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We consider the KPZ equation in space dimension 2 driven by space-
time white noise. We showed in previous work that if the noise is mollified
in space on scale ε and its strength is scaled as β̂/

√| log ε|, then a transition
occurs with explicit critical point β̂c =√

2π . Recently Chatterjee and Dunlap
showed that the solution admits subsequential scaling limits as ε ↓ 0, for suf-
ficiently small β̂. We prove here that the limit exists in the entire subcritical
regime β̂ ∈ (0, β̂c) and we identify it as the solution of an additive stochastic
heat equation, establishing so-called Edwards–Wilkinson fluctuations. The
same result holds for the directed polymer model in random environment in
space dimension 2.

1. Introduction and main results. We present first our results for the two-dimensional
KPZ equation, and then similar results for its discrete analogue, the directed polymer model
in random environment in dimension 2 + 1. We close the Introduction with an outline of the
rest of the paper.

1.1. KPZ in two dimensions. The KPZ equation is a stochastic PDE, formally written as

(1.1) ∂th(t, x) = 1

2
�h(t, x)+ 1

2

∣∣∇h(t, x)
∣∣2 + βξ(t, x), t ≥ 0, x ∈R

d,

where ξ(t, x) is the space-time white noise, and β > 0 governs the strength of the noise. It
was introduced by Kardar, Parisi and Zhang [31] as a model for random interface growth, and
has since been an extremely active area of research for both physicists and mathematicians.
The equation is ill-posed due to the singular term |∇h|2 which is undefined, because ∇h is
expected to be a distribution (generalized function).

In spatial dimension d = 1, these difficulties can be bypassed by considering the so-
called Cole–Hopf solution h := logu, where u is defined as the solution of the multiplica-
tive stochastic heat equation ∂tu = 1

2�u+ βξu, which is linear and well-posed in dimension
d = 1, by classical Itô theory. On large space-time scales, the Cole–Hopf solution exhibits
the same fluctuations as many exactly solvable one-dimensional interface growth models, all
belonging to the so-called KPZ universality class. See the surveys [14, 42] for reviews on the
extensive literature. Few results are known in higher dimensions (see below).

Along a different line, intense research has been carried out in recent years to make sense
of the solutions of the KPZ equation and other singular stochastic PDEs. A robust theory
was lacking until the seminal work by Hairer [27] and his subsequent theory of regularity
structures [28]. Since then, a few alternative approaches have been developed, including the
theory of paracontrolled distributions by Gubinelli, Imkeller and Perkowski [26], the theory
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of energy solutions by Gonçalves and Jara [23] and the renormalization approach by Kupi-
ainen [32]. All of these approaches are only applicable to KPZ in space dimension d = 1,
where the equation is so-called subcritical, in the sense that the nonlinearity vanishes in the
small scale limit with a scaling that preserves the linear and the noise terms in the equation. In
the language of renormalization groups, the KPZ equation in d = 1 is super-renormalizable
(see, e.g., [32]), while regarded as a disordered system, it would be called disorder relevant
(see, e.g., [22, 29] and [6, 7]).

In this paper, we focus on d = 2, which for KPZ is the critical dimension (the renormaliz-
able or disorder marginal case). To define a solution to (1.1), we follow the standard approach
and consider a spatially mollified version ξε := jε ∗ ξ of the noise, where ε > 0, j ∈ Cc(R

2)

is a probability density on R
2 with j (x) = j (−x), and jε(x) := ε−2j (x/ε). The key question

is whether it is possible to replace βξ in (1.1) by βεξ
ε − Cε , for suitable constants βε , Cε ,

such that the corresponding solution hε converges to a nontrivial limit as ε ↓ 0.
It turns out that in space dimension d = 2 the right way to tune the noise strength is

(1.2) βε := β̂

√
2π

log ε−1 for some β̂ ∈ (0,∞),

and to consider the following mollified KPZ equation (with ‖j‖2
2 := ∫

R2 j (x)2 dx):

(1.3) ∂th
ε = 1

2
�hε + 1

2

∣∣∇hε
∣∣2 + βεξ

ε −Cε where Cε := β2
ε ε−2‖j‖2

2.

For simplicity, we take hε(0, ·) ≡ 0 as initial datum. If we define

(1.4) uε(t, x) := ehε(t,x),

then, by Itô’s formula, uε solves the mollified multiplicative Stochastic Heat Equation (SHE):

(1.5) ∂tu
ε = 1

2
�uε + βεu

εξε, uε(0, ·) ≡ 1.

