 = (2, 3)(6, 7)

t2 = (3, 5)(4, 7)

(1A,2A,3A,4B) 1
24

5

3×A5 A5 : S3

t = (1, 2)(3, 4)

t1 = (3, 5)(10, 11)

t2 = (2, 3)(9, 10)

(1A,2A,3A,4B,5A,6A) 11
360

28

S4 S4

t = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

t1 = (1, 2)(3, 4)(5, 12)(6, 10)(7, 8)(9, 11)

t2 = (1, 2)(3, 4)(5, 12)(6, 11)(7, 10)(8, 9)

(1A,2B,3A) 13
180

9

3× S4 S3 × S4

t = (1, 2)(3, 4)

t1 = (4, 5)(9, 10)

t2 = (5, 6)(10, 11)

(1A,2A,2B,3A,4B,6A) 1
36

17
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H0 H Embedding Shape (at, uh) dim(AH0)

2× L2(7) 2× (23 : L2(7))

t = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

t1 = (6, 7)(10, 11)

t2 = (7, 9)(11, 12)

(1A,2A,2B,3A,4A,4B,6A) 11
360

46

2×A4 2× S4

t = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

t1 = (6, 7)(10, 11)

t2 = (7, 8)(11, 12)

(1A,2B,3A,4A) 2
45

10

2×A5 2× S5

t = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

t1 = (3, 6)(9, 11)

t2 = (6, 7)(8, 9)

(1A,2A,2B,3A,4A,5A,6A) 1
30

28

42.S3 25 : S5

t = (1, 5)(2, 4)(3, 7)(6, 10)(8, 9)(11, 12)

t1 = (1, 4)(2, 6)(3, 5)(7, 10)(8, 12)(9, 11)

t2 = (1, 5)(2, 4)(3, 6)(7, 11)(8, 10)(9, 12)

(1A,2A,2B,3A,4A,4B,5A,6A) 1
36

23

GL2(3) ∼=

2S4

2.S5

t = (1, 3)(2, 37)(4, 9)(5, 33)(6, 20)(7, 27)

(10, 26)(11, 39)(12, 13)(14, 25)(15, 30)

(16, 18)(17, 35)(19, 36)(21, 38)(22, 23)

(24, 31)(28, 40)(29, 32)

t1 = (1, 11)(2, 30)(3, 27)(5, 15)(6, 16)

(7, 39)(8, 31)(9, 34)(10, 26)(12, 40)

(13, 14)(17, 19)(18, 21)(20, 38)(22, 35)

(23, 36)(25, 28)(29, 32)(33, 37)

t2 = (1, 11)(3, 17)(4, 21)(5, 12)(6, 13)

(7, 32)(8, 28)(9, 15)(10, 19)(14, 33)

(16, 37)(20, 25)(22, 35)(23, 39)(24, 30)

(26, 27)(29, 36)(31, 38)(34, 40)

(1A,2A,3A,4B,6A) 1
36

11

Table 3.2: Dimensions of some 3-generated algebras

We need to set the shape of H in order to find the right inner product (at, uh).

We will always suppose that the shape of H is the one obtained from a saturated

Majorana representation of A12, which results from the embedding of H into A12

as indicated in the third column of Table 3.2.

It is important to note that the scalar products are only dependent on the

shape given on H by the Majorana representation of A12 via the embedding of

H in A12, not on the embedding itself.
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Chapter 4

AMAJORANAALGEBRA FOR THEGROUP

C2 × S4

In this chapter we determine a Majorana representation (G,T,A,ψ,ϕ) of the group

C2 × S4 where T is the set of involutions not contained in the direct summand

S4 and the shape is (2B, 3A, 4A).

We identify the group G = C2 × S4 with the subgroup of Sym(8):

G = ⟨(3, 4)(5, 6)(7, 8), (1, 2)(5, 6)(7, 8), (1, 2)(4, 5)(7, 8)⟩.

Then G has five classes of involutions:

(7, 8)G = {(7, 8)}, (1, 2)(3, 4)G, (3, 4)(5, 6)G, (1, 2)(3, 4)(7, 8)G, and (3, 4)(5, 6)(7, 8)G.

We set T := (7, 8)G ∪ (1, 2)(3, 4)(7, 8)G ∪ (3, 4)(5, 6)(7, 8)G.

There is no dihedral subgroup of order greater than 8 in the group C2 × S4,

while there is a unique class of dihedral subgroups of order 6 and a unique class

of dihedral subgroups of order 8 generated by two permutations in T \ (7, 8).

Let t1, t2 ∈ T . If t1t2 has order 2, we see that t1t2 ̸∈ T . Hence, by condi-

tion 2A, ⟨⟨at1 , at2⟩⟩ ∼= 2B. By the definition of shape it follows that if t1t2 has

order 4, then ⟨⟨at1 , at2⟩⟩ ∼= 4A. Finally we choose that if t1t2 has order 3, then

⟨⟨at1 , at2⟩⟩ ∼= 3A. So the chosen shape is (2B, 3A, 4A).

Remark 4.1. The case (2B, 3C, 4A) could also have been chosen. In this case
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the algebra is spanned by 2-axes and 4-axes, it is easy to see that it has dimen-

sion 12 and we will not write the details here.

Thus, the case considered (2B, 3A, 4A) is the most interesting one and which we

therefore report.

The group G has two maximal subgroups isomorphic to S4:

• the one consisting of all the permutations fixing 7 and 8,

• H := ⟨(1, 2)(5, 6)(7, 8), (1, 2)(4, 5)(7, 8), (1, 2)(3, 6)(7, 8)⟩.

This latter subgroup is generated by T ∩H and the Majorana representation

induced by ϕ on H is the representation of S4 of shape (2B, 3A) described in [27].

We begin by considering the following set of vectors, which must be contained

in the algebra A. They are:

- the 2A-axes,

- the 3A-axes and the 4A-axes arising from Norton-Sakuma algebras,

- the vectors δ(ij)(kl), with (i, j)(k, l) contained in the Klein subgroup K of

H defined as in [27].

More explicitly we set:

a0 := a(7,8)

a1 := a(3,4)(5,6)(7,8)

a2 := a(3,5)(4,6)(7,8)

a3 := a(3,6)(4,5)(7,8)

a4 := a(1,2)(5,6)(7,8)

a5 := a(1,2)(4,5)(7,8)

a6 := a(1,2)(4,6)(7,8)

a7 := a(1,2)(3,4)(7,8)

a8 := a(1,2)(3,5)(7,8)

a9 := a(1,2)(3,6)(7,8)
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u1 := u(4,5,6)

u2 := u(3,4,5)

u3 := u(3,4,6)

u4 := u(3,5,6)

v1 := v(1,2)(3,4,5,6)

v2 := v(1,2)(3,4,6,5)

v3 := v(1,2)(3,5,4,6)

δ(34)(56) :=
1

1024(5a7 + a5 + a6 + a8 + a9 − a4) +
135

65536(u1 − u2 − u3)− 135
2048a7 · u1

δ(35)(46) :=
1

1024(5a8 + a4 + a5 + a7 + a9 − a6) +
135

65536(u1 − u2 − u4)− 135
2048a8 · u1

δ(36)(45) :=
1

1024(5a9 + a4 + a6 + a7 + a8 − a5) +
135

65536(u1 − u3 − u4)− 135
2048a9 · u1

Finally we set:

w4 := a4 · (v1 + v2 + v3)

w5 := a5 · (v1 + v2 + v3)

w6 := a6 · (v1 + v2 + v3)

w7 := a7 · (v1 + v2 + v3)

w8 := a8 · (v1 + v2 + v3)

w9 := a9 · (v1 + v2 + v3)

We shall see that the above 26 vectors are a basis for the algebra A, so we define:

B0 := {a0, .., a9, u1, u2, u3, u4, v1, v2, v3},

B := {a0, ..., a9, u1, u2, u3, u4, v1, v2, v3, δ(34)(56), δ(35)(46), δ(36)(45), w4, ..., w9}.

Then we define B0 := ⟨B0⟩ and B := ⟨B⟩.

Nevertheless, in order to determine the algebra products it is convenient to

give a name to some vectors, which in the end will show to be linearly dependent

from the previous ones in B. We set:
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w117 := a1 · δ(34)(56)
w118 := a1 · δ(35)(46)
w119 := a1 · δ(36)(45)
w217 := a2 · δ(34)(56)
w218 := a2 · δ(35)(46)
w219 := a2 · δ(36)(45)
w317 := a3 · δ(34)(56)
w318 := a3 · δ(35)(46)
w319 := a3 · δ(36)(45)

Let us also define C as the set of all 35 vectors listed above.

And we define C := ⟨C⟩ the vector space generated by the vectors in C.

It is also convenient to introduce the following elements ([27, Lemma 2.3]) so

that we can apply formulas as in [27]:

s1 := −27·5
211

u1 +
1
32(a4 + a5 + a6)

s2 := −27·5
211

u2 +
1
32(a5 + a7 + a8)

s3 := −27·5
211

u3 +
1
32(a6 + a7 + a9)

s4 := −27·5
211

u4 +
1
32(a4 + a8 + a9)

Recall that some products of the algebra are already known from the table of

Norton-Sakuma algebras (Table 1.1) and the paper [27].

In addition, the following products can be obtained immediately from the given

vector configuration and will be useful later in order to find some inner products.

Lemma 4.2. Let z := (7, 8) ∈ G. For any s ∈ T \ {z} we have (az, as) = 0 and

az · as = 0. In particular A = A⊕ ⟨⟨z⟩⟩ where A is the Majorana algebra for S4.
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Proof. For each s ∈ T \ {z}, the product sz is an involution not contained in T .

Hence, by the condition 2A, ⟨⟨az, as⟩⟩ ∼= 2B and by Table 1.1 we get the result.

In particular, as the fusion law is Seress, a result on sum decompositions (see [41])

implies that z commutes with all other axes in A, in other words A = A⊕ ⟨⟨z⟩⟩.

Lemma 4.3. For each 2-axis at with t ∈ (3, 4)(5, 6)(7, 8)G and 4-axis vρ, the

algebra product at · vρ ∈ B. In particular, if tρ = ρt, then at · vρ = 0.

Proof. We may assume at = a1. Then a1 · v1 and a1 · v2 are in Norton-Sakuma

algebras of type 4A, so they are already known.

For the product a1 · v3, note that in the algebra 4A generated by a3 and a4

we know that the 4-axis can be written as v3 = a3 + a4 +
1
3a2 +

1
3a7 −

64
3 a3 · a4.

Since the involution corresponding to a1 commutes with all the involutions re-

lated to the 2-axes in the expression of v3, a1 generates an algebra of type 2B

with all of them. In particular, since a3 and a4 are both 0-eigenvectors of a1,

a3 · a4 is also a 0-eigenvector of a1 according to the fusion law. Thus all the

algebra products are 0 and so a1 · v3 = 0.

Lemma 4.4. For every 2-axis at with t ∈ (1, 2)(3, 4)(7, 8)G and for every 4-axis

v, the algebra product at · v ∈ B.

Proof. We may assume at = a4. As the product a4 · v3 is in an algebra of type

4A, it is already known.

We can find the algebra product of a4 with v1 and v2 considering that

a4 · (v1 + v2 + v3) = w4 then a4 · (v1 + v2) = w4 − a4 · v3 ∈ B.

In addition τa4 permutes v1 and v2, hence a4 · (v1 − v2) =
1
32(v1 − v2).

So we can sum and subtract the above two expressions and we find:

37



a4 · v1 = 1
2w4 +

1
64(v1 − v2 − 6v3)− 1

32(5a4 − 2a2 − 2a3 − a7),

a4 · v2 = 1
2w4 +

1
64(v2 − v1 − 6v3)− 1

32(5a4 − 2a2 − 2a3 − a7).

Then, in particular, a4 · v1, a4 · v2 ∈ B.

4.1. INNER PRODUCTS

In this section we calculate the inner products on pairs of elements of B.

Let T3 be the set of all cyclic subgroups of G of order 3, let T4 be the set

of all cyclic subgroups of G of order 4 conjugate to ⟨(1, 2)(3, 4, 5, 6)⟩, and let

Tδ := {(3, 4)(5, 6), (3, 5)(4, 6), (3, 6)(4, 5)}. Finally set

X := T ∪ T3 ∪ T4 ∪ Tδ.

Clearly G acts on X by conjugation. We generically denote by
∑

∗ an orbital of

the group G on X i.e. the orbit of G on the set X ×X with respect to the action

defined: for every g ∈ G and ε, σ ∈ X , by (ε, σ)g = (εg, σg).

The inner product in A is invariant under the group action and therefore it is

constant on the orbitals so it is sufficient to consider one representative for each

orbital.

By Theorem 0.2, such representatives can be found by fixing a permutation

ε and considering the pairs (ε, σ) where σ is in the list of orbit representatives

of the normalizer of ⟨ε⟩.

Moreover, since the inner product is symmetric, its value is constant on an

orbital and its transpose. Therefore for each pair of orbitals
∑

,
∑T such that∑T is the transpose of

∑
, we shall ignore

∑T .

In the tables of this chapter we will find:
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- in the first column the label of the orbitals

- in the second column one representative of the orbital (for elements in T3 and

T4 we simply write a generator of the cyclic group)

- in the third column the cycle type of the product of the two permutations in

the corresponding representative

- in the fourth column the subgroup generated by the two permutations in the

corresponding representative

- in the fifth column, only in the case of the 2-axes, the corresponding shape

(Norton-Sakuma)

- in the last column the inner product between the axes corresponding to the

two permutations in the representative.

Let us fix the involutions t := (1, 2)(5, 6)(7, 8) and t∗ := (3, 4)(5, 6)(7, 8).

Lemma 4.5. The inner products between two Majorana axes are listed in the

following table.

Orbitals Representative Cycle type Group Shape Inner Product∑
1 (t, t) 1 C2 1A 1∑
2 (t, (3, 4)(5, 6)(7, 8)) 22 C2 × C2 2B 0∑
3 (t, (3, 5)(4, 6)(7, 8)) 2 · 4 D8 4A 1/25∑
4 (t, (1, 2)(4, 5)(7, 8)) 3 S3 3A 13/28∑∗
1 (t∗, t∗) 1 C2 1A 1∑∗
2 (t∗, (3, 5)(4, 6)(7, 8)) 22 C2 × C2 2B 0∑∗
3 (t∗, (1, 2)(4, 5)(7, 8)) 2 · 4 D8 4A 1/25

Proof. The inner products of the above table can be found from Norton-Sakuma

algebras of the corresponding shape in Table 1.1.

39



Lemma 4.6. The inner products between a Majorana axis and a 3-axis are listed

in the following table.

Orbitals Representative Cycle type Group Inner Product∑
u,1 (t, (4, 5, 6)) 23 S3 1/4∑
u,2 (t, (3, 4, 5)) 2 · 4 · 2 S4 13/180∑∗
u,1 (t∗, (4, 5, 6)) 23 C2 ×A4 2/45

Proof. The inner products of pairs in
∑

u,1 can be found from Norton-Sakuma

algebra.

The inner products of pairs in
∑

u,2 have been found in [27].

For the inner products of pairs in
∑∗

u,1 let us consider the algebra of type

3A generated by a5 and a6 and the algebra of type 2B generated by a1 and a4.

Then we can take the following eigenvectors of a4 from the Table 1.2:

u40 = u1 − 10
27a4 +

32
27(a6 + a5) 0-eigenvector

u4al = u1 − 8
45a4 −

32
45(a6 + a5) 1/4-eigenvector

a1 0-eigenvector

Since a1 and u4al are a4-eigenvectors with different eigenvalues, they are

perpendicular and (a1, u4al) = 0 by lemma 1.9.

When we substitute the expression for u4al in (a1, u4al) we see that the only

unknown product is (a1, u1) and solving the equation we get the result.

Lemma 4.7. The inner products (at, δ(ij)(kl)) between the Majorana axis at and

a δ(ij)(kl) are listed in the following table.
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Orbitals Representative Cycle type Group Inner Product∑
d,1 (t, (3, 4)(5, 6)) 23 C2 × C2 −147/218∑
d,2 (t, (3, 5)(4, 6)) 2 · 4 · 2 D8 5/219

Proof. These inner products have been computed in [27].

Lemma 4.8. The inner products (at∗ , δ(ij)(kl)) between the Majorana axis at∗

and a δ(ij)(kl) are listed in the following table.

Orbitals Representative Cycle type Group Inner Product∑∗
d,1 (t∗, (3, 4)(5, 6)) 2 C2 × C2 1/215∑∗
d,2 (t∗, (3, 5)(4, 6)) 23 C2 × C2 −15/216

Proof. For the inner products of pairs in
∑∗

d,1 it is enough to calculate the inner

product between a1 and δ(34)(56).

In this case by its definition (see Equation (23) in [27]):

δ(34)(56) = a7 · s1 − 1
25
s1 +

1
210
a7, where s1 =

1
25
(a4 + a5 + a6)− 27·5

211
u1.

Then, due to the fact that (, ) associates with ·, we obtain:

(a1, δ(34)(56)) = (a1, a7 · s1)− 1
25
(a1, s1) +

1
210

(a1, a7)

= (a1 · a7, s1)− 1
25
(a1,

1
25
(a4 + a5 + a6)− 27·5

211
u1) +

1
210

(a1, a7).

Since a1 and a7 generate an algebra of type 2B we know that a1 · a7 = 0 and

all the other inner products are known from Norton-Sakuma algebras and from

the previous lemmas. Then we obtain (a1, δ(34)(56)) =
1
215

.

For the inner products of pairs in
∑∗

d,2 it is enough to calculate the product

between a1 and δ(35)(46).
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In this case δ(35)(46) = a8 · s1 − 1
25
s1 +

1
210
a8.

Then, in the same way as before, we obtain (a1, δ(35)(46)) = − 15
216

.

Lemma 4.9. The inner products between two 3-axes are listed in the following

table.

Orbitals Representative Cycle type Group Inner Product∑u
u,1 ((4, 5, 6), (4, 5, 6)) 3 C3 8/5∑u
u,2 ((4, 5, 6), (3, 4, 5)) 22 A4 56/675

Proof. The inner product of a 3-axis with itself in
∑u

u,1 can be found in the

Norton-Sakuma algebra 3A.

The inner product of pairs in
∑u

u,2 have been computed in [27, Table 11].

Lemma 4.10. The inner products between a 3-axis and a δ(ij)(kl) are listed in

the following table.

Orbitals Representative Cycle type Group Inner Product∑u
d,1 ((4, 5, 6), (3, 4)(5, 6)) 3 A4 −197/(9 · 5 · 212)

Proof. It is enough to consider the pair u1 and δ(34)(56).

In this case u1 =
26

27·5(a4 + a5 + a6)− 211

27·5s1.

When we replace this expression for u1 in (u1, δ(3,4)(5,6)) we see that all the inner

products of δ(3,4)(5,6) with a4, a5, a6, and s1 are known from [27]. Thus we obtain

the result.

Lemma 4.11. The inner products between two δ(ij)(kl) are listed in the following

table.
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Orbitals Representative Cycle type Group Inner Product∑d
d,1 ((3, 4)(5, 6), (3, 4)(5, 6)) 1 C2 5 · 3697/229∑d
d,2 ((3, 4)(5, 6), (3, 5)(4, 6)) 22 C2 × C2 35 · 29/230

Proof. The inner products between two vectors δ(ij)(kl) in
∑d

d,1 and
∑d

d,2 are

taken from [27].

Lemma 4.12. The inner products between a Majorana axis and a 4-axis v are

listed in the following table.

