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Abstract

This dissertation deals with certain qualitative properties for the solutions of two elliptic
problems on Riemannian manifolds.

In the first part of this work, we focus on solutions to the Poisson equation and investi-
gate the validity of first and second order global regularity estimates, called respectively
Lp-gradient and Calderón–Zygmund estimates. On complete non-compact manifolds,
their validity might be strongly influenced by the large-scale geometry. The systematic
study of the Calderón–Zygmund theory was initiated in this setting by Güneysu and
Pigola. Since then, geometric analysts have shown an increasing interest towards the
topic, regarding positive results, counterexamples and interactions with other related
issues.

In Chapter 1 we prove a number of results that ensure the validity of Lp-gradient
and Calderón–Zygmund estimates under comparatively weak geometric assumptions on
the Ricci curvature and the injectivity radius. Often, we assume some type of integral
lower bound on the Ricci tensor instead of the pointwise bounds that commonly ap-
pear in the previous literature. We observe the implications of the above results for
the theory of Sobolev spaces, including density properties, and prove the equivalence
between Calderón–Zygmund estimates and boundedness properties of the second order
Riesz transform. The case of higher order Calderón–Zygmund estimates is also addressed.

In Chapter 2 we prove counterexamples to the Lp-gradient and Calderón–Zygmund
estimates. First, we show the failure of these estimates on manifolds where the negative
part of the curvature, although unbounded, grows as slowly as desired. This proves the
optimality of the curvature bounds assumed in certain results in the literature. The other
main contribution of this chapter is the construction of a complete, non-compact manifold
with positive sectional curvatures which does not support the Lp-Calderón–Zygmund
inequality for large p. This example, which relies on tools from metric geometry, shows
the non-equivalence of Lp-gradient and Calderón–Zygmund estimates, thus answering to
an open question in the literature.

The results of the first chapter require various lower bounds on the Ricci curvature,
whose optimality is testified by the above-mentioned counterexamples. In Chapter 3,
nonetheless, by focusing on a special class of manifolds, we are able to prove some of
these results even in situations when the Ricci curvature explodes very fast at −∞,
albeit in a controlled way. Namely, we consider Cartan–Hadamard manifolds with a
polynomial pinching on the Ricci curvature and prove a density result for the Sobolev
space W 2,p and the validity of an L2-Calderón–Zygmund inequality. The main tool in
these proofs is a carefully constructed sequence of cutoff functions with a second order
control.
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Abstract

The second part of this dissertation deals with positivity preservation properties for
a Schrödinger operator. More precisely, a manifold has the Lp-positivity preserving
property if all the distributional Lp solutions of (−∆ + 1)u ≥ 0 are non-negative. This
definition was introduced by Güneysu some twenty years ago, although the notion, when
p = 2, can be traced back to the seminal work of Kato on the essential self-adjointness
of certain Schrödinger-type operators with possibly singular non-negative potential. The
validity of the L∞-positivity preserving property, instead, is connected to the stochastic
completeness of the manifold at hand, i.e. the fact that the minimal heat kernel preserves
probability.

Chapter 4 is devoted to proofs of the Lp-positivity preserving property which rely on
the existence of smooth cutoff functions with a control on the gradient and Laplacian.
Using the cutoffs developed in Chapter 3, we prove the property for p ≥ 2 on Cartan–
Hadamard manifolds with a polinomially pinched Ricci curvature. On manifolds with
a subquadratic growth of the negative part of the Ricci curvature, the Lp-positivity
preserving property is verified for any p ∈ [1,+∞] thanks to similar cutoffs with a
stronger, uniform second order control. When p = +∞, this gives also a new proof of a
well-known optimal condition for stochastic completeness due to Hsu.

In Chapter 5, we deal with the limit cases p = 1 and p = +∞. Using a monotone
approximation result, which is of independent interest, we prove that the stochastic
completeness is in fact equivalent to the validity of the L∞-positivity preserving property.
Finally, we exhibit a counterexample to the L1-positivity preserving property which shows
sharpness of our subquadratic bound on the Ricci curvature.
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Basic notation

We begin by fixing some basic notation, which will be used repeatedly in the rest of this
thesis.

In the following, unless otherwise stated, (M, g) denotes a smooth, connected Rie-
mannian manifold of dimension dimM = n; the boundary ∂M is always assumed to be
empty. Given x ∈ M , r(x) = d(x, o) denotes the Riemannian distance function from
a fixed reference point o ∈ M . Whenever we state a property or assumption involving
r = r(x), it is implicitly meant that said property holds with respect to some fixed pole
o ∈ M . We denote with BR(x) the (open) geodesic ball of radius R > 0 and center
x ∈M , if the center is the fixed pole o ∈M , we simply write BR.

In the following we use the sub/superscript e to denote objects taken with respect to
the Euclidean metric, whenever it is necessary to distinguish between the Riemannian
counterparts in a local computation.

Let ∇ be the Levi-Civita connection and X,Y, Z,W ∈ X(M) be smooth vector fields,
the Riemannian curvature tensor is defined by

Riem(X,Y, Z,W ) = g(∇X∇Y Z −∇y∇xZ −∇[X,Y ]Z,W ).

The sectional curvature of a 2-plane πx ⊆ TxM spanned by a a pair of linearly indepen-
dent vectors X,Y ∈ TxM is given by

Sect(πx) =
Riem(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2
.

The trace of the Riemann tensor give rises to the Ricci tensor : given X,Y ∈ X(M) and
{Ei} some local orthonormal frame, we define

Ric(X,Y ) =
n∑︂
i=1

Riem(X,Ei, Y, Ei).

Recall that if we fix x ∈ M and some X ∈ TxM , the Ricci curvature in the direction of
X can also be computed by

Ric(X,X)(x) =

n−1∑︂
i=1

Sect(πi)

where π1, . . . , πn−1 ⊆ TxM are the n− 1 linearly independent 2-planes orthogonal to the
direction X. As a result, bounds on the sectional curvatures imply bounds on the Ricci
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Basic notation

tensor as a quadratic form. Finally, we denote with Rico = Ric(∇r,∇r) : M → R the
radial Ricci curvature.

In this thesis, we say that a manifold has non-negative sectional curvatures, Sect(M) ≥
0, if Sect(πx) ≥ 0 for every x ∈ M and every 2-plane πx ⊆ TxM ; more generally, given
f :M → R we say that min Sect(x) ≥ f(x) if Sect(πx) ≥ f(x) for every x ∈M and every
2-plane πx ⊆ TxM . Inequalities involving the Ricci tensor and the Riemannian metric g
are intended in the sense of quadratic forms: for instance, if f :M → R we say Ric ≥ f
if Ric(X,X)(x) ≥ f(x)g(X,X) for every x ∈ M and X ∈ X(M). Moreover, we denote
with minRic the function which associates at every point of M the lowest eigenvalue of
Ric. Upper bounds on sectional and Ricci curvatures are defined similarly.

Given x ∈ M the injectivity radius at x, inj(x) > 0, is the largest r > 0 such that
any geodesic of length less than r and having x as endpoint is minimizing; the injectivity
radius of M is the infimum of the injectivity radii over M : rinj(M) = infx∈M inj(x).

If u ∈ C∞(M), ∇u ∈ X(M) denotes the gradient of u while ∇2u = Hessu is the
Hessian. The Laplace–Beltrami operator of u is defined by

∆u = div(∇u) = trg(∇2u),

where the divergence of a vector field X ∈ X(M) is defined (locally) by

div(X) =

n∑︂
i=1

g(∇EiX,Ei)

where {Ei} is a local orthonormal frame. In particular, −∆ is a non-negative operator;
if the bottom of the L2 spectrum of −∆ is strictly positive, we say that (M, g) has a
spectral gap. Finally, the p-Laplace–Beltrami operator is defined by

∆pu = div(|∇u|p−2∇u),

for p ∈ (1,+∞). In the following, C∞
c (M) denotes the space of smooth, real valued

functions on M with compact support.

If (x1, . . . , xn) are local coordinates, the Riemannian volume form dµg is defined as

dµg =
√︂
det[gij ]dx

1 ∧ . . . ∧ dxn,

where [gij ] is the matrix with coefficients gij = g(∂i, ∂j). In the rest of this thesis, unless
otherwise specified, all integrals are taken with respect to dµg. If Ω ⊂M we equivalently
use vol(Ω) = volg(Ω) to denote the volume with respect to dµg, while vole(Ω) = |Ω|
represents the Euclidean volume. We denote with Lp(M ;T srM) = ΓLp(M ;T srM) the
space of Lp sections of the fiber bundle T srM ; if T ∈ Lp(M ;T srM) the Lp norm of T is
defined as ∥T∥Lp= ∥|T |∥Lp where |T | is the Hilbert-Schmidt norm of the tensor induced
by g. Unless otherwise stated, the Lp norms of tensors and functions ∥·∥Lp= ∥·∥p are
taken over the whole manifold M .
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Basic notation

If Ω ⊆M we write Ω ⋐M to indicate that Ω has compact closure in M .
Throughout this thesis, C will denote a positive constant, whose value may change

from place to place. Whenever relevant, we will explicit the dependence of C form the
dimension, the curvature, p or other relevant parameters.
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Part I

Calderón–Zygmund theory
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Introduction to Part I

The aim of Part I of this thesis is the study of first and second order, global Lp estimates
for the solution of the Poisson equation on a complete Riemannian manifold. The results
henceforth presented are contained in [90, 89, 88] and have been obtained in collaboration
with Stefano Meda, Stefano Pigola, and Giona Veronelli.

Let us consider L, an elliptic second order differential operator defined on some rel-
atively compact domain Ω ⋐ Rn. Fix p ∈ (1,+∞), if the coefficients of L are regular
enough, it is well known that

||∇2u||Lp(Ω′)≤ C
(︁
||u||Lp(Ω)+||Lu||Lp(Ω)

)︁
for all Ω′ ⋐ Ω and u ∈ Lp with Lu ∈ Lp distributionally. Here the constant C > 0 does
not depend on u but might depend on the dimension n, on p, on the operator L and on
the geometry of the domains Ω and Ω′. These local estimates, central in the regularity
theory of elliptic PDEs, are always available as long as L is reasonably well behaved,
obtaining global estimates when Ω′ = Ω = Rn, instead, poses a possibly harder task. In
the case of the Laplace operator L = ∆, however, one has in fact the stronger estimate

||∇2u||Lp(Rn)≤ C(n, p)||∆u||Lp(Rn) ∀u ∈ C∞
c (Rn),

obtained by Calderón and Zygmund in their seminal work on singular integral operator,
[23]. See also [49, Theorem 9.9]. The validity of this functional inequality implies by
interpolation a bound on the Lp norm of the gradient

||∇u||Lp(Rn)≤ C(||u||Lp(Rn)+||∆u||Lp(Rn)) ∀u ∈ C∞
c (Rn).

These last two estimates combined yield

||u||W 2,p(Rn)≤ C(||u||Lp(Rn)+||∆u||Lp(Rn)) ∀u ∈ C∞
c (Rn).

Note that, since |∆u|≤
√
n|∇2u|, this implies the equivalence on C∞

c (M) of the norms
||u||W 2,p(Rn) and ||u||Lp(Rn)+||∆u||Lp(Rn). This fact has important consequences on the
theory of Sobolev spaces and on spectral properties of the Schrödinger operator −∆+1.

If we move away from the Euclidean setting, replacing Rn with a complete Riemannian
manifold (M, g) and the Laplacian with the Laplace–Beltrami operator ∆, it is an inter-
esting problem to investigate how these inequalities change. Unsurprisingly, if we stick
to local regularity estimates, i.e. on relatively compact domains or if the manifold itself
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is compact, the Riemannian scenario does not differ much from the Euclidean one: the
geometry of the manifold is simply encoded in the value of the constant C. However, the
Riemannian picture diverges qualitatively, thus becoming more faceted, if we consider
global regularity estimates on complete, non-compact manifolds, on which the geometry
at infinity has a much greater influence. We shall mainly focus on this class of manifolds.

We begin with the following

Definition I.1. Let (M, g) be a complete Riemannian manifold and fix p ∈ (1,∞). We
say that (M, g) supports an Lp-Calderón–Zygmund inequality if there exists a constant
C > 0 such that

∥∇2u∥Lp(M)≤ C(∥u∥Lp(M)+∥∆u∥Lp(M)) ∀u ∈ C∞
c (M). (CZ(p))

The terminology in the context of Riemannian manifold was first introduced by Gü-
neysu and Pigola in [63]. Since then, researcher coming from diverse mathematical
backgrounds have shown an increasing interest towards the topic, both concerning the
validity of CZ(p) on a given manifold, and the interaction of Calderón–Zygmund theory
with other related issues. Note that the limit cases CZ(1) and CZ(∞) are disregarded
as they fail to be true, also locally, even in Rn, [37, 98]. See also the two examples in
[42, Section 2.2]. Similarly to the Euclidean case, Calderón–Zygmund inequalities have
companion first order estimates.

Definition I.2. Let (M, g) be a complete Riemannian manifold and fix p ∈ (1,∞), we
say that (M, g) supports an Lp-gradient estimate if there exists a constant C > 0 such
that

∥∇u∥Lp(M)≤ C(∥u∥Lp(M)+∥∆u∥Lp(M)) ∀u ∈ C∞
c (M). (GE(p))

There is a clear hierarchy between Lp-gradient and Calderón–Zygmund estimates: in-
deed, the validity of CZ(p) on a complete manifold implies the corresponding Lp-gradient
estimate, [63, Corollary 3.11]. In particular, whenever CZ(p) holds we automatically get
the following estimate

||u||Lp+||∇u||Lp+||∇2u||Lp≤ C(||u||Lp+||∆u||Lp) ∀u ∈ C∞
c (M).

Beside the interest they have in themselves as global regularity estimates, Calderón–
Zygmund and gradient estimates are related to a number of topics of great interest in
geometric and harmonic analysis.

The first important feature of these inequalities is their interaction with the theory of
Sobolev spaces. Unlike in the Euclidean setting, on a Riemannian manifold there exist
several, non necessarily equivalent, definitions of the Sobolev space of order k ∈ N and
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integrability class p ∈ [1,+∞]. For instance, one can define W k,p(M) as the space of Lp

functions whose covariant (distributional) derivatives are in Lp up to the order k:

W k,p(M) := {u ∈ Lp(M) : ∇ju ∈ Lp(M), j = 0, . . . k}.

This turns out to be a Banach space once endowed with the usual norm

∥u∥Wk,p :=
k∑︂
j=0

∥∇ju∥Lp .

Thanks to a generalized Meyers–Serrin-type theorem (see e.g. Guidetti, Güneysu and
Pallara, [59]), if p ∈ [1,+∞), this space can be characterized as the closure of W k,p(M)∩
C∞(M) with respect to ∥·∥Wk,p , which is quite useful in applications. Alternatively, one
can define the space W k,p

0 (M) as the closure of compactly supported smooth functions
C∞
c (M) with respect to the Sobolev norm ∥·∥Wk,p ,

W k,p
0 := C∞

c (M)
∥·∥

Wk,p
.

Finally, for even orders one can consider H2m,p(M) as the space of Lp functions whose
iterations of the (distributional) Laplace–Beltrami operator are in Lp up to order m, i.e.,

H2m,p(M) := {u ∈ Lp(M) : ∆ju ∈ Lp(M), j = 0, . . .m},

endowed with the norm:

∥u∥H2m,p :=

m∑︂
j=0

∥∆ju∥Lp .

Note that the space H2,p can also be interpreted as the domain of the m-accretive real-
ization of −∆ : C∞

c (M) → Lp(M), see [110, p.240].
In the Euclidean setting, M = Rn, and on compact manifolds, the three spaces co-

incide. On geodesically complete Riemannian manifold one always has W 1,p(M) =
W 1,p

0 (M), [7], whereas k = 2 is the first non-trivial order where, in general, one can
only conclude that

W 2,p
0 (M) ⊆W 2,p(M) ⊆ H2,p(M).

Nonetheless, if |Ric(x)|≤ br2(x) and the injectivity radius decays in a controlled way, it
is possible to prove that W 2,p

0 (M) =W 2,p(M), see [77, 78] as well as [63, 68] for previous
results. Actually, when p ∈ (1, 2] the sole bound on Ric is sufficient, see [78] for p = 2 and
[74] for the extension to (1, 2]. See also [12] for previous results. Examples of manifolds
on which W 2,p

0 (M) ⊊W 2,p(M) or W 2,p(M) ⊊ H2,p(M) have been found in [121, 74, 41],
note that all of these examples are characterized by wildly unbounded geometries. We
refer to [121, 74] for an in depth introduction to the topic.

It turns out that if a Riemannian manifold supports CZ(p), hence GE(p), then using
a result of Milatovic [65, Appendix] it is possible to prove that the three definitions of
Sobolev spaces coincide. We refer to Remark 1.13 for a precise statement of this result.
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Calderón–Zygmund inequalities play a central role also in harmonic analysis, where
they can be interpreted with the language of Riesz transforms. In the Euclidean space
Rn, the second order Riesz transform of component j, ℓ ∈ {1, . . . , n} is defined, at least
formally, by means of Fourier transform:

(Rj,ℓ f)ˆ︁(ξ) := ξjξℓ
|ξ|2

ˆ︁f(ξ);
Rj,ℓ is a paradigmatic example of Calderón–Zygmund singular integral operator. Such
operators are known to be bounded on Lp(Rn), 1 < p < ∞, and of weak type (1, 1)
[75]. By virtue of the very special structure of the Euclidean space, this is equivalent
to saying that the operator ∇2(−∆)−1 extends to a bounded operator from Lp(Rn) to
Lp(Rn;T2Rn), here ∇2 denotes the second covariant derivative associated to the Eu-
clidean metric. This definition extends easily to the setting of Riemannian manifolds by
taking the covariant derivative associated to the Riemannian metric and the Laplace–
Beltrami operator, in spite of their Euclidean counterparts. More generally, on a Rieman-
nian manifold (M, g) we define the kth order Riesz transform, with k a positive integer,
as

Rk := ∇k(−∆)−k/2,

when k is odd, (−∆)−k/2 is defined by means of the spectral theorem see for instance
[123, Section 7.1]. For every 0 < τ ∈ R, we also introduce the kth order local Riesz
transform as

Rk
τ := ∇k(τI −∆)−k/2,

here I is the identity operator. These latter operators are sometimes called shifted Riesz
transform. It is not difficult to see that if R2

τ is a bounded operator from Lp(M) to
Lp(M ;T2M), then the corresponding CZ(p) holds. In fact, one can say something more:
the validity of CZ(p) is equivalent to the Lp boundedness of the second order local
Riesz transform R2

τ , see Proposition 1.14 below for a precise statement and proof of this
equivalence. Boundedness in Lp of R2, instead, yields a stronger estimate of the form
∥∇2u∥Lp≤ C∥∆u∥Lp .

The second order local Riesz transform R2
τ can be decomposed in first order terms

∇2(τI −∆)−1 = ∇(τI −∆1)
−1/2 ◦ d(τI −∆)−1/2,

here d is the exterior differential and ∆1 = dδ+δd is the Hodge Laplacian on 1-forms. The
first term ∇(τI −∆1)

−1/2 is a covariant Riesz transform on 1-forms while d(τI −∆)−1/2

is a Riesz transform on functions. Note that the latter term shares the same boundedness
properties of R1

τ . The boundedness of these two first order local Riesz transforms, on
1-forms and functions, clearly yields the boundedness of R2

τ on Lp and, thus, CZ(p).
This approach to Calderón–Zugmund inequalities was first adopted in [63].

On the other hand, if the first order Riesz transform R is bounded on Lp, the Moment
inequality [67, Proposition 6.6.4] (which we can apply, for −∆ is a sectorial operator on
Lp(M)), yields

∥∇u∥p ≤ C ∥(−∆)1/2u∥p ≤ C ∥u∥1/2p ∥∆u∥1/2p ,
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which is a stronger multiplicative version of GE(p). The Lp-gradient estimate also follows
if we assume Lp boundedness of the local Riesz transform Rτ , indeed,

∥∇u∥Lp ≤ C
(︂
∥u∥Lp+∥(−∆)1/2u∥Lp

)︂
≤ C

(︂
∥u∥Lp+∥∆u∥1/2Lp ∥u∥1/2Lp

)︂
≤ C (∥u∥Lp+∥∆u∥Lp) .

Note that in this case we cannot obtain the stronger multiplicative inequality.

In the last years, the validity of CZ(p) and GE(p) has been proved, for various ranges of
p, under several geometric assumptions. In the Hilbertian case p = 2, GE(2) and CZ(2)
are relatively simple to obtain. Indeed, integration by parts of the Poisson equation
∆u = f yields the multiplicative version of GE(2):

∥∇u∥L2≤ ∥u∥1/2
L2 ∥∆u∥

1/2
L2 ,

which holds on any complete Riemannian manifold, see [103, Section 3.1]. If we also as-
sume a lower bound on the Ricci curvature, Ric ≥ −K2, integration by part of Bochner’s
inequality gives an infinitesimal CZ(2) inequality:

∥∇2u∥2L2≤
Cε2

2
∥u∥2L2+

(︃
1 +

C2

2ε2

)︃
∥∆u∥2L2

which holds for any ε > 0 and any u ∈ C∞
c (M), [63, Proposition 4.15]. We use the

term infinitesimal when ∥u∥L2 can be made arbitrarily small. If p ̸= 2, the validity of
Lp-gradient and Calderón–Zygmund estimates is considerably more subtle.

If the Ricci curvature of M is bounded from below, by a special case of a celebrated
result of Bakry, [8], the first order local Riesz transform is bounded on Lp(M) for every
1 < p < +∞, which implies the validity of GE(p). In the case where p > 2, this result was
also obtained via probabilistic arguments by Cheng, Thalmaier and Thompson [28]. To
the best of our knowledge, it is not known whether the first order local Riesz transform is
bounded from Lp(M) to Lp(M,TM), 1 < p < 2, on any complete Riemannian manifold
M . However, Coulhon and Duong [32] proved that if p ∈ (1, 2], then the Lp gradient
estimates GE(p) holds on any geodesically complete manifold. A much simpler proof
thereof may be found in [74, Lemma 1.6]. It is worthwhile noticing that if one takes
M = R2 ♯R2 the connected sum of two copies of R2, then the multiplicative estimate

∥∇u∥Lp≤ C∥u∥1/2Lp ∥∆u∥1/2Lp ∀u ∈ C∞
c (M)

fails for p > 2, although M has Ricci curvature bounded from below, whence GE(p)
holds for every p in (1,∞). This example of Coulhon and Duong, [32, second remark
after Theorem 4.1], illustrates how sensitive of the geometry of the underlying manifold
these inequalities may be.
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Calderón–Zygmund inequalities are generally harder to prove and often require more
geometrical assumptions. Güneysu and Pigola proved in [63] that when the C1,α-har-
monic radius of (M, g) is positive, a computation in a harmonic coordinate system to-
gether with a covering argument allows to localize the Riemannian problem reducing
it to the Euclidean setting. Using this strategy, CZ(p) was proved on the whole range
p ∈ (1,∞) on manifolds of bounded Ricci curvature (both from above and below) and
positive injectivity radius; see [63, Theorem C]. In the same paper, CZ(p) is also ap-
proached using the aforementioned decomposition of R2

τ . Thanks to boundedness re-
sults for the covariant Riesz transform on 1-forms, [118], Güneysu and Pigola were able
to prove CZ(p) for 1 < p ≤ 2 when ∥Riem∥L∞+∥∇Riem∥L∞≤ C and an additional vol-
ume doubling condition holds on the manifold, [63, Theorem D]. This latter assumption
was subsequently removed by Baumgarth–Devyver–Güneysu, [13]. Finally, a very re-
cent and far-reaching result due to Cao–Cheng–Thalmaier, [24], states that CZ(p) holds
in the range 1 < p ≤ 2, under the sole assumption of Ricci curvature bounded from
below. We refer to the very recent [29] for results on a Calderón–Zygmund inequality
with respect to a weighted Laplace–Beltrami operator, or to [64] for a non-linear version
of Calderón–Zygmund theory. In the case of Cartan–Hadamard manifolds (i.e. simply
connected, complete manifolds of non-positive sectional curvatures) where ∇iRiem is
bounded, 0 ≤ i ≤ 2, Calderón–Zygmund theory was also investigated in [86] while the
study of boundedness properties for R2 under the assumption that the Riemann tensor
decays quadratically has been announced in [25]. Apart from the case of Ricci-bounded
geometry alluded to in the above, the only further set of assumptions ensuring the va-
lidity of CZ(p) when p > 2 are given in [24, Theorem 1.2]. The manifolds considered
therein must satisfy (Kato type) conditions on the curvature and its derivatives but,
on the other hand, could have zero injectivity radius. Manifolds which do not support
Lp-Calderón–Zygmund inequalities have been constructed in [63, 85, 121]. It is worth
mentioning that in these counterexamples the Ricci curvature of the manifold at hand
is always unbounded from below, we refer to Chapter 2 for further discussion on coun-
terexamples to both CZ(p) and GE(p). For additional references on Calderón–Zygmund
theory we refer to the nice survey of Pigola, [103], complemented with the more recent
contributions to the field, [13, 74, 24, 29].

The three chapters of Part I contain our contributions to Calderón–Zygmund theory.
We begin with “positive” results on Lp-gradient and Calderón–Zygmund estimates, most
of which require the Ricci curvature to satisfy an appropriate lower bound in an integral
sense in place of the pointwise bounds that commonly appear in the literature. Chapter 1
collects results obtained in [88].

Given (M, g) a Riemannian manifold, we first prove that if p0 > n, and the Ricci
curvature is bounded from below in an appropriate local Lp0/2 integral sense (see Defi-
nition 1.1), then GE(p) holds for all p in (1, p0), this is our Theorem 1.6. Our condition
is trivially satisfied if we assume standard pointwise lower bounds for the Ricci curva-
ture, so that our result extends [28]. If, instead, p0 is as in the above, M has positive
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injectivity radius and nonnegative Ricci curvature in a global Lp0/2 integral sense (see
again Definition 1.1), then GE(p) holds for all p in (1,∞), see Theorem 1.12. For large p,
the proof of the first result is based upon a related L∞ estimate of Dai, Wei and Zhang,
[35], and a covering argument. The whole range is then obtained by interpolation. The
second result, instead, relies on a local computation in W 1,p-harmonic coordinates.

Next, we move onto Lp-Calderón–Zygmund estimates, i.e. boundedness of the second
order local Riesz transform. We prove that if M has a positive injectivity radius and
either Ricci curvature pointwise bounded from below or nonnegative in the global Lp0/2

sense for some p0 > n, then CZ(p) holds for every p ∈ (1,+∞), or equivalently, R2
τ

is bounded from Lp(M) to Lp(M ;T2M) for every τ > 0. For a precise statement of
this result, we refer to Theorem 1.17 whose proof relies on a computation in harmonic
coordinates with a uniform W 1,q bound. Note that W 1,q-harmonic estimates for large
enough q imply a C0,α control on the metric coefficients. This is an improvement on
previously known results for CZ(p), [63], which relied on the existence of uniform C1,α-
harmonic coordinates, and thus required stronger geometric assumptions. As we later
prove in Chapter 2, for large p, there is no hope to drop the injectivity radius from these
assumptions. Next, we show that if a Riemannian manifold has a spectral gap, i.e. the
bottom of the L2 spectrum of −∆ is strictly positive, then the validity of CZ(p) yields
a global W 2,p estimate of the form ∥u∥W 2,p≤ C∥∆u∥Lp , see Lemma 1.20. In particular,
this implies the Lp boundedness of the global Riesz transform R2. As a consequence of
this and [24], we obtain Lp boundedness for 1 < p ≤ 2 of the global Riesz transform
R2 when Ric ≥ −K2 and M has a spectral gap, Corollary 1.23; this improves on a
result of Mauceri, Meda and Vallarino, [91], which required the additional assumption of
a positive injectivity radius.

