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Abstract
Understanding the dynamics of climate variables is critical for sectors like energy and environmental 
monitoring. This study addresses the pressing need for accurate mapping of environmental variables in 
national or regional monitoring networks, a challenge exacerbated by skewed data and large gaps. While 
this may not be immediately apparent, managing skewness across multiple data sources introduces 
additional complexities, as conventional transformation methods often fail to effectively normalize the data 
or preserve inter-dataset relationships. Furthermore, the literature highlights that interpolation uncertainty is 
closely linked to the interpolation distance, making the handling of large gaps particularly problematic. To 
tackle these challenges, we propose a novel data fusion approach: the warped multifidelity Gaussian 
process. This method predicts time-series data from multiple sources with varying reliability and resolution, 
while effectively addressing skewness and demonstrating partial independence from interpolation distance. 
Through extensive simulation experiments, we explore both the strengths and limitations of the method. 
Additionally, as a case study, we apply warped multifidelity Gaussian process (WMFGP) to wind speed data 
from the Agenzia regionale per la protezione ambientale (ARPA) Lombardia network, a regional 
environmental agency in Italy. Our results demonstrate the efficacy of WMFGP in filling large gaps in wind 
speed data, providing more accurate predictions that are essential for air quality forecasting, network 
maintenance.
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1 Introduction
Gaining insight into the changes in environmental variables like wind speed is crucial, especially in 
fields such as the energy sector, where it influences decisions about wind farm development, and in 
environmental monitoring to assess air quality in specific regions. These tasks range from mitigat-
ing atmospheric and acoustic pollution to overseeing water quality and electromagnetic fields, re-
flecting the broader mission of environmental stewardship and protection, see Maranzano (2022). 
Data fusion algorithms are becoming highly successful in supporting these challenges, as they in-
tuitively combine multiple data sources to obtain more informative data and hence potentially 
more cost-effective results. Our study extends the class of data fusion algorithms based on 
Gaussian processes, referred to as multifidelity, specifically by incorporating a nonparametric 
warping function for response variables of interest. This approach allows us to effectively merge 
data having various reliability (fidelity) from different monitoring stations, even when dealing 
with skewed data distributions, a common occurrence in environmental variables such as wind 
speed, air pollution, and precipitation. More specifically, we propose an extension of the 
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autoregressive multifidelity Gaussian process (MFGP) as proposed by Le Gratiet and Cannamela 
(2015) and used the nonparametric warping of Agou et al. (2022) to handle skewed data. Our ex-
tension, called warped multifidelity Gaussian process (WMFGP), maintains the same assumptions 
of the standard MFGP method, where it is assumed a highly reliable source of information, la-
belled high-fidelity (HF) is related to a source of information, namely low-fidelity (LF), regarded 
as less reliable, connected together by a so-called autoregressive representation of fidelity levels 
through a regressive parameter ρ. This implies that the effectiveness of data fusion of the LF 
with HF data is directly influenced by the linear correlation between the two data sources and 
more precisely a higher correlation leads to more effective recovery of HF data.

We apply our model to wind speed data provided by one of the regional environmental protection 
agencies (in Italian, Agenzia Regionale di Protezione dell’Ambiente) active in Italy, namely, ARPA 
Lombardia, which operates in the Northern part of the country. The Lombardy region, nestled in 
the Po River valley and surrounded by the Alps, faces unique challenges in air quality management. 
In fact, its geographical configuration limits air circulation, contributing to the elevated pollutant 
concentrations (Maranzano, 2022). Furthermore, Lombardy ranks among Europe’s most industri-
alized regions (see Eurostat Database, 2024), hosting mechanical, electrical, metallurgic, textile, 
and chemical industries, along with numerous animal farms (L. Colombo et al., 2023), which recent 
studies have linked to significant impacts on air quality (Fassò et al., 2023). There are multiple studies 
where it is demonstrated that wind speed plays a critical role in determining air pollutant dispersion, 
such as those presented in Carta et al. (2008), Yu et al. (2004), Erdem and Shi (2011), McWilliams 
et al. (1979), and Raffaelli et al. (2020). Hence, an accurate mapping of wind speed across the region 
is essential for understanding and managing air quality effectively.

ARPA Lombardia manages a broad weather and air quality monitoring network, which some-
times exhibit data gaps, not only in air pollutant concentration but also in wind speed data. Filling 
these gaps is vital for comprehensively understanding wind patterns and their implications for air 
quality. For example, ARPA could schedule the maintenance of the monitoring stations more ef-
fectively, if accurate methods for filling data gaps were available. Moreover, data gaps might occur 
in the presence of particular meteorological events. The absence of a week’s worth of data might 
result in a lack of understanding of the physical generation process.

Interpolating a week’s worth of data presents substantive challenges for standard methods such as 
Gaussian Process regression, where uncertainty increases linearly with the interpolation distance. 
However, our exploration reveals that multifidelity models maintain a partial independence from 
this interpolation distance, a detail further elaborated in section 4.3. Although multifidelity models 
address the issue of distance effectively, they fall short when handling skewed data. Standard normal-
ization methods often fail with multiple data sources: applying a single transformation across two 
independent datasets can be effective for only one dataset (effective in 38% of cases in our study). 
Conversely, using two separate transformations to normalize each dataset independently can distort 
the inter-dataset relationships, leading to biased estimates. To exemplify the implications of such dis-
tortions, we provided an illustrative example in the online supplementary material, see Appendix C. 
Our novel model addresses these issues by managing large gaps without substantially distorting the 
relationships between datasets, while effectively normalizing two independent data sources. 
Experimental results have demonstrated superior performance compared with both standard inter-
polation methods and methods designed to handle data skewness.

The remainder of the paper is organized as follows: introduction to the methodology, including 
a historical overview of multifidelity methods and the challenges associated with skewness. Two 
experiments are described to demonstrate WMFGP’s efficacy in handling skewness in a data fu-
sion context. The practical application is described and the results presented.

2 Methods
2.1 Historical overview
In the literature, the word fidelity is used in place of the word quality or reliability (Le Gratiet and 
Cannamela, 2015; Perdikaris et al., 2017, 2016). The first appearance of a multifidelity method in 
the form of a Gaussian process (GP) can be traced back to 2000, when Kennedy and O’Hagan in-
troduced the idea of creating a model to operate at different fidelity levels in their work (Kennedy 
and O’Hagan, 2000). The intuition was that such a model could leverage the qualities of different 
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datasets. Indeed, HF data are usually scarce in time and space and very expensive to collect. While, 
LF are typically cheaper and more abundant in time and space, but unreliable by definition. More 
recently, the framework elaborated by Kennedy and O’Hagan is more commonly referred to as 
multifidelity. The approach is highly flexible as it can manage data of different reliability and res-
olutions. For example, most of the institutional ground monitoring networks, such as the one 
managed by the Italian ARPAs, suffer from a poor spatial coverage and the presence of missing 
sequences representing an optimal case study for multifidelity methods. Our application deals 
with the this latter problem, using multifidelity methods to recover missing sequences.

