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The Virtual Element Method (VEM) for the elasticity problem is considered in the framework of the Hu-

Washizu variational formulation. In particular, a couple of low-order schemes presented in [1], are studied 
for quadrilateral meshes. The methods under consideration avoid the need of the stabilization term typical of 
the VEM, due to the introduction of a suitable projection on higher-order polynomials. The schemes are proved 
to be stable and optimally convergent in a compressible regime, including the case where highly distorted (even 
non-convex) meshes are employed.
1. Introduction

The Virtual Element Method (VEM) has been introduced in 2013 
(see [2]) as a Galerkin-type paradigm to deal with conforming approx-

imation of PDE problems capable to employ fairly arbitrary polytopal 
decomposition of the computational domain. Nowadays, VEM experi-

ences a very wide range of applications, from fluid-dynamics to elastic-

ity, from electromagnetism to phase separation problems, from contact 
to fracture problems, for instance. The relevant literature has become 
so vast, that we do not attempt to here provide an exhaustive list of 
references, but we rather refer to the very recent review paper in Acta 
Numerica [3]. One of the main issues of the VEM is that, in most cases, 
it requires the design of a suitable problem dependent stabilization term 
to prevent the occurrence of spurious modes. In a typical 2D elasticity 
context, the number of spurious modes to be stabilized depends on the 
order of the polynomial approximation assumed for the displacement 
field and on the geometry of the considered polygon; in particular, 
for a given polynomial order, the number of spurious modes gener-

ally increases with the number of edges. This aspect, together with the 
difficulties implied by the automatic mesh generation of polygons of 
arbitrary shapes and number of edges, suggests to focus the attention 
on low order quadrilaterals, investigating the possibility to formulate 
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stabilization-free VE, i.e. not requiring a stabilization term. In [4], for 
an arbitrary approximation order, D’Altri et al. proposed a 2D VEM for-

mulation in which the polynomial space is enhanced with higher order 
polynomials, showing that, for a proper choice of the polynomial or-

ders, their approach may lead to stabilization-free VEs. For the case of 
a first order approximation and with reference to 2D Poisson’s prob-

lem, Berrone et al. [5] proposed a different approach, applicable to 
polygons with any number of edges, also leading to stabilization-free 
VEs. The same approach has been extended to 2D elasticity in [6]. A 
2D mixed variational formulation of the VEM, based on Hu-Washizu 
variational principle [7], has been recently proposed in [1], where dis-

placements, strains and stresses were considered as independent fields. 
After eliminating the stress field thanks to a suitable choice of its model 
in terms of the strain model, the obtained strain-displacement frame-

work allows for a particularly simple VEM formulation, which appears 
to be ideal for the formulation of stabilization-free VEs. Focusing on first 
order quadrilaterals and pentagons, two quadrilateral and two pentag-

onal stabilization-free VEs have been proposed and their performances 
have been investigated, both in the compressible and incompressible 
case. While excellent results have been obtained in all cases, a rigorous 
proof of stability is missing.
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Limiting the study to first order quadrilaterals, the goal of the present 
work is to develop a sound theoretical analysis, proving a stability and 
convergence result for the above-mentioned method in the compressible 
regime. We point out that in actual computations, also the strain field is 
eliminated at the element level, so that the resulting proposed methods 
can be seen as purely displacement-based schemes with the following 
appealing features.

1. There is no need to introduce any non-physical parameter-

dependent stabilization term, whose choice could be problematic, 
especially in complex situations (e.g. non-linear framework).

2. The schemes are extremely robust with respect to mesh distor-

tion, delivering accurate results even in the presence of non-

convex element shapes. This is particularly important in a time-

dependent and large deformation setting, since the distortion ro-

bustness greatly mitigates the very expensive need to remesh.

We finally remark that, as already mentioned, the schemes seem 
to properly behave also in the (nearly)-incompressible regime, see [1]; 
however, a rigorous analysis of that case is beyond the aims of the 
present manuscript.

A brief outline of the paper is as follows. In Section 2 we introduce 
the Hu-Washizu variational principle for the infinitesimal 2D elasticity 
problem, while in Section 3 we detail its Virtual Element discretization. 
Section 4 is concerned with the development of the convergence and 
stability analysis in a compressible case, while Section 5 presents a few 
numerical results which, together with the ones already shown in [1], 
support the theoretical predictions.

Throughout the paper, we will make use of standard notations re-

garding Sobolev spaces, norms and seminorms (cf. [8] for example). In 
addition, the constant 𝐶 will denote a quantity independent of the mesh 
size, not necessarily the same at each occurrence.

2. The Hu-Washizu formulation of the infinitesimal elasticity 
problem

We consider the linear elasticity problem in the small displace-

ment and small deformation regime, starting from the Hu-Washizu 
functional, see [7]. Hence, assuming that vanishing displacements are 
imposed on the whole boundary 𝜕Ω (other boundary conditions can be 
treated using standard techniques), we introduce

Π ∶ (𝐷 × 𝑉 ) × Σ⟶ℝ

Π(𝜺,𝐮;𝝈) = 1
2
𝑎(𝜺,𝜺) −

(
𝜺−∇𝑆𝐮,𝝈

)
− (𝐛,𝐮)

(1)

where 𝜺, 𝐮, 𝝈, 𝐛 respectively represents the strains, the displacements, 
the stresses and the applied body forces, while 𝐷 = Σ = 𝐿2(Ω)2×2sym is 
the space of 2 × 2 symmetric tensor fields whose components are in 
𝐿2(Ω) and 𝑉 =𝐻1

0 (Ω)
2. Moreover, (⋅, ⋅)0,Ω or simply (⋅, ⋅) denotes the 

usual 𝐿2(Ω) scalar product between scalar, vector or tensor quantities, 
depending on the occurrence. Finally, ∇𝑆 denotes the symmetric part 
of the gradient, the bilinear form 𝑎(⋅, ⋅) is defined by

𝑎(𝜺,𝜼) = (𝜺,𝐃𝜼)0,Ω (2)

for every 𝜺, 𝜼 ∈ 𝐷, and 𝐃 is a positive-definite fourth order stiffness 
tensor, constant in Ω, with the usual symmetry properties.

It is well known that the solution to the elastic problem is the unique 
saddle point of the above functional, which satisfies the Euler-Lagrange 
equations:⎧⎪⎨⎪⎩

Find (𝜺,𝐮;𝝈) ∈ (𝐷 × 𝑉 ) × Σ such that

𝑎(𝜺,𝜼) +
(
∇𝑆𝐯− 𝜼,𝝈

)
= (𝐛,𝐯) ∀(𝜼,𝐯) ∈𝐷 × 𝑉(

∇𝑆𝐮− 𝜺,𝝉
)
= 0 ∀𝝉 ∈ Σ.

