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Abstract

The problem of movement coordination in large DoF (Degree of Freedom) robots is complex due to redundancies. In this regard,
Dynamic Movement Primitive (DMP) is a useful planning technique, inspired by biology, that can be used to store and reproduce
trajectories about every DoF. This work is a preliminary study that aims to understand and quantify the influence of the robot
dynamics upon the performance of DMP in a simulated 2DoF robot arm. The investigation demonstrates that the effect of the robot
body dynamics needs to be taken into account during the learning process of the DMP.
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1. Introduction

Movement coordination for compliant robots with a large number of DoF is a very difficult task and necessitates
some form of planning. Due to the high number of DoFs and the almost infinite possible ways of using them over time,
an infinite number of possible movement plans might exist for any given task. While this in itself can be advantageous
from the redundancy perspective, from a learning point of view, finding good movement plans is complicated; compu-
tationally, well known statistical learning techniques do not scale well to problems characterized by a high dimensional
state space (i.e. curse of dimensionality).

As proposed in the field of human motor control [1], an alternative method of constraining movement planning might
be possible by requiring that movements are built from basic building blocks. Dynamic Movement Primitive (DMP)
[2,3], is a technique that allows movement plans to be encoded and reproduced with a set of parameters, that can be
learned using regression based methods [4]. The DMP architecture consists of controllers based on nonlinear dynamical
systems, and using locally weighted regression techniques to learn complex, discrete or rhythmic, movements from a
training trajectory. The controllers can be considered to be discrete or rhythmic pattern generators which can replay
and modulate the learned movements, while being robust against perturbations.

Despite numerous demonstrations in recording and reproducing movement plans in a wide variety of robots, the
impact of body dynamics on the performance of DMP and trajectory learning is not yet well understood. This issue
is crucial when we consider the challenge of accurate joint level control of compliant robots [5]. This work focuses
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Figure 1. DMP performance for a 2DoF planar robot tracking a horizontal line trajectory (w.r.t gravity).

in quantifying the relationship between body parameters and performance of the DMP in controlling the robot, and it
aims at demonstrating the need for incorporating body dynamics into the DMP learning framework.

2. Simulation Experiments and Results

The simulator used consisted of a 2DoF planar robot arm coupled with a DMP for each joint. The DMPs are trained
using locally weighted regression [4] and the robot contains appropriately tuned PID controllers at the joint level.
The training trajectories at the joint level were obtained from inverse kinematics of (a) a horizontal straight line, (b) a
vertical line, and (c) a spiral moving upwards (all w.r.t gravity). On a uniform distribution of masses at the 2 links, 25
different candidate robots were defined for the experiments.

The tracking performance for each of these trajectories was analyzed at each joint by means of a quality measure
Q. This was defined as the root-mean squared distance between the joint trajectory learned by the DMP and the one
performed by the robot. Results are presented in Fig. 1a and Fig. 1b for each of the candidate robots with the task
of tracking a horizontal line. The results indicate that errors decrease with mass, and therefore they are due to the
dynamics of the robot (i.e. a ideal massless robot has the best error performance). Further, the variation in mass of link
1 has a greater impact then the variation in mass of link 2 on the error performance.

The plots in Fig. 1c and Fig. 1d depict the tracking errors as a function of time for each of the 25 robots. Reflecting
the Q performance results, candidates with the least mass present the lowest error. An interesting qualitative aspect
to the performance is the presence of zero-crossover points independent of the robot mass; independently of dynamic
effects, there exist certain points in time unique to a training trajectory where the errors drop to zero.

3. Conclusions and Future Work

In this an analysis of the Dynamic Movement Primitive with regards to the impact of a robot’s body parameters
was presented. First, the relationship of the DMP with the relevant neuroscientific concepts of muscle synergy and
central pattern generators was discussed. We then presented a simulator of a 2DoF planar arm wherein we tested the
DMP performance with respect to the mass of the robot’s links. The results indicate the need to incorporate the body
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dynamics into the learning phase. Future work would be to develop and quantify the performance of such a technique
in a real compliant robot.
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