We conclude Chapter 1 with a boundedness result for higher, even order local Riesz
transform. More precisely, given ℓ a positive integer and τ > 0, we show that R2ℓ

τ is
bounded from Lp(M) to Lp(M ;T2ℓM) for every p in (1, 2] under the assumption that M
has a positive injectivity radius and the Ricci tensor and its derivatives up to order 2ℓ−2
are uniformly bounded, this is Theorem 1.26. This result too has consequences on the
corresponding (higher order) Calderón–Zygmund inequalities. In this thesis, we do not
consider Riesz transforms of odd order ≥ 3. We believe that it is an interesting problem
to find geometric conditions on M under which either R2ℓ+1

τ or R2ℓ+1 are bounded on
Lp, for some positive integer ℓ. We also point out that in the special case that M is a
symmetric space of noncompact type, a nice result of Anker, [6], proves that the Riesz
transforms of any order are bounded on Lp, 1 < p <∞.

Chapter 2 is devoted to the exposition of three counterexamples to the validity of
Lp-gradient and Calderón–Zygmund estimates, which have been published in [90] and
[88]. As mentioned in the above, a lower bound on the Ricci curvature is sufficient to
obtain the validity of CZ(p), at least when 1 < p ≤ 2, [24]. In our first example, we
show that this result is optimal. Indeed, for every p ∈ (1,+∞) and for every increasing
function λ : [0,+∞) → R such that λ(t) → +∞ as t→ +∞, we construct a complete, n-
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dimensional Riemannian manifold satisfying min Sect(x) ≥ −λ(r(x)) outside a compact
set, which does not support an Lp-Calderón–Zygmund inequality CZ(p), see Theorem 2.1.
In particular, it is not possible to obtain CZ(p) under negative decreasing curvature
bounds such as Ric(x) ≥ −Crα(x) for some α > 0, as it is in the case of the closely
related problem of the density of smooth compactly supported functions in W 2,p(M),
see [77, 74]. Under this milder condition, however, a disturbed CZ(p) holds, [78, Section
6.2].

Taking into account that the result of Cao, Cheng and Thalmaier in [24] is sharp,
it is natural to conjecture that geodesic completeness and a lower bound on the Ricci
curvature are sufficient to ensure the validity of CZ(p) for large p > 2, see [60, p.177]. It
should be noted that in all previous counterexample to the validity of CZ(p), [63, 85, 121],
the Ricci curvature of the manifold at hand is always (wildly) unbounded from below.
In our second counterexample, we show that there is no hope to obtain such result
since for every n ≥ 2 and p > n, we construct a complete, non-compact, n-dimensional
Riemannian manifold with Sect(M) > 0 such that CZ(p) fails; this is Theorem 2.9. Our
construction relies on a deep and recent result of De Philippis and Núñez-Zimbrón, [39,
Corollary 1.3]; note also that using a trick introduced in [74], our counterexample extends
to p > 2. Furthermore, since GE(p) is known to hold when Ric is bounded from below,
[28], our construction is an example of a Riemannian manifold which supports GE(p)
but not CZ(p).

While several counterexamples to the validity of the Lp-Calderón–Zygmund inequality
have been found in recent years, including our contributions, to the best of our knowledge,
the literature is lacking regarding counterexamples to the Lp-gradient estimate; see [103,
Section 9] for an extensive account of the topic. In the last part of Chapter 2, we fill
this gap in the theory. Using a sequence of conformal deformations on separated balls
of the Euclidean plane, we are able to construct for every n and p > 2, a complete
Riemannian manifold on which the Lp gradient estimate fails for every 2 < p < +∞, see
Theorem 2.13. As we explain in Remark 2.14, it is possible to modify this construction
so that the negative part of the curvature grows as slowly as desired, which proves the
optimality of the result of Cheng, Thalmaier and Thompson, [28].

While many of the above results concerning CZ(p) and the density of C∞
c (M) in

W 2,p(M) require some kind of lower bound on the Ricci curvature, in Chapter 3 we show
that several of these properties still hold if one allows the curvature to become increasingly
negative at infinity, possibly very fast, but in a controlled way. In particular, we consider
a Cartan–Hadamard manifold (M, g) (i.e. a simply connected complete Riemannian
manifold of non-positive sectional curvature) and assume that the Ricci curvature of M
is controlled both from above and below polynomially at infinity. Namely,

−b rβ(x) ≤ Ric(x) ≤ −a rα(x)

holds outside a compact set where a, b > 0 are positive constants. We prove that
W 2,p

0 (M) = W 2,p(M) for all p ∈ (1,+∞) if β = 2α + 2 and the validity of the L2-
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Calderón–Zygmund inequality if α = β, see Theorem 3.18 and Theorem 3.23. Both
results rely on the construction of an appropriate sequence of second order cutoff func-
tions. The lower bound on the Ricci curvature implies via comparison a control on the
Hessian of the cutoffs. This bound, however, might explode at −∞ polinomially in r(x);
this possible unboundedness of the Hessian term is dealt with by using second order
Hardy-type inequalities which we construct via the Green function of the p-Laplacian of
an appropriately constructed auxiliary model manifold (˜︂M, ˜︁g).

Chapter 3 is based upon results of [90].
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Chapter 1

Gradient and Calderón–Zygmund
inequalities under Ricci lower bounds

In this first chapter, we prove a number of results ensuring the validity of Lp-gradient and
Claderón–Zygmund estimates under comparatively weak geometric assumptions. One
recurrent theme is to obtain at least some of our results under the assumption that the
Ricci curvature satisfies appropriate Lp lower bounds in place of the pointwise bounds
that are more commonly found in the literature. These bounds arise naturally in some
isospectral and geometric variational problems as well as in Ricci and Kähler-Ricci flows,
[27, 115, 119, 10, 11, 9]. Under integral bounds on Ric, several properties of manifolds
whose Ricci curvature is uniformly bounded from below are recovered, such as Laplacian
and Bishop-Gromov comparisons. Volume doubling and estimates for the isoperimetric
and local Sobolev constants can also be proved; see [46, 125, 126, 100, 101].

In the literature, one can find two notions of integral curvature bounds, one of global
nature and one of uniform local nature.

Definition 1.1. Let (M, g) be an n-dimensional Riemannian manifold, suppose that
K ≥ 0, R > 0 and 1 < p < +∞. Set

ρK(x) := (minRic+(n− 1)K2)−(x) (1.1)

(where f− denotes the negative part of f),

k(x, p,R,K) := R2 ∥ρK∥Lp(BR(x))

vol(BR(x))1/p
and k(p,R,K) := sup

x∈M
k(x, p,R,K).

We say that:

• M has Ricci curvature bounded from below by −(n− 1)K2 in the global Lp sense if
ρK ∈ Lp(M).

• M has an ε > 0-amount of Ricci curvature below −(n − 1)K2 in the Lp sense at
the scale R if k(p,R,K) < ε.

Remark 1.2. Note that ρK(x) = 0 if and only if the Ricci curvature is bounded from below
by −K2. In particular, if the Ricci curvature satisfies the lower bound Ric ≥ −(n−1)K2,
then k(p,R,K) = 0 for all R > 0 and p ∈ (1,+∞), hence, both integral Ricci curvature
conditions are satisfied. On the other hand, the integral bounds we assume are indeed
weaker than the usual pointwise bounds; see Remark 1.7 below.

11



1 Gradient and Calderón–Zygmund inequalities under Ricci lower bounds

1.1 Gradient estimates: local uniform Lq Ricci bounds

While Lp-gradient estimates hold on any complete Riemannian manifold if p ∈ (1, 2], [32],
a lower bound on the Ricci curvature is necessary to obtain the whole range p ∈ (1,+∞),
[28]. In this section, we prove that the same conclusion holds if we replace the pointwise
bound with a local uniform Lq bound on the Ricci tensor. Before proceeding with the
proof of the result, we point out the following facts, which will be repeatedly used in the
sequel.
Remark 1.3. If (M, g) is a complete Riemannian manifold supporting an Lp-gradient es-
timate for some p ∈ (1,+∞), then GE(p) extends with the same constant to all functions
in H2,p(M). Indeed, if u ∈ H2,p(M), by a result of Milatovic, [65, Appendix], there exists
a sequence {uk} ⊆ C∞

c (M) such that uk → u with respect to the H2,p norm. Applying
GE(p) to uk, we deduce that ∇uk is Cauchy and thus converges in the space of Lp vector
fields. Testing ∇uk against a smooth and compactly supported vector field and taking
the limit shows in fact that ∇uk converges in Lp norm to the weak gradient ∇u.
Remark 1.4. As noted in [101, Section 2.3] for the case K = 0, smallness of k(q,R0,K) at
a fixed scale R0 implies a control on k(q,R,K) for all scales R > 0. This is a consequence
of a volume comparison result contained in [16, Lemma 10]. Indeed, if q > n/2 there
exists ε = ε(n, q,K) > 0 such that if k(q,R2,K) < ε, then for every 0 < R1 < R2 one
has

k(q,R1,K) ≤ 4

(︃
R1

R2

)︃2(︃vK(R2)

vK(R1)

)︃ 1
q

k(q,R2,K),

where vK(R) is the volume of the geodesic ball of radius R in the n-dimensional space
form of constant curvature K. Since vK(R1) ∼ Rn1 , k(q,R1,K) → 0 as R1 → 0, i.e.,
k(q,R1,K) can be made arbitrarily small. See [16, Corollary 13].

Note also that k(p, r,K) ≤ k(q, r,K) whenever p ≤ q.
Under the assumption that k(p/2, 1,K) is small, we first prove a local Lp-gradient

estimate, which is based upon a local gradient estimate of Dai, Wei and Zhang, [35]. In
what follows, we use the notation

∥u∥∗Lp(Ω)=

(︃ 
Ω
|u|p
)︃1/p

=

(︃
1

vol(Ω)

∫︂
Ω
|u|p
)︃1/p

.

Lemma 1.5. Let p > n. There exists ε = ε(n, p,K) > 0, C(n, p) > 1 and 0 < R0 ≤ 1
such that if k(p/2, 1,K) ≤ ε, then

sup
BR/2(x)

|∇u|2≤ CR−2
[︂
(∥u∥∗L2(BR(x)))

2 + (∥∆u∥∗Lp(BR(x)))
2
]︂

(1.2)

for all 0 < R ≤ R0, for all x ∈ M and for all smooth functions u on B1(x). Moreover,
there exists a constant D(n, p) > 0 such that

∥∇u∥pLp(BR/2(x))
≤ DR−p

(︂
∥u∥pLp(BR(x))+∥∆u∥pLp(BR(x))

)︂
(1.3)

for all x ∈M , 0 < R ≤ R0 and all smooth functions u on B1(x).
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1 Gradient and Calderón–Zygmund inequalities under Ricci lower bounds

Proof. By [35, Theorem 1.9], there exists a constant ε0(n, p) > 0 independent of R0

such that if k(p/2, R0, 0) ≤ ε0, then (1.2) holds for all 0 < R ≤ R0. By Remark 1.4
we know that if k(p/2, 1,K) ≤ ε, then k(p/2, R,K) ≲ R2−n/2p as R → 0 and since
ρ0(x) ≤ ρK(x) + (n− 1)|K|, we have

k(p/2, R, 0) ≤ k(p/2, R,K) + (n− 1)|K|R2.

Hence, if we take R0 small enough, then k(p/2, R0, 0) ≤ ε0, which concludes the first
part of the lemma. The constant R0 depends on K,n, ε and ε0.

From (1.2) we have

sup
BR/2(x)

|∇u|p≤ Cp/2R−p2p/2−1
[︂
(∥u∥∗L2(BR(x)))

p + (∥∆u∥∗Lp(BR(x)))
p
]︂
.

By Hölder’s inequality (︄ 
BR(x)

u2

)︄p/2
≤
 
BR(x)

up,

whence∫︂
BR/2(x)

|∇u|p≤ Cp/2R−p2p/2−1vol(BR/2(x))

vol(BR(x))

(︄∫︂
BR(x)

|u|p+
∫︂
BR(x)

|∆u|p
)︄
.

To conclude the proof of (1.3) recall that, as a consequence of the volume comparison,
(M, g) satisfies a uniform local volume doubling property, i.e. there exists C > 0 such
that

vol(BR/2(x)) ≤ C vol(BR(x))

for all x ∈ M and 0 < R ≤ R0. See Lemma 10 and subsequent results in [16]. This
completes the proof of Lemma 1.5.

We are now ready to prove the global Lp-gradient estimate.

Theorem 1.6. Suppose that n < p0 < +∞. There exists a constant ε = ε(p0, n,K) > 0
such that if k(p0/2, 1,K) ≤ ε for some K ≥ 0, then the Lp-gradient estimate GE(p) holds
on M for every 1 < p ≤ p0.

Proof. We start by noting that the local Lp0 gradient estimate (1.3), p0 > n, extends
to the whole manifold using a uniformly locally finite covering of M . The existence of
such covering is a formal consequence of the local volume doubling inequality, which, as
we have recalled above, holds under local integral Ricci bounds. Thus, let u ∈ C∞

c (M)
and Ω = supp(u) and let 0 < R ≤ R0 small enough such that 2R ≤ 1. Here R0 is the
radius appearing in Lemma 1.5. By local volume doubling, there exist x1, . . . , xh ∈ M
such that

(i) Ω ⊆
⋃︁h
i=1BR/2(xi);

(ii) every x ∈ Ω intersects at most N balls BR(xi).
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1 Gradient and Calderón–Zygmund inequalities under Ricci lower bounds

Then,∫︂
M
|∇u|p0 ≤

h∑︂
i=1

∫︂
BR/2(xi)

|∇u|p0≤ DR−p
h∑︂
i=1

(︄∫︂
BR(xi)

|u|p0+
∫︂
BR(xi)

|∆u|p0
)︄

≤ DR−p0
∫︂
M

h∑︂
i=1

1BR(xi) (|u|
p0+|∆u|p0) ≤ DR−p0N

(︃∫︂
M
|u|p0+

∫︂
M
|∆u|p0

)︃
,

which proves the gradient estimate GE(p) with p = p0 > n.

Recall that if p ∈ (1, 2], then Lp-gradient estimates always holds on complete Rieman-
nian manifolds [32]. We now interpolate between this and the result for p > n obtained
in the first part of the proof.

Suppose that 2 < p ≤ n and choose q > n and θ in (0, 1), so that 1/p = θ/q+(1−θ)/2.
It is well known that the heat semigroup is strongly continuous and contractive on Lr(M)
for all r ∈ [1,+∞) [60, Theorem IV.8]. By the Hille–Yosida Theorem, −1 is in the
resolvent set of its infinitesimal generator −∆. Then −∆+I is (surjective and) invertible
in Lq(M), hence, (−∆ + I)−1 is bounded on Lq(M) and its range is contained in the
domain of ∆ where DomLq(∆) = H2,q(M). Let u ∈ Lq(M) and v = (−∆ + I)−1u ∈
H2,q(M), by Remark 1.3 and the first part of the theorem we have

∥∇(−∆+ I)−1u∥Lq= ∥∇v∥Lq≤ C (∥∆v∥Lq+∥v∥Lq) ≤ C∥(−∆+ I)v∥Lq= C∥u∥Lq ,

hence, ∇(−∆+ I)−1 extends to a bounded operator from Lq(M) to Lq(M ;T1M).

On the other hand,

∥∇(−∆+ I)−1f∥L2=
(︁
(−∆+ I)−1f,∆(−∆+ I)−1f

)︁
L2 .

Since both (−∆+ I)−1 and ∆(−∆+ I)−1 extend to bounded operators on L2(M), the
operator ∇(−∆ + I)−1 extends to a bounded operator from L2(M) to L2(M ;T1M).
By the Riesz–Thorin Interpolation Theorem ∇(−∆+ I)−1 extends to a bounded linear
operator from Lp(M) to Lp(M ;T1M). As a consequence, the Lp-gradient estimate holds
on M .

Note that since local uniform Lq Ricci bounds include the usual pointwise lower bounds,
our Theorem 1.6 provides yet another alternative proof of the result by Cheng, Thalmaier
and Thompson, [28], using only PDEs methods.

Remark 1.7. As alluded to in the introduction, the integral curvature bounds assumed
here are weaker than the classical pointwise bounds. An easy example of a Riemannian
manifold (M, g) satisfying infM minRic = −∞ but with k(p, 1, 0) arbitrarily small, can
be constructed as follows. We take M = R2 endowed with the conformally flat metric
g = e2φdx2, where φ is a smooth non-positive function. It is easy to see that volg(K) ≤
vole(K) for any measurable set K ⊂ R2, and Bg

R(w) ⊇ Be
R(w) for any R > 0 and w ∈ R2.

Suppose now that suppφ ∈ ∪n∈NBe
1/2((4n, 0)). This guarantees that Bg

1(w) ⊆ Be
2(w) for
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1 Gradient and Calderón–Zygmund inequalities under Ricci lower bounds

any w ∈ R2. Moreover, given w ∈ R2, let nw be the unique integer (if any) such that
Be

1/2((4nw, 0)) intersects Be
1(w). Then

volg B
g
1(w) ≥ volg B

e
1(w) ≥ volg(B

e
1(w) \Be

1/2(4nw, 0)) =
3

4
π. (1.4)

Fix a ∈ (2 − 2
p , 2), and ϕ0 ∈ C∞

c (Be
1/2(0, 0)), we define φ(x, y) =

∑︁
n∈N ϕn(x, y), where

ϕn(x, y) = n−aϕ0(n(x − 4n, y)) if n ≥ 1. On the one hand, since ∆eϕ0 attains positive
values and since ∆eϕn(x, y) = n2−a∆eϕ0(n(x − 4n, y)), we have that Ricg = −2∆eφ is
lower unbounded. On the other hand, we have∫︂
Bg

1 (w)
((minRic)−)

pdµg = 2p
∫︂
Bg

1 (w)
((∆eφ)+)

pdµg ≤ 2p
∫︂
Be

2(w)
((∆eϕnw)+)

pdx2

= 2pn2p−pa−2
w

∫︂
Be

1(0,0)
((∆eϕ0)+)

pdx2

≤ 2p
∫︂
Be

1(0,0)
((∆eϕ0)+)

pdx2,

which is uniformly bounded independently of w. Moreover, choosing an appropriate
ϕ0, we can assume that the right-hand side of the above estimate is arbitrarily small.
Together with the uniform volume lower bound (1.4), this proves that k(p, 1, 0) < +∞
and can be made arbitrarily small.

1.2 Gradient estimates: global Lq Ricci bounds

In this section, we show that gradient estimates also hold under the assumption of positive
injectivity radius and non-negative Ricci curvature in the global integral sense. While
the proof of Theorem 1.6 relies on a local L∞ gradient estimate, this second result relies
on a computation in harmonic coordinates with a uniform W 1,q bound. Preliminarily,
we recall the following

Definition 1.8. Let (M, g) be an n-dimensional Riemannian manifold and let n < q <
+∞. The W 1,q harmonic radius at x, denoted by rW 1,q(x), is the supremum of all R > 0
such that there exists a coordinate chart ϕ : BR(x) → Rn satisfying

(i) 2−1[δij ] ≤ [gij ] ≤ 2[δij ] in the sense of quadratic forms;
(ii) R1−n/q∥∂kgij∥Lq(BR(x))≤ 1;
(iii) ϕ is a harmonic map.

The following theorem encloses in a single statement classical contributions by Ander-
son and Cheeger and a more recent result of Hiroshima.

Theorem 1.9 ([4, 71]). Fix n ∈ N, q > n, K ≥ 0 and i > 0. Let (M, g) be a com-
plete, n-dimensional Riemannian manifold satisfying rinj ≥ i and either of the following
assumptions:
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(i) Ric ≥ −(n− 1)K2 or
(ii) Ric is non-negative in the global Lq/2 sense, i.e., λ = ∥(minRic)−∥Lq/2(M)< +∞.

Then, rW 1,q(z) ≥ r̄ independently of z ∈M , where r̄ = r̄(n, q,K, i, λ) > 0.

Note that, by Sobolev embedding, we have for free a C0,α control on the metric coeffi-
cients within the ball Br̄/2(z). Moreover, we observe the inclusions Be

r̄/8 ⊆ ϕ(Br̄/4(z)) ⊆
Be
r̄/2, where Be ⊆ Rn denotes the Euclidean ball centered at the origin. Since, inside

Be
r̄/8, the Euclidean and the Riemannian measures are mutually controlled by absolute

uniform constants, in performing integrations in local coordinates, the chosen measure is
irrelevant.

Remark 1.10. We have already observed that complete manifolds with Ricci lower bounds
in the uniform local integral sense, enjoy the uniform local volume doubling property at
any fixed scale. In the class of manifolds with positive injectivity radius, the same is true
if we consider the case of global Lq conditions. This follows from Croke isoperimetric
estimate and volume comparison. In particular, at a sufficiently small scale, we have the
existence of a covering with finite intersection multiplicity as in the proof of Theorem 1.6;
see e.g. [71, Proposition 1.5]. Conversely, if one assumes a priori that rW 1,q(M) :=
infx∈M rW 1,q(x) > 0, then the double-sided Euclidean control on the volume of the balls
at a small scale implies the uniform volume doubling property, and hence the covering
property.

Recall that, if (x1, · · · , xn) is a system of harmonic coordinates, then

(∇u)j = gjk∂ku, ∆u = gij∂2iju,

where g = [gij ] and g−1 = [gij ] are, respectively, the matrix of the metric coefficients and
its inverse.

Theorem 1.11. Suppose that rW 1,q(M) = r̄ > 0 for some q > n. Then for every
1 < p < +∞, the Lp-gradient estimate GE(p) holds on M .

Proof. Fix 0 < r < r̄/16. Since the metric coefficients in W 1,q-harmonic coordinates
are uniformly C0,α-controlled, there exist an absolute constant C > 1 such that, for any
u ∈ C∞

c (M) and 0 < R ≤ r,

C−1∥∇eu∥Lp(Be
R) ≤ ∥∇u∥Lp(B2R(x)) ≤ C∥∇eu∥Lp(Be

4R)

and
∥gij∂2iju∥Lp(Be

R)≤ C∥∆u∥Lp(B2R(x)).

On the other hand, by the Euclidean estimates of the gradient, [49, Theorem 9.11], there
exists a constant C = C(n, p,R) > 0 such that

C−1∥∇eu∥Lp(Be
2r)

≤ ∥u∥Lp(Be
4r)

+∥gij∂2iju∥Lp(Be
4r)
.
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Hence,

∥∇u∥Lp(Br(x))
≤ C∥∇eu∥Lp(Be

2r)

≤ C
(︂
∥u∥Lp(Be

4r)
+∥gij∂2iju∥Lp(Be

4r)

)︂
≤ C

(︁
∥u∥Lp(B8r(x))+∥∆u∥Lp(B8r(x))

)︁
.

Thanks to the uniform local doubling condition, M has a countable covering by balls
{Br(xj)} such that {B8r(xj)} has finite intersection multiplicity, see Remark 1.10. Then,
the global Lp estimate follows by adding the local inequalities similarly as in Theorem 1.6.

Combining Theorem 1.11 and the result of Hiroshima, Theorem 1.9, we obtain the
desired result.

Theorem 1.12. Suppose rinj(M) > 0 and M has non-negative Ricci curvature in the
global Lq/2 sense for some n < q < +∞. Then, for every 1 < p < +∞, GE(p) holds on
M .

1.3 Calderón–Zygmund inequalities

We begin this section with an observation which will be useful in the following chapters.

Remark 1.13. If the manifold at hand supports CZ(p) then GE(p) holds thanks to [63,
Corollary 3.11], then ∥u∥W 2,p≤ ∥u∥H2,p at least con smooth and compactly supported
functions. However, thanks to a functional analytic result of Milatovic, [65, Appendix],
C∞
c (M) is dense in H2,p(M) with respect to the norm ∥·∥H2,p on all complete manifolds,

this allows us to conclude that H2,p(M) ⊆ W 2,p
0 (M) and, thus, equality of the three

definition of Sobolev spaces. See [121, Remark 2.1] or [103, Proposition 4.7]. As we shall
see in Chapter 2, the converse is not true: there are examples of Riemannian manifolds
which lack CZ(p) but where smooth and compactly supported functions are dense in
W 2,p(M), see Remark 2.2. Note that the above argument also yields that CZ(p) extends
with the same constant to functions in H2,p(M). Compare this with Remark 1.3.

Next, we prove the equivalence between boundedness of the second order local Riesz
transform and Calderón–Zygmund inequalities. For later use, we state this equivalence
also including the case of higher order Riesz transforms.

Proposition 1.14. Let 1 < p < ∞, τ > 0 and let k ≥ 1 be an integer. The local Riesz
transform R2k

τ of order 2k is bounded from Lp(M) to Lp(M ;T2kM) if and only if the
Lp-Calderón–Zygmund inequality of order 2k

∥∇2ku∥p ≤ C [ ∥u∥p + ∥∆ku∥p ] ∀u ∈ DomLp(∆k) (1.5)

holds on M for some C > 0, where

DomLp(∆k) = {u ∈ Lp(M) : ∆ku ∈ Lp(M)}

17
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is the domain of the kth power of the Laplacian in Lp. Moreover, when k = 1 the latter
assertions are also equivalent to

∥∇2u∥p ≤ C [ ∥u∥p + ∥∆u∥p ] ∀u ∈ C∞
c (M).

Proof. Since −∆ generates a contraction semigroup on Lp(M), by the Hille–Yosida The-
orem the operator −∆ is sectorial in Lp(M) and the resolvent (−∆+ τI)−1 is bounded
on Lp. Hence, so is (−∆ + τI)−k. Set ψ(λ) := (λk + τ)(λ + τ)−k. It is not hard to
prove that both ψ and 1/ψ are in the extended Dunford class Eθ for every θ in (π/2, π),
see [67, p.28] for the precise definition. By the standard functional calculus for sectorial
operators, [67, Theorem 2.3.3], ψ((−∆)) and (1/ψ)((−∆)) extend to bounded operators
on Lp(M).

Suppose first that R2k
τ is bounded on Lp(M), i.e. there exists a constant C such that

∥R2k
τ f∥Lp(M) ≤ C ∥f∥Lp(M) ∀f ∈ Lp(M).

In particular, if u ∈ DomLp ((−∆)k), then f := (−∆+ τI)ku is in Lp(M), and

∥∇2ku∥Lp(M) ≤ C ∥(−∆+ τI)ku∥Lp(M) ≤ C [ ∥∆ku∥Lp(M) + ∥u∥Lp(M) ],

where C depends on τ . The last inequality is a straightforward consequence of the
boundedness in Lp of (1/ψ)((−∆)).