(3)

The well-posedness of the above problem is a consequence of the 
following two conditions, see for instance [9].
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∙ Coercivity on the kernel condition. There exists 𝛼𝑐 > 0 such that it 
holds:

𝑎(𝜼,𝜼) ≥ 𝛼𝑐
(||𝜼||20 + ||𝐯||21) (4)

for every (𝜼, 𝐯) ∈𝐾 , with

𝐾 =
{
(𝜼,𝐯) ∈𝐷 × 𝑉 ∶

(
∇𝑆𝐯− 𝜼,𝝉

)
= 0 ∀𝝉 ∈ Σ

}
. (5)

Condition (4) is an easy consequence of (5) and Korn’s inequality.

∙ Inf-sup condition. There exists 𝛽𝑐 > 0 such that it holds:

sup
(𝜼,𝐯)∈𝐷×𝑉

(
∇𝑆𝐯− 𝜼,𝝉

)
||𝜼||0 + ||𝐯||1 ≥ 𝛽𝑐 ||𝝉||0 ∀𝝉 ∈ Σ. (6)

Condition (6) is immediate, since 𝐷 = Σ =𝐿2(Ω)2×2sym.

3. Virtual element discretization

We now consider a Galerkin approximation of Problem (3). We thus 
choose finite dimensional subspaces 𝐷ℎ ⊂ 𝐷, 𝑉ℎ ⊂ 𝑉 and Σℎ ⊂ Σ, and 
we consider the following discrete problem.

⎧⎪⎨⎪⎩
Find (𝜺ℎ,𝐮ℎ;𝝈ℎ) ∈ (𝐷ℎ × 𝑉ℎ) × Σℎ such that

𝑎(𝜺ℎ,𝜼ℎ) +
(
∇𝑆𝐯ℎ − 𝜼ℎ,𝝈ℎ

)
=
(
𝐛,𝐯ℎ

)
ℎ

∀(𝜼ℎ,𝐯ℎ) ∈𝐷ℎ × 𝑉ℎ(
∇𝑆𝐮ℎ − 𝜺ℎ,𝝉ℎ

)
= 0 ∀𝝉ℎ ∈ Σℎ.

(7)

Above, 
(
𝐛,𝐯ℎ

)
ℎ

is a suitable approximation of the corresponding load-

ing term 
(
𝐛,𝐯ℎ

)
.

For our scheme 𝐷ℎ ⊂𝐷, 𝑉ℎ ⊂ 𝑉 and Σℎ ⊂ Σ are built after having in-

troduced a quadrilateral mesh ℎ. Moreover, as detailed in Section 3.1, 
𝐷ℎ and Σℎ are selected as piecewise polynomial spaces, while 𝑉ℎ takes 
advantage of the Virtual Element paradigm.

In order to have an optimal scheme, the general theory of mixed 
methods suggests to choose the discrete spaces in such a way that they 
satisfy the discrete versions of (4) and (6), see e.g. [9]:

∙ Discrete coercivity on the kernel condition. There exists 𝛼 > 0 such 
that, for every 𝐷ℎ, 𝑉ℎ and Σℎ, it holds:

𝑎(𝜼ℎ,𝜼ℎ) ≥ 𝛼
(||𝜼ℎ||20 + ||𝐯ℎ||21) (8)

for every (𝜼ℎ, 𝐯ℎ) ∈𝐾ℎ, with

𝐾ℎ =
{
(𝜼ℎ,𝐯ℎ) ∈𝐷ℎ × 𝑉ℎ ∶

(
∇𝑆𝐯ℎ − 𝜼ℎ,𝝉ℎ

)
= 0 ∀𝝉ℎ ∈ Σℎ

}
. (9)

Of course, the property above requires a kind of compatibility condition 
among 𝐷ℎ, 𝑉ℎ and Σℎ.

∙ Discrete inf-sup condition. There exists 𝛽 > 0 such that, for every 𝐷ℎ, 
𝑉ℎ and Σℎ, it holds:

sup
(𝜼ℎ,𝐯ℎ)∈𝐷ℎ×𝑉ℎ

(
∇𝑆𝐯ℎ − 𝜼ℎ,𝝉ℎ

)
||𝜼ℎ||0 + ||𝐯ℎ||1 ≥ 𝛽||𝝉ℎ||0 ∀𝝉ℎ ∈ Σℎ. (10)

We will always select 𝐷ℎ = Σℎ, so that the discrete inf-sup condition 
(10) is trivially satisfied.

As a consequence, the only relevant stability condition for the ap-

proximation scheme is (8).

Still due to the choice 𝐷ℎ = Σℎ, from (9) we infer that

(𝜼ℎ,𝐯ℎ) ∈𝐾ℎ if and only if 𝜼ℎ = 𝑃ℎ(∇𝑆𝐯ℎ), (11)

where 𝑃ℎ ∶ 𝐷 ⟶ 𝐷ℎ denotes the 𝐿2-projection. Therefore, the dis-

crete coercivity on the kernel condition (8) is satisfied if there exists 
𝛾 > 0 such that

||𝑃ℎ(∇𝑆𝐯ℎ)||0 ≥ 𝛾||∇𝑆𝐯ℎ||0 ∀𝐯ℎ ∈ 𝑉ℎ. (12)
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Fig. 1. The polygon 𝐸.
Indeed, if (𝜼ℎ, 𝐯ℎ) ∈𝐾ℎ, from (11) and (12) we get

𝑎(𝜼ℎ,𝜼ℎ) ≥ 𝐶𝐷||𝜼ℎ||20 = 𝐶𝐷

(1
2
||𝜼ℎ||20 + 1

2
||𝑃ℎ(∇𝑆𝐯ℎ)||20)

≥ 𝐶𝐷

(
1
2
||𝜼ℎ||20 + 𝛾2

2
||∇𝑆𝐯ℎ||20) ,

(13)

which, together with Korn’s inequality, gives (8).

3.1. Virtual spaces

We are now ready to introduce the specific spaces used in the dis-

cretization procedure. In each element 𝐸, we first introduce the local 
shifted cartesian coordinates 𝝃 = (𝜉, 𝜂) as

𝜉 = 𝑥− 𝑥𝐶 , 𝜂 = 𝑦− 𝑦𝐶 , (14)

where 𝒙𝐶 = (𝑥𝐶 , 𝑦𝐶 ) denotes the element centroid.

