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Abstract

In his paper from 1996 on quadratic forms Heath-Brown developed
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an unbounded quadric with a lattice of short period, if each point is
given a weight, and approximated this quantity by the integral of the
weight function against a measure on the quadric. The weight function
is assumed to be C∞

0 –smooth and vanish near the singularity of the
quadric. In our work we allow the weight function to be finitely smooth,
not vanish at the singularity and have an explicit decay at infinity.
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1 Introduction

1.1 Setting and result

Let us consider a non-degenerate quadratic form with integer coefficients on
Rd, d ≥ 4,

F (z) = 1
2Az · z , (1.1)

which implies that A can be chosen as a non–degenerate symmetric matrix
with integer elements whose diagonal elements are even. If F is sign–definite,
then for t ∈ R the quadric

Σt = {z : F t(z) = 0}, F t := F − t, (1.2)

is either an ellipsoid or an empty set, while in the non sign–definite case Σt

is an unbounded hyper-surface in Rd, which is smooth if t 6= 0, while Σ0 is
a cone and has a singular point at zero.

Let ZdL be the lattice of a small period L−1,

ZdL = L−1Zd, L ≥ 1,

and let w be a regular real function on Rd which means that w and its Fourier
transform ŵ(ξ) are continuous functions which decay at infinity sufficiently
fast:

|w(z)| ≤ C|z|−d−γ , ∀z ∈ Rd , |ŵ(ξ)| ≤ C|ξ|−d−γ , ∀ξ ∈ Rd , (1.3)

for some γ, C > 0, where | · | denotes the Euclidean norm. Our goal is to
study the behaviour of series

NL(w;A,m) :=
∑

z∈Σm∩ZdL

w(z) ,

where m ∈ R is such that L2m is an integer.1 Let

wL(z) := w(z/L).

Then, obviously,

NL(w;A,m) = N1(wL;A,L2m) =: N(wL;A,L2m) . (1.4)

We will also write NL(w;A) := NL(w;A, 0) and N(wL;A) := N(wL;A, 0).
To study NL(w;A,m) we closely follow the circle method in the form, given

1E.g., m = 0 – this case is the most important for us.
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to it by Heath-Brown in [10]. Our notation differs a bit from that in [10].
Namely, under the scaling z = z′/L, z′ ∈ Zd, we count (with weights)
solutions of equation F (z′) = mL2, z′ ∈ Zd, while Heath-Brown writes the
equation as F (z′) = m, z′ ∈ Zd, so that his m corresponds to our L2m.

We start with a key theorem which expresses the analogue of Dirac’s
delta function on integers, i.e. the function δ : Z→ R such that

δ(n) :=

{
1 for n = 0
0 for n 6= 0

,

through a sort of Fourier representation. This result goes back at least to
Duke, Friedlander and Iwaniec [4] (cf. also [11]) , and we state it in the form,
given in [10, Theorem 1]; basically, it replaces (a major arc decomposition of)
the trivial identity δ(n) =

∫ 1
0 e

2πiαndα employed in the usual circle method.
In the theorem below for q ∈ N we denote by eq the exponential function

eq(x) := e
2πix
q , and denote by

∑
a(mod q)

∗ the summation over residues a with

(a, q) = 1, i.e., over all integers a ∈ [1, q − 1], relatively prime with q.

Theorem 1.1. For any Q ≥ 1, there exists cQ > 0 and a smooth function
h(x, y) : R>0 × R→ R, such that

δ(n) = cQQ
−2
∞∑
q=1

∑
a(mod q)

∗
eq(an)h

(
q

Q
,
n

Q2

)
. (1.5)

The constant cQ satisfies cQ = 1 + ON (Q−N ) for any N > 0, while h is
such that h(x, y) ≤ c/x and h(x, y) = 0 for x > max(1, 2|y|) (so for each n
the sum in (1.5) contains finitely many non zero terms).

Since for any function w̃ on Rd the quantity N(w̃;A, t) may be writ-
ten as

∑
z∈Zd w̃(z)δ(F t(z)), then Theorem 1.1 allows to represent the series

N(w̃;A, t) as an iterated sum. Transforming that sum further using the
Poisson summation formula as in [10, Theorem 2] we arrive at the following
result: 2

Theorem 1.2 (Theorem 2 of [10]). For any regular function w̃, any t and
any Q ≥ 1 we have the expression

N(w̃;A, t) = cQQ
−2
∑
c∈Zd

∞∑
q=1

q−dSq(c)I0
q (c) , (1.6)

2In [10] the result below is stated for w̃ ∈ C∞0 . But the argument there, based on the
Poisson summation, applies as well to regular functions w̃.
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with
Sq(c) = Sq(c;A, t) :=

∑
a(mod q)

∗ ∑
b(mod q)

eq(aF
t(b) + c · b) (1.7)

and

I0
q (c) = I0

q (c;A, t,Q) :=

∫
Rd
w̃(z)h

(
q

Q
,
F t(z)

Q2

)
eq(−z · c) dz . (1.8)

We will apply Theorem 1.2 to examine for large L the sumN(wL;A,L2m)
= NL(w;A,m), choosing w̃ = wL, t = L2m and Q = L ≥ 1 and estimating
explicitly the leading terms in L of Sq(c) and I0

q (c) as well as the remainders.
The answer will be given in terms of the integral

σ∞(w) = σ∞(w;A, t) =

∫
Σt

w(z)µΣt(dz) (1.9)

(which is singular if t = 0). Here µΣt(dz) = |∇F (z)|−1dz|Σt = |Az|−1dz|Σt ,
with dz|Σt representing the volume element over Σt, induced from the stan-
dard euclidean structure on Rd, and A the symmetric matrix in (1.1). For
regular functions w this integral converges (see Section 7).

To write down the asymptotic for NL(w;A,m) we will need the following
quantities, where p ranges over all primes and c ∈ Zd:

σcp = σcp(A,L2m) :=
∞∑
l=0

p−dlSpl(c;A,L2m), σp := σ0p , (1.10)

where S1 ≡ 1,

σ∗c(A) :=
∏
p

(1− p−1)σcp(A, 0), σ∗(A) := σ∗0(A) =
∏
p

(1− p−1)σp(A, 0),

and
σ(A,L2m) =

∏
p

σ0p (A,L2m) =
∏
p

σp(A,L
2m). (1.11)

The products in the formulas above are taken over all primes. In the asymp-
totics, where these quantities are used, they are bounded uniformly in L (see
Theorems 1.3 and 1.4, as well as Proposition 1.5).

Everywhere below for a function f ∈ Ck(Rd) we denote

‖f‖n1,n2 = sup
z∈Rd

max
|α|1≤n1

|∂αf(z)|〈z〉n2 ,
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where n1 ∈ N ∪ {0}, n1 ≤ k, and n2 ∈ R. Here

〈x〉 := max{1, |x|} for x ∈ Rl, l ∈ N,

and |α|1 ≡
∑
αj for any integer vector α ∈ (N ∪ {0})d. By Cn1,n2(Rd)

we denote a linear space of Cn1-smooth functions f : Rd → R, satisfying
‖f‖n1,n2 <∞.

Note that if w ∈ Cd+1,d+1(Rd) then the function w is regular, so The-
orem 1.2 applies. Indeed, the first relation in (1.3) is obvious. To prove
the second note that for any integer vector α ∈ (N ∪ {0})d, ξαŵ(ξ) =(
i

2π

)|α|1 ∂̂αxw(ξ). But if |α|1 ≤ d + 1, then |∂αxw| ≤ C〈x〉−d−1, so ∂αxw is

an L1-function. Thus its Fourier transform ∂̂αxw is a bounded continuous
function for each |α|1 ≤ d+ 1 and the second relation in (1.3) also holds.

Now we formulate our main results. First we treat the case d ≥ 5.

Theorem 1.3. Assume that d ≥ 5. Then for any 0 < ε ≤ 1 there exist
positive constants K1(d, ε), K2(d, ε) and K3(d, ε), with K2(d, ε) ≤ K3(d, ε),
such that if w ∈ CK1,K2(Rd) ∩ C0,K3(Rd) and a real number m satisfies
L2m ∈ Z, then∣∣NL(w;A,m)− σ∞(w)σ(A,L2m)Ld−2

∣∣ ≤ CLd/2+ε (‖w‖K1,K2 + ‖w‖0,K3) ,
(1.12)

where the constant C depends on d, ε, m and A. The constant σ(A,L2m) is
bounded uniformly in L and m. In particular if ε = 1/2, then one can take
K1 = 2d(d2 + d− 1), K2 = 4(d+ 1)2 + 3d+ 1 and K3 = K1 + 3d+ 4.

Next we study the case d = 4, restricting ourselves for the situation when
m = 0.

Theorem 1.4. Assume that d = 4 and m = 0. Then for any 0 < ε < 1/5
there exist positive constants K1(ε) and K2(ε), such that for w ∈ CK1,K2(Rd)∣∣NL(w;A, 0)− η(0)σ∞(w)σ∗(A)Ld−2 logL− σ1(w;A,L)Ld−2

∣∣
≤ C0L

d−2−ε‖w‖K1,K2 ,
(1.13)

where the constant C0 depends on ε and A. The constant η(0) is 1 if the
determinant detA is a square of an integer and is 0 otherwise. The L-
independent constant σ∗(A) is finite while the constant σ1 satisfies

|σ1(w;A,L)| ≤ C0‖w‖K1,K2

uniformly in L. In the case of a square determinant detA, when η(0) = 1,
it is given by (1.24). In the case of a non–square determinant detA, when
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η(0) = 0 and the term σ1(w;A,L)Ld−2 gives the asymptotic of the sum NL,
the constant σ1(w;A,L) does not depend on L and has the form

σ1(w;A) = σ∞(w)L(1, χ)
∏
p

(1− χ(p)p−1)σp(A, 0) , (1.14)

where χ is the Jacobi symbol (det(A)
∗ ) and L(1, χ) is the Dirichlet L–function.3

If η(0)σ∗(A) = 0, then the asymptotic (1.13) degenerates. Similar (1.12)
also degenerates to an upper bound on NL, unless we know that σ(A,L2m)
admits a suitable positive lower bound, for all L. Luckily enough, the re-
quired lower bounds often exist, see below Proposition 1.5.

Theorems 1.3 and 1.4 refine Theorems 5, 6 and 7 from [10] in three
respects: firstly, now the weight function w has finite smoothness and suf-
ficiently fast decays at infinity, while in [10] w ∈ C∞0 . Secondly, we specify
how the remainder depends on w. Thirdly and the most importantly, we
remove the restriction that the support of w does not contain the origin,
imposed in [10] in a number of crucial statements. These improvements are
crucial for us since in our work [6], dedicated to the problem of wave turbu-
lence, the two theorems above are used in the situation when w(0) 6= 0 and
the support of w is not compact. A similar specification of the Heath-Brown
method was obtained in [1, Section 5] to study an averaging problem, re-
lated to the questions, considered in [6]. Apart from wave turbulence and
averaging, the replacement of sums over integer points of a quadric by in-
tegrals, with careful estimating the remainders, is needed in Kolmogorov
Arnold Moser theory for partial differential equations, e.g. see (C.2) in
[8]. The publications [8, 1, 6] are recent. We are certain that these days,
when people, working in PDEs and dynamical systems, treat complicated
non-linear phenomena with resonances more and more often, there will be
increasing demand for the instrumental asymptotics (1.12), (1.13) and their
variations. Our paper uses only basic results from the number theory and
is well available to readers from Analysis.

We note that the papers [9] and [16] treat the sums NL(w;A,m) for even
and odd dimensions d correspondingly, without the restriction that w(0) 6= 0,
in a more general context than our Theorems 1.3 and 1.4. However, due to
this generality the corresponding constants in the asymptotical in L formulas
in [9] and [16] are very implicit (e.g., the question whether they vanish or not
is highly non-trivial). The connection of the constants with singular integrals

3Concerning the classical notion of the Jacobi symbol and the Dirichlet L-function we
refer a reader without number-theoretical background e.g. to [15] and [12].
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like (1.9) and the dependence of the remainders in the asymptotics on the
weight function w, crucial for application in analysis, is not clear. Another
feature of [9, 16] is the use of rather advanced adelic technique, which makes
it difficult for readers without serious number-theoretical background to use
the result and the method of the work.

Remarks. 1) Theorem 1.3 is a refinement of Theorem 5 of [10], while The-
orem 1.4 refines Theorems 6 and 7 of [10]. In [10] also is available some
asymptotic in L information about behaviour of the sums NL(w;A,m) when
d = 4, m 6= 0 and d = 3, m = 0. Since our proof of Theorems 1.3 and 1.4
is based on ideas from [10], strengthened by Theorem 7.3, which is valid
for d ≥ 3, then most likely our approach allows to generalise the above-
mentioned results of [10] for d = 3, 4 to the case when w ∈ CK1,K2(Rd) with
suitable K1,K2.
2) In our work the dependence of constants in estimates on m is uniform on
compact intervals, while the dependence on the operator A is only via the
norms of A and A−1.
3) The values of constants Kj(d, ε) in (1.12), given in Theorem 1.3, are far
from optimal since it was not our goal to optimise them.

4) As the theorems’ proof are based on the representation (1.6), then the
function w should be regular (see (1.3)). But this holds true if w ∈ Cd+1,d+1

and so is valid if the constants K1,K2 are sufficiently big. E.g. if K1,K2

are as big as in the last line of the assertion of Theorem 1.3.

Brief discussion of the proofs. We present in full only a proof of Theorem 1.3,
which resembles that of [10, Theorem 5] with an additional control of how
the constants depend on w. The significant difference from the argument of
Heath-Brown comes in Sections 3 and 4, where we do not assume that the
function w vanishes near the origin, the last assumption being crucial in the
analysis of integrals in Sections 6 and 7 of [10]. To cope with this difficulty,
which becomes apparent e.g. in Proposition 3.8 below, we have to examine
the smoothness at zero of function

t 7→ σ∞(w;A, t) (1.15)

and its decay at infinity. The corresponding analysis is performed in Sec-
tion 7. There, using the techniques, developed in [5] to study integrals (1.9),
we prove that function (1.15) is (dd/2e − 2)-smooth, but in general for even
d its derivative of order (d/2−1) may have a logarithmic singularity at zero.
There we also estimate the rate of decay of function (1.15) at infinity.

The proof of Theorem 1.4 resembles that of Theorems 6 and 7 of [10] with
a new addition given by Proposition 3.8, based on the result of Section 7.
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We thus limit ourselves to a sketch of the theorem’s demonstration, given
in Section 1.3 in parallel to that of Theorem 1.3, and point out the main
differences between the two proofs. Establishing Theorem 1.4 we use certain
results from [10] (namely, Lemmas 30 and 31) without proof.

Lower bounds for constant from the asymptotics. Let us now discuss lower
bounds for the constants σ(A,L2m) and σ∗(A) from Theorems 1.3 and 1.4.

Proposition 1.5. (i) If d ≥ 5 then there exist positive constants c(A) <
C(A) such that 0 < c(A) ≤ σ(A,L2m) ≤ C(A) <∞ for any non-degenerate
matrix A, uniformly in L and m.