Research on multifidelity models has investigated multiple aspects. For example, the paper by Le 
Gratiet and Cannamela (2015) focused on the estimation procedure, recasting the equations of the 
original inefficient Bayesian approach, proposing a sequential design and enabling a much faster 
inference. Some researchers instead modelled the relationship between the HF and the LF data, as 
seen in Perdikaris et al. (2017), where the authors propose a multifidelity model (NARGP) to han-
dle nonlinear relationships between fidelity levels, since the original model assumed a linear rela-
tionship. Instead, in a not peer reviewed work Raissi and Karniadakis combined the multifidelity 
Gaussian process with a neural network to create a robust model for discontinuous relationships. 
Cutajar’s model (Cutajar et al., 2019) not only addresses nonlinear relationships between datasets 
but also overcomes the potential overfitting issues associated with NARGP model. Of particular 
relevance is the multifidelity model described in Lu and Shafto (2021), where the data-fusion is 
performed on the language of kernels, capturing both the uncertainty propagation between fidelity 
levels and potential nonstationarity in latent GP. An excellent overview of different multifidelity 
methods can be found in Costabal et al. (2019).

The autoregressive multifidelity model, as described in Kennedy and O’Hagan (2000), Le 
Gratiet and Cannamela (2015), and Perdikaris et al. (2017), assumes the existence of different 
Gaussian processes modelling the various fidelity levels. Therefore, like the standard Gaussian 
process, the MFGP is based on normality assumptions, specifically in the error term. However, en-
vironmental data such as wind speed, relative humidity, temperature, and precipitation often fol-
low skewed distributions, which renders the normality assumption inappropriate (Aslam, 2021). 
Addressing nonnormal properties using a Gaussian process has historically been a challenge. One 
intuitive approach might involve using a multivariate skew-normal distribution class. However, as 
discussed by Genton and Zhang (2012), such distribution classes suffer from identifiability issues 
in inference. Many attempts have been made to mitigate these issues. For example, Alodat and 
Shakhatreh (2020) proposed a Gaussian process with skewed errors based on a closed skew nor-
mal distribution. However, the model proved to be heavily parameterized, making inference com-
putationally challenging. A recent alternative has been formalized in Khaledi et al. (2023), which 
proposes a parsimonious version of the closed skew normal distribution for use within a Gaussian 
process framework. This offers an intriguing approach to test in real-case scenarios. A completely 
different approach from the one of Khaledi or Alodat and Shakhatreh for addressing nonnormal 
properties, particularly skewness, involves transformations. The idea is to transform the response 
variable in such a way that it follows a normal distribution. These transformations can be either 
parametric or nonparametric. An example of a parametric transformation is the Box–Cox trans-
formation. However, parametric transformations like the Box–Cox rely on parameters that are 
data-dependent. In a multifidelity context, where multiple data sources need to be transformed, 
the optimal parameters required for appropriate normalization of each data source differ. 
Applying different transformations might alter the relationship between the HF and LF data. 
Within the class of parametric transformations for Gaussian processes there is also the warped 
Gaussian process (Snelson et al., 2003), in which a nonlinear mapping of the response variable 
is directly incorporated into the likelihood function such that the GP parameters are learned jointly 
with the parameters of the normalizing function. This classic approach is very well suited for mul-
tiple applications. However, sometimes the transformations learned in this way are not capable of 
finding effective normalization. A nonparametric nonlinear transformation of the response vari-
able for GP is proposed in Agou et al. (2022). The data-driven transformation learned in such a 
way, also referred to as warping, is much more flexible than parametric approaches since it can 
effectively normalize any data source as long as enough data are provided. More importantly, 
since the proposed method’s transformation is based on the quantiles of a CDF, the normalized 
values preserves the same ordering in normalized space (latent space). This property is also 
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referred as quantile invariance, and ensure that the relationships between different datasets does 
not change in the latent space.

2.2 The autoregressive multifidelity Gaussian process
We will first describe the autoregressive multifidelity model, as our method builds upon an 
extension of this framework. Consider a set of high fidelity scalar responses denoted as 
yH = [y(xH1 ), y(xH2 ), . . . , y(xHNH

)]. It is typically assumed that xH ∈ Rd, referred to as the input 
space. The subscript H emphasizes that these observations are sourced from HF data, implying 
that if they pertain to an environmental factor like wind speed, the measured wind speed closely 
approximates the actual. The set of all locations where HF data are collected is denoted as xH.

However, it is important to note that the observations yH often have limited spatial and tem-
poral coverage. Constructing an accurate model becomes especially challenging when the sample 
size of collected HF samples NH is small. To address this, multifidelity models incorporate obser-
vations that are correlated with the variable of interest and are available near the spatial locations 
of yH. We denote these observations as yL. The observations labelled as LF are measured with a 
lower degree of reliability but are observed at locations xL, with a sample size NL ≫ NH. We 
also define N = NL + NH, being the total number of observations.

Moreover, we assume that xH ⊂ xL, meaning we have a nested sampling design in which each 
HF observation y(xHi ) has a corresponding LF observation y(xLi ), but not vice versa.

Such a situation can be modelled using Gaussian Process Regression (GPR); see Williams and 
Rasmussen (2006) for more details. For a finite collection uL(xL1 ), uL(xL2 ), . . . , uL(xLNL

), the joint 
distribution is Gaussian with mean μ and covariance matrix Σ, i.e.

uL ≡

uL(xL1 )
uL(xL2 )

..

.

uL(xLNL
)

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

∼ NNL μ, Σ
( 

, 

where

μ = m(xL1 ) m(xL2 ) · · · m(xLNL
)

 ⊤, 

and the (i, j)th element of Σ is given by a generic covariance function C(xLi , xLj , θ).
In most situations, we only have noisy observations of uL(xL), i.e.

yL(xL) = uL(xL) + ϵL(xL), ϵL(xL) ∼i.i.d.
N (0, σ2

L). (1) 

Here, yL(xL) represents the observed value at the input xL ∈ Rd, while ϵL(xL) denotes the measure-
ment error, which is assumed to be i.i.d. In this equation, uL(xL) represents the true unobserved 
phenomenon of the LF data, and θL is the vector of parameters characterizing the covariance func-
tion of the LF data.

The multifidelity model, which jointly models both HF and LF data, is best described by the fol-
lowing recursive equation:

yH(xL) = ρuL(xL) + δ(xL) + ϵδ(xL). (2) 

This equation establishes a hierarchical relationship between an HF function yH(·) and a function 
of the LF data uL(·) at each location where low-quality information is available, denoted as xL.

In other words, the function that approximates the HF data is constructed using three 
components: 

1. A ρ-scaled version of uL(·), where ρ is a parameter to be estimated.
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2. The Gaussian process δ(·), which is a latent process aiming to model the discrepancies be-
tween yL and yH. This process is referred to as an independent Gaussian process, meaning 
it has its own covariance function and parameters θδ, independent of uL(·).