For the strain and stress fields, classical piecewise polynomials are 
selected:

Σℎ =𝐷ℎ =
{
𝜼ℎ ∈𝐷 ∶ 𝜼ℎ|𝐸 ∈𝐷ℎ(𝐸) ∀𝐸 ∈ ℎ} , (15)

where the local space 𝐷ℎ(𝐸) is a suitable space such that

ℙ0(𝐸)2×2sym ⊆𝐷ℎ(𝐸) ⊆ ℙ1(𝐸)2×2sym (16)

where, for any non negative integer 𝑘, we denote with ℙ𝑘(𝐸) the space 
of polynomials of degree at most 𝑘 and defined on 𝐸. In particular, 
𝐷ℎ(𝐸) will be of the form

𝐷ℎ(𝐸) = ∇𝑆 (ℙ1(𝐸)2)
⨁

𝑍(𝐸)
⨁

𝐷𝑏(𝐸), (17)

where

𝐷𝑏(𝐸) = Span
{(

𝜉 0
0 0

)
,

(
0 0
0 𝜂

)}
, (18)

and 𝑍(𝐸) ⊂ ℙ1(𝐸)2×2sym is a subspace such that div(𝑍(𝐸)) = 0. In the 
sequel we focus on the choice:

𝑍(𝐸) = Span
{(

𝜉 −𝜂
−𝜂 0

)
,

(
0 −𝜉
−𝜉 𝜂

)}
, (19)

which is the 7-strain-parameter scheme presented in [1].

Instead, for the displacement field, we select the VEM space

𝑉ℎ =
{
𝐯ℎ ∈ 𝑉 ∶ 𝐯ℎ|𝐸 ∈ 𝑉ℎ(𝐸) ∀𝐸 ∈ ℎ} , (20)

where the local space 𝑉ℎ(𝐸) is defined by

𝑉ℎ(𝐸) =
{
𝐯ℎ ∈𝐻1(𝐸)2 ∶div∇𝑆𝐯ℎ ∈ ℙ0(𝐸)2 , 𝐯ℎ|𝜕𝐸 ∈ 𝐶0(𝜕𝐸)2,

𝐯ℎ|𝓁 ∈ ℙ1(𝓁)2, with 𝓁 edge of 𝜕𝐸
}
.

(21)

As usual in the Virtual Element framework, the (ten) degrees of freedom 
describing any 𝐯ℎ ∈ 𝑉ℎ(𝐸) are:
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• the pointwise values of 𝐯ℎ at the quadrilateral vertices;

• the mean value of 𝐯ℎ over the element 𝐸.

We also notice that for every 𝐯ℎ ∈ 𝑉ℎ(𝐸), the local 𝐿2-projection 
𝑃ℎ(∇𝑆𝐯ℎ) can be computed using only the above degrees of freedom.

Remark 1. In actual computations, it is possible to locally eliminate 
both the stresses and the deformations from (3). Therefore, 𝐮ℎ ∈ 𝑉ℎ
turns out to be the solution of the following displacement-based prob-

lem.{
Find 𝐮ℎ ∈ 𝑉ℎ such that

𝑎(𝑃ℎ(∇𝑆𝐮ℎ), 𝑃ℎ(∇𝑆𝐯ℎ)) =
(
𝐛,𝐯ℎ

)
ℎ

∀𝐯ℎ ∈ 𝑉ℎ.
□ (22)

3.2. Load approximation

In order to deal with general quadrilaterals (convex and non-

convex), we will derive a quadrature formula which integrates ex-

actly first-degree polynomials having the vertices as integration points. 
We will actually construct the quadrature formula for a general poly-

gon; hence, in this subsection only, 𝐸 will denote a general polygon 
(convex or non-convex) with 𝑁𝑉 vertices whose local coordinates are 
𝝃𝑖 = (𝜉𝑖, 𝜂𝑖), 𝑖 = 1, … , 𝑁𝑉 (see Fig. 1). Note that, in this subsection only, 
the local coordinates (𝜉, 𝜂) do not necessarily need to be shifted by the 
centroid as in (14).

Let 𝝃 be a generic point (inside or outside the polygon) and 𝑇 𝝃

𝑖
the 

signed area of the triangle 
△
𝑇

𝝃

𝑖
having vertices 𝝃 = (𝜉, 𝜂), 𝝃𝑖 = (𝜉𝑖, 𝜂𝑖) and 

𝝃𝑖+1 = (𝜉𝑖+1, 𝜂𝑖+1), i.e.

𝑇
𝝃

𝑖
∶= 1

2
det

⎡⎢⎢⎣
1 1 1
𝜉 𝜉𝑖 𝜉𝑖+1
𝜂 𝜂𝑖 𝜂𝑖+1

⎤⎥⎥⎦ (23)

where we agree that 𝝃𝑁𝑉 +1 = 𝝃1 (see Fig. 1, left). The centroid 𝝃𝐶 of the 
polygon can be computed by taking the weighted sum of the centroids 
of the triangles 

△
𝑇

𝝃

𝑖
:

𝝃𝐶 =
𝑁𝑉∑
𝑖=1

𝑇
𝝃

𝑖|𝐸| (𝝃𝑖 + 𝝃𝑖+1 + 𝝃)
3

= 1|𝐸|
𝑁𝑉∑
𝑖=1

𝑇
𝝃

𝑖

(𝝃𝑖 + 𝝃𝑖+1)
3

+
𝝃

3

= 1|𝐸|
𝑁𝑉∑
𝑖=1

𝝃𝑖

3
(
𝑇
𝝃

𝑖−1 + 𝑇
𝝃

𝑖

)
+

𝝃

3

(24)

where we define again for simplicity 𝑇 𝝃

0 ∶= 𝑇
𝝃

𝑁𝑉
. If we take as 𝝃 the 

centroid itself 𝝃𝐶 , we obtain the identity

𝝃𝐶 = 1|𝐸|
𝑁𝑉∑
𝑖=1

𝝃𝑖

3
(
𝑇
𝝃𝐶
𝑖−1 + 𝑇

𝝃𝐶
𝑖

)
+

𝝃𝐶

3
(25)

i.e.
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Fig. 2. The quadrilateral 𝐸.
𝝃𝐶 = 1|𝐸|
𝑁𝑉∑
𝑖=1

(
𝑇
𝝃𝐶
𝑖−1 + 𝑇

𝝃𝐶
𝑖

)
2

𝝃𝑖. (26)