(ii) If d = 4 and m = 0 we have σ∗(A) > 0 for any non-degenerate
matrix A such that the corresponding equation 2F (z) = Az · z = 0 has non-
trivial solutions in every p-adic field (in particular this holds if the equation
has a non-trivial solution in Z4).

See Theorems 4, 6 and 7 of [10]. We do not prove this result, but just
note that its demonstration uses a refinement of the calculation in the second
part of the proof of Lemma 2.3. Namely, while the lemma gives an upper
bound for the desired quantity, a more thorough analysis permits also to
establish the claimed lower bounds.

In Appendix B we give essentially a complete calculation, proving Propo-

sition 1.5 in the case of the simplest quadratic form F = Σ
d/2
i=1xiyi, d = 2s ≥

4, andm = 0. A proof of the proposition for any Amay follow the same lines,
replacing explicit formulas by some general results (e.g. Hensel’s Lemma).

Non-homogeneous quadratic polynomials. Now consider a non-homogeneous
quadratic polynomial F with the second order part, equal to F in (1.1):

F(z) = 1
2Az · z + z∗ · z + τ, z∗ ∈ Rd, τ ∈ R,

and the corresponding set ΣF = {z : F(z) = 0}, NL(w;F) =
∑

z∈ΣF∩ZdL
w(z).

Denote
z = A−1z∗, z′ = z + z, m = 1

2z ·Az− τ,

and assume that z ∈ ZdL 4 and L2τ ∈ Z. Then L2m ∈ Z, z′ ∈ ZdL if and only
if z ∈ ZdL, and F(z) = F (z′) − m. So setting wz(z′) = w(z′ − z) we have
NL(w;F) = NL(wz;A,m). Since

σ∞(wz;A,m) =

∫
Σm

wz(z′)
dz′ |Σm
|∇F (z′)|

=

∫
ΣF

w(z)
dz |ΣF
|∇F(z)|

=: σ∞(w;F),

then we arrive at the following corollary from Theorem 1.3:

4This holds e.g. if detA = ±1 and z∗ ∈ ZdL.
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Corollary 1.6. If d ≥ 5, the quadratic form F is as in Theorem 1.3, F is a
non-homogeneous quadratic form as above and L is such that z := A−1z∗ ∈
ZdL, τL2 ∈ Z, then for any 0 < ε ≤ 1 and w ∈ CK1,K2(Rd) ∩ C0,K3(Rd) we
have∣∣NL(w;F)− σ∞(w;F)σ(A,L2m)Ld−2

∣∣ ≤ CLd/2+ε (‖w‖K1,K2 + ‖w‖0,K3) .

Here the constants K1,K2,K3 depend on d and ε, while C depends on d, ε, A
and τ, |z∗|.

Notation and agreements. We write A .a,b B if A ≤ CB, where
the constant C depends on a and b. Similar, Oa,b(‖w‖m1,m2) stands for a
quantity, bounded in absolute value by C(a, b)‖w‖m1,m2 . We do not indicate
the dependence on the matrix norms ‖A‖, ‖A−1‖ and on the dimension d
since most of our estimates depend on these quantities.

We always assume that function w belongs to the space Cm,n(Rd) with
sufficiently large m,n. If in the statement of an assertion we employ the
norm ‖w‖a,b then we assume that w ∈ Ca,b(Rd).

We denote eq(x) = e2πix/q and abbreviate e1(x) =: e(x). By d·e we
denote the ceiling function, dxe = minn∈Z{n ≥ x}. By N we denote the set
of positive integers.

Acknowledgements. The authors thank Professor Heath-Brown for
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a grant from the Russian Science Foundation (Project 20-41-09009) [Sec-
tions 1-7] and by the Grant of the President of the Russian Federation
(Project MK-1999.2021.1.1) [Sections A-C]. Research of SK was equally sup-
ported by the Ministry of Science and Higher Education of the Russian Fed-
eration (megagrant No. 075-15-2022-1115) and by l’Agence Nationale de la
Recherche (France), grant 17-CE40-0006. AM was supported by the Min-
istry of Science and Higher Education of the Russian Federation (megagrant
No. 075-15-2022-1115).

1.2 Scheme of the proof of Theorem 1.3

Let d ≥ 5. As it has been already discussed, if w satisfies assumptions of the
theorem with sufficiently large constants Ki then w is regular in the sense
of Section 1.1, so Theorem 1.2 applies. Then, according to (1.6) and (1.4),

NL(w;A,m) = cL L
−2
∑
c∈Zd

∞∑
q=1

q−dSq(c)Iq(c) , (1.16)
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where the sum Sq(c) = Sq(c;A,L2m) is given by (1.7) with t = L2m and
the integral Iq(c) – by (1.8) with w̃ = wL, Q = L and t = L2m,

Iq(c;A,m,L) :=

∫
Rd
w
( z
L

)
h

(
q

L
,
FL

2m(z)

L2

)
eq(−z · c) dz . (1.17)

Denoting

n(c;A,m,L) =
∞∑
q=1

q−dSq(c)Iq(c) ,

we have NL(w;A,m) = cLL
−2
∑
c∈Zd

n(c). Then for any γ1 ∈ (0, 1/2) we write

NL as
NL(w;A,m) = cLL

−2
(
J0 + Jγ1< + Jγ1>

)
, (1.18)

where

J0 := n(0) , Jγ1< :=
∑

c 6=0, |c|≤Lγ1
n(c) , Jγ1> :=

∑
|c|>Lγ1

n(c) . (1.19)

Proposition 5.1 (which is a modification of Lemmas 19 and 25 from [10])
implies that

|Jγ1> | .γ1,m ‖w‖N0,2N0+d+1

with N0 := dd+ (d+ 1)/γ1e (see Corollary 5.2). In Proposition 6.1, follow-
ing Lemmas 22 and 28 from [10], we show that

|Jγ1< | .γ1,m Ld/2+2+γ1(d+1)
(
‖w‖N̄,d+5 + ‖w‖0,N̄+3d+4

)
, (1.20)

N̄ = dd2/γ1e − 2d.
To analyse J0 we write it as J0 = J+

0 + J−0 , where

J+
0 :=

∑
q>ρL

q−dSq(0)Iq(0) , J−0 :=
∑
q≤ρL

q−dSq(0)Iq(0) , (1.21)

with ρ = L−γ2 for some 0 < γ2 < 1 to be determined. Lemma 4.2, which
is a combination of Lemmas 16 and 25 from [10], modified using the results
from Section 7, implies that∣∣∣J+

0

∣∣∣ . Ld/2+2+γ2(d/2−1)|w|L1.L
d/2+2+γ2(d/2−1)‖w‖0,d+1.
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Finally Lemma 4.3, which is a combination of Lemma 13 and simplified
Lemma 31 from [10] with the results from Section 7, establishes that J−0
equals

Ldσ∞(w)σ(A,L2m) +Oγ2,m

((
‖w‖d/2−2,d−1 + ‖w‖0,d+1

)
Ld/2+2+γ2(d/2−2)

)
(see (1.9) and (1.11)). Identity (1.18) together with the estimates above
implies the desired result if we choose γ2 = ε/(d/2− 1) and γ1 = ε/(d+ 1).
Uniform in L and m boundedness of the product σ(A,L2m) follows from
Lemma 2.3.

1.3 Scheme of the proof of Theorem 1.4

In this section we assume that d = 4 and m = 0. The proof proceeds exactly
as in the previous section up to formula (1.20), which is not sharp enough
for the case d = 4 and should be replaced by∣∣∣∣∣∣Jγ1< − Ld

∑
c 6=0

η(c)σ∗c(A)σc∞(w;A,L)

∣∣∣∣∣∣ .γ1 L
7/2+(d+4)γ1‖w‖K̃1,K̃2

(1.22)

for appropriate constants K̃1, K̃2, where the terms σ∗c(A) are introduced in
(1.10), terms σc∞(w;A) are given by

σc∞(w;A,L) := L−d
∞∑
q=1

q−1Iq(c;A, 0, L) , (1.23)

and the constants η(c) = ±1 are defined in Lemma A.1. In particular, η(0) =
1 if the determinant detA is a square of an integer and η(0) = 0 otherwise.
The proof of the bound (1.22) makes use of Lemma A.1 (Lemma 30 of [10]),
involving only minor modifications of the argument in [10] and is left to the
reader.

The bound on J0 must be refined too and this is done in Appendix A. We
consider only the case when the determinant detA is a square of an integer,
so in particular η(0) = 1. The opposite case can be obtained by minor
modification of the latter, following [10] (see Appendix A for a discussion).
In Proposition A.3, which is a combination of Lemmas 13, 16 and 31 of
[10], modified using Proposition 3.8, we prove that in the case of square
determinant detA

J0 =σ∞(w)σ∗(A)Ld logL+K(0)Ld

+Oε
(
Ld−ε

(
‖w‖d/2−2,d−1 + ‖w‖0,d+1

))
,
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where a constant K(0) = K(0;w,A) is defined in Section A.1. Again, iden-
tity (1.18) together with the estimates above implies the desired result if we
choose γ1 = (1

2 − ε)/(d+ 4) and put

σ1(w;A,L) := K(0) +
∑
c 6=0

η(c)σ∗c(A)σc∞(w;A,L) . (1.24)

Finiteness of the products σ∗c(A) follow from Lemma A.2 while the claimed
in the theorem estimate for the constant σ1(w;A,L) is established in Sec-
tion A.3.

2 Series Sq

Now we start to prove Theorem 1.3, following the scheme presented in Sec-
tion 1.2. Part of the assertions, forming the proof, do not use that d ≥ 5.
So below in all assertion involving the dimension d, we indicate the real re-
quirements on d. We recall that the constants in estimates may depend on d
and A, but this dependence is not indicated (see Notation and agreements).

In the present section we analyse the sums Sq(c) = Sq(c;A,L2m) en-
tering, in particular, the definitions of the singular series σ(A,L2m) and
σp(A,L

2m).

Lemma 2.1 (Lemma 25 in [10]). For any d ≥ 1 we have |Sq(c;A,L2m)| .
qd/2+1, uniformly in c ∈ Zd.

Proof. According to (1.7), an application of the Cauchy-Schwarz inequality
shows that

|Sq(c)|2 ≤ φ(q)
∑

a(mod q)

∗ ∣∣∣ ∑
b(mod q)

eq(aF
L2m(b) + c · b)

∣∣∣2
= φ(q)

∑
a(mod q)

∗ ∑
u,v(mod q)

eq
(
a(FL

2m(u)− FL2m(v)) + c · (u− v)
)
,

(2.1)

where φ(q) is the Euler totient function. Since F t(z) = 1
2Az · z− t, then

FL
2m(u)− FL2m(v) = (Av) ·w + F (w) = v ·Aw + F (w).

So

eq
(
a(FL

2m(u)− FL2m(v)) + c · (u− v)
)

= eq
(
aF (w) + c ·w

)
eq(av ·Aw).

12



Now we see that the summation over v in (2.1) produces a zero contribution,
unless each component of the vector Aw is divisible by q. This property
holds for at most a finite number N of vectors w, where the constant N
depends only on detA. Thus,

|Sq(c)|2 . φ(q)
∑

a(mod q)

∗ ∑
v(mod q)

1 ≤ φ2(q) qd.

The lemma’s assertion shows that the sums σcp , defined in (1.10), are
finite:

Corollary 2.2. If d ≥ 5, for any prime p we have
∣∣σcp(A,L2m)

∣∣ . 1.

Recall that σ(A,L2m) =
∏
p σp(A,L

2m) (see (1.11)).

Lemma 2.3. For any d ≥ 5 and 1 ≤ X ≤ ∞ we have∑
q≤X

q−dSq(0) = σ(A,L2m) +O(X−d/2+2).

In particular, σ(A,L2m) =
∑∞

q=1 q
−dSq(0). So |σ(A,L2m)| . 1 in view

Lemma 2.1.

Proof. We start by showing the multiplicative property of trigonometric
sums

Sqq′(0) = Sq(0)Sq′(0) , (2.2)

whenever (q, q′) = 1 (cf. Lemma 23 from [10]). By definition

Sqq′(0) =
∑

a(mod qq′)

∗ ∑
v(mod qq′)

eqq′(aF
L2m(v)) .

When (q, q′) = 1 we can replace the summation on a (mod qq′) by a double
summation on aq modulo q and aq′ modulo q′ by writing a = qaq′ + q′aq.
Thus

Sqq′(0) =
∑

aq(mod q)

∗ ∑
aq′ (mod q′)

∗ ∑
v(mod qq′)

eq(aqF
L2m(v))eq′(aq′F

L2m(v)) .

Then we replace the summation on v (mod qq′) with the double summation
on vq modulo q and vq′ modulo q′ by writing v = qq̄vq′ + q′q̄′vq, where q̄
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and q̄′ are defined through relations qq̄ = 1 ( mod q′) and q′q̄′ = 1 ( mod q).
We observe that

FL
2m(v) = q2q̄2F (vq′) + q′2q̄′2F (vq) + qq̄q′q̄′Avq′ · vq − L2m,

so that

eq(aqF
L2m(v)) = eq(aqq

′2q̄′2F (vq)− aqL2m) = eq(aqF
L2m(vq)),

by the definition of q̄′ and since eq(qN) = 1 for any integer N . Similar,

eq′(aq′F
L2m(v)) = eq′(aq′F

L2m(vq′)) .

This gives (2.2).
Next we note that, due to Lemma 2.1,∑

q≥X
q−d|Sq(0)| .

∑
q≥X

q−d/2+1 . X−d/2+2. (2.3)

By (2.2) and the definition of σ,

σ = lim
n→∞

σn, σn =
∏
p≤n

n∑
l=0

p−dlSpl(0) =
∑
q∈Pn

q−dSq(0),

where p are primes and Pn denotes the set of natural numbers q with prime
factorization of the form q = pk11 · · · pkmm , where 2 ≤ p1 < p2 · · · < pm ≤ n,
kj ≤ n and m ≥ 0 (m = 0 corresponds to q = 1). Since any q ≤ n belongs
to Pn, then according to (2.3),∣∣∣ ∑

q∈PN

q−dSq(0)−
∑
q≤X

q−dSq(0)
∣∣∣ . X−d/2+2 ∀N ≥ X,

for any finite X > 0. Passing in this estimate to a limit as N → ∞ we
recover the assertion if X <∞. Then the result with X =∞ follows in an
obvious way.

3 Singular integrals I0
q

3.1 Properties of h(x, y)

Following [10], Section 3, we construct the function h(x, y) ∈ C∞(R>,R),
entering Theorem 1.1, starting from the weight function w0 ∈ C∞0 (R), de-
fined as

w0(x) =

{
exp

(
1

x2−1

)
for |x| < 1

0 for |x| ≥ 1
. (3.1)

14



We denote c0 :=
∫∞
−∞w0(x) dx and introduce the shifted weight function

ω(x) = 4
c0
w0(4x− 3) ,

which of course belongs to C∞0 (R). Obviously, 0 ≤ ω ≤ 4e−1/c0, ω is
supported on (1/2, 1), and

∫∞
−∞ ω(x) dx = 1 .