Orbitals Representative Cycle type Group Inner Product∑
v,1 (t, (1, 2)(3, 5, 4, 6)) 23 D8 3/8∑
v,2 (t, (1, 2)(3, 4, 5, 6)) 3 · 2 C2 × S4 5/64∑∗
v,1 (t∗, (1, 2)(3, 5, 4, 6)) 2 · 4 · 2 C4 × C2 0∑∗
v,2 (t∗, (1, 2)(3, 4, 5, 6)) 23 D8 3/8

Proof. The inner products of pairs in
∑

v,1 are given in Norton-Sakuma algebra

4A (see Table 1.1).

For the inner product of at with v in
∑

v,2 it is enough to consider the pair a4

and v1. In this case v1 = a1 + a6 +
1
3a3 +

1
3a8 −

64
3 a1 · a6 as we see inside the

algebra 4A generated by a1 and a6 and due to the fact that (, ) associates with

· we obtain:

(a4, v1) = (a4, a1) + (a4, a6) +
1
3(a4, a3) +

1
3(a4, a8)−

64
3 (a4, a1 · a6)

= (a4, a1) + (a4, a6) +
1
3(a4, a3) +

1
3(a4, a8)−

64
3 (a4 · a1, a6).
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Since a1 and a4 generate an algebra of type 2B we know that a1 · a4 = 0 and

all the other inner products are known from Norton-Sakuma algebras.

Then we obtain (a4, v1) =
5
64 .

The inner product of pairs in
∑∗

v,2 is given in the Norton-Sakuma algebra 4A.

For the inner products of pairs in
∑∗

v,1 it is sufficient to consider the pair a1

and v3. In this case v3 = a3 + a4 +
1
3a2 +

1
3a7 −

64
3 a3 · a4 as we see inside the

algebra 4A generated by a3 and a4 and due to the fact that (, ) associates with

· we obtain:

(a1, v3) = (a1, a3) + (a1, a4) +
1
3(a1, a3) +

1
3(a1, a7)−

64
3 (a1, a3 · a4)

= (a1, a3) + (a1, a4) +
1
3(a1, a3) +

1
3(a1, a7)−

64
3 (a1 · a4, a3).

Since a1 and a4 generate an algebra of type 2B we know that a1 · a4 = 0

and a1 commutes with all the 2-axes in the expression of v3. Then all the inner

products are 0 and we obtain (a1, v3) = 0.

Lemma 4.13. The inner products between a 3-axis and a 4-axis are listed in the

following table.

Orbitals Representative Cycle type Group Inner Product∑u
v,1 ((4, 5, 6), (1, 2)(3, 4, 5, 6)) 22 S4 1/9

Proof. It is enough to consider the pair u1 and v1.

In this case v1 = a1 + a6 +
1
3a3 +

1
3a8 −

64
3 a1 · a6 as we see inside the algebra 4A

generated by a1 and a6 and due to the fact that (, ) associates with · we obtain:
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(u1, v1) = (u1, a1 + a6 +
1
3a3 +

1
3a8 −

64
3 a1 · a6)

= (u1, a1) + (u1, a6) +
1
3(u1, a3) +

1
3(u1, a8)−

64
3 (u1, a1 · a6)

= (u1, a1) + (u1, a6) +
1
3(u1, a3) +

1
3(u1, a8)−

64
3 (a6 · u1, a1).

Since a6 and u1 are in an algebra of type 3A we know the product a6 ·u1 as a

combination of 2-axes and 3-axes, hence all the inner products are known from

Norton-Sakuma algebras.

Then we obtain (u1, v1) =
1
9 .

Lemma 4.14. The inner products between two 4-axes are listed in the following

table.

Orbitals Representative Cycle type Group Inner Product∑v
v,1 ((1, 2)(3, 5, 4, 6), (1, 2)(3, 5, 4, 6)) 22 C4 2∑v
v,2 ((1, 2)(3, 5, 4, 6), (1, 2)(3, 4, 5, 6)) 3 S4 11/48

Proof. The inner product of v with itself in
∑v

v,1 is taken from the Norton-

Sakuma algebra 4A.

For the inner product of pairs in
∑v

v,2 it is sufficient to consider the pair v1

and v3. In this case v1 = a1 + a6 +
1
3a3 +

1
3a8 −

64
3 a1 · a6 as we see inside the

algebra 4A generated by a1 and a6 and due to the fact that (, ) associates with

· we obtain:

(v3, v1) = (v3, a1) + (v3, a6) +
1
3(v3, a3) +

1
3(v3, a8)−

64
3 (v3, a1 · a6)

= (v3, a1) + (v3, a6) +
1
3(v3, a3) +

1
3(v3, a8)−

64
3 (v3 · a1, a6).

By Lemma 4.3 v3 ·a1 = 0 and all the inner products are known from Norton-

Sakuma algebras and from the previous lemmas.
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Then we obtain (v3, v1) =
11
48 .

Lemma 4.15. The inner products between a 4-axis and a δ(ij)(kl) are listed in

the following table.

Orbitals Representative Cycle type Group Inner Product∑v
d,1 ((1, 2)(3, 5, 4, 6), (3, 4)(5, 6)) 2 · 4 C4 29/216∑v
d,2 ((1, 2)(3, 5, 4, 6), (3, 5)(4, 6)) 22 D8 21/217

Proof. In order to find the inner products of δ(ij)(kl) with v it is sufficient to

replace v in (v, δ(ij)(kl)).

In particular for products of pairs in
∑v

d,1 we consider the pair v3 and δ(34)(56).

In this case v3 = a2 + a4 +
1
3a3 +

1
3a7 −

64
3 a2 · a4 as we see inside the algebra 4A

generated by a2 and a4 and due to the fact that (, ) associates with · we obtain:

(v3, δ(34)(56)) = (a2, δ(34)(56)) + (a4, δ(34)(56)) +
1
3(a3, δ(34)(56))

+ 1
3(a7, δ(34)(56))−

64
3 (a2 · a4, δ(34)(56))

= (a2, δ(34)(56)) + (a4, δ(34)(56)) +
1
3(a3, δ(34)(56))

+ 1
3(a7, δ(34)(56))−

64
3 (a2, a4 · δ(34)(56)).

Since a4 and δ(34)(56) are in the subalgebra AH of shape (2B,3A) we know

the product a4 · δ(34)(56) from [27] as a combination of 2-axes, 3-axes and δ(ij)(kl),

hence all the inner products are known from Norton-Sakuma algebras and from

the previous lemmas.

Then we get (v3, δ(34)(56)) =
29
216
.

In the same way we find the inner products of pairs in
∑v

d,2 considering the

pair v3 and δ(35)(46).
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Note that, for i ∈ {4, . . . , 9}, the vector wi is defined as the product between

ai and v1 + v2 + v3. Since v1 + v2 + v3 is invariant under the group action, the

element wi depends only on the 2-axis ai and thus the corresponding involution.

Then the orbitals for the vectors wi are indexed on the same sets as those cor-

responding to 2-axes as with s conjugate to t.

Lemma 4.16. The inner products between a Majorana axis and a vector wi are

given in the following table.

Orbitals Representative Cycle type Group Inner Product∑∗
w,1 (t∗, (1, 2)(5, 6)(7, 8)) 22 C2 × C2 0∑∗
w,2 (t∗, (1, 2)(4, 5)(7, 8)) 2 · 4 D8 −9/256∑
w,1 (t, (1, 2)(5, 6)(7, 8)) 1 C2 17/32∑
w,2 (t, (1, 2)(4, 5)(7, 8)) 3 S3 125/2048∑
w,3 (t, (1, 2)(3, 4)(7, 8)) 22 C2 × C2 0

Proof. By the definition of wi and the associativity of the inner product, for

every s ∈ T , we have

(as, wi) = (as, ai · (v1 + v2 + v3)) = (as · ai, v1 + v2 + v3). (4.1)

For the inner products of pairs in
∑∗

w,1 we consider the pair a1 and w4.

Since a1 and a4 generate an algebra of type 2B we know that a1 · a4 = 0.

Then from Equation 4.1 we get (a1, w4) = 0.

For the inner products of pairs in
∑∗

w,2 we consider the pair a1 and w5.

Since a1 and a5 generate an algebra of type 4A we know the product a1 ·a5 as

combination of 2-axes and 4-axis and then, substituting in Equation 4.1, all the

inner products are known from Norton-Sakuma algebras and from the previous
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lemmas.

Then we obtain (a1, w5) = − 9
256 .

For the inner products of pairs in
∑

w,1 we consider the pair a4 and w4.

Since a4 is an idempotent, a4 · a4 = a4 and then all the inner products in

Equation 4.1 are known from Norton-Sakuma algebras and from the previous

lemmas.

Then we obtain (a4, w4) =
17
32 .

For the inner products of pairs in
∑

w,2 we consider the pair a4 and w5.

Since a4 and a5 generate an algebra of type 3A we know the product a4 ·a5 as

combination of 2-axes and 3-axis and then, substituting in Equation 4.1, all the

inner products are known from Norton-Sakuma algebras and from the previous

lemmas.

Then we obtain (a4, w5) =
125
2048 .

For the inner products of pairs in
∑

w,3 we consider the pair a4 and w7.

Since a4 and a7 generate an algebra of type 2B we know that a4 · a7 = 0.

Then (a4, w7) = 0.

Lemma 4.17. The inner products between a 3-axis and a vector w are listed in

the following table.

Orbitals Representative Cycle type Group Inner Product∑u
w,1 ((4, 5, 6), (1, 2)(5, 6)(7, 8)) 23 S3 5/96∑u
w,2 ((4, 5, 6), (1, 2)(3, 4)(7, 8)) 2 · 4 · 2 S4 59/1440

Proof. For the inner products of pairs in
∑u

w,1 we consider the pair u1 and w4.

We have
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(u1, w4) = (u1, a4 · (v1 + v2 + v3)) = (u1 · a4, v1 + v2 + v3).

Since a4 and u1 are in an algebra of type 3A we know the product a4 · u1 as

combination of 2-axes and 3-axis and then all the inner products in the above

formula are known from Norton-Sakuma algebras and from the previous lemmas.

Then we obtain (u1, w4) =
5
96 .

For the inner products of pairs in
∑u

w,2 we consider the pair u1 and w7. We have

(u1, w7) = (u1, a7 · (v1 + v2 + v3)) = (u1 · a7, v1 + v2 + v3).

Since a7 and u1 are in the subalgebra AH of shape (2B,3A) we know the

product a7 · u1 from [27], hence all the inner products in the above formula are

known from Norton-Sakuma algebras and from the previous lemmas.

Then we get (u1, w7) =
59

1440 .

Lemma 4.18. The inner products between a 4-axis and a vector w are listed in

the following table.

Orbitals Representative Cycle type Group Inner Product∑v
w,1 ((1, 2)(3, 4, 5, 6), (1, 2)(4, 6)(7, 8)) 23 D8 13/32∑v
w,2 ((1, 2)(3, 4, 5, 6), (1, 2)(5, 6)(7, 8)) 3 · 2 C2 × S4 179/1536

Proof. For the inner products of pairs in
∑v

w,1 we consider the pair v1 and w6.

We have

(v1, w6) = (v1, a6 · (v1 + v2 + v3)) = (v1 · a6, v1 + v2 + v3).

Since a6 and v1 are in an algebra of type 4A we know the product a6 · v1 as

combination of 2-axes and 4-axis and then all the inner products in the above

formula are known from Norton-Sakuma algebras and from the previous lemmas.
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Then we obtain (v1, w6) =
13
32 .

For the inner product of pairs in
∑v

w,2 let us consider the algebras of type

4A generated by a1 and a9 and a1 and a6 respectively and the algebra of type

2B generated by a1 and a4. Then we can take the following eigenvectors from

the Table 1.2:

x9 := v2 − 1
2a1 + 2(a5 + a9) + a2 0-eigenvector of a1

y6 := v1 − 1
3a1 −

2
3(a6 + a8)− 1

3a3 1/4-eigenvector of a1

a4 0-eigenvector of a1

By the fusion law a4 · x9 is again a 0-eigenvector of a1.

Since y6 and a4 · x9 are eigenvectors of a1 with different eigenvalues, they are

perpendicular by Lemma 1.9: (y6, a4 · x9) = 0.

The product a4 · x9 is expressible as a linear combination of Majorana axes and

odd-axes since all the algebra products between a4 and the summands in x9 are

known thanks to Norton-Sakuma algebras and the Lemma 4.4.

Thus, except for (v1, w4), all the inner products are known from Norton-

Sakuma algebras and from the previous lemmas and we get:

(y6, a4 · x9) = − 179
3072 + 1

2(v1, w4).

Then (v1, w4) =
179
1536 .

Lemma 4.19. The inner products between a δ(ij)(kl) and a vector w are listed

in the following table.

Orbitals Representative Cycle type Group Inner Product∑d
w,1 ((3, 4)(5, 6), (1, 2)(5, 6)(7, 8)) 23 C2 × C2 273/2097152∑d
w,2 ((3, 4)(5, 6), (1, 2)(4, 5)(7, 8)) 2 · 4 · 2 D8 685/4194304
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Proof. For the inner products of pairs in
∑d

w,1 we consider the pair δ(34)(56) and

w4. We have

(δ(34)(56), w4) = (δ(34)(56), a4 · (v1 + v2 + v3)) = (δ(34)(56) · a4, v1 + v2 + v3).

Since a4 and δ(34)(56) are in the subalgebra AH of shape (2B,3A) we know the

product a4 · δ(34)(56) from [27], hence all the inner products in the above formula

are known from Norton-Sakuma algebras and from the previous lemmas.

Then we get (δ(34)(56), w4) =
273

2097152 .

For the inner products of pairs in
∑d

w,2 we consider the pair δ(34)(56) and w5.

We have

(δ(34)(56), w5) = (δ(34)(56), a5 · (v1 + v2 + v3)) = (δ(34)(56) · a5, v1 + v2 + v3).

In the same way as in the previous case, we obtain: (δ(34)(56), w5) =
685

4194304 .

Lemma 4.20. The inner products between two w are listed in the following table.

Orbitals Representative Cycle type Group Inner Product∑w
w,1 ((1, 2)(5, 6)(7, 8), (1, 2)(5, 6)(7, 8)) 1 C2 4565/12288∑w
w,2 ((1, 2)(5, 6)(7, 8), (1, 2)(4, 5)(7, 8)) 3 S3 4415/49152∑w
w,3 ((1, 2)(5, 6)(7, 8), (1, 2)(3, 4)(7, 8)) 22 C2 × C2 629/12288

Proof. For the inner product of pairs in
∑w

w,1 and in
∑w

w,3 let us consider the

eigenvectors x9, y6 defined in the proof of Lemma 4.1.

Let us also consider the algebras of type 2B generated by a1 and a4 and a1 and

a7 respectively. Then we can take the following eigenvectors from the Table 1.2:

a4 0-eigenvector of a1

a7 0-eigenvector of a1
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By the fusion law a4 · x9 is again a 0-eigenvector of a1 and a4 · y6 is again a

1/4-eigenvector of a1.

Since a4 · y6 and a4 ·x9 are eigenvectors of a1 with different eigenvalues, they are

perpendicular by Lemma 1.9: (a4 · y6, a4 · x9) = 0.

The products a4 · x9 and a4 · y6 are expressible as linear combinations of Majo-

rana axes and odd-axes since all the algebra products between a4 and the axes in

x9 and y6 are known from Norton-Sakuma algebras and thanks to the Lemma 4.4.

Thus, except for (w4, w4), all the inner products are known from Norton-Sakuma

algebras and from the previous lemmas and we get:

(a4 · y6, a4 · x9) = − 4565
49152 + 1

4(w4, w4).

Then (w4, w4) =
4565
12288 .

By the fusion law a7 · y6 is again a 1/4-eigenvector of a1.

Since a7 · y6 and a4 ·x9 are eigenvectors of a1 with different eigenvalues, they are

perpendicular by Lemma 1.9: (a7 · y6, a4 · x9) = 0.

The products a4 ·x9 and a7 ·y6 are expressible as linear combinations of Majorana

axes and odd-axes since all the algebra products between a4 and the axes in x9

and between a7 and the axes in y6 are known from Norton-Sakuma algebras and

thanks to the Lemma 4.4.

Thus, except for (w4, w7), all the inner products are known from Norton-Sakuma

algebras and from the previous lemmas and we have:

(a7 · y6, a4 · x9) = − 629
49152 + 1

4(w4, w7).

Thus (w4, w7) =
629

12288 .

Finally, for the inner product of pairs in
∑w

w,2 let us consider a4 that is a

0-eigenvector of a1 and the following eigenvectors calculated as in Lemma 1.18:
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c̃1 := 4(a1 · (v1 + v2 + v3)− (a1, v1 + v2 + v3)a1) 1/4-eigenvector of a1

e := w5+w9−(a1, w5+w9)a1−4a1 ·(w5+w9−(w5+w9, a1)a1) 0-eigenvector of a1.

By the fusion law c̃1 · a4 = 4(a4 · (a1 · (v1 + v2 + v3))− (a1, v1 + v2 + v3)a1 · a4) is

again a 0-eigenvector of a1.

Since e and c̃1 · a4 are eigenvectors of a1 with different eigenvalues, they are

perpendicular by Lemma 1.9: (e, c̃1 · a4) = 0.

The product a1 · (v1+v2+v3) in c̃1 is expressible as a combination of 2-axes and

4-axes thanks to Norton-Sakuma algebras and the Lemma 4.3.

Moreover, we can also calculate c̃1 ·a4, since all the algebra products between a4

and the axes in c̃1 are known from Norton-Sakuma algebras and thanks to the

Lemma 4.4.

Thus, we can write (e, c̃1 · a4) as a linear combination of inner products, where,

except for (w4, w5), (w4, w6), (w4, w8), (w4, w9), all the inner products are known

from Norton-Sakuma algebras and from the previous lemmas and we get:

(e, c̃1 · a4) = − 4415
32768 + 3

8(w4, w5) +
3
8(w4, w6) +

3
8(w4, w8) +

3
8(w4, w9).

In addition, we have (w4, w5) = (w4, w6) = (w4, w8) = (w4, w9) since the

pairs of representatives are all in the same orbital
∑w

w,2 .

Thus we obtain (w4, w5) =
4415
49152 .

In this way, all the inner products between the vectors of the set B have been

found.

Proposition 4.21. The set B is linear independent.

Proof. We computed the determinant of the Gram matrix which is different from

0 so the vectors of B are all linearly independent.
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4.2. ALGEBRA PRODUCTS

In this section we will assume that the dimension of the algebra A is 26, in fact,

this representation is well known to exist.

Since the algebra product is commutative and all other products can be obtained

using the action of G, once the expression for the product of two vectors corre-

sponding to each orbital used in the previous section is known, the others can

be derived.

Recall from Section 4.1 that B = ⟨B⟩.

Lemma 4.22. Let η, ε ∈ G and let xη and xε be the corresponding axes or δ-

elements. If the pair (η, ε) is contained in one of the following orbitals:

∑
1,

∑
2,

∑
3,

∑
4,

∑∗
1,

∑∗
2,

∑∗
3,

∑
u,1,

∑
u,2,

∑
d,1,

∑
d,2,

∑u
u,1,

∑u
u,2,

∑u
d,1,∑d

d,1,
∑d

d,2,
∑

v,1,
∑∗

v,2,
∑v

v,1

then the product xη · xε ∈ B.

Proof. The algebra products in the orbitals

∑
1,
∑

2,
∑

3,
∑

4,
∑∗

1,
∑∗

2,
∑∗

3,
∑

u,1,
∑u

u,1,
∑

v,1,
∑∗

v,2,
∑v

v,1

can be found in Norton-Sakuma algebras (Table 1.1).

The algebra products in the orbitals

∑
u,2,

∑
d,1,

∑
d,2,

∑u
u,2,

∑u
d,1,

∑d
d,1,

∑d
d,2

can be obtained with the formulas in [27].