Conversely, suppose that (1.5) holds. Consider f in Lp(M). Since τ is in the resolvent
set of (−∆), the operator (−∆+ τI)k maps DomLp(∆k) onto Lp(M). Therefore, there
exists u in DomLp (∆k) such that u = (−∆ + τI)−kf . Consequently, (1.5) with u as
above, yields

∥∇2ku∥Lp(M) ≤ C [ ∥(−∆+ τI)−kf∥p + ∥∆k(−∆+ τI)−kf∥p ]. (1.6)

Now, both (−∆ + τI)−k and ∆k(−∆ + τI)−k are bounded operators on Lp(M), as
ψ((−∆)) is. Furthermore, standard properties of sectorial operators imply that there
exists a constant C such that

|||(−∆+ τI)−k|||Lp(M) ≤
⃓⃓⃓⃓⃓⃓⃓⃓⃓
(−∆+ τI)−1

⃓⃓⃓⃓⃓⃓⃓⃓⃓k
Lp(M)

≤ C

τk
∀τ > 0

and
|||∆k(−∆+ τI)−k|||Lp(M) ≤

⃓⃓⃓⃓⃓⃓⃓⃓⃓
∆(−∆+ τI)−1

⃓⃓⃓⃓⃓⃓⃓⃓⃓k
Lp(M)

≤ C ∀τ > 0.

This and (1.6) yield

∥∇2k(−∆+ τI)−kf∥Lp(M) ≤ C [τ−k ∥f∥p + ∥f∥p ] ≤ C max (1, τ−k) ∥f∥p ,

as required.

The last part of the proof follows from Remark 1.13.
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The rest of this section is devoted to the proof of CZ(p) under the assumption that
rW 1,p(M) > 0; as in Section 1.2, this result relies on local estimates in W 1,q-harmonic
coordinates and on a covering argument made possible by the uniform local volume
doubling condition, see Remark 1.10.

The crucial ingredient is the following estimate of the first order term in the local
expression of the Hessian of a smooth function. Recall that, if (x1, · · · , xn) is a system
of harmonic coordinates, then

∇2
iju = Hess(u)ij = ∂2iju− Γkij∂ku

where Γkij denote the Christoffel symbols.

Lemma 1.15. Let 1 < p < +∞. Fix z ∈ M , q > max(n, p) and let 0 < r = 1
4rW 1,q(z).

Finally, denote by Γkij the Christoffel symbols with respect to the W 1,q harmonic coordi-
nates system ϕ(x) = (x1, · · · , xn) : Br(z) → U ⊇ Be

r/2. Then, there exists a constant
C = C(n, p, q, r) > 0 such that, for any u ∈ C∞(M),

C−1 · ∥Γkij∂ku∥Lp(Be
r/2

)≤ ∥Hesse u∥Lp(Be
r/2

) + ∥∇u∥Lp(Br(z))
.

Proof. We apply Hölder’s inequality with conjugate exponents t = q/(q−p) and t′ = q/p
to get

∥Γkij∂ku∥Lp(Be
r/2

)≤
∑︂
k

∥Γkij∥Lq(Br(z))·∥∇
eu∥Lpq/(q−p)(Be

r/2
), ∀ i, j = 1, . . . , n. (1.7)

Next, we recall that the Christoffel symbols display a C1 dependence on the metric
coefficients in the form

Γ =
1

2
g−1 · ∂g.

Since ∥g∥L∞ , ∥g−1∥L∞ and ∥∂g∥Lq are bounded inside Br(z) (with a bound depending
only on n, q, r), we deduce that there exists a constant C = C(n, q, r) > 0 such that

∥Γkij∥Lq(Br(z))≤ C. (1.8)

It remains to take care of gradient term in (1.7). To this end, for the sake of clarity, we
distinguish three cases according to the values of p.
(1 < p < n). Since

pq

q − p
< p∗ :=

np

n− p
,

we can apply directly the Sobolev(–Kondrakov) embedding theorem and deduce that, for
some constant S = S(r, p, q, n) > 0,

S−1 · ∥∇eu∥Lpq/(q−p)(Be
r/2

) ≤ ∥Hesse u∥Lp(Be
r/2

) + ∥∇eu∥Lp(Be
r/2

).

On the other hand, observe that

∥∇eu∥Lp(Be
r/2

) ≤ C∥∇u∥Lp(Br(z))
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for some absolute constant C > 0, whence

∥∇eu∥
L

pq
q−p (Be

r/2
)
≤ C

(︂
∥Hesse u∥Lp(Be

r/2
) + ∥∇u∥Lp(Br(z))

)︂
. (1.9)

Inserting (1.8) and (1.9) into (1.7), gives the desired inequality when 1 < p < n.
(p = n). Let 1 < p̃ < n = p be defined by

p̃ =
nq

2q − n
.

Since
nq

q − n
=

np̃

n− p̃
=: p̃∗,

we can apply the Sobolev embedding theorem and the Hölder inequality to deduce that,
for some constant S = S(r, q, n) > 0,

S−1 · ∥∇eu∥Lnq/(q−n)(Be
r/2

) ≤ ∥Hesse u∥Lp̃(Be
r/2

) + ∥∇eu∥Lp̃(Be
r/2

)

≤ |Be
r/2|

(n−p̃)/np̃
(︂
∥Hesse u∥Ln(Be

r/2
) + ∥∇eu∥Ln(Be

r/2
)

)︂
.

The conclusion follows exactly as above.
(p > n). In this case, we can use Morrey’s and Hölder’s inequalities to deduce that, for
some constant S = S(r, p, q, n) > 0,

∥∇eu∥Lpq/(q−p)(Be
r/2

) ≤ |Be
r/2|

(q−p)/pq·∥∇eu∥L∞(Be
r/2

)

≤ S|Be
r/2|

(q−p)/qp
(︂
∥Hesse u∥Lp(Be

r/2
) + ∥∇eu∥Lp(Be

r/2
)

)︂
.

The proof of the lemma is complete.

We are now in the position to prove the following:

Theorem 1.16. Let 1 < p < +∞. Suppose that rW 1,q(M) > 0 for some q > max(n, p).
Then the Lp-Calderón–Zygmund estimate CZ(p) holds on M .

Proof. Set r̄ = rW 1,q(M)/4 and let u ∈ C∞
c (M). We preliminarily observe that there

exists a uniform constant C > 0 such that, for any z ∈M ,

∥∇eu∥Lp(Be
r̄)

≤ C∥∇u∥Lp(B2r̄(z))
, ∥gij∂2iju∥Lp(Be

r̄)
≤ C∥∆u∥Lp(B2r̄(z)).

Using the Euclidean Calderón–Zygmund estimate [49, Theorem 9.11] joint with Lemma
1.15, we find a constant C = C(n, p, r̄) > 0 such that, for any z ∈M ,

∥∇2u∥Lp(Br̄/4(z))
≤ ∥Hesse u∥Lp(Be

r̄/2
) +
∑︂
ij

∥Γkij∂ku∥Lp(Be
r̄/2

)

≤ C
(︂
∥gij∂2iju∥Lp(Be

r̄)
+∥u∥Lp(Be

r̄)
+∥∇u∥Lp(B2r̄(z))

)︂
≤ C

(︂
∥∆u∥Lp(B2r̄(z))+∥u∥Lp(B2r̄(z))+∥∇u∥Lp(B2r̄(z))

)︂
.

20



1 Gradient and Calderón–Zygmund inequalities under Ricci lower bounds

Now, according to Remark 1.10, we cover M by a sequence of balls {Br̄/4(zj)}j∈N with
the property that the covering {B2r̄(zj)}j∈N has finite intersection multiplicity. Summing
up the local inequalities and using monotone and dominated convergence, we deduce the
existence of a constant C = C(n, p,K, i) > 0 such that

C−1∥∇2u∥Lp ≤ ∥∆u∥Lp+∥u∥Lp+∥∇u∥Lp .

To conclude we apply the Lp-gradient estimates of Theorem 1.11. Accordingly, there
exists a constant C = C(n, p,K) > 0 such that

C−1∥∇u∥Lp ≤ ∥u∥Lp+∥∆u∥Lp

and this completes the proof.

Combining Proposition 1.14 with Theorem 1.16 yields the following

Theorem 1.17. Suppose that rinj(M) > 0, then R2
τ is bounded for every τ > 0 from

Lp(M) to Lp(M ;T2M)
(i) for every 1 < p < +∞, if Ric ≥ −(n− 1)K2 for some K ≥ 0;
(ii) for every 1 < p ≤ q, if the Ricci curvature is non-negative in the global Lq/2 sense

for some q > n.
Equivalently, we have the validity of the corresponding CZ(p) inequalities.

As explained in Remark 1.13, the validity of CZ(p) yields a new density result in
Sobolev spaces.

Corollary 1.18. Under the assumptions of Theorem 1.17, C∞
c (M) is dense in W 2,p(M)

in the corresponding ranges of p.

Remark 1.19. When 1 < p ≤ 2, the conclusions of Theorem 1.17 and Corollary 1.18 were
already known in the case Ric ≥ −K2 without assumptions on the injectivity radius,
see [74] and [24]. Actually, in the case of the density result, a controlled growth of the
negative part of the Ricci curvature can be allowed.

We conclude this section by showing how to pass from a Calderón–Zygmund inequality
to a strong W 2,p estimate when the underlying manifold has a spectral gap. The main
tool is the following result.

Lemma 1.20. Let 1 < p < ∞. Suppose that M has spectral gap b > 0. Then, there
exists a constant C = C(n, p, b) > 0 such that, for any u ∈ C∞

c (M) it holds

C−1∥u∥Lp≤ ∥∆u∥Lp .

Proof. As a straightforward application of the spectral theorem, if M has spectral gap
b > 0, the heat semigroup on M satisfies the following estimate

|||e−tL|||L2→L2 ≤ e−bt,

21



1 Gradient and Calderón–Zygmund inequalities under Ricci lower bounds

where L = −∆ and |||·|||L2→L2 denotes the operatorial norm in L2. On the other hand,
the heat semigroup is contractive in Lp for all 1 ≤ p ≤ ∞, i.e.

|||e−tL|||L1→L1 ≤ 1, |||e−tL|||L∞→L∞ ≤ 1.

Hence, an application of the Riesz–Thorin Interpolation Theorem implies that

|||e−tL|||Lp→Lp ≤ e−bcpt,

for all 1 < p < ∞, with cp = 1 − |(p − 2)/p|. Accordingly, for any u ∈ C∞
c (M) one has

the representation formula

u =

∫︂ ∞

0
e−tLLu dt,

which yields by the Minkowski inequality

∥u∥Lp≤
∫︂ ∞

0
e−bcpt∥Lu∥Lp dt ≤ 1

bcp
∥∆u∥Lp .

Remark 1.21. In a first draft of [88], Lemma 1.20 was proved under the additional as-
sumption that Ric ≥ −K2. However, thanks to a suggestion of an anonymous referee,
this assumption was later removed.

A trivial consequence of Lemma 1.20 is the estimate

∥u∥Lp+∥∆u∥Lp≤ C∥∆u∥Lp ∀u ∈ C∞
c (M).

It is precisely this latter that gives improved versions of Calderón–Zygmund inequalities
and Lp-gradient estimates whenever M has a spectral gap.

For instance, from a somewhat abstract viewpoint, where curvature restrictions do not
appear explicitly, we point out the following direct consequence of Theorems 1.11 and
1.16:

Corollary 1.22. Let 1 < p < +∞. Suppose that rW 1,q(M) > 0 for some q > max(n, p)
and that M has spectral gap. Then the strong W 2,p-estimate

∥u∥W 2,p ≤ C ∥∆u∥Lp ∀u ∈ C∞
c (M). (W(2, p))

holds for some constant C > 0.

Proof. We start by noting that, by Theorem 1.16, there exists a constant C > 0 such
that, for every u ∈ C∞

c (M),

C−1∥∇2u∥Lp ≤ ∥u∥Lp+∥∆u∥Lp .

On the other hand, by Theorem 1.11, the Lp-gradient estimates state that, for a suitable
constant C > 0,

C−1∥∇u∥Lp ≤ ∥u∥Lp+∥∆u∥Lp .
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Summarizing
C−1∥u∥W 2,p≤ ∥u∥Lp+∥∆u∥Lp .

An application of Lemma 1.20 yields the desired strong W 2,p-estimate.

On a more concrete side, interesting examples are contained in the next two corol-
laries. The first one improves a result contained in [91] by removing the injectivity
radius assumption. The argument is exactly as in the above proof up to using the
Lp-Calderón–Zygmund inequality proved in [24] combined with the gradient estimate
originally obtained in [28].

Corollary 1.23. Suppose that Ric ≥ −(n − 1)K2 and that M has spectral gap. Then,
for any fixed 1 < p ≤ 2, the strong W 2,p-estimate W(2, p) holds.

Similarly, we have the following straightforward consequences of Theorem 1.6.

Corollary 1.24. Suppose that n < p0 < +∞ and that M has spectral gap. There exists
a constant ε = ε(p0, n,K) > 0 such that if k(p0/2, 1,K) ≤ ε for some K ≥ 0, then the
Lp-gradient estimate

∥u∥W 1,p ≤ C ∥∆u∥Lp ∀u ∈ C∞
c (M).

holds on M for every 1 < p ≤ p0 and for some constant C > 0.

1.4 Higher order Calderón–Zygmund inequalities

We conclude this chapter with the study of higher order Calderón–Zygmund estimates
and the related boundedness properties of higher even order, local Riesz transform. We
start by recalling the following consequence of [91, Theorem 5.2], proved by Mauceri,
Meda and Vallarino.

Theorem 1.25 ([91]). Suppose that M has bounded geometry at the order 2ℓ − 2 ∈ N,
namely,

|∇j Ric|≤ K, ∀j = 0, · · · , 2ℓ− 2 and rinj(M) ≥ i,

for some constants K ≥ 0 and i > 0. Assume also that M has spectral gap b > 0. Then,
for any 1 < p ≤ 2 there exists a constant C = C(n, p, ℓ,K, b, i) > 0 such that the global
Riesz transform R2ℓ of order 2ℓ is bounded from Lp(M) to Lp(M ;T2ℓM)

Actually, the result in [91] is stronger, as it establishes that the global covariant Riesz
transform R2ℓ is bounded as an operator from a certain Hardy space to L1. Its Lp

boundedness for 1 < p ≤ 2 then follows from an interpolation argument.
It is natural to speculate whether some of the assumptions in Theorem 1.25 can be

removed. Our contribution is to allow b to be zero, at the expense of considering local
Riesz transforms versus the global version thereof.

23



1 Gradient and Calderón–Zygmund inequalities under Ricci lower bounds

Theorem 1.26. Suppose that ℓ is a positive integer and let τ > 0. Assume that rinj(M) >
0 and that the covariant derivatives of the Ricci tensor are uniformly bounded up to the
order 2ℓ− 2. Then R2ℓ

τ is bounded from Lp(M) to Lp(M ;T2ℓM) for every p in (1, 2].

Proof. All over this proof, we denote by L := −∆ the positively defined Laplace–Beltrami
operator of the underlying manifold. Suppose that (M, g) has bounded geometry at the
order 2ℓ − 2. Take the standard hyperbolic plane H2, and consider the Riemannian
product (M × H2, g + gH2). Then, denoting by bM = b, bH2 and bM×H2 the bottom of
the L2 spectrum of the (positive) Laplace–Beltrami operator on M , H2 and M × H2

respectively, it holds

bM×H2 = bM + bH2 ≥ bH2 =
1

4
.

Moreover
|∇j RicN |≤ max(1,K), j = 0, · · · , 2ℓ− 2,

and
rinj(M ×H2) ≥ rinj(M) ≥ i.

It follows from Theorem 1.25 and Proposition 1.14 that, if p is in (1, 2], there exists a
constant C > 0 such that

∥∇2ℓ
M×H2w∥Lp(M×H2) ≤ C ∥Lℓ

M×H2w∥Lp(M×H2) , ∀w ∈ DomLp(LM×H2). (1.10)

We apply this estimate to functions w of the form φ⊗ ψ, where φ ∈ DomLp(LM ) and
ψ belongs to C∞

c (H2). Since

Lℓ
M×H2(φ⊗ ψ) =

ℓ∑︂
j=0

(︃
ℓ

j

)︃
(LjMφ)⊗ (Lℓ−jH2 ψ)

and

|∇2ℓ
M×H2(φ⊗ ψ)|2M×H2 =

2ℓ∑︂
j=0

2

(︃
ℓ

j

)︃
|(∇j

Mφ)⊗ (∇2ℓ−j
H2 ψ)|2M×H2 ,

by (1.10) we see that

∥∇2ℓ
Mφ∥Lp(M) ∥ψ∥Lp(H2) = ∥(∇2ℓ

Mφ)⊗ ψ∥Lp(M×H2)

≤ ∥∇2ℓ
M×H2(φ⊗ ψ)∥Lp(M×H2)

≤ C ∥Lℓ
M×H2(φ⊗ ψ)∥Lp(M×H2)

≤ C
ℓ∑︂

j=0

(︃
ℓ

j

)︃
∥LjMφ∥Lp(M) ∥Lℓ−jH2 ψ∥Lp(H2) .

Now, suppose that ψ does not vanish identically on H2. Then divide both sides of the
previous inequality by ∥ψ∥Lp(H2) , and obtain that

∥∇2ℓ
Mφ∥Lp(M) ≤ C σp,ℓ

ℓ∑︂
j=0

(︃
ℓ

j

)︃
∥LjMφ∥Lp(M) ∀φ ∈ Lp(M),
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where

σp,l := min
0≤j≤l

inf
ψ ̸=0

∥Ll−jH2 ψ∥Lp(H2)

∥ψ∥Lp(H2)

is a finite constant. Now, since LM is sectorial on Lp(M) (for LM generates the con-
traction semigroup {Ht} on Lp(M)), the Moment inequality [67, Theorem 6.6.4] implies
that

∥LjMφ∥Lp(M) ≤ C ∥φ∥1−j/ℓLp(M) ∥LℓMφ∥
j/ℓ
Lp(M) ,

so that
ℓ∑︂

j=0

(︃
ℓ

j

)︃
∥LjMφ∥Lp(M) ≤ C ( ∥φ∥1/lLp(M) + ∥LℓMφ∥

1/ℓ
Lp(M) )

ℓ

≤ C 2ℓ( ∥φ∥Lp(M) + ∥LℓMφ∥Lp(M) ).

By combining the steps above, we find that there exists a constant C > 0 such that

∥∇2ℓ
Mφ∥Lp(M) ≤ C ( ∥φ∥Lp(M) + ∥LℓMφ∥Lp(M) ). (1.11)

A further application of Proposition 1.14 concludes the proof.

Remark 1.27. We conclude with some final observation which arise from the proof of
Theorem 1.26

(1) It is natural to speculate whether the Riesz transforms of higher odd order R2ℓ−1
τ

are bounded on Lp(M) when ℓ ≥ 2.
(2) It should be possible to give an alternative proof to Theorem 1.26 using C2ℓ−1,α

harmonic coordinates, which exist in our assumptions, see [4]. Such a proof would
likely work also in the case p > 2, but it would be very technical and involved,
due to the large number of terms of the coordinate expression of ∇2ℓ to deal with;
compare for instance with the analogous result for the higher order density problem
in [78]. For the sake of simplicity, we decided not to investigate such an approach
in this thesis.
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Chapter 2

Counterexamples

While Chapter 1 is devoted to positive results, in this chapter we focus on three examples
where the Lp-gradient or Calderón–Zygmund estimates fail. These counterexamples have
been constructed in [90] and [88].

We begin with Calderón–Zygmund inequalities. In the last years, counterexamples
to the validity of CZ(p) have been constructed by Güneysu–Pigola, Li, and Veronelli in
[63, 85, 121] respectively. The first example is due to Güneysu and Pigola, who proved the
existence of a 2 dimensional, complete, parabolic Riemannian manifold on which CZ(2)
fails. This construction was later extended by Li to all dimensions and to all integrabil-
ity orders p ∈ (1,+∞). Both examples are warped manifolds with Gaussian/sectional
curvature exploding at ∞ and injectivity radius going to zero. The example of [121]
is constructed too on a warped manifold. In this work, however, Veronelli proves that
smooth and compactly supported functions are not dense in W 2,p(M), by Remark 1.13
this is sufficient to prove that CZ(p) fails on M . This example too has curvatures ex-
ploding at ∞.

2.1 A counterexample to CZ(p) with arbitrarily small
negative curvatures

Our first contribution is to show that it is possible to construct counterexamples to the
validity of CZ(p) on manifolds with curvature growing at −∞ as slow as we want. Our
construction follows from the ones in [63, 85] which have sectional curvature oscillating
increasingly on a sequence of compact annuli going to infinity. Nevertheless, we show
that distancing the (disjoint) annuli far enough allows a control on the rate of explosion
of Sect at −∞.

Theorem 2.1. For each n ≥ 2 and p ∈ (1,∞), and for each increasing function λ :
[0,+∞) → R such that λ(t) → +∞ as t → ∞, there exists a complete n-dimensional
Riemannian manifold (M, g) satisfying min Sect(x) ≥ −λ(r(x)) for r(x) large enough,
and which does not support CZ(p).

Proof. The counterexamples to CZ(p) in [63, 85] are constructed on a model manifold
(M, g), i.e. M = [0,+∞)×Sn−1 endowed with a warped metric g = dt2+σ2(t)gSn−1 . By
carefully choosing the warping function σ, the authors proved the existence of a sequence
of smooth functions {uk}∞k=1 and a sequence of intervals {[ak, bk]}∞k=1 such that
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• ak+1 > bk;

• uk is compactly supported in the annulus [ak, bk]× Sn−1;

• the sequence of functions uk contradicts CZ(p) for any possible constant, i.e.

∥∇2uk∥Lp

∥∆uk∥Lp+∥uk∥Lp
→ ∞, as k → ∞;

• there exists two sequences of intervals {[ck, dk]}∞k=1 and {[ek, fk]}∞k=1 with bk <
ck < dk < ek < fk < ak+1 such that σ is linear and increasing on [ck, dk] and is
linear and decreasing on [ek, fk], namely

σ|[ck,dk](t) = αkt+ βk, and σ|[ek,fk](t) = γkt+ δk

for some constants αk > 0, γk < 0 and βk, δk ∈ R.

Note that, in order to satisfy this latter condition, our {uk}∞k=1 could be a subsequence
of the sequence {uk}∞k=1 produced in [85]

Now, for k ≥ 2, let 0 < κk <∞ be such that

∀x ∈ [ek−1, dk]× Sn−1, min Sect(x) ≥ −κk.

Up to an increase of κk+1, we can assume that κk ≤ κk+1. For k ≥ 2, let Tk be such
that λ(Tk) > κk. For later purpose, since λ is increasing, we can assume without loss of
generality that Tk+1 > Tk + dk−1 − ek−2 and that

αk−1(Tk+1 + ek−2 − Tk) + βk−1 > σ(ek−1). (2.1)

We define now a new warping function σ̃(t) : [0,+∞) → [0,+∞) and a corresponding
model metric g̃ = dt2 + σ̃2(t)gSn−1 on M as follows. We define σ̃(t) only for t ≥ T3,
since the choice of σ̃ on [0, T3) does not affect the conclusion of the theorem. For t ∈
[Tk, Tk + dk−1 − ek−2] define

σ̃(t) = σ(t+ ek−2 − Tk),

so that
Sectg̃ ≥ −κk−1

on [Tk, Tk + dk−1 − ek−2]× Sn−1. In particular,

Sectg̃(t,Θ) ≥ −κk > −λ(Tk) ≥ −λ(t)

for any (t,Θ) ∈ ([Tk, Tk + dk−1 − ek−2] ∪ [Tk+1, Tk+1 + dk − ek−1]) × Sn−1. It remains
to prescribe σ̃ on the intervals (Tk + dk−1 − ek−2, Tk+1) for k ≥ 3. Note that on [Tk +
ck−1 − ek−2, Tk + dk−1 − ek−2] we have σ̃(t) = αk−1(t + ek−2 − Tk) + βk−1. Similarly,
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on [Tk+1, Tk+1 + fk−1 − ek−1], we have σ̃(t) = γk−1(t+ ek−1 − Tk+1) + δk−1. Because of
assumption (2.1), we can find a Sk ∈ (Tk + dk−1 − ek−2, Tk+1) such that

σ̂(t) =

{︄
αk−1(t+ ek−2 − Tk) + βk−1 on [Tk + ck−1 − ek−2, Sk]

γk−1(t+ ek−1 − Tk+1) + δk−1 on [Sk, Tk+1 + fk−1 − ek−1]

is a well-defined concave continuous piece-wise linear function which coincides with σ̃
outside (Tk + dk−1 − ek−2, Tk+1). Let ϵk > 0 be a small constant to be fixed later, and
define σ̃ on (Tk + dk−1 − ek−2, Tk+1) to be a concave smooth approximation of σ̂ equal
to σ̂ outside [Sk − ϵk, Sk + ϵk] (this can be produced for instance applying [47, Theorem
2.1]). A standard computation shows that the sectional curvatures of (M, g̃) are given
by

Sectrad(t,Θ) = − σ̃
′′(t)

σ̃(t)
, Secttg(t,Θ) =

1− (σ̃′(t))2

σ̃(t)2
,

for tangent planes respectively containing the radial direction, or orthogonal to it. Since
σ̃ is concave for t ∈ (Tk + dk−1 − ek−2, Tk+1) then

Sectrad(t,Θ) ≥ 0 ≥ −λ(t).

If αk−1 ≤ 1 and γk−1 ≥ −1 then Secttg(t,Θ) ≥ 0 ≥ −λ(t) in a trivial way. Otherwise,

Secttg(t,Θ) > Secttg(Tk + dk−1 − ek−2,Θ) ≥ −κk > −λ(t)

for t ∈ (Tk + dk−1 − ek−2, Sk − ϵk) and

Secttg(t,Θ) > Secttg(Tk+1,Θ) ≥ −κk > −λ(t)

for t ∈ (Sk + ϵk, Tk+1). Finally, for t ∈ [Sk − ϵk, Sk + ϵk], by concavity

1− (σ̃′(t))2 ≥ min{1− (σ̃′(Sk − ϵk))
2; 1− (σ̃′(Sk + ϵk))

2},

while σ̃(t) is arbitrarily close to σ̃(Sk − ϵk) and to σ̃(Sk + ϵk) for ϵk small enough.
Accordingly, we can choose ϵk small enough so that Secttg(t,Θ) > −λ(t) also for t ∈
[Sk − ϵk, Sk + ϵk]. Since Secttg and Sectrad are the extremal values of the sectional
curvatures, we have that min Sect at (t,Θ) is lower bounded by −λ(t) for all t ≥ T3.
Observe that ([Tk, Tk+dk−1−ek,2]×Sn−1, g̃) is isometric to ([ek,2, dk−1]×Sn−1, g). Then
we conclude by defining wk(t,Θ) = uk−1(t + ek−2 − Tk,Θ) so that the wk are smooth,
compactly supported in [Tk + ak−1 − ek−2, Tk + bk−1 − ek−2]× Sn−1 and verify

∥∇2wk∥Lp

∥∆wk∥Lp+∥wk∥Lp
→ ∞, as k → ∞.