The required function h : R>0 × R → R is defined in terms of ω as
h(x, y) := h1(x)− h2(x, y) with

h1(x) :=

∞∑
j=1

1

xj
ω(xj) , h2(x, y) :=

∞∑
j=1

1

xj
ω

(
|y|
xj

)
. (3.2)

For any fixed pair (x, y) each of the two sum in j contains a finite number
of nonzero terms. So h is a smooth function.

In [10], Section 3, it is shown how to derive Theorem 1.1 from the defi-
nition (3.2).5 Here we limit ourselves to providing some relevant properties
of h, proved in Section 4 of [10]. In particular these properties imply that
for small x, h(x, y) behaves as the Dirac delta function in y

Lemma 3.1 (Lemma 4 in [10]). We have:

1. h(x, y) = 0 if x ≥ 1 and |y| ≤ x/2.

2. If x ≤ 1 and |y| ≤ x/2, then h(x, y) = h1(x), and for any m ≥ 0∣∣∣∂mh(x, y)

∂xm

∣∣∣ .m
1

xm+1
.

3. If |y| ≥ x/2, then for any m,n ≥ 0∣∣∣∂m+nh(x, y)

∂xm∂yn

∣∣∣ .m,n
1

xm+1|y|n
.

Lemma 3.2 (Lemma 5 in [10]). Let m,n,N ≥ 0. Then for any x, y∣∣∣∂m+nh(x, y)

∂xm∂yn

∣∣∣ .N,m,n
1

x1+m+n

(
δ(n)xN + min

{
1, (x/|y|)N

})
.

Lemma 3.2 with m = n = N = 0 immediately implies

Corollary 3.3. For any x, y ∈ R> × R we have |h(x, y)| . 1/x.

5Actually it is proved there that any function h defined through (3.2) with arbitrary
weight function ω ∈ C∞0 (R), supported on [1/2, 1], may provide a representation of δ(n).
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Lemma 3.4 (Lemma 6 in [10]). Fix X ∈ R>0 and 0 < x < C min {1, X},
for some C > 0. Then for any N ≥ 0,∫ X

−X
h(x, y) dy = 1 +ON,C

(
XxN−1

)
+ON,C

(
xN

XN

)
.

Lemma 3.5 (Lemma 8 in [10]). Fix X ∈ R>0 and n ∈ N. Let x <
C min {1, X} for C > 0. Then∣∣∣ ∫ X

−X
ynh(x, y) dy

∣∣∣ .N,C X
n

(
XxN−1 +

xN

XN

)
.

The previous results are used to prove the key Lemma 9 of [10], which
can be extended to the following

Lemma 3.6. Let a function f ∈ CM−1,0(R) ∩ L1(R), M ≥ 1, be such that
its (M − 1)-st derivative f (M−1) is absolutely continuous on [−1, 1], and let
0 < x ≤ C for some C > 0. Then for any 0 < β ≤ 1 and any N ≥ 0,∫

R
f(y)h(x, y) dy =f(0) +OM

(
xM

βM+1

1

X

∫ X

−X
|f (M)(y)| dy

)
+ON,C

(
(xN + βN )

(
‖f‖M−1,0 + x−1|f |L1

))
,

(3.3)

where X := min {1, x/β}.

Proof. By Lemma 3.2 with m = n = 0, for any N ≥ 0 we have
|h(x, y)| .N (xN + βN )x−1 if |y| ≥ X. So the tail-integral for

∫
fh dy

may be bounded as∣∣∣∣∣
∫
|y|≥X

f(y)h(x, y) dy

∣∣∣∣∣ .N (xN+βN )x−1

∫
|y|≥X

|f(y)| dy .N (xN+βN )x−1|f |L1 .

(3.4)
For the integral in |y| < X, instead we take the Taylor expansion of f(y)

around zero and get that∫ X

−X
f(y)h(x, y) dy =

M−1∑
j=0

f (j)(0)

j!

∫ X

−X
yjh(x, y) dy

+OM

(
XM

x

∫ X

−X
|f (M)(y)| dy

)
,

(3.5)
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by Corollary 3.3. Next we use Lemma 3.4 with N replaced by N + 1 to get
that

f(0)

∫ X

−X
h(x, y) dy = f(0) +ON,C

(
‖f‖0,0

(
XxN +

xN+1

XN+1

))
, (3.6)

while by Lemma 3.5, for any j > 0 we have∣∣∣∣∣f (j)(0)

j!

∫ X

−X
yjh(x, y) dy

∣∣∣∣∣ .N,j,C ‖f‖j,0Xj

(
XxN +

xN+1

XN+1

)
. (3.7)

Putting together (3.4)–(3.7), we obtain the desired estimate. Indeed, since
X ≤ x/β, then the term OM in (3.5) is bounded by that in (3.3). Moreover,
as (x/X)N+1 = max(xN+1, βN+1) .C Cx

N +βN , then the brackets in (3.6)
and (3.7) are .C x

N + βN , where we also used that X ≤ 1.
Lemma 3.6 is needed for the proof of Theorem 1.4, while for Theorem 1.3

we only need its simplified version:

Corollary 3.7. Let an integrable function f belong to the class CM,0(R),
M ∈ N, and 0 < x ≤ C for some C > 0. Then, for any 0 < δ < 1,∫

R
f(y)h(x, y) dy = f(0) +OM,C,δ

(
xM−δ (‖f‖M,0 + |f |L1)

)
.

Proof. The assertion follows from Lemma 3.6 by choosing for any 0 <
δ < 1, β = xδ/(M+1) if x ≤ 1 and β = 1 if x > 1. Indeed, then for 0 < x ≤ 1
we have that xMβ−(M+1) = xM−δ, and that

(xN +βN )x−1 ≤ 2βNx−1 ≤ 2xM−δ if N ≥ Nδ = (M − δ+ 1)(M + 1)/δ.

While if 1 ≤ x ≤ C, then xM ≤ CδxM−δ, and choosing N = 0 we get that
(xN + 1) = 2 ≤ 2xM−δ. The obtained relations imply the assertion.

3.2 Approximation for Iq(0)

In what follows it is convenient to write the integrals Iq(c;A,L2m) as

Iq(c) = LdĨq(c), (3.8)

where

Ĩq(c) = Ĩq(c;A,m,L) =

∫
Rd
w(z)h

( q
L
, Fm(z)

)
eq(−z · cL) dz . (3.9)
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The proposition below replaces Lemmas 11, 13 and Theorem 3 of [10]. In
difference with those results we do not assume that 0 /∈ suppw. Since for
c = 0 the exponent eq in the definition of the integral Iq(c) equals one, we
can consider Iq(0) as a function of a real argument q ∈ R, and we do so in
the proposition below; we will use this in Appendix A.

Proposition 3.8. Let q ∈ R, q ≤ CL with some C > 0.
a) If d ≥ 5 and N 3M < d/2− 1, then for any δ > 0,

Iq(0;A,m,L) = Ldσ∞(w;A,m)

+Om,M,C,δ

(
qM−δLd−M+δ‖w‖M,d+1

)
.

(3.10)

b) If d = 4, N 3 M ≤ d/2 − 1 and m = 0, then for any 0 < β ≤ 1 and
N ≥ 0,

Iq(0;A, 0, L) =Ldσ∞(w;A, 0) +O

(
β−M−1qMLd−M

〈
log
( q
Lβ

)〉
‖w‖M,d+1

)
+OC,N

(
(qNLd−N + βN )(‖w‖M−1,d+1 + Lq−1‖w‖0,d+1)

)
.

(3.11)

Proof. For d ≥ 4, applying the co-area formula (see [3], Theorem 6.3)
we re-write the integral in (3.9) with c = 0 in terms of integrals over hyper-
surfaces Σt as follows:

Ĩq(0) =

∫
R
I(m+t)h(q/L, t) dt , I(t) =

∫
Σt

w(z)µΣt(dz) , (3.12)

where the measure µΣt is the same as in (1.9). By Theorem 7.3,

‖I‖k,K̃ .k,K,K̃ ‖w‖k,K if K̃ <
K + 2− d

2
, K > d, (3.13)

and k < d/2− 1. Denote fm(y) = I(m + y). Then ‖fm‖k,K̃ .m,K̃ ‖I‖k,K̃ ,
and by (3.13)

|fm|L1 = |I|L1 . ‖I‖0,4/3 . ‖w‖0,d+1. (3.14)

To prove a) we apply Corollary 3.7 with f = fm and x = q/L to the first
integral in (3.12). Note that fm(0) = I(m) = σ∞(w;A,m). Then, using
(3.13) with K̃ = 0, K = d+ 1 and k = M jointly with (3.14) we get that

Ĩq(0) = σ∞(w) +OM,m,C,δ

(
qM−δL−M+δ‖w‖M,d+1

)
.

So (3.10) follows.
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To establish (3.11), we apply Lemma 3.6 to write the integral in (3.12)
with m = 0 as∫

R
I(t)h(x, t) dt = I(0) +OM

(
β−M−1xM

(
1

X

∫ X

−X
|I(M)(t)| dt

))
+OC,N

(
(xN + βN )(‖I‖M−1,0 + x−1|I|L1)

)
,

where x = q/L and X = min{1, x/β}. By applying Theorem 7.3, with
k = M and M = d+ 1, we get∫ X

−X
|I(M)(t)| dt . X〈logX〉‖w‖M,d+1 .

Using this estimate jointly with (3.13) and (3.14) we arrive at (3.11).

4 The J0 term

In this section we prove the following proposition concerning the term J0

defined in (1.19):

Proposition 4.1. Let d ≥ 5. Then for any 0 < γ2 < 1,∣∣J0 − Ldσ∞(w)σ(A,L2m)
∣∣ .γ2,m L

d
2

+2+γ2( d
2
−1)‖w‖dd/2e−2,d+1.

Proof. To establish the result we write J0 in the form (1.21). Then the
assertion follows from Lemmas 4.2 and 4.3 below which estimate the terms
J+

0 and J−0 , noting that |w|L1 . ‖w‖0,d+1.

Lemma 4.2. Assume that w ∈ L1(Rd) and d ≥ 3. Then we have the bound
|J+

0 | . Ld/2+2+γ2(d/2−1)|w|L1, for any γ2 ∈ (0, 1).

Proof. Since according to Lemma 2.1 |Sq(0)| . qd/2+1, then

|J+
0 | .

∑
q>L1−γ2

q−d/2+1Iq(0).

Writing integral Iq as in (3.8), by Corollary 3.3 we get |Iq(0)| . Ld+1

q
|w|L1 .

Therefore,

|J+
0 | . Ld+1|w|L1

∑
q>L1−γ2

q−d/2 . Ld+1|w|L1L
(−d/2+1)(1−γ2)

= Ld/2+2+γ2(d/2−1)|w|L1 .
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Lemma 4.3. Let d ≥ 5. Then for any γ2 ∈ (0, 1),

J−0 = Ldσ∞(w)σ(A,L2m) +Oγ2,m
(
Ld/2+2+γ2(d/2−2)‖w‖dd/2e−2,d+1

)
.

Proof. Inserting (3.10) with C = 1 into the definition of the term J−0 ,
we get J−0 = IA + IB, where

IA := Ldσ∞(w)
∑

q≤L1−γ2

q−dSq(0),

|IB| .M,δ,m Ld−M+δ‖w‖M,d+1

∑
q≤L1−γ2

Sq(0)q−d+M ,

for M< d/2− 1 and any δ > 0. Lemma 2.3 implies that∑
q≤L1−γ2

q−dSq(0) = σ(A,L2m) +O(L(−d/2+2)(1−γ2)),

so
IA = Ldσ∞(w)σ(A,L2m) +O(σ∞(w)Ld/2+2+γ2(d/2−2)) ,

whereas |σ∞(w)| = |I(m)| ≤ ‖I‖0,0 ≤ ‖w‖0,d+1 on account of (3.13). As
for the term IB, Lemma 2.1 implies that

|IB| .M,δ,m Ld−M+δ‖w‖M,d+1

∑
q≤L1−γ2

q−d/2+1+M .

Choosing M = dd/2e − 2 and δ = γ2/2, we get

|IB| .δ,m ‖w‖dd/2e−2,d+1L
d/2+2+δ lnL .γ2,m ‖w‖dd/2e−2,d+1 L

d/2+2+γ2 .

5 The Jγ1> term

We provide here an estimate of the term Jγ1> defined in (1.19). The key
point of the proof is an adaptation of Lemma 19 of [10] to our case. We
recall the notation (3.8).

Proposition 5.1. For any d ≥ 1, N > 0 and c 6= 0,

|Ĩq(c)| .N,m
L

q
|c|−N ‖w‖N,2N+d+1 (5.1)
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Proof. Let fq(z) := w (z)h
( q
L , F

m(z)
)
. Since

i

2π

q

L
|c|−2 (c · ∇z) eq(−z · cL) = eq(−z · cL) ,

then integrating by parts N times the integral (3.9) we get that

∣∣∣Ĩq(c)
∣∣∣ ≤ ( q

2πL
|c|−2

)N ∫
Rd

∣∣∣(c · ∇z)N fq(z)
∣∣∣ dz

.N

( q
L

)N
|c|−N

∑
0≤n≤N

∫
Rd

max
0≤l≤n/2

∣∣∣∣ ∂n−l∂yn−l
h
( q
L
, Fm(z)

)∣∣∣∣
× |z|n−2l

∣∣∇N−nz w(z)
∣∣ dz ,

where
∂

∂y
h stands for the derivative of h with respect to the second argu-

ment.
Assume first that q ≤ L. Then, by Lemma 3.2 with N = 0,

max
0≤l≤n/2

∣∣∣∣ ∂n−l∂yn−l
h
( q
L
, Fm(z)

)∣∣∣∣ |z|n−2l
∣∣∇N−nz w(z)

∣∣ ≤
(L/q)n+1 〈z〉−d−1‖w‖N−n,n+d+1 .

This implies (5.1) since n ≤ N . Let now q > L. Then, due to item 1 of
Lemma 3.1, h is different from zero only if

2|Fm(z)| > q

L
. (5.2)

Then for such z and for l ≤ n, item 3 of Lemma 3.1 implies that∣∣∣∣ ∂n−l∂yn−l
h
( q
L
, Fm(z)

)∣∣∣∣ .n−l
L

q

1

|Fm(z)|n−l
.n−l

(L
q

)n−l+1
.

So

max
0≤l≤n/2

∣∣∣∣ ∂n−l∂yn−l
h
( q
L
, Fm(z)

)∣∣∣∣ |z|n−2l
∣∣∇N−nz w(z)

∣∣ .
max

0≤l≤n

(L/q)n−l+1

〈z〉2(N−n+l)

‖w‖N−n,2N−n+d+1

〈z〉d+1
.

Since from (5.2) we have that q/L .m 〈z〉2, then the first fraction above is
bounded by (L/q)N+1, and again (5.1) follows.