In [7], we investigated the finite-dimensional distributions of the mollified KPZ solution
hε as ε ↓ 0. In particular, we discovered in [7], Section 2.3, that there is a transition in the
one-point distribution as β̂ varies, with critical value β̂c := 1: For any t > 0,

(1.6) hε(t, x)
d−−→

ε↓0

⎧⎨⎩σ
β̂
Z − 1

2
σ 2

β̂
if β̂ < 1,

−∞ if β̂ ≥ 1
with σ 2

β̂
:= log

1

1 − β̂2
,Z ∼ N(0,1).

(Note that the limiting distribution does not depend on t > 0.) This can be viewed as a weak
disorder to stronger disorder transition, where we borrow terminology from the directed
polymer model (see Section 1.2). It was also shown in [7] that in the subcritical regime β̂ <

β̂c := 1 the k-point distribution of hε asymptotically factorizes: for any finite set of distinct
points (xi)1≤i≤k , the random variables (hε(t, xi))1≤i≤k converge as ε ↓ 0 to independent
Gaussians.

It is natural to investigate the fluctuations of hε , regarded as a random field, as ε ↓ 0. This
is what Chatterjee and Dunlap recently addressed in [10]. They actually considered a variant
of the mollified KPZ equation (1.3), where βε is placed in front of the nonlinearity instead of
the noise, namely,

(1.7) ∂t h̃
ε = 1

2
�h̃ε + 1

2
βε

∣∣∇h̃ε
∣∣2 + ξε.

However, there is a simple relation between h̃ε in (1.7) and hε in (1.3) (see Appendix A):

(1.8) h̃ε(t, x)−E
[
h̃ε(t, x)

]= 1

βε

(
hε(t, x)−E

[
hε(t, x)

])
,

therefore, working with h̃ε or hε is equivalent.
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The main result in [10] is that for any fixed t > 0, when β̂ is sufficiently small, the cen-
tered solution h̃ε(t, ·)−E[h̃ε(t, ·)], viewed as a random distributions on R

2, admits nontrivial
weak subsequential limits as ε ↓ 0 (in a negative Hölder space). As a matter of fact, [10] con-
sidered the KPZ equation (1.7) on the two-dimensional torus T2, for technical reasons, but it
is reasonable to believe that their results should also hold on R

2.
The perturbative approach followed by Chatterjee and Dunlap [10] is limited to β̂ suffi-

ciently small, and it does not prove the existence of a unique limiting random field. Our main
result shows that such a limit indeed exists, in the entire subcritical regime β̂ ∈ (0,1), and
identifies it as the solution of an additive SHE with a nontrivial noise strength (that depends
explicitly on β̂). This is commonly called Edwards–Wilkinson fluctuations [18].

THEOREM 1.1 (Edwards–Wilkinson fluctuations for 2-dimensional KPZ). Let hε be the
solution of the mollified KPZ equation (1.3), with βε as in (1.2) and β̂ ∈ (0,1). Denote

(1.9) hε(t, x) := hε(t, x)−E[hε(t, x)]
βε

=
√

log ε−1

√
2πβ̂

(
hε(t, x)−E

[
hε(t, x)

])
,

where the centering satisfies E[hε(t, x)] = −1
2σ 2

β̂
+ o(1) as ε ↓ 0; see (1.6).

For any t > 0 and φ ∈ Cc(R
2), the following convergence in law holds:

(1.10)
〈
hε(t, ·), φ(·)〉= ∫

R2
hε(t, x)φ(x)dx

d−−→
ε↓0

〈
v

(c
β̂
)
(t, ·), φ(·)〉,

where v(c)(t, x) is the solution of the two-dimensional additive stochastic heat equation

(1.11)

⎧⎨⎩∂tv
(c)(t, x) = 1

2
�v(c)(t, x)+ cξ(t, x),

v(c)(0, x) ≡ 0,
where c := c

β̂
:=
√

1

1 − β̂2
.