Remark 2.2. The above construction suggests two considerations.
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• Theorem 2.1 implies sharpness of the pointwise lower bound on Ricci curvature in
the result of Cao, Cheng and Thalmaier, [24, Theorem 1.1] (Güneysu–Pigola when
p = 2 [63, Theorem B]). Note also that in our construction the injectivity radius,
rinj(M), vanishes.

• Another consequence is that it is not generally possible to obtain CZ(p) under
negative decreasing curvature bounds of the type Ric(x) ≥ −Crα(x) for some
α > 0. However, if α ∈ (0, 2] this bound implies that W 2,p

0 (M) = W 2,p(M) for
all p ∈ (1, 2], see [77, Theorem 1.4] and [74, Theorem 1.3]. Hence, while CZ(p)
implies the density result, Remark 1.13, the converse is not true. Under this milder
condition, however, a disturbed CZ(p) holds, [78, Section 6.2].

2.2 A counterexample to CZ(p) with positive curvatures

The result of Cao, Cheng and Thalmaier, [24], which is sharp by Theorem 2.1, completes
the picture of CZ(p) in the range p ∈ (1, 2]. It is quite reasonable to speculate if these
assumptions are sufficient also when p > 2. Indeed, Güneysu posed the following

Question 2.3 (Conjectured for Ric ≥ 0 in [60], p.177). Suppose that (M, g) is geodesi-
cally complete and has lower bounded Ricci curvature. Does CZ(p) hold on (M, g) for all
p ∈ (1,∞)?

Strong evidence for a negative answer to the above question comes from a deep and
recent result by De Philippis and Núñez-Zimbrón who proved the impossibility to have
a Calderón–Zygmund theory on compact manifolds with constants depending only on a
lower bound on the sectional curvature, at least when p > n. Namely, when p > n one can
find a sequence of compact, non-negatively curved Riemannian manifolds {(Mj , gj)}∞j=1

for which the best constant in CZ(p) is at least j; see [39, Corollary 1.3].
To prove this result, the authors considered a sequence of smooth non-negatively curved

n dimensional compact manifolds Gromov–Hausdorff approaching, [22, Definition 7.3.10]
a compact RCD(0, n) space X with a dense set of singular points. For basic definitions
on the theory of RCD spaces, see for instance [113, Chapter 1]. A bound on the constant
C in CZ(p) along the sequence, combined with a Morrey inequality, would imply that
all functions on X with Laplacian in Lp>n are C1. On the other hand, De Philippis and
Núñez-Zimbrón proved in [39, Theorem 1.1 ] that the gradient of a harmonic function (or
more generally of any function whose Laplacian is in Lp>n) vanishes at singular points
of an RCD(K,n) space. By a density argument, this would imply that all harmonic
functions on X are constant, a fact we know is false.

In this section, we give a concrete and final answer to Question 2.3, even under the
stricter assumption of positive sectional curvature, see Theorem 2.9 below. With respect
to the argument in [39], our main contribution consists in proving the existence of a fixed
Riemannian manifold on which CZ(p) can not hold, whatever constant C one take.

To achieve our result, we localize the procedure of De Philippis and Núñez-Zimbrón.
The key observation is the fact that the above argument is indeed local and can be
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repeated on infinitely many singular perturbations, suitably distributed over a non-
compact manifold. Namely, we begin with a complete non compact manifold (M, g)
with Sect(M) > 0. In the interior of infinitely many separated sets {Dj}j∈N of M we
take sequences of local perturbations gj,k of the original metric g such that all the gj,k
have Sect > 0 and gj,k Gromov–Hausdorff converges, as k → +∞, to an Alexandrov
metric dj,∞ on M of non-negative curvature, [99, Section 1.3], (hence RCD(0, n), see
[102, 129, 38]). In particular, the metric dj,∞ is singular on a dense subset of Dj . Next,
we observe that a neighborhood of each Dj can be seen as a piece of a compact space
whose metric is smooth outside Dj , so that De Philippis and Núñez-Zimbrón’s strategy
can be applied locally to the sequence gj,k. Accordingly, we find a (large enough) k and
a function vj compactly supported in a small neighborhood of Dj such that the following
estimate holds with respect to the metric gj,k

∥∇2vj∥Lp> j (∥∆vj∥Lp+∥vj∥Lp) .

Gluing together all the local deformations of the metric, we thus obtain a smooth manifold
on which no constant C makes CZ(p) true.

2.2.1 The singular space and its smooth approximations

It is well known from previous literature that for every n ≥ 2 one can always construct
a compact, convex set C ⊂ Rn+1 whose boundary X = ∂C is an Alexandrov space with
Curv(X) ≥ 0 and a dense set of singular points. The first example of such spaces is
due to Otsu and Shioya in dimension 2, [99, Example (2)], although the result holds in
arbitrary dimension. Observe that the space X can be GH approximated with a sequence
of smooth manifolds Xk of non-negative sectional curvature; see the proof of [1, Theorem
1].

In the following, we would like to localize this construction inside a compact set of a
complete, non-compact manifold. Indeed, we prove that a smooth and strictly convex
function can always be perturbed on a compact set by introducing a dense sequence of
singular points. Our construction leaves the function unaltered outside the compact set,
preserves smoothness outside the singular set and convexity at a global scale. Further-
more, we prove that such singular perturbation can be locally and uniformly approxi-
mated with smooth convex functions in a neighborhood of the singular set. Once again,
the difficulty here is to leave the functions unaltered outside the compact set.

Lemma 2.4. Let f : Rn → R be a smooth, strictly convex function. For every x ∈ Rn,
r > 0 there exists a convex function f∞ : Rn → R such that

(i) f∞ is smooth and equal to f outside Br(x);
(ii) the graph of f∞ restricted to Br(x) has a dense set of singularities.

Furthermore, there exists a sequence of smooth, strictly convex functions fk∞ : Rn → R
converging uniformly to f∞ and equal to f outside Br(x).

Proof. Take {yk}∞k=1 any dense set contained in S := Br(x). We want to perturb f in S
to obtain a new function whose graph has singularities in correspondence with yk while
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preserving the convexity properties. To do so, we consider g : B1(0) → R such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(x) = |x|+|x|2−1 x ∈ B1/2(0)

g ∈ C∞(B1(0) \ {0})
supp g ⊆ B1(0)

g ≤ 0.

Then, for ε > 0 and y ∈ Rn we define gε,y : Bε(y) → R as

gε,y(x) := g

(︃
x− y

ε

)︃
,

so that gε,y is smooth outside {y}, non-positive and strictly convex on Bε/2(y).
Let ε1 < 1− |y1| and define

f1(x) := f(x) + η1gε1,y1(x).

If η1 > 0 is small enough then f1 is strictly convex. Indeed, f1 is strictly convex in a
neighborhood of y1 because sum of two strictly convex function, on the other hand, gε1,y1
is concave in a region outside y1 where f is smooth and ∇2f is uniformly positive, hence,
f1 is strictly convex provided that η1 is small enough. Observe that f1 is smooth outside
{y1} and (its graph) has a singular point on y1.

Recursively, we let εk < min {1− |yk|, dist(yk, y1), . . . dist(yk, yk−1)} and we define

fk(x) := fk−1(x) + ηkgεk,yk(x). (2.2)

By construction fk is smooth outside {y1, . . . , yk}, where its graph is singular. Moreover,
fk is strictly convex in a neighbourhood of yk because sum of two strictly convex functions
while gεk,yk is concave in a region where fk−1 is smooth and ∇2fk−1 is uniformly positive
hence fk is strictly convex provided that ηk is small enough. Furthermore, if ηk are such
that

∑︁
k ηk converges, fk converges uniformly to some f∞, which is convex, singular on

{yk}∞k=1 and is smooth elsewhere. Moreover, it is equal to f outside S. Observe also that
{(yk, f∞(yk))}∞k=1 is dense in Graph(f∞|S) since f∞ is locally Lipschitz.

It remains to show that f∞ can be smoothly approximated with strictly convex func-
tions. By a diagonalization procedure, it is enough to uniformly approximate each fk.

For 0 < δ < min{ε1, . . . , εk}, let ϕδ,k = ϕδ : Rn → R be a smooth convex function such
that

ϕδ(x) = fk(x) on Rn \
k⋃︂
i=1

Bδ(yk).

The existence of ϕδ is ensured by [47, Theorem 2.1]. Clearly ϕδ converges pointwise to fk
as δ → 0. Since the functions are all strictly convex, the convergence is actually uniform.
This concludes the proof.
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Remark 2.5. Observe that the epigraph of f∞ is a convex set in Rn+1 whose boundary,
endowed with the intrinsic distance, is an Alexandrov space of non-negative curvature
(see [21]). Its singularities are contained (and dense) in the compact set Graph(f∞|S).
Similarly, the graphs of fk∞ are smooth hypersurfaces of positive sectional curvature,
isometrically immersed in Rn+1. Since fk∞ → f∞ uniformly, their graphs converge with
respect to the Hausdorff metric. In the case of convex sets of Rn, it is well known that this
implies Gromov–Hausdorff convergence; see [22, Theorem 10.2.6] observing that the proof
applies in any dimension. Notice also that the convergence is measured, [122, Definition
27.30], if we endow these spaces with the usual n-dimensional Hausdorff measure Hn.
On an isometrically immersed manifold, this is in fact the Riemannian volume.

2.2.2 Convergence of solutions of the Poisson equation

The next step in our proof is a convergence result for the solutions of the Poisson equation
on limit spaces. In what follows we mimic, up to minor modifications necessary to our
purposes, [103, Proposition B.1], where Pigola collects and develops a series of previous
results due to Honda, [72] and [73].

Let us consider the following space

M(n,D) = {(M, g) compact : dimM = n, diam(M) ≤ D, Sect ≥ 0},

and denote with M(n,D) its closure with respect to the measured Gromov–Hausdorff
topology, [122, Definition 27.30]. Note that elements of M(n,D) are in particular Alexan-
drov spaces with Curv ≥ 0 and diam ≤ D. Note that, by volume comparison and bounds
on the diameter, there exists V > 0 depending on n,D such that volX ≤ V for all
X ∈ M(n,D).

Remark 2.6. The following proposition actually holds in the more general setting of Ricci
limit spaces. To avoid unnecessary complication in notations, we restrict ourselves to the
case of Alexandrov spaces which are a special case of the former, [102, 129, 38].

In what follows, all convergences are intended in the sense of Honda, see [72, Section
3], see also [83].

Proposition 2.7. Let (Mk, hk) ∈ M(n,D) be a sequence of smooth manifolds converging
in the mGH topology to an Alexandrov space (X∞, d∞, µ∞) ∈ M(n,D) of dimension n
and let x∞ ∈ X∞. Up to a subsequence of (Mk, hk), there exist functions uk ∈ C2(Mk),
gk ∈ Lip(Mk) and u∞ ∈ W 1,2(X∞) ∩ Lp(X∞), g∞ ∈ Lp(X∞) for all 1 < p < +∞, such
that uk, u∞ are non-constant and ∆Mk

uk = gk, ∆X∞u∞ = g∞. Furthermore,
(a) g∞ ≥ 1/2 on a neighborhood of x∞;
(b) gk → g∞ in the strong Lp sense;
(c) uk → u∞ in the strong W 1,2 sense;
(d) ∥uk∥W 1,p≤ L for some L = L(p, n,D,K) > 0;
(e) uk → u∞ in the strong Lp sense;
(f) ∇Mkuk → ∇Xu∞ in the weak Lp sense.

These functions satisfy (a) through (f) for all 1 < p < +∞.
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Proof. Since Mk is bounded, separable and Mk converges to X∞ with respect to the
mGH topology, there exists a sequence of points xk ∈Mk such that the mGH convergence
(Mk, hk, xk) → (X∞, µ∞, x∞) is pointed, [122, Definition 27.13].

Next, using volume comparison and the convergence vol(Mk) → Hn(X) as k → ∞,
one can show the existence of a uniform R > 0 such that for k ≫ 1,

volBMk
R (xk) ≤

1

2
volMk.

Let fk :Mk → [0, 1] be Lipschitz functions compactly supported in BMk
R (xk) satisfying

i) fk = 1 on BMk

R/2(xk), ii) ∥∇fk∥L∞≤ 2

R
.

Define
gk := fk −

 
Mk

fk ∈ Lip(Mk),

and note that

0 ≤
 
Mk

fk ≤
volBMk

R (xk)

volMk
≤ 1

2
.

Clearly
ffl
Mk

gk = 0 and ∥gk∥L∞≤ 1. Moreover, gk ≥ 1/2 on BMk

R/2(xk) so that gk ̸≡ 0.
Since ∥gk∥L∞≤ 1 and the volumes are uniformly bounded, ∥gk∥Lp≤ V 1/p for all p > 1.
Using [72, Proposition 3.19] we conclude that gk converges weakly, up to subsequences,
to some g∞ ∈ Lp(X∞) ([72, Definition 3.4]). Condition ii) ensures that the sequence
gk is asymptotically uniformly continuous in the sense of [72, Definition 3.2]. Hence,
gk converges to g∞ strongly and in the sense of [72, Definition 3.1], see [72, Remark
3.8]. This ensures that g∞ ̸≡ 0 in a neighborhood of x∞ and, more importantly, allows
us to use [72, Proposition 3.32] which proves strong Lp convergence of gk to g∞. It is
worthwhile to notice that gk converges Lp strongly to g∞ for every 1 < p < +∞, in
particular, for p = 2.

Next, we denote with uk ∈ C2(Mk) the unique (non-constant) solution of the Poisson
equation

∆Mk
uk = gk on Mk,

satisfying  
Mk

uk = 0.

Since gk converges to g∞ in a strong (and thus weak) L2 sense, [73, Theorem 1.1] ensures
W 1,2 convergence of uk to the unique (non-constant) solution u∞ ∈ W 1,2(X∞) of the
Poisson equation

∆X∞u∞ = g∞ on X∞,

satisfying  
X∞

u∞ = 0.
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Finally, we claim that {uk} is bounded in W 1,p. By [72, Theorem 4.9] this implies
Lp strong convergence of uk to u∞ and Lp weak convergence of ∇Mkuk to ∇Xu∞ up
to a subsequence, and thus concludes the proof of Proposition 2.7. To prove the claim,
we observe that since uk → u∞ in a strong W 1,2 sense, we have L2 boundedness of uk.
Applying the estimates in [130, Corollary 4.2] we obtain L∞ bounds for uk and ∇uk,
hence, the desired Lp estimates using the uniform bound on volumes.

2.2.3 Proofs of the results

In Section 2.2.1 we established a method to locally perturb a smooth and strictly convex
function by introducing a set of singular points, which is dense inside a given compact. In
the following we consider a sequence of infinitely many singular perturbations distributed
over a non-compact manifold, each of these perturbations is GH approximated with
smooth Riemannian manifolds. For each perturbation, we prove that it is impossible
to have the validity of a local (hence of a global) Calderón–Zygmund inequality whose
constant is uniformly bounded across the approximating sequence of manifolds. To do
so, we show that each singular set together with its corresponding approximation can be
seen as a piece of a compact space whose metric is smooth outside the singular part. This
observation is a technical device which allows the application of already available results.
In particular, we can employ Proposition 2.7 to localize the strategy of De Philippis and
Núñez-Zimbrón in a neighborhood of each singular set. Once we have proven that the
constants of the local Calderón–Zygmund inequalities cannot be chosen uniformly, we
select on the j-th perturbation in the approximating sequence a manifold with CZ(p)
constant greater than j.

Lemma 2.8. Let n ≥ 2 and p > n. There exists a sequence of smooth and strictly convex
functions fj : Rn → R, j ≥ 1 and a monotone increasing sequence of radii rj > 0 such
that

(i) fj(x) = fj−1(x) for x ∈ Bj−1;
(ii) fj(x) = |x|2 for x ∈ Rn \Bj;

where Bj = Brj (0) and B0 = ∅. Furthermore, if we consider Nj = Graph(fj) as a
Riemannian manifold isometrically immersed in Rn+1, there exists some vj ∈ C2(Nj)
compactly supported in Graph(fj |Bj\Bj−1

) which satisfies

∥∇2vj∥Lp> j (∥∆vj∥Lp+∥vj∥Lp) , (2.3)

where Lp = Lp(Nj).

Proof. We begin with a remark on notation: given a subset A ⊂ Rn and some function
k : Rn → R, we denote with k(A) = Graph(k|A) ⊂ Rn+1. This abuse of notation is
repeatedly used throughout the proof.

To simplify the exposition, the proof proceeds inductively on j ≥ 1. Set f0(x) = |x|2.
Suppose one has fj−1 and wants to build fj . Let Sj be a Euclidean ball contained in
Rn \Bj−1. By Lemma 2.4 there exists a convex function hj with a dense set of singular
points in Sj and equal to fj−1 outside Sj . Furthermore, hj can be approximated with
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smooth and strictly convex functions hj,k : Rn → R equal to fj−1 outside Sj . Note that
hj(Sj) corresponds to the sets Dj mentioned at the beginning of Section 2.2.

Next, let rj > 0 be such that Sj ⊂ Bj . For later use, we observe that one can
always consider a larger ball Tj such that Sj ⊂ Tj and Tj ⊂ Bj \ Bj−1. We want to
extend hj(Bj) to a closed (i.e. compact without boundary) Alexandrov space Xj with
Curv(Xj) ≥ 0. Moreover, we would like the extension to be smooth outside hj(Sj). To
this purpose, let Aj be the upper hemisphere of boundary hj(∂Bj) in Rn+1, so that˜︂Xj := hj(Bj)∪Aj is a convex hypersurface in Rn+1. To obtain Xj , one simply needs to
smooth ˜︂Xj in a neighborhood of hj(∂Bj). For instance, one can use [47, Theorem 2.1],
observing that in this neighborhood, ˜︂Xj is obtained by rotation of a piecewise smooth
curve. We consider on Xj the metric induced by Rn+1. By the same strategy, we extend
hj,k(Bj) to a compact and smooth Riemannian manifold Mj,k with Sect(Mj,k) > 0,
isometrically immersed in Rn+1.

Note that, for all k, Mj,k = Xj outside hj(Sj). Moreover, Mj,k converges to Xj

in a (measured) Gromov–Hausdorff sense as k → ∞. Then, choosing a point xj,∞ ∈
hj(Sj) ⊂ Xj , we apply Proposition 2.7 to deduce the existence, up to subsequences on
k, of uj,k ∈ C2(Mj,k), gj,k ∈ Lip(Mj,k) and uj,∞ ∈ W 1,2(Xj) ∩ Lp(Xj), gj,∞ ∈ Lp(Xj)
such ∆Mj,k

uj,k = gj,k and ∆Xjuj,∞ = gj,∞. In particular,
(a) ∆uj,k → ∆uj,∞ strongly in Lp, hence, ∥∆uj,k∥Lp≤ C1;
(b) ∥uj,k∥W 1,p≤ C1;
(c) gj,∞ ≥ 1/2 in a neighborhood of xj,∞. In particular, in this neighborhood uj,∞ can

not be constant.
Here C1 depends on n, p and the upper bound diamMj,k ≤ Dj and the norms are
intended over Lp = Lp(Mj,k) and W 1,p =W 1,p(Mj,k).

A key element in our proof is the possibility to localize the sequence uj,k without
altering its essential properties. This can be done via smooth cutoff functions χj,k ∈
C∞(Mj,k) equal to 1 on hj,k(Sj) and identically 0 outside of hj,k(Tj). Moreover, since the
manifolds Mj,k are all isometric outside hj,k(Sj), we can choose the functions χj = χj,k so
that they are equal (independently of k) outside hj,k(Sj). Let vj,k := χj uj,k ∈ C2(Mj,k)
and observe that vj,k preserves the Lp bounds of uj,k, indeed:

∥vj,k∥Lp≤ ∥uj,k∥Lp≤ C2, (2.4)

∥∆vj,k∥Lp≤ ∥∆uj,k∥Lp+∥uj,k∆χj∥Lp+2∥|∇uj,k| |∇χj |∥Lp≤ C2, (2.5)

where C2 depends on C1 as well as on the choice of χj .
Next, we need some function theoretic considerations. First, we observe that compact-

ness of Mj,k implies the validity of an Lp-Calderón–Zygmund inequality

∥∇2φ∥Lp≤ Ej,k (∥∆φ∥Lp+∥φ∥Lp) , ∀φ ∈ C2(Mj,k). (2.6)

Second, if p > n, we have the validity on the sequence Mj,k of a uniform Morrey–Sobolev
inequality

|φ(x)− φ(y)| ≤ C3∥∇φ∥Lpdj,k(x, y)
1−n

p , ∀φ ∈ C1(Mj,k), (2.7)
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where dj,k is the Riemannian distance on Mj,k, and the constant C3 depends on n, p
and the uniform upper bound on diamMj,k. See [70, Theorem 9.2.14] for reference,
observing that the lower bound on the Ricci curvature ensures the validity of a p-Poincaré
inequality; see [111, Theorem 5.6.5]. Applying (2.7) to |∇φ| and combining with the
Calderón–Zygmund inequality (2.6) implies the following estimate

||∇φ|(x)− |∇φ|(y)| ≤ C3Ej,k (∥∆φ∥Lp+∥φ∥Lp) dj,k(x, y)
1−n

p , (2.8)

for all φ ∈ C2(Mj,k) and all x, y ∈Mj,k.
Applying (2.8) to vj,k and using estimates (2.4) and (2.5) we obtain

||∇vj,k|(x)− |∇vj,k|(y)| ≤ CEj,kdj,k(x, y)
1−n

p x, y ∈Mj,k, (2.9)

where C depends on C1, C2 and C3, i.e., C = C(n, p, χj , Dj). Suppose by contradiction
that Ej,k is bounded from above uniformly in k. By (2.9) we deduce that |∇vj,k| is
uniformly asymptotic continuous in the sense of Honda, hence, from [72, Proposition 3.3]
we conclude that |∇vj,k| converges pointwise to |∇vj,∞|∈ C0(X). However, since Xj is
an n-dimensional Alexandrov space with Curv ≥ 0, it is a RCD(0, n) space. Moreover,
∆vj,∞ ∈ Lp>n. From [39, Theorem 1.1] we then conclude that |∇vj,∞|(x) = |∇uj,∞|(x) =
0 whenever x is a singular point. Note here that singular points of Alexandrov spaces are
sharp in the sense of De Philippis and Núñez-Zimbrón and have finite Bishop–Gromov
density. By density, we conclude that vj,∞ must be constant in a neighborhood of xj,∞,
thus contradicting (c).

In particular, there exists some k̄, which may depend on j, such that

∥∇2vj,k̄∥Lp> j
(︁
∥∆vj,k̄∥Lp+∥vj,k̄∥Lp

)︁
(2.10)

on Mj,k̄. Finally, we set fj = hj,k̄, since vj,k̄ is compactly supported in hj,k̄(Tj), it defines
a function vj = vj,k̄ on Nj which satisfies (2.3).

Note that, while Proposition 2.7 is independent of p, the previous result depends on
the initial choice of p > n. This has to be attributed to the fact that the constants
C1, C2, C3 and C are all dependent on p.

To obtain a contradiction to CZ(p) for p > n, we then simply need to glue the manifolds
of Lemma 2.8 together.

Theorem 2.9. For every n ≥ 2 and p > n, there exists a complete, non compact n
dimensional Riemannian manifold (M, g) with Sect(M) > 0 such that CZ(p) fails.

Proof. For p > n, let fj be as in Lemma 2.8, and let f be its point-wise limit. Note
that the convergence is actually uniform on compact sets. The function f is smooth and
strictly convex, thus, M = Graph(f) is a smooth, non-compact Riemannian manifold
isometrically immersed in Rn+1 satisfying Sect(M) > 0. Since f is defined on the whole
space Rn, M is also a complete manifold. Observe that the sequence vj as in Lemma 2.8
induces functions in C2(M) whose supports are compact and disjoint, and which satisfy
(2.3) on Lp(M). This sequence clearly contradicts the validity of a global Calderón–
Zygmund inequality on M .
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Remark 2.10. Thanks to a trick introduced in [74], it is possible to extend the above
counterexample to the case p > 2. Indeed, fix n ≥ 2 and take (Y, h) a closed Riemannian
manifold of positive curvature and dimension n − 2. If (M, g) is the 2 dimensional
Riemannian manifold of Theorem 2.9 on which CZ(p) fails for every p > 2, then, the
product M × Y is an n-dimensional Riemannian manifold of non-negative curvatures.
Take {vj} to be the sequence which violates CZ(p) on (M, g) and extend it to the whole
product setting ˜︁vj(x, y) = vj(x) where x ∈M and y ∈ Y . Then, {˜︁vj} violates CZ(p) on
M × Y for all p > 2.

When p > 2, the only results ensuring the validity of CZ(p) are the one of Güneysu–
Pigola, [63], and the one of Cao, Cheng and Thalmaier, [24, Theorem 1.2]. This latter, in
addition to Ric ≥ −K2, essentially requires a bound of the type ∥Riem∥∞+∥∇Ric∥∞≤
H, here H is a non-negative function belonging to the so-called Kato class. Baumgarth,
Devyver and Güneysu conjectured that ∥Riem∥∞+∥∇Riem∥∞< +∞ should be enough
to prove CZ(p) on the whole range p ∈ (1,+∞), [13, Conjecture 1.5]. Note that both
[24, 13] are subsequent to our [90].

Theorem 2.9 has also consequences on the theory of Lp-gradient estimates. Indeed,
since Lp-gradient estimates hold on manifolds with Ricci curvature bounded from be-
low, [32], the manifolds constructed in Theorem 2.9 support GE(p) for all p ∈ (1,+∞)
although CZ(p) fails for p > n (actually p > 2 by Remark 2.10).

Corollary 2.11. For any n ≥ 2 and p > 2, there exists a complete Riemannian manifold
(M, g) supporting the Lp-gradient estimate GE(p) on which CZ(p) does not hold.

This gives a negative answer to a question raised by Devyver on the equivalence of
Lp-gradient and Calderón–Zygmund inequalities, see Section 8.1 in [103],

In the proof of Theorem 2.9 we have not exploited to the fullest the fact that the
functions vj have disjoint supports. In fact, not only one has a sequence vj on which (2.3)
holds, but one can actually define a function F ∈ C2(M) such that ∥F∥Lp+∥∆F∥Lp<
+∞ but ∥∇2F∥Lp= +∞, which is a stronger condition. This leads to the following
consequence on the theory of Sobolev spaces.

Corollary 2.12. For every n ≥ 2 and p > n there exists a complete, non-compact
n-dimensional Riemannian manifold with Sect(M) > 0 such that W 2,p(M) ⊊ H2,p(M).

Proof. Fix p > n, let (M, g) and vj ∈ C2(M) be as in the proof of Theorem 2.9. Define

F :=

∞∑︂
j=1

1

j2
vj

∥∆vj∥Lp+∥vj∥Lp
,

and observe that the sum converges since it is locally finite. Note that

∥∆F∥Lp+∥F∥Lp=

∞∑︂
j=1

1

j2
,
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so that F ∈ H2,p(M). By (2.3), on the other hand, we have

∥∇2F∥Lp≥
∞∑︂
j=1

1

j
,

hence, F ̸∈W 2,p(M).

2.3 A counterexample to Lp-gradient estimates

In this last section of Chapter 2, we focus on counterexamples to Lp-gradient estimates.