As a corollary we get an estimate for Jγ1> :
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Corollary 5.2. For Jγ1> defined in (1.19) with γ1 ∈ (0, 1) and d ≥ 3 we
have

|Jγ1> | .γ1,m ‖w‖N0,2N0+d+1 ,

where N0 := dd+ (d+ 1)/γ1e.

Proof. Denoting by | · |1 the l1-norm, by the definition of Jγ1> we have

|Jγ1> | .
∑
s≥Lγ1

sd−1
∞∑
q=1

q−d sup
|c|1=s

|Sq(c)||Iq(c)|

.
∑
s≥Lγ1

sd−1
∞∑
q=1

q1−d/2Ld sup
|c|1=s

|Ĩq(c)|

.N,m

∑
s≥Lγ1

sd−1
∞∑
q=1

q−d/2s−NLd+1‖w‖N,2N+d+1 ,

where the second line follows from Lemma 2.1, while the third one – from
Proposition 5.1. The sum in q is bounded by a constant. Choosing N = N0

we get that

Ld+1
∑
s≥Lγ1

sd−1s−N ≤ Ld+1
∑
s≥Lγ1

s−1−(d+1)/γ1 . 1 .

This concludes the proof.

6 The Jγ1< term

6.1 The estimate

Our next (and final) goal is to estimate the term Jγ1< from (1.18).

Proposition 6.1. For any d ≥ 3 and γ1 ∈ (0, 1/2),

|Jγ1< | .γ1,m Ld/2+2+γ1(d+1)
(
‖w‖N̄,d+5 + ‖w‖0,N̄+3d+4

)
,

where N̄ = N̄(d, γ1) := dd2/γ1e − 2d.

Proposition 6.1 will follow from the next lemma which is a modification
of Lemma 22 in [10] and is proved in the next subsection:

Lemma 6.2. For any d ≥ 3 and c 6= 0,

|Iq(c)| .γ1,m Ld/2+1+γ1
(
q/|c|

)d/2−1−γ1 (‖w‖N̄,d+5 + ‖w‖0,N̄+3d+4

)
,

where N̄ and γ1 are the same as above.
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Proof of Proposition 6.1. Accordingly to Lemma 2.1,

|Jγ1< | .
∑

c 6=0, |c|≤Lγ1

∞∑
q=1

q−dqd/2+1|Iq(c)| . Ldγ1 max
c 6=0: |c|≤Lγ1

|Iq(c)|
∞∑
q=1

q−d/2+1

= Ldγ1
(∑
q<L

+
∑
q≥L

)
q−d/2+1 max

c 6=0: |c|≤Lγ1
|Iq(c)| = J− + J+ ,

with

J− := Ldγ1
∑
q<L

q−d/2+1 max
c 6=0: |c|≤Lγ1

|Iq(c)| ,

J+ := Ldγ1
∑
q≥L

q−d/2+1 max
c 6=0: |c|≤Lγ1

|Iq(c)| .

Corollary 3.3 together with (3.8), (3.9) implies

|Iq(c)| . Ld+1

q
|w|L1 , (6.1)

so that

J+ . Ldγ1Ld+1|w|L1

∑
q≥L

q−d/2 . Ldγ1+d/2+2|w|L1 . Ldγ1+d/2+2‖w‖0,d+1.

On the other hand, since |c| ≥ 1, from Lemma 6.2 we get

J− .γ1,m Ldγ1Ld/2+1+γ1
(
‖w‖N̄,d+5 + ‖w‖0,N̄+3d+4

)∑
q<L

q−γ1

≤
(
‖w‖N̄,d+5 + ‖w‖0,N̄+3d+4

)
Lγ1(d+1)+d/2+2 .

6.2 Proof of Lemma 6.2

We begin with

6.2.1 Application of the inverse Fourier transform

Note that the proof is nontrivial only for q . L|c|: indeed, for any α > 0
the bound (6.1) implies that

|Iq(c)| .α L
d|w|L1 .α L

d
(
L|c|/q

)−d/2+1+γ1 |w|L1 if q ≥ αL|c|,
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since |c| ≥ 1 and −d/2+1+γ1 < 0. So, it remains to use again the inequality
|w|L1 . ‖w‖0,d+1.

Let us take a small enough α = α(d, γ1, A) ∈ (0, 1) and assume that
q < αL|c|. Consider the function w2(x) = 1/(1 + x2) and set

w̃(z) :=
w(z)

w2(Fm(z))
= w(z)(1 + Fm(z)2). (6.2)

Let

p(t) :=

∫ +∞

−∞
w2(v)h(q/L, v)e(−tv) dv, e(x) := e1(x) = e2πix. (6.3)

This is the Fourier transform of function w2(·)h(q/L, ·). Then, expressing
w2h via p by the inverse Fourier transform and writing w(z) = w̃(z)w2(Fm(z)),
we find that

w(z)h(q/L, Fm(z)) = w̃(z)

∫ +∞

−∞
p(t)e(tFm(z)) dt.

Inserting this representation into (3.9) we get

Ĩq(c) =

∫ +∞

−∞
p(t)e(−tm)

(∫
Rd
w̃(z)e

(
tF (z)− u · z

)
dz

)
dt, u := cL/q.

Note that
|u| = |c|L/q > α−1 > 1

since q < α|c|L. Now let us denote W0(x) = c−d0

∏d
i=1w0(xi) (see (3.1)).

Then W0 ∈ C∞0 (Rd), W0 ≥ 0 and

suppW0 = [−1, 1]d ⊂ {x ∈ Rd : |x| ≤
√
d},

∫
Rd
W0(x) dx = 1. (6.4)

Let us set δ = |u|−1/2 <
√
α and write w̃ as

w̃(z) = δ−d
∫ d

R
W0

(
z− a

δ

)
w̃(z) da.

Then setting b :=
z− a

δ
we get that

|Ĩq(c)| ≤
∫
Rd

∫ +∞

−∞
|p(t)||Ia,t| dt da,
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where in view of (6.4),

Ia,t :=

∫
{|b|≤

√
d}
W0(b)w̃(z) e(tF (z)− u · z) db, z := a + δb.

Consider the exponent in the integral Ia,t:

f(b) = fa,t(b) := tF (a + δb)− u · (a + δb).

At the next step we will estimate integral Ia,t, regarding (a, t) as a parameter.
Consider another parameter R, satisfying

1 ≤ R ≤ |u|1/3;

its value will be chosen later. Below we distinguish two cases:
1. (a, t) belongs to the ”good” domain SR, where

SR =
{

(a, t) : |∇f(0)| = δ|tAa− u| ≥ R
〈
t/|u|

〉
= R〈δ2t〉

}
;

2. (a, t) belongs to the ”bad” set SR
c = (Rd × R) \ SR.

6.2.2 Integral over SR.

We consider first the integral over the good set SR:

Lemma 6.3. For any d ≥ 1, N ≥ 0 and R ≥ 2‖A‖
√
d we have∫

SR

|p(t)| |Ia,t| da dt .N,m
L

q
R−N‖w‖N,d+5 . (6.5)

Proof. Let l := ∇f(0)/|∇f(0)| and L = l · ∇b. Then for (a, t) ∈ SR and
|b| ≤

√
d (see (6.4)),

|Lf(b)| =
∣∣Lf(0) + δ2t∇f(0) ·Ab/|∇f(0)|

∣∣ ≥ |∇f(0)| − δ2|t||Ab|

≥ R〈δ2t〉 − δ2|t|‖A‖ R

2‖A‖
≥ 1

2R〈δ
2t〉 ≥ R/2.

(6.6)

Since (2πiLf(b))−1Le(f(b)) = e(f(b)), then integrating by parts N times
integral Ia,t we get

|Ia,t| .N max
|bi|≤1∀i

max
0≤k≤N

∣∣∣∣∣LN−kw̃(δb + a)

(
L2f(b)

)k(
Lf(b)

)N+k

∣∣∣∣∣ ,
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where we have used that Lmf(b) = 0 for m ≥ 3. Since |L2f(b)| ≤ δ2|t||l ·
Al| ≤ δ2|t|‖A‖, then in view of (6.6)∣∣∣∣L2f(b)

Lf(b)

∣∣∣∣ ≤ δ2|t|‖A‖
1
2R〈δ2t〉

=
2‖A‖
R
≤ 1√

d
.

So using that
∣∣∣ 1

Lf(b)

∣∣∣ ≤ 2

R
by (6.6), we find

|Ia,t| .N R−N max
|bi|≤1 ∀i

max
0≤k≤N

∣∣∣Lkw̃(δb + a)
∣∣∣ .

Thus, denoting by 1SR the indicator function of the set SR, we have∫
Rd
|Ia,t|1SR da .N R−N

∫
Rd

(
〈a〉d+1 max

|bi|≤1∀i
max

0≤k≤N

∣∣Lkw̃(δb + a)
∣∣) da

〈a〉d+1

.N R−N‖w̃‖N,d+1 .N,m R−N‖w‖N,d+5 ,

for every t. Then

l.h.s. of (6.5) .N,m R−N‖w‖N,d+5

∫ +∞

−∞
|p(t)| dt. (6.7)

To prove (6.5) it remains to show that∫ ∞
−∞
|p(t)|dt . L/q . (6.8)

In virtue of Lemma 3.2 with N = 2,∣∣∣ ∂k
∂vk

h(x, v)
∣∣∣ .k x

−k−1 min{1, x2/v2} , k ≥ 1,

and by Corollary 3.3, |h(x, v)| . x−1. Then an integration by parts in (6.3)
shows that, for any M ≥ 0,

|p(t)| .M |t−M |
(∫ ∞
−∞
|w(M)

2 (v)|x−1 dv

+ max
1≤k≤M

∫ ∞
−∞
|w(M−k)

2 (v)|x−k−1 min
{

1,
x2

v2

}
dv
)
,

where x := q/L. Writing the latter integral as a sum
∫
|v|≤x +

∫
|v|>x we see

that ∫
|v|≤x

= x−k−1

∫
|v|≤x

|w(M−k)
2 (v)| dv .M x−k
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and ∫
|v|>x

= x−k+1

∫
|v|>x

|w(M−k)
2 (v)|
v2

dv .M x−k.

Then, for any M ≥ 0

|p(t)| .M

( q
L
|t|
)−M

if
q

L
< 1 and |p(t)| .M

( q
L

)−1
|t|−M if

q

L
≥ 1.

(6.9)
Choosing M = 2 when |t| > 〈L/q〉 and M = 0 when |t| ≤ 〈L/q〉 we get
(6.8).

6.2.3 Integral over SR
c.

Now we study the integral over the bad set SR
c.

Lemma 6.4. For any d ≥ 1, 1 ≤ R ≤ |u|1/3 and 0 < β < 1 we have∫
ScR

|p(t)||Ia,t| da dt .m Rd|u|−d/2+1+β‖w‖0,K(d,β) ,

where K(d, β) = d+ dd2/2βe+ 4.

Proof. On SR
c we use for Ia,t the easy upper bound

|Ia,t| . max
|bi|≤1 ∀i

|w̃(δb + a)| ≤ ‖w̃‖0,0. (6.10)

The fact that (a, t) ∈ SRc implies that the integration in da for a fixed t is
restricted to the region, where

∣∣Aa− t−1u
∣∣ ≤ (R/δ|t|)〈t/|u|〉 , or∣∣∣∣a− A−1u

t

∣∣∣∣ ≤ ‖A−1‖ R

δ|t|
〈t/|u|〉 . (6.11)

We first consider the case |t| ≥ |u|1−β/d. Since |u| > 1, then considering
separately the cases |t| ≤ |u| and |t| ≥ |u| we see that

R

δ|t|
〈t/|u|〉 ≤ R|u|−1/2+β/d . (6.12)

In view of (6.10) -(6.12),∣∣∣∣∫
Rd
|Ia,t|1SRc(a, t)da

∣∣∣∣ . Rd|u|−d/2+β‖w̃‖0,0 .
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Since |Fm(z)| .m 〈z〉2, by definition (6.2) of the function w̃ we have ‖w̃‖0,0 .m

‖w‖0,4. Then the r.h.s. above is .m Rd|u|−d/2+β‖w‖0,4. Taking into ac-

count that, by (6.8),

∫
|t|≥|u|1−β/d

|p(t)| dt . L

q
≤ |u| , we get∫

|t|≥|u|1−β/d

(∫
Rd
|p(t)||Ia,t|1SRc(a, t) da

)
dt .m Rd|u|−d/2+1+β‖w‖0,4 .

(6.13)
Now let |t| ≤ |u|1−β/d. Then the r.h.s. of (6.11) is bounded by the

quantity ‖A−1‖R/(δ|t|), so that |a| & |A−1u|/|t| − ‖A−1‖R/(δ|t|). Since
|A−1u| ≥ CA|u| and R ≤ |u|1/3, then

|a| &A
|u| −RC ′A

√
|u|

|t|
≥ (1− C ′A|u|−1/6)

|u|
|t|
≥ 1

2

|u|
|t|
≥ 1

2
|u|β/d

with C ′A = C−1
A ‖A−1‖, since |u|−1 ≤ α, if α is so small that 1−C ′Aα1/6 ≥ 1/2.

Then 1 . |a|/|u|β/d on SR
c, so that 1SRc(a, t) . |u|−d/2+β/d|a|d2/2β−1, and

we deduce from (6.10) that for such values of t∣∣∣∣∫
Rd
|Ia,t|1SRc(a, t)da

∣∣∣∣ . |u|−d/2+β/d

∫
Rd
|a|d2/2β−1 max

|bi|≤1 ∀i
|w̃(δb + a)| da

.m |u|−d/2+β/d‖w‖0,K(d,β) ,

where K(d, β) = d+ dd2/2βe+ 4. On the other hand, by (6.9) with M = 0,∫
|t|≤|u|1−β/d |p(t)|dt . |u|

1−β/d , from which we obtain∫
|t|≤|u|1−β/d

(∫
Rd
|p(t)||Ia,t|1SRc(a, t) da

)
dt .m |u|−d/2+1‖w‖0,K(d,β) .

(6.14)
Putting together (6.13) and (6.14) we get the assertion.

6.2.4 End of the proof

In order to complete the proof of Lemma 6.2 we combine Lemmas 6.3 and
6.4 to get that

|Ĩq(c)| .N,m

(
L

q
R−N +Rd|u|−d/2+1+β

)(
‖w‖N,d+5 + ‖w‖0,K(d,β)

)
.

We fix here γ1 ∈ (0, 1/2), β = γ1/2, R = |u|
γ1
2d ≤ |u|

1
3 and pick N = dd2γ1 e−

2d > 0 (notice that R ≥ α−γ1/2d ≥ 2‖A‖
√
d if α is small enough, so that

assumption of Lemma 6.3 is satisfied). Then K(d, β) = N + 3d+ 4, R−N ≤
|u|−d/2+γ1 ≤ |c| (L|c|/q)−d/2+γ1 since |c| ≥ 1. Moreover, Rd|u|−d/2+1+β =
|u|−d/2+1+γ1 = (L|c|/q)−d/2+1+γ1 . This concludes the proof.
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7 Integrals over quadrics

Our goal in this section is to study integrals I(t;w) over the quadrics Σt. We
start with a case of quadratic forms F , written in a convenient normal form
(Theorem 7.1), and show later in Section 7.4 (Theorem 7.3) how to reduce
general integrals I(t;w) to those, corresponding to the quadratic forms like
that. In this section we assume that

d ≥ 3

and not use the bold font to denote vectors since most of variables we use
are vectors.