REMARK 1.2. For the version (1.7) of KPZ, Chatterjee and Dunlap showed in [10] that
any subsequential limit of h̃ε − E[h̃ε] as ε ↓ 0 does not coincide with the solution of the
additive SHE obtained by simply dropping the nonlinearity βε|∇h̃ε|2 in (1.7). Here, we show
that the limit of h̃ε − E[h̃ε] actually coincides with the solution of the additive SHE with a
strictly larger noise strength c = c

β̂
> 1. In other words, the nonlinearity in (1.7) produces

an independent nonzero noise term in the limit, even though its strength βε → 0.
Our proof of Theorem 1.1 is based on an analogous fluctuation result we proved in [7] for

the solution of the SHE (1.5). The independent noise can be seen to arise from the second
and higher order chaos expansions of the solution, supported on microscopic scales.

REMARK 1.3. We can view hε(t, ·) as a random distribution on R
2, that is, a random

element of the space of distributions D′, the dual space of D = C∞
c (R2). Our results show that

hε(t, ·) converges in law to v
(c

β̂
)
(t, ·) as random distributions. This is because convergence

in law on D′ is equivalent to the pointwise convergence of the characteristic functional [20],
Th. III.6.5 (see also [4], Corollary 2.4, for an analogue for tempered distributions):

∀φ ∈D = C∞
c

(
R

2) : E
[
ei〈hε(t,·),φ(·)〉]−−→

ε↓0
E
[
ei〈v(c

β̂
)
(t,·),φ(·)〉]

and this clearly follows by (1.10).

REMARK 1.4. For simplicity, we only formulated the convergence of hε(t, ·) to
v

(c
β̂
)
(t, ·) as a random distribution in space for each fixed t . However, our proof can be

easily adapted to prove the convergence of hε(·, ·) to v
(c

β̂
)
(·, ·) as a random distribution in

space and time.
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REMARK 1.5. The solution v(c)(t, ·) of the additive SHE (1.11), also known as the
Edwards–Wilkinson equation [18], is the random distribution on R

2 formally given by

(1.12) v(c)(t, x) = c

∫ t

0

∫
R2

gt−s(x − z)ξ(s, z)ds dz with gt (x) = 1

2πt
e−

|x|2
2t .

For any φ ∈ Cc(R
2), we have that 〈v(c)(t, ·), φ〉 := ∫

R2 v(c)(t, x)φ(x)dx is a Gaussian random
variable with zero mean and variance

(1.13) Var
[〈
v(c)(t, ·), φ〉]= c2σ 2

φ , σ 2
φ := 〈φ,Ktφ〉 =

∫
(R2)2

φ(x)Kt(x, y)φ(y)dx dy,

where the covariance kernel is given by

(1.14) Kt(x, y) :=
∫ t

0

1

4πu
e−

|x−y|2
4u du = 1

4π

∫ ∞
|x−y|2

4t

e−z

z
dz.

In [7], we also proved Edwards–Wilkinson fluctuations for the solution uε of the 2-
dimensional multiplicative SHE (1.5). More precisely, if similarly to (1.9) we set

(1.15) uε(t, x) := 1

βε

(
uε(t, x)−E

[
uε(t, x)

])=
√

log ε−1

√
2πβ̂

(
uε(t, x)− 1

)
,

then as ε ↓ 0 we have the convergence in law 〈uε(t, ·), φ(·)〉→ 〈v(c
β̂
)
(t, ·), φ(·)〉 as in (1.10)

in the entire subcritical regime β̂ ∈ (0,1); see [7], Theorem 2.17 (which is formulated for
space-time fluctuations, but its proof is easily adapted to space fluctuations).

Since uε(t, x) = exp(hε(t, x)), it is tempting to relate (1.15) and (1.9) via Taylor expan-
sion. This is nonobvious, because the one-point distributions of hε(t, x) do not vanish as ε ↓ 0
(see (1.6)), so we cannot approximate hε(t, x) ≈ uε(t, x)− 1. We will show in Section 2 that
the approximation of h(t, x) is highly nontrivial, and the main contribution actually comes
from specific parts of the expansion of u(t, x) which are negligible relative to u(t, x).

For future work, the goal will be to understand the scaling limit of the KPZ solution
hε(t, x) at or above the critical point β̂c = 1. To our best knowledge, this remains a mys-
tery also for physicists (even the weak to strong disorder transition (1.6) discovered in [7]
seems not to have been noted previously in the physics literature). Also the scaling limit of
the SHE solution uε(t, x) at or above the critical point is not completely known, even though
we recently made some progress at the critical point [8], improving the study initiated in [3]
(where the regime (1.2), with β̂ close to 1, was first studied).