Remark 4.23. Recall that the Miyamoto involutions τai associated to the 2-axes

defined in 1.15 switch some vectors with others.

For example τa5 switches:
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a1 and a2

a4 and a6

a7 and a8

u3 and u4

v1 and v3

δ(34)(56) and δ(35)(46)

Lemma 4.24. If (η, ε) ∈
∑∗

v,1, then xη · xε ∈ B.

Proof. This is part of Lemma 4.3.

Lemma 4.25. If (η, ε) ∈
∑

v,2, then xη · xε ∈ B.

Proof. This is Lemma 4.4.

Lemma 4.26. ai · wj = aj · wi for every i, j ∈ {4, . . . , 9} such that ai · aj = 0.

Proof. Since ai ·aj = 0, ai is a 0-eigenvector of aj . Then, by Lemma 1.17 we have

ai · wj = ai · (aj · (v1 + v2 + v3)) = aj · (ai · (v1 + v2 + v3)) = aj · wi.

Lemma 4.27. If (η, ε) ∈
∑∗

w,1, then xη · xε ∈ B.

Proof. It is enough to compute a1 · w4.

Since a4 is a 0-eigenvector for a1, by Lemma 1.17 we have

a1 · w4 = a1 · (a4 · (v1 + v2 + v3)) = a4 · (a1 · (v1 + v2 + v3)).

55



By Lemma 4.3 a1 · (v1+v2+v3) is a linear combination of 2-axes and 4-axes.

Hence, by Lemma 4.4, a4 · (a1 · (v1 + v2 + v3)) ∈ B and we get the result.

Lemma 4.28. If (η, ε) ∈
∑∗

u,1, then xη · xε ∈ B.

Proof. It is enough to calculate a1 · u1.

Let us consider the algebras of type 4A generated by a1, a9 and a1, a6 re-

spectively and the algebra of type 2B generated by a1 and a4. Then we can take

the following eigenvectors from the Table 1.2:

x9 = v2 − 1
2a1 + 2(a5 + a9) + a2 0-eigenvector of a1

y9 = v2 − 1
3a1 −

2
3(a5 + a9)− 1

3a2 1/4-eigenvector of a1

x6 = v1 − 1
2a1 + 2(a6 + a8) + a3 0-eigenvector of a1

y6 = v1 − 1
3a1 −

2
3(a6 + a8)− 1

3a3 1/4-eigenvector of a1

a4 0-eigenvector of a1

By the fusion law a4 · x9 is again a 0-eigenvector of a1.

Then a1 · (a4 · x9) = 0.

We know all the products between a4 and the axes in the formula of x9 then

in a1 · (a4 · x9) the only missing products are a1 · u1 and a1 · u4 and so we get

a1 · (u1 + u4) ∈ B.

In addition τa1 permutes u1 and u4, hence a1 · (u1 − u4) =
1
32(u1 − u4).

Hence we have

a1 · u1 = 1
2(a1 · (u1 + u4) + a1 · (u1 − u4)) ∈ B.
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Lemma 4.29. If (η, ε) ∈
∑

w,1, then xη · xε ∈ B.

Proof. In this case it is enough to compute a4 · w4.

Let us consider the eigenvectors x9 and y9 of a1 defined in the proof of Lemma

4.27. By the fusion law a4 · (a4 · x9) and a4 · (a4 · y9) are again 0 and 1/4-

eigenvectors of a1, then:

a1 · (a4 · (a4 · (y9 − x9))) =
1
4a4 · (a4 · y9).

The only missing product in a4 ·(a4 ·y9) is a4 ·w4 while all the algebra products

in a1 · (a4 · (a4 · (x9 − y9))) are in B from the previous lemmas.

Then a4 · w4 ∈ B.

Lemma 4.30. A basis for the 1
32 -eigenspace of a4 is given by the set

a5 − a6, a8 − a9, u2 − u3, δ(35)(46) − δ(36)(45), a2 − a3, v1 − v2, w5 − w6, w8 − w9.

Proof. The given vectors are negated by τa4 and so they are 1
32 -eigenvectors of

a4. Moreover, they are linearly independent, as the set B is by Proposition 4.21.

To see that they generate the 1
32 -eigenspace of a4, we note that the vectors a0,

a1, a4, a7, a5 + a6, a8 + a9, u1, u2 + u3, δ(34)(56), δ(35)(46) − δ(36)(45), w4, w5 +w6,

w7, w8 + w9 are fiexd by τa4 and so they lie in A1,0, 1
4
(a4).

Since they are also linearly independent, under our assumption that A has di-

mension 26, we can deduce that the 1
32 -eigenspace has dimension 8 and the result

follows.

Lemma 4.31. If (η, ε) ∈
∑∗

w,2, then xη · xε ∈ B.

Proof. It is enough to compute a1 · w5.

Let us consider the eigenvectors x6, x9, y6, y9 for a1 already used in the proofs of

previous lemmas.

57



Define s := x9 · x6 − y9 · y6. By the fusion law s is the sum of (s, a1)a1 with a

0-eigenvector. A direct check shows that (s, a1) = 0.

Hence s is a 0-eigenvector of a1. An explicit computation of s and of the product

a1 · s shows that the only missing products are a1 ·w5, a1 ·w6, a1 ·w8 and a1 ·w9

because all the other algebra products are known from the previous lemmas.

Thus we get a1 · (w5 + w6 + w8 + w9) ∈ B.

Since τa1 swaps w5 + w6 and w8 + w9 , we have

a1 · (w5 + w6 − w8 − w9) =
1
32(w5 + w6 − w8 − w9).

So a1 ·(w5+w6) =
1
2(a1 ·(w5+w6+w8+w9)+a1 ·(w5+w6−w8−w9)) belongs to B.

Now w5−w6 is a 1
32 -eigenvector of a4 and so, by the fusion law, a1 · (w5−w6)

is again a 1
32 -eigenvector of a4. Hence, by Lemma 4.30, there exist real numbers

z1, ...., z8 such that

a1 · (w5 − w6) =z1(a5 − a6) + z2(a8 − a9) + z3(u2 − u3) + z4(δ(35)(46) − δ(36)(45))

+z5(a2 − a3) + z6(v1 − v2) + z7(w5 − w6) + z8(w8 − w9).

Since

a1 · w5 =
1
2(a1 · (w5 + w6) + a1 · (w5 − w6))

a1 · w6 =
1
2(a1 · (w5 + w6)− a1 · (w5 − w6))

we can express these two products as linear combinations of the elements of

B with coefficients that are functions in the unknowns z1, ...z8.

In the same way we can find the other products as a function of the unknowns.

Now let us consider the following eigenvectors obtained as in Lemma 1.18:

b := u2 + u3 − (u2 + u3, a1)a1 − 4(a1 · (u2 + u3)− (u2 + u3, a1)a1) 0-eigenvector

of a1

c := 4(a1 · (u2 + u3)− (u2 + u3, a1)a1) 1/4-eigenvector of a1
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b1 := u1 + u4 − (u1 + u4, a1)a1 − 4(a1 · (u1 + u4)− (u1 + u4, a1)a1) 0-eigenvector

of a1

c1 := 4(a1 · (u1 + u4)− (u1 + u4, a1)a1) 1/4-eigenvector of a1

a2 0-eigenvector of a1.

By the fusion law a2 · (b1 − b) is again a 0-eigenvector.

By the previous lemmas, we can compute explicitly the product a1 ·(a2 ·(b1−b2)))

as a linear combination of the elements of B and coefficients in terms of the un-

knowns. From the equality a1 · (a2 · (b1 − b2))) = 0, using the fact that B is a

linearly independent set (Propostition 4.21) we get:

z2 = −z1,

z3 = 0,

z8 =
1
32 − z7.

By the fusion law, a2·b is again a 0-eigenvector and a2·c is a 1/4-eigenvector of a1.

Then a1 · (a2 · b) + a1 · (a2 · c)− 1
4a2 · c = 0 and similarly as above we get:

z4 = 0,

z5 =
11
512 ,

z1 = − 13
256 ,

z6 =
13
512 ,

z7 =
9
64 ,

z8 = − 7
64 .

Hence we have written a1 ·w5 as a linear combination of the vectors a5 − a6,

a8−a9, u2−u3, δ(35)(46)−δ(36)(45), a2−a3, v1−v2, w5−w6, w8−w9 with coefficients

z1, ..., z8 and so a1 · w5 ∈ B.

Lemma 4.32. If (η, ε) ∈
∑v

v,2, then xη · xε ∈ B.

Proof. In this case it is enough to compute v2 · v3.
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Let us consider the eigenvectors v3, x9 and y9 for a1 already used in the proofs

of previous lemmas.

By the fusion law v3 · x9 and v3 · y9 are again 0 and 1/4-eigenvectors of a1

respectively, then:

a1 · (v3 · (y9 − x9)) =
1
4v3 · y9

The only missing product in the above equation is v2 · v3.

Hence v2 · v3 ∈ B.

Lemma 4.33. If (η, ε) ∈
∑

w,2, then xη · xε ∈ B.

Proof. It is enough to calculate a5 · w4.

Let us consider the algebra of type 4A generated by a1 and a6 and the algebra

of type 3A generated by a4 and a6. Then we can take the following eigenvectors

from the Table 1.2:

v0 := v1 − 1
2a6 + 2(a1 + a3) 0-eigenvector of a6

val := v1 − 1
3a6 −

2
3(a1 + a3)− 1

3a8 1/4-eigenvector of a6

u0 := u1 − 10
27a6 +

32
27(a4 + a5) 0-eigenvector of a6

ual := u1 − 8
45a6 −

32
45(a4 + a5) 1/4-eigenvector of a6

By the fusion law ual · val − (val, ual · a6)a6 and u0 · v0 are 0-eigenvectors.

When computing the product a6 · (ual · val − u0 · v0 − (val, ual · a6)a6) we see

that the only unkown term is a6 · (w4 + w5).

Since a6 ·(ual ·val−u0 ·v0−(val, ual ·a6)a6) must be zero, we get a6 ·(w4+w5) ∈ B.

In addition, since τa6 permutes w4 and w5, a6 · (w4 − w5) =
1
32(w4 − w5).

So as above it follows that a6 · w4 ∈ B.
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Lemma 4.34. If (η, ε) ∈
∑u

v,1, then xη · xε ∈ B.

Proof. It is enough to calculate u1 · v1.

Let us consider the eigenvectors u0, v0 and val for a6 already used in the proofs

of previous lemmas.

By the fusion law u0 · val is a 1/4-eigenvector and u0 · v0 is a 0-eigenvector.

The result follows applying the resurrection principle (Lemma 1.19) to eigen-

vectors u0 · v0 and u0 · val as in the proof of Lemma 4.32.

Lemma 4.35. If (η, ε) ∈
∑

w,3, then xη · xε ∈ C.

Proof. It is enough to calculate a4 · w7.

Let us consider the eigenvectors b, c and a4 for a1 already used in the proofs

of previous lemmas.

By the fusion law a4 · c is a 1/4-eigenvector and a4 · b is a 0-eigenvector, then:

a1 · (a4 · (b+ c)) = 1
4a4 · c.

The only missing product in a4 ·c is a4 ·w7 and a1 ·(a4 ·(b+c)) can be calculate

since all the other algebra products are known from the previous lemmas but in

this case there is also the vector w117 which is the product a1 · δ(34)(56).

Then a4 · w7 ∈ C.

Lemma 4.36. If (η, ε) ∈
∑v

w,1, then xη · xε ∈ B.

Proof. It is enough to calculate v3 · w4.
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Let us consider the eigenvectors b1 and c1 for a1 already used in the proofs

of previous lemmas and let us consider the algebra of type 4A generated by a2

and a4. Then we can take the following eigenvectors from the table 1.2:

v40 := v3 − 1
2a4 + 2(a2 + a3) 0-eigenvector of a1 and a4

v4al := v3 − 1
3a4 −

2
3(a2 + a3)− 1

3a7 0-eigenvector of a1 and 1/4-eigenvector of a4

By the fusion law c1 · v40 is a 1/4-eigenvector and b1 · v40 is a 0-eigenvector a1.

The result follows applying the resurrection principle (Lemma 1.19) to eigen-

vectors b1 · v40 and c1 · v40 as in the proof of Lemma 4.32.

Lemma 4.37. The algebra product a4 · w117 is in C.

Proof. By Lemma 1.17, since a4 is a 0-eigenvector of a1, we have:

a4 · w117 = a4 · (a1 · δ(34)(56)) = a1 · (a4 · δ(34)(56)).

Now a4 · δ(34)(56) is contained in the subalgebra AH , so by [27, Lemma 4.8] it

is a linear combination of elements of B dinstinct from w4, ...., w9.

When we multiply this linear combination by a1, all products are either in B by

the previous lemmas, or equal to one of w117, w118, w119. Hence a4 · w117 ∈ C.

Lemma 4.38. If (η, ε) ∈
∑∗

d,1, then xη · xε ∈ B.

Proof. It is enough to calculate a1 · δ(34)(56).

Now let us consider the following eigenvectors of a4 obtained as in the Lemma

1.18:

b56 := w5+w6−(w5+w6, a4)a4−4(a4 ·(w5+w6)−(w5+w6, a4)a4) 0-eigenvector

of a4
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c56 := 4(a4 · (w5 + w6)− (w5 + w6, a4)a4) 1/4-eigenvector of a4

By the fusion law, a1 · b56 is again a 0-eigenvector for a4 then a4 · (a1 · b56)

must be 0 but we can compute it and we see that it is equal to l− 4w117, where

l ∈ B.

So a1 · δ(34)(56) = w117 =
1
4 l ∈ B.

Lemma 4.39. If (η, ε) ∈
∑u

w,2, then xη · xε ∈ B.

Proof. It is enough to calculate u1 · w7.

Let us consider the algebra of type 3A generated by a4 and a6. Then we can

take the following eigenvectors from the Table 1.2:

u40 := u1 − 10
27a4 +

32
27(a6 + a5) 0-eigenvector of a4

u4al := u1 − 8
45a4 −

32
45(a6 + a5) 1/4-eigenvector of a4

Now let us consider the following eigenvector obtained as in the Lemma 1.18:

b7 := w7 − (w7, a4)a4 − 4(a4 · w7 − (w7, a4)a4) 0-eigenvector of a4

By the fusion law u4al ·b7 is a 1/4-eigenvector and u40 ·b7 is a 0-eigenvector, then:

a4 · ((u4al − u40) · b7) = 1
4u4al · b7.

By proceeding as in the previous cases, we get u1 · w7 ∈ B.

Lemma 4.40. If (η, ε) ∈
∑u

w,1, then xη · xε ∈ B.

Proof. It is enough to calculate u2 · w8.
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Let us consider the algebra of type 3A generated by a7 and a8. Then we can

take the following eigenvectors from Table 1.2:

u80 := u2 − 10
27a8 +

32
27(a7 + a5) 0-eigenvector of a8

u8al := u2 − 8
45a8 −

32
45(a7 + a5) 1/4-eigenvector of a8

And let us consider the following eigenvector obtained as in Lemma 1.18:

b49 := w4+w9−(w4+w9, a8)a8−4(a8 ·(w4+w9)−(w4+w9, a8)a8) 0-eigenvector

of a8

By the fusion law u8al·b49 is a 1/4-eigenvector and u80·b49 is a 0-eigenvector, then:

a8 · ((u8al − u80) · b49) = 1
4u8al · b49.

By proceeding as in the previous cases, we get u2 · w8 ∈ B.

Lemma 4.41. If (η, ε) ∈
∑v

w,2, then xη · xε ∈ C.

Proof. It is enough to calculate v1 · w4.

Let us consider the eigenvectors x6, y6 and b1 for a1.

By the fusion law y6 · b1 is a 1/4-eigenvector and x6 · b1 is a 0-eigenvector, then:

a1 · ((y6 − x6) · b1) = 1
4y6 · b1.

By proceeding as in the previous cases, we get v1 · w4 ∈ C.

Lemma 4.42. If (η, ε) ∈
∑w

w,1, then xη · xε ∈ C.

Proof. It is enough to calculate w4 · w4.
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Let us consider the eigenvectors b1 and c1 for a1.

By the fusion law b1 · c1 is a 1/4-eigenvector and b1 · b1 is a 0-eigenvector, then:

a1 · (b1 · (c1 + b1)) =
1
4b1 · c1.

By proceeding as in the previous cases, we get w4 · w4 ∈ C.

Lemma 4.43. If (η, ε) ∈
∑w

w,3, then xη · xε ∈ C.

Proof. It is enough to calculate w4 · w7.

Let us consider the eigenvectors b, b1 and c1 for a1.

By the fusion law b · c1 is a 1/4-eigenvector and b · b1 is a 0-eigenvector, then:

a1 · (b · (c1 + b1)) =
1
4b · c1.

By proceeding as in the previous cases, we get w4 · w7 ∈ C.

Lemma 4.44. We have w118 + w119 ∈ B.

Proof. We consider the eigenvectors b and c of a1 defined in the proof of 4.31.

By the fusion law the product a1 · (b · b− c · c+ 1
4(c, c)a1) must be zero.

Computing explicitely the above product we get the result.

Lemma 4.45. If (η, ε) ∈
∑v

d,1, then xη · xε ∈ C.

Proof. It is enough to calculate v3 · δ(34)(56).

Let us consider the eigenvectors p and q in S4 as in [27, Table 6]:
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p = δ(34)(56) − 7
26
(s2 + s3) +

7
215
a4 0-eigenvector of a4

q = δ(34)(56) +
1
26
(s2 + s3) +

5
213
a4 1/4-eigenvector of a4

Now let us consider the following eigenvector constructed as in the Lemma 1.18:

a23 = a2+a3−(a2+a3, a4)a4−4(a4 ·(a2+a3)−(a2+a3, a4)a4) 0-eigenvector of a4

By the fusion law a23 · q is a 1/4-eigenvector and a23 · p is a 0-eigenvector, then:

a4 · (a23 · (q − p)) = 1
4a23 · q.

By proceeding as in the previous cases, we get v3 · δ(34)(56) ∈ C.

Lemma 4.46. If (η, ε) ∈
∑d

w,1, then xη · xε ∈ B.

Proof. It is enough to calculate w4 · δ(34)(56).

Let us consider the eigenvectors p and q defined in the proof of the previous

lemma and let us consider the following eigenvector constructed as in Lemma

1.18:

c̃4 := 4(a4 · (v1 + v2 + v3)− (v1 + v2 + v3, a4)a4) 1/4-eigenvector of a4

By the fusion law c̃4 ·p is a 1/4-eigenvector and c̃4 ·q is the sum of a 0-eigenvector

and a 1-eigenvector, then:

a4 · (c̃4 · (p− q)) = 1
4 c̃4 · p−

1
4(c̃4, q)a4.

By proceeding as in the previous cases, we get δ(34)(56) · w4 ∈ B.

Lemma 4.47. The algebra product a1 · w317 is in B.
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Proof. Since a1 is a 0-eigenvector of a3, by Lemma 1.17 we have

a1 · w317 = a1 · (a3 · δ(34)(56)) = a3 · (a1 · δ(34)(56)).

The last product can be calculate since all the algebra products involved are

known from the previous lemmas.

Hence a1 · w317 ∈ B.

Lemma 4.48. If (η, ε) ∈
∑v

d,2, then xη · xε ∈ C.

Proof. It is enough to calculate v1 · δ(34)(56).

Let us consider the eigenvectors x6, y6 and b for a1.

By the fusion law b · a4 is again a 0-eigenvector of a1, so x6 · (b · a4) is a 0-

eigenvector and y6 · (b · a4) is a 1/4-eigenvector, then:

a1 · ((y6 − x6) · (b · a4)) = 1
4y6 · (b · a4).