3. The measurement error of the discrepancies, expressed by ϵδ(xL) ∼i.i.d.
N (0, σ2

δ ). This noise 
might be related to the fact that both HF and LF data are measured with some error that could 
affect the derivation of discrepancies.

Equation 2 intuitively defines also the name of the model as the ρ is autoregressive parameter, giv-
en that it establishes an autoregressive relationship between different fidelity levels. In other words, 
the term autoregressive does not refer to any ordering in time or space but to the degree of fidelity. 
The model can be generalized for multiple fidelity levels. From a practical point of view, the full mod-
el can be thought of as a standard Gaussian process where the vector of observations is:

y = yL
yH

 

, (3) 

while the covariance matrix is defined as follows:

K = CLL(xL, xL; θL) + σ2
LI CLH(xL, xH; θL, ρ)

CHL(xH, xL; θL) CHH(xH, xH; θL, θδ, ρ) + σ2
HI

 

. (4) 

The K matrix depends on multiple covariance functions defined by the positions of the set of loca-
tions1 xL and xH. Moreover, the term CHH(xH, xH; θL, θδ, ρ) + σ2

HI, which defines the correlation 
between the HF data, is designed using the parameters of the discrepancy process θδ and the LF pro-
cess θL. More precisely:

CHH(xH, xH; θL, θδ, ρ) = ρ2C(xH, xH; θL) + C(xH, xH; θδ). (5) 

The model for two fidelity levels has seven parameters, doubling the standard Gaussian process pa-
rameters, the signal variance (here inside the vector θ), the nuggets σ2

H and σ2
L, and decay parameter 

of the covariance function (inside the vector θ as well) plus the autoregressive parameter ρ. Assuming 
a zero mean function a common assumption in multifdelity modelling the estimation can be derived 
by minimizing the negative log-likelihood:

NLML(θ1, θ2, ρ) =
1
2

yTK−1y +
1
2

log |K| +
N
2

log (2π), (6) 

and for new input locations x∗, we can derive the joint distribution:

uH
∗

y

 

∼ N 0, kHH(x∗, x∗; θL, δL, ρ) qT

q K

  

, (7) 

and then, derive the predictions equation for new input locations of the conditional mean and vari-
ance:

uH
∗ = qTK−1y (8) 

V(uH
∗) = CHH(x∗, x∗) − qTK−1q (9) 

with q being equal to qT = CHL(x∗, xL; θ1, ρ) CHH(x∗, xH; θ1, θ2, ρ)
 

.

1 Depending of d-dimension, x set can be either a vector or a matrix. For example, if we have time has only dimension 
than the x are vectors.
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2.3 Warped multifidelity Gaussian process
The warped multifidelity approach involves a nonlinear and nonparametric transformation of the 
nonnormal data yH and yL into a latent space where they are normalized. Subsequently, a multi-
fidelity model is run in this latent space. We refer to the normalized data as zH and zL. The two 
nonlinear mappings, gL : yL → zL and gH : yH → zH, are designed such that z(xL) = gL[y(xL)] 
and z(xH) = gH[y(xH)] exhibit both marginal and joint normal distributions. The warping trans-
formations, gL(·) and gH(·), are obtained by first computing CDFH and its marginal Fy(yH) for 
the HF data, and CDFL and its marginal Fy(yL) for the LF data. Then, normal scores are obtained 
by inverting these cumulative distribution functions (CDFs). More precisely, with ϕ being a normal 
CDF we have:

zL = ϕL(Fy(yL))−1 = gL(yL) (10) 

zH = ϕH(Fy(yH))−1 = gH(yH). (11) 

This means the procedure needs to estimate the CDF from the data. The estimation of the CDF, in 
turn, is obtained by integrating an antecedent kernel density; more details of the specific kernel 
density estimation are provided in Pavlides et al. (2022). Once the multifidelity model is trained 
using the latent normalized observations zL and zH, it becomes necessary to back-transform the 
estimated quantities [the means and variances of the multifidelity model, as shown in equations 
8 and 9)] into the original space. Therefore, we need an inverse warping transform, referred to 
as g̃(·) = g(·)−1. In other words, g̃(·) : z→ y. This latter inverse transformation is also a monotonic 
mapping and it is obtained by means of a lookup table, see Agou et al. (2022), since an explicit 
version of the inverse function is not available.

The lookup table consists of two columns: the first column contains the query points, forming a 
dense grid of values ranging from [ymin − h, ymax + h], while the second column holds the corre-
sponding probability levels pi, which expresses the probability of observing yi ordered observa-
tion. This dense grid allows us to create a detailed mapping over the entire range of the data.

In other words, some of the probability levels pi are obtained directly from the actual data points 
by estimating their cumulative distribution function values. These CDF values are then trans-
formed into normal scores using the inverse of the standard normal distribution function (Φ−1), 
resulting in z = {Φ−1(pi)}

N
i=1. However, relying solely on the sample data limits the connection be-

tween y and p to the discrete data points. To overcome this limitation, we perform linear interpol-
ation on the dense grid of query points. In this interpolation, the actual data (either yH or yL) serve 
as the independent variable, and the estimated CDF values (pi) act as the dependent variable. This 
process establishes a continuous relationship between the data and their estimated CDF values 
across the dense grid.

After running the multifidelity models in the latent (normal score) space, the predictions are ex-
pressed as normal scores. These predicted normal scores, denoted as ẑ, are then transformed back 
into estimated probability levels ( p̂i) by applying the standard normal cumulative distribution 
function (Φ). For each estimated p̂i, we locate the nearest probability levels pi in the second col-
umn of the lookup table and retrieve their corresponding indices. Using these indices, we extract 
the final predictions on the original data scale from the first column of the lookup table. A concise 
description of the method is provided in Algorithm 1.

3 Data
3.1 Data for the first simulation experiment
The data for the first simulation experiment are the wind-speed reanalysis downloaded from the 
Copernicus Climate Data Storage (CCDS), see reference ERA5 (Hersbach et al., 2023). The CCDS 
offers a wide range of open access climate data, with in-depth description of the data and of the 
production process. The single-level2 dataset offers a temporal coverage from 1940, with an hour-
ly temporal resolution and spatial resolution of 0.25◦ × 0.25◦, with data updated with a latency of 
5 days. We chose offshore wind speed data from a site designated for a future wind farm. While the 

2 See ERA5 website, for more information about single-level dataset.
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exact location is not critical for our current project, we made this decision to uphold the principle 
of replicating wind speed measurements in areas of potential significance. The vectorized wind 
speed components u and v are obtained at an altitude of 100 m, and the wind speed is recon-
structed using the Pythagorean theorem, i.e. wind speed =

���������
u2 + v2
√

. A seasonal and trend decom-
position using LOESS (Cleveland et al., 1990) is applied to extract the structural components 
(denoted as T in equation 12) of the downloaded time-series. These components serve as the basis 
for the simulation discussed in section 4.1. Please note that the precise location of the downloaded 
data aligns with the construction site of the Agnes wind farm (AGNES, n.d).