We conclude this subsection with an overview of related results. In space dimension d = 1,
the Cole–Hopf solution h(t, x) := logu(t, x) of the KPZ equation (1.1) is well defined as
a random function, for any β ∈ (0,∞), and there is no phase transition in the one-point
distribution as β varies. Edwards–Wilkinson fluctuations for h(t, x) and u(t, x) are easily
established as β ↓ 0, combining Wiener chaos and Taylor expansion (because u(t, x) → 1).

In space dimensions d ≥ 3, the right way to scale the disorder strength is βε = β̂ε
d−2

2 . It
was shown in [12, 39] that the mollified SHE solution uε(t, x) of (1.5) undergoes a weak
to stronger disorder transition, similar to the directed polymer model [13]: there is a critical
value β̂c ∈ (0,∞) such that uε(t, x) converges in law as ε ↓ 0 to a strictly positive limit when
β̂ < β̂c, while it converges to zero if β̂ > β̂c. The KPZ solution hε(t, x) = loguε(t, x) is thus
qualitatively similar to the 2-dimensional case (1.6): hε(t, x) converges in law to a finite limit
for β̂ < β̂c, while it converges to −∞ for β̂ > β̂c. The value of β̂c is unknown.

Edwards–Wilkinson fluctuations for the KPZ solution hε(t, x) in dimension d ≥ 3 have
been established recently by Magnen and Unterberger [36], assuming that the noise strength
β̂ is sufficiently small. The corresponding result for the SHE solution uε(t, x) was proved in



1090 F. CARAVENNA, R. SUN AND N. ZYGOURAS

[12, 25]. The approaches in these papers do not allow to cover the entire subcritical regime,
as we do in dimension 2.

We should also mention that in space dimension d = 2, Edwards–Wilkinson fluctuations
are believed to hold (and verified in some cases; see, e.g., [43]) also for models in the
anisotropic KPZ class, where anysotropy means that the term |∇h|2 in the KPZ equation
(1.1) is replaced by 〈∇h,A∇h〉 for some matrix A with det(A) ≤ 0.

Shortly after we posted our paper, Dunlap et al. [17] gave an alternative proof (to [36]) of
Edwards–Wilkinson fluctuations for the KPZ equation in dimension d ≥ 3 when β̂ is suffi-
ciently small. Using the same techniques (Clark–Ocone formula and second-order Poincaré
inequality), Gu [24] proved the same Edwards–Wilkinson fluctuation as in our Theorem 1.1
for the KPZ equation in dimension d = 2, except his result is restricted to β̂ small instead of
covering the entire subcritical regime.

1.2. The directed polymer model. In this subsection, we state our result for the partition
function of the directed polymer model in dimension 2 + 1. See [11] for an overview of the
directed polymer model. In the language of disordered systems, space dimension 2 is critical
for this model, where disorder is marginally relevant. For further background on the notion
of disorder relevance/irrelevance (which corresponds to subcriticality/supercriticality in the
context of singular SPDEs); see, for example, [6, 22, 29].

The directed polymer model is defined as a change of measure for a random walk, depend-
ing on a random environment (disorder). Let S be the simple symmetric random walk on Z2.
If S starts at x ∈ Z

2, then we denote its law by Px with expectation Ex , and we omit x when
x = 0. We set

(1.16) qn(x) := P(Sn = x).

Denoting by S̃ an independent copy of S, we define the expected overlap by

(1.17) RN :=
N∑

n=1

P(Sn = S̃n) =
N∑

n=1

∑
x∈Z2

qn(x)2 =
N∑

n=1

q2n(0) = logN

π
+O(1).

We fix β̂ ∈ (0,∞) and define (βN)N∈N by

(1.18) βN := β̂√
RN

=
√

πβ̂√
logN

(
1 + O(1)

logN

)
.

Disorder is given by i.i.d. random variables (ω(n, x))n∈N,x∈Z2 with law P, such that

(1.19) E[ω] = 0, E
[
ω2]= 1, λ(β) := logE

[
eβω]< ∞ ∀β > 0 small enough.