By proceeding as in the previous cases, we get v1 · δ(34)(56) ∈ C.

Lemma 4.49. We have w217 + w317 ∈ B.

Proof. Now we want to find the sum of the vectors w217 + w317. In order to

do that let us consider the eigenvectors p and q of a4 defined in 4.45 and the

following eigenvector constructed as in Lemma 1.18:

b̃4 := v1+v2+v3− (v1+v2+v3, a4)a4−4(a4 · (v1+v2+v3)− (v1+v2+v3, a4)a4)

0-eigenvector of a4

By the fusion law, b̃4·q is again 1/4-eigenvector and b̃4·p is again 0-eigenvector

of a4 then a4 · (̃b4 · (q − p))− 1
4 b̃4 · q must be 0.

We can express this vector explicitely as a linear combination of elements of
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B ∪ {w217, w317}. So we find w217 + w317 ∈ B.

And then we can also find w118+w318, w119+w219, w217+w219 and w317+w318

as combination of vectors in B applying τa5 and τa6 to w217 + w317.

Lemma 4.50. We have C = B + ⟨w118⟩.

Proof. By Lemma 4.38 we already know that w117, w218, and w319 are in B.

From Lemma 4.49 we get

w119 =(w118 + w119)− w118 ∈ B + ⟨w118⟩

w217 =(w217 + w317)− (w317 + w318) + (w118 + w318)− w118 ∈ B + ⟨w118⟩

w219 =(w217 + w219)− (w217 + w317) + (w317 + w318)− (w118 + w318) + w118 ∈ B + ⟨w118⟩

w317 =(w317 + w318)− (w118 + w318) + w118 ∈ B + ⟨w118⟩

w318 =(w118 + w318)− w118 ∈ B + ⟨w118⟩

So now it remains to find only the vector w118 as a combination of the vectors

in B.

Lemma 4.51. The algebra product a4 · w118 is in B.

Proof. Since a4 is a 0-eigenvector of a1, by Lemma 1.17 we have

a4 · w118 = a4 · (a1 · δ(35)(46)) = a1 · (a4 · δ(35)(46)).

The last product can be calculate since all the algebra products involved are

known from the previous lemmas.

Hence a4 · w118 ∈ B.

Lemma 4.52. The algebra product a1 · w118 is in C.
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Proof. Let us consider the following eigenvector constructed as in Lemma 1.18:

a1 · δ(35)(46) − (δ(35)(46), a1)a1 1/4-eigenvector of a1.

Then a1 · (a1 · δ(35)(46) − (δ(35)(46), a1)a1) =
1
4(a1 · δ(35)(46) − (δ(35)(46), a1)a1).

Note that a1 ·δ(35)(46) is the vector w118, then a1 ·w118 =
3
4(δ(35)(46), a1)a1+

1
4w118.

Lemma 4.53. If (η, ε) ∈
∑∗

d,2, then xη · xε ∈ B.

Proof. It is enough to calculate a1 · δ(35)(46).

Let us consider the following eigenvector constructed as in Lemma 1.18:

k10 := δ(34)(56) − (δ(34)(56), a1)a1 − 4w117 + 4(δ(34)(56), a1)a1 0-eigenvector of a1

And let us consider the following eigenvectors:

a2 − a3 0-eigenvector of a1

a4 0-eigenvector of a1

By the fusion law a4 · ((a2 − a3) · k10) is again a 0-eigenvector for a1 then

a1 · (a4 · ((a2 − a3) · k10)) must be 0 but we can compute it and we see that it is

equal to l − 1
64w118, where l ∈ B.

So a1 · δ(35)(46) = w118 =
1
64 l ∈ B.

Corollary 4.54. We have C = B.

Proof. In the previous lemma we found that the vector w118 is a combination of

the vectors in B.
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Lemma 4.55. If (η, ε) ∈
∑w

w,2, then xη · xε ∈ B.

Proof. It is enough to calculate w4 · w5.

Let us consider the eigenvectors b̃4, c̃4 and b56 for a4.

By the fusion law b̃4 · b56 is a 0-eigenvector and c̃4 · b56 is a 1/4-eigenvector, then:

a4 · ((c̃4 + b̃4) · b56) = 1
4 c̃4 · b56.

The only missing products in c̃4 ·b56 are w4 ·w5, w4 ·w6 and a4 ·((c̃4+ b̃4) ·b56)

can be calculated since all the other algebra products are known from the pre-

vious lemmas.

Then w4 · (w5 + w6) ∈ B.

In addition applying the Miyamoto involution τa6 to w4 · (w5 + w6) we can find

also that w4 · (w5 − w6) ∈ B.

Then w4 · w5 =
1
2(w4 · (w5 + w6) + w4 · (w5 + w6)) ∈ B.

Lemma 4.56. If (η, ε) ∈
∑d

w,2, then xη · xε ∈ B.

Proof. It is enough to calculate w4 · δ(35)(46).

Let us consider the following eigenvector constructed as in the Lemma 1.18:

k18 := δ(35)(46) − (δ(35)(46), a1)a1 − 4w118 + 4(δ(35)(46), a1)a1 0-eigenvector of a1

b1 := b̃4 − (̃b4, a1)a1 − 4(a1 · b̃4 − (̃b4, a1)a1) 0-eigenvector of a1

c1 :=
1
3(4(a1 · b̃4 − (̃b4, a1)a1)) 1/4-eigenvector of a1

By the fusion law b̃4 ·k18 is a 0-eigenvector and c̃4 ·k18 is a 1/4-eigenvector, then:
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a1 · (k18 · (c1 − b1)) =
1
4k18 · c1.

Proceeding as in the previous cases we get w4 · δ(35)(46) ∈ B.

Proposition 4.57. B is a basis for the algebra A.

Proof. By the lemmas in this subsection we know that the product of two ele-

ments in B is contained in C and by Corollary 4.54, C = B.

Since A is generated as algebra by the elements in B, it follows that A = B.

By Proposition 4.21 B is a basis for A.

4.3. NORTON BASIS FOR C2 × S4

Note that as written in [27], instead of the vectors δ(ij)(kl) one could use different

vectors v as in the Norton basis. These vectors are idempotents with (v, v) = 2

and are in a bijective correspondence with the cyclic subgroups of order 4 in the

subgroup H isomorphic to S4 defined at the beginning of this chapter.

So we have

v1 = v(1,2)(3,5,4,6)(7,8)

v2 = v(1,2)(3,4,5,6)(7,8)

v3 = v(1,2)(3,4,6,5)(7,8)

Remark 4.58. Note that the vectors vi in the Griess algebra are actually real

4-axes but in general this is not always true for subalgebras.

In our algebra A for example these vectors are not real 4-axes arising from

Norton-Sakuma algebras of type 4A because the permutations associated to these

vectors are not the products of any two Majorana involutions in T .

We will call this vectors fake 4-axes.

Since in the next chapter we will use this basis with the vi instead of δ(ij)(kl),

we will need the scalar products between these vectors vi and the axes in B.
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Some of them are already known from Majorana’s representation of S4 with

shape (2B,3A) and Norton’s basis in [27].

We report the missing inner products in the following lemmas.

Lemma 4.59. The inner products between an axis ai and a vector vj with

i, j ∈ {1, 2, 3} are listed in the following table.

Orbitals Representative Cycle type Group Inner Product∑∗
v,1 (t∗, (1, 2)(3, 5, 4, 6)(7, 8)) 2 · 4 C4 × C2 0∑∗
v,2 (t∗, (1, 2)(3, 4, 5, 6)(7, 8)) 22 D8 1/24

Lemma 4.60. The inner products (v, v) between a 4-axis and a vector v are

listed in the following table.

Orbitals Representative Cycle type Group Inner Product∑v
v,1 ((1, 2)(3, 5, 4, 6), (1, 2)(3, 5, 4, 6)(7, 8)) 23 C4 × C2 0∑v
v,2 ((1, 2)(3, 5, 4, 6), (1, 2)(3, 4, 5, 6)(7, 8)) 3 · 2 C2 × S4 11/48

It is straightforward to check the scalar products of the tables by using the

results of Section 4.1 and expressing the vectors δ(ij)(kl) in terms of the Norton

basis.

For the sake of completeness, we give the formulas for converting vectors δ(ij)(kl)

to v and vice versa using the notation of [27]:

δ(ij)(kl) = − 1
2048(aij + akl) +

3
4096(ajl + ajk + aik + ail) − 225

131072(ui + uj + uk +

ul)− 3
2048(vj − 2vk − 2vl)

vj = − 7
27(aij+akl)+

1
54(ajl+ajk+aik+ail)+

25
64(ui+uj+uk+ul)−

2048
27 (δ(ij)(kl)−

2δ(ik)(jl) − 2δ(il)(jk)).
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Chapter 5

AMAJORANAALGEBRA FOR THEGROUP

C2 × PSL(3, 2)

In this chapter we study a Majorana representation (G,T,A,ψ,ϕ) of the group

C2 × PSL(3, 2) with shape (2B,3A,4A).

Let G = C2 × PSL(3, 2) and G = PSL(3, 2).

We identify the group G = C2 × PSL(3, 2) with the subgroup of Sym(9)

generated by (4, 6)(5, 7)(8, 9), (2, 4)(3, 5)(8, 9), (1, 2)(5, 6)(8, 9).

Then G has three classes of involutions:

(8, 9)G = {(8, 9)}, (4, 5)(6, 7)G, (4, 5)(6, 7)(8, 9)G.

We set T := (8, 9)G ∪ (4, 5)(6, 7)(8, 9)G.

There is no dihedral subgroup of order greater than 8 in the group G, while

there is a unique class of dihedral subgroups of order 6 and a unique class of

dihedral subgroups of order 8 generated by two involutions in T \ (8, 9).

Since for every s, t ∈ T we have st ̸∈ T , so by the 2A-condition, every di-

hedral subalgebra of type 2X is 2B and hence, by Lemma 1.22, every dihedral

algebra of type 4X is always 4A. Finally, we choose that every dihedral algebra

of type 3X is of type 3A.

Let z := (8, 9) ∈ G, then, as in chapter 4, we have A = A⊕ ⟨⟨z⟩⟩ where A is
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the Majorana algebra for G.

Let us list the maximal subgroups of G:

• the group G = PSL(3, 2),

• fourteen subgroups isomorphic to C2 × S4,

• eight subgroups isomorphic to C2 × (C7 : C3).

Every subgroup isomorphic to C2 × S4 has two maximal subgroups isomor-

phic to S4, of which only one is generated by involutions in T .

Consequently, there exist 14 subalgebras corresponding to the subgroups S4 of

this type (split into two conjugacy classes).

Then some inner and algebra products are already known from the table of

Norton-Sakuma algebras (Table 1.1) and [27].

We also have all the inner products of the subalgebras corresponding to sub-

groups C2 × S4 that we computed in the previous chapter.

We begin by considering the following set of vectors D0, which must be

contained in the algebra A. They are :

- 22 2-axes at, t ∈ T ,

- 28 3-axes uh, such that ⟨h⟩ is a subgroup of order 3 of G,

- 21 4-axes vg, where ⟨g⟩ is a subgroup of order 4 in G.

We need then to consider fake 4-axes coming from the Norton basis of the

subalgebras corresponding to the fourteen subgroups of G which are isomorphic

to S4.

For each element g of order 4 in G, we can consider the element of order 4

g(8, 9) that is in G but not in G.

Each of these elements g(8, 9) is contained in two different subgroups, H1 and
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H2, isomorphic to S4 and not conjugate.

Since each of these elements belongs to two distinct subgroups isomorphic to S4,

they can in principle correspond to two distinct fake 4-axes v1 and v2.

By analogy with condition 4A of the Definition 2.2 for the 4-axes, we assume

4Af-condition: Suppose g1, g2 are two elements of order 4 in G and vg1(8,9)

and vg2(8,9) are two fake 4-axes in a Majorana representation of G.

If ⟨g1⟩ = ⟨g2⟩, then vg1(8,9) = vg2(8,9).

Let D be the union of the set D0 together with the 21 fake 4-axes vg(8,9), with

⟨g⟩ a subgroup of order 4 in G coming from the Norton basis of the subalgebras

corresponding to the fourteen subgroups of G isomorphic to S4 and generated

by elements of T . Moreover, set D := ⟨D⟩.

We will compute the dimension of D.

Since both the inner and the algebra products and the spanning set D are

G-invariant, while the products are symmetric, it is sufficient to calculate the

values of the products (x, y) and x ·y with x, y ∈ D for the representatives of the

orbits of G on the set of unordered pairs of vectors from D.

5.1. INNER PRODUCTS

All inner products between two 2-axes are given by Norton-Sakuma algebras.

Inner products (at, uh), where t ∈ T and h is an element of order 3 in G, can

be computed in a subalgebra AL, where L is a maximal subgroup isomorphic to

2× S4 (and so it is known by the results of Chapter 4) unless ⟨t, h⟩ = G.

All pairs (t, ⟨h⟩) with this property are in a unique G-orbit and so the inner

products (at, uh) for all pairs (t, ⟨h⟩) such that ⟨t, h⟩ = G are all equal. We set

x1 := (at, uh) if ⟨t, h⟩ = G. (5.1)
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Inner products (at, vg), where t ∈ T and g is an element of order 4 in G, can

be computed in a subalgebra AL, where L is a maximal subgroup isomorphic to

2× S4 (and so it is known by the results of Chapter 4) unless ⟨t, g⟩ = G.

All pairs (t, ⟨g⟩) with this property are in a unique G-orbit and so the inner

products (at, vg) for all pairs (t, ⟨g⟩) such that ⟨t, g⟩ = G are all equal.

Lemma 5.1. Let t ∈ T and let g be an element of order 4 in G such that

⟨t, g⟩ = G. Then (at, vg) =
45
32x1 −

1
128 .

Proof. It is enough to consider the pair a(4,5)(6,7)(8,9), v(1,2,7,4)(3,5).

In this case v(1,2,7,4)(3,5) = a(2,4)(3,5)(8,9) + a(1,4)(2,7)(8,9) +
1
3a(1,2)(4,7)(8,9) +

1
3a(1,7)(3,5)(8,9) −

64
3 a(2,4)(3,5)(8,9) · a(1,4)(2,7)(8,9) as we see inside the algebra 4A

generated by a(2,4)(3,5)(8,9) and a(1,4)(2,7)(8,9). Since (, ) associates with · we obtain:

(a(4,5)(6,7)(8,9), v(1,2,7,4)(3,5)) = (a(4,5)(6,7)(8,9), a(2,4)(3,5)(8,9) + a(1,4)(2,7)(8,9)

+ 1
3a(1,2)(4,7)(8,9) +

1
3a(1,7)(3,5)(8,9))

− 64
3 (a(4,5)(6,7)(8,9), a(2,4)(3,5)(8,9) · a(1,4)(2,7)(8,9))

= (a(4,5)(6,7)(8,9), a(2,4)(3,5)(8,9) + a(1,4)(2,7)(8,9)

+ 1
3a(1,2)(4,7)(8,9) +

1
3a(1,7)(3,5)(8,9))

− 64
3 (a(2,4)(3,5)(8,9), a(4,5)(6,7)(8,9) · a(1,4)(2,7)(8,9)).

Now a(4,5)(6,7)(8,9) and a(1,4)(2,7)(8,9) generate an algebra of type 3A with 3-axis

uh = u(1,4,5)(2,6,7) such that ⟨(2, 4)(3, 5)(8, 9), h⟩ = G. Hence the result follows

when we substitute the product a(4,5)(6,7)(8,9) · a(1,4)(2,7)(8,9) by its expression as

a linear combination of axes in the subalgebra ⟨⟨a(4,5)(6,7)(8,9), a(1,4)(2,7)(8,9)⟩⟩.

Inner products (at, vg(8,9)), where t ∈ T and g is an element of order 4 in G,

can be computed in a subalgebra AL, where L is a maximal subgroup isomorphic

to 2×S4 (and so it is known by the results of Chapter 4) unless ⟨t, g(8, 9)⟩ = G.
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All pairs (t, ⟨g(8, 9)⟩) with this property are in a unique G-orbit and so the inner

products (at, vg(8,9)) for all pairs (t, ⟨g(8, 9)⟩) such that ⟨t, g(8, 9)⟩ = G are all

equal.

Lemma 5.2. Let t ∈ T and let g be an element of order 4 in G such that

⟨t, g(8, 9)⟩ = G. Then (at, vg(8,9)) =
15
16x1 +

29
768 .

Proof. It is enough to consider the pair a(2,7)(3,6)(8,9), v(1,3)(4,7,6,5)(8,9).

Let us consider the following 1/4-eigenvector of a(2,3)(6,7)(8,9) constructed as in

the Lemma 1.18:

c =4(a(2,3)(6,7)(8,9) · (v(1,3)(4,7,6,5)(8,9) + v(1,2)(4,6,7,5)(8,9))−

(v(1,3)(4,7,6,5)(8,9) + v(1,2)(4,6,7,5)(8,9), a(2,3)(6,7)(8,9))a(2,3)(6,7)(8,9)).

Since (2, 7)(3, 6)(8, 9) commutes with (2, 3)(6, 7)(8, 9), a(2,7)(3,6)(8,9) is a 0-

eigenvector of a(2,3)(6,7)(8,9).

Since c and a(2,7)(3,6)(8,9) are eigenvectors of a(2,3)(6,7)(8,9) with different eigen-

values, they are perpendicular and (a(2,7)(3,6)(8,9), c) = 0 by Lemma 1.9.

When we substitute the expression for c in (a(2,7)(3,6)(8,9), c) we see that the only

unknown products are

(a(2,7)(3,6)(8,9), v(1,3)(4,7,6,5)(8,9)) and (a(2,7)(3,6)(8,9), v(1,2)(4,6,7,5)(8,9)).

Since (2, 7)(3, 6)(8, 9) generates G with both (1, 3)(4, 7, 6, 5)(8, 9) and

(1, 2)(4, 6, 7, 5)(8, 9), the inner products of a(2,7)(3,6)(8,9) with v(1,3)(4,7,6,5)(8,9) and

v(1,2)(4,6,7,5)(8,9) are equal, and solving the equation we get the result.

Inner products (uh, ug), where h and g are elements of order 3 in G, can be

computed in a subalgebra AL, where L is a maximal subgroup isomorphic to

2 × S4 (and so it is known by the results of Chapter 4) unless ⟨h, g⟩ ∼= C7 : C3

or ⟨h, g⟩ = G.
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The inner products for all pairs (⟨h⟩, ⟨g⟩) such that ⟨h, g⟩ ∼= C7 : C3 are all equal,

since there are two orbitals that are the transpose of each other and the scalar

product is symmetric. Hence we only consider one of them.

Lemma 5.3. Let h and g be two elements of order 3 in G such that ⟨h, g⟩ ∼=

C7 : C3. Then (uh, ug) =
64
135x1 −

812
6075 .

Proof. We may assume h = (1, 4, 5)(3, 6, 7) and g = (1, 2, 3)(4, 5, 7).

In this case u(1,4,5)(3,6,7) =
64
135(2a(4,5)(6,7)(8,9)+2a(1,5)(3,7)(8,9)+a(1,4)(3,6)(8,9))−

2048
135 a(4,5)(6,7)(8,9) · a(1,5)(3,7)(8,9) as we see inside the algebra 3A generated by

a(4,5)(6,7)(8,9) and a(1,5)(3,7)(8,9) and since (, ) associates with · we obtain:

(uh, ug) =
64
135(2a(4,5)(6,7)(8,9) + 2a(1,5)(3,7)(8,9) + a(1,4)(3,6)(8,9), u(1,2,3)(4,5,7))

− 2048
135 (a(4,5)(6,7)(8,9) · a(1,5)(3,7)(8,9), u(1,2,3)(4,5,7))

= 64
135(2a(4,5)(6,7)(8,9) + 2a(1,5)(3,7)(8,9) + a(1,4)(3,6)(8,9), u(1,2,3)(4,5,7))

− 2048
135 (a(4,5)(6,7)(8,9), a(1,5)(3,7)(8,9) · u(1,2,3)(4,5,7)).