Hence, if we define the weights 𝜔𝑖 as (see Fig. 1, right)

𝜔𝑖 ∶=
𝑇
𝝃𝐶
𝑖−1 + 𝑇

𝝃𝐶
𝑖

2
, (27)

we have the following representation of the centroid as linear combina-

tion of the vertices:

𝝃𝐶 = 1|𝐸|
𝑁𝑉∑
𝑖=1

𝜔𝑖 𝝃𝑖. (28)

Note that some of the weights 𝜔𝑖 might be negative if the polygon is 
not convex. Finally, observing that if 𝑝1 is a polynomial of degree one 
we have

∫
𝐸

𝑝1 = |𝐸|𝑝1(𝝃𝐶 ), (29)

we can easily deduce by (28) the equality

∫
𝐸

𝑝1 =
𝑁𝑉∑
𝑖=1

𝜔𝑖 𝑝1(𝝃𝑖). (30)

The corresponding quadrature formula with nodes 𝝃𝑖 and weights 𝜔𝑖 is 
exact for linears and it works for general polygons (convex or not con-

vex). Hence, the load term in (22) on each element 𝐸 can be computed 
by(
𝐛,𝐯ℎ

)
ℎ
=
∑
𝑖

𝜔𝑖 𝐛(𝝃𝑖) ⋅ 𝐯ℎ(𝝃𝑖). (31)

Note that in this way it is possible to compute the load term directly 
from the degrees of freedom of 𝐯ℎ , as usual in the Virtual Element 
framework.

4. Stability and convergence analysis

The main aim of this section is to prove that estimate (12) holds true. 
In order to do so, we assume some shape regularity for the sequence 
of the quadrilateral meshes ℎ. A good possibility, although not the 
most general (see [2] for more details), is to assume that for all ℎ, each 
element 𝐸 in ℎ verifies:

• Assumption (M1): 𝐸 is star-shaped with respect to a ball of radius 
greater than 𝜌 ℎ𝐸 .

• Assumption (M2): Any two vertexes in 𝐸 are at least 𝑐 ℎ𝐸 apart,

where 𝜌 and 𝑐 are uniform positive constants, and ℎ𝐸 denotes the diam-

eter of 𝐸. We remark that the assumptions above allow for very general 
quadrilaterals, including non-convex and moderately distorted shapes.

We will need the following lemma, which is a consequence of ele-

mentary arguments.
145
Lemma 1. For every 𝐸 ∈ ℎ, Let 𝝃𝑖, 𝑖 = 1, … , 4, be the local shifted carte-

sian coordinates of the vertices of 𝐸 and let 𝐝1 = 𝝃3 − 𝝃1, 𝐝2 = 𝝃4 − 𝝃2 be 
the diagonals (see Fig. 2, where both the convex and the non-convex cases 
are depicted). Under the assumptions (M1) and (M2), there exist 𝐶𝑠, 𝐶 ′

𝑠 > 0
such that:|𝐝1 ⋅ 𝐝⟂2 | ≥ 𝐶𝑠|𝐝1||𝐝2|
𝐶 ′
𝑠|𝐝𝑖| ≥ ℎ𝐸 (𝑖 = 1,2),

(32)

where (⋅)⟂ denotes the clockwise 𝜋∕2 rotation operator.

Proof. We denote with 𝜗𝑖 the quadrilateral internal angle whose vertex 
is 𝝃𝑖. We then remark that assumption (M1) implies the existence of 
𝜗𝑚𝑖𝑛 and 𝜗𝑚𝑎𝑥, independent of ℎ, such that

0 < 𝜗𝑚𝑖𝑛 ≤ 𝜗𝑖 ≤ 𝜗𝑚𝑎𝑥 < 2𝜋, 𝑖 = 1,… ,4. (33)

Hence, from assumption (M2) we infer the second estimates in (32)

(the maximum angle condition 𝜗𝑖 ≤ 𝜗𝑚𝑎𝑥 < 2𝜋 is used when 𝐸 is non-

convex, and consequently one of the two diagonals is external to 𝐸).

For the first estimate in (32), we need to prove that the two diagonals 
are far from being parallel. If 𝐸 is non-convex, let us introduce the 
triangle 𝑇 as the convex envelope of 𝐸. Obviously, since condition (33)

holds, for the internal angles 𝜗𝑖 of 𝑇 we have 0 < 𝜗𝑚𝑖𝑛 < 𝜗𝑖, 𝑖 = 1, … , 3. 
Therefore, the two diagonals 𝐝1 and 𝐝2 form an angle 𝜗𝑑 such that 
0 < 𝜗𝑚𝑖𝑛 < 𝜗𝑑 < 𝜋 − 𝜗𝑚𝑖𝑛, and the first estimate of (32) follows. If 𝐸 is 
convex, the diagonal 𝐝1 splits 𝐸 into two triangles 𝑇1 and 𝑇2. At least 
one of the two triangles has internal angles 𝜗𝑖 such that 0 < 𝜗𝑚𝑖𝑛∕2 < 𝜗𝑖, 
𝑖 = 1, … , 3. Therefore, the angle 𝜗𝑑 formed by the diagonals satisfies 
0 < 𝜗𝑚𝑖𝑛∕2 < 𝜗𝑑 < 𝜋 − 𝜗𝑚𝑖𝑛∕2, and the first estimate of (32) follows also 
for this case. □

We introduce the following two spaces.

• The space

𝑉𝐻 (𝐸) =
{
𝐯𝐻 ∈ 𝑉ℎ(𝐸) ∶ div∇𝑆𝐯𝐻 = 0 , 𝐯𝐻 (𝝃𝐢) = (−1)𝑖𝝀

with 𝝀 ∈ℝ2, 𝑖 = 1,… ,4
}
.

(34)

Thus, 𝑉𝐻 (𝐸) contains a sort of hourglass-type displacement.

• The space

𝐵(𝐸) =
{
𝐯𝑏 ∈ 𝑉ℎ(𝐸) ∶ div∇𝑆𝐯𝑏 ∈ ℙ0(𝐸)2 , 𝐯𝑏|𝜕𝐸 = 0

}
. (35)

Thus, 𝐵(𝐸) contains bubble-like functions.