7.1 Quadratic forms in normal form

On Rd = Rnu × Rd1x × Rd1y = {z = (u, x, y)}, where d ≥ 3, n ≥ 0 and d1 ≥ 1,
consider the quadratic form

F (z) = 1
2 |u|

2 + x · y = 1
2Az · z , A(u, x, y) = (u, y, x) . (7.1)

Note that A is an orthogonal operator, |Az| = |z|. As in Section 1.1 we
define the quadrics Σt = {z : F (z) = t}, t ∈ R. Note that for t 6= 0 Σt is a
smooth hypersurface, while Σ0 is a cone with a singularity at the origin. We
denote the volume element on Σt (on Σ0\{0} if t = 0), induced from Rd, as
dz |Σt and set

µΣt(dz) = |Az|−1dz |Σt (7.2)

(see below concerning this measure when t = 0).
For a k∗ ∈ N ∪ {0} and a function f on Rd satisfying

f ∈ Ck∗,M (Rd) , M > d , (7.3)

we will study the integrals

I(t) = I(t; f) =

∫
Σt

f(z)µΣt(dz) . (7.4)

Our first goal is to demonstrate the following result:

Theorem 7.1. For the quadratic form F (z) as in (7.1) and a function
f ∈ Ck∗,M (Rd), M > d, consider integral I(t), defined in (7.4). Then I(t)

29



is Ck–smooth if k < d/2 − 1, k ≤ k∗, and is Ck–smooth outside zero if
k ≤ min(d/2− 1, k∗). For 0 < |t| ≤ 1 we have∣∣∣∂kI(t)

∣∣∣.k,M‖f‖k,M if k < d/2− 1,∣∣∣∂kI(t)
∣∣∣.k,M‖f‖k,M (1− ln |t|) if k ≤ d/2− 1.

(7.5)

While for |t| ≥ 1, denoting κ = M+2−d
2 , we have∣∣∣∂kI(t)

∣∣∣.k,M‖f‖k,M 〈t〉−κ if 1 ≤ k ≤ d/2− 1, k ≤ k∗,

|I(t)|.M,κ′‖f‖0,M 〈t〉−κ
′ ∀κ′ < κ.

(7.6)

An example, see [7, Example A.3], shows that in general the log-factor
cannot be removed from the r.h.s. in (7.5).

The theorem is proved below in number of steps. In the proof for a given
vector x ∈ Rd1 we consider its orthogonal complement in Rd1 – the hyper-
space x⊥. We denote its elements x̄, and provide x⊥ with the Lebesgue
measure dx̄. If d1 = 1, then x⊥ degenerates to the space R0 = {0}, and dx̄
– to the δ-measure at 0. Practically it means that when d1 = 1, the spaces
x⊥ and y⊥ (and integrals over them) disappear from our construction. It
makes the case d1 = 1 easier, but notationally different from d1 ≥ 2. For
example, in formula (7.8) with d1 = 1 the affine space σxt (u′, x′) becomes
the point (u′, x′, (t− 1

2 |u
′|2)|x′|−2x′), the measure dµΣt |Σxt in (7.14) becomes

du |x|−1dx, etc. Accordingly, below we write the proof only for d1 ≥ 2,
leaving the case d1 = 1 as an easy exercise for the reader.

7.2 Disintegration of the two measures

Our goal in this subsection is to find a convenient disintegration of the
measures dz |Σt and µΣt , following the proof of Theorem 3.6 in [5].

Recall that we write elements z ∈ Rd as z = (u, x, y), where u ∈ Rd
and x, y ∈ Rd1 . Let us denote Σx

t = {(u, x, y) ∈ Σt : x 6= 0} (if t < 0,
then Σx

t = Σt). Then for any t Σx
t is a smooth hypersurface in Rd, and the

mapping
Πx
t : Σx

t → Rn × Rd1\{0} , (u, x, y) 7→ (u, x) , (7.7)

is a smooth affine euclidean vector bundle. Its fibers are

σxt (u′, x′) :=
(
Πx
t

)−1
(u′, x′) =

(
u′, x′, x′

⊥
+
t− 1

2 |u
′|2

|x′|2
x′
)
, (7.8)
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where x′⊥ is the orthogonal complement to x′ in Rd1 . For any x′ 6= 0 denote

Ux′ =
{
x : |x− x′| ≤ 1

2
|x′|
}
, U = Rn × Ux′ × Rd1 .

Now we construct a trivialisation of the bundle Πx
t over U . To do this

we fix in Rd1 any orthonormal frame (e1, . . . , ed1) such that the ray R+e1

intersects Ux′ . Then

x1 > 0 ∀x = (x1, . . . , xd1) =: (x1, x̄) ∈ Ux′ .

We wish to construct an affine in the third argument diffeomorphism

Φt : Rn × Ux′ × Rd1−1 → U ∩ Σt

of the form

Φt(u, x, η̄) = (u, x,Φu,x
t (η̄)) , Φu,x

t (η̄) = (ϕt(u, x, η̄), η̄) ∈ Rd1 , η̄ ∈ Rd1−1.
(7.9)

We easily see that Φt(u, x, η̄) ∈ Σt if and only if

ϕt(u, x, η̄) =
t− 1

2 |u|
2 − x̄ · η̄
x1

. (7.10)

The mapping η̄ → Φu,x
t (η̄) with this function ϕt is affine, and the range of

Φt equals U ∩ Σt.
In the coordinates (u, x, η1, η̄) ∈ Rn × Ux′ × R × Rd1−1 on the domain

U ⊂ Rd the hypersurface Σx
t is embedded in Rd as a graph of the function

(u, x, η̄) 7→ η1 = ϕt. Accordingly, in the coordinates (u, x, η̄) on U ∩ Σt the
volume element on Σt reads as ρ̄t(u, x, η̄)du dx dη̄, where

ρ̄t =
(
1 + |∇ϕt|2

)1/2
=
(

1 +
|u|2 + |η̄|2 + |x̄|2 + x−2

1 (t− 1
2 |u|

2 − x̄ · η̄)2

x2
1

)1/2
.

Passing from the variable η̄ ∈ Rd1−1 to y = Φu,x
t (η̄) ∈ σxt (u, x) we replace

dη̄ by | det Φu,x
t (η̄)|dσxt (u,x)y. Here dσxt (u,x)y is the Lebesgue measure on

the (d1 − 1)-dimensional affine euclidean space σxt (u, x) while by det Φu,x
t

we denote the determinant of the linear mapping Φu,x
t , viewed as a linear

isomorphism of the euclidean space Rd1−1 = {η̄} and the tangent space to
σxt (u, x), identified with the euclidean space x⊥ ⊂ Rd1 . Accordingly we write
the volume element on Σt ∩ U as ρt(u, x, y)du dx dσxt (u,x)y with

ρt(u, x, y) = ρ̄t(u, x, η̄)| det Φu,x
t (η̄)| , (u, x, y) ∈ Σt, where Φu,x

t (η̄) = y.
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Now we will calculate the density ρt. Let us take any point z∗ =
(u∗, x∗, y∗) ∈ U ∩Σt and choose a frame (e1, . . . , ed1) such that e1 = x∗/|x∗|.
Then

x∗ = (|x∗|, 0) , y∗ =
(
y∗1, ȳ∗

)
, y∗1 =

( t− 1
2 |u∗|

2

|x∗|

)
, ȳ∗ ∈ Rd1−1 .

So (see (7.9)–(7.10)) the mapping Φt is such that Φu∗,x∗
t (η̄) =

(
y∗1, η̄

)
=

ỹ ∈ σxt (u∗, x∗) (i.e. ϕt(z∗) = y∗1). In these coordinates ρt(u∗, x∗, y∗1, ȳ∗) =
ρ̄t(u∗, x∗, ȳ∗), which equals

(
1 + |x∗|−2

(
|u∗|2 + |ȳ∗|2 + |y∗1|2

))1/2
=

(
|x∗|2 + |u∗|2 + |ȳ∗|2 + |y∗1|2

)1/2
|x∗|

.

That is, ρt(z∗) = |z∗|
|x∗| . Since z∗ is any point in U ∩ Σt, then we have proved

Proposition 7.2. The volume element dz |Σxt with respect to the projection
Πx
t disintegrates as follows:

dz |Σxt = du |x|−1dx |z|dσxt (u,x)y . (7.11)

That is, for any function f ∈ C0
0 (Σx

t ),∫
f(z)dz |Σxt =

∫
Rn

∫
Rd1
|x|−1

(∫
σxt (u,x)

|z|f(z) dσxt (u,x)y
)
dx du .

Similarly, if we set Σy
t = {(u, x, y) ∈ Σt : y 6= 0} and consider the

projection

Πy
t : Σy

t → Rn × Rd1\{0} , (u, x, y) 7→ (u, y) ,

then
dz |Σyt = du |y|−1dy |z|dσyt (u,y)x . (7.12)

Let us denote Σ0
t = {(u, x, y) ∈ Σt : x = y = 0}. Then Σt\Σ0

t is a
smooth manifold and dz |Σt defines on it a smooth measure.

By (7.11) and (7.12), for any t the volume of the set {z ∈ Σt\Σ0
t : 0 <

|x|2 + |y|2 ≤ ε} goes to zero with ε. So assigning to Σ0
t zero measure we

extend dz |Σt to a Borel measure on Σt such that each set {z ∈ Σt : |z| ≤ R}
has a finite measure and

(dz |Σt)
(
(Σx

t ∪ Σy
t )
c)

= 0 . (7.13)
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By (7.11) and (7.12) function |z|−1 is locally integrable on Σt with respect
to the measure dz |Σt . So µΣt (see (7.2)) is a well defined Borel measure on
Σt. Since |Az| = |z|, then, in view of (7.11) and (7.12),

dµΣt |Σxt = du |x|−1dx dσxt (u,x)y , dµΣt |Σyt = du |y|−1dy dσyt (u,y)x . (7.14)

The measure µΣt defines on Rd a Borel measure, supported by Σt. It
will also be denoted µΣt .

7.3 Analysis of the integral I(t; f)

Note that for any t the mapping

Lt : Σx
0 → Σx

t , (u, x, y) 7→ (u, x, y + t|x|−2x)

defines an affine isomorphism of the bundles Π0 |Σx0 and Πt |Σxt . Since Lt
preserves the Lebesgue measure on the fibers, then in view of (7.11) it sends
the measure µΣ0 to µΣt . Using (7.14) we get that for any t the integral I(t),
defined in (7.4), may be written as

I(t; f)

∫
Σ0

f(Lt(z))µ
Σ0(dz)

=

∫
Rn×Rd1

|x|−1
(∫

σ(u,x)
f(u, x, y + t|x|−2x)dσx(u,x)y

)
du dx .

(7.15)

Here σ(u, x) := σx0 (u, x) = x⊥ − 1
2 |u|

2|x|−2x .
We recall that f(u, x, y) satisfies (7.3). Taking any smooth function

ϕ(t) ≥ 0 on R which vanishes for |t| ≥ 2 and equals one for |t| ≤ 1 we
write f = f00 + f1, where f00 = ϕ(|(x, y)|2)f and f1 = (1 − ϕ(|(x, y)|2))f .
Denoting Br(Rm) = {ξ ∈ Rm : |ξ| ≤ r} and Br(Rm) = {ξ ∈ Rm : |ξ| ≥ r}
we see that

supp f00 ⊂ Rn ×B√2(R2d1) , supp f1 ⊂ Rn ×B1(R2d1) . (7.16)

Setting next f11(z) = f1(z)(1− ϕ(4|x|2)), f10(z) = f1(z)ϕ(4|x|2) we write

f = f00 + f11 + f10 .

Since (x, y) ∈ B1(R2d1) implies that |x| ≥ 1/
√

2 or |y| ≥ 1/
√

2, then in view
of (7.16),

supp f11 ⊂ Rn ×B1/2(Rd1x )× Rd1y ,

supp f10 ⊂ Rn × Rd1x ×B1/
√

2(Rd1y ) .
(7.17)
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Obviously, for i, j = 0, 1 we have ‖fij‖k,m ≤ Ck,m‖f‖k,m, for all k ≤ k∗,
m ≤M .

Setting Iij(t) = I(t; fij) we have:

I(t; f) = I00(t) + I10(t) + I11(t) .

7.3.1 Integral I00(t).

By (7.15) I00(t) is a continuous function, and for 1 ≤ k ≤ k∗,

∂kI00(t) =

∫
Rn

(∫
B√2(Rd1 )

|x|−1dx
)
du∫

y∈σ(u,x)

(
dk/dtk

)
f00(u, x, y + t|x|−2x) dσ(u,x)y

=

∫
Rn

∫
B√2(Rd1 )

|x|−1
(∫

y∈σ(u,x)
dkyf00(u, x, y + t|x|−2x)

[
|x|−2x

]
dσ(u,x)y

)
dxdu,

(7.18)

where by dkyf00

[
|x|−2x

]
we denote the action of the differential dkyf00 on the

set of k vectors, each of which equals to |x|−2x. Setting τ = t − 1
2 |u|

2, for
y ∈ σ(u, x) we have

y + t|x|−2x = ȳ + τ |x|−2x, for some ȳ ∈ x⊥. (7.19)

Then we write the integral over y in (7.18) as∫
x⊥
dkyf00(u, x, ȳ + τ |x|−2x)

[
|x|−2x

]
dȳ. (7.20)

Since |ȳ + τx|x|−2|2 = |ȳ|2 + τ2|x|−2, then on the support of the integrand

|x| ≤
√

2, |ȳ|2 + τ2|x|−2 ≤ 2. (7.21)

In particular,

|τ | =
∣∣t− 1

2
|u|2
∣∣ ≤ √2|x| ≤ 2 in (7.20). (7.22)

By (7.16) the diameter of the domain of integration in (7.20) is bounded by√
2. So, for any m ≥ 0 integral (7.20) is bounded by Ck,m|x|−k〈u〉−m‖f‖k,m.

Denoting R = |u|, r = |x| we get that

|∂kI00(t)| .k,M ‖f‖k,M
∫ √2

0
rd1−k−2

(∫ ∞
0

Rn−1〈R〉−Mχ|τ |≤√2r dR
)
dr .