3.2 Data for the application and second simulation experiment
According to Italian and European legislation, the monitoring and protection of the environment 
(e.g. quantification of air and water pollution levels, measurement of meteorological phenomena, 
checks and inspections on the environmental impacts of enterprises, and scientific support to na-
tional and local institutions) is entrusted to the Regional Environmental Protection Agencies 
(ARPAs) that are members of the National System for Environmental Protection (SNPA).3 Each 
ARPA is in charge of gathering air quality information within the area of responsibility. They 
also collect data on various environmental variables such as wind speed, and humidity. Data 
are publicly available either using the agency’s data portal (ARPA Data Portal, n.d), the 
Regione Lombardia open data portal (Lombardy Region Weather Station, n.d) or by means of spe-
cialized oper source software, such as ARPALData (Maranzano and Algieri, 2024) and EEAaq 
(Tassan Mazzocco and Maranzano, 2023). Here the ARPALData package was used to retrieve 
the weather measurements used in both the simulation design and the application. 
Measurements span from 1 January to 31 December 2022.

The Lombardy network comprises more than 120 ground sites monitoring wind speed and dir-
ection, some of them active since the 1990s and others activated only in the last few years. 
Therefore, a subset of 94 monitoring stations for wind speed activated before 1 January 2015 
and scattered throughout the region is investigated in this paper. Figure 5, which is the result of 
the clustering experiment described in section 5, displays the illustration of the station position 
and territory characteristics. By default, weather stations collect data at 10-min intervals, how-
ever, in both the simulation experiments and the application, we considered the hourly average 
wind speed as we are interested in recovering general patterns. Figure 1 illustrates the frequency 
and duration in hours of missing data sequences in the Lombardy region throughout 2022. The 

Algorithm 1 Warped Multifidelity Gaussian Process, description of the steps involved in the derivation of WMFGP 
estimates of the mean uH

∗.

Input : D = [yH, yL]

Output : WMFGP interpolation of the mean uH
∗

for j in D for

a. Perform kernel density-based estimation and derivation of the bandwidth h

b. Compute the kernel-based estimate of the CDF to derive pi probability levels based on the sample values y 
of the time-series, the chosen kernel and estimated h

c. Compute the normal scores by inverting {Φ−1(p)}N
i=1 = z

d. Interpolate between the estimated CDF estimates (pi) at the data points (either yH or yL) to obtain a dense 
grid (4000 points) of pi, lets call it pd, having the following range ([ymin − h, ymax + h])

e. Generate a lookup table to link the actual data with their probability levels. The table contains the dense 
grid pd of probability levels, and the corresponding values in the range ([ymin − h, ymax + h])

end

f. Run the MFGP on the normal scores zL and zH to obtain ẑ

g. Use the lookup table to backtransform ẑ MFGP estimations, into the original scale uH
∗

h. Return uH
∗

3 It is an Italian acronym of Sistema Nazionale di Protezione Ambientale
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histograms reveal numerous gaps with duration of <15 h, which can be addressed using standard 
interpolation methods. Gaps ranging from 15 to 192 h (between one day and more than one week) 
are of particular interest in this application, as they are difficult to fill using simpler interpolation 
techniques. Longer gaps exceeding 192 h are not considered, as they likely indicate structural mal-
functions rather than structural missing data and it would be unwise to address these only using 
statistical methodologies.

4 Simulation studies
In this section, we introduce two experimental designs to evaluate the performance of the warped 
multifidelity Gaussian process in processing skewed data. These experiments illuminate the inher-
ent challenges and effective strategies for reconstructing missing sequences inside an HF 
time-series. The first experiment assesses how well a series4 of models performs when faced 
with random patterns of missing data in HF time-series. This scenario is standard in multifidelity 
modelling, where HF data are randomly sampled with equal probability. In this case, our goal is to 
understand how different models handle the task of recovering missing skewed HF information 
when HF data is sparsely sampled. We refer to this experimental design as randomized missingness 
since the sampling frequency of HF data is very low (10%) and occurs randomly. The second ex-
periment addresses the issue of structural missingness, which involves the presence of long sequen-
ces of missing data in a time-series. In this latest experiment, following Maranzano et al. (2023), 
rather than simulating random locations and temporal patterns, we employ actual series from the 
ARPA Lombardia network in a Monte Carlo experiment, where the real locations are randomly 
sampled. The map of the monitoring stations and of the geography of Lombardy, shown in 
Figure 5, evidences that in northern part of the region there is prevalence of mountains, with a 
higher spatial concentration of monitoring stations, while in the southern part, where the plains 
and cities prevail, the stations are more sparsely scattered. Due to the absence of physical obstacles, 
the correlations of the time-series recorded in the southern region will be higher, potentially 

Figure 1. Frequency and duration of missing data sequences for all monitoring stations of Lombardy in the 2022. 
For a map of stations position, see Figure 5.

4 See section 4.1 for the list of the models.
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bringing a more efficacious recovery of the missing sequence. In both experiments, we employ sim-
ulations mimicking real-world data scenarios to analyse the model’s performance, focusing on the 
challenges posed by skewed data. Our data fusion methodology, is applied to the data relying on a 
single assumption of linear correlation5 between datasets. Among other benefits, our methodology 
is able to impute long missing sequences (up to a week of data with hourly resolutions). Moreover, 
it can manage different varying seasonal, sub-seasonal, and cyclic components automatically, 
without ad hoc study for each fused time-series.

4.1 First simulation design: randomized missingness
This experiment evaluates the performance of various models in recovering randomized missing 
data patterns of HF time-series under varying skewness conditions. For the simulation, we used 
the wind speed data described in section 3.1, which are abundant and highly skewed. By using 
this real-world data in our simulations, we ensure the generation of realistic time-series to effect-
ively test our models.

In this context, we generated two wind speed time-series—one with limited reliability but a 
higher number of data points in time and the other with greater reliability but fewer data points. 
Although our simulation mimics wind speed data, the experiment can be generalized to any 
skewed data sources characterized by a randomized data missingness structure. The experiment 
involves the comparison of five models across different skewness levels. The selected models in-
clude a standard Gaussian process (GP), a warped Gaussian process (WGP), a classic multifidelity 
(MFGP) model, a multifidelity model integrated with a simple Box–Cox class transformation 
(BCMF), and finally, a warped multifidelity (WMFGP) model. We conducted tests in the following 
dimensions: 

1. Randomized missingness: each experiment simulates a different missing data pattern, with a 
total of 200 replications.

2. Level of skewness: time-series with varying degrees of skewness were generated, where skew-
ness represents a parameter describing the deviation from normality.

The time-series were generated following this structure:

yL = T + wL,
yH = T + wH.