Now the product a(1,5)(3,7)(8,9) · u(1,2,3)(4,5,7) can be written as a combination of

vectors in D because it is contained in a subalgebra S4 and hence we know all

the inner products between them and the axis a(4,5)(6,7)(8,9) in terms of x1.

Then we obtain (u(1,4,5)(3,6,7), u(1,2,3)(4,5,7)) =
64
135x1 −

812
6075 .

Now let h, g be two elements of order 3 in G such that ⟨h, g⟩ = G.

Pairs (⟨h⟩, ⟨g⟩) of this type fall into two different G-orbitals:

- in one of them the orders of the products are {o(hg), o(hg−1)} = {4, 7},

- in the other one the orders are both 4.

We set

x2 := (uh, ug), if ⟨h, g⟩ = G and {o(hg), o(hg−1)} = {4, 7} (5.2)
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Lemma 5.4. Let h and g be two elements of order 3 in G such that ⟨h, g⟩ = G

and o(hg) = o(hg−1) = 4. Then (uh, ug) = −128
135x1 +

208
1215 .

Proof. We may assume h = (1, 4, 5)(3, 6, 7) and g = (1, 4, 2)(3, 5, 6).

In this case u(1,4,2)(3,5,6) =
64
135(2a(2,4)(3,5)(8,9)+2a(1,4)(3,6)(8,9)+a(1,2)(5,6)(8,9))−

2048
135 a(2,4)(3,5)(8,9) · a(1,4)(3,6)(8,9) as we see inside the algebra 3A generated by

a(2,4)(3,5)(8,9) and a(1,4)(3,6)(8,9) and since (, ) associates with · we obtain:

(uh, ug) =
64
135(2a(2,4)(3,5)(8,9) + 2a(1,4)(3,6)(8,9) + a(1,2)(5,6)(8,9), u(1,4,5)(3,6,7))

− 2048
135 (a(2,4)(3,5)(8,9) · a(1,4)(3,6)(8,9), u(1,4,5)(3,6,7))

= 64
135(2a(2,4)(3,5)(8,9) + 2a(1,4)(3,6)(8,9) + a(1,2)(5,6)(8,9), u(1,4,5)(3,6,7))

− 2048
135 (a(2,4)(3,5)(8,9), a(1,4)(3,6)(8,9) · u(1,4,5)(3,6,7)).

Now the product a(1,4)(3,6)(8,9) · u(1,4,5)(3,6,7) can be written as a combination of

vectors in D because it is contained in the subalgebra 3A and hence we know all

the inner products between them and the axis a(2,4)(3,5)(8,9) in terms of x1.

Then we obtain (u(1,4,5)(3,6,7), u(1,4,2)(3,5,6)) = −128
135x1 +

208
1215 .

Inner products (uh, vg), where h is an element of order 3 and g is an element

of order 4 in G, can be computed in a subalgebra AL, where L is a maximal

subgroup isomorphic to 2× S4 (and so it is known by the results of Chapter 4)

unless ⟨g, h⟩ = G.

Pairs (⟨h⟩, ⟨g⟩) of this type such that ⟨h, g⟩ = G, fall into four differentG-orbitals:

- in the first two of them the orders of the products are {o(hg), o(hg−1)} = {3, 4},

these are two cases but we will see that the values of the inner product on these

two orbitals are equal,

- in the third one the orders are both 7,
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- in the fourth one the orders are {o(hg), o(hg−1)} = {3, 7}.

Lemma 5.5. Let h be an element of order 3 and g an element of order 4 in G

such that ⟨h, g⟩ = G, o(hg) = 4 and o(hg−1) = 3.

Then (uh, vg) = −2x1 − 14
45 .

Proof. Since there are two orbitals it is enough to compute the inner prod-

ucts (uh, vg) and (uh, vg1) with h = (1, 4, 5)(3, 6, 7), g = (2, 4, 3, 5)(6, 7) and

g1 = (1, 2)(4, 6, 7, 5).

In this case u(1,4,5)(3,6,7) =
64
135(2a(4,5)(6,7)(8,9)+2a(1,5)(3,7)(8,9)+a(1,4)(3,6)(8,9))−

2048
135 a(4,5)(6,7)(8,9) · a(1,5)(3,7)(8,9) as we see inside the algebra 3A generated by

a(4,5)(6,7)(8,9) and a(1,5)(3,7)(8,9) and since (, ) associates with · we obtain:

(uh, vg) =
64
135(2a(4,5)(6,7)(8,9) + 2a(1,5)(3,7)(8,9) + a(1,4)(3,6)(8,9), v(2,4,3,5)(6,7))

− 2048
135 (a(4,5)(6,7)(8,9) · a(1,5)(3,7)(8,9), v(2,4,3,5)(6,7))

= 64
135(2a(4,5)(6,7)(8,9) + 2a(1,5)(3,7)(8,9) + a(1,4)(3,6)(8,9), v(2,4,3,5)(6,7))

− 2048
135 (a(1,5)(3,7)(8,9), a(4,5)(6,7)(8,9) · v(2,4,3,5)(6,7)).

Now the product a(4,5)(6,7)(8,9) · v(2,4,3,5)(6,7) can be written as a combination of

vectors in D because it is contained in the subalgebra 4A and hence we know all

the inner products between them and the axis a(1,5)(3,7)(8,9) in terms of x1.

Then we obtain (u(1,4,5)(3,6,7), v(2,4,3,5)(6,7)) = −2x1 − 14
45 .

Computation of (uh, vg1) is analogous.

Lemma 5.6. Let h be an element of order 3 and g an element of order 4 in G

such that ⟨h, g⟩ = G and o(hg) = o(hg−1) = 7. Then (uh, vg) = 2x1 − 1
90 .
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Proof. It is enough to consider the pair u(2,4,6)(3,5,7), v(1,3)(4,7,6,5).

In this case v(1,3)(4,7,6,5) = a(4,5)(6,7)(8,9) + a(1,3)(4,6)(8,9) +
1
3a(1,3)(5,7)(8,9) +

1
3a(4,7)(5,6)(8,9) −

64
3 a(4,5)(6,7)(8,9) · a(1,3)(4,6)(8,9) as we see inside the algebra 4A

generated by a(4,5)(6,7)(8,9) and a(1,3)(4,6)(8,9) and since (, ) associates with · we

obtain:

(u(2,4,6)(3,5,7), v(1,3)(4,7,6,5)) = (u(2,4,6)(3,5,7), a(4,5)(6,7)(8,9) + a(1,3)(4,6)(8,9)

+ 1
3a(1,3)(5,7)(8,9) +

1
3a(4,7)(5,6)(8,9))

− 64
3 (u(2,4,6)(3,5,7), a(4,5)(6,7)(8,9) · a(1,3)(4,6)(8,9))

= (u(2,4,6)(3,5,7), a(4,5)(6,7)(8,9) + a(1,3)(4,6)(8,9)

+ 1
3a(1,3)(5,7)(8,9) +

1
3a(4,7)(5,6)(8,9))

− 64
3 (a(4,5)(6,7)(8,9), u(2,4,6)(3,5,7) · a(1,3)(4,6)(8,9)).

Now the product a(1,3)(4,6)(8,9) · u(2,4,6)(3,5,7) can be written as a combination

of vectors in D because it is contained in a subalgebra S4 and hence we know all

the inner products between them and the axis a(4,5)(6,7)(8,9) in terms of x1.

Then we obtain (u(2,4,6)(3,5,7), v(1,3)(4,7,6,5)) = 2x1 − 1
90 .

Lemma 5.7. Let h be an element of order 3 and g an element of order 4 in G

such that ⟨h, g⟩ = G, o(hg) = 7 and o(hg−1) = 3.

Then (uh, vg) =
2
3x1 −

191
1080 .

Proof. It is enough to consider the pair u(1,4,5)(2,3,7), v(1,3)(4,7,6,5).

In this case v(1,3)(4,7,6,5) = a(4,5)(6,7)(8,9) + a(1,3)(5,7)(8,9) +
1
3a(1,3)(4,6)(8,9) +

1
3a(4,7)(5,6)(8,9) −

64
3 a(4,5)(6,7)(8,9) · a(1,3)(5,7)(8,9) as we see inside the algebra 4A

generated by a(4,5)(6,7)(8,9) and a(1,3)(5,7)(8,9) and since (, ) associates with · we

obtain:
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(u(1,4,5)(2,3,7), v(1,3)(4,7,6,5)) = (u(1,4,5)(2,3,7), a(4,5)(6,7)(8,9) + a(1,3)(5,7)(8,9)

+ 1
3a(1,3)(4,6)(8,9) +

1
3a(4,7)(5,6)(8,9))

− 64
3 (u(1,4,5)(2,3,7), a(4,5)(6,7)(8,9) · a(1,3)(5,7)(8,9))

= (u(1,4,5)(2,3,7), a(4,5)(6,7)(8,9) + a(1,3)(5,7)(8,9)

+ 1
3a(1,3)(4,6)(8,9) +

1
3a(4,7)(5,6)(8,9))

− 64
3 (a(4,5)(6,7)(8,9), u(1,4,5)(2,3,7) · a(1,3)(5,7)(8,9)).

Now the product a(1,3)(5,7)(8,9) · u(1,4,5)(2,3,7) can be written as a combination

of vectors in D because it is contained in a subalgebra S4 and hence we know all

the inner products between them and the axis a(4,5)(6,7)(8,9) in terms of x1.

Then we obtain (u(1,4,5)(2,3,7), v(1,3)(4,7,6,5)) =
2
3x1 −

191
1080 .

Inner products (uh, vg(8,9)), where h is an element of order 3 and g is an element

of order 4 in G, can be computed in a subalgebra AL, where L is a maximal

subgroup isomorphic to 2× S4 (and so it is known by the results of Chapter 4)

unless ⟨h, g(8, 9)⟩ = G.

Pairs (⟨h⟩, ⟨g(8, 9)⟩) of this type such that ⟨h, g(8, 9)⟩ = G, fall into four different

G-orbitals:

- in the first two the orders of the products are {o(hg(8, 9)), o(hg−1(8, 9))} =

{4, 6}, these are two cases but we will see that the values of the inner products

are the same,

- in the third one the orders are both 14,

- in the fourth one the orders are {o(hg(8, 9)), o(hg−1(8, 9))} = {6, 14}.

We set

x3 := (uh, vg(8,9)), if ⟨h, g(8, 9)⟩ = G and {o(hg(8, 9)), o(hg−1(8, 9))} = {14}

(5.3)

x4 := (uh, vg(8,9)), if ⟨h, g(8, 9)⟩ = G and {o(hg(8, 9)), o(hg−1(8, 9))} = {6, 14}

(5.4)
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x5 := (uh, vg(8,9)), if ⟨h, g(8, 9)⟩ = G and {o(hg(8, 9)), o(hg−1(8, 9))} = {4, 6}

(5.5)

for the first orbital.

x6 := (uh, vg(8,9)), if ⟨h, g(8, 9)⟩ = G and {o(hg(8, 9)), o(hg−1(8, 9))} = {4, 6}

(5.6)

for the second orbital.

Inner products (vh, vg), where h and g are elements of order 4 in G, can be com-

puted in a subalgebra AL, where L is a maximal subgroup isomorphic to 2× S4

(and so it is known by the results of Chapter 4) unless ⟨h, g⟩ = G.

Pairs (⟨h⟩, ⟨g⟩) of this type such that ⟨h, g⟩ = G, fall into three different G-

orbitals:

- in the first two the orders of the products {o(hg), o(hg−1)} = {3, 4}, these are

two cases but the two orbitals are one the transposed of the other and the inner

product is symmetric, so the values of the inner products are equal, hence we

only consider one of them,

- in the third one the orders are {o(hg), o(hg−1)} = {4, 7}.

Lemma 5.8. Let h and g be two elements of order 4 in G such that ⟨h, g⟩ = G,

o(hg) = 4 and o(hg−1) = 3. Then (vh, vg) = −15
4 x1 +

1
2 .

Proof. It is enough to consider the pair v(2,4,3,5)(6,7), v(1,2,7,4)(3,5).

In this case v(1,2,7,4)(3,5) = a(2,4)(3,5)(8,9) + a(1,4)(2,7)(8,9) +
1
3a(1,2)(4,7)(8,9) +

1
3a(1,7)(3,5)(8,9) −

64
3 a(2,4)(3,5)(8,9) · a(1,4)(2,7)(8,9) as we see inside the algebra 4A

generated by a(2,4)(3,5)(8,9) and a(1,4)(2,7)(8,9) and since (, ) associates with · we

obtain:
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(v(2,4,3,5)(6,7), v(1,2,7,4)(3,5)) = (v(2,4,3,5)(6,7), a(2,4)(3,5)(8,9) + a(1,4)(2,7)(8,9)

+ 1
3a(1,2)(4,7)(8,9) +

1
3a(1,7)(3,5)(8,9))

− 64
3 (v(2,4,3,5)(6,7), a(2,4)(3,5)(8,9) · a(1,4)(2,7)(8,9))

= (v(2,4,3,5)(6,7), a(2,4)(3,5)(8,9) + a(1,4)(2,7)(8,9)

+ 1
3a(1,2)(4,7)(8,9) +

1
3a(1,7)(3,5)(8,9))

− 64
3 (a(2,4)(3,5)(8,9), v(2,4,3,5)(6,7) · a(1,4)(2,7)(8,9)).

Now the product a(2,4)(3,5)(8,9) · v(2,4,3,5)(6,7) can be written as a combination

of vectors in D because it is contained in the subalgebra 4A and hence we know

all the inner products between them and the axis a(1,4)(2,7)(8,9) in terms of x1.

Then we obtain (v(2,4,3,5)(6,7), v(1,2,7,4)(3,5)) = −15
4 x1 +

1
2 .

Lemma 5.9. Let h and g be two elements of order 4 in G such that ⟨h, g⟩ = G,

o(hg) = 4 and o(hg−1) = 7. Then (vh, vg) =
2025
1024x2 +

1
64 .

Proof. We may assume h = (2, 4, 3, 5)(6, 7) and g = (1, 6, 3, 4)(5, 7).

In this case v(2,4,3,5)(6,7) = a(4,5)(6,7)(8,9) + a(2,4)(3,5)(8,9) +
1
3a(2,3)(6,7)(8,9) +

1
3a(2,5)(3,4)(8,9) −

64
3 a(4,5)(6,7)(8,9) · a(2,4)(3,5)(8,9) as we see inside the algebra 4A

generated by a(4,5)(6,7)(8,9) and a(2,4)(3,5)(8,9) and v(1,6,3,4)(5,7) = a(4,6)(5,7)(8,9) +

a(1,4)(3,6)(8,9) +
1
3a(1,3)(5,7)(8,9) +

1
3a(1,6)(3,4)(8,9) −

64
3 a(4,6)(5,7)(8,9) · a(1,4)(3,6)(8,9) as

we see inside the algebra 4A generated by a(4,6)(5,7)(8,9) and a(1,4)(3,6)(8,9).

Then due to the fact that (, ) associates with · we obtain:
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(vh, vg) = (a(4,5)(6,7)(8,9) + a(2,4)(3,5)(8,9) +
1
3a(2,3)(6,7)(8,9)

+ 1
3a(2,5)(3,4)(8,9) −

64
3 a(4,5)(6,7)(8,9) · a(2,4)(3,5)(8,9),

a(4,6)(5,7)(8,9) + a(1,4)(3,6)(8,9) +
1
3a(1,3)(5,7)(8,9)

+ 1
3a(1,6)(3,4)(8,9) −

64
3 a(4,6)(5,7)(8,9) · a(1,4)(3,6)(8,9))

= 64·64
3·3 (a(4,6)(5,7)(8,9) · a(2,4)(3,5)(8,9), a(1,4)(3,6)(8,9) · a(4,5)(6,7)(8,9))

− 64
3 (a(4,6)(5,7)(8,9), a(1,4)(3,6)(8,9) · 3a(4,5)(6,7)(8,9))

− 64
3 (a(4,6)(5,7)(8,9), a(1,4)(3,6)(8,9) · 3a(2,4)(3,5)(8,9))

− 64
3 (a(4,6)(5,7)(8,9), a(1,4)(3,6)(8,9) · a(2,3)(6,7)(8,9))

− 64
3 (a(4,6)(5,7)(8,9), a(1,4)(3,6)(8,9) · a(2,5)(3,4)(8,9))

+ 3(a(4,6)(5,7)(8,9), v(2,4,3,5)(6,7)) + 3(a(1,4)(3,6)(8,9), v(2,4,3,5)(6,7))

+ (a(1,3)(5,7)(8,9), v(2,4,3,5)(6,7)) + (a(1,6)(3,4)(8,9), v(2,4,3,5)(6,7)).

Now the algebra products a(4,6)(5,7)(8,9) ·a(2,4)(3,5)(8,9), a(1,4)(3,6)(8,9) ·a(4,5)(6,7)(8,9),

a(1,4)(3,6)(8,9) ·a(4,5)(6,7)(8,9), a(1,4)(3,6)(8,9) ·a(2,4)(3,5)(8,9), a(1,4)(3,6)(8,9) ·a(2,3)(6,7)(8,9),

a(1,4)(3,6)(8,9) · a(2,5)(3,4)(8,9) can be written as combinations of 2-axes, 3-axes and

4-axes and hence we know all the inner products between them and the other

two axes in terms of x2.

Then we obtain (v(2,4,3,5)(6,7), v(1,6,3,4)(5,7)) =
2025
1024x2 +

1
64 .

Inner products (vh, vg(8,9)), where h and g are elements of order 4 in G, can

be computed in a subalgebra AL, where L is a maximal subgroup isomorphic to

2× S4 (and so it is known by the results of Chapter 4) unless ⟨h, g(8, 9)⟩ = G.

Pairs (⟨h⟩, ⟨g(8, 9)⟩) of this type such that ⟨h, g(8, 9)⟩ = G, fall into three differ-

ent G-orbitals:

- in the first one the orders are {o(hg(8, 9)), o(hg−1(8, 9))} = {4, 14},

- in the last two the orders are {o(hg(8, 9)), o(hg−1(8, 9))} = {4, 6}, these are two

cases but we will see that the values of the inner products on the two orbitals

are equal.
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Lemma 5.10. Let h and g be two elements of order 4 in G such that ⟨h, g(8, 9)⟩ =

G, o(hg(8, 9)) = 4 and o(hg−1(8, 9)) = 14. Then (vh, vg(8,9)) =
25
16x1 +

55
2304 .

Proof. It is enough to consider the pair v(2,4,3,5)(6,7), v(1,5,2,6)(4,7)(8,9).

In this case v(2,4,3,5)(6,7) = a(4,5)(6,7)(8,9) + a(2,4)(3,5)(8,9) +
1
3a(2,3)(6,7)(8,9) +

1
3a(2,5)(3,4)(8,9) −

64
3 a(4,5)(6,7)(8,9) · a(2,4)(3,5)(8,9) as we see inside the algebra 4A

generated by a(4,5)(6,7)(8,9) and a(2,4)(3,5)(8,9).