Theorem 2.13. Suppose that n is an integer ≥ 2. For any p > 2 there exists a complete
n-dimensional Riemannian manifold M where the Lp gradient estimate GE(p) fails.

Proof. First, we prove the result in the case where n = 2. Take (Σ, g) = (R2, λ2dx2)
where dx2 is the usual Euclidean metric on R2 and λ ∈ C∞(Σ) such that 0 < λ ≤ 1. As
above, we denote by ∆ and ∇ the Laplace–Beltrami operator and gradient with respect
to the metric g while we use ∆e and ∇e to denote the corresponding Euclidean differential
operators. The spaces Lp(Σ) are defined in terms of the Riemannian volume form dµg,
whereas Lp(R2) are the spaces with respect to the Lebesgue measure dx2.

For each non-negative integer m, consider the point xm in R2, with coordinates (m, 0).
Take λ(x) = 1 for all x ∈ Σ \

⋃︁
m∈NB1/8(xm). Since (Σ, g) is isometric to (R2, dx2)

outside a countable union of bounded sets whose pairwise distance is uniformly lower
bounded, it is a complete Riemannian manifold. Next, take φ0 ∈ C∞

c (Σ) such that{︄
φ0(u, v) = u+ 1 on B1/4(x0)

supp(φ0) ⋐ B1/2(x0)

and let φm(u, v) = φ0(u − m, v), for all positive integers m. Then, for every positive
integer k define

uk :=

k∑︂
m=0

2−m φm.

Clearly uk ∈ C∞
c (Σ). Notice that

∥uk∥pLp(Σ) =
k∑︂

m=0

2−mp
∫︂
Σ
|φm|p λ2 dx

≤
k∑︂

m=0

2−mp ∥φm∥pLp(R2)
= ∥φ0∥pLp(R2)

+∞∑︂
m=0

2−mp < +∞.

Now observe that ∆φm = λ−2∆eφm. Hence,

∥∆uk∥pLp(Σ)=

k∑︂
m=0

2−mp
∫︂
Σ
|∆φm|p λ2 dx =

k∑︂
m=0

2−mp
∫︂
Σ
|∆eφm|p λ2(1−p) dx.
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Moreover, we have that ∆eφm(u, v) = (∆eφ0)(u − m, v). Since ∆eφ0 vanishes on
B1/4(x0), the function ∆eφm vanishes on B1/4(xm). This and the fact that the sup-
port of φ0 is contained in B1/2(x0) yield

∥∆uk∥pLp(Σ)=

∫︂
B1/2(x0)\B1/4(x0)

|∆eφ0|p λ2(1−p) dx =

∫︂
B1/2(x0)\B1/4(x0)

|∆eφ0|p dx,

where the last equality holds, because λ = 1 on B1/2(x0) \ B1/4(x0). Altogether, we
obtain that

∥∆uk∥pLp(Σ) ≤ ∥∆eφ0∥pLp(R2)

+∞∑︂
m=0

2−mp < +∞.

Now, recall that p > 2 is given. Choose β > 1/(p− 2), and consider λ∞(x) := |x|2β in
Bδ(x0) for some 0 ≤ δ ≪ 1/8. Note that |∇eφ0|= 1 on B1/8(x0), whence∫︂

Bδ(x0)
|∇eφ0|pe λ2−p∞ dx = 2π

∫︂ δ

0
r1−2β(p−2)dr = +∞.

Here |x|= r denotes the Euclidean distance from the origin. Then for any m ∈ N we can
find εm > 0, such that εm → 0 as m→ +∞, and∫︂

Bδ(x0)
|∇eφ0|p (|x|2+εm)(2−p)βdx ≥ 2mp.

For x ∈ B1/8(x0) and ε ∈ [0, 1] we define a function λε ∈ C∞(B1/8(x0)) by⎧⎪⎨⎪⎩
0 < λε ≤ 1

λε(x) = (|x|2+ε)β if x ∈ Bδ(x0)

supp(1− λε) ⊆ B1/8(x0).

Now define λ ∈ C∞(Σ) by⎧⎪⎨⎪⎩
0 < λ ≤ 1

λ(x) = 1 if x ∈ Σ \
⋃︁
m∈NB1/8(xm)

λ(x) = λεm(x− xm) if x ∈ Bδ(xm).

Then, arguing much as above,

∥∇uk∥pLp(Σ) =

∫︂
Σ

k∑︂
m=0

|∇φm|p

2mp
λ2dx ≥

k∑︂
m=0

2−mp
∫︂
Bδ(x0)

|∇φo|pλ2mdx

=

k∑︂
m=0

2−mp
∫︂
Bδ(x0)

|∇eφ0|p(|x|2+εm)(2−p)βdx ≥ k.
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Since {∥uk∥Lp(Σ)} and {∥∆uk∥Lp(Σ)} are bounded, the gradient estimate fails on Σ.
This concludes the proof of Theorem 2.13 in the case where n = 2.

Suppose now that n ≥ 3. We proceed as in [74], see also Remark 2.10. Let (Σ, g)
be the Riemannian manifold considered above and (N,h) any n − 2 dimensional closed
Riemannian manifold. Consider the product manifold M = Σ×N and define

vk(x, y) = uk(x) ∀(x, y) ∈ Σ×N.

Clearly {vk} ⊆ C∞
c (M). It is straightforward to check that the sequences {∥vk∥Lp(M)}

and {∥∆vk∥Lp(M)} are bounded, whereas {∥|∇vk|∥Lp(M) } is unbounded. Hence, the
gradient estimate fails on M .

This concludes the proof of Theorem 2.13.

Remark 2.14. We observe that the choice of the sequence {xm} is quite arbitrary. In
particular, let α : [0,+∞) → [0,+∞) be an arbitrary increasing function such that
α(t) → ∞ as t → +∞. If we choose xm which diverges quick enough to infinity, we can
make the lower bound on Ricci arbitrarily small so that

Ric(x) ≥ −α(r(x)).

This can be done with a similar strategy as in the proof of Theorem 2.1. As a consequence,
the result by Cheng, Thalmaier and Thompson, [28], is sharp with respect to pointwise
lower bounds.

We also point out the following corollary of the proof of Theorem 2.13.

Corollary 2.15. For any n ≥ 2 and p > 2, there exists a Riemannian manifold M and
a function v∞ ∈ H2,p(M) such that v∞ ̸∈W 1,p(M).

Proof. For n > p, it is enough to define

u∞ =

+∞∑︂
m=0

2−mφm;

then u∞,∆u∞ ∈ Lp(Σ) while |∇u∞|̸∈ Lp(Σ). In particular, u∞ ∈ H2,p(Σ) while u∞ ̸∈
W 1,p(Σ). The case 2 < p ≤ n can be dealt with the same trick as in the proof of
Theorem 2.13.
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Chapter 3

The case of Cartan–Hadamard manifolds

In the previous chapters, we have shown that lower bounds on the Ricci curvature of
various types are required to ensure the validity of Lp-gradient and Calderón–Zygmund
estimates, as well as in results concerning the closely related problem of the density of
C∞
c (M) in W 2,p(M). Many of these bounds, moreover, are optimal by the counterexam-

ples of Chapter 2. In this last chapter of Part I, we focus on Cartan–Hadamard manifolds
(i.e. simply-connected complete manifolds with non-positive sectional curvature) with
pinched Ricci curvature exploding at −∞, possibly very fast, although in a controlled
way. More precisely, we take (M, g) a Cartan–Hadamard manifold satisfying

−b rβ(x) ≤ Ric(x) ≤ −a rα(x), (3.1)

holds outside a compact set. Here α and β are positive constants. For suitable values of
α and β we can still obtain the density result for Sobolev spaces as well as the validity
of CZ(2).

Thanks to their simple topology and rich structure, Cartan–Hadamard manifolds with
suitable curvature bounds have several interesting functional analytic properties. A non-
exhaustive list of well-known results includes [33, 5, 3, 87, 81, 31, 95, 30, 54, 48] see also
[56, 94, 58, 96, 15, 80, 57] for more recent works quite in the same spirit as ours. Beyond
their obvious topological triviality, the Cartan–Hadamard manifolds we take into account
have also quite strong metrical features. On the one hand, the lower bound −brβ(x) for
the Ricci curvature implies a Laplacian comparison, i.e, an upper control on ∆r. This,
in turn, permits to construct a suitable sequence of Hessian cutoff functions. Namely,
one gets the existence of a family of smooth cutoffs {χR} ∈ C∞

c (M) such that
(1) χR ≡ 1 on BR and χR ≡ 0 on M \B2R;
(2) |∇χR|≤ C

R ;
(3) |∇2χR|≤ CR

β
2
−1,

with C > 0 (see Lemma 3.16). Most of the strategies proposed in previous literature to
approach the density problem or CZ(2), are precisely based on the existence of suitable
cutoff functions which have bounded covariant derivatives up to the second order, see for
instance [77, 78, 17, 60].

Conversely, the control that we get on |∇2χR| under our assumptions is not strong
enough to allow us to obtain the desired results. The reason is essentially that, when
β > 2, the sole lower bound Ric ≥ −brβ cannot guarantee that for any function f ∈W 2,p,
then |∇2χR|f is uniformly bounded in Lp. Instead, assuming also that Ric ≤ −arα, one
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gets
f ∈W 2,p =⇒ (rαf) ∈ Lp, (3.2)

see Theorem 3.13. This latter relation, combined with the properties of the Hessian
cutoff functions, yields a uniform Lp bound on |∇2χR|f .

To obtain (3.2), we exploit the validity on Ω ⊂ M of certain Hardy-type inequalities
(obtained elaborating on ideas by L. D’Ambrosio and S. Dipierro, [36]) of the form∫︂

Ω

|∇G|p

|G|p
(− logG)βp|f |pdµg ≤

(︃
p

p− 1

)︃p ∫︂
Ω
(− logG)βp|∇f |pdµg ∀f ∈ C∞

c (Ω),

where G ∈ C∞(Ω) satisfies
(i) −∆pG ≥ 0 on Ω;
(ii) 0 ≤ G ≤ c < 1;

and p ∈ (1,+∞), see Theorem 3.7 and Theorem 3.13. Using a Laplacian comparison for
Cartan–Hadamard manifolds, it turns out that an appropriate choice for G is the Green
function for the p-Laplacian of the model manifold ˜︂M whose (radial) Ricci curvature is
precisely −arα.

While this is sufficient to prove the density result, a further ingredient is needed in the
case of CZ(2). Using Bochner inequality, we first prove that the lower bound Ric ≥ −b rβ
implies the validity of the disturbed infinitesimal Calderón–Zygmund inequality

∥∇2φ∥L2≤ A1(ε) [∥∆φ∥L2+∥φ∥L2 ] +A2ε
2∥rβφ∥L2 ∀φ ∈ C∞

c (M);

see Theorem 3.20. Then, one can conclude using again the Hardy-type inequalities
ensured by the upper bound on Ricci.

3.1 Estimates on Cartan–Hadamard manifolds

The goal of this first section is to obtain asymptotic estimates for several geometric ob-
jects on Cartan–Hadamard manifolds whose (radial) Ricci curvature behaves polinomially
at −∞. These estimates will be crucial in the rest of the chapter.

We begin by obtaining some asymptotic estimates for the solutions of

j′′(t)−A2tαj(t) = 0 (3.3)

on [0,+∞), where A > 0 and α ≥ 0. The solutions of (3.3) are of the form

j(t) =
√
t
(︂
D1Iν

(︂
2Aνt1/2ν

)︂
+D2Kν

(︂
2Aνt1/2ν

)︂)︂
, (3.4)

where D1, D2 ∈ R, ν = 1
2+α and Iν ,Kν are modified Bessel functions of the first and

second kind and order ν, respectively. That is, Iν and Kν are independent solutions on
[0,+∞) of the following equation:

t2x′′(t) + tx′(t)− (t2 + ν2)x(t) = 0.
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See Section 5.7 of [84] for further references on Bessel functions. Note also that Iν and
Kν satisfy the following relations

Iν(t) ∼
et√
2πt

and Kν(t) ∼
√︃
π

2t
e−t when t→ +∞, (3.5)

Iν(t) ∼
1

Γ(ν + 1)

(︃
t

2

)︃ν
and Kν(t) ∼

Γ(ν)

2

(︃
2

t

)︃ν
when t→ 0, (3.6)

d

dt
(tνIν(t)) = tνIν−1(t) and

d

dt
(tνKν(t)) = −tνKν−1(t). (3.7)

Using (3.5) and (3.7), at least when D1 ̸= 0, we have

j(t) ∼ D1√
4Aνπ

t−
α
4 exp

(︃
2A

α+ 2
t1+

α
2

)︃
, (3.8)

and
j′(t) ∼ A

D1√
4Aνπ

t
α
4 exp

(︃
2A

α+ 2
t1+

α
2

)︃
, (3.9)

hence,
j′(t)

j(t)
∼ At

α
2 . (3.10)

3.1.1 Asymptotic estimates on model manifolds

In this section, we study model manifolds with a prescribed asymptotic growth on the
Ricci curvature and estimate several geometric objects therein. The manifolds we con-
sider will be useful to prove asymptotic comparison results for Cartan–Hadamard mani-
folds.

According to Greene and Wu, [50], a model manifold (M, g) is (the smooth extension
at the origin) of (0,+∞)× Sn−1 endowed with the metric

g = dt2 + j2(t)dθ2.

Here dθ2 is the standard round metric on Sn−1 and the warping function j ∈ C∞([0,+∞))
satisfies j > 0 on (0,+∞), j(0) = 0, j′(0) = 1 and j(2k)(0) = 0 for k ∈ N. In the following,
r(x) denotes the Riemannian distance form the origin, so that r(x) = t when x = (t, θ).

Let H : [0,+∞) → [0,+∞) be a smooth, non-negative function such that

H(t) =

{︄
K2 t ≤ R0

A2(t−R0)
α t ≥ R0 + δ

for A,K,R0, δ > 0 and α ≥ 0. Then, we take as warping function j the solution of{︄
j′′(t)−H(t)j(t) = 0

j(0) = 0, j′(0) = 1
(3.11)
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3 The case of Cartan–Hadamard manifolds

on [0,+∞), so that

Rico(x) = −(n− 1)
j′′(t)

j(t)
= −(n− 1)H(t)

for every x = (t, θ) ∈ M . By uniqueness, when 0 ≤ t ≤ R0 we have j(t) = t if K = 0,
and j(t) = 1

K sinh(Kt) otherwise. On the other hand, if t ≥ R0 + δ, the function j is of
the form j(t) = h(t−R0) where h is a solution of{︄

h′′(t)−A2tαh(t) = 0

h(δ) = a h′(δ) = b,

where a, b are the values of j, j′ at R0+δ. Note that b ≥ 1 since j is a convex function. In
particular, h is given by (3.4) where the constants D1 ̸= 0 and D2 depend on a, b. Since
j(t) ∼ h(t) for t → +∞, we can use (3.8), (3.9) and (3.10) to control several geometric
objects on the manifold.

First, we use (3.10) to estimate the Laplacian of the Riemannian distance r, which on
a model manifold is given by

∆r = (n− 1)
j′(r)

j(r)
∼ (n− 1)Arα/2. (3.12)

Next we consider the volume of the geodesic spheres centered at the origin. Recall that
on models vol(∂Bt) = ωnj

n−1(t), where ωn is the volume of the n-dimensional unit ball.
Hence, (3.8) implies (︃

1

vol(∂Bt)

)︃ 1
p−1

∈ L1(+∞)

for all p > 1. By [120, Corollary 5.2], we deduce that (M, g) is p-hyperbolic, i.e., there
exists a symmetric positive Green function for the p-Laplacian. Specifically, if we fix the
origin as a pole, this function is radial and its expression is given by

Gp(x) = Gp(t) =

∫︂ +∞

t

(︃
1

j(s)

)︃n−1
p−1

ds (3.13)

where x = (t, θ) ∈M . Using (3.8), we obtain

∂tGp(t) ∼ −D3t
α
4

n−1
p−1 exp

(︃
−A 2

α+ 2

n− 1

p− 1
t1+

α
2

)︃
t→ +∞, (3.14)

and applying de l’Hôpital rule

Gp(t) ∼ D4t
α
4

(︂
n−1
p−1

−2
)︂
exp

(︃
−A 2

α+ 2

n− 1

p− 1
t1+

α
2

)︃
t→ +∞, (3.15)

where D3, D4 are positive constants depending on D1, α, n and p. Note that ∂tGp(t) < 0
for all t > 0. Finally, using (3.8) once again we deduce that∫︂ t

0
jn−1(s)ds ∼ D5t

−α
4
(n+1) exp

(︃
2A

α+ 2
(n− 1)t1+

α
2

)︃
(3.16)
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3 The case of Cartan–Hadamard manifolds

for some positive constant D5, hence,∫︁ t
0 j

n−1(s)ds

j(n−1)(t)
∼ D6t

−α
2 . (3.17)

This estimate will be useful later on.

3.1.2 Asymptotic comparison results for Cartan–Hadamard manifolds

Next, we relate via comparisons the above estimates to a Cartan–Hadamard manifold
with suitable asymptotic bounds on the radial Ricci curvature.

Upper bounds

Let (M, g) be a Cartan–Hadamard manifold of dimension n ≥ 2 with a fixed pole and
suppose

Rico(x) ≤ −arα(x)

holds outside of a compact set containing the pole for some a > 0 and α ≥ 0. Here r(x)
denotes the Riemannian distance from the pole. Let (ˆ︂M, ˆ︁g) be the model manifold of
radial Ricci curvature ˆ︃Rico(x̂) = −(n− 1) ˆ︁H(ˆ︁r(x̂)) where ˆ︁H(t) is a non-negative smooth
function satisfying ˆ︁H(t) =

{︄
0 t ≤ R0

a(t−R0)
α t ≥ R0 + δ.

for some R0 > 0 and δ > 0, so that

Rico(x) ≤
1

n− 1
ˆ︃Rico(x̂),

for all x ∈M and x̂ ∈ ˆ︂M with r(x) = r̂(x̂). Let ˆ︁j be the corresponding warping function,
by (3.12) we have ˆ︁∆ˆ︁r(ˆ︁x) = (n− 1)

ˆ︁j′(t)ˆ︁j(t) ∼ (n− 1)
√
at

α
2 .

Then, since the bound

Rico ≤
1

n− 1
ˆ︃Rico,

holds globally, by [124, Theorem 2.15] we have

∆r ≥
ˆ︁j′(r)ˆ︁j(r) ∼

√
ar

α
2 r → +∞.

Next, we consider the model manifold (N,h) with Ricci curvature

RicNo (y) = −(n− 1)H(rN (y)). (3.18)
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3 The case of Cartan–Hadamard manifolds

Here rN (y) is the Riemannian distance from the origin and H : [0,+∞) → [0,+∞) is a
non-negative smooth function satisfying

H(t) =

{︄
0 t ≤ R0

A2(t−R0)
α t ≥ R0 + δ

(3.19)

with (n− 1)A ≤
√
a. We denote with j its warping function, by (3.12) we have

j′(t)

j(t)
∼ At

α
2 ,

hence,

∆r ≥
ˆ︁j′(r)ˆ︁j(r) ≥ (n− 1)

j′(r)

j(r)

for large r >> 1. In summary, we have the following comparison result, which holds
outside a compact set.

Proposition 3.1. Let (M, g) be a Cartan–Hadamard manifold of dimension n ≥ 2 such
that

Rico(x) ≤ −arα(x) (3.20)

holds outside of a compact set for some a > 0, α ≥ 0. Let j be the warping function of
the model (N,h) with radial Ricci curvature prescribed by (3.18),(3.19). Then,

∆r ≥ (n− 1)
j′(r)

j(r)
(3.21)

for r(x) >> 1.

As a corollary, we deduce a comparison result for the p-Laplacian of (radially) mono-
tonic functions. We begin with the following:

Lemma 3.2. Let (M, g) be a Cartan–Hadamard manifold and suppose that

∆r ≥ ϕ(r) on Ω ⊆M, (3.22)

for some ϕ ∈ C0((0,+∞)) and Ω open. Let v ∈ C2(R) non-negative and define u(x) =
v(r(x)) for x ∈ Ω. If v′ < 0, then for all p > 1 we have

∆pu ≤ |v′|p−2(v′ϕ(r) + (p− 1)v′′), (3.23)

on Ω \ {o}.

Proof. Since (M, g) is Cartan–Hadamard, then r ∈ C∞(M\{o}) so that u ∈ C2(M\{o}).
Suppose v′ < 0, then

∆pu = div(|∇u|p−2∇u) = div(|v′|p−2v′∇r) = |v′|p−2(v′∆r + (p− 1)v′′)

≤ |v′|p−2(v′ϕ(r) + (p− 1)v′′),

on Ω \ {o}.
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3 The case of Cartan–Hadamard manifolds

Remark 3.3. Although it is not relevant to our work, we observe that if v′ > 0, then
(3.23) holds with the opposite sign.

Combining Lemma 3.2 with Proposition 3.1, we obtain the following

Proposition 3.4. Let (M, g) be a Cartan–Hadamard manifold satisfying (3.20) and let
(N,h) be the model manifold with radial Ricci curvature prescribed by (3.18), (3.19). Let
v ∈ C2(R) non-negative with v′ < 0 and define u(x) = v(r(x)) and w(y) = v(rN (y)).
Then ∆pu(x) ≤ ∆N

p w(y) for all x ∈M and y ∈ N such that r(x) = rN (y) >> 1.

Proof. By Proposition 3.1, if r(x) >> 1, then ∆r ≥ (n− 1)j′(r)/j(r), hence

∆pu(x) ≤ |v′(r(x))|p−2

[︃
v′(r(x))(m− 1)

j′(r(x))

j(r(x)
+ (p− 1)v′′(r(x))

]︃
= ∆N

p w(y).

In particular, if we take v(t) = Gp(t) as in (3.13) where Gp defines the p-Green function
on (N,h) we have the following corollary.

Corollary 3.5. Let (M, g) be a Cartan–Hadamard manifold satisfying (3.20), then Gp(x)
is p-superharmonic on (M, g) outside of a large enough compact set.

Lower bounds

Let (M, g) be a Cartan–Hadamard manifold of dimension n ≥ 2 with a fixed pole and
suppose

Rico(x) ≥ −brβ(x)

holds outside of a compact set containing the pole for some b > 0 and β ≥ 0. Let (˜︂M, ˜︁g)
be the model manifold as in Section 3.1.1 with H given by

H(t) =

{︄
K2 t ≤ R0

B2(t−R0)
β t ≥ R0 + δ

with K,R0 and B2 = b so that Rico(x) ≥ −(n − 1)H(r(x)) holds globally on M . De-
note with j the corresponding warping function. We have the following (asymptotic)
comparison result.

Proposition 3.6. Let (M, g) be a Cartan–Hadamard manifold satisfying

Rico(x) ≥ −brβ(x) (3.24)

outside of a compact set for some b > 0 and β ≥ 0. Then, there exist R1 >> 1 and
C > 0 such that

|∇2r|(x) ≤ Cr
β
2 (x) (3.25)

for r(x) ≥ R1.
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3 The case of Cartan–Hadamard manifolds

Proof. Since M has non-positive sectional curvatures, by the Hessian comparison ([106,
Theorem 2.3]), ∇2r has non-negative eigenvalues at every point in M and, in particular,

|∇2r|≤ ∆r.

Then, since Rico(x) ≥ −(n − 1)H(r(x)) holds globally on M , by Laplacian comparison
we conclude that

|∇2r|≤ (n− 1)
j′(r)

j(r)
.

Since
j′(r)

j(r)
∼ Br

β
2 ,

there exist some R1 >> 1 and some positive constant C, depending on B, β,R1, such
that

j′(t)

j(t)
≤ Ct

β
2

for t ≥ R1. This concludes the proof.

3.2 Hardy inequalities via Green function estimates

We now turn to the study of a class of functional inequalities on Riemannian manifolds,
which go under the name of Hardy-type inequalities. These inequalities have an interest
of their own and are extensively studied in literature, especially in the case of Cartan–
Hadamard manifolds. See [14, 36, 40, 44, 82, 96, 127] among others. With the help of
a result by D’Ambrosio and Dipierro, [36], we establish a new Hardy-type inequality on
complete Riemannian manifolds possessing a non-negative p-superharmonic function G.

Theorem 3.7. Let (M, g) be a complete Riemannian manifold and Ω ⊆ M open. Fix
p > 1 and let G ∈ C∞(Ω) such that

(i) −∆pG ≥ 0 on Ω;
(ii) 0 ≤ G ≤ c < 1.

Then, for any β ≥ 0,∫︂
Ω

|∇G|p

|G|p
(− logG)βp|f |pdµg ≤

(︃
p

p− 1

)︃p ∫︂
Ω
(− logG)βp|∇f |pdµg ∀f ∈ C∞

c (Ω).

(3.26)

Proof. Let δ > 0 such that Gδ := G+ δ < 1 and define

h := −|∇Gδ|p−2∇Gδ
Gp−1
δ

(− logGδ)
βp, Ah := (p− 1)

|∇Gδ|p

Gpδ
(− logGδ)

βp.

Since G ∈ C∞(Ω) and Gδ ≥ δ we have |h|, Ah ∈ L1
loc(Ω), furthermore,

|h|p

Ap−1
h

= (p− 1)1−p(− logGδ)
βp ∈ L1

loc(Ω).
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Next, we estimate

div(h) = −(− logGδ)
βp

Gp−1
δ

∆pGδ + (p− 1)
|∇Gδ|p

Gpδ
(− logGδ)

βp + βp
|∇Gδ|p

Gpδ
(− logGδ)

βp−1

≥ (p− 1)
|∇Gδ|p

Gpδ
(− logGδ)

βp = Ah.

Thanks to [36, Lemma 2.10] we have∫︂
Ω

|∇Gδ|p

|Gδ|p
(− logGδ)

βp|f |pdµg ≤
(︃

p

p− 1

)︃p ∫︂
Ω
(− logGδ)

βp|∇f |pdµg ∀f ∈ C∞
c (Ω).

Since − logGδ ≤ − logG and ∇Gδ = ∇G, letting δ → 0 and using Fatou’s lemma yields
the desired estimate.

Remark 3.8. It is worth noticing that the results of Theorem 3.7 still hold under more
relaxed regularity assumptions. Notably, it suffices to have G ∈W 1,p

loc (Ω) and −∆pG ≥ 0
weakly on Ω to have the validity of (3.26). Assumption (ii) still needs to hold, although
it is always satisfied in applications.

Once we have the quite general (3.26), we return to our setting, that is, (M, g) is a
Cartan–Hadamard manifold satisfying the Ricci upper bound (3.20). Under such curva-
ture assumptions one easily gets that (M, g) is a p-hyperbolic manifold. Indeed, if Gp(x)
is the p-Green function with pole o ∈ M , it satisfies ∆pGp(x) = 0 for all x ̸= o and,
thus, can be used as weight in Theorem 3.7. Our interest is then to look for asymptotic
estimates for the p-Green function of (M, g) and its gradient, so to better control the
growth at infinity of the weights in (3.26). One possibility is to use Li–Yau type esti-
mates, which are ensured under several lower bounds on Ricci. These, however, are not
sufficient because they provide only an upper bound on ∇ log Gp.

Thus, instead of using the p-Green function of (M, g) directly, we use the p-Green func-
tion of the model manifold (N,h) constructed in Section 3.1.2 which is p-superharmonic
outside a large enough compact set and whose estimates are already available, see Corol-
lary 3.5.