(12) 

In this context, T represents the true time series we aim to recover. This time series is generated by 
summing the trend and seasonal components from the ERA5 reanalysis data, as outlined in section 
3.1. The seasonal and trend components are extracted using an STL decomposition (Cleveland 
et al., 1990). Consequently, a new time series is produced by adding a fixed deterministic compo-
nent (T) to a randomly generated error. The variables wL and wH represent random errors drawn 
from skewed distributions. Detailed plots of these simulated random errors are provided in the on-
line supplementary material, specifically in Figures A1 and A2. Initially, we generated wH from a 
closed-skew normal distribution parametrized as follows: CSN(μ, σ1, γ, ν, δ), where μ represents 
the location parameter, σ1 is the scale parameter, γ is the skewness parameter, ν is the shape par-
ameter, and δ is the truncation parameter. We also generated data from another distribution com-
monly used for wind speed data, allowing for more extreme skewness scenarios: the Weibull 
distribution with shape and scale parameters. We simulated two scenarios for both distributions, 
labelled as high-skewness and low skewness. The parameters for both distributions for these HF 
and LF errors (wL and wH) are detailed in Table 1 and for the Weibull Table 2.

As we simulated missingness in the HF data, we conducted model comparisons on the test set 
using the following performance metrics: Mean Absolute Error (MAE), Bias, and Variance 
(Var).6 For consistency, we maintained the HF sample size at a fixed 10% of the LF data. It is im-
portant to highlight that in employing the multifidelity approach, the ratio NH

NL 
plays a pivotal role 

5 In our application, the correlation is always positive.
6 For the purposes of this paper, we focused only on the MAE and its variability.
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as it validates the utility of multifidelity models. With a high ratio the probability of the multifidel-
ity models to not yield superior outcomes compared with standard monofidelity models is in-
creased. Specifically, our analysis reveals that multifidelity proves advantageous up to a ratio of 
30%–35% in this particular data configuration.

In all four scenarios, the WMFGP model emerged as the top-performing model, as illustrated in 
the bottom panels of Figures 2 and 3. It is noteworthy that, in general, the performance of the 
WMFGP model remained stable independently of the skewness level, while simpler multifidelity 
models face challenges. Occasionally, all multifidelity models (WMF, MF, BCMF) exhibited 
anomalous performances attributable to numerical instability, as evidenced by certain outlier 
data points in the boxplot. However, in synthesis, the WMFGP consistently outperforms the other 
models. The marginal improvement seen with the small skewness Weibull distribution under the 
standard multifidelity model is minor. The WMFGP resulted to be the best methods in 3 out 4 
scenarios, which more than expected since the method is thought to provide an advantage only 
in high-skewness scenarios. The Box–Cox multifidelity model generally was a good method, 
when the error was generated from a closed skew-normal, while when the error was generated 
from Weibull, where overall the skewness condition were more extreme, it was not able to returns 
good performance. The latter confirmed the expectations: the Box–Cox method exhibits high sen-
sitivity to data; when dealing with multiple datasets, the parametric transformation required to 
normalize each data source might vary significantly. This can inevitably affect the relationships 
between datasets in the latent space. Clearly, the more different the datasets are, the more likely 
it is that they will require different transformations to be normalized.

4.2 Second simulation design: structural missingness
Lombardia data described in section 3.2 have been used to create the second simulation experi-
ment with the aim of proposing multifidelity methods for dealing with structural missingness. 
Structural missingness can be seen as the presence of long-missing sequences in a time-series. 
The dataset includes long data gaps that, as explained in the introduction hinder a comprehensive 
evaluation of the wind-speed. This issue is of particular concern since standard interpolation meth-
ods such as Gaussian process regression have very poor predictive power if, for example, the 

Table 1. Parameters of the CSN distribution for the different skewness scenario

Low skewness High skewness

Data wH , wL wH , wL

μ −0.25, − 0.5 −0.25, − 0.5

σ1 0.04, 0.8 0.8, 2.4

γ 4, 4 50, 50

ν 2 2

δ 3 3

Table 2. Summary of statistical measures and generating parameters of the errors generated from the Weibull 
distribution, for different skewness scenario

Error Scale Shape Mean SD Skewness

High skewness

wL 2 0.8 1.3 2.8 2.8

wH 0.5 0.8 0 0.72 2.9

Low skewness

wL 2 2.3 1.18 0.82 0.46

wH 0.5 2 0 0.23 0.66
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missing sequence is longer than the so-called range parameter or length scale7 that controls the rate 
at which the covariance between two data points decreases as the distance between them increases. 
We focused on hourly resolutions, as we are concerned with recovering general patterns, we 

Figure 2. Boxplots of the 200 simulation experiment. On the x-axis the models, while on y-axis the MAE. Random 
errors generated from a closed skew normal distribution. Each box-plot refers to Mean Absolute Error in the test set 
for each model. Note that WMFGP has the lowest performance in both scenarios.

Figure 3. Boxplots from 200 simulation experiments are presented here. The models are listed on the x-axis, and 
the Mean Absolute Error (MAE) is displayed on the y-axis. Random errors in these simulations were generated from 
a Weibull distribution. Each boxplot represents the MAE on the test set for each model. In scenarios with high 
skewness, the Warped Multifidelity Gaussian Process (WMFGP) demonstrated superior performance. The 
performance of BCMF, highlighted in red, deteriorated as the underlying data became noisier and exhibited higher 
variance.

7 The decay parameter inside the kernel function.

J R Stat Soc Series C: Applied Statistics                                                                                                    11
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlaf003/8003602 by guest on 07 February 2025



selected a sub-sample of 72 out of 94 stations from the network, to make sure that no real missing 
values were present in the experiment, with data referring to 2022. Then, we induced missing se-
quences of the following lengths in hours:

missing lengths = [24, 48, 72, 96, 192] (13) 