(v(2,4,3,5)(6,7), v(1,5,2,6)(4,7)(8,9)) = (v(1,5,2,6)(4,7)(8,9), a(4,5)(6,7)(8,9) + a(2,4)(3,5)(8,9)

+ 1
3a(2,3)(6,7)(8,9) +

1
3a(2,5)(3,4)(8,9))

− 64
3 (v(1,5,2,6)(4,7)(8,9), a(4,5)(6,7)(8,9) · a(2,4)(3,5)(8,9))

= (v(1,5,2,6)(4,7)(8,9), a(4,5)(6,7)(8,9) + a(2,4)(3,5)(8,9)

+ 1
3a(2,3)(6,7)(8,9) +

1
3a(2,5)(3,4)(8,9))

− 64
3 (v(1,5,2,6)(4,7)(8,9) · a(4,5)(6,7)(8,9), a(2,4)(3,5)(8,9)).

Now the product a(4,5)(6,7)(8,9) · v(1,5,2,6)(4,7)(8,9) can be written as a combina-

tion of vectors in D from [27] and hence we know all the inner products between

them and the axis a(2,4)(3,5)(8,9) in terms of x1.

Then we obtain v(2,4,3,5)(6,7), v(1,5,2,6)(4,7)(8,9) =
25
16x1 +

55
2304 .

Lemma 5.11. Let h and g be two elements of order 4 in G such that ⟨h, g(8, 9)⟩ =

G, o(hg(8, 9)) = 4 and o(hg−1(8, 9)) = 6. Then (vh, vg(8,9)) =
25
96 .

Proof. Since there are two orbitals it is enough to compute the inner products

(vh, vg(8,9)) and (vh, vg1(8,9)) with h = (2, 4, 3, 5)(6, 7), g = (1, 2, 7, 4)(3, 5) and

g1 = (1, 3)(4, 7, 6, 5).
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In this case v(2,4,3,5)(6,7) = a(4,5)(6,7)(8,9) + a(2,4)(3,5)(8,9) +
1
3a(2,3)(6,7)(8,9) +

1
3a(2,5)(3,4)(8,9) −

64
3 a(4,5)(6,7)(8,9) · a(2,4)(3,5)(8,9) as we see inside the algebra 4A

generated by a(4,5)(6,7)(8,9) and a(2,4)(3,5)(8,9).

(v(2,4,3,5)(6,7), v(1,2,7,4)(3,5)(8,9)) = (v(1,2,7,4)(3,5)(8,9), a(4,5)(6,7)(8,9) + a(2,4)(3,5)(8,9)

+ 1
3a(2,3)(6,7)(8,9) +

1
3a(2,5)(3,4)(8,9))

− 64
3 (v(1,2,7,4)(3,5)(8,9), a(4,5)(6,7)(8,9) · a(2,4)(3,5)(8,9))

= (v(1,2,7,4)(3,5)(8,9), a(4,5)(6,7)(8,9) + a(2,4)(3,5)(8,9)

+ 1
3a(2,3)(6,7)(8,9) +

1
3a(2,5)(3,4)(8,9))

− 64
3 (v(1,2,7,4)(3,5)(8,9) · a(2,4)(3,5)(8,9), a(4,5)(6,7)(8,9)).

Now the product a(2,4)(3,5)(8,9) · v(1,2,7,4)(3,5)(8,9) can be written as a combina-

tion of vectors in B from [27] and hence we know all the inner products between

them and the axis a(4,5)(6,7)(8,9).

Then we obtain (v(2,4,3,5)(6,7), v(1,2,7,4)(3,5)(8,9)) =
25
96 .

The computation of (vh, vg1(8,9)) is analogous.

Inner products (vh(8,9), vg(8,9)), where h and g are elements of order 4 in G, can

be computed in a subalgebra AL, where L is a maximal subgroup isomorphic to

2×S4 (and so it is known by the results of Chapter 4) unless ⟨h(8, 9), g(8, 9)⟩ = G.

Pairs (⟨h(8, 9)⟩, ⟨g(8, 9)⟩) of this type such that ⟨h(8, 9), g(8, 9)⟩ = G, fall into

three different G-orbitals:

- in the first one the orders of the products are {o(hg), o(hg−1)} = {4, 7},

- in the last two the orders are {o(hg), o(hg−1)} = {3, 4}, these are two cases

but the two orbitals are one the transposed of the other and the inner product is

symmetric, so the values of the inner products are equal. Hence we only consider

one of them.

87



We set

x7 := (vh(8,9), vg(8,9)), if ⟨h(8, 9), g(8, 9)⟩ = G and {o(hg), o(hg−1)} = {4, 7}

(5.7)

x8 := (vh(8,9), vg(8,9)), if ⟨h(8, 9), g(8, 9)⟩ = G and {o(hg), o(hg−1)} = {3, 4}

(5.8)

This finishes the list of different inner products between two elements of D.

In the following lemmas we find relations between them and determine the values

of x1, ..., x8.

Lemma 5.12. Let t ∈ T and let h be an element of order 3 in G such that

⟨t, h⟩ = G. Then (at, uh) =
11
360 , that is x1 =

11
360 .

Proof. Let us consider h = (2, 4, 3, 5)(6, 7) and g = (1, 5, 6, 2)(3, 4).

Then o(hg(8, 9)) = 4 and o(hg−1(8, 9)) = 6 and so, by Lemma 5.11, we already

know (vh, vg(8,9)) =
25
96 .

In this case we also have v(2,4,3,5)(6,7) = a(4,5)(6,7)(8,9)+a(2,4)(3,5)(8,9)+
1
3a(2,3)(6,7)(8,9)

+ 1
3a(2,5)(3,4)(8,9) −

64
3 a(4,5)(6,7)(8,9) · a(2,4)(3,5)(8,9) as we see inside the algebra 4A

generated by a(4,5)(6,7)(8,9) and a(2,4)(3,5)(8,9).

(v(2,4,3,5)(6,7), v(1,5,6,2)(3,4)(8,9)) = (v(1,5,6,2)(3,4)(8,9), a(4,5)(6,7)(8,9) + a(2,4)(3,5)(8,9)

+ 1
3a(2,3)(6,7)(8,9) +

1
3a(2,5)(3,4)(8,9))

− 64
3 (v(1,5,6,2)(3,4)(8,9), a(4,5)(6,7)(8,9) · a(2,4)(3,5)(8,9))

= (v(1,5,6,2)(3,4)(8,9), a(4,5)(6,7)(8,9) + a(2,4)(3,5)(8,9)

+ 1
3a(2,3)(6,7)(8,9) +

1
3a(2,5)(3,4)(8,9))

− 64
3 (v(1,5,6,2)(3,4)(8,9) · a(2,4)(3,5)(8,9), a(4,5)(6,7)(8,9)).

Now the product a(2,4)(3,5)(8,9) · v(1,5,6,2)(3,4)(8,9) can be written as a combina-

tion of vectors in D from [27] and hence we know all the inner products between

88



them and the axis a(4,5)(6,7)(8,9) in terms of x1.

Then we obtain (v(2,4,3,5)(6,7), v(1,5,2,6)(4,7)(8,9)) = −15
8 x1 +

61
192 .

So −15
8 x1 +

61
192 = 25

96 and thus x1 =
11
360 .

Lemma 5.13. We have:

x4 =
1
4x6 +

1
80 ,

x5 =
15
4 x2 +

1
2x3 −

32
15x7 +

16
15x8 −

107
270 .

Proof. Let us define the following vectors:

ũ := u(1,4,5)(3,6,7) + u(1,6,7)(3,4,5) + u(1,4,7)(3,6,5) + u(1,6,5)(3,4,7),

ũ′ := u(1,4,5)(3,6,7) + u(1,6,7)(3,4,5),

v̂ := v(2,4,3,5)(6,7)(8,9) + v(2,3)(4,7,5,6)(8,9) + v(2,6,3,7)(4,5)(8,9).

Now let us consider the 0-eigenvectors b̃34 and b34 and the 1
4 -eigenvector c24 of

a(4,7)(5,6)(8,9) defined as follows (see Lemma 1.18) :

b̃34 = ũ− (ũ, a(4,7)(5,6)(8,9))a(4,7)(5,6)(8,9)

− 4(a(4,7)(5,6)(8,9) · ũ− (ũ, a(4,7)(5,6)(8,9))a(4,7)(5,6)(8,9))

b34 = ũ′ − (ũ′, a(4,7)(5,6)(8,9))a(4,7)(5,6)(8,9)

− 4(a(4,7)(5,6)(8,9) · ũ′ − (ũ′, a(4,7)(5,6)(8,9))a(4,7)(5,6)(8,9))

c24 = 4(a(4,7)(5,6)(8,9) · v̂ − (v̂, a(4,7)(5,6)(8,9))a(4,7)(5,6)(8,9))

Since b̃34 and c24 are a(4,7)(5,6)(8,9)-eigenvectors with different eigenvalues,

they are perpendicular and (̃b34, c24) = 0 by Lemma 1.9.

The explicit expressions of b̃34 and c34 as linear combinations of elements of D

can be computed in subalgebras of A corresponding to maximal subgroups iso-

morphic to 2×S4 using the results of Chapter 4. Substituting these expressions
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in (̃b34, c24) = 0 we get :

−25
24x2 −

5
36x3 +

35
36x4 +

5
18x5 −

35
144x6 +

16
27x7 −

8
27x8 +

1523
15552 = 0.

Similarly, from (b34, c24) = 0 we get:

−25
24x2 −

5
36x3 +

25
72x4 +

5
18x5 −

25
288x6 +

16
27x7 −

8
27x8 +

3289
31104 = 0.

We subtract the previous two equations to get 5
8x4 −

5
32x6 −

1
128 = 0.

Then x4 =
1
4x6 +

1
80 .

So we can also obtain x5 replacing x4 in (̃b34, c24) = 0:

x5 =
15
4 x2 +

1
2x3 −

32
15x7 +

16
15x8 −

107
270 .

Lemma 5.14. x6 =
15
8 x2 + 2x3 − 32

15x7 −
16
15x8 −

343
1080 .

Proof. Let us consider the vector v̂ defined in the proof of the previous lemma

and let us define the vector:

ṽ := v(1,6,3,4)(5,7)(8,9) + v(1,5,3,7)(4,6)(8,9) + v(1,3)(4,7,6,5)(8,9)

Now let us consider the 0-eigenvector b24 and the 1
4 -eigenvector c34 of a(4,7)(5,6)(8,9)

defined as follows (see Lemma 1.18) :

b24 = v̂ − (v̂, a(4,7)(5,6)(8,9))a(4,7)(5,6)(8,9)

− 4(a(4,7)(5,6)(8,9) · v̂ − (v̂, a(4,7)(5,6)(8,9))a(4,7)(5,6)(8,9))

c34 = 4(a(4,7)(5,6)(8,9) · ṽ − (ṽ, a(4,7)(5,6)(8,9))a(4,7)(5,6)(8,9))

Since b24 and c34 are a(4,7)(5,6)(8,9)-eigenvectors with different eigenvalues,

they are perpendicular and (b24, c34) = 0 by Lemma 1.9. So proceeding similarly

as in the proof of Lemma 5.13 we can obtain x6.
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Lemma 5.15. Let h be an element of order 3 and g an element of order 4 in G

such that ⟨h, g(8, 9)⟩ = G, o(hg(8, 9)) = 4 and o(hg−1(8, 9)) = 6.

Then (uh, vg(8,9)) =
19
108 , that is x5 = x6 =

19
108 .

Proof. We need to compute x5 and x6. Let h = (1, 4, 5)(3, 6, 7), g1 = (2, 4, 3, 5)(6, 7),

and g2 = (1, 2)(4, 6, 7, 5). Then x5 = (uh, vg1(8,9)) and x6 = (uh, vg2(8,9)).

In both cases u(1,4,5)(3,6,7) =
64
135(2a(4,5)(6,7)(8,9)+2a(1,5)(3,7)(8,9)+a(1,4)(3,6)(8,9))−

2048
135 a(4,5)(6,7)(8,9) · a(1,5)(3,7)(8,9) as we see inside the algebra 3A generated by

a(4,5)(6,7)(8,9) and a(1,5)(3,7)(8,9). Since (, ) associates with · we obtain:

(uh, vg1(8,9)) =
64
135(2a(4,5)(6,7)(8,9) + 2a(1,5)(3,7)(8,9) + a(1,4)(3,6)(8,9), v(2,4,3,5)(6,7)(8,9))

− 2048
135 (a(4,5)(6,7)(8,9) · a(1,5)(3,7)(8,9), v(2,4,3,5)(6,7)(8,9))

= 64
135(2a(4,5)(6,7)(8,9) + 2a(1,5)(3,7)(8,9) + a(1,4)(3,6)(8,9), v(2,4,3,5)(6,7)(8,9))

− 2048
135 (a(1,5)(3,7)(8,9), a(4,5)(6,7)(8,9) · v(2,4,3,5)(6,7)(8,9)).

(uh, vg2(8,9)) =
64
135(2a(4,5)(6,7)(8,9) + 2a(1,5)(3,7)(8,9) + a(1,4)(3,6)(8,9), v(1,2)(4,6,7,5)(8,9))

− 2048
135 (a(4,5)(6,7)(8,9) · a(1,5)(3,7)(8,9), v(1,2)(4,6,7,5)(8,9))

= 64
135(2a(4,5)(6,7)(8,9) + 2a(1,5)(3,7)(8,9) + a(1,4)(3,6)(8,9), v(1,2)(4,6,7,5)(8,9))

− 2048
135 (a(1,5)(3,7)(8,9), a(4,5)(6,7)(8,9) · v(1,2)(4,6,7,5)(8,9)).

Now the products a(4,5)(6,7)(8,9) ·v(2,4,3,5)(6,7)(8,9) and a(4,5)(6,7)(8,9) ·v(1,2)(4,6,7,5)(8,9)
can be computed in a subalgebra corresponding to a subgroup S4 of G and so,

by [27], they can be written as a linear combination of vectors in D.

Hence we know all the inner products between them and the axis a(1,5)(3,7)(8,9).

Then we obtain (u(1,4,5)(3,6,7), v(2,4,3,5)(6,7)(8,9)) = (u(1,4,5)(3,6,7), v(1,2)(4,6,7,5)(8,9)) =

x5 = x6 =
19
108 .

Lemma 5.16. x2 =
256
525x7 −

128
315x8 +

5
27 and x3 =

64
105x7 +

32
35x8 −

11
45 .
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Proof. By Lemma 5.15, x6 =
19
108 and thus, by Lemma 5.13, x4 =

1
4x6+

1
80 = 61

1080 .

By Lemma 5.14 and Lemma 5.13, x6 =
15
8 x2 + 2x3 − 32

15x7 −
16
15x8 −

343
1080 and

x4 =
1
4x6 +

1
80 , then x4 =

15
32x2 +

1
2x3 −

8
15x7 −

4
15x8 +

397
4320 .

Now we can replace x6 = 19
108 in the first expression and we can obtain

x3 = −15
2 x2 +

64
15x7 −

32
15x8 +

103
90 .

In the second expression we can replace x4 = 61
1080 and the expression of x3

just found and we obtain x2 =
256
525x7 −

128
315x8 +

5
27 .

Substituting the expression of x2 just found into the expression of x3, we obtain

x3 =
64
105x7 +

32
35x8 −

11
45 .

Lemma 5.17. x7 = −5x8 +
413
256 .

Proof. The result follows from the orthogonality of c34 (defined above) and

v(1,2)(4,6,7,5)(8,9), that are a 1/4 and a 0-eigenvector for a(4,7)(5,6)(8,9) respectively.

Lemma 5.18. Let h, g be two elements of order 4 in G such that ⟨h(8, 9), g(8, 9)⟩ =

G and o(hg) = 4 and o(hg−1) = 3. Then (vh(8,9), vg(8,9)) =
29
96 , that is x8 =

29
96 .

Proof. Let us consider the vector ũ defined in the proof of the lemma 5.13 and

let us consider v(1,2)(4,6,7,5)(8,9) which is a 0-eigenvector of a(4,7)(5,6)(8,9) and the

following 1/4-eigenvector of a(4,7)(5,6)(8,9) constructed as in Lemma 1.18:

c̃34 = 4(a(4,7)(5,6)(8,9) · ũ− (ũ, a(4,7)(5,6)(8,9))a(4,7)(5,6)(8,9))

From the orthogonality of c̃34 and v(1,2)(4,6,7,5) we get the result.
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We can now obtain all the inner products by replacing the values x1, ..., x8

into the previous lemmas. The following table contains the complete list:

Representative Orders Group Inner Product

((4, 5)(6, 7)(8, 9), (1, 3, 6)(2, 5, 7)) 14, 14 C2 × PSL(3, 2) 11/360

((4, 5)(6, 7)(8, 9), (1, 2, 7, 4)(3, 5)) 14, 14 C2 × PSL(3, 2) 9/256

((2, 7)(3, 6)(8, 9), (1, 3)(4, 7, 6, 5)(8, 9)) 7, 7 C2 × PSL(3, 2) 17/256

((1, 4, 5)(3, 6, 7), (1, 2, 3)(4, 5, 7)) 3, 7 C7 : C3 4/27

((1, 4, 5)(3, 6, 7), (1, 4, 2)(3, 5, 6)) 4, 4 PSL(3, 2) 32/225

((2, 4, 3, 5)(6, 7), (1, 4, 5)(3, 6, 7)) 3, 4 PSL(3, 2) 1/4

((1, 3)(4, 7, 6, 5), (2, 4, 6)(3, 5, 7)) 7, 7 PSL(3, 2) 1/20

((1, 3)(4, 7, 6, 5), (1, 4, 5)(2, 3, 7)) 3, 7 PSL(3, 2) 71/360

((2, 4, 3, 5)(6, 7), (1, 2, 7, 4)(3, 5)) 3, 4 PSL(3, 2) 37/96

((2, 4, 3, 5)(6, 7), (1, 5, 2, 6)(4, 7)(8, 9)) 4, 14 C2 × PSL(3, 2) 55/768

((2, 4, 3, 5)(6, 7), (1, 3)(4, 7, 6, 5)(8, 9)) 4, 6 C2 × PSL(3, 2) 25/96

((1, 4, 5)(3, 6, 7), (2, 4, 3, 5)(6, 7)(8, 9)) 4, 6 C2 × PSL(3, 2) 19/108

((1, 2, 3)(5, 6, 7), (1, 7)(2, 5, 4, 3)(8, 9)) 6, 14 C2 × PSL(3, 2) 61/1080

((1, 3)(4, 7, 6, 5)(8, 9), (2, 7, 3, 6)(4, 5)(8, 9)) 3, 4 C2 × PSL(3, 2) 29/96

((1, 3)(4, 7, 6, 5)(8, 9), (1, 7)(2, 5, 4, 3)(8, 9)) 4, 7 C2 × PSL(3, 2) 79/768

((1, 2, 3)(5, 6, 7), (2, 6, 4)(3, 7, 5)) 4, 7 PSL(3, 2) 76/675

((2, 4, 3, 5)(6, 7), (1, 6, 3, 4)(5, 7)) 4, 7 PSL(3, 2) 53/256

((1, 2, 3)(5, 6, 7), (2, 7, 3, 6)(4, 5)(8, 9)) 14, 14 C2 × PSL(3, 2) 17/180

Table 5.1: Some inner products in C2 × PSL(3, 2).

We can now construct the Gram matrix and calculate with GAP that the

determinant is 0 so some vectors of D are linearly dependent on the others.
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Proposition 5.19. The subspace D generated by all the vectors in D has di-

mension 80 and a basis is given by the following vectors:

- 22 2-axes at, t ∈ T ,

- 28 3-axes uh, such that ⟨h⟩ is a subgroup of order 3 of G,

- 21 4-axes vg, where ⟨g⟩ is a subgroup of order 4 in G,

- v(2,4,3,5)(6,7)(8,9)

- v(1,6,3,4)(5,7)(8,9)

- v(1,2,5,6)(3,7)(8,9)

- v(1,2,7,4)(3,5)(8,9)

- v(1,2,4,7)(3,6)(8,9)

- v(1,5,6,2)(3,4)(8,9)

- v(1,7,2,4)(5,6)(8,9)

- v(1,6)(2,3,5,4)(8,9)

- v(1,5)(2,7,6,3)(8,9)

Proof. Using the inner products of Table 5.1 we computed the rank of the Gram

matrix with respect to the set D and find that it is equal to 80. Then, with the

same procedure, we checked that the listed vectors are linearly independent.