We now notice that the space 𝑉ℎ(𝐸) can be decomposed as:

𝑉ℎ(𝐸) = ℙ1(𝐸)2
⨁

𝑉𝐻 (𝐸)
⨁

𝐵(𝐸). (36)

In addition, the above decomposition is orthogonal with respect to 
the form (∇𝑆 ⋅, ∇𝑆 ⋅)𝐸 , as it can be verified using integration by parts. 
As a consequence, given 𝐯ℎ ∈ 𝑉ℎ(𝐸), there exists a unique triple 
(𝐯1, 𝐯𝐻, 𝐯𝑏) ∈ ℙ1(𝐸)2 × 𝑉𝐻 (𝐸) ×𝐵(𝐸) such that

𝐯ℎ = 𝐯1 + 𝐯𝐻 + 𝐯𝑏 (37)
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and

||∇𝑆𝐯ℎ||20,𝐸 = ||∇𝑆𝐯1||20,𝐸 + ||∇𝑆𝐯𝐻 ||20,𝐸 + ||∇𝑆𝐯𝑏||20,𝐸 . (38)

The following lemma will be useful for the stability analysis.

Lemma 2. Given 𝐯𝐻 ∈ 𝑉𝐻 (𝐸), there exists 𝜼𝐻 ∈𝑍(𝐸) such that(
𝜼𝐻,∇𝑆𝐯𝐻

)
0,𝐸 ≥ 𝛾𝐻 ||∇𝑆𝐯𝐻 ||20,𝐸||𝜼𝐻 ||0,𝐸 ≤ 𝐶𝐻 ||∇𝑆𝐯𝐻 ||0,𝐸 . (39)

Proof. We first notice that, if 𝜼 ∈𝑍(𝐸), then(
𝜼,∇𝑆𝐯𝐻

)
0,𝐸 = ∫

𝜕𝐸

𝐯𝐻 ⋅ 𝜼𝐧 =
∑
𝓁⊂𝜕𝐸

∫
𝓁

𝐯𝐻 ⋅ 𝜼𝐧. (40)

Since both 𝜼𝐧 and 𝐯𝐻 are linear on 𝓁, we can use the Cavalieri-Simpson 
rule to compute the integrals on the quadrilateral sides. Also observing 
that 𝐯𝐻 vanishes on each side midpoint, we get

∑
𝓁⊂𝜕𝐸

∫
𝓁

𝐯𝐻 ⋅ 𝜼𝐧 =
4∑
𝑖=1

|𝓵𝑖|
6

(
𝐯𝐻 (𝝃𝑖) ⋅ 𝜼(𝝃𝑖) + 𝐯𝐻 (𝝃𝑖+1) ⋅ 𝜼(𝝃𝑖+1)

)
𝐧𝐢. (41)

Above, 𝓵𝑖 ∶= 𝝃𝑖+1 − 𝝃𝑖 denotes the quadrilateral 𝑖-th side, |𝓵𝑖| its 
length, and we agree that 𝝃5 = 𝝃1. Taking into account that 𝐯𝐻 (𝝃𝑖) =
(−1)𝑖+1𝐯𝐻 (𝝃1), from (41) we get

∑
𝓁⊂𝜕𝐸

∫
𝓁

𝐯𝐻 ⋅ 𝜼𝐧 =
𝐯𝐻 (𝝃1)

6
⋅

( 4∑
𝑖=1

(−1)𝑖𝜼(𝝃𝑖+1)
[|𝓵𝑖|𝐧𝐢 + |𝓵𝑖+1|𝐧𝐢+𝟏]) ,

(42)

where we agree that 𝐧𝟓 = 𝐧𝟏. Noticing that |𝓵𝑖|𝐧𝐢 = 𝓵⟂
𝑖 , we get

∑
𝓁⊂𝜕𝐸

∫
𝓁

𝐯𝐻 ⋅ 𝜼𝐧 =
𝐯𝐻 (𝝃1)

6
⋅

( 4∑
𝑖=1

(−1)𝑖𝜼(𝝃𝑖+1)
[
𝓵𝑖 + 𝓵𝑖+1

]⟂)
. (43)

For the diagonals 𝐝1 = 𝓵1 +𝓵2 and 𝐝2 = 𝓵2 + 𝓵3, we then obtain∑
𝓁⊂𝜕𝐸

∫
𝓁

𝐯𝐻 ⋅ 𝜼𝐧 =
𝐯𝐻 (𝝃1)

6
⋅
[(
𝜼(𝝃4) − 𝜼(𝝃2)

)
𝐝⟂1 +

(
𝜼(𝝃3) − 𝜼(𝝃1)

)
𝐝⟂2

]
.

(44)

We now notice that every 𝜼 ∈𝑍(𝐸) can be written as

𝜼(𝝃) =
(
𝐚 ⋅ 𝝃 𝐛 ⋅ 𝝃
𝐛 ⋅ 𝝃 𝐜 ⋅ 𝝃

)
, (45)

for suitable vectors 𝐚, 𝐛, 𝐜 ∈ℝ2. Therefore it holds 𝜼(𝝃4) − 𝜼(𝝃2) = 𝜼(𝐝2)
and 𝜼(𝝃3) − 𝜼(𝝃1) = 𝜼(𝐝1), so that (44) becomes∑
𝓁⊂𝜕𝐸

∫
𝓁

𝐯𝐻 ⋅ 𝜼𝐧 =
𝐯𝐻 (𝝃1)

6
⋅
(
𝜼(𝐝2)𝐝⟂1 + 𝜼(𝐝1)𝐝⟂2

)
. (46)

Referring to (45), a direct computation gives

𝜼(𝐝2)𝐝⟂1 + 𝜼(𝐝1)𝐝⟂2 =
(
𝐚 ⋅𝑴𝒆1 + 𝐛 ⋅𝑴𝒆2
𝐛 ⋅𝑴𝒆1 + 𝐜 ⋅𝑴𝒆2

)
, (47)

where

𝑴 = (𝑚𝑖𝑗 ) ∶= 𝐝2 ⊗ 𝐝⟂1 + 𝐝1 ⊗ 𝐝⟂2 , (48)

and 𝒆𝑖 are the vectors of the usual canonical basis in ℝ2. In (45), we 
now select

𝐚 = (𝛿1,0)𝑇 , 𝐜 = (0, 𝛿2)𝑇 and 𝐛 = −(𝛿2, 𝛿1)𝑇 , (49)

where 𝜹 ∶= (𝛿1, 𝛿2)𝑇 is a vector to be chosen. This way, the correspond-

ing 𝜼 in (45) satisfies 𝜼 ∈𝑍(𝐸) (see (19)), and (47) can be written as
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𝜼(𝐝2)𝐝⟂1 + 𝜼(𝐝1)𝐝⟂2 =
(