where 24 stands for 24 hr of missing values. Note that by testing many different missing sequences, 
we show that the method is relatively independent to the gap length, see section 4.4 for a theoret-
ical explanation. We tested the capacity to recover the missing sequences using five methods: the 
GP, Surrogate, MFGP, WMFGP, and a simple imputation (SI). In this experiment, we excluded 
BCMF, since, as shown in the previous experiment, the method was never better than a standard 
MFGP method. However, we included an SI method as a benchmark for comparison. The simple 
imputation is a fast implementation method that assumes the values of the missing sequence to be 
an average of the closest observations, a moving average k-nearest neighbour. The wind speed data 
used in this experiment are generally skewed; therefore, our expectations are that the WMFGP will 
outperform MFGP. The surrogate performance represents the discrepancy we were to obtain if we 
replaced the missing sequence with the data observed in the nearby monitoring station, that we 
labelled as LF data source. In simple terms, surrogate is just LF--HF. The surrogate performance 
is a benchmark; we want the discrepancy between the estimates and the HF to be at least smaller 
than the differences between HF and LF data. Intuitively, once the surrogate results are available, 
we can measure the percentage error reduction of each method when compared with the original 
discrepancy between LF and HF. Our strategy relies upon the principle that monitoring stations 
that are in the same neighbourhood often present correlated information but different structural 
missingness. In this experiment, we assume the HF data to be those with a missing sequence, while 
the LF data come from a nearby highly correlated station. Table 3 summarizes the medians8 of 
Mean Absolute Error (MAE) performance along with their respective standard deviations (SD) 
obtained from a series of 500 replication experiments. These experiments were conducted to assess 
the performance of five different imputation methods when dealing with simulated missing data 
sequences of varying lengths. Each row of the table corresponds to a specific missing data (ML) 
sequence length, denoted as ML:24, ML:48, ML:72, ML:96, and ML:196. The columns represent 
the different imputation methods used: GP, MFGP, WMFGP, Surrogate and Simple Imputation. 
The values in the table show the medians of MAE scores for each combination of imputation meth-
od and missing data sequence length, the median have been choose to limit the impact of numerical 
errors, so the importance of anomalous performance is reduced. Additionally, the standard devi-
ations (SD) are provided in parentheses, giving an indication of the variability in the MAE scores 
across the 500 replications.

The trend for MFGP and WMFGP in the table is that the MAE tends to increase as the discrep-
ancy between LF and HF (Surrogate LF) data increases. This suggests that the missing sequence 
lengths do not play a role in the performance of the methods. This is an interesting a result as 
in previous interpolation studies, based on simple Gaussian process, the gap length was associated 

Table 3. The table contains medians of MAE performances and their standard deviations for each simulated missing 
sequence

GP MFGP WMFGP Surrogate (abs(LF–HF)) Simple Imputation

ML:24(SD) 0.79 (0.71) 0.55 (0.45) 0.46 (0.51) 0.75 (1.05) 1.48 (1.36)

ML:48 (SD) 0.77 (0.69) 0.57 (0.52) 0.49 (0.54) 0.75 (1.05) 1.62 (1.18)

ML:72 (SD) 0.79 (0.59) 0.52 (0.48) 0.47 (0.49) 0.74 (0.89) 1.44 (1.16)

ML:96 (SD) 0.80 (0.60) 0.54 (0.44) 0.48 (0.45) 0.77 (0.85) 1.43 (1.00)

ML:196 (SD) 0.84 (0.40) 0.51 (0.34) 0.45 (0.34) 0.71 (0.65) 1.71 (0.89)

Note. ML stands for missing sequence length.

8 The medians are chosen to limit the impact generated by the numerical instability of the algorithm.
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with increased uncertainty (P. Colombo and Fassò, 2022; Fassò et al., 2020). Considering the 
overall performance, WMFGP appears to be a strong candidate for imputing missing data, as 
it maintains relatively low MAE values across different missing sequence lengths. This result 
is generally expected as the wind speed data from the monitoring stations of Lombardy are 
generally quite skewed (from 0.3 to 2). The second best method is MFGP, confirming the us-
ing multiple data-sources is beneficial. The simple imputation method is not a good choice 
since such high resolution of the data makes it difficult to understand what the smaller sea-
sonal and cyclic components are?. Figure 4 presents a simulated HF wind speed data recon-
struction. In the top panel, we display the training data, which consists of LF data points 
shown as a blue hole dots, the target HF data represented by red square, and the interpol-
ation area highlighted in yellow. Moving to the bottom panel, we showcase the recovery 
of HF information in the yellow area using two different approaches: MFGP, represented 
by the light blue dashed line, and WMFGP, shown as the magenta dashed line. The red 
square dots on this panel represent the test data to recover. Notably, for this specific scenario, 
both the MFGP and WMFGP methods demonstrate their proficiency in approximating the 
missing information effectively, with a relatively better approximation performed by 
WMFGP. The plot also incorporates the 95% prediction interval of the MFGP model, indi-
cated by the shaded magenta area. Interestingly, only one data point out of the 96 in the test 
area falls outside the prediction interval. The average discrepancy between the surrogate LF 
time-series and HF time-series ranged between 0.85 and 1.26 m/s in terms of wind speed. 
Meanwhile, the prediction of the WMFGP reduces the discrepancy to 0.45–0.65 m/s. These 
results constitute almost a 50% error reduction.

4.3 Uncertainty discussion
Discussing the uncertainty is important for informed decision-making, risk management, and re-
source allocation. In the structural missingness simulation study, we calculated both the prediction 
intervals and their corresponding coverage probability.9 This measure is typically expressed as a 

Figure 4. In the top panel, the training data for high-fidelity (HF) simulations are depicted in red, while low-fidelity 
(LF) simulations are shown in blue. The simulated test area is highlighted in yellow. This bottom illustration 
showcases the successful recovery of 96 HF wind speed data points, emphasizing the robust performance of 
multifidelity models. Notably, across various time frames, the MWFGP—represented by the dashed magenta line— 
closely matches the simulated missing data (depicted as red squares) better than the MFGP, indicated by the 
dashed blue line. The vertical axis represents wind speed in metres per second (m/s), while the horizontal axis 
denotes the time index in hours from the initial observation.

9 The coverage probability serves as a measure of the prediction interval’s accuracy. In essence, it indicates the pro-
portion of times, within a repeated or hypothetical series of experiments or predictions, that the prediction interval suc-
cessfully encompasses the true value of the variable of interest.
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percentage or a probability value. During 500 simulation experiments, we determined that the 
coverage probability of the prediction interval, established with a 95% confidence level for the 
MFGP, was 91%. Similarly, for the WMFGP, it was found to be 90%. This suggests that, on 
the whole, our prediction interval computations exhibit a high degree of accuracy. The coverage 
probability remains satisfactory, given the inherent complexities and possible challenges, see sec-
tion 5.

4.4 Relationship between interpolation distance and uncertainty
Previous research, particularly studies using Gaussian processes as discussed in Fassò et al. (2020)
and P. Colombo and Fassò (2022), have shown a strong connection between uncertainty and in-
terpolation distance. This relationship is attributed to the limitations of Gaussian processes, where 
the interpolation efficacy is constrained by the decay parameter of the covariance function. When 
there are large gaps, the decay parameter may not fully encompass the prediction areas, leading to 
increased uncertainty as the interpolation distance grows.

However, interpolation conducted through multifidelity models is less influenced by these decay 
parameters. These models leverage LF data to approximate the position of the data points to be 
interpolated and then incorporate the previously learned discrepancies between LF and HF 
data. Since the discrepancies between LF and HF data are typically constant across the interpol-
ation space, the prediction uncertainty in multifidelity models remains largely independent of 
the gap size, provided the assumption of constant discrepancies holds.

This latter point is also confirmed by our simulation experiments where the performances of the 
multifdelity Gaussian processes MFGP and WMFGP have shown similar performances (see 
Table 3) independent of the gap sizes ranging from 24 up to 196 h.