Recall that the alternating group A12 has a subgroup K isomorphic to G

which is generated by 2A-involutions, namely: (1, 3)(2, 7)(4, 8)(5, 6), (3, 8, 7)(4, 6, 5),

(9, 10)(11, 12). With the GAP Package “Majorana Algebras” it is possible to

compute the Majorana representation of the group

22×L3(2) = ⟨(1, 3)(2, 7)(4, 8)(5, 6), (3, 8, 7)(4, 6, 5), (9, 10)(11, 12), (9, 11)(10, 12)⟩

induced by the saturated Majorana representation of A12 and then the dimen-

sion of the subalgebra corresponding to the subgroup K, which is equal to 80.
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We are therefore induced to pose the following conjecture:

Conjecture 5.20. The Majorana representation of C2 × PSL(3, 2) that we are

constructing is the same as that found by restricting the representation of A12 to

the group C2 × PSL(3, 2).

5.2. ALGEBRA PRODUCTS

Matters get considerably more difficult when one considers the algebra products.

We only have a few ideas on how to proceed in determining the missing products.

One difficulty is the fact that we don’t know large 2-closed subalgebras of A

generated by 2-axes: actually, the only maximal subgroups of G generated by

elements of T are those isomorphic to 2×S4 and, by the results of Chapter 4, the

subalgebras corresponding to these subgroups are not 2-closed. In particular, for

each of these eleven subalgebras, we need six more w vectors not contained in

the 2-closure.

On the other hand, we show that some dependence relations between vectors

w can be found.

For example, we consider the subalgebra AH , where H ∼= 2× S4, with basis:

a(4,5)(6,7)(8,9)

a(4,6)(5,7)(8,9)

a(4,7)(5,6)(8,9)

a(2,3)(6,7)(8,9)

a(2,3)(4,5)(8,9)

a(1,2)(5,6)(8,9)

a(1,2)(4,7)(8,9)

a(1,3)(5,7)(8,9)

a(1,3)(4,6)(8,9)

u(1,2,3)(5,6,7)

u(1,2,3)(4,5,7)
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u(1,2,3)(4,6,5)

u(1,2,3)(4,7,6)

v(2,3)(4,7,5,6)

v(1,3)(4,7,6,5)

v(1,2)(4,6,7,5)

v(2,3)(4,7,5,6)(8,9)

v(2,6,3,7)(4,5)(8,9)

v(1,2)(4,6,7,5)(8,9)

w5 := a(2,3)(6,7)(8,9) · (v(2,3)(4,7,5,6) + v(1,3)(4,7,6,5) + v(1,2)(4,6,7,5))

w6 := a(2,3)(4,5)(8,9) · (v(2,3)(4,7,5,6) + v(1,3)(4,7,6,5) + v(1,2)(4,6,7,5))

w11 := a(1,2)(5,6)(8,9) · (v(2,3)(4,7,5,6) + v(1,3)(4,7,6,5) + v(1,2)(4,6,7,5))

w12 := a(1,2)(4,7)(8,9) · (v(2,3)(4,7,5,6) + v(1,3)(4,7,6,5) + v(1,2)(4,6,7,5))

w13 := a(1,3)(5,7)(8,9) · (v(2,3)(4,7,5,6) + v(1,3)(4,7,6,5) + v(1,2)(4,6,7,5))

w14 := a(1,3)(4,6)(8,9) · (v(2,3)(4,7,5,6) + v(1,3)(4,7,6,5) + v(1,2)(4,6,7,5))

Lemma 5.21. We have w5 + w6, w11 + w12, w13 + w14 ∈ D.

Proof. Let us consider the product between the 2-axis a(4,6)(5,7)(8,9) and the fake

4-axis v(2,3)(4,7,5,6)(8,9). On the one hand it lies in the subalgebra AH , so with

the fomulae found in Chapter 4 one can write the product as a function of w

vectors:

a(4,6)(5,7)(8,9) · v(2,3)(4,7,5,6)(8,9) = 5
36a(4,5)(6,7)(8,9) +

1
16a(4,6)(5,7)(8,9)

+ 1
48a(4,7)(5,6)(8,9) +

1
9(a(2,3)(6,7)(8,9) + a(2,3)(4,5)(8,9))

−11
72(a(1,2)(5,6)(8,9) + a(1,2)(4,7)(8,9) + a(1,3)(5,7)(8,9)

+a(1,3)(4,6)(8,9)) +
15
512(u(1,2,3)(5,6,7) + u(1,2,3)(4,5,7)

+u(1,2,3)(4,6,5) + u(1,2,3)(4,7,6)) +
1
24v(2,3)(4,7,5,6)(8,9)

− 5
48(v(2,6,3,7)(4,5)(8,9) + v(1,2)(4,6,7,5)(8,9))

+1
3(−w5 − w6 + w11 + w12 + w13 + w14)

On the other hand a(4,6)(5,7)(8,9) · v(2,3)(4,7,5,6)(8,9) lies inside a subalgebra AK ,

where K is a subgroup of G isomorphic to S4 generated by elements of T . So it
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can be calculated as a linear combination of axes and fake 4-axes by [27]. Hence

we can obtain w11+w12+w13+w14−w5−w6 as a combination of vectors in D.

By applying the appropriate Miyamoto involutions we get that the following

vectors are in D:

w5+w6+w13+w14−w11−w12 = τ(1,3)(5,7)(8,9)(w11+w12+w13+w14−w5−w6)

w5+w6+w11+w12−w13−w14 = τ(1,2)(5,6)(8,9)(w11+w12+w13+w14−w5−w6)

So we obtain that:

w5+w6 =
1
2 [(w5+w6+w13+w14−w11−w12)+(w5+w6+w11+w12−w13−w14)]

belongs to D. Similarly we get w11 + w12 ∈ D and w13 + w14 ∈ D.

Consequently, for every maximal subgroup isomorphic to 2 × S4, we only need

to add 3 vectors w.

A possible next step could be to add to the set D three vectors w for each

maximal subgroup of G isomorphic to 2 × S4 and use the standard methods to

find relations and identifying the unknown products. Unfortunately, the number

of unknown products appearing in each equation we found is large and it is not

clear how and if the system could be solved. Another possible approach could

be to find all inner products involving the elements in D and the new vectors

w. This is not easy, since we expect that some algebra products are needed

for this task. This would allow us to determine the dimension of the subspace

generated by them and check if vectors w actually belong to D (as Conjecture

5.20 suggests) or not.
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Appendix A

Code for the Gram matrix

In order to demonstrate Proposition 5.19, we have used GAP to construct the

Gram matrix and to calculate its rank and determinant.

F:=Rationals;;

n:=92;;

A:=FullRowSpace(F,n);;

a:=Basis(A);;

a1:= a[1];; #(8,9)

a2:= a[2];; #(4,5)(6,7)(8,9)

a3:= a[3];; #(4,6)(5,7)(8,9)

a4:= a[4];; #(4,7)(5,6)(8,9)

a5:= a[5];; #(2,3)(6,7)(8,9)

a6:= a[6];; #(2,3)(4,5)(8,9)

a7:= a[7];; #(2,4)(3,5)(8,9)

a8:= a[8];; #(2,5)(3,4)(8,9)

a9:= a[9];; #(2,6)(3,7)(8,9)

a10:= a[10];; #(2,7)(3,6)(8,9)

a11:= a[11];; #(1,2)(5,6)(8,9)

a12:= a[12];; #(1,2)(4,7)(8,9)

a13:= a[13];; #(1,3)(5,7)(8,9)

a14:= a[14];; #(1,3)(4,6)(8,9)

a15:= a[15];; #(1,4)(3,6)(8,9)

a16:= a[16];; #(1,4)(2,7)(8,9)

a17:= a[17];; #(1,5)(3,7)(8,9)
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a18:= a[18];; #(1,5)(2,6)(8,9)

a19:= a[19];; #(1,6)(3,4)(8,9)

a20:= a[20];; #(1,6)(2,5)(8,9)

a21:= a[21];; #(1,7)(3,5)(8,9)

a22:= a[22];; #(1,7)(2,4)(8,9)

a[23];; #(2,4,3,5)(6,7)

a[24];; #(1,6,3,4)(5,7)

a[25];; #(1,2,5,6)(3,7)

a[26];; #(1,2,7,4)(3,5)

a[27];; #(1,2,4,7)(3,6)

a[28];; #(1,5,6,2)(3,4)

a[29];; #(1,7,2,4)(5,6)

a[30];; #(1,6)(2,3,5,4)

a[31];; #(1,5,2,6)(4,7)

a[32];; #(1,4)(2,3,7,6)

a[33];; #(1,3,6,4)(2,5)

a[34];; #(1,7)(2,5,4,3)

a[35];; #(1,3,4,6)(2,7)

a[36];; #(1,5)(2,7,6,3)

a[37];; #(2,3)(4,7,5,6)

a[38];; #(1,5,3,7)(4,6)

a[39];; #(2,6,3,7)(4,5)

a[40];; #(1,3)(4,7,6,5)

a[41];; #(1,3,5,7)(2,6)

a[42];; #(1,3,7,5)(2,4)

a[43];; #(1,2)(4,6,7,5)

a[44];; #(1,4,5)(3,6,7)

a[45];; #(1,2,3)(5,6,7)

a[46];; #(2,4,6)(3,5,7)

a[47];; #(1,6,7)(3,4,5)

a[48];; #(1,3,6)(2,5,7)
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a[49];; #(1,2,3)(4,5,7)

a[50];; #(1,3,4)(2,7,5)

a[51];; #(2,5,6)(3,4,7)

a[52];; #(1,7,3)(2,6,4)

a[53];; #(2,4,7)(3,5,6)

a[54];; #(1,5,3)(2,4,6)

a[55];; #(1,4,7)(3,6,5)

a[56];; #(1,4,5)(2,6,3)

a[57];; #(1,2,7)(3,5,6)

a[58];; #(1,6,7)(2,4,3)

a[59];; #(1,2,3)(4,6,5)

a[60];; #(1,2,5)(3,7,4)

a[61];; #(1,6,4)(2,5,7)

a[62];; #(1,4,5)(2,7,6)

a[63];; #(1,2,3)(4,7,6)

a[64];; #(1,6,5)(3,4,7)

a[65];; #(1,6,7)(2,3,5)

a[66];; #(1,4,5)(2,3,7)

a[67];; #(1,6,7)(2,5,4)

a[68];; #(1,6,2)(3,7,4)

a[69];; #(2,5,7)(3,4,6)

a[70];; #(1,5,7)(2,6,4)

a[71];; #(1,4,2)(3,5,6)

b23:= a[72];; #(2,4,3,5)(6,7)(8,9)

b24:= a[73];; #(1,6,3,4)(5,7)(8,9)

b25:= a[74];; #(1,2,5,6)(3,7)(8,9)

b26:= a[75];; #(1,2,7,4)(3,5)(8,9)

b27:= a[76];; #(1,2,4,7)(3,6)(8,9)

b28:= a[77];; #(1,5,6,2)(3,4)(8,9)

b29:= a[78];; #(1,7,2,4)(5,6)(8,9)

b30:= a[79];; #(1,6)(2,3,5,4)(8,9)

b31:= a[80];; #(1,5,2,6)(4,7)(8,9)
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b32:= a[81];; #(1,4)(2,3,7,6)(8,9)

b33:= a[82];; #(1,3,6,4)(2,5)(8,9)

b34:= a[83];; #(1,7)(2,5,4,3)(8,9)

b35:= a[84];; #(1,3,4,6)(2,7)(8,9)

b36:= a[85];; #(1,5)(2,7,6,3)(8,9)

b37:= a[86];; #(2,3)(4,7,5,6)(8,9)

b38:= a[87];; #(1,5,3,7)(4,6)(8,9)

b39:= a[88];; #(2,6,3,7)(4,5)(8,9)

b40:= a[89];; #(1,3)(4,7,6,5)(8,9)

b41:= a[90];; #(1,3,5,7)(2,6)(8,9)

b42:= a[91];; #(1,3,7,5)(2,4)(8,9)

b43:= a[92];; #(1,2)(4,6,7,5)(8,9)

# L ordered list of all vectors

L:=[ (8,9),(4,5)(6,7)(8,9), (4,6)(5,7)(8,9), (4,7)(5,6)(8,9),

(2,3)(6,7)(8,9), (2,3)(4,5)(8,9), (2,4)(3,5)(8,9), (2,5)(3,4)(8,9),

(2,6)(3,7)(8,9), (2,7)(3,6)(8,9), (1,2)(5,6)(8,9), (1,2)(4,7)(8,9),

(1,3)(5,7)(8,9), (1,3)(4,6)(8,9), (1,4)(3,6)(8,9), (1,4)(2,7)(8,9),

(1,5)(3,7)(8,9), (1,5)(2,6)(8,9), (1,6)(3,4)(8,9), (1,6)(2,5)(8,9),

(1,7)(3,5)(8,9), (1,7)(2,4)(8,9), (2,4,3,5)(6,7), (1,6,3,4)(5,7),

(1,2,5,6)(3,7), (1,2,7,4)(3,5), (1,2,4,7)(3,6), (1,5,6,2)(3,4),

(1,7,2,4)(5,6), (1,6)(2,3,5,4), (1,5,2,6)(4,7), (1,4)(2,3,7,6),

(1,3,6,4)(2,5), (1,7)(2,5,4,3), (1,3,4,6)(2,7), (1,5)(2,7,6,3),

(2,3)(4,7,5,6), (1,5,3,7)(4,6), (2,6,3,7)(4,5), (1,3)(4,7,6,5),

(1,3,5,7)(2,6), (1,3,7,5)(2,4), (1,2)(4,6,7,5), (1,4,5)(3,6,7),

(1,2,3)(5,6,7), (2,4,6)(3,5,7), (1,6,7)(3,4,5), (1,3,6)(2,5,7),

(1,2,3)(4,5,7), (1,3,4)(2,7,5), (2,5,6)(3,4,7), (1,7,3)(2,6,4),

(2,4,7)(3,5,6), (1,5,3)(2,4,6), (1,4,7)(3,6,5), (1,4,5)(2,6,3),

(1,2,7)(3,5,6), (1,6,7)(2,4,3), (1,2,3)(4,6,5), (1,2,5)(3,7,4),

(1,6,4)(2,5,7), (1,4,5)(2,7,6), (1,2,3)(4,7,6), (1,6,5)(3,4,7),

(1,6,7)(2,3,5), (1,4,5)(2,3,7), (1,6,7)(2,5,4), (1,6,2)(3,7,4),

(2,5,7)(3,4,6), (1,5,7)(2,6,4), (1,4,2)(3,5,6), (2,4,3,5)(6,7)(8,9),
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(1,6,3,4)(5,7)(8,9), (1,2,5,6)(3,7)(8,9), (1,2,7,4)(3,5)(8,9),

(1,2,4,7)(3,6)(8,9), (1,5,6,2)(3,4)(8,9), (1,7,2,4)(5,6)(8,9),

(1,6)(2,3,5,4)(8,9), (1,5,2,6)(4,7)(8,9), (1,4)(2,3,7,6)(8,9),

(1,3,6,4)(2,5)(8,9), (1,7)(2,5,4,3)(8,9), (1,3,4,6)(2,7)(8,9),

(1,5)(2,7,6,3)(8,9), (2,3)(4,7,5,6)(8,9), (1,5,3,7)(4,6)(8,9),

(2,6,3,7)(4,5)(8,9), (1,3)(4,7,6,5)(8,9), (1,3,5,7)(2,6)(8,9),

(1,3,7,5)(2,4)(8,9), (1,2)(4,6,7,5)(8,9) ];

# Algebra scalar product

Scal:=List([1..n],i->[]);;

# Scalar Product function

Sprod:=function(u,v)

local ans,rem,i,j,m;

ans:=Zero(F);

rem:=[];

for i in [1..n] do

m:=u[i]*v[i];

if m<>Zero(F) then

if IsBound(Scal[i][i]) then

ans:=ans+m*Scal[i][i];

else

Add(rem,[[i,i],m]);

fi;

fi;

for j in [i+1..n] do

m:=u[i]*v[j]+u[j]*v[i];

if m<>Zero(F) then

if IsBound(Scal[i][j]) then

ans:=ans+m*Scal[i][j];

else
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Add(rem,[[i,j],m]);

fi;

fi;

od;

od;

if rem=[] then

return ans;

else

return [ans,rem];

fi;

end;;

for i in [1..22] do

Scal[i][i]:=1*One(F);

od;;

for i in [23..43] do

Scal[i][i]:=2*One(F);

od;;

for i in [44..71] do

Scal[i][i]:=8/5*One(F);

od;;

for i in [2..92] do

Scal[1][i]:=0*One(F);

Scal[i][1]:=0*One(F);

od;;

for i in [72..92] do

Scal[i][i]:=2*One(F);

od;;
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# Products between two 2-axes

# 2B

for i in [2..22] do

for j in [2..22] do

if i <> j then

if L[i]*L[j]=L[j]*L[i] then

Scal[i][j]:=0*One(F);

Scal[j][i]:=0*One(F);

fi;

fi;

od;

od;

# 3A

for i in [2..22] do

for j in [2..22] do

if Order(L[i]*L[j])=3 then

Scal[i][j]:=13/2^8*One(F);

Scal[j][i]:=13/2^8*One(F);

fi;

od;

od;

# 4A

for i in [2..22] do

for j in [2..22] do

if Order(L[i]*L[j])=4 then

Scal[i][j]:=1/2^5*One(F);

Scal[j][i]:=1/2^5*One(F);

fi;

od;

od;
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# Products between a 2-axis and a 3-axis

g:=Group([(8,9), (4,6)(5,7), (1,2,4)(3,6,5) ]);

3axes:=AsSet(Group([(1,4,5)(3,6,7)])^g);

c:=Centralizer(g, (4,5)(6,7)(8,9));

orbc3:=Orbits(c, 3axes);

List([1..Length(orbc3)], x->orbc3[x][1]);

#[ Group([ (2,6,4)(3,7,5) ]), Group([ (1,3,2)(5,7,6) ]),

# Group([ (1,2,4)(3,6,5) ]), Group([ (1,4,5)(3,6,7) ]),

# Group([ (1,7,4)(3,5,6) ]), Group([ (1,4,5)(2,3,7) ]) ]

rep23:=[ (2,6,4)(3,7,5), (1,3,2)(5,7,6), (1,2,4)(3,6,5), (1,4,5)(3,6,7),

(1,7,4)(3,5,6), (1,4,5)(2,3,7)];

List(rep23, x->StructureDescription(Group([(4,5)(6,7)(8,9), x])));

#[ "C2 x A4", "C2 x A4", "C2 x PSL(3,2)", "S3", "S4", "S4" ]

orb23:=List([1..Length(rep23)], y->AsSet(List(g, x->[(4,5)(6,7)(8,9)^x,

Subgroup(g, [rep23[y]^x])])));;

# 3A

for i in [2..22] do

for j in [44..71] do

if L[j]^L[i]=L[j]^-1 then

Scal[i][j]:=1/4*One(F);

Scal[j][i]:=1/4*One(F);

fi;

od;

od;

# S4
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for i in [2..22] do

for j in [43..71] do

if [L[i], Subgroup(g, [L[j]])] in Union(orb23[5], orb23[6]) then

Scal[i][j]:=13/180*One(F);

Scal[j][i]:=13/180*One(F);

fi;

od;

od;