Notice also that Gp(x) → 0 as r(x) → +∞, hence, Gp(x) is distant from 1 provided
that r(x) >> 1. In other words, Gp(x) is a suitable weight in Theorem 3.7 as long as we
are outside a large enough compact set containing the pole.

Proposition 3.9. Let (M, g) be a Cartan–Hadamard manifold satisfying (3.20).
For p > 1 and β ≥ 0 there exists a compact K containing the pole such that∫︂

Ω

|∇Gp|p

|Gp|p
(− logGp)

βp|f |pdµg ≤
(︃

p

p− 1

)︃p ∫︂
Ω
(− logGp)

βp|∇f |pdµg, (3.27)

for all f ∈ C∞
c (Ω) where Ω =M \K.
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Using estimates (3.14) and (3.15) we deduce

|∇Gp|
|Gp|

(r(x)) ∼ D5r(x)
α
2 , (3.28)

(− logGp(r(x))) ∼ D6r(x)
1+α

2 (3.29)

so that
|logGp|β= O(|∇ logGp|) (3.30)

provided that β ≤ α
2+α .

Note that Proposition 3.9 requires f to be smooth and compactly supported in Ω.
Both assumptions, however, can be weakened as long as the support of f is far away
from the pole o.

Theorem 3.10. Let (M, g) be a Cartan–Hadamard manifold satisfying (3.20). For p > 1
and 0 ≤ β ≤ α

α+2 there exists a compact K containing the pole such that∫︂
M

|∇Gp|p

|Gp|p
(− logGp)

βp|f |pdµg ≤
(︃

p

p− 1

)︃p ∫︂
M
(− logGp)

βp|∇f |pdµg, (3.31)

for all f ∈W 1,p(M) with supp(f) ∩K = ∅.

Proof. We proceed by steps, gradually weakening the assumptions on f .
Step 1 We begin by considering f ∈ W 1,p(M) compactly supported in Ω = M \K so
that f ∈ W 1,p

0 (Ω), i.e., there exists un ∈ C∞
c (Ω) such that un → f in W 1,p norm. Note

that the un can be chosen so that supp(un) and supp(f) are all contained in a compact
Ω′ ⊂ Ω. Then, by (3.27) we have∫︂

M

|∇Gp|p

|Gp|p
(− logGp)

βp|un|pdµg ≤
(︃

p

p− 1

)︃p ∫︂
M
(− logGp)

βp|∇un|pdµg. (3.32)

Note that⃓⃓⃓⃓∫︂
M
(− logGp)

βp(|∇un|p−|∇f |p)dµg
⃓⃓⃓⃓
≤ sup

Ω′
(− logGp)

βp

∫︂
M
||∇un|p−|∇f |p|dµg,

so that ∫︂
M
(− logGp)

βp|∇un|pdµg →
∫︂
M
(− logGp)

βp|∇f |pdµg.

Similarly, ∫︂
M

|∇Gp|p

|Gp|p
(− logGp)

βp|un|pdµg →
∫︂
M

|∇Gp|p

|Gp|p
(− logGp)

βp|f |pdµg.

Hence, passing to the limit in (3.32) we obtain the validity of (3.31) for all f ∈W 1,p(M)
compactly supported in Ω.
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Step 2 Next, let f ∈ W 1,p(M) such that supp(f) ∩ K = ∅ and consider a family of
cutoffs χR ∈ C∞(M) such that χ ≡ 1 on BR, χR ≡ 0 outside B2R and |∇χR|≤ C
uniformly on R. Such a family exists on any complete Riemannian manifold, see [45].
Consider fχR ∈ W 1,p(M), clearly supp(fχR) ⊆ M \ K is compact. Then, by Step 1
(with β = 0) we have∫︂

M

|∇Gp|p

|Gp|p
|f |p|χR|pdµg ≤

(︃
p

p− 1

)︃p
2p−1

(︃∫︂
M
|f |p|∇χR|pdµg +

∫︂
M
|∇f |p|χR|pdµg

)︃
≤
(︃

p

p− 1

)︃p
2p−1

(︄∫︂
M
|∇f |pdµg +

∫︂
B2R\BR

|f |pdµg

)︄
.

Notice that the LHS converges to
∫︁
M |∇ logGp|p|f |pdµg by monotone convergence, on

the other hand
∫︁
B2R\BR

|f |pdµg → 0 since f ∈ Lp(M). We conclude that∫︂
M
|∇ logGp|p|f |pdµg ≤

(︃
p

p− 1

)︃p
2p−1

∫︂
M
|∇f |pdµg (3.33)

for all f ∈W 1,p(M) with supp∩K = ∅.
Step 3 Using Step 2, we now prove the more general (3.31) under the assumptions that
f ∈ W 1,p(M) and supp(f) ∩K = ∅. Indeed, let χR ∈ C∞(M) be as in Step 2 so that
fχR is compactly supported in M \K, by Step 1 we have∫︂

M
|∇ logGp|p(− logGp)

βp|f |p|χR|pdµg ≤(︃
p

p− 1

)︃p
2p−1

(︃∫︂
M
(− logGp)

βp|f |p|∇χR|pdµg +
∫︂
M
(− logGp)

βp|∇f |p|χR|pdµg
)︃
.

Here, we reason as in Step 2. The only difference is the following estimate which is a
consequence of (3.30) and (3.33):∫︂

M
(− logGp)

βp|f |pdµg ≤ C

∫︂
M
|∇ logGp|p|f |pdµg ≤ C

(︃
p

p− 1

)︃p
2p−1

∫︂
M
|∇f |pdµg

where C > 0. Since |∇f |∈ Lp(M) we are still able to conclude that∫︂
B2R\BR

(− logGp)
βp|f |pdµg → 0 R→ +∞.

Remark 3.11. Note that both in Proposition 3.9 and Proposition 3.9, we have not used
the estimates (3.15), (3.14) or (3.30) so a bound of the form (3.20) is not really necessary.
It would be sufficient to have sectional curvatures bounded by −1, at least asymptotically.
This is enough to ensure that the function Gp is p-superharmonic and distant from 1.
We also point out that if W 1,p(M) the RHS of (3.31) can be infinite although in this
case the inequality holds trivially.
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If we require f ∈ W 2,p(M) and apply (3.31) twice, we obtain the following second
order Hardy-type inequality.

Theorem 3.12. Let (M, g) be a Cartan–Hadamard manifold satisfying (3.20). For p > 1
and 0 ≤ β ≤ α

2+α there exists a compact K containing the pole such that∫︂
M

|∇Gp|p

|Gp|p
(− logGp)

βp|f |pdµg ≤ C

∫︂
M
|∇2f |pdµg, (3.34)

for all f ∈W 2,p(M) such that supp(f) ∩K = ∅, where and C = C(p,K) > 0.

Proof. Using Theorem 3.10 and (3.30) we have∫︂
M

|∇Gp|p

|Gp|p
(− logGp)

βp|f |pdµg ≤ C

∫︂
M
|∇ logGp|p|∇f |pdµg.

Since |∇f |∈W 1,p(M) with supp(|∇f |)∩K = ∅ we apply (3.31) with β = 0 to |∇f | and
conclude using Kato’s inequality |∇|∇f ||≤ |∇2f |.

Note that (3.34) is more of a second-order Hardy-type inequality rather then a proper
Rellich inequality. The reason being that the RHS is estimated with the Lp-norm of the
Hessian rather than the Laplacian of f . The optimal value for β in (3.34) is β = α

2+α , in
this case we have:

|∇Gp|
|Gp|

(− logGp)
α

2+α ∼ D7r(x)
α

which is the fastest growth we are able to control via (3.34). Finally, we observe that no
assumption on the support of f is needed as long as the weight has support distant from
the pole. This is the kind of control needed for applications.

Theorem 3.13. Let (M, g) be a Cartan–Hadamard manifold satisfying (3.20). For p > 1
and K as in Theorem 3.12, let ω ≥ 0 be a measurable function such that supp(ω)∩K = ∅
and ω(x) = O(rα(x)) on M , then W 2,p(M) ↪→ Lp(M,ωpdµg).

Proof. In order to extend the support of f , we need to remove the possible problems
around the pole. To do so, let K ′ a compact set such that K ⊆ K ′ ⊆ M \ supp(ω) and
let φ ∈ C∞(M) be a cutoff function such that φ ≡ 0 on K and φ ≡ 1 outside K ′. Note
that |∇φ| and |∇2φ| are bounded and that fφ ∈W 2,p(M) with supp(fφ)∩K = ∅, then
by Theorem 3.12 we have∫︂

M
ωp|f |pdµg =

∫︂
Ω
ωp|fφ|pdµg ≤ C ′

∫︂
M

|∇Gp|p

|Gp|p
(− logGp)

α
2+α

p|φf |pdµg

≤ C

∫︂
Ω
|∇2(φf)|pdµg

≤ C

∫︂
Ω
|∇2f |pdµg + C

∫︂
Ω
|∇φ|p|∇f |pdµg + C

∫︂
Ω
|∇2φ|p|f |pdµg

≤ C∥f∥p
W 2,p(M)

.
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As a direct consequence, if we have a family of weights {ωR} whose growth is suitably
controlled and whose supports vanish at +∞ then ∥ωRf∥Lp→ 0.

Corollary 3.14. Let p > 1 and (M, g) as in Theorem 3.13. Let f ∈ W 2,p(M) and
{ωR} ⊆ C∞(M) non-negative such that supp(ωR) ⊆M \BR with R >> 1 and ωR(x) ≤
Crα(x), then ∫︂

M
ωpR|f |

pdµg → 0

as R→ +∞.

Remark 3.15. Note that if we assume lower regularity in f , namely, f ∈ W 1,p(M) we
are still able to control ∥ωf∥Lp(M) as long as ω(x) ≤ Cr

α
2 (x). The strategy here is the

same of Theorem 3.13 but instead of the second order Hardy-type inequality (3.34), we
use the first order inequality (3.31) with β = 0. Similarly, if we take a family of weights
{ωR} such that ωR(x) ≤ Cr

α
2 (x) and supp(ωR) ⊆M \BR, we are still able to conclude

that ∥ωRf∥Lp→ 0.

3.3 Density in W 2,p

In the following section, we apply the estimates developed in Section 3.2 to the density
problem of smooth and compactly supported functions in the Sobolev space W 2,p(M).
To this aim, we construct via the Riemannian distance a family of smooth cutoff functions
{χR}, which we control up to the second covariant derivative. On arbitrary Riemannian
manifolds there are two obstacles to this construction: the Riemannian distance might
fail to be smooth on M \ {o} and, while |∇r| is always bounded, |∇2r| might grow
uncontrollably. In the case of Cartan–Hadamard manifolds, however, both difficulties
can be overcome. Indeed, the cut locus of M is empty, which implies smoothness of the
Riemannian distance. Furthermore, a lower bound on the radial Ricci curvature allows
to control the Hilbert-Schmidt norm of ∇2r as proved in Proposition 3.6. Using these
second order estimates on the Riemannian distance, we construct {χR} by composing
with a sequence of real cutoffs.

Lemma 3.16. Let (M, g) be a Cartan–Hadamard manifold satisfying

Rico(x) ≥ −brβ(x)

outside a compact set for some b > 0 and β ≥ 0. Then, there exists a family of smooth
cutoffs {χR} ∈ C∞

c (M) with R >> 1 such that
(1) χR ≡ 1 on BR and χR ≡ 0 on M \B2R;
(2) |∇χR|≤ C

R ;
(3) |∇2χR|≤ CR

β
2
−1,

with C > 0.
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3 The case of Cartan–Hadamard manifolds

Proof. Fix ϕ : R → [0, 1] a smooth function such that ϕ ≡ 1 on (−∞, 1] and ϕ ≡ 0 on
[2,+∞), and let a > 0 such that |ϕ′|+|ϕ′′|≤ a uniformly on R. For R >> 1 (it suffices
R ≥ R1, with R1 as in Proposition 3.6), let

ϕR(t) := ϕ

(︃
t

R

)︃
so that

|ϕ′R|≤
a

R
, |ϕ′′R|≤

a

R2
.

Then, define χR(x) := ϕR ◦ r(x), we have χR ≡ 1 on BR and χR ≡ 0 on M \ B2R.
Furthermore,

|∇χR| ≤ |ϕ′R(r(x))||∇r(x)|≤
C

R

|∇2χR| ≤ |ϕ′R(r(x))||∇2r(x)|+|ϕ′′R(r(x))||∇r(x)|2≤ CR
β
2
−1,

where the constant C depends on a and on the constant of Proposition 3.6.

Remark 3.17. The above construction of the Hessian cutoffs is not the only possible one.
It is worth noticing that the family {χR} can be constructed on Riemannian manifolds
without any topological restrictions as long as one of the following assumptions holds:

(a) |Ric|(x) ≤ B2rβ(x) and inj(x) ≥ i0r
−β

2 (x) > 0
(b) |Sect|(x) ≤ B2rβ(x),

for some B, i0 > 0 and β ≥ 0. In this setting, although the Riemannian distance might
lose smoothness, it is possible to construct a distance-like function H ∈ C∞(M) such
that

(i) C−2r(x) ≤ H(x) ≤ max{r(x), 1};
(ii) |∇H(x)|≤ 1;
(iii) |∇2H(x)|≤ Cmax{r

β
2 (x), 1},

for some C > 1, see [78, Theorem 1.2]. Then, one defines χR = ϕR ◦H(x) where ϕR is a
family of real cutoffs in a similar fashion to Lemma 3.16.

We can now prove the density of smooth compactly supported functions in the Sobolev
spaceW 2,p. To obtain this, we assume a double-sided bound on the radial Ricci curvature.
The bound from below allows the construction of the smooth cutoff functions, while the
bound from above ensures the validity of the functional estimates in Section 3.2.

Theorem 3.18. Let (M, g) be a Cartan–Hadamard manifold satisfying

−br2α+2(x) ≤ Rico(x) ≤ −arα(x)

outside a compact set, for some a, b > 0 and α ≥ 0. Then W 2,p
0 (M) = W 2,p(M) for all

1 < p < +∞.
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3 The case of Cartan–Hadamard manifolds

Proof. Since C∞(M) ∩W 2,p(M) is dense in W 2,p(M) (see [59]), it suffices to show that
C∞
c (M) is dense in C∞(M) ∩W 2,p(M) with respect to the W 2,p norm. To this goal,

take f ∈ C∞(M) ∩ W 2,p(M) and consider a family of cutoffs {χR} ⊆ C∞(M) as in
Lemma 3.16. Define fR := χRf ∈ C∞

c (M) and observe that

∥(fR − f)∥Lp = ∥(χR − 1)f∥Lp (3.35)
∥∇(fR − f)∥Lp ≤ ∥f∇χR∥Lp+∥(χR − 1)∇f∥Lp (3.36)

∥∇2(fR − f)∥Lp ≤ 2∥|∇f ||∇χR|∥Lp+∥(χR − 1)∇2f∥Lp+∥f∇2χR∥Lp . (3.37)

Since ∇χR and (χR−1) are uniformly bounded and supported in M \BR, f ∈W 2,p(M)
implies that the RHS of (3.35), (3.36), and (3.37) except the last term, vanish as R →
+∞. We only need to show that ||f∇2χR||Lp→ 0 as R→ 0. To see this, it is sufficient to
observe that |∇2χR|≤ Crα and supp(χR) ⊆M \BR, then by Corollary 3.14 we conclude
the proof (the upper bound on Ricci assumed in this theorem is of the type (3.20) for
appropriate values of A and R0).

Remark 3.19. When p = 1 our strategy to construct Hardy-type inequalities fails. Note
for instance that the constant in (3.26) and subsequent derived inequalities explodes as
p→ 1. Nevertheless, we expect the density result to hold even when p = 1.

3.4 An L2-Calderón–Zygmund inequality

As a further application of the tools developed in Section 3.2, we prove the validity of a
L2-Calderón–Zygmund inequality on Cartan–Hadamard manifolds with bounds on Ricci
curvature. Using Bochner inequality and integration by part, we first prove a weighted
CZ(2) inequality, which holds under lower bounds on the Ricci curvature.

Theorem 3.20. Let (M, g) be a Cartan–Hadamard manifold with a fixed pole o ∈ M .
Suppose

Ric(x) ≥ −brβ(x)

holds outside a compact set in the sense of quadratic forms for some b > 0 and β ≥ 0.
Then, for every ε > 0 there exists a constant A1 = A1(ε) > 0 such that

∥∇2φ∥L2≤ A1 [∥∆φ∥L2+∥φ∥L2 ] +A2ε
2∥rβφ∥L2 ∀φ ∈ C∞

c (M). (3.38)

Here A2 is a fixed positive constant independent of ε.

Proof. Take φ ∈ C∞
c (M) and let K ⊆ M be a compact set such that Ric(x) ≥ −brβ(x)
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3 The case of Cartan–Hadamard manifolds

on M \K. Using Bochner’s inequality and integration by parts we have∫︂
M
|∇2φ|2 = −

∫︂
M
⟨∇φ,∇∆φ⟩ −

∫︂
M

Ric(∇φ,∇φ)

=

∫︂
M
(∆φ)2 −

∫︂
K
Ric(∇φ,∇φ)−

∫︂
M\K

Ric(∇φ,∇φ)

≤
∫︂
M
(∆φ)2 + C

∫︂
K
|∇φ|2+b

∫︂
M\K

rβ|∇φ|2

≤
∫︂
M
(∆φ)2 + C

∫︂
K
|∇φ|2+b

∫︂
M\K

rβ
(︃
1

2
∆φ2 − φ∆φ

)︃
where C = −minK Ric>0. Fix ε > 0, by Hölder we have⃓⃓⃓⃓

⃓
∫︂
M\K

rβφ∆φ

⃓⃓⃓⃓
⃓ ≤

⃓⃓⃓⃓∫︂
M
rβφ∆φ

⃓⃓⃓⃓
≤ ||rβφ||L2 ||∆φ||L2≤

1

4ε2
||∆φ||2L2+ε

2||rβφ||2L2 .

We only need to estimate the integral of rβ∆φ2. To this end, let ρ ∈ C∞(M) be a
positive function such that ρ = rβ on M \K. Then, there exists some constant C > 0
such that |∇ρ|≤ Cρ. Hence,⃓⃓⃓⃓

⃓
∫︂
M\K

1

2
rβ∆φ2

⃓⃓⃓⃓
⃓ ≤

⃓⃓⃓⃓∫︂
M

1

2
ρ∆φ2

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
M
φ⟨∇ρ,∇φ⟩

⃓⃓⃓⃓
≤ C

∫︂
M
ρ|φ||∇φ|

≤ C||ρφ||L2 ||∇φ||L2≤
C2

4ε2
||∇φ||2L2+ε

2||ρφ||2L2

≤ C2

4ε2
||∇φ||2L2+ε

2||rβφ||2L2+ε
2C||φ||2L2 .

Combining the last two estimates and using the L2-gradient estimate, which holds on
any complete manifold, yields∫︂

M
|∇2φ|2≤ A1(ε)

(︃∫︂
M
|∆φ|2+

∫︂
M
|φ|2

)︃
+ bε2

∫︂
M
r2β|φ|2.

This concludes the proof.

Remark 3.21. In a first draft, Theorem 3.20 was proved using a different strategy. The
proof presented in the above was suggested to us by G. Carron during his review of this
thesis. We refer to [89] for the original proof, which relies on a carefully constructed
conformal deformation. It should be noted that the strategy of [89] does not use the
Bochner inequality and is thus better suited to be extended to p ̸= 2. To do this,
however, one would need the validity of an infinitesimal CZ(p) inequality of the type

||∇2φ||pLp≤ ε2C||φ||pLp+C

(︃
1 +

1

ε2

)︃
||∆φ||pLp

which, to the best of our knowledge, is not known when p ̸= 2.
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3 The case of Cartan–Hadamard manifolds

Remark 3.22. Note that in Theorem 3.20 we require a bound on Ricci in the sense of
quadratic forms, that is

Ric(X,X)(x) ≥ −brβ(x)g(X,X)

for any X ∈ TxM . This is a stronger assumption than the previous bounds on radial
Ricci curvature, needed to use the Bochner formula.

If we also assume an upper bound on the Ricci curvature, using the second order Hardy-
type inequality (3.34) we can estimate the last term on (3.38) thus proving CZ(2).

Theorem 3.23. Let (M, g) be a Cartan–Hadamard manifold. Suppose

−brα(x) ≤ Ric(x) ≤ −arα(x) (3.39)

holds outside a compact set, for some a, b > 0 and α ≥ 0. Then, the following L2-
Calderón–Zygmund inequality holds on M :

∥∇2φ∥L2≤ C (∥∆φ∥L2+∥φ∥L2) (3.40)

for all φ ∈ C∞
c (M).

Proof. By Theorem 3.20 we have the validity of (3.38), thus, we only need to estimate
the weighted term ∥rβφ∥2L2 . Let K be a compact large enough (see Theorem 3.13), then

∥rβφ∥2L2=

∫︂
M
r2βφ2dµg ≤ max

K
r2β
∫︂
K
φ2dµg +

∫︂
M\K

r2βφ2dµg.

Thanks to Theorem 3.13 we have∫︂
M\K

r2βφ2dµg ≤ C ′
∫︂
M
|∇2φ|2dµg,

so that
∥∇2φ∥L2≤ A′ (∥∆φ∥L2+∥φ∥L2) +A′′ε2

(︁
∥φ∥2L2+∥∇2φ∥2L2

)︁
.

Since ε can be made arbitrarily small and A′′ is a fixed constant, this last estimate yields
(3.40).

Since CZ(2) implies equality of the various definitions of Sobolev spaces, Remark 1.13,
Theorem 3.23 implies W 2,2

0 (M) =W 2,2(M), although under a stricter pinching than the
one of Theorem 3.18.

Corollary 3.24. Let (M, g) be a Cartan–Hadamard manifold as in Theorem 3.23, then

W 2,2
0 (M) =W 2,2(M) = H2,2(M).
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Part II

Positivity preservation for
Schrödinger operators
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Introduction to Part II

Part II of this thesis deals with positivity preservation properties of Schrödinger opera-
tors on Riemannian manifolds. The results of the next chapters have been obtained in
collaboration with Andrea Bisterzo and Giona Veronelli in [89, 18].

Self-adjoint operators on Hilbert spaces play a key role in mathematical physics, as
they represent the observables in the Dirac–Von Neumann interpretation of quantum
mechanics. The energy, for instance, is represented by a class of second-order differential
operators on L2, known in literature as Schrödinger-type operators. These operators
usually come with a natural domain of definition on which, although symmetric, might
lack self-adjointness. To recover this important property, one usually starts by defining
the operator on smooth and compactly supported functions and tries to construct a self-
adjoint extension. When the extension is unique, the operator is said to be essentially
self-adjoint. This property, especially in the case of Schrödinger-type operators, is ex-
tensively studied both in functional analysis and mathematical physics. In the case of
Riemannian manifolds, the first results on the topic are due to Gaffney, [45], who dealt
with the case of the Laplace–Beltrami operator on geodesically complete manifolds, see
also Strichartz, [117]. Since then, the problem has seen numerous contributions with a
variety of approaches, we refer to [20, Appendix D] for a nice historical account.

A possible strategy to prove the essential self-adjointness of Schrödinger-type opera-
tors, first proposed in [79] for the Euclidean case, is to use the so called Kato’s inequality,
which states that if u ∈ L1

loc(M) and ∆u ∈ L1
loc(M) then

∆|u|≥ sign(u)∆u

where the inequality is intended in the distributional sense. Indeed, consider the op-
erator H := −∆ + V : C∞

c (M) → L2(M) with a potential 0 ≤ V ∈ L2
loc(M). By

functional analysis, its essential self-adjointness is equivalent to the fact that the only
L2(M) distributional solution of

(−∆+ V + 1)f = 0

is f ≡ 0, see [110, Theorem X.26]. Applying Kato’s inequality and using the fact that
V ≥ 0 yields

(−∆+ 1)(−|f |) ≥ 0,

which motivates the case p = 2 of the following definition, proposed by Güneysu in [60].
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Definition II.1. Let p ∈ [1,+∞], we say that (M, g) has the Lp-positivity preserving
property if every u ∈ Lp(M) satisfying

(−∆+ 1)u ≥ 0

in the sense of distributions is non-negative a.e.

According to the above argument, if a manifold has the L2-positivity preserving prop-
erty then H is clearly essentially self-adjoint. This fact was first observed by Braver-
man, Milatovic and Shubin in [20], while dealing with the more general case of covariant
Schrödinger operators on Hermitian vector bundles. On the other hand, if the underlying
manifold is geodesically complete, the essential self-adjointness of H and their covariant
counterparts can be proved by other means, see [114, Theorem 1.1] or [20] and [66]; if
V = 0 this is in fact Gaffney and Strichartz’s result, [45, 117]. This lead Braverman,
Milatovic and Shubin to formulate the following

Conjecture (BMS). If (M, g) is a geodesically complete Riemannian manifold then the
L2-positivity preserving property holds.

The BMS conjecture has remained open for 20 years and has only recently been solved
in the positive by Pigola and Veronelli, [107]. For further reference on the topic, we refer
to the nice survey of Güneysu [61], see also [62, Section XIV.5] and [20, Appendix B].

While the problem of essential self-adjointness of Schrödinger-type operators motivates
the case p = 2, it is reasonable to consider the Lp-positivity preserving property on the
whole Lp scale. Indeed, the case p ∈ (1,+∞) has consequences on the m-accretivity
of Schrödinger-type operators on Lp(M), see [110, p.240] for the precise definitions.
Consider E := −∆ + V : C∞

c (M) → Lp(M) with 0 ≤ V ∈ L∞
loc(M) and denote with

Ep,min the closure of E in Lp(M) and with Ep,max the extension of E to Dom(Ep,max) =
{u ∈ Lp(M) : Eu ∈ Lp(M) distributionally}. The validity of the Lp-positivity preserving
property for p ∈ (1,+∞) ensures that Ep,max is m-accretive and Ep,max = Ep,min which
implies that C∞

c (M) is an operator core for Ep,max, see [92, 93] or [65, Appendix A].
The case p = +∞, instead, is related to another functional property of manifolds:

stochastic completeness. From a probabilistic perspective, stochastic completeness is the
property of Brownian paths to have almost surely infinite lifetime, or equivalently, the
fact that the (minimal) positive heat kernel of the Laplace–Beltrami operator preserves
probability. For our scopes, however, we shall adopt the following (equivalent) definition,
which is more relevant from the point of view of PDEs. We refer to Section 5.1 for more
details on the characterizations of stochastic completeness.

Definition II.2. A Riemannian manifold (M, g) is said to be stochastically complete if
the only bounded, non-negative C2 solution of ∆u ≥ u on M is u ≡ 0.

It was first observed by Güneysu, [60], that the L∞-positivity preserving property
implies stochastic completeness of the manifold at hand. In particular, stochastically
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incomplete manifolds, which can be easily constructed, provide counterexamples to the
validity of the L∞-positivity preserving property.