An exception to this independence occurs if the relationship between LF and HF data within the 
interpolation area changes. For instance, if the linear correlation between HF and LF data varies 
multiple times within the interpolation area, these changes could introduce discrepancies depend-
ent on the sudden shifts in correlation, thereby making the interpolation distance a relevant factor 
in predicting interpolation uncertainty. However, these scenario is highly unlikely, and it has not 
been encounter in our application.

5 Application
In the previous sections, we stated that the ARPA monitoring networks often contain numerous 
missing values with different gap lengths. Therefore, we utilize the WMFGP and MFGP methods 
to recover these gaps in the sequences. Our approach leverages the natural temporal correlation 
among time-series observed at nearby locations, resulting in a highly computational efficiency 
strategy and of easy implementation. By excluding the spatial dimension from the multifidelity 
part, we might incur endogeneity issues (Le Gallo and Fingleton, 2021), as external factors like 
orography, geography, and land cover can strongly influence the model’s performance. To address 
this concern, we conducted a clustering experiment based on the latitude, longitude, and altitude 
of the stations of the ARPA Lombardia dataset.

5.1 Empirical strategy
This procedure on one hand aims to identify monitoring stations that can serve as surrogate 
time-series data (LF); on the other to fill the gaps a target HF time-series data. The assumption 
is that nearby stations are likely to have similar information (Zhu and Turner, 2022), and there-
fore, correlated data can be used in a multifidelity context. We follow these steps to discover clus-
ters of stations: 

1. Constrained k-means: We utilize constrained k-means to identify clusters based on spatial in-
formation about the monitoring stations, such as latitude, longitude, and altitude. We also set 
constraints on the maximum and minimum cluster sizes. More details about the specific func-
tioning of this method are available in Bradley et al. (2000). Fixing the number of clusters is 
crucial because, for our purposes, it makes little sense to have clusters containing, for ex-
ample, 20 stations, even if they are well defined.
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2. Randomized pairing: We select a station with gaps and pair it with another randomly selected 
station within the same cluster.

3. The stations with gaps constitute our HF dataset, while the paired stations serve as the LF da-
taset. We then run multifidelity models using these two datasets.

5.2 Clustering experiment
The results of the constrained k-means are shown in Figure 5. The plot is shown in two dimensions 
for clarity; however, we also used the altitude for clustering purposes. The altitudes play a crucial 
role in defining the clusters as in the north part of the region, the presence of the mountains hinders 
the cluster aggregation; in the same way, stations at similar latitudes and longitudes but different 
altitudes might have very different wind speeds.

We obtained 26 clusters by optimizing standard metrics, such as the elbow plot and average 
silhouette. This experiment resulted in an average cluster size of 3.6, with the largest cluster con-
taining six elements and the smallest containing three elements. Cluster sizes ranging between 3 
and 6 are convenient for two main reasons. Firstly, if the same missing sequence is present in 
two nearby stations, we can select the data from the third station of the clusters. This scenario, 
where the same gap appears in three nearby stations, is implausible in our dataset. Secondly, 
avoiding larger groups reduces the probability of associating stations influenced by different 
phenomena.

5.3 Missing data imputation
Figure 6 illustrates the imputations of 17 observation gaps for the Veddasca Monte Cadrigna sta-
tion. Based on the simulation experiment, we know that among stations sharing similar altitude, 
longitude, latitude, and correlation between LF and HF, the MAE of WMFGP and MFGP was 
30% lower that the MAE of the Surrogate. More importantly, the WMFGP had an MAE 13% 

Figure 5. Depiction of the monitoring station clustering in two dimension (longitude and latitude).
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lower than the MFGP. The latter is aligned with what is shown in Figure 6, where the seasonality is 
correctly recovered by both the multifidelity models, but with a higher adapatability of 
WMFGP(magenta line), when compared with the MFGP (light blue). The green line represents 
a simple interpolation method, which, in this specific scenario, provides a poor recovery of the 
HF signal. The data imputation remains independent of the presence of different structural com-
ponents, in different time-series. Meaning that if each sub-experiment involves time-series having 
different seasonal and cyclic components, it is not necessary to perform an ad hoc study to recover 
the right harmonic. In other words, the advantage of MFGP data imputations lies in the possibility 
of automating the data imputation process by simply identifying a correlated time-series with the 
one of interest.

6 Conclusion
Integrating multiple data sources can effectively leverage the relative abundance of low-quality 
data with the relative scarcity of HF data. Many data fusion algorithms based on Gaussian proc-
esses have been developed to model various linear and nonlinear relationships between different 
datasets. However, little or no work has been done to account for the presence of nonnormal prop-
erties in the datasets to be integrated. This latter aspect is an explicit limitation, considering that 
GP models assume independent, identical, normal errors, which could lead the model to have 
poor predictive performance. Moreover, the standard strategies for accounting for deviations 
from normality, such as parametric transformations (i.e. log transformation), might not be 
straightforward to implement in a data fusion application where each dataset might require a 
different transformation, the normalization process to distort the inter-dataset relationships. 
In addition to these challenges, the presence of big gaps is also been associated to an increase 
interpolation uncertainty.

In this work, we proposed an extension of the autoregressive multifidelity Gaussian process, a 
standard method for resolving data fusion problems with Gaussian process, based on a non-
parametric warping strategy. This extension helps deal with multifidelity applications 
where the discrepancy data exhibit skewness, a common situation when at least one of the dif-
ferent data sources presents skewed data. Since the model preserves the inter-dateset relation-
ship, it can be effectively applied to multiple data sources, moreover, the use of multifidelity 
class algorithm allows for partial independence to the interpolation distance. The algorithm 

Figure 6. Depiction of the prediction performed by MFGP (light blue dotted line), the WMFGP (magenta dotted line) 
and the SI (continuous green line) for the Veddasca Monte Cadrigna station. Note that in the interpolation area in 
yellow, SI returns and unlikely recovery of the HF information, while both the WMFGP and MFGP seem to return a 
plausible pattern.
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models the relationships between HF and LF observations in a latent space, where, owing to the 
warping, the discrepancy data follow a normal distribution, thereby improving the prediction of 
HF data. We showcase the efficacy of our model in modelling multiple data sources through an 
extended simulation experiment in which we controlled for the HF sample size and skewness.

In this paper, wind speed data have been imputed, however, the model has the potential to 
fuse and fill data coming from any skewed time-series, such as time-series regarding pollutant 
concentrations or rain occurrence. The wind speed data of the ARPA Lombardia monitoring 
network represented our motivating application as, due to both maintenance and adverse wea-
ther conditions, gaps of various lengths are often found in the measured time series. These 
gaps can cause problems when it comes to studying specific weather phenomena or when try-
ing to assess the effect of wind speed on air quality. We, therefore, created a second simulation 
experiment to test the efficacy of multifidelity models to fill these long missing sequences. Our 
new method performs better than other tested methods and, particularly, better than the 
standard MFGP since the wind-speed data of Lombardy presented a considerable skewness. 
More importantly, our experiment showed how the multifidelity models, see Table 4.2, are 
partially independent to the interpolation distance offering a simple solution to a long stand-
ing problem.