For technical reasons, we require that the law of ω satisfies a concentration inequality. Recall
that a function f :Rn →R is called 1-Lipschitz if |f (x)− f (y)| ≤ |x − y| for all x, y ∈R

n,
with | · | the Euclidean norm. We assume the following:

∃γ > 1,C1,C2 ∈ (0,∞) : for all n ∈N and f :Rn →R convex and 1-Lipschitz

P
(∣∣f (ω1, . . . ,ωN)−Mf

∣∣≥ t
)≤ C1 exp

(
− tγ

C2

)
,

(1.20)

where Mf denotes a median of f (ω1, . . . ,ωN). (By changing C1, C2, one can equivalently
replace Mf by E[f (ω1, . . . ,ωN)]; see [35], Proposition 1.8.) Condition (1.20) is satisfied if
ω is bounded, or if it is Gaussian, or more generally if it has a density exp(−V (·) + U(·)),
with V uniformly strictly convex and U bounded. See [35] for more details.



THE 2D KPZ EQUATION IN THE SUBCRITICAL REGIME 1091

Given ω, N ∈N, and βN as defined in (1.18), we define the Hamiltonian by

(1.21) HN :=
N∑

n=1

(
βNω(n,Sn)− λ(βN)

)= N∑
n=1

∑
y∈Z2

(
βNω(n, y)− λ(βN)

)
1{Sn=y}.

We will be interested in the family of partition functions

(1.22)
ZN(x) = ZN,βN

(x) = Ex

[
eHN

]
, N ∈N, x ∈ Z

2,

ZN(x) := Z�N�
(�x�), N ∈ [0,∞), x ∈R

2.

We will write ZN := ZN(0) for simplicity. Note that the law of ZN(x) does not depend on
x ∈ Z

2, and we have E[ZN(x)] = E[ZN ] = 1.
The partition function ZN(x) is a discrete analogue (modulo a time reversal) of the SHE

solution uε(t, x) in (1.5), as can be seen from its Feynman–Kac formula (5.1) below (see also
[1]). Then logZN(x) is a discrete analogue of the KPZ solution hε(t, x) in (1.3). In fact, we
proved in [7], Theorem 2.8, that for βN as in (1.18), the random variable logZN(x) converges
in distribution to the same limit as in (1.6), with critical value β̂c = 1. It is not surprising that
here we can also prove the following analogue of Theorem 1.1.

THEOREM 1.6 (Edwards–Wilkinson fluctuations for directed polymer). Let ZN,βN
(x)

be the family of partition functions defined as in (1.22), with βN as in (1.18) with β̂ ∈ (0,1),
and the disorder ω satisfying assumptions (1.19) and (1.20). Denote

(1.23)

hN(t, x) := logZtN(x
√

N)−E[logZtN ]
βN

=
√

logN√
πβ̂

(
logZtN(x

√
N)−E[logZtN ]).

For any t > 0 and φ ∈ C∞
c (R2), the following convergence in law holds, with c

β̂
as in (1.11):

(1.24)
〈
hN(t, ·), φ(·)〉= ∫

R2
hN(t, x)φ(x)dx

d−−−−→
N→∞

〈
v

(
√

2c
β̂
)
(t/2, ·), φ(·)〉,

where v(c)(s, x) is the solution of the two-dimensional additive SHE as in (1.11).

REMARK 1.7. Here, the limit v
(
√

2c
β̂
)
(t/2, ·) differs from v

(c
β̂
)
(t, ·) in Theorem 1.1 be-

cause the increment of the simple symmetric random walk on Z
2 has covariance matrix 1

2I .

We will in fact prove Theorem 1.6 first, since the structure is more transparent in the
discrete setting, and then outline the changes needed to prove Theorem 1.1 for KPZ.

1.3. Outline. The rest of the paper is organized as follows:

• In Section 2, we present the proof steps and describe the main ideas.
• In Section 3, we give bounds on positive and negative moments for the directed polymer

partition function, based on concentration inequalities and hypercontractivity.
• In Section 4, we prove our main result Theorem 1.6 for directed polymer.
• In Section 5, we explain how the proof for directed polymer can be adapted to prove our

main result Theorem 1.1 for KPZ.

We will conclude with a few appendices which might be of independent interest, where we
prove some results needed in the proofs.
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• Appendix A establishes scaling relations for KPZ with different parameters.
• Appendix B recalls and refines known hypercontractivity results for suitable functions

(polynomial chaos) of i.i.d. random variables.
• Appendix C formulates a concentration of measure result for the left tail of convex func-

tions that are not globally Lipschitz, defined on general Gaussian spaces.
• Lastly, in Appendix D, we discuss linearity and measurability properties of stochastic in-

tegrals, which are needed in the proof in Section 5.