(7.23)
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If n = 0, then the integral in dR should be removed from the r.h.s. Below
we estimate ∂kI00(t) separately for the cases n = 0 and n ≥ 1.

a) If n = 0, then τ = t, we get from (7.22) that |x| ≥ t/
√

2 and see from
(7.16) that, for t 6= 0, I00(t) is Ck∗-smooth (since f ∈ Ck∗). Then from
(7.23) we obtain

|∂kI00(t)| .k,M ‖f‖k,M
∫ √2

|t|/
√

2
rd1−k−2χ|t|≤2 dr . (7.24)

From here it follows that

|∂kI00(t)| .k ‖f‖k,M if k ≤ min(d1 − 2, k∗),

|∂kI00(t)| .k ‖f‖k,M
(
1 +

∣∣ ln |t|∣∣) if k = min(d1 − 1, k∗) ,
(7.25)

while I00(t) = 0 for |t| ≥ 2.
b) If n ≥ 1, then to estimate ∂kI00(t) we split the integral for I00(t) in a

sum of two. Namely, for a fixed t 6= 0 we write f00 as f00 = f00<+f00>, with
f00< = f00ϕ(8|x|2/t2), where ϕ is the function, used to define the functions
fij , 0 ≤ i, j ≤ 1. Then

supp f00< ⊂ {2|x| ≤ |t|}, supp f00> ⊂ {2
√

2|x| ≥ |t|}. (7.26)

With an obvious notation we have I00(t) = I00<(t) + I00>(t), where

I00<(t) =

∫
Rn

∫
B√2(Rd1 )∩B|t|/2(Rd1 )

|x|−1

(∫
y∈σ(u,x)

|x|2+|y+t|x|−2x|2≤2

f00<(u, x, y + t|x|−2x) dσ(u,x)y
)
dxdu ,

I00>(t) =

∫
Rn

∫
B√2(Rd1 )∩B|t|/2

√
2(Rd1 )

|x|−1

(∫
y∈σ(u,x)

|x|2+|y+t|x|−2x|2≤2

f00>(u, x, y + t|x|−2x) dσ(u,x)y
)
dxdu .

Consider first function I00<(t). We observe that, by (7.19), for y ∈
σ(u, x) and |x| ≤ |t|/2 (cf. (7.26))

|y + t|x|−2x| ≥ |τ ||x|−1 =

∣∣∣∣t− 1

2
|u|2
∣∣∣∣ |x|−1 ≥ −t|x|−1 >

√
2 , for t < 0 ,
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so that I00<(t) = 0 for t < 0. For t > 0, performing the change of variables√
tu′ = u, tx′ = x, we get

I00<(t) =td/2−1

∫
Rn

∫
B√2/t(R

d1 )∩B1/2(Rd1 )
|x′|−1ϕ(8|x′|2)

(∫
y∈σ(u′,x′)

|x′|2t2+|y+|x′|−2x′|2≤2

f00(
√
tu′, tx′, y + |x′|−2x′) dσ(u′,x′)y

)
dx′du′ ,

where we notice that σ(u′, x′) = σ(u, x). We differentiate with respect to t,
observing that, by induction in k, for any l and k we have

dk

dtk
tlg(
√
tu′, tx′) =

∑
l1+l2+l3=k

cl1,l2,l3t
l−l1−l2/2

(
u′
l2 · ∇u

)l2
(
x′
l3 · ∇x

)l3
g(
√
tu′, tx′) ,

for any sufficiently regular function g and suitable constants cl1,l2,l3 . From
this we get∣∣∣∂kI00<(t)

∣∣∣ .k,M max
l1+l2+l3=k

td/2−1−l1−l2/2‖f‖k,M
∫
Rn
|u′|l2〈u′

√
t〉−M∫

B√2/t(R
d1 )∩B1/2(Rd1 )

|x′|l3−1
(∫

y∈σ(u′,x′)
|x′|2t2+|y+|x′|−2x′|2≤2

dσ(u′,x′)y
)
dx′du′ .

Denoting points of the space x⊥ as ȳ, we see that the integral over dσ(u′,x′)y
is bounded by∫

ȳ∈x⊥
|x′|2t2+|ȳ+τ ′|x′|−2x′|2≤2

1 dȳ, τ ′ = 1− 1

2
|u′|2 . (7.27)

By (7.22), on the support of the integrand |τ ′| ≤
√

2|x′|. So there

1−
√

2|x′| ≤ |u
′|2

2
≤ 1 +

√
2|x′| . (7.28)

As the the domain of integration in ȳ is bounded, then integral (7.27) is
bounded by a constant. So putting |x′| = r′, |u′| = R′ and using (7.28) we
have ∣∣∣∂kI00<(t)

∣∣∣ .k,M max
l1+l2+l3=k

‖f‖k,M td/2−l1−l2/2−1

∫ 1/2

0
r′
d1−2+l3

(∫ √2
√

1+
√

2r′

√
2
√

1−
√

2r′
R′

n−1+l2〈R′2t〉−M/2 dR′
)
dr′ .
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Since r′ ≤ 1/2, then on the domain of integration
√

2−
√

2 ≤ R′ ≤√
2 +
√

2, while
√

2
√

1 +
√

2r′ −
√

2
√

1−
√

2r′ . r′ . So the integral in
dR′ is bounded by C〈t〉−M/2r′. Therefore∣∣∣∂kI00<(t)

∣∣∣ .k,M max
l1+l2+l3=k

‖f‖k,M td/2−l1−l2/2−1〈t〉−M/2

∫ 1/2

0
r′
d1−1+l3 dr′ .

This implies that for 0 < t ≤ 4, for any k ≤ k∗ and any d1 ≥ 1 we have

|∂kI00<(t)| .k ‖f‖k,0td/2−k−1 . (7.29)

While for any t ≥ 4 and any k ≤ k∗,

|∂kI00<(t)| .k,M max
l1+l2+l3=k

‖f‖k,M,dt
d/2−M/2−l1−l2/2−1

×
∫ √2/t

0
r′
d1−1+l3 dr′ .k,M ‖f‖k,M t−(M+2+k+2d1−d)/2 .

(7.30)

We recall that I00<(t) vanishes for t < 0.

For I00>(t) we first note that by (7.21) and (7.26) function I00>(t) van-
ishes if |t| > 4. Next, by induction in k, we observe that

dk

dtk
g(tx|x|−2)(1− ϕ(8|x|2/t2)) =

∑
l1+l2+l3=k

cl1,l2,l3 |x|2(l2−l1)t−3l2−l3

×
(

(x · ∇)l1 g
) dl2

dyl2
(1− ϕ) ,

(7.31)

where cl1,l2,l3 = 0 if l3 > 0 and l2 = 0. Since ϕ′ 6= 0 only for |t|/2
√

2 ≤ |x| ≤
|t|/2, then

dl2

dyl2
(1− ϕ)t−3l2−l3 .l2,l3 |x|−3l2−l3 , l2 > 0 ,

so that ∣∣∣∣ dkdtk g(tx|x|−2)(1− ϕ(8|x|2/t2))

∣∣∣∣ .k |x|−k‖g‖k,0 .

From here, in a way analogous to (7.23), putting again |x| = r and |u| = R,
we get that

|∂kI00>(t)| .k,M ‖f‖k,M
∫ √2

|t|/2
√

2
rd1−k−2

(∫ ∞
0

Rn−1〈R〉−Mχ|τ |≤√2r dR
)
dr
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(here and below
∫ b
a dr = 0 if b ≤ a). Since on the integration domain, due

to (7.26) and the factor χ|τ |≤
√

2r, we have R2 ≤ 6
√

2r, then

|∂kI00>(t)| .k,M,n ‖f‖k,M
∫ √2

|t|/2
√

2
dr rd/2−k−2

.k,M

{
‖f‖k,M , k < d/2− 1,

‖f‖k,M (1 + | ln |t||) , k ≤ d/2− 1.

(7.32)

If k < d/2 − 1, then by the above ∂kI00(t) is bounded for all t. In
this case, modifying the integrand in (7.18) by the factor χ|x|≥ε, we see
that thus obtained functions Iε00>, Iε00< satisfy the same estimates as the
functions I00>, I00< above, so the function Iε00 also does. The functions
∂kIε00(t) with ε > 0 obviously are continuous in t and converge to ∂kI00(t)
uniformly on bounded intervals. So the latter function also is continuous.
Similar ∂kI00(t) with k = d/2 − 1 is continuous on any set |t| ≥ ε > 0, so
is continuous for t 6= 0.

7.3.2 Integral I11(t).

Due to (7.17) and similar to (7.18), (7.20), for any k ≤ k∗ we have

∂kI11(t) =

∫
Rn

∫
|x|≥1/2

|x|−1
(∫

x⊥
dky f11(u, x, ȳ+ τx|x|−2)[x|x|−2] dȳ

)
dxdu .

We easily see that I11(t) is a Ck-smooth function and, since M > d and∣∣ȳ + τx|x|−2
∣∣ ≥ |ȳ|, then

|∂kI11(t)
∣∣ .k,M ‖f‖k,M ∀t. (7.33)

Now let |t| ≥ 1. Let us write ∂kI11 as

∂kI11(t) =

∫
Rn

∫
|x|≥1/2

|x|−k−1

∫
x⊥

Φk(z̄) dȳdxdu , (7.34)

where z̄ = (u, x, ȳ), ȳ ∈ x⊥, and

|Φk(z̄)|.k ‖f‖k,M 〈ẑ〉−M , ẑ = (u, x, ȳ + τx|x|−2). (7.35)

Obviously,
|ẑ| ≥ |z̄| , |ẑ| ≥ 2−1/2

(
|z̄|+ |τ ||x|−1

)
. (7.36)

Below we separate the cases n ≥ 1 and n = 0.
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1) Let n ≥ 1.
a) We first integrate in (7.34) over u in the spherical layer

O := {u : |τ | =
∣∣t− 1

2 |u|
2
∣∣ ≤ 1

2 t} .

It is empty if t < 0, while for t ≥ 0, O = {u : t ≤ |u|2 ≤ 3t} . By (7.35) and
the first relation in (7.36), for t ≥ 0 the part of the integral in (7.34) with
u ∈ O is bounded by

K := Ck‖f‖k,M
∫
O

∫
|x|≥1/2

|x|−k−1

∫
x⊥

(
|t|+ |x|2 + |ȳ|2

)−M/2
dȳdxdu .

Since
∫
O 1 du ≤ Ctn/2, then by putting r = |x|, |t|+ r2 = T 2 and R = |ȳ|/T

we find that

K.k‖f‖k,M tn/2
∫ ∞

1/2
rd1−2−k T d1−1−M

∫ ∞
0

Rd1−2
(
1 +R2

)−M/2
dRdr .

The integral in dR is bounded since M > d1, so that

K.k,M‖f‖k,M tn/2
∫ ∞

1/2
rd1−2−k (|t|+ r2

)(d1−1−M)/2
dr .

Recalling that we are considering the case t ≥ 1, we put r =
√
t l. Then

K.kM‖f‖k,M t
n+1+d1−2−k+d1−1−M

2

∫ ∞
t−1/2/2

ld1−2−k(1 + l2)
d1−1−M

2 dl .

Since M > 2d1, the integral over l converges and we get

K.k,M‖f‖k,M |t|−(M+2−d+k)/2|t|max(0,k+1−d1)/2Y (t) ,

with Y = ln t if k = d1 − 1 and Y = 1 otherwise. Then, in the case Y = 1
the component of (7.34), corresponding to u ∈ O, is bounded by

C(k,M, d)‖f‖k,M |t|−κ , κ =
M + 2− d

2
, (7.37)

for all |t| ≥ 1, since max(0, k + 1 − d1) ≤ k. If Y = ln t the same estimate
holds in the case d1 ≥ 2 since max(0, k + 1 − d1) < k. In the case d1 = 1
and Y = ln t (i.e. k = 0) we get (7.37) with κ replaced by any κ′ < κ (and
constant C depending on κ′).

b) Now consider the integral for u ∈ Oc = Rn\O. There |τ | = |t −
1
2 |u|

2| ≥ 1
2 |t|. So, by inequalities (7.35) and (7.36), |Φk(z̄)|.k〈(u, ȳ)〉−M and
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|Φk(z̄)|.k(|t||x|−1+|x|)−M . LetM = M1+M2 for some integersM1,M2 ≥ 0.
Then the part of the integral (7.34) for u ∈ Oc is bounded by

C‖f‖k,M
∫
|x|≥1/2

|x|−1−k (t|x|−1 + |x|
)−M1

(∫
Rn

∫
x⊥
〈(u, ȳ)〉−M2 dȳdu

)
dx

Choosing M2 = n + d1 − 1 + γ with 0 < γ < 1 (then M1,M2 > 0 since
M > d) we achieve that the integral over du dȳ is bounded by C(γ), for any
γ. Since by Young’s inequality 6

(A+B)−1 ≤ CaA−aBa−1 , 0 < a < 1 ,

for any A,B > 0, then
(
t|x|−1 + |x|

)−M1 ≤ Ca|x|(2a−1)M1 |t|−aM1 (0 < a <
1). So the integral above is bounded by

C(γ)‖f‖k,M |t|−aM1

∫
|x|≥1/2

|x|−1−k+bM1 dx , b = 2a− 1 ∈ (−1, 1) .

Denote b∗ = 1+k−d1
M1

. Then for b = b∗ the exponent for |x| in the formula
above equals −d1, and b∗ > −1 if γ is sufficiently small, since M > d. Noting
that

a(b∗)M1 =
b∗ + 1

2
M1 =

M + 2 + k − d− γ
2

= κ+
k

2
− γ

2

(κ was defined in (7.37)), we see that the part of integral (7.34), correspond-
ing to u ∈ Oc,

is bounded by (7.37) if k ≥ 1, while for k = 0 it is bounded by

(7.37) with κ replaced by any κ′ < κ.
(7.38)

2) Now let n = 0. Then∣∣∣∂kI11(t)
∣∣∣ ≤ ∫

|x|≥1/2
|x|−1−k

∫
x⊥

Φk(z̄) dȳdx , z̄ = (x, ȳ) , (7.39)

where |Φk(z̄)|.k〈ẑ〉−M with ẑ = (x, ȳ + tx|x|−2). Repeating literally the
step 1b) above with n = 0 we get that for |t| ≥ 1 the integral in (7.39) may
also be bounded by (7.37). We recall that for |t| ≤ 1 the derivative ∂kI11(t)
was estimated in (7.33).

6Indeed, by Young’s inequality with p = 1/a, q = 1/(1− a) we have that AaB(1−a) ≤
aA+ (1− a)B ≤ Ca(A+B). This proves the assertion.
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7.3.3 Integral I10(t).

Now we use the second disintegration in (7.14) instead of the first. Since
by (7.17) on the support of the integrand |y| ≥ 1/

√
2, then repeating the

argument above with x and y swapped we get that I10(t) meets the same
estimates as I11(t).

7.3.4 End of the proof of Theorem 7.1

Finally,
– combining together relations (7.25), (7.29), (7.32) and (7.33) we estimate
∂kI(t) for 0 < |t| ≤ 4,

while
– combining together (7.30), (7.37), (7.38) and using the fact that ∂kI00>(t)
and ∂kI00(t) vanish for |t| ≥ 4 when n = 0, we estimate ∂kI(t) for t ≥ 4.

For the reason, explained at the end of Section 7.3.1, the involved deriva-
tives are continuous functions. This proves the theorem.

7.4 Linear transformations of quadrics

In this subsection we denote by C0 spaces of continuous functions with
compact support.