# C2 x A4

for i in [2..22] do

for j in [43..71] do

if [L[i], Subgroup(g, [L[j]])] in Union(orb23[1], orb23[2]) then

Scal[i][j]:=2/45*One(F);

Scal[j][i]:=2/45*One(F);

fi;

od;

od;

# C2 x PSL(3,2)

for i in [2..22] do

for j in [43..71] do

if [L[i], Subgroup(g, [L[j]])] in orb23[3] then

Scal[i][j]:=11/360*One(F);

Scal[j][i]:=11/360*One(F);

fi;

od;

od;

# Products between a 2-axis and a 4-axis

4axes:=AsSet(Group([(2,4,3,5)(6,7)])^g);

orbc4:=Orbits(c, 4axes);
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List([1..Length(orbc4)], x->orbc4[x][1]);

#[ Group([ (2,3)(4,6,5,7) ]), Group([ (1,3)(4,5,6,7) ]),

# Group([ (2,6,3,7)(4,5) ]), Group([ (1,7)(2,3,4,5) ]),

# Group([ (1,5,2,6)(4,7) ]), Group([ (1,2,4,7)(3,6) ]) ]

rep24:=[ (2,3)(4,6,5,7), (1,3)(4,5,6,7), (2,6,3,7)(4,5),

(1,7)(2,3,4,5), (1,5,2,6)(4,7), (1,2,4,7)(3,6)];

List(rep24, x->StructureDescription(Group([(4,5)(6,7)(8,9), x])));

#[ "C4 x C2", "D8", "D8", "C2 x S4", "C2 x S4", "C2 x PSL(3,2)" ]

orb24:=List([1..Length(rep24)], y->AsSet(List(g, x->[(4,5)(6,7)(8,9)^x,

Subgroup(g, [rep24[y]^x])])));;

# 4A

for i in [2..22] do

for j in [23..43] do

if L[j]^L[i]=L[j]^-1 then

Scal[i][j]:=3/8*One(F);

Scal[j][i]:=3/8*One(F);

fi;

od;

od;

# C4 x C2

for i in [2..22] do

for j in [23..43] do

if [L[i], Subgroup(g, [L[j]])] in orb24[1] then

Scal[i][j]:=0*One(F);

Scal[j][i]:=0*One(F);

fi;

od;

od;
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# C2 x S4

for i in [2..22] do

for j in [23..43] do

if [L[i], Subgroup(g, [L[j]])] in Union(orb24[4], orb24[5]) then

Scal[i][j]:=5/64*One(F);

Scal[j][i]:=5/64*One(F);

fi;

od;

od;

# C2 x PSL(3,2)

for i in [2..22] do

for j in [23..43] do

if [L[i], Subgroup(g, [L[j]])] in orb24[6] then

Scal[i][j]:=9/256*One(F);

Scal[j][i]:=9/256*One(F);

fi;

od;

od;

# Products between a 2-axis and a fake 4-axis

4axesf:=AsSet(Group([(2,3)(4,7,5,6)(8,9)])^g);

orbc4f:=Orbits(c, 4axesf);

List([1..Length(orbc4f)], x->orbc4f[x][1]);

#[ Group([ (2,3)(4,7,5,6)(8,9) ]), Group([ (1,3)(4,7,6,5)(8,9) ]),

# Group([ (2,7,3,6)(4,5)(8,9) ]), Group([ (1,7)(2,5,4,3)(8,9) ]),

# Group([ (1,6,2,5)(4,7)(8,9) ]), Group([ (1,7,4,2)(3,6)(8,9) ]) ]

rep24f:=[ (2,3)(4,7,5,6)(8,9), (1,3)(4,7,6,5)(8,9), (2,7,3,6)(4,5)(8,9),

(1,7)(2,5,4,3)(8,9), (1,6,2,5)(4,7)(8,9), (1,7,4,2)(3,6)(8,9) ];
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List(rep24f, x->StructureDescription(Group([(4,5)(6,7)(8,9), x])));

#[ "C4 x C2", "D8", "D8", "S4", "S4", "C2 x PSL(3,2)" ]

orb24f:=List([1..Length(rep24f)], y->AsSet(List(g, x->[(4,5)(6,7)(8,9)^x,

Subgroup(g, [rep24f[y]^x])])));;

# D8

for i in [2..22] do

for j in [72..92] do

if [L[i], Subgroup(g, [L[j]])] in Union(orb24f[2], orb24f[3]) then

Scal[i][j]:=1/24*One(F);

Scal[j][i]:=1/24*One(F);

fi;

od;

od;

# C4 x C2

for i in [2..22] do

for j in [72..92] do

if [L[i], Subgroup(g, [L[j]])] in orb24f[1] then

Scal[i][j]:=0*One(F);

Scal[j][i]:=0*One(F);

fi;

od;

od;

# S4

for i in [2..22] do

for j in [72..92] do

if [L[i], Subgroup(g, [L[j]])] in Union(orb24f[4], orb24f[5]) then

Scal[i][j]:=31/192*One(F);

Scal[j][i]:=31/192*One(F);

fi;
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od;

od;

# C2 x PSL(3,2)

for i in [2..22] do

for j in [72..92] do

if [L[i], Subgroup(g, [L[j]])] in orb24f[6] then

Scal[i][j]:=17/256*One(F);

Scal[j][i]:=17/256*One(F);

fi;

od;

od;

# Products between two 3-axes

d:=Normalizer(g,(1,2,3)(5,6,7));

orbd3:=Orbits(d, 3axes);

List([1..Length(orbd3)], x->orbd3[x][1]);

#[ Group([ (2,6,4)(3,7,5) ]), Group([ (2,4,7)(3,5,6) ]),

# Group([ (1,3,2)(5,7,6) ]), Group([ (1,3,2)(4,7,5) ]),

# Group([ (1,2,4)(3,6,5) ]), Group([ (1,2,5)(3,7,4) ]),

# Group([ (1,2,7)(3,5,6) ]) ]

rep33:=[ (2,6,4)(3,7,5), (2,4,7)(3,5,6), (1,3,2)(5,7,6), (1,3,2)(4,7,5),

(1,2,4)(3,6,5), (1,2,5)(3,7,4), (1,2,7)(3,5,6)];

List(rep33, x->[StructureDescription(Group([(1,2,3)(5,6,7), x])),

Order((1,2,3)(5,6,7)*x),Order((1,2,3)(5,6,7)*x^-1)]);

#[ [ "PSL(3,2)", 7, 4 ], [ "C7 : C3", 7, 3 ], [ "C3", 1, 3 ], [ "A4", 2, 3 ],

# [ "PSL(3,2)", 4, 4 ], [ "C7 : C3", 7, 3 ], [ "A4", 3, 2 ] ]

orb33:=List([1..Length(rep33)], y->AsSet(List(g, x->

[Subgroup(g, [(1,2,3)(5,6,7)^x]),Subgroup(g, [rep33[y]^x])])));;
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# A4

for i in [44..71] do

for j in [44..71] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb33[4], orb33[7]) then

Scal[i][j]:=56/675*One(F);

Scal[j][i]:=56/675*One(F);

fi;

od;

od;

# C7 : C3

for i in [44..71] do

for j in [44..71] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb33[2], orb33[6]) then

Scal[i][j]:=4/27*One(F);

Scal[j][i]:=4/27*One(F);

fi;

od;

od;

# PSL(3,2) order 4,7

for i in [44..71] do

for j in [44..71] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in orb33[1] then

Scal[i][j]:=76/675*One(F);

Scal[j][i]:=76/675*One(F);

fi;

od;

od;
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# PSL(3,2) order 4,4

for i in [44..71] do

for j in [44..71] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in orb33[5] then

Scal[i][j]:=32/225*One(F);

Scal[j][i]:=32/225*One(F);

fi;

od;

od;

# Products between a 3-axis and a 4-axis

orbd4:=Orbits(d, 4axes);

List([1..Length(orbd4)], x->orbd4[x][1]);

#[ Group([ (2,3)(4,6,5,7) ]), Group([ (2,6,3,7)(4,5) ]),

# Group([ (2,4,3,5)(6,7) ]), Group([ (1,7)(2,3,4,5) ]),

# Group([ (1,5)(2,3,6,7) ]), Group([ (1,4)(2,6,7,3) ]) ]

rep34:=[ (2,3)(4,6,5,7), (2,6,3,7)(4,5), (2,4,3,5)(6,7),

(1,7)(2,3,4,5), (1,5)(2,3,6,7), (1,4)(2,6,7,3)];

List(rep34, x->[StructureDescription(Group([(1,2,3)(5,6,7), x])),

Order((1,2,3)(5,6,7)*x),Order((1,2,3)(5,6,7)*x^-1)]);

#[ [ "S4", 2, 4 ], [ "PSL(3,2)", 7, 7 ], [ "PSL(3,2)", 3, 4 ],

# [ "PSL(3,2)", 7, 3 ], [ "S4", 4, 2 ], [ "PSL(3,2)", 4, 3 ] ]

orb34:=List([1..Length(rep34)], y->AsSet(List(g, x->

[Subgroup(g, [(1,2,3)(5,6,7)^x]), Subgroup(g, [rep34[y]^x])])));;

# S4

for i in [44..71] do

for j in [23..43] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in
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Union(orb34[1], orb34[5]) then

Scal[i][j]:=1/9*One(F);

Scal[j][i]:=1/9*One(F);

fi;

od;

od;

# PSL(3,2) order 3,4

for i in [44..71] do

for j in [23..43] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb34[3], orb34[6]) then

Scal[i][j]:=1/4*One(F);

Scal[j][i]:=1/4*One(F);

fi;

od;

od;

# PSL(3,2) order 7,7

for i in [44..71] do

for j in [23..43] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in orb34[2] then

Scal[i][j]:=1/20*One(F);

Scal[j][i]:=1/20*One(F);

fi;

od;

od;

# PSL(3,2) order 3,7

for i in [44..71] do

for j in [23..43] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in orb34[4] then

Scal[i][j]:=71/360*One(F);
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Scal[j][i]:=71/360*One(F);

fi;

od;

od;

# Products between a 3-axis and a fake 4-axis

orbd4f:=Orbits(d, 4axesf);

List([1..Length(orbd4f)], x->orbd4f[x][1]);

#[ Group([ (2,3)(4,7,5,6)(8,9) ]), Group([ (2,7,3,6)(4,5)(8,9) ]),

# Group([ (2,5,3,4)(6,7)(8,9) ]), Group([ (1,7)(2,5,4,3)(8,9) ]),

# Group([ (1,5)(2,7,6,3)(8,9) ]), Group([ (1,4)(2,3,7,6)(8,9) ]) ]

rep34f:=[ (2,3)(4,7,5,6)(8,9), (2,7,3,6)(4,5)(8,9), (2,5,3,4)(6,7)(8,9),

(1,7)(2,5,4,3)(8,9), (1,5)(2,7,6,3)(8,9), (1,4)(2,3,7,6)(8,9)];

List(rep34f, x->[StructureDescription(Group([(1,2,3)(5,6,7), x])),

Order((1,2,3)(5,6,7)*x),Order((1,2,3)(5,6,7)*x^-1)]);

#[ [ "S4", 4, 2 ], [ "C2 x PSL(3,2)", 14, 14 ], [ "C2 x PSL(3,2)", 4, 6 ],

# [ "C2 x PSL(3,2)", 6, 14 ], [ "S4", 2, 4 ], [ "C2 x PSL(3,2)", 6, 4 ] ]

orb34f:=List([1..Length(rep34f)], y->AsSet(List(g, x->

[Subgroup(g, [(1,2,3)(5,6,7)^x]), Subgroup(g, [rep34f[y]^x])])));;

# S4

for i in [44..71] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb34f[1], orb34f[5]) then

Scal[i][j]:=11/27*One(F);

Scal[j][i]:=11/27*One(F);

fi;

od;
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od;

# C2 x PSL(3,2) order 4,6

for i in [44..71] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb34f[3], orb34f[6]) then

Scal[i][j]:=19/108*One(F);

Scal[j][i]:=19/108*One(F);

fi;

od;

od;

# C2 x PSL(3,2) order 14,14

for i in [44..71] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in orb34f[2] then

Scal[i][j]:=17/180*One(F);

Scal[j][i]:=17/180*One(F);

fi;

od;

od;

# C2 x PSL(3,2) order 6,14

for i in [44..71] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in orb34f[4] then

Scal[i][j]:=61/1080*One(F);

Scal[j][i]:=61/1080*One(F);

fi;

od;

od;
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# Products between two 4-axes

e:=Normalizer(g,(1,6,3,4)(5,7));

orbe4:=Orbits(e, 4axes);

List([1..Length(orbe4)], x->orbe4[x][1]);

#[ Group([ (2,3)(4,6,5,7) ]), Group([ (1,3)(4,5,6,7) ]),

# Group([ (2,6,3,7)(4,5) ]), Group([ (1,6)(2,4,5,3) ]),

# Group([ (1,6,3,4)(5,7) ]), Group([ (1,3,6,4)(2,5) ]) ]

rep44:=[ (2,3)(4,6,5,7), (1,3)(4,5,6,7), (2,6,3,7)(4,5),

(1,6)(2,4,5,3), (1,6,3,4)(5,7), (1,3,6,4)(2,5)];

List(rep44, x->[StructureDescription(Group([(1,6,3,4)(5,7), x])),

Order((1,6,3,4)(5,7)*x),Order((1,6,3,4)(5,7)*x^-1)]);

#[ [ "PSL(3,2)", 3, 4 ], [ "S4", 3, 3 ], [ "PSL(3,2)", 7, 4 ],

# [ "PSL(3,2)", 3, 4 ], [ "C4", 2, 1 ], [ "S4", 3, 3 ] ]

orb44:=List([1..Length(rep44)], y->AsSet(List(g, x->

[Subgroup(g, [(1,6,3,4)(5,7)^x]), Subgroup(g, [rep44[y]^x])])));;

# S4

for i in [23..43] do

for j in [23..43] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb44[2], orb44[6]) then

Scal[i][j]:=11/48*One(F);

Scal[j][i]:=11/48*One(F);

fi;

od;

od;

# PSL(3,2) order 3,4

for i in [23..43] do
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for j in [23..43] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb44[1], orb44[4]) then

Scal[i][j]:=37/96*One(F);

Scal[j][i]:=37/96*One(F);

fi;

od;

od;

# PSL(3,2) order 4,7

for i in [23..43] do

for j in [23..43] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in orb44[3] then

Scal[i][j]:=53/256*One(F);

Scal[j][i]:=53/256*One(F);

fi;

od;

od;

# Products between a 4-axis and a fake 4-axis

orbe4f:=Orbits(e, 4axesf);

List([1..Length(orbe4f)], x->orbe4f[x][1]);

#[ Group([ (2,3)(4,7,5,6)(8,9) ]), Group([ (1,3)(4,7,6,5)(8,9) ]),

# Group([ (2,7,3,6)(4,5)(8,9) ]), Group([ (1,6)(2,3,5,4)(8,9) ]),

# Group([ (1,4,3,6)(5,7)(8,9) ]), Group([ (1,4,6,3)(2,5)(8,9) ]) ]

rep44f:=[ (2,3)(4,7,5,6)(8,9), (1,3)(4,7,6,5)(8,9), (2,7,3,6)(4,5)(8,9),

(1,6)(2,3,5,4)(8,9), (1,4,3,6)(5,7)(8,9), (1,4,6,3)(2,5)(8,9)];

List(rep44f, x->[StructureDescription(Group([(1,6,3,4)(5,7), x])),

Order((1,6,3,4)(5,7)*x),Order((1,6,3,4)(5,7)*x^-1)]);

#[ [ "C2 x PSL(3,2)", 4, 6 ], [ "C2 x S4", 6, 6 ], [ "C2 x PSL(3,2)", 4, 14 ],
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# [ "C2 x PSL(3,2)", 4, 6 ], [ "C4 x C2", 2, 2 ], [ "C2 x S4", 6, 6 ] ]

orb44f:=List([1..Length(rep44f)], y->AsSet(List(g, x->

[Subgroup(g, [(1,6,3,4)(5,7)^x]), Subgroup(g, [rep44f[y]^x])])));;

# C2 x S4

for i in [23..43] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb44f[2], orb44f[6]) then

Scal[i][j]:=11/48*One(F);

Scal[j][i]:=11/48*One(F);

fi;

od;

od;

# C4 x C2

for i in [23..43] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in orb44f[5] then

Scal[i][j]:=0*One(F);

Scal[j][i]:=0*One(F);

fi;

od;

od;

# C2 x PSL(3,2) order 4,14

for i in [23..43] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in orb44f[3] then

Scal[i][j]:=55/768*One(F);

Scal[j][i]:=55/768*One(F);

fi;
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od;

od;

# C2 x PSL(3,2) order 4,6

for i in [23..43] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb44f[1], orb44f[4]) then

Scal[i][j]:=25/96*One(F);

Scal[j][i]:=25/96*One(F);

fi;

od;

od;

# Products between two fake 4-axes

f:=Normalizer(g,(1,3)(4,7,6,5)(8,9));

orbf4f:=Orbits(f, 4axesf);

List([1..Length(orbf4f)], x->orbf4f[x][1]);

#[ Group([ (2,3)(4,7,5,6)(8,9) ]), Group([ (1,3)(4,7,6,5)(8,9) ]),

# Group([ (2,7,3,6)(4,5)(8,9) ]), Group([ (1,7)(2,5,4,3)(8,9) ]),

# Group([ (1,7,3,5)(4,6)(8,9) ]), Group([ (1,5,7,3)(2,4)(8,9) ]) ]

rep4f4f:=[ (2,3)(4,7,5,6)(8,9), (1,3)(4,7,6,5)(8,9), (2,7,3,6)(4,5)(8,9),

(1,7)(2,5,4,3)(8,9), (1,7,3,5)(4,6)(8,9), (1,5,7,3)(2,4)(8,9)];

List(rep4f4f, x->[StructureDescription(Group([(1,3)(4,7,6,5)(8,9), x])),

Order((1,3)(4,7,6,5)(8,9)*x),Order((1,3)(4,7,6,5)(8,9)*x^-1)]);

#[ [ "S4", 3, 3 ], [ "C4", 2, 1 ], [ "C2 x PSL(3,2)", 4, 3 ],

# [ "C2 x PSL(3,2)", 7, 4 ], [ "S4", 3, 3 ], [ "C2 x PSL(3,2)", 4, 3 ] ]

orb4f4f:=List([1..Length(rep4f4f)], y->AsSet(List(g, x->

[Subgroup(g,[(1,3)(4,7,6,5)(8,9)^x]), Subgroup(g, [rep4f4f[y]^x])])));;
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# S4

for i in [72..92] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb4f4f[1], orb4f4f[5]) then

Scal[i][j]:=9/16*One(F);

Scal[j][i]:=9/16*One(F);

fi;

od;

od;

# C2 x PSL(3,2) order 3,4

for i in [72..92] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in

Union(orb4f4f[3], orb4f4f[6]) then

Scal[i][j]:=29/96*One(F);

Scal[j][i]:=29/96*One(F);

fi;

od;

od;

# C2 x PSL(3,2) order 4,7

for i in [72..92] do

for j in [72..92] do

if [Subgroup(g, [L[i]]), Subgroup(g, [L[j]])] in orb4f4f[4] then

Scal[i][j]:=79/768*One(F);

Scal[j][i]:=79/768*One(F);

fi;

od;

od;
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Gram:=List([1..92],x->List([1..92],y->Sprod(a[x],a[y])));

Determinant(Gram);

# 0

Rank(Gram);

# 80

qq:=Union([1..79],[85]);;

gram:=List(qq,x->List(qq,y->Sprod(a[x],a[y])));

Rank(gram);

# 80
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