2. Outline of proof steps and main ideas. In this section, we outline the proof steps for
Theorems 1.1 and 1.6 and describe the basic setup. We focus on the directed polymer partition
function (the case of KPZ follows the same steps). The two main ideas are a decomposition
of the partition function ZN which allows us to “linearize” logZN (see Section 2.1), and a
representation of ZN as a polynomial chaos expansion in the disorder (see Section 2.2). The
“linearization” of logZN essentially reduces Theorem 1.6 to an analogous result for ZN

which we proved in [7], Theorem 2.13.

2.1. Decomposition and linearization. Given a subset  ⊆ N × Z
2, we denote by

Z,β(x) the partition function where disorder is only sampled from within , that is,

(2.1) Z,β(x) := Ex

[
eH,β

]
where H,β := ∑

(n,x)∈

(
βωn,x − λ(β)

)
1{Sn=x}.

The original partition function ZN,β(x) in (1.21)–(1.22) corresponds to  = {1, . . . ,N}×Z
2.

In our previous study in [7], a key observation was that for β̂ ∈ (0,1) the partition function
ZN,βN

(x) essentially depends only on disorder in a space-time window around the starting
point (0, x) that is negligible on the diffusive scale (N,

√
N). This motivates us to approxi-

mate ZN,βN
(x) by a partition function ZA

N,βN
(x) with disorder present only in such a space-

time window Ax
N . More precisely, we define a scale parameter aN tending to zero as

aN := 1

(logN)1−γ
with γ ∈ (0, γ ∗),(2.2)

where γ ∗ > 0 depends only on β̂ in Theorem 1.6 and its choice will be clear from the estimate
in (4.4) later on. We now introduce the space-time window

Ax
N := {(n, z) ∈N×Z

2 : n ≤ N1−aN , |z − x| < N
1
2− aN

4
}
,(2.3)

and define ZA
N,β(x) as the partition function which only samples disorder in Ax

N , that is,

(2.4) ZA
N,β(x) := Z,β(x) with  = Ax

N.

We then decompose the original partition function ZN,β(x) as follows:

ZN,β(x) = ZA
N,β(x)+ ẐA

N,β(x),(2.5)

where ẐA
N,β(x), defined by the previous relation, is a “remainder.” In a sense that we will

make precise later (see (3.4)), it holds that for any fixed x, ẐA
N,βN

(x) � ZA
N,βN

(x), and thus

logZN,βN
(x) = logZA

N,βN
(x)+ log

(
1 + ẐA

N,βN
(x)

ZA
N,βN

(x)

)

≈ logZA
N,βN

(x)+ ẐA
N,βN

(x)

ZA
N,βN

(x)
.

(2.6)
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More precisely, if we define the error ON(x) via

logZN,βN
(x) = logZA

N,βN
(x)+ ẐA

N,βN
(x)

ZA
N,βN

(x)
+ON(x),(2.7)

then we will show the following.

PROPOSITION 2.1. Let ON(·) be defined as in (2.7), then for any φ ∈ Cc(R
2)

(2.8)
√

logN
1

N

∑
x∈Z2

(
ON(x)−E

[
ON(x)

])
φ

(
x√
N

)
L2(P)−−−−→
N→∞ 0.

Remarkably, even though logZA
N,βN

(x) gives the dominant contribution to logZN,βN
(x)

for any fixed x, it does not contribute to the fluctuations of logZN,βN
(x) when averaged over

x, that is, we have the following.

PROPOSITION 2.2. Let ZA
N,βN

(·) be defined as in (2.4), then for any φ ∈ Cc(R
2)

(2.9)
√

logN
1

N

∑
x∈Z2

(
logZA

N,βN
(x)−E

[
logZA

N,βN
(x)
])

φ

(
x√
N

)
L2(P)−−−−→
N→∞ 0.

As a consequence, the fluctuations of logZN,βN
(·) are determined by the “normalized

remainder” ẐA
N,βN

(·)/ZA
N,βN

(·). To determine the fluctuations of this term, we define the set

(2.10) B
≥
N := ((N1−9aN/40,N] ∩N

)×Z
2,

and we let ZB≥
N,βN

(x) be the partition function where disorder is sampled only from B
≥
N , that

is,

(2.11) ZB≥
N,βN

(x) := Z,βN
(x) with  = B

≥
N.