In the last years there have been significant efforts to better understand the Lp-
positivity preserving property and to find geometric and analytic conditions ensuring
its validity. In the Euclidean case, M = Rn, the L2-positivity preserving property was
first proved by Kato, [79], long before the introduction of Güneysu’s terminology. The
proof relies on the fact that −∆ + 1 induces an isomorphism on the space of tempered
distributions whose inverse has a positive kernel. Note that this completes Kato’s proof of
the essential self-adjointness of H. In a Riemannian setting, however, tempered distribu-
tions are ill-defined, and it is necessary to adopt different strategies; in recent literature,
we can identify two.

The first approach follows an idea of Davies contained in [20], and relies on the ex-
istence of a family of smooth cutoff functions with a uniform control on the gradient
and Laplacian. Note that on geodesically complete manifolds one can always construct
sequences of cutoffs with a uniformly bounded gradient, but controlling the Laplacian
requires some geometrical assumption on curvature and injectivity radius. Using these
Laplacian cutoffs, the Lp-positivity preserving property has been proved in the following
settings for various ranges of p.

• Braverman, Milatovic and Shubin showed in [20] that complete manifolds with
bounded geometry, i.e. ||∇j Riem||L∞< +∞ for all j ∈ N and inj(M) > 0, have
the L2-positivity preserving property.

• If Ric ≥ −K2, the Lp-positivity preserving property was proved on the whole scale
p ∈ [1,+∞] by Güneysu, [62]. See also [60] for a previous proof in the case K = 0.

• Bianchi and Setti further refined this result in [17], verifying that the BMS conjec-
ture holds under the additional assumption that Ric(x) ≥ −C(1 + r2(x)). Under
these assumptions, in fact, the same proof yields the Lp-positivity preserving prop-
erty of the manifold at hand for all p ∈ [2,+∞)

Note that all of these results require some type of lower bound on the Ricci curvature
which cannot grow too fast at −∞.

Inspired by the approach based on Laplacian cutoff functions, in Chapter 4 we present
two contributions to the problem of Lp-positivity preserving properties on Riemannian
manifold; these results are collected in [89]. In Chapter 3 we proved that Cartan–
Hadamard manifolds satisfying a lower bound on the Ricci curvature of the type Ric(x) ≥
−brβ(x), admit sequences of cutoff functions with a uniformly bounded gradient and
whose Laplacian, although non-bounded uniformly, grows at most like rβ/2−1, see Lemma
3.16. On the other hand, an upper bound of the form Ric(x) ≤ −arα(x) yields the in-
clusion of W 1,p(M) in the weighted space Lp(M,µ) where µ = rαp/2, see Remark 3.15.
The combination of these two facts allows us to prove the following
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Theorem II.3. Let (M, g) be a Cartan–Hadamard manifold satisfying

−b rα+2(x) ≤ Ric(x) ≤ −a rα(x),

outside a compact set for some a, b > 0 and α ≥ 0. Then M has the Lp-positivity
preserving property for all p ∈ [2,+∞).

Note that it is impossible to extend this result to p = +∞. Indeed, Cartan–Hadamard
manifolds satisfying Ric(x) ≤ −arα(x) for α > 2 are stochastically incomplete, see
Theorem 4.5 below, hence, the L∞-positivity preserving property must fail. Conversely,
we prove

Theorem II.4. Let (M, g) be a complete Riemannian manifold satisfying

−λ2(r(x)) ≤ Ric(x)

outside a compact set, with λ given by

λ(t) = At

k∏︂
j=0

log[j](t)

where A > 0, k ∈ N and log[j](t) stands for the j-th iterated logarithm. Then M has the
Lp-positivity preserving property for any p ∈ [1,∞].

This theorem improves on previous results, both relaxing the lower bound and improv-
ing the range of p. Furthermore, it is sharp when p = 1 or p = +∞, see Theorem II.6
and Remark 4.9 below. In addition to the use of a suitable family of Laplacian cutoffs
constructed by Impera, Rimoldi and Veronelli in [78], a key step in the proof of Theo-
rem II.4 is to show that for a given 0 ≤ φ ∈ C∞

c (M), there exists a positive solution
v ∈ C∞(M) ∩W 1,q(M) of (−∆+ 1)v = φ, 1/q = 1− 1/p. While standard elliptic regu-
larity theory ensures that v ∈ Lq(M) and thus ∆v ∈ Lq(M), the fact that ∇v ∈ Lq(M)
is non-trivial. The results of Braverman, Milatovic and Shubin, Güneysu, Bianchi and
Setti, as well as our Theorem II.3, all rely on the validity of Lq-gradient estimate GE(p)
which are known to hold on any complete manifold if q ∈ (1, 2] (p ∈ [2,+∞)), and for
all q ∈ (1,+∞) if the Ricci curvature is bounded from below either pointwise or in some
integral sense. See [28, 32] as well as our Theorem 1.6 and Theorem 1.12. In the proof
of Theorem II.4, instead, we rely on a refined Li–Yau gradient estimate proved in [17] to
conclude that |∇v|(x) ≤ λ(r(x))v(x) outside of a compact set. Hence, ∇v is almost in
Lq, which is enough for our purpose.

Using a completely different strategy, Pigola and Veronelli, [107], were finally able to
prove the Lp-positivity preserving property for p ∈ (1,+∞) on any geodesically com-
plete manifold, thus verifying that the BMS conjecture is true. Their proof uses some
new regularity results for non-negative subharmonic distributions to prove that the Lp-
positivity preserving property is implied by a Liouville-type property for Lp-subharmonic
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distributions. When p ∈ (1,+∞), this property is known to hold on geodesically com-
plete manifolds thanks to a result of Yau, [128]. It should be noted that the result of
Pigola and Veronelli includes our Theorem II.3, since Cartan–Hadamard manifolds are
complete, as well as the range p ∈ (1,+∞) of Theorem II.4. However, the proof in [107]
relies on potential theory results for subharmonic functions, we believe the approach via
cutoffs might be suitable for more general operators. Furthermore, the result of Pigola
and Veronelli fails when p = 1 and p = +∞ because the improved regularity cannot be
extended to these cases but also because there are known counterexample to the Liouville
property of Yau.

Chapter 5 is devoted to the study of these limit cases and is based upon [18]. To
the best of our knowledge, the most general condition ensuring L1 and L∞-positivity
preserving properties is expressed by Theorem II.4. In particular, when p = +∞ this is
essentially the celebrated condition for stochastic completeness due to Hsu, [76], which
is known to be optimal with respect to bounds on the Ricci curvature. This suggests a
much closer relation between stochastic completeness and the L∞-positivity preserving
property. Indeed, we have the following

Theorem II.5. Let (M, g) be a (possibly non-complete) Riemannian manifold, then M
has the L∞-positivity preserving property if and only if it is stochastically complete.

This characterization together with the result of Pigola and Veronelli paint a full
picture of the Lp-positivity preserving property when p ∈ (1,+∞], which is completed
when p = 1 by showing that the condition expressed by Theorem II.4 is optimal in the
following sense.

Theorem II.6. For every ε > 0, there exists a 2-dimensional Riemannian manifold
(M, g) whose Gaussian curvature satisfies

K(x) ∼ −Cr(x)2+ε,

such that the L1-positivity preserving property fails on M .

The proof that stochastic completeness implies the L∞-positivity preserving property
is essentially a problem of regularity for the distributional, L∞(M) solutions of Lu ≥ 0,
where

L := ∆− 1.

Indeed, using a Brezis–Kato inequality we show that the desired result follows if we prove
that for every bounded distributional solution of Lu ≥ 0, there exists some w ∈ C∞(M)
with u ≤ w ≤ C < +∞ which solves Lw ≥ 0 in a strong sense. This latter result,
then, follows from a monotone approximation theorem for the distributional solutions of
Lu ≥ 0 which might be of independent interest.

Theorem II.7. Let (M, g) be a Riemannian manifold and let u ∈ L1
loc(M) be a solution

of Lu ≥ 0 in the sense of distributions. Then for every Ω ⋐ M there exists a sequence
{uk} ⊂ C∞(Ω) such that:
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(i) uk ↘ u pointwise a.e.;
(ii) Luk ≥ 0 for all k;
(iii) uk → u in L1(Ω);
(iv) ∥uk∥L∞(Ω)≤ 2∥u∥L∞(Ω) and, if u ≥ 0, supΩ uk ≤ 2 ess supΩ u.

Instead of proving this theorem directly for the operator L, we rely on a trick due to
Protter and Weinberger, [108], and prove an analogous monotone approximation result for
an appropriate weighted Laplacian. The monotone approximation is obtained adapting
a strategy proposed by Bonfiglioli and Lanconelli in [19], together with some mean value
representation formulas for weighted harmonic functions.
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Chapter 4

Positivity preserving properties via cutoff
functions

In this chapter, we present two results on the Lp-positivity preserving property of cer-
tain Riemannian manifolds, which rely on the existence of a suitable family of smooth
Laplacian cutoffs.

Let us fix (M, g) an arbitrary Riemannian manifold. Recall that u ∈ Lp(M) (or more
generally u ∈ L1

loc(M)) satisfies (−∆+ 1)u ≥ 0 in the sense of distributions, if∫︂
M
u(−∆+ 1)φ ≥ 0

for all test functions φ ∈ C∞
c (M) with φ ≥ 0. By Riesz Representation Theorem, this

is equivalent to say that ν = (−∆ + 1)u is a positive Radon measure. If one assumes
stronger regularity, say ϕ = (−∆+1)u is a (positive) smooth function, proving positivity
preservation becomes a much simpler task. Indeed, following [20, Theorem B.1], we prove

Lemma 4.1. Let ϕ ∈ C∞
c (M), ϕ ≥ 0, then there exists a unique v ∈ C∞(M) ∩ Lp(M)

∀p ∈ [1,+∞], v > 0, such that
(−∆+ 1)v = ϕ. (4.1)

Proof. Let {Ωk} be an exhaustion of M by relatively compact, open sets of smooth
boundary satisfying

Ω1 ⋐ Ω2 ⋐ · · · ⋐ Ωk ⋐ Ωk+1 ⋐ · · · ,

that is, Ωk is relatively compact in Ωk+1 for all k ∈ N. Furthermore, assume Ω1 is large
enough so that supp(ϕ) ⊆ Ω1. Let vk be a smooth solution of the following Dirichlet
problem: {︄

(−∆+ 1)vk = ϕ on Ωk

vk = 0 on ∂Ωk.
(4.2)

By strong maximum principle we immediately get that vk > 0 in the interior of Ωk and
vk+1 ≥ vk for all k, hence, {vk} admits a (possibly infinite) pointwise limit

0 < v(x) = lim
k→+∞

vk(x).
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4 Positivity preserving properties via cutoff functions

Then, we multiply (4.2) by vp−1
k and integrate over Ωk∫︂

Ωk

vp−1
k (−∆+ 1)vk =

∫︂
Ωk

vpk −
∫︂
Ωk

vp−1
k ∆vk

=

∫︂
Ωk

vpk +

∫︂
Ωk

⟨∇vp−1
k ,∇vk⟩

=

∫︂
Ωk

vpk + (p− 1)

∫︂
Ωk

vp−2
k |∇vk|2≥

∫︂
Ωk

vpk.

By Hölder’s inequality, we conclude that ∥vk∥Lp(Ωk)≤ ∥ϕ∥Lp(M). Since {vk} is uniformly
bounded in Lp on any compact set, by standard interior regularity we deduce that {vk}
is uniformly bounded in W h,p

loc (M) for any order h and p ∈ [1,+∞). As a consequence of
the compact embedding of Sobolev spaces, all the covariant derivatives of {vk} converge
up to a subsequence uniformly on compact sets, i.e., vk converges in C∞(M) topology.
In particular v is positive, smooth and satisfies (4.1); by Fatou’s lemma we also have that
v ∈ Lp(M) for any p ∈ [1,+∞). For p = +∞, let x∗ ∈ Ωk be such vk(x

∗) = maxΩk
vk,

by weak maximum principle we get vk(x∗) ≤ ϕ(x∗) ≤ ∥ϕ∥L∞(M), hence, ||vk||L∞(Ωk)≤
||ϕ||L∞(M). Letting k → +∞ we conclude that v ∈ L∞(M).

Remark 4.2. An alternative and shorter proof of Lemma 4.1 is possible using properties
of the Firedrichs realization of −∆ and functional analytic arguments. See for example
the first part of [62, Theorem XIV.31].

Next, with the aid of suitable Laplacian cutoffs, we extend the above result to the case
where (−∆+1)u is only a positive Radon measure. This requires further restrictions on
the geometry of the manifolds we consider.

4.1 Cartan–Hadamard manifolds

Suppose (M, g) is a Cartan–Hadamard manifolds and denote r(x) = d(x, o) the Rieman-
nian distance from a fixed pole o ∈M . Then we have

Theorem 4.3. Let (M, g) be a Cartan–Hadamard manifold satisfying

−brα+2(x) ≤ Ric(x) ≤ −arα(x) (4.3)

outside a compact set for some constants a, b > 0 and some α ≥ 0. Then, M has the
Lp-positivity preserving property for all 2 ≤ p < +∞

Proof. Let u ∈ Lp(M) such that (−∆+ 1)u ≥ 0 in the sense of distributions. We need
to show that ∫︂

M
ϕu ≥ 0 ∀ϕ ∈ C∞

c (M), ϕ ≥ 0.
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4 Positivity preserving properties via cutoff functions

By Lemma 4.1, let v ∈ C∞(M), v > 0 such that (−∆+1)v = ϕ and let {χR} ∈ C∞(M)
be a family of cutoffs as in Lemma 3.16. Since vχR ∈ C∞

c (M), vχR ≥ 0 we have

0 ≤
∫︂
M
u(−∆+ 1)(vχR) =

∫︂
M

[−u∆(vχR) + vχRu]

=−
∫︂
M
uχR∆v −

∫︂
M
uv∆χR

− 2

∫︂
M
u⟨∇χR,∇v⟩+

∫︂
M
uχRv

= −
∫︂
M
uv∆χR − 2

∫︂
M
u⟨∇χR,∇v⟩+

∫︂
M
uχRϕ.

Since ϕ has compact support, for R large enough we have∫︂
M
uχRϕ =

∫︂
M
uϕ.

Moreover, v ∈ Lq(M), hence ∆v ∈ Lq(M), for every q ∈ [1,+∞]. In particular, this
holds for q = p/(p−1) ∈ (1, 2] so that |∇v|∈ Lq(M) thanks to the validity of Lq-gradient
estimates, see [32] or Remark 1.3. Since u∇v ∈ L1(M), we have∫︂

M
u⟨∇χR,∇v⟩ ≤

∫︂
M
|u||∇v||∇χR|→ 0

for R→ +∞. Finally, by Holder’s inequality we have⃓⃓⃓⃓∫︂
M
uv∆χR

⃓⃓⃓⃓
≤
{︃∫︂

M
|u|p
}︃ 1

p
{︃∫︂

M
|v∆χR|q

}︃ 1
q

.

Since |∆χR|≤ Cr
α
2 (x) and v ∈ W 1,q(M), the upper bound on Ricci curvature, Re-

mark 3.15, yields ∫︂
M
|v∆χR|q→ 0

as R→ +∞. Hence, ∫︂
M
ϕu = lim

R→+∞

∫︂
M
u(−∆+ 1)(vχR) ≥ 0,

which concludes the proof.

Remark 4.4. Both the existence of the cutoffs and the inclusion of W 1,q in the weighted
space Lq(M,µ) where µ = rαq/2, only require a bound on the Ricci tensor in the radial
direction. As a consequence, Theorem 4.3 holds also if we require (4.3) only in the radial
direction.
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4 Positivity preserving properties via cutoff functions

Although Lemma 4.1 holds on the whole Lp scale, the case p = +∞ and 1 ≤ p < 2
have been left out in the previous theorem. For these values of p, we generally lack
the Lq-gradient estimates for the conjugate exponent of p. Indeed, when 2 < q < +∞
the bound (4.3) does not fall in the assumptions of the result of Cheng, Thalmaier and
Thompson [28] or of our Theorem 1.6 and Theorem 1.12. On the other hand, the L1 and
L∞ gradient estimates are false even in the Euclidean setting.

In the case p = +∞, there is an additional reason which prevents a proof of the L∞-
positivity preserving property under the assumptions of Theorem 4.3. As noted in the
Introduction to Part II, the validity of the L∞-positivity preserving property implies
stochastic completeness of the manifold at hand. In the case of Cartan–Hadamard man-
ifolds, however, if the Ricci curvature lies below a certain threshold we loose stochastic
completeness.

Theorem 4.5. Let (M, g) be a Cartan–Hadamard manifold whose radial Ricci curvature
satisfies

Rico(x) ≤ −arα(x)

outside a compact set, with a > 0. If α > 2, then (M, g) is not stochastically complete.

Proof. Let j be the warping function of the model (N,h) defined in Section 3.1.2. Take

v(t) =

∫︂ t

0
j1−n(s)

(︃∫︂ s

0
jn−1(τ)dτ

)︃
ds

then u(x) = v(r(x)) is a C2 function on M . By (3.17) we have∫︁ s
0 j

n−1(τ)dτ

jn−1(s)
∈ L1(+∞),

hence, u is bounded. Since v′ ≥ 0, by Proposition 3.1 we have

∆u(x) = v′′(r(x)) + ∆r(x)v′(r(x)) ≥ v′′(r(x)) + (n− 1)
j′(r(x))

j(r(x))
v′(r(x))

for r >> 1. By direct computation, this implies that ∆u ≥ 1 outside of a compact
set. Let {xk} ⊂ M be a sequence of points such that u(xk) converges to supM u. The
monotonicity of v implies that r(xk) → +∞, hence, ∆u(xk) ≥ 1 for k large enough which
implies that M is stochastically incomplete, see [104, Theorem 1.1].

4.2 Manifolds with subquadratic Ricci curvature

The case of Cartan–Hadamard manifolds suggests that a quadratic growth of Ric at
−∞ is the threshold distinguishing between different behavior with respect to positiv-
ity preservation properties. Note that in the subquadratic case, the cutoff functions
constructed in Lemma 3.16 have a uniformly bounded Laplacian. As a consequence,
one does not need to impose upper bounds on the Ricci curvature in order to control
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4 Positivity preserving properties via cutoff functions

the terms involving ∆χR. It turns out that such Laplacian cutoffs exist on arbitrary
complete Riemannian manifolds without topological assumptions as long as the Ricci
curvature satisfies

Ric(x) ≥ −λ2(r(x)) (4.4)

outside a compact set. Here λ is a C∞ function given by

λ(t) = At
k∏︂
j=0

log[j](t) (4.5)

for t large enough, where A > 0, k ∈ N and log[j](t) stands for the j-th iterated logarithm.
Indeed, we have the following result of Impera, Rimoldi and Veronelli, which slightly
generalizes a previous result of Bianchi and Setti.

Theorem 4.6 ([78, 17]). Let (M, g) be a complete Riemannian manifold satisfying (4.4).
Then, there exists a family of smooth cut-off functions {χR} ⊆ C∞

c (M) with R >> 1
large enough, such that
(1) χR ≡ 1 on BR and χR ≡ 0 on M \BγR;
(2) ||∇χR||∞≤ C

λ(R) ;
(3) ||∆χR||∞≤ C;

where C > 0, γ > 1 and λ is the function defined in (4.5).

Using these cutoff functions, one can easily prove the Lp-positivity preserving property
for p ∈ [2,+∞), where the Lq-gradient estimates for the conjugate exponent are available.
This fact was first observed by Güneysu. However, there is no need to use Lp-gradient
estimates: we can use a uniform Li–Yau gradient estimate, which is a special case of a
result by Bianchi and Setti.

Theorem 4.7 ([17]). Let (M, g) be a complete Riemannian manifold satisfying (4.4).
Let R > r > 0 and let γ > 1 and let v :M \Br → R be a C2 function satisfying{︄

v > 0 on M \Br
∆v = v.

(4.6)

Then, there exists a positive constant C = C(n, γ,B) > 0 such that

|∇v(x)|
λ(R)

≤ Cv(x) ∀x ∈ BγR \BR. (4.7)

Using these two results, we can prove the following:

Theorem 4.8. Let (M, g) be a complete Riemannian manifold satisfying (4.4). Then
M has the Lp-positivity preserving property for all p ∈ [1,+∞].
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4 Positivity preserving properties via cutoff functions

Proof. Let u ∈ Lp(M), p ∈ [1,+∞] such that (−∆+1)u ≥ 0 in the sense of distributions.
Take ϕ ∈ C∞

c (M), ϕ ≥ 0 we need to show that∫︂
M
uϕ ≥ 0.

Let v ∈ C∞(M), v > 0 such that −∆v + v = ϕ and v,∆v ∈ Lq(M) ∀q ∈ [1,+∞].
We proceed as in the proof of Theorem 4.3, taking vχR as a test function in (−∆ +
1)u ≥ 0, where {χR} are the cutoff functions of Theorem 4.6 instead of the ones of
Lemma 3.16. The proof differs from the one of Theorem 4.3 only in the estimates of the
terms containing ∆χR and ∇χR. The former is immediate: since |∆χR|≤ C we have
|uv∆χR|≤ C|uv|∈ L1(M) hence ∫︂

M
uv∆χR → 0

by dominated convergence as R → +∞. For the latter term, we observe that if r > 0
is large enough then ∆v = v on M \ Br and v > 0 , thus, we have the validity of the
Li–Yau estimate of Theorem 4.7. Since ∇χR is compactly supported in BγR \BR, then

|u⟨∇χR,∇v⟩|≤ C2|u|
|∇v|
λ(R)

≤ CC2|u||v|∈ L1(M) ∀x ∈M.

It follows that ∫︂
M
u⟨∇χR,∇v⟩ → 0

as R→ +∞ which concludes the proof of the theorem.

Remark 4.9. As a consequence of the case p = +∞, we immediately get that the manifold
at hand is stochastically complete. Note that Hsu proved in [76] that a manifold is
stochastically complete if it is geodesically complete and Ric(x) ≥ −κ(r(x)), where κ is
non-decreasing and

∫︁∞
κ−1 = ∞. Keeping in account that the choice of λ in our result

can be slightly generalized, [78, Proposition 1.1], our function λ is essentially the maximal
one admissible in order to fulfill

∫︁∞
λ−1 = ∞. Observe also, in light of Theorem 4.5,

that the condition of Hsu is optimal with respect to bounds on Ricci curvature.
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Chapter 5

The extremal cases p = 1,+∞

As mentioned in the Introduction to Part II, after the completion of [89], the Lp-positivity
preserving property was proved by Pigola and Veronelli for all p ∈ (1,+∞) on complete
Riemannian manifolds, [107]. It should be noted that without geodesic completeness,
the Lp-positivity preserving property fails. For instance, take B1 ⊆ R2 the Euclidean
open ball of radius 1. The radial function u(r) = −r, which belongs to all Lp spaces for
p ∈ [1,+∞], is a non-positive function satisfying (−∆ + 1)u ≤ 0 and thus contradicts
the Lp-positivity preserving property. In light of this observation, the only cases left
out by the result of Pigola and Veronelli are p = 1,+∞. For these values of p, the best
conditions ensuring the corresponding positivity preserving property is the one expressed
in Theorem 4.8. In the case p = +∞, Remark 4.9 suggests a much closer relation between
the L∞-positivity preserving property and stochastic completeness, which we investigate
in this chapter.

5.1 L∞-positivity preserving property and stochastic
completeness

There are countless characterizations of stochastic completeness, a comprehensive ac-
count is beyond our scope, and we refer the reader to [51, 53, 104, 105] or the very recent
[55]. Here, we recall only the characterizations relevant to our exposition. Given (M, g)
a Riemannian manifold, the following are equivalent

(i) M is stochastically complete;
(ii) for every λ > 0, the only bounded, non-negative C2 solution of ∆u ≥ λu is u ≡ 0;
(iii) for every λ > 0, the only bounded, non-negative C2 solution of ∆u = λu is u ≡ 0;
(iv) the only bounded, non-negative C2 solution of ∆u = u is u ≡ 0.

For a proof of the equivalence, we refer to Theorem 6.2 in [51].

Remark 5.1. Note that the regularity required in the above and in Definition II.2 can be
relaxed to C0(M)∩W 1,2

loc (M), see for instance Section 2 of [2]. This fact is a consequence
of a stronger version of Theorem 5.6 below.

As noted in the Introduction to Part II, a sufficient condition to stochastic completeness
is the validity of the L∞-positivity preserving property.

Proposition 5.2 ([60]). If (M, g) has the L∞-positivity preserving property, then it is
stochastically complete.
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5 The extremal cases p = 1,+∞

Proof. To see this, take u ∈ C2(M) a bounded and non-negative function satisfying
∆u ≥ u. Set v = −u and apply the L∞-positivity preserving property to v to conclude
that u ≡ 0.

Remark 5.3. In contrast to the BMS conjecture and the result of Pigola and Veronelli,
it is worthwhile noticing that stochastic completeness is generally unrelated to geodesic
completeness. For example, warped products with Ricci curvature diverging at −∞
faster than quadratically are geodesically but not stochastically complete while Rn \{0}
endowed with the Euclidean metric is stochastically complete but geodesically incom-
plete.

5.1.1 From stochastic completeness to the L∞-positivity preserving
property

In the following, we prove the converse of Proposition 5.2. Let (M, g) be a stochastically
complete Riemannian manifold and take u ∈ L∞(M) satisfying (−∆ + 1)u ≥ 0 in the
sense of distributions. We want to show that u is non-negative almost everywhere or,
equivalently, that the negative part u− = max{0,−u} = (−u)+ vanishes a.e.. To this
end, we use the following Brezis–Kato inequality for the operator

L := ∆− 1. (5.1)

due to Pigola and Veronelli.

Theorem 5.4 ([107]). Given a Riemannian manifold (M, g), if f ∈ L1
loc(M) satisfies

Lf ≥ 0 in the sense of distributions, then f+ ∈ L1
loc(M) and Lf+ ≥ 0 in the sense of

distributions.

Since L(−u) ≥ 0 we conclude that Lu− ≥ 0 in the sense of distributions. If u− was a
C2(M) function, stochastic completeness (see (i) at the beginning of Section 5.1) would
allow us to conclude that u− ≡ 0, hence u ≥ 0. Note that, according to Remark 5.1,
u− ∈ C0(M)∩W 1,2

loc (M) would be sufficient. In general, however, this is not the case and,
as a matter of fact, it is a stronger requirement than what we actually need. Indeed, if
we find w ∈ C2(M) such that supM w < +∞, 0 ≤ u− ≤ w and Lw ≥ 0, then stochastic
completeness applied to w implies that w hence u− are identically zero.

The existence of such function w is implied by the following corollary of Theorem II.7,
whose proof is postponed to the next section.

Corollary 5.5. Let (M, g) be a Riemannian manifold and let u ∈ L∞(M) be a distri-
butional solution of Lu ≥ 0. Then, for every relatively compact Ω ⋐ M there exists
some uΩ ∈ C∞(Ω) which solves LuΩ ≥ 0 in a strong sense, such that u ≤ uΩ and
||uk||L∞(Ω)≤ 2||u||L∞(Ω).

Via a compactness argument, we use the functions uΩ to construct the function w.
The following theorem, proved by Sattinger in [112], also comes into aid as it allows to
obtain L-harmonic function from super and sub solutions of Lu = 0.
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5 The extremal cases p = 1,+∞

Theorem 5.6 ([112]). Let u1, u2 ∈ C∞(M) satisfy

Lu1 ≥ 0, Lu2 ≤ 0, u1 ≤ u2

on M . Then, there exists some w ∈ C∞(M) such that

u1 ≤ w ≤ u2 and Lw = 0.