(𝑚11 −𝑚22)𝛿1 −𝑚12𝛿2
−𝑚21𝛿1 + (𝑚22 −𝑚11)𝛿2

)
=𝑴𝜹, (50)

with

𝑴 ∶=
(
(𝑚11 −𝑚22) −𝑚12

−𝑚21 (𝑚22 −𝑚11)

)
=
(
2𝑚11 −𝑚12
−𝑚21 2𝑚22

)
. (51)

For the last equality in (51) we have used that 𝑴 has vanishing trace, 
see (48). We now notice that 𝑴 has eigenvectors 𝐝1 (with eigenvalue 
𝐝1 ⋅𝐝⟂2 ) and 𝐝2 (with eigenvalue −𝐝1 ⋅𝐝⟂2 ), hence det(𝑴) = −|𝐝1 ⋅𝐝⟂2 |2 <
0 (see Lemma 1). It follows that

det(𝑴) = 3𝑚11𝑚22 +det(𝑴) = −3𝑚2
11 +det(𝑴) = −3𝑚2

11 − |𝐝1 ⋅𝐝⟂2 |2 < 0,

(52)

hence 𝑴 is invertible. Furthermore, it holds

𝑴
−1

= − 1
det(𝑴)

𝑴 . (53)

We now set 𝜹𝐻 = (𝛿𝐻,1, 𝛿𝐻,2)𝑇 as

𝜹𝐻 =𝑴
−1
𝐯𝐻 (𝝃1). (54)

Taking into account (46), (50) and choosing 𝜹 = 𝜹𝐻 , we thus get(
𝜼𝐻,∇𝑆𝐯𝐻

)
0,𝐸 =

∑
𝓁⊂𝜕𝐸

∫
𝓁

𝐯𝐻 ⋅ 𝜼𝐻𝐧 =
|𝐯𝐻 (𝝃1)|2

6
, (55)

where, cf. (45) and (49):

𝜼𝐻 (𝝃) =
(

𝛿𝐻,1𝜉 −𝛿𝐻,2𝜉 − 𝛿𝐻,1𝜂
−𝛿𝐻,2𝜉 − 𝛿𝐻,1𝜂 𝛿𝐻,2𝜂

)
. (56)

We now notice that it holds:

||∇𝑆𝐯𝐻 ||20,𝐸 ≤ 𝐶1|𝐯𝐻 (𝝃1)|2 ≤ 𝐶2||∇𝑆𝐯𝐻 ||20,𝐸 . (57)

Indeed, since div∇𝑆𝐯𝐻 = 0 and 𝐯𝐻 (𝝃𝐢) = (−1)𝑖𝝀, cf. (34), we have

||∇𝑆𝐯𝐻 ||20,𝐸 ≤ 𝐶∗|𝐯𝐻 |21∕2,𝜕𝐸 ≤ 𝐶̃||𝐯𝐻 ||2∞,𝜕𝐸
= 𝐶̃|𝐯𝐻 (𝝃1)|2, (58)

and the first bound in (57) follows. To continue, a trace inequality 
shows that

|𝐯𝐻 (𝝃1)|2 = ||𝐯𝐻 ||2∞,𝜕𝐸
≤ 𝐶|𝐯𝐻 |21∕2,𝜕𝐸 ≤ 𝐶||∇𝑆𝐯𝐻 ||20,𝐸 , (59)

and the second bound in (57) follows. Above, we have also used the 
norm equivalence ||𝐯𝐻 ||∞,𝜕𝐸 ≈ |𝐯𝐻 |1∕2,𝜕𝐸 , true since 𝐯𝐻 on 𝜕𝐸 is a 
non-constant piecewise linear function. Taking into account (57), from 
(55) we deduce that we have found 𝜼𝐻 ∈𝑍(𝐸) such that the first esti-

mate in (39) holds true. To establish the continuity estimate in (39), we 
notice that, due to (52), (53), (48) and (51), we have:

||𝑴−1||∞ = 1|det(𝑴)| ||𝑴||∞ ≤ 1|𝐝1 ⋅ 𝐝⟂2 |2 ||𝑴 ||∞ ≤ 6|𝐝1||𝐝2||𝐝1 ⋅ 𝐝⟂2 |2 . (60)

From (54) and (60), we get

|𝜹𝐻 |∞ ≤ 𝐶||𝑴 ||∞|𝐯𝐻 (𝝃1)|∞ ≤ 𝐶
|𝐝1||𝐝2||𝐝1 ⋅ 𝐝⟂2 |2 |𝐯𝐻 (𝝃1)|∞. (61)

Above, | ⋅ |∞ denotes the classical ∞-norm for vectors in ℝ2. Due to 
Lemma 1, there exist 𝐶𝑠, 𝐶 ′

𝑠 > 0 such that |𝐝1 ⋅ 𝐝⟂2 | ≥ 𝐶𝑠|𝐝1||𝐝2| and 
𝐶 ′
𝑠|𝐝𝑖| ≥ ℎ𝐸 (𝑖 = 1, 2). Hence, it holds|𝐝1||𝐝2||𝐝1 ⋅ 𝐝⟂2 |2 ≤ 𝐶ℎ−2

𝐸
, (62)

by which, using estimate (61), we infer

|𝜹𝐻 |∞ ≤ 𝐶ℎ−2
𝐸
|𝐯𝐻 (𝝃1)|∞ ≤ 𝐶ℎ−2

𝐸
|𝐯𝐻 (𝝃1)| ≤ 𝐶ℎ−2

𝐸
||∇𝑆𝐯𝐻 ||0,𝐸 . (63)

Recalling (56) and (14), we obtain
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||𝜼𝐻 ||0,𝐸 ≤ 𝐶ℎ2
𝐸
|𝜹𝐻 |∞. (64)

A combination of (63) and (64) gives

||𝜼𝐻 ||0,𝐸 ≤ 𝐶𝐻 ||∇𝑆𝐯𝐻 ||0,𝐸 , (65)

i.e. the second estimate in (39). This concludes the proof. □

Proposition 1. There exists 𝛾 > 0 such that, for every 𝐸 ∈ ℎ, it holds:

||𝑃ℎ(∇𝑆𝐯ℎ)||0,𝐸 ≥ 𝛾||∇𝑆𝐯ℎ||0,𝐸 ∀𝐯ℎ ∈ 𝑉ℎ(𝐸). (66)

Above, with a little abuse of notation, we have still denoted with 𝑃ℎ the local 
𝐿2-projection 𝑃ℎ ∶ 𝐿2(𝐸)2×2sym ⟶𝐷ℎ(𝐸).