A nice feature of this method is that it can be automatized, while other imputation methods 
would require an ad hoc study for each time-series. This is an appealing characteristic when 
dealing with big environmental datasets. One limitation of the method might be related to 
the number of observations necessary to learn the warping. We observed that, generally, 
good warping transformations are learned when there are more than 1000 data points for 
each data source, which might not always be the case in data fusion applications. The simulation 
study and the application developed at this point are solely based on the temporal dimension 
(and correlation). This can be seen both as an advantage and a limitation. On one hand, the 
developed framework requires few computational resources, providing a ready-to-use strategy 
for different datasets. On the other hand, it does not consider the additional strength that could 
be gained by incorporating the spatial dimension. A spatial model could be useful in case of 
wind-farm resource assessment, where measurement taken with Lidar or anemometric technolo-
gies could be integrated with reanalysis data or it could be useful to map the wind speed in areas 
of Lombardy network that are not covered by any monitoring station. However, including the 
spatial dimension will necessarily increase the algorithm’s computational complexity, requiring 
the implementation of suitable approximation methods for the inversion of the K variance–co-
variance matrix. Implementing a suitable approximation strategy in a multifidelity context is not 
trivial, as different points have different importance. We have reserved this line of research for a 
future study.

The strategy that we propose can be easily put into practise by practitioners and governmental 
agency that deal with missing sequence from a network. It is efficient, as it requires minimal com-
putational resources, and it can be applied to any other datasets having similar characteristics to 
the ARPA Lombardia case study.
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Appendix A: Histograms of the simulated skew noises

Figure A1. Histograms of HF data noise for different skewness scenarios. Noise values from a CSN distribution. wH 
depicted in red for low skewness, while wH in green for high skewness.

18                                                                                                                                               Colombo et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlaf003/8003602 by guest on 07 February 2025

http://academic.oup.com/jrsssc/article-lookup/doi/10.1093/jrsssc/qlaf003#supplementary-data


Appendix B: Limitations of the MFGP model for skew data
To understand the limitation of the MFGP, we have to understand the skewness of the discrepan-
cies between two random variables. To determine the skewness of the difference of two random 
variables aX − bY, where X and Y are positively skewed and positively correlated, we can use 
properties of skewness and correlation. Let us denote the skewness of X as Skew(X), the skewness 
of Y as Skew(Y), and the correlation between X and Y as ρXY. The skewness of a linear combin-
ation of random variables can be expressed as follows:

Skew(aX − bY) =
E[(aX − bY)3]

E[(aX − bY)2]
 3/2 

Given that X and Y are positively correlated, we have ρXY > 0. Now, we can calculate the third 
central moment E[(aX − bY)3] and the second central moment E[(aX − bY)2].

E[(aX − bY)3] = E[a3X3 − 3a2bXY2 + 3ab2X2Y − b3Y3]

= a3E[X3] − 3a2bE[XY2] + 3ab2E[X2Y] − b3E[Y3]

E[(aX − bY)2] = E[a2X2 − 2abXY + b2Y2]

= a2E[X2] − 2abE[XY] + b2E[Y2] 

Figure A2. Histograms of HF data noise for different skewness scenarios. Noise values from a Weibull distribution. 
In this case, wH depicted in green for low skewness, while wH in yellow for high skewness. Note the increased 
skewness of both noises and the increased variance compared with Figure A1.
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Given that X and Y are positively skewed, Skew(X) > 0 and Skew(Y) > 0, the third central mo-
ments E[X3] and E[Y3] are positive. Using the properties of expectation and correlation, we 
can determine the signs of the terms involved: 

1. E[XY2] and E[X2Y] will both be positive due to the positive skewness of X and Y and the posi-
tive correlation between them.

2. E[XY] will be positive due to the positive correlation between X and Y.

Therefore, all terms in the numerator of Skew(aX − bY) are positive, and all terms in the denom-
inator are positive as well. This implies that Skew(aX − bY) > 0. Thus, if X and Y are positively 
skewed and positively correlated, the difference aX − bY will also be positively skewed. MFGP de-
pends on two independent Gaussian processes: the discrepancy process δ(·) and the LF process 
uL(·). Both of these processes come with the standard Gaussian process assumptions, including 
the assumption that both ϵL and ϵδ are independent and identically distributed normal errors. 
However, these assumptions might not hold in the presence of skewed data. More precisely, sup-
pose that x is a generic vector of input locations. If both uH(x) and uL(x) are skewed, since ρ is 
positive, their discrepancies will also be skewed. Rearranging the terms of equation 2, we obtain:

δ(x) + ϵδ(x) = uH(x) − ρuL(x). (B1) 

This leads the first term of equation B1, which is standard Gaussian process, to model the skewed 
data resulting from uH(x) − uL(x), where ρ is disregarded as it is a positive constant. Since the nor-
mality assumption on ϵδ, we might incur in a imprecise HF process estimation, due to the inappro-
priate use of the discrepancy process.

Appendix C: Failure of Box–Cox transformation in normalization two 
data-sources jointly 

Figure C1. The figure displays time-series plots and corresponding histograms for San Siro Alpe Rescascía (SAN) 
and CO stations under various transformations. In the top-left panels, the original time-series and histograms are 
shown. The second row presents the time-series and histograms for the log-transformed data of both SAN and CO. 
The third row shows the time-series and histograms after applying a square root transformation to SAN and CO. 
Finally, the bottom row features the time-series and histogram of the square root-transformed SAN data alongside 
the log-transformed CO data.
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As an illustrative example, consider the wind-speed monitoring stations San Siro Alpe Rescascía 
(SAN) and Colico—Via La Madoneta (CO), taken from the dataset described in section 3.2. 
These two data sources exhibit a linear correlation of 0.53 and considerable skewness, as shown 
in the top-right panel of Figure C1. To normalize the data according to the Box–Cox criterion, we 
should apply the log-transformation for CO and the square root transformation for SAN. 
However, if we were to apply the log-transformation to both data sources, it would only symmet-
rize the CO data, as shown in the second panel of the second row of Figure C1. Similarly, applying 
the square root transformation would mainly symmetrize the SAN data.

If we were to use independent transformations, this might reduce the skewness satisfactorily for 
each dataset. However, it would disrupt the inter-dataset relationships, as shown in the first panel 
of the fourth row of Figure C1. Here, the inter-dataset relationship is defined as the quantile order-
ing between the different datasets. For example, if at time t, a wind speed measurement from SAN 
is greater than one from CO, this should still hold after transformation. The inter-dataset relation-
ship can be partially captured using the linear correlation coefficient: if it remains constant before 
and after the transformation, the relationship is preserved. Our algorithm as explained in section 
2.3 minimize the distortion introduced by potential transformation while effectively normalizing 
two data-sources.
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