Note that E[ZB≥
N,βN

(x)] = 1, so (ZB≥
N,βN

(x)− 1) is a centered random variable. The key point,
and the more involved step, will be to show that

ẐA
N,βN

(x) ≈ ZA
N,βN

(x)
(
ZB≥

N,βN
(x)− 1

)
,(2.12)

in the following sense.

PROPOSITION 2.3. Let ZA
N,βN

(·), ẐA
N,βN

(·), ZB≥
N,βN

(·) be defined as in (2.4), (2.5), (2.11).

Then for any φ ∈ Cc(R
2)

(2.13)
√

logN
1

N

∑
x∈Z2

( ẐA
N,βN

(x)

ZA
N,βN

(x)
− (ZB≥

N,βN
(x)− 1

))
φ

(
x√
N

)
L1(P)−−−−→
N→∞ 0.

It remains to identify the fluctuations of ZB≥
N,βN

(·). This falls within the scope of Theo-
rem 2.13 in [7], which we will recall in Section 4.4 and which will show that the fluctuations

of ZB≥
N,βN

(·) converges to the solution v
(
√

2c
β̂
)
(1/2, ·) of the two-dimensional additive SHE, as

in Theorem 1.6. The proof is based on polynomial chaos expansions of the partition function,
which we will recall in the next subsection.
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PROPOSITION 2.4. Let ZB≥
N,βN

(·) be defined as in (2.11). Then

(2.14)

√
logN√
πβ̂

1

N

∑
x∈Z2

(
ZB≥

N,βN
(x)− 1

)
φ

(
x√
N

)
d−−−−→

N→∞
〈
v

(
√

2c
β̂
)
(1/2, ·), φ〉,

where v(c)(s, x) is the solution of the two-dimensional additive SHE as in (1.11).

Theorem 1.6 is a direct corollary of the decomposition (2.7) and Propositions 2.1–
2.4. Regarding the centering, it suffices to note that E[logZN,βN

(x)] = E[logZA
N,βN

(x)] +
E[ON(x)], because the random variable ẐA

N,βN
(x)/ZA

N,βN
(x) has zero mean, which follows

from the polynomial chaos expansions of partition functions that we now present.

2.2. Polynomial chaos expansions. Our analysis of the partition functions ZA
N,βN

(·),
ẐA

N,βN
(·), ZB

N,βN
(·) is based on multilinear expansions, known as polynomial chaos expan-

sions, which have also been used extensively in [6, 7].
Recall the definition (1.18) of βN and our assumptions (1.19) on the disorder, and note that

by (1.19) and Taylor expansion, λ(2β)− 2λ(β) ∼ β2 as β → 0. We introduce the sequence

(2.15) σN :=
√

eλ(2βN)−2λ(βN) − 1 ∼
N→∞ βN,

where we agree that aN ∼ bN means limN→∞ aN/bN = 1, and we define the random vari-
ables

(2.16) ξ (N)
n,x := σ−1

N

(
eβNω(n,x)−λ(βN) − 1

)
.

We will suppress the dependence of ξ
(N)
n,x on N , for notational simplicity. Note that

(ξn,x)n∈N,x∈Z2 are i.i.d. with E[ξn,x] = 0 and E[ξ2
n,x] = 1.

Recall the definition (1.21)–(1.22) of the partition function ZN,βN
(x) of the polymer that

starts at time zero from location x. This can be written as

ZN,βN
(x) = Ex

[ ∏
1≤n≤N,y∈Z2

(1 + σNξn,y1{Sn=y})
]

= 1 +
N∑

k=1

σk
N

∑
0=n0<n1<···<nk≤N

x0=x,x1,...,xk∈Z2

k∏
i=1

qni−ni−1(xi − xi−1)ξni ,xi
,

(2.17)

where qn(x) := P(Sn = x). Note that the terms in the sum are orthogonal to each other in
L2, and when β̂ ∈ (0,1) the dominant contribution to ZN,βN

(x) comes from disorder ξ·,·
in a space-time window that is negligible on the diffusive scale. More precisely, a second
moment calculation (see (3.4) below) shows that ZN,βN

(x) is close in L2 to the partition
function ZA

N,βN
(x) which only samples disorder from within Ax

N (recall (2.3)).
It will be convenient to introduce a concise representation for the expansion (2.17) as

follows: given a point (n0, x0) and a finite subset τ := {(n1, x1), . . . , (n|τ |, x|τ |)} of N0 × Z
2

with n0 < n1 < · · · < n|τ |, we introduce the notation

q(n0,x0)(τ ) :=
|τ |∏
i=1

qni−ni−1(xi − xi−1) and ξ(τ ) :=
|τ |∏
i=1

ξni,xi
.