Proof. We notice that estimate (66) is equivalent to the inf-sup condi-

tion:

sup
𝜼ℎ∈𝐷ℎ(𝐸)

(
𝜼ℎ,∇𝑆𝐯ℎ

)
0,𝐸||𝜼ℎ||0,𝐸 ≥ 𝛾||∇𝑆𝐯ℎ||0,𝐸 ∀𝐯ℎ ∈ 𝑉ℎ(𝐸). (67)

In order to do so, we will prove that, given 𝐯ℎ ∈ 𝑉ℎ(𝐸), we can find 
𝜼ℎ ∈𝐷ℎ(𝐸) such that(
𝜼ℎ,∇𝑆𝐯ℎ

)
0,𝐸 ≥ 𝐶||∇𝑆𝐯ℎ||20,𝐸||𝜼ℎ||0,𝐸 ≤ 𝐶||∇𝑆𝐯ℎ||0,𝐸 . (68)

Due to (37)-(38), we proceed in four steps.

First step. Considering the orthogonal decomposition (37), choose 
𝜼1 = ∇𝑆𝐯1 ∈ ℙ0(𝐸)2×2sym ⊆𝐷ℎ(𝐸). Obviously, we have(
𝜼1,∇𝑆𝐯ℎ

)
0,𝐸 =

(
𝜼1,∇𝑆𝐯1

)
0,𝐸 = ||∇𝑆𝐯1||20,𝐸||𝜼1||0,𝐸 = ||∇𝑆𝐯1||0,𝐸 ≤ ||∇𝑆𝐯ℎ||0,𝐸 . (69)

Second step. Choose 𝜼𝐻 ∈ 𝑍(𝐸) as in Lemma 2, and notice that 
(𝜼𝐻, ∇𝑆𝐯𝑏) = 0. We thus have, applying also a weighted (with 𝜀 > 0) 
Young’s inequality:(
𝜼𝐻,∇𝑆𝐯ℎ

)
0,𝐸 =

(
𝜼𝐻,∇𝑆𝐯1 + ∇𝑆𝐯𝐻

)
0,𝐸

≥ 𝛾𝐻 ||∇𝑆𝐯𝐻 ||20,𝐸 − ||𝜼𝐻 ||0,𝐸 ||∇𝑆𝐯1||0,𝐸
≥ 𝛾𝐻 ||∇𝑆𝐯𝐻 ||20,𝐸 − 𝜀

2
||𝜼𝐻 ||20,𝐸 − 1

2𝜀
||∇𝑆𝐯1||20,𝐸 .

(70)

Recalling the continuity estimate in (39) and taking 𝜀 sufficiently small, 
we have(
𝜼𝐻,∇𝑆𝐯ℎ

)
0,𝐸 ≥ 𝛾2||∇𝑆𝐯𝐻 ||20,𝐸 − 𝑐2||∇𝑆𝐯1||20,𝐸 . (71)

In addition, from Lemma 2 and (38), we get

||𝜼𝐻 ||0,𝐸 ≤ 𝐶𝐻 ||∇𝑆𝐯𝐻 ||0,𝐸 ≤ 𝐶𝐻 ||∇𝑆𝐯ℎ||0,𝐸 (72)

Third step. We choose 𝜼𝑏 ∈𝐷𝑏(𝐸), see (18), such that

div𝜼𝑏 = −
ℎ−2
𝐸|𝐸| ∫

𝐸

𝐯𝑏 = −ℎ−2
𝐸
𝐯𝑏. (73)

Then we have(
𝜼𝑏,∇𝑆𝐯𝑏

)
0,𝐸 = −

(
div𝜼𝑏,𝐯𝑏

)
0,𝐸 = ℎ−2

𝐸

(
𝐯𝑏,𝐯𝑏

)
0,𝐸

= ℎ−2
𝐸
||𝐯𝑏||20,𝐸 ≥ 𝛾𝑏||∇𝑆𝐯𝑏||20,𝐸 , (74)

where we have used the inverse estimate ||∇𝑆𝐯𝑏||0,𝐸 ≤ 𝐶ℎ−1
𝐸
||𝐯𝑏||0,𝐸 , 

valid for every 𝐯𝑏 ∈ 𝐵(𝐸), see [10] and [11].

Hence we have(
𝜼𝑏,∇𝑆𝐯ℎ

)
0,𝐸 =

(
𝜼𝑏,∇𝑆𝐯1 + ∇𝑆𝐯𝐻 +∇𝑆𝐯𝑏

)
0,𝐸 ≥ 𝛾𝑏||∇𝑆𝐯𝑏||20,𝐸

− ||𝜼𝑏||0,𝐸 ||∇𝑆𝐯1||0,𝐸 − ||𝜼𝑏||0,𝐸 ||∇𝑆𝐯𝐻 ||0,𝐸 . (75)

Using again a weighted Young’s inequality, together with (69) and (72), 
we get
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(
𝜼𝑏,∇𝑆𝐯ℎ

)
0,𝐸 ≥ 𝛾3||∇𝑆𝐯𝑏||20,𝐸 − 𝑐3||∇𝑆𝐯1||20,𝐸 − 𝑐4||∇𝑆𝐯𝐻 ||20,𝐸 . (76)

In addition, from (73), recalling (18) and (38), we get

||𝜼𝑏||0,𝐸 ≤ 𝐶ℎ𝐸 ||div𝜼𝑏||0,𝐸 ≤ 𝐶ℎ−1
𝐸
||𝐯𝑏||0,𝐸 ≤ 𝐶𝑏||∇𝑆𝐯𝑏||0,𝐸

≤ 𝐶𝑏||∇𝑆𝐯ℎ||0,𝐸 (77)

Fourth step. We now set 𝜼ℎ ∈𝐷ℎ(𝐸) as a suitable linear combination

𝜼ℎ = 𝑎1𝜼1 + 𝑎2𝜼𝐻 + 𝑎3𝜼𝑏 (with 𝑎𝑖 > 0)

to obtain from (69), (71) and (76):(
𝜼ℎ,∇𝑆𝐯ℎ

)
0,𝐸 ≥ 𝐶

(||∇𝑆𝐯1||20,𝐸 + ||∇𝑆𝐯𝐻 ||20,𝐸 + ||∇𝑆𝐯𝑏||20,𝐸)
= 𝐶||∇𝑆𝐯ℎ||20,𝐸 . (78)

Furthermore, estimate

||𝜼ℎ||0,𝐸 ≤ 𝐶||∇𝑆𝐯ℎ||0,𝐸 (79)

follows from (69), (72), (77) and the triangle inequality. □

As a consequence of Proposition 1, we get the discrete coercivity 
on the kernel condition (8), cf. estimate (4). Then we can apply the 
classical theory of mixed Galerkin method, Strang’s first lemma to deal 
with the approximated right-hand side of (3), to obtain the following 
error estimate (see [9] and [12], for instance).