In Rd = {z} let us consider a quadratic form with real coefficients 7

F (z) = 1
2Az ·z of signature (n0, n+, n−) such that n0 = 0, n+ ≥ n− =: d1 ≥

1. Denote n = n+ − n−.
Using the standard diagonal normal form for a symmetric quadratic

form, we construct a linear transformation

L : Rd → Rd, z 7→ Z = (u, x, y), u ∈ Rn, x, y ∈ Rd1 ,

such that Q(L(z)) = F (z), where Q(Z) = 1
2 |u|

2 + x · y. Consider the cor-

responding quadrics ΣQ
t = {Z : Q(Z) = t}, ΣF

t = {z : F (z) = t}, and the

δ-measures µQt , µ
F
t on them (e.g. see [13, Section II.7]):

〈µQt , fQ〉 = lim
ε→0

1

2ε

∫
t−ε≤Q(Z)≤t+ε

fQ(Z) dZ, (7.40)

〈µFt , fF 〉 = lim
ε→0

1

2ε

∫
t−ε≤F (z)≤t+ε

fF (z) dz,

7Sections 7.4-7.5 is the only part of our work, where quadratic forms are allowed to
have non-rational coefficients.
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where fQ, fF ∈ C0(Rd) and 〈µ, f〉 signifies the integral of a function f
against a measure µ. Then µQt and µFt are Borel measures in Rd, supported

by ΣQ
t and ΣF

t respectively, and for fQ ∈ C0

(
ΣQ
t \ {0}

)
and fF ∈ C0

(
ΣF
t \

{0}
)

we have

〈µQt , fQ〉 =

∫
ΣQt

fQ(Z)

|∇Q(Z)|
dZ |

ΣQt
, 〈µFt , fF 〉 =

∫
ΣFt

fF (z)

|∇F (z)|
dz |ΣFt .

Here dZ |
Σ
Q(orF )
t

is the volume element on Σ
Q(orF )
t \ {0}, induced from Rd,

see [13]. Now let fF = fQ ◦ L. Then the integral in (7.40) equals∫
t−ε≤Q(Z)≤t+ε

fQ(Z) dZ = |det(L)|
∫
t−ε≤F (z)≤t+ε

fF (z) dz,

so passing to the limit we get that

L ◦
(
| det(L)|µFt

)
= µQt . (7.41)

Thus,
to examine the function

t 7→ IF (t; f) = 〈µFt , f〉, µFt = |∇F (z)|−1dz |ΣFt , (7.42)

we are free to use any linear coordinate system in Rd since changing the
coordinates we only modify function IF by a constant factor.

7.5 Sign definite forms

Finally let us consider the case when n0 = 0 and min(n+, n−) = 0, i.e. when
the form F (z) = 1

2Az · z is sign–definite and non degenerate. Suppose for
definitenes that n− = 0. Then there exists a linear transformation L such
that F (z) = Q(L(z)), where Q(Z) = 1

2 |Z|
2, Z ∈ Rd. The quadric Σt reduces

to the empty set for t < 0, so function IF (t) (see (7.42)) vanishes for t < 0.
The calculation of previous subsection remains true in this case, so (7.41)
and the change of coordinates Z =

√
2t Z ′ show that

IF (t; f) = C(d, L)t−1

∫
|Z|=

√
2t
fQ(Z)µSd−1√

2t

(dZ)

= C(d, L)td/2−1

∫
|Z′|=1

fQ(
√

2tZ ′)µSd−1
1

(dZ ′), t > 0, fQ = f ◦ L−1 ,
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where µSd−1
r

is the volume element on the d − 1 sphere of radius r. From
this relation we immediately get that for any k ≤ min(d/2− 1, k∗),∣∣∣∂kIF (t)

∣∣∣ .k ‖f‖k,0 if 0 ≤ t ≤ 1,

and ∣∣∣∂kIF (t)
∣∣∣ .k,M ‖f‖k,M t−(M+2+k−d)/2 if t ≥ 1.

7.6 General result

We sum up the obtained results in the following

Theorem 7.3. Consider any nondegenerate quadratic form F (z) = 1
2Az · z

on Rd, d ≥ 3, and a function f ∈ Ck∗,M (Rd), M > d. Then the cor-
responding integral IF (t; f) = 〈µFt , f〉 (see (7.42)) meets the assertions of
Theorem 7.1.

Proof. i) If n+ ≥ n−, then by means of a linear change of variable F may
be put to the normal form (7.1), where d1 ≥ 0. Now the assertion follows
from the argument in Subsections 7.4, 7.5 and Theorem 7.1.

ii) If n− > n+, then the quadratic form −F is as in i), and the assertion
follows again since obviously I−F (t; f) = IF (−t; f).

A The J0 term: case d = 4

In this section we find asymptotic for the term J0 from (1.19) in the case

d = 4 and m = 0. (A.1)

Below in this section we always assume (A.1).

A.1 Preliminary results and definitions

We will need Lemmas 30 and 31 of [10], restricted for the case m = 0 and
d = 4, which we state below without a proof. Recall that constants σ∗c(A)
are defined in (1.10) and σ∗(A) = σ∗0(A). Set α := 7/2 and recall (A.1).

Lemma A.1 (Lemma 30 of [10]). For any ε > 0 and X ∈ N,∑
q≤X

Sq(c;A, 0) = η(c)σ∗c(A)
∑
q≤X

qd−1 +Oε(X
α+ε(1 + |c|)) , (A.2)

where η(c) = 1 if c · A−1c = 0 and at the same time detA is a square of
an integer, and η(c) = 0 otherwise. Moreover, |σ∗c(A)| .ε 1 + |c|ε when
η(c) 6= 0.
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Lemma A.2 (Lemma 31 of [10]). Assume that the determinant detA is a
square of an integer. Then for any ε > 0 and X ∈ N,∑

q≤X
q−dSq(0;A, 0) = σ∗(A) logX + ĈA +Oε(X

α+ε−d) ,

where ĈA is a constant depending only on A. Otherwise, if detA is not a
square of an integer, then for any ε > 0 and X ∈ N∑

q≤X
q−dSq(0;A, 0) = L(1, χ)

∏
p

(1− χ(p)p−1)σp(A, 0) +Oε(X
−1/2+ε) ,

where χ is the Jacobi symbol (det(A)
∗ ) and L(1, χ) is the Dirichlet L–function.

We will also need the following construction. Let us define for r ∈ R>0

I∗(r) := ĨrL(0) =

∫
Rd
w(z)h

(
r, F 0(z)

)
dz . (A.3)

Consider a function K(ρ;w,A), ρ ∈ R>0, given by

K(ρ) := η(0)σ∗(A)

(
σ∞(w;A, 0) log ρ+

∫ ∞
ρ

r−1I∗(r) dr

)
+σ∞(w;A, 0)ĈA ,

(A.4)
where constant η(0) is defined according to Lemma A.1 and ĈA — according
to Lemma A.2. Note that functions I∗(r) and K(ρ) do not depend on L.

We claim that function K(ρ), ρ > 0, can be extended at ρ = 0 by
continuity. Indeed, for 0 < ρ1 < ρ2 ≤ 1

K(ρ2)−K(ρ1) = η(0)σ∗(A)

(
σ∞(w;A, 0) log(ρ2/ρ1)−

∫ ρ2

ρ1

r−1I∗(r) dr

)
.

(A.5)
Using that I∗(r) = L−dIrL(0) (see (3.8)), we write the term I∗(r) from
(A.5) in the form, given by Proposition 3.8 b). Then I∗(r) takes the form
of the r.h.s. of (3.11), divided by Ld, with q = rL. The leading term in
the obtained formula for I∗(r) is σ∞(w;A, 0) and the corresponding integral∫ ρ2
ρ1
r−1σ∞ dr in (A.5) cancels the first term in the brackets of (A.5). Then,

setting M = d/2 − 1, β = rγ̄ , γ̄ = γ/d and 0 < γ < 1 in the just discussed
formula for I∗(r), obtained from (3.11), we get the estimate

|K(ρ2)−K(ρ1)| .N‖w‖d/2−1,d+1

∫ ρ2

ρ1

(
rd/2(1−γ̄)−2〈log r〉+ rN−2 + rγ̄N−2

)
dr

.γ ρ
d/2−1−γ
2 ‖w‖d/2−1,d+1 .
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The last inequality here is obtained by choosing N = N(γ) to be suffi-
ciently large and writing rd/2(1−γ̄)−2〈log r〉 .γ r

d/2(1−γ̄)−2−γ/2 = rd/2−2−γ .
Therefore K(ρ) extends at ρ = 0 by continuity and

|K(ρ)−K(0)| .γ ρ
d/2−1−γ‖w‖d/2−1,d+1 , (A.6)

so the function K is (d/2− 1− γ)-Hölder continuous at zero, for any γ > 0.

A.2 Estimate for J0

Argument in this section is related to Section 13 of [10]. Here we restrict
ourselves for the case when the determinant detA is a square of an integer,
so in particular η(0) = 1. We use this specification only in the proof of
Lemma A.5, when applying Lemma A.2. The case of non-square determi-
nant is easier and can be obtained similarly, using the second assertion of
Lemma A.2.

Proposition A.3. Assume that the determinant detA is a square of an
integer. Then for any 0 < ε < 1/5,

J0 =σ∞(w;A, 0)σ∗(A)Ld logL+K(0;w,A)Ld

+Oε(L
d−ε (‖w‖d/2−1,d−1 + ‖w‖0,d+1

)
).

Proof. To establish Proposition A.3 we write J0 in the form (1.21),
J0 = J+

0 + J−0 , where

J+
0 :=

∑
q>ρL

q−dSq(0)Iq(0) and J−0 :=
∑
q≤ρL

q−dSq(0)Iq(0) ,

with ρ ≤ 1. Then the assertion follows from Lemmas A.4 and A.5 below.
Recall that α = 7/2.

Lemma A.4. Let w ∈ L1(Rd). Then for any γ > 0, any ρ ≤ 1 and L
satisfying ρL > 1,∣∣∣∣J+

0 − L
dη(0)σ∗(A)

∫ ∞
ρ

r−1I∗(r) dr

∣∣∣∣ .γ (ρα+γ−d−1Lα+γ + ρ−2Ld−1)|w|L1 .

Proof. To simplify the notation, in this proof we denote Iq := Iq(0) and
Sq := Sq(0). Let us recall the summation by parts formula for sequences
(fq) and (gq):∑

m<q≤n
fq(gq − gq−1) = fngn − fm+1gm −

∑
m<q<n

(fq+1 − fq)gq.
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We take arbitrary R ∈ N and apply the latter with m = R, n = 2R,
fq = q−dIq and gq =

∑
R<q′≤q Sq′ , so that gR = 0 and Sq = gq − gq−1 for

q > R. We find∑
R<q≤2R

q−dSqIq =(2R)−dI2R

∑
R<q≤2R

Sq

−
∑

R<q<2R

∂̃q(q
−dIq)

∑
R<q′≤q

Sq′ ,
(A.7)

where for a sequence (aq) we denote ∂̃qaq := aq+1 − aq. By (3.8)–(3.9),

Iq = Ld
∫
Rd
w(z)h(q/L, F 0(z)) dz .

So,

|Iq| .
Ld+1

q
|w|L1 and |∂qIq| .

Ld+1

q2
|w|L1 , (A.8)

where the first estimate above follows from Corollary 3.3 while the second
one — from Lemma 3.2 with m = 1, n = N = 0. Then, |∂̃q(q−dIq)| .
Ld+1q−d−2|w|L1 . According to (A.2) with ε replaced by γ, for R′ ≤ 2R∑

R<q≤R′
Sq = η(0)σ∗(A)

∑
R<q≤R′

qd−1 +Oγ(Rα+γ) , (A.9)

where we recall that σ∗0(A) = σ∗(A). Let us view the r.h.s. of (A.7) as a
linear functional G

(
(Sq)

)
on the space of sequences (Sq). Then, inserting

formula (A.9) in the r.h.s. of (A.7), we get∑
R<q≤2R

q−dSqIq = η(0)σ∗(A)G
(
(qd−1)

)
+Oγ

(
Ld+1|w|L1

(
R−d−1+α+γ +

∑
R<q≤2R

q−d−2+α+γ
))
,

(A.10)

where the Oγ term is obtained by applying (A.8) together with the estimate
for ∂̃q(q

−dIq) above and replacing the sums
∑
Sq,

∑
Sq′ in the r.h.s. of

(A.7) by Oγ(Rα+γ). According to the summation by parts formula (A.7)
with Sq replaced by qd−1, we have

∑
R<q≤2R q

−dqd−1Iq = G
(
(qd−1)

)
. Thus,

by (A.10),∑
R<q≤2R

q−dSqIq = η(0)σ∗(A)
∑

R<q≤2R

q−1Iq +Oγ

(
Ld+1R−d−1+α+γ |w|L1

)
.

46



Then, setting Rl = b2lρLc we get

J+
0 =

∞∑
l=0

∑
Rl<q≤Rl+1

q−dIqSq

=η(0)σ∗(A)
∑
q>ρL

q−1Iq +Oγ

(
ρα+γ−d−1Lα+γ |w|L1

∞∑
l=0

2−l(d+1−α−γ)

)

=η(0)σ∗(A)
∑
q>ρL

q−1Iq +Oγ

(
ρα+γ−d−1Lα+γ |w|L1

)
.

It remains to compare the sum A :=
∑

q>ρL q
−1Iq with the integral B :=

Ld
∫∞
ρ r−1I∗(r) dr. Since LdI∗(r) = IrL, then changing the variable of inte-

gration r to q = rL, B takes the form
∫∞
ρL q

−1Iq dq. Then,

|A−B| ≤
∣∣∣ ∑
q>ρL

q−1Iq −
∫ ∞
bρLc+1

q−1Iq dq
∣∣∣+
∣∣∣ ∫ bρLc+1

ρL
q−1Iq dq

∣∣∣. (A.11)

Due to (A.8), |q−1Iq| . q−2Ld+1|w|L1 and |∂q(q−1Iq)| . q−3Ld+1|w|L1 .
Thus,the both terms in the r.h.s. of (A.11) are bounded by (ρL)−2Ld+1|w|L1 =
ρ−2Ld−1|w|L1 .

Recall that ĈA is a constant arising in Lemma A.2.

Lemma A.5. Assume that the determinant detA is a square of an integer.
Then for any γ > 0, N > 1, any ρ ≤ 1 and L satisfying ρL > 1,

J−0 =Ldσ∞(w;A, 0)
(
σ∗(A) log(ρL) + ĈA

)
+Oγ,N

((
ρα+γ−dLα+γ

+ Ld
(
ρ logL+ ρN−1 + L1−d))‖w‖d/2−1,d+1

)
.

Proof. Inserting Proposition 3.8 b) with M = d/2 − 1 = 1 and β = 1
into the definition of the term J−0 , we get J−0 = IA + IB, where

IA := Ldσ∞(w)
∑
q≤ρL

q−dSq(0), IB :=
∑
q≤ρL

Sq(0)q−d(fq + gq) ,

with

|fq| . qLd−1
〈

log(
q

L
)
〉
‖w‖d/2−1,d+1 ,

|gq| .N

(
qNLd−N + 1

)
Lq−1‖w‖0,d+1.
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By Lemma A.2,∑
q≤ρL

q−dSq(0) = σ∗(A) log(ρL) + ĈA +Oγ((ρL)α+γ−d).