Remark 5.7. Theorem 5.6 is a weaker formulation of a much more general theorem,
proved by Ratto, Rigoli and Véron, [109], for a wider class of functions, namely u1, u2 ∈
C0(M) ∩W 1,2

loc (M). This result goes under the name of sub and supersolution method
or monotone iteration scheme. Note that the results of [109] hold for a larger class of
second order elliptic operators. For a survey on the subject, we refer to Heikkilä and
Lakshmikantham, [69].

Using the functions constructed locally in Corollary 5.5 together with an exhaustion
procedure, we obtain the following:

Theorem 5.8. Let (M, g) be a Riemannian manifold and let u ∈ L∞(M) satisfy Lu ≥ 0
in the sense of distributions. Then, there exists w ∈ C∞(M) such that u ≤ w, Lw ≥ 0
in a strong sense and supM w < +∞.

Proof. We begin by observing that if u ∈ L∞(M) then, setting c = ∥u∥L∞(M), we have

Lc = −c ≤ 0 on M.

Next, take {Ωh} an exhaustion of M by relatively compact sets such that

Ω1 ⋐ Ω2 ⋐ . . . ⋐ Ωh ⋐ Ωh+1 ⋐ . . . ⋐M,

∂Ωh is smooth and M = ∪hΩh. On each set Ωh we apply Corollary 5.5 and we obtain a
sequence of functions uh ∈ C∞(Ωh) such that

(1) u ≤ uh in Ωh;
(2) Luh ≥ 0 strongly on Ωh;
(3) ||uh||L∞(Ωh)≤ 2c

Since L(2c) ≤ 0, we use Theorem 5.6 on each Ωh to obtain wh ∈ C∞(Ωh) satisfying
(1) Lwh = 0;
(2) uh ≤ wh;
(3) ∥wh∥L∞(Ωh)≤ 2c.

We conclude by showing that {wh}h is bounded in respect to the C∞(M)-topology and
thus converges, up to a subsequence, to some w ∈ C∞(M).

To this end, let K ⊆ V ⊆ M be a compact subset of a relatively compact open set V
and k ∈ N, k ≥ 2. By Schauder estimates for the operator L we have

∥wh∥Ck,α(K)≤ A
(︂
∥wh∥L∞(V )+∥Lwh∥Ck−2,α(V )

)︂
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5 The extremal cases p = 1,+∞

for some α ∈ (0, 1) and for h large enough so that V ⊆ Ωh. See for instance Section 6.1 of
[49]. In particular, there exists a constant C = C(K,n, k) > 0 such that ∥wh∥Ck(K)< C
for every h ∈ N. Here

||wh||Ck(K)= ||wh||L∞(K)+||∇wh||L∞(K)+ · · ·+ ||∇kwh||L∞(K).

Since {wh}h is pre-compact, it converges in the C∞(M) topology up to a subsequence,
denoted again with {wh}h. Let w ∈ C∞(M) be the C∞ limit, we have that

u ≤ w, sup
M

w < +∞ and Lw = 0.

This concludes the proof of Theorem II.5, apart from the proof of Corollary 5.5.

5.2 Monotone approximation results

This section is devoted to the proof of Theorem II.7. Instead of proving Theorem II.7
directly, we prove an equivalent monotone approximation result for another elliptic dif-
ferential operator closely related to L. We begin by taking a function α ∈ C∞(M)
satisfying {︄

Lα = 0

α > 0.
(5.2)

The existence of such function is ensured by [43], and is equivalent to the fact that
λ−L
1 (D) ≥ 0 for any bounded domain D ⊆M , where λ−L

1 (D) denotes the first Dirichlet
eigenvalue of −L on D. In our case, it is easy to see that λ−L

1 (D) ≥ 1 over any bounded
domain D ⊆M .

Using α we define the following drifted Laplacian

∆α : u ↦→ α−2 div(α2∇u). (5.3)

With a trivial density argument, one has that ∆α is symmetric in L2 with respect to the
measure α2dµg. Then, using the following idea due to Protter and Weinberger, [108], we
establish the relation between ∆α and L. See also Lemma 2.3 of [107].

Lemma 5.9. If u ∈ L1(Ω) with Ω ⋐M , then

(∆− 1)u ≥ 0 ⇔ ∆α

(︂u
α

)︂
≥ 0,

where both inequalities are intended in the sense of distributions.

74



5 The extremal cases p = 1,+∞

Proof. Fix 0 ≤ φ ∈ C∞
c (Ω), by direct computation we have

α∆α

(︂φ
α

)︂
= α−1 div

[︂
α2∇

(︂φ
α

)︂]︂
= α−1 div (α∇φ− φ∇α)

= ∆φ− φ
∆α

α
= Lφ,

(5.4)

where in the last equation we have used (5.2). Thus, using (5.4) and the symmetry of
∆α we conclude(︂

∆α

(︂u
α

)︂
, αφ

)︂
L2

=

∫︂
Ω

u

α
∆α

(︂φ
α

)︂
α2dµg

=

∫︂
Ω
u (∆− 1)φ dµg = ((∆− 1)u, φ)L2 .

Using Equation (5.4) and setting v = α−1u, it is possible to obtain Theorem II.7 from
an equivalent statement for the operator ∆α. In this perspective, our goal is to prove
the following:

Theorem 5.10. Let (M, g) be a Riemannian manifold and let v ∈ L1
loc(M) be a solution

of ∆α v ≥ 0 in the sense of distributions. Then, for every Ω ⋐M there exists a sequence
{vk} ⊂ C∞(Ω) such that:

(i) vk ↘ v pointwise a.e.;
(ii) ∆α vk ≥ 0 for all k;
(iii) vk → v in L1(Ω);
(iv) supΩ vk ≤ ess supΩ v.

5.2.1 Representation formula for α-harmonic functions

Let Ω ⋐ M be a relatively compact subset of M . We begin by establishing some mean
value representation formulae involving the Green function of the operator ∆α on Ω with
Dirichlet boundary conditions. Recall that G : Ω × Ω \ {x = y} → R is a symmetric,
L1(Ω× Ω) function satisfying the following properties:

(a) G ∈ C∞ (Ω× Ω \ {x = y}) and G(x, y) > 0 for all x, y ∈ Ω with x ̸= y;
(b) limx→y G(x, y) = +∞ and G(x, y) = 0 if x ∈ ∂Ω (or y ∈ ∂Ω);
(c) ∆αG(x, y) = −δx(y) with respect to α2dµg, that is,

φ(x) = −
∫︂
Ω
G(x, y)∆α φ(y)α

2(y)dµy ∀φ ∈ C∞
C (Ω)

.
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5 The extremal cases p = 1,+∞

For r > 0 and x ∈ Ω, we define the following set

Br(x) :=
{︁
y ∈ Ω | G(x, y) > r−1

}︁
∪ {x}. (5.5)

We adopt the convention G(x, x) = +∞ so that Br(x) =
{︁
y ∈ Ω | G(x, y) > r−1

}︁
. Ob-

serve that Br(x) ⊂ Ω are open and relatively compact sets, moreover, for almost all
r > 0, ∂Br(x) is a smooth hypersurface. This is a consequence of Sard’s theorem. In the
following, dσ and dµ represent the Riemannian surface and volume measure of ∂Br(x)
and Br(x) respectively.

Proposition 5.11. For every v ∈ C∞(Ω) and almost every r > 0, the following repre-
sentation formula holds

v(x) =

∫︂
∂Br(x)

v(y)|∇G(x, y)|α2(y)dσy −
∫︂
Br(x)

[︃
G(x, y)− 1

r

]︃
∆αv(y)α

2(y)dµy (5.6)

Proof. By the Green identity we have

v(x) =−
∫︂
Br(x)

G(x, y)∆α v(y)α
2(y)dµy

+

∫︂
∂Br(x)

(︂
G(x, y)

∂v

∂ν
(y)− v(y)

∂G

∂ν
(x, y)

)︂
α2(y)dσy.

Since Br(x) are level sets of G, we have ∂G
∂ν = −|∇G| thus

v(x) =

∫︂
∂Br(x)

v(y)
⃓⃓⃓
∇G(x, y)

⃓⃓⃓
α2(y)dσy +

1

r

∫︂
∂Br(x)

∂v

∂ν
(y)α2(y)dσy

−
∫︂
Br(x)

G(x, y)∆αv(y)α
2(y)dµy

=

∫︂
∂Br(x)

v(y)
⃓⃓⃓
∇G(x, y)

⃓⃓⃓
α2(y)dσy −

∫︂
Br(x)

[︂
G(x, y)− 1

r

]︂
∆αv(y)α

2(y)dµy.

In particular, if v ∈ C2(Ω) is α-harmonic, i.e. ∆αu = 0 on Ω, then

v(x) =

∫︂
∂Br(x)

|∇G(x, y)| v(y) α2(y) dσy. (5.7)

The formulae (5.7) and (5.6) are a generalization of some standard representation formula
for the Laplace–Beltrami operator. See for instance the Appendix of [19], [97] or the very
recent [34].
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5 The extremal cases p = 1,+∞

5.2.2 Distributional vs. potential α-subharmonic solutions

Before proving the monotone approximation result, we observe that the notion of α-sub-
harmonicity in the distributional sense is closely related to the notion of α-subharmonic
solutions in the sense of potential theory.

Definition 5.12. We say that an upper semicontinuous function u : Ω → [−∞,+∞) is
α-subharmonic in the sense of potential theory on Ω if the following conditions hold

(i) {x ∈ Ω | u(x) > −∞} ≠ ∅;
(ii) for all V ⋐ Ω and for every h ∈ C2(V ) ∩ C0(V ) such that ∆α h = 0 in V with

u ≤ h on ∂V , then
u ≤ h in V.

The key observation, first noted by Sjörgen in [116, Theorem 1] in the Euclidean
setting, is that every distributional α-subharmonic function is almost everywhere equal
to a function which is α-subharmonic in the sense of potential theory. Note that in [116,
Theorem 1], Sjörgen considers a wider class of elliptic differential operators. The drifted
Laplace–Beltrami operator falls into that class.

More precisely, if v ∈ L1(Ω) satisfies ∆α v ≥ 0 in the sense of distributions, then v is
equal almost everywhere to an α-subharmonic function in the sense of potential theory.
Naturally, if v has some better regularity property, for example it is continuous, the
equality holds everywhere. This fact holds true also in the Riemannian case, we sketch
here the proof for clarity of exposition.

Recall that for every φ ∈ C∞
c (Ω) we have

φ(x) = −
∫︂
Ω
G(x, y)∆αφ(y) α

2(y)dµy.

Furthermore, since ∆α v = dνv is a positive Radon measure, we have∫︂
Ω
v(x)∆αφ(x) α

2(x)dµx =

∫︂
Ω
φ(x) dνvx

for every φ ∈ C∞
c (Ω). The measure dνv is often referred to as the ∆α-Riesz measure of

v. By a direct computation we have∫︂
Ω
v(x)∆αφ(x) α

2(x)dµx =

∫︂
Ω
φ(x) dνvx

= −
∫︂
Ω

∫︂
Ω
G(x, y)∆αφ(y) α

2(y)dµy dν
v
x

=

∫︂
Ω
−
(︃∫︂

Ω
G(x, y)dνvx

)︃
∆αφ(y)α

2(y)dµy,

hence, ∫︂
Ω

(︃
v(y) +

∫︂
Ω
G(x, y) dνvx

)︃
∆αφ(y)α

2(y)dµy = 0,
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for every 0 ≤ φ ∈ C∞
c (Ω). In other words, the function

v +

∫︂
Ω
G(x, ·)dνvx

is α-harmonic in the sense of distributions. By [116, Theorem 1] of Sjörgen we know that
α-harmonic functions are almost everywhere equal to a function which is α-harmonic in
the sense of potential theory. When the operator at hand is the Euclidean Laplacian,
this result is usually referred as Weyl’s lemma. We conclude that

v
a.e.
= h−

∫︂
Ω
G(x, ·)dνvx, (5.8)

where h is α-harmonic in a strong sense. On the other hand, one can prove that the
function

−G ∗ dνv = −
∫︂
Ω
G(x, ·)dνvx (5.9)

is α-subharmonic in the sense of potential theory, which concludes the sketch of the proof.
For this latter statement, we refer to Section 6 of [19].

5.2.3 Proof of Theorem 5.10

In order to prove Theorem 5.10, we adopt a strategy laid out by Bonfiglioli and Lanconelli
in [19], where they obtained some monotone approximation results for a wide class of
second order elliptic operators on Rn. To do so, we begin by defining the following mean
integral operators. If v is an upper semicontinuous function on Ω, x ∈ Ω and r > 0, we
set

mr(v)(x) :=

∫︂
∂Br(x)

v(y)|∇yG(x, y)|α2(y) dσy. (5.10)

In particular, if v is an α-subharmonic function in the sense of distributions, we prove
the following results.

Proposition 5.13. Given a Riemannian manifold (M, g) and Ω ⋐ M , if v ∈ L1(Ω) is
α-subharmonic in the sense of distributions, then
(a) v(x) ≤ mr(v)(x) for almost every x ∈ Ω and almost every r > 0;
(b) let 0 < s < r then ms(v)(x) ≤ mr(v)(x) almost everywhere in Ω;
(c) for almost every x ∈ Ω we have limr→0mr(v)(x) = v(x);
(d) for every r > 0 mr(v) is α-subharmonic in the sense of potential on Ω.

Proof. By the observation in the previous section, up to a choice of a good representative,
we can assume that v is α-subharmonic in the sense of potential, cf. Definition 5.12.
(a) Fix x0 ∈ Ω and r > 0, consider φ ∈ C0(∂Br(x0)) such that v ≤ φ on ∂ Br(x0). Let
h : Br(x0) → R be the (classical) solution of{︄

∆α h = 0 in Br(x0)
h = φ on ∂ Br(x0)

. (5.11)

78
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Since v is α-subharmonic in the sense of potential, then v ≤ h in Br(x0). By Proposition
5.11 we have

v(x0) ≤ h(x0) =

∫︂
∂Br(x0)

φ(y)|∇yG(x0, y)|dσαy (5.12)

where dσαy = α2(y) dσy. Since v is upper semicontinuous on ∂Br(x0), there exists a
sequence {φi}i ⊂ C0(∂Br(x0)) such that φi(y) ↘ v(y) almost everywhere on ∂Br(x0).
Applying (5.12) to each φi we obtain by Dominated Convergence that

v(x0) ≤
∫︂
∂Br(x0)

v(y)|∇yG(x0, y)|dσαy = mr(v)(x0).

(b) Fix 0 < s < r, let φ and h be as in (a) so that v ≤ h on Br(x0). By Proposition 5.11
we have

ms(v)(x0) ≤
∫︂
∂Bs(x0)

h(y)|∇yG(x0, y)|dσαy = h(x0) =

∫︂
∂Br(x0)

φ(y)|∇yG(x0, y)|dσαy .

Taking a monotone sequence of continuous functions on the boundary φi ↘ u and
proceeding as above, we conclude

ms(v)(x0) ≤
∫︂
∂Br(x0)

φi(y)|∇yG(x0, y)|dσαy −→ mr(v)(x0).

(c) This property is a consequence of the fact that v is (almost everywhere) equal to
an upper semicontinuous function. Fix x0 ∈ Ω and ε > 0 there exists a small enough
neighborhood of x0, V (x0), such that

v(y) < v(x0) + ε

on V (x0). Taking for r > 0 small enough so that ∂Br(x0) ⊆ V (x0), we have

mr(v)(x0) ≤ v(x0) + ε.

Recall that the function constant to 1 is α-harmonic on Ω. By (i), v(x0) ≤ mr(v)(x0)
hence

mr(v)(x0)− ε ≤ v(x0) ≤ mr(v)(x0).

Letting ε, and thus r go to 0, we obtain desired property.
(d) This last property is a consequence of the decomposition of α-subharmonic functions
observed in (5.8). Integrating against |∇G|α2 both sides of (5.8) we obtain

mr(v)(x) = h(x)−mr(G ∗ dνv)(x).

The desired property follows from the fact that the mean integral −mr(G ∗ dνv) is α-
subharmonic in the sense of potential. For details, we refer to Section 6 of [19].
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5 The extremal cases p = 1,+∞

The next step is to take a convolution of the mean integral functions mr(v) so to obtain
smooth functions which produce the desired approximating sequence {vk}k.

Proof of Theorem 5.10. Let φ ∈ C1
c ([0, 1]) be a non-negative function with unitary L1-

norm, we define

vk(x) := k

∫︂ +∞

0
φ(ks) ms(v)(x)ds. (5.13)

As shown in [19] the functions defined by (5.13) are smooth.
The monotonicity of {vk} follows immediately from the monotonicity of mr(v) with

respect to r. Combining this with property (c) and (a) of Proposition 5.13 we obtain (i)
by monotone convergence. The proof of (ii) is a consequence of (d) in Proposition 5.13.
To see this, let ψ ∈ C∞

c (M), then by Fubini-Tonelli we have∫︂
M
vk(x)∆α ψ(x) =

∫︂
M

(︃
k

∫︂ +∞

0
φ(ks)ms(v)(x)ds

)︃
∆α ψ(x)

= k

∫︂ +∞

0
φ(ks)

(︃∫︂
M
ms(v)(x)∆αψ(x)

)︃
ds ≥ 0.

Note that φ is compactly supported on [0, 1], ψ ∈ C∞
c (M) and ms(v)(x) are upper semi-

continuous functions bounded from below by v ∈ L1(M). For details on the proof of (i)
and (ii) we refer to [19, Theorem 7.1]. The convergence in L1(Ω) follows from (i), using
the fact that |vk|≤ max{|v|, |v1|} ∈ L1(Ω) and the dominated convergence theorem. For
the uniform estimate of (iv), it is enough to observe that 1 is an α-harmonic function on
Ω and φ has unitary L1 norm, hence,

vk(x) ≤ (ess supΩ v)k

∫︂ +∞

0
φ(ks) ms(1)(x) ds = ess supΩ v.

This concludes the proof of Theorem 5.10.

Remark 5.14. Note that in the last estimate, one actually has

sup
Ω
vk ≤ ess supB1/k

v ≤ ess supΩ v.

This observation will be crucial later on.

5.2.4 Proof of Theorem II.7

Finally, we deduce the proof of Theorem II.7 from Theorem 5.10. If {vk}k is the ap-
proximating sequence for the function v = u

α , we define uk := αvk. By Equation (5.4),
{uk}k is an approximating sequence for u as it satisfies (i)− (iii) of Theorem II.7. The
proof is trivial and is therefore omitted. A little more effort is required to show that
if supΩ vk ≤ ess supΩ v, then supΩ uk ≤ 2 ess supΩ u for k large enough, at least when
u ≥ 0.
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5 The extremal cases p = 1,+∞

To this end, fix x ∈ Ω. As noted in Remark 5.14, we have

uk(x) = α(x)vk(x) ≤ α(x) ess supB1/k)
v ≤ α(x)

infB1/k
α
ess supΩ u.

Furthermore, for every y ∈ B1/k(x), we estimate

α(x)

α(y)
≤ |α(x)− α(y)|

α(y)
+ 1 ≤ rk(x) supΩ|∇α|

infΩ α
+ 1 (5.14)

where rk(x) = sup{d(x, z) : z ∈ B1/k(x)}. Next, we show that the function rk(x) can be
uniformly bounded so that (5.14) is bounded above by 2.

Lemma 5.15. There exists some k0 ∈ N such that

rk(x) ≤
infΩ α

supΩ|∇α|
=: c ∀x ∈ Ω, ∀k ≥ k0.

Proof. Suppose by contradiction that there exists a sequence of points {xk}k ⊂ Ω such
that rk(xk) > c for every k ∈ N. By definition of rk(xk), there exists a sequence of
points {yk}k ⊂ B1/k(xk) such that d(yk, xk) > c. Since Ω is relatively compact, up to a
subsequence, we can assume that xk → x∞ ∈ Ω and yk → y∞ ∈ Ω. Since yk ∈ B1/k(xk)
we have

G(xk, yk) > k → +∞. (5.15)

Note also that the Green function G is smooth and hence continuous on Ω × Ω \ {x =
y}. Note that since d(xk, yk) > c, then d(x∞, y∞) ≥ c, in particular, we deduce that
x∞ ̸∈ ∂Ω because the Green function G vanishes on the boundary of Ω. If x∞ ∈ Ω
is not on the boundary, fix k ∈ N. By (5.15) and continuity of the Green function
we have G(y∞, x∞) > k which implies that y∞ ∈ B1/k(x∞). In particular, we have
d(x∞, y∞) ≤ rk(x∞) → 0 as k → +∞, which is a contradiction since d(x∞, y∞) ≥ c.
Indeed, for every x ∈ Ω,

lim
k→+∞

rk(x) = 0.

Clearly, rk(x) is a monotone decreasing sequence in k. Suppose its limit is some r0 > 0,
this implies that rk(x) ≥ r0 for all k. In particular, for every k there exists some
zk ∈ B1/k(x) such that d(zk, x) = r0

2 . Up to subsequences, zk → z and z ∈ B1/k(x) for
every k. However,

∞⋂︂
k=1

B1/k(x) = {x},

so z = x which is a contradiction since d(z, x) = r0
2 .

Thanks to Lemma 5.15, up to taking k large enough, we have

α(x) ≤ 2α(y) ∀x ∈ Ω and ∀y ∈ B1/k(x),
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hence,

uk(x) ≤
α(x)

infB1/k
α
ess supΩ u ≤ 2 ess supΩ u ∀x ∈ Ω.

Clearly, if we don’t assume u ≥ 0, the estimate in term of L∞ norms easily follows. This
concludes the proof of Theorem II.7.

5.2.5 Remarks on global monotone approximation

A careful analysis of above proofs shows that the monotone approximation results can
be obtained globally on the whole manifold M as long as there exists a minimal positive
Green function for the operator ∆α and the super level sets Br(x) are compact. Not all
Riemannian manifolds, however, satisfy these conditions. We recall the following

Definition 5.16. A Riemannian manifold (M, g) is said to be α-non-parabolic if there
exists a minimal positive Green function G for the operator ∆α. Moreover, if this Green
function satisfies

lim
y→∞

G(x, y) = 0, (5.16)

the manifold M is said to be strongly α-non-parabolic.

Note that compact Riemannian manifold are always α-parabolic, thus, we focus on the
complete, non-compact case. It is also known that if (M, g) is a geodesically complete,
α-non-parabolic manifold, then ∫︂ ∞

1

t

volα(Bt(x))
dt <∞ (5.17)

where volα(Bt(p)) is the volume of the geodesic ball of radius t and center x with respect
to the measure α2dµg. See for instance Theorem 9.7 of [52]. Furthermore, if we assume
a non-negative m-Bakry-Émery Ricci tensor Ricmf := Ric+Hess(f)− 1

mdf ⊗ df ≥ 0 with
f = −2 logα, it is possible to prove some Li-Yau type estimates for the heat kernel, see
Theorems 5.6 and 5.8 in [26]. Integrating in time these estimates we obtain the following
bounds for the Green function

C−1

∫︂ ∞

d(x,y)

t

volα(Bt(x))
dt ≤ G(x, y) ≤ C

∫︂ ∞

d(x,y)

t

volα(Bt(x))
dt.

In particular, if (5.17) holds true and Ricmf ≥ 0, the previous estimate implies that
the manifold at hand is strongly α-non-parabolic. It would be interesting to investigate
which geometric conditions on the manifold (M, g) imply the existence of a function α
such that (5.17) and Ricmf ≥ 0 hold true.

5.3 A counterexample to the L1-positivity preserving
property

This section is devoted to the proof of Theorem II.6. Fix ε > 0 and consider the 2-
dimensional model manifold M = R+×σS1, that is R+×S1 with the metric g = dt2 +
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σ2(t)dθ2. Here dθ2 is the standard round metric on S1 and σ = σε is a C∞((0,+∞))
function satisfying

σ(t) =

{︄
j(t) t > tε

t t < 1
4

.

Here tε = (2(1 + ε)ε)−1/2ε and the function j is defined as

j(t) =
e−t

2+2ε

t1+ε
.

By a direct computation we have

j′(t) = −(1 + ε)e−t
2+2ε

(︃
2tε +

1

t2+ε

)︃
j′′(t) = (1 + ε)e−t

2+2ε

[︃
2tε−1 + 4(1 + ε)t1+3ε + (2 + ε)

1

t3+ε

]︃
.

As a result, outside a compact set, we have the following asymptotic estimate for the
Gaussian curvature:

K(t, θ) = −j
′′(t)

j(t)
g

= −(1 + ε)

[︃
2t2ε + 4(1 + ε)t2+4ε + (2 + ε)

1

t2

]︃
g

∼ −4(1 + ε)2t2+4εg

as t → +∞. Next, we define the function U(t, θ) = u(t) = (et
2+2ε − et

2+2ε
ε )+ and prove

that it satisfies
∆U ≥ U

in the sense of distributions. If t > tε, by direct computation, we have

u′(t) = 2(1 + ε)t1+2εet
2+2ε

u′′(t) = 2(1 + ε)et
2+2ε [︁

2(1 + ε)t2+4ε + (1 + 2ε)t2ε
]︁

thus

∆U − U = u′′(t) +
j′(t)

j(t)
u′(t)− u(t) = et

2+2ε [︁
2(1 + ε)εt2ε − 1

]︁
+ et

2+2ε
ε ≥ 0.

On the other hand, if t < tε the function U is identically zero, so that ∆U − U ≥ 0 also
for t ∈ (0, tε). To see that ∆U ≥ U in the sense of distributions on the whole manifold,
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we take 0 ≤ φ ∈ C∞
c (M) and set M :=M \Btε(0). Then we compute∫︂

M
U(∆φ− φ) =

∫︂
M
U(∆φ− φ)

= −
∫︂
M
g(∇φ,∇U) +

∫︂
∂M

U
∂φ

∂ν
−
∫︂
M
Uφ

= −
∫︂
M
g(∇φ,∇U)−

∫︂
M
Uφ

=

∫︂
M

∆Uφ−
∫︂
∂M

∂U

∂ν
φ−

∫︂
M
Uφ

=

∫︂
M

∆Uφ+

∫︂
∂Btε (0)

∂U

∂t
φ−

∫︂
M
Uφ

=

∫︂
M
(∆U − U)φ+

∫︂
∂Btε (0)

u′φ ≥ 0.

On the other hand we have:∫︂
M
|U |= ωm

∫︂ +∞

0
u(t)j(t)dt =

∫︂ +∞

tε

1

t1+ε
dt < +∞.

In conclusion, if we set V = −U , we have V ∈ L1(M) and (−∆+1)V ≥ 0 but V ≤ 0,
which contradicts the validity of the L1-positivity preserving property on M .

Remark 5.17. Using a simple trick introduced in [74], the counterexample in dimension
2 of Theorem II.6 can be used to construct counterexamples to the L1-positivity pre-
serving property in arbitrary dimensions n ≥ 2. It suffices to take the product of the
2-dimensional model manifold M with an arbitrary n−2 dimensional closed Riemannian
manifold. Extending the function which provides the counterexample on M to the whole
product produces a counterexample in a manifold of dimension n.
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