Theorem 1. Let (𝜺, 𝐮; 𝝈) ∈ (𝐷×𝑉 ) ×Σ be the solution to Problem (3), and 
(𝜺ℎ, 𝐮ℎ; 𝝈ℎ) ∈ (𝐷ℎ × 𝑉ℎ) × Σ𝐻 be the one of Problem (7). Then it holds||𝜺− 𝜺ℎ||0 + ||𝐮− 𝐮ℎ||1 + ||𝝈 − 𝝈ℎ||0

≤ 𝐶
(

inf
𝜼ℎ∈𝐷ℎ

||𝜺− 𝜼ℎ||0 + inf
𝐯ℎ∈𝑉ℎ

|𝐮− 𝐯ℎ|1
+ inf

𝝉ℎ∈Σℎ
||𝝈 − 𝝉ℎ||0 + sup

𝐯ℎ∈𝑉ℎ

(
𝐛,𝐯ℎ

)
−
(
𝐛,𝐯ℎ

)
ℎ|𝐯ℎ|1
)
.

(80)

Applying standard approximation results, also for VEM spaces, we 
get:

Corollary 1. Let (𝜺, 𝐮; 𝝈) ∈ (𝐷 × 𝑉 ) × Σ be the solution to Problem (3), 
and (𝜺ℎ, 𝐮ℎ; 𝝈ℎ) ∈ (𝐷ℎ × 𝑉ℎ) × Σ𝐻 be the one of Problem (7). Supposing 
(𝜺, 𝐮; 𝝈) sufficiently regular, it holds

||𝜺− 𝜺ℎ||0 + ||𝐮− 𝐮ℎ||1 + ||𝝈 − 𝝈ℎ||0 ≤ 𝐶ℎ
(|𝜺|1 + |𝐮|2 + |𝝈|1) . (81)

Remark 2. Obviously, the same analysis of this Section can be devel-

oped if we choose 𝑍(𝐸) as a larger space than the one selected in (19). 
For example, one may choose

𝑍(𝐸) = Span
{(

𝜉 −𝜂
−𝜂 0

)
,

(
0 −𝜉
−𝜉 𝜂

)
,

(
𝜂 0
0 0

)
,

(
0 0
0 𝜉

)}
,

(82)

which corresponds to 𝐷ℎ(𝐸) = ℙ1(𝐸)2×2sym, i.e. the 9-strain-parameter 
scheme presented in [1]. □

Remark 3. We remark that the quantity 𝐶 entering in estimates (80)

and (81), depends on the elasticity stiffness tensor 𝐃, see (2). In par-

ticular, in the case of nearly incompressible materials our theoretical 
result does not exclude the possibility that 𝐶 degenerates. However, the 
numerical results presented in [1] seem to suggest that such an undesir-

able phenomenon does not occur in situations of practical interest. □

5. Numerical results

In this brief Section we propose a 2D plane strain convergence test 
with a known analytical solution for an isotropic and homogeneous ma-
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Fig. 3. Test: meshes used to check convergence.

Fig. 4. Test: convergence of the strain. Comparison of the standard VEM and the self-stabilized VEMs for the different quadrilateral meshes.
terial. Convergence is studied in terms of the 𝐿2-norm of the strain 
error.

The problem domain is a unit square Ω = [0, 1]2 with zero displace-

ments all over its boundary 𝜕Ω. The data of the problem are:

• Lamé constants 𝜆 = 1 and 𝜇 = 1 (corresponding to 𝐸 = 2.5 and 
𝜈 = 0.25)

• body forces 𝐛 = (𝑏1, 𝑏2)𝑇 in Ω{
𝑏1 = −𝜋2 [−(𝜆+ 3𝜇) sin(𝜋𝑥) sin(𝜋𝑦) + (𝜆+ 𝜇) cos(𝜋𝑥) cos(𝜋𝑦)]
𝑏2 = −𝜋2 [−(𝜆+ 3𝜇) sin(𝜋𝑥) sin(𝜋𝑦) + (𝜆+ 𝜇) cos(𝜋𝑥) cos(𝜋𝑦)]

(83)

The analytical solution 𝐮 = (𝑢1, 𝑢2)𝑇 of the problem in terms of displace-

ments in Ω is given by:{
𝑢1 = sin(𝜋𝑥) sin(𝜋𝑦)
𝑢2 = sin(𝜋𝑥) sin(𝜋𝑦)

(84)

Analytical strains and stresses can be obtained accordingly with the 
above displacement solution.

A sequence of meshes made by: (a) thin rectangles (ratio 1/50 be-

tween short and long edge), (b) always convex and (c) several non-

convex quadrilaterals, are used (see Fig. 3). Furthermore, the tested 
Virtual Element Methods are the following:

1. VEM4: the standard lowest-order VEM scheme;

2. VEM4SS7-10DOFs: the self-stabilized VEM scheme analyzed in this 
paper;

3. VEM4SS9-10DOFs: a self-stabilized VEM scheme for which the 
strain field is locally discretized by means of complete linear poly-

nomials (see [1], also cf. Remark 2).
148
In Fig. 4 we display the convergence behavior of 𝐿2-norm of the strain 
error. The stabilization-free elements exhibit the right order of conver-

gence of the standard VEM but with higher accuracy.

6. Conclusions

The presented analysis of stabilization-free, first-order quadrilateral 
virtual elements offers to the computational mechanics community two 
theoretically sound and robust elements, exhibiting superior perfor-

mances in terms of almost complete insensitivity to mesh distortions, 
even with non-convex shapes (see the numerical results presented in 
[1] and Section 5).

The discussed formulation is however limited to two-dimensional 
problems, while there is an obvious interest in exploring the possibil-

ity to apply the same concepts to brick elements in a three-dimensional 
framework. The formulation of polyhedral 3D VEs is relatively straight-

forward, but of little practical interest, due to the difficulty of generat-

ing polyhedral meshes for 3D domains of arbitrary shapes. In contrast, 
the VEM formulation of non-polyhedral bricks is hampered by the dif-

ficulty of reconstructing the displacement field on the non-planar faces 
of the brick. This will be therefore the object of future work.
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