So,

IA = Ldσ∞(w)
(
σ∗(A) log(ρL) + ĈA

)
+Oγ(σ∞(w)Lα+γρα+γ−d) ,

whereas

|σ∞(w)| = |σ∞(w;A, 0)| = |I(0)| ≤ ‖I‖0,0 .A ‖w‖0,d+1 (A.12)

on account of (3.13). As for the term IB, since d = 4, Lemma 2.1 implies
that

|IB| .
∑
q≤ρL

q−1(|fq|+ |gq|) .N Ld
(
ρ logL+ ρN−1 + L1−d

)
‖w‖d/2−1,d+1 ,

for N ≥ 2. The obtained estimates on IA and IB imply the assertion.

Now we conclude the proof of Proposition A.3. The leading term of
J0 is given by the sum of leading terms from formulas for J+

0 and J−0 in
Lemmas A.4 and A.5. Since η(0) = 1, it takes the form

Ldσ∗(A)
(∫ ∞

ρ
r−1I∗(r) dr + σ∞(w) log(ρL)

)
+ Ldσ∞(w)ĈA

= σ∞(w)σ∗(A)Ld logL+K(0)Ld +Oγ
(
Ldρd/2−1−γ‖w‖d/2−1,d+1

)
,

where in the last equality we used (A.4) and (A.6). Then we find

J0 =σ∞(w)σ∗(A)Ld logL+K(0)Ld +Oγ,N

((
ρα+γ−d−1Lα+γ + ρ−2Ld−1

+ Ld(ρd/2−1−γ + ρ logL+ ρN−1 + L1−d)
)
‖w‖d/2−1,d+1

)
,

since |w|L1 . ‖w‖0,d+1. We now pick ρ = L−1/5 and N = 2, and, using that
d = 4, get the assertion of proposition.

A.3 Estimate for σ1(w;A,L)

In this section we get an upper bound for the subleading order term σ1 of
the asymptotics from Theorem 1.4.

In the case when the determinant detA is not a square of an integer,
σ1 is given by (1.14) and the task is not complicated. Indeed, according to
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Lemma A.2, the product
∏
p(1−χ(p)p−1)σp(A, 0) is finite (and independent

from L). On the other hand, by (A.12), |σ∞(w;A, 0)| . ‖w‖0,d+1. Thus,

|σ1(w;A,L)| . ‖w‖0,d+1.

In the case when detA is a square, σ1 is given by (1.24) and the required
estimate is less trivial.

Proposition A.6. Assume that detA is a square of an integer. Then

|σ1(w;A,L)| . ‖w‖Ñ,Ñ+3d+4, where Ñ := d2(d+ 3)− 2d.

Proof. Since η(c) takes values 0 or 1, then according to the definition
(1.24) of σ1, we have

|σ1(w)| ≤ |K(0)|+
∑

c 6=0: η(c)=1

|σ∗c(A)σc∞(w)|. (A.13)

Let us first estimate the term K(0). According to (A.6),

|K(1)−K(0)| . ‖w‖d/2−1,d+1. (A.14)

On the other hand, σ∗(A) is independent from L and, in view of Lemma A.2
is finite. Then, by the definition (A.4) of K(ρ),

|K(1)| .
∫ ∞

1
r−1|I∗(r)| dr + |σ∞(w;A, 0)ĈA|.

Due to the definition (A.3) of the integral I∗(r) and Corollary 3.3, |I∗(r)| .
r−1|w|L1 . r−1‖w‖0,d+1. Then, in view of (A.12), |K(1)| . ‖w‖0,d+1, so
that, by (A.14),

|K(0)| . ‖w‖d/2−1,d+1. (A.15)

Let us now estimate the terms σc∞(w), which are given by (1.23):

σc∞(w) = L−d
∞∑
q=1

q−1Iq(c;A, 0, L) = Y1(c) + Y2(c),

where Y1 = L−d
∑L|c|−M

q=1 q−1Iq(c), Y2 = L−d
∑

q>L|c|−M q−1Iq(c) and M ∈
N will be chosen later. Using that d = 4, according to Lemma 6.2,

|Y1(c)| .γ L
−1+γ |c|−1+γC(w)

L|c|−M∑
q=1

q−γ . |c|−(1−γ)(M+1)C(w),
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where we denoted C(w) := ‖w‖N̄,d+5 + ‖w‖0,N̄+3d+4. On the other hand,

by Proposition 5.1, |Iq(c)| .N Ld+1q−1|c|−N‖w‖N,2N+d+1 for every N ∈ N.
So,

|Y2(c)| .N L|c|−N‖w‖N,2N+d+1

∑
q>L|c|−M

q−2 . |c|−N+M‖w‖N,2N+d+1.

Thus,

|σc∞(w)| .γ,N

(
|c|−(1−γ)(M+1) + |c|−N+M

)(
‖w‖N̄,N̄+3d+4 + ‖w‖N,2N+d+1

)
.

By Lemma A.1, |σ∗c(A)| .γ 1 + |c|γ if η(c) = 1, so we get∑
c 6=0: η(c)=1

|σ∗c(A)σc∞(w)| .γ,N ‖w‖N̄,N̄+3d+4 + ‖w‖N,2N+d+1,

once M and N−M are sufficiently large and γ is sufficiently small. Choosing
M = d, N = 2d+ 1 and γ = 1/(d+ 3), we get N̄ = d2(d+ 3)− 2d. Together
with (A.13) and (A.15), this implies the assertion of the proposition.

B Constants σ(A, 0) and σ∗(A)

It is clear that our result provides an approximation to the seriesNL(w;A,m)
through the singular integral σ∞(w) only if the singular series σ(A,m) or
σ∗(A) are strictly positive. In fact, the singular series is known to be strictly
positive under a very general condition, namely, for non-singular forms of
any degree that have non-singular solutions in R and in every p-adic field
(provided the singular series is absolutely convergent), see, e.g., Section 7 of
[14]. However, since the most interesting case in applications to mathemat-
ical physics is the case of the quadratic form Fd(x, y) below, we give in this
Appendix a direct elementary treatment of the evaluation of the constants
σ(A, 0) for d ≥ 5 and σ∗(A) for d = 4 in this case, independent of the general
theory.

In this section we consider the case when the quadratic form reads as

F (x, y) = Σ
d/2
i=1xiyi =: Fd(x, y) where d = 2s ≥ 4 (B.1)

and x = (x1, . . . , xs), y = (y1, . . . , ys). Our goal is to evaluate the constants
σ(A, 0) for d ≥ 5 and σ∗(A) for d = 4. Below we use the usual notation
for the relation that an integer m divides or non-divides an integer vector s
(e.g. 2|(8, 6) and 2 - (8, 7)).
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In view of the definitions (1.10)–(1.11), our first aim is to compute the
constants σp(A, 0). For a prime p and k ∈ N let consider the set

Sp(k) = {(x, y) mod pk : Fd(x, y) = 0 mod pk}

and denote Np(k) := ]Sp(k). Note that the set Sp(k) and the constant Np(k)
depend on d. Then the constants σp can be rewritten as

σp(d) := σp(A, 0) = lim
k→∞

Np(k)

p(d−1)k
. (B.2)

This relation is mentioned in [10], p. 199, without a proof; we sketch its
rigorous derivation at the end of this appendix.

Let Np(d) := Np(1) be the number of Fp–rational points on {Fd = 0
mod p}.

Lemma B.1. For any prime p,

σp(d) =
Np(d)− 1

pd−1 − p1−d . (B.3)

Proof. For j = 0, 1, . . . , k we define Sp(k, j) as a set of (x, y) ∈ Sp(k)
such that

(x, y) = pj(x′, y′) mod pk, where p - (x′, y′).

So Sp(k, 0) = {(x, y) ∈ Sp(k) : p - (x, y)} and Sp(k, k) = {(0, 0)}. Sets
Sp(k, j) and Sp(k, j

′) with j 6= j′ do not intersect, and denoting Np(k, j) =
]Sp(k, j) we have

Sp(k) =
⋃k

j=0
Sp(k, j), Np(k) =

∑k

j=0
Np(k, j) .

In particular, Np(1, 0) = Np − 1 since Np(1, 1) = 1. We claim that

Np(k, 0) = Np(k − 1, 0)p(d−1),

and thus

Np(k, 0) = Np(1, 0)p(d−1)(k−1) = (Np − 1) p(d−1)(k−1). (B.4)

Indeed, we argue by induction in k. Let k = 2 and (x, y) ∈ Sp(2, 0). Let us
write (x, y) as (x0 + pa, y0 + pb) with (x0, y0), (a, b) ∈ Fdp. Then p - (x0, y0),
so (x0, y0) ∈ Sp(1, 0). Let us now fix any (x0, y0) ∈ Sp(1, 0) and look for
(a, b) ∈ Fdp such that (x0 + pa, y0 + pb) ∈ Sp(2, 0). Since p2F (a, b) = 0 mod
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p2 and p - (x0, y0), then relation F (x, y) = 0 mod p2 implies a non-trivial
linear equation on (a, b) ∈ Fdp. So each (x0, y0) ∈ Sp(1, 0) generates exactly

pd−1 vectors (x, y) ∈ Sp(2, 0), which proves the formula for k = 2. This
argument remains valid for any k ≥ 2, by representing (x, y) mod pk in the
form (x0 + pk−1a, y0 + pk−1b) with (x0, y0) ∈ Fd

pk−1 and (a, b) ∈ Fdp.
Let now (x, y) ∈ Sp(k, j) with j ≥ 1. Then (x, y) = pj(x′, y′) mod pk,

where p - (x′, y′) and (x′, y′) satisfies p2jF (x′, y′) = 0 mod pk. Thus (x′, y′) ∈
Sp(k − 2j, 0), if j ≤ k−1

2 , i.e. j ≤ bk−1
2 c =: jk. The correspondence

(x, y) 7→ (x′, y′) is a well defined mapping from Sp(k, j) to Sp(k − 2j, 0).
Indeed, if (x1, y1) ∼ (x, y) in Sp(k, j), then pk−j |

(
(x′1, y

′
1) − (x′, y′)

)
, so

(x′1, y
′
1) ∼ (x′, y′) in Sp(k − 2j, 0). Since this map is obviously surjective,

then it is a bijection of Sp(k, j) onto Sp(k − 2j, 0), which in view of (B.4)
implies

Np(k, j) = Np(k − 2j, 0) = (Np − 1) p(d−1)(k−2j−1).

By (B.4) this formula as well holds for j = 0.
Any (x, y) such that pj |(x, y) with j ≥ jk + 1 satisfies F (x, y) = 0

mod pk. Thus

k∑
j=jk+1

Np(k, j) = ]{(x, y) mod pk : (x, y) = 0 mod pjk+1} = pd(k−jk−1) ≤ pdk/2.

Therefore

Np(k) = (Np − 1) p(d−1)(k−1)
jk∑
j=0

p−2j(d−1) +O(pdk/2).

So

σp = lim
k→∞

Np(k)

p(d−1)k
= (Np − 1) p1−d

∞∑
j=0

p−2j(d−1) =
p1−d(Np − 1)

1− p2−2d
,

which proves (B.3).

Let then deduce a formula for Np(d) using induction in d/2 = s. For
d = 2 we have Np(2) = ]{(x, y) ∈ F2

p : xy = 0 mod p} = 2p− 1. Next,

Np(d+ 2) = ]{solutions with xs+1 = 0}+ ]{solutions with xs+1 6= 0}
= pNp(d) + (p− 1)pd.

Therefore for any even d = 2s ≥ 2,

Np(d) = pd−1 + ps − ps−1,
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and thus

σp(d) =
1 + p1−s − p−s − p1−d

1− p2−2d
=

(1 + p1−s)(1− p−s)
1− p2−2d

.

Since by Euler’s formula
∏
p(1 − p−l) = 1/ζ(l) for any l > 1, then in the

case d = 4 we get from (1.11) and the obtained formula for σp(d) that

σ(A, 0; d = 4) =
∏
p

σp(4) =
ζ(6)

ζ(2)

∏
p

(
1 + p−1

)
.

This does not converge, but

σ∗(A; d = 4) =
∏
p

(1− p−1)σp(4) =
ζ(6)

ζ(2)2
=

4π2

105
' 0.376,

converges. Further,

σ(A, 0; d = 6) =
ζ(2)ζ(10)

ζ(3)ζ(4)
' 1.265, σ(A, 0; d = 8) =

ζ(3)ζ(14)

ζ(4)ζ(6)
' 1.092,

whereas

1 < σ(A, 0; d) =
ζ(s− 1)ζ(2d− 2)

ζ(s)ζ(d− 2)
=

(1 + 21−s)(1 + 22−4s)

(1 + 2−s)(1 + 22−2s)
+o(1) = 1+o(1)

tends to 1 when d = 2s ≥ 10 grows.
It remains to prove (B.2). By definition (1.10), σp =

∑∞
t=0 p

−dtSpt(0),
where

Spt(0) =
∑

amod pt

∗ ∑
bmod pt

ept(aF (b)).

Note that p−dtSpt(0) = 1 for t = 0, while for t = 1:

p−dSp(0) = p−d
p−1∑
a=1

∑
bmod p

ep(aF (b))

= p−d
p−1∑
a=1

∑
bmod p, p|F (b)

1 + p−d
p−1∑
a=1

∑
bmod p, p-F (b)

ep(aF (b))

= p−d(p− 1)Np(d) + p−d(−1)(pd −Np(d)) = p1−dNp(d)− 1 ,

since
m−1∑
a=1

em(an) = −1 , (B.5)
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for any n,m 6= 0 such that (m,n) = 1. Therefore
∑1

t=0 p
−dtSpt(0) =

p1−dNp(1).
We proceed now by induction, supposing that, for k ≥ 1,

k∑
t=0

p−dtSpt(0) = p(1−d)kNp(k) .

Then we write

Spk+1(0) =
∑

amod pk+1

∗ ∑
bmod pk+1

epk+1(aF (b)) = Σ1 + Σ2 + Σ3 ,

where we have defined

Σ1 :=
∑

amod pk+1

∗ ∑
pk+1|F (b)

1 = pk(p− 1)Np(k + 1) ,

Σ2 :=
∑

amod pk+1

∗ ∑
F (b)=lpk

ep(al) = −pk(pdNp(k)−Np(k + 1)) ,

Σ3 :=
∑

amod pk+1

∗ k−1∑
s=0

∑
F (b)=lps

epk+1−s(al) = 0 ,

with a non-zero l = l(b) such that p - l. The equalities above essentially
follow by a repeated application of (B.5).

This way we have got

Spk+1(0)

pd(k+1)
=
pk+1Np(k + 1)− pd+kNp(k)

pd(k+1)
=
Np(k + 1)

p(d−1)(k+1)
− Np(k)

p(d−1)k
,

which completes the induction step, thus proving (B.2).
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