For τ =∅, we define q(n0,x)(τ ) = ξ(τ ) := 1. In this way, we can write concisely the chaos
expansion of ZN,βN

(x) as

ZN,βN
(x) = ∑

τ⊂{1,...,N}×Z2

σ
|τ |
N q(0,x)(τ )ξ(τ ).(2.18)
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FIG. 1. The above figures depict the chaos expansions of ZA
N,βN

(x) and ZB≥
N,βN

(x). The disorder sampled by

ZA
N,βN

(x) is restricted to the set Ax
N , while that of ZB≥

N,βN
(x) is restricted to B

≥
N .

Similarly, for the partition functions ZA
N,β(x), ZB≥

N,β(x) in (2.4), (2.11) we can write

ZA
N,βN

(x) = ∑
τ⊂Ax

N

σ
|τ |
N q(0,x)(τ )ξ(τ ), ZB≥

N,βN
(x) = ∑

τ⊂B
≥
N

σ
|τ |
N q(0,x)(τ )ξ(τ ).(2.19)

A graphical illustration of ZA
N,β(x) and ZB≥

N,β(x) appears in Figure 1.
These polynomial chaos expansions are discrete analogues of Wiener–Itô chaos expan-

sions. They are especially suited for variance calculations and provide important insight. For
instance, the partition function ẐA

N,β(x) := ZN,β(x) − ZA
N,β(x) (see (2.5)) is obtained by

restricting the sum in (2.18) to τ which include space-time points outside the set Ax
N , and

hence ẐA
N,βN

(x)/ZA
N,βN

(x) has zero mean due to the independence between the disorder in-

side and outside Ax
N . Similarly, the centered partition function (ZB≥

N,β(x)− 1), which appears
in (2.13)–(2.14), is the contribution to (2.19) given by configurations τ that contain only
points (and at least one point) in B

≥
N .

3. Moment bounds. In this section, we collect some moment bounds that will be used
in the proof.

3.1. Second moment. We bound the second moment of ZN,βN
(x), ZA

N,βN
(x), ẐA

N,βN
(x).

We start from ZN,βN
(x). It follows by (2.17) and (1.17) that

E
[
ZN,βN

(x)2]= ∑
τ⊂{1,...,N}×Z2

(
σ 2

N

)|τ |
q(0,x)(τ )2

= 1 +
N∑

k=1

(
σ 2

N

)k ∑
0=:n0<n1<···<nk≤N

x0=:x,x1,...,xk∈Z2

k∏
i=1

qni−ni−1(xi − xi−1)
2

= 1 +
N∑

k=1

(
σ 2

N

)k ∑
0=:n0<n1<···<nk≤N

q2(ni−ni−1)(0).

(3.1)
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If we let each increment ni − ni−1 vary freely in {1,2, . . . ,N}, by (1.17) we get the bound
E[ZN,βN

(x)2] ≤∑k≥0(σ
2
NRN)k = (1 − σ 2

NRN)−1. Recalling (1.18) and (2.15), we obtain

(3.2) ∀β̂ ∈ (0,1) ∃C
β̂

< ∞ such that ∀N ∈N : E
[
ZN,βN

(x)2]≤ C
β̂
,

where C
β̂

will denote a generic constant depending on β̂ .

Next, we look at ZA
N,βN

(x). The polynomial chaos expansion for ZA
N,βN

(x) is a subset of
the one for ZN,βN

(x), hence the same bound (3.2) applies:

(3.3) ∀β̂ ∈ (0,1) ∃C
β̂<∞ such that ∀N ∈N : E

[
ZA

N,βN
(x)2]≤ C

β̂
.

We turn to ẐA
N,βN

(x). The bound (3.2) can again be applied, but it is quite poor. In fact,
the following much better bound holds (recall that aN is defined in (2.2)):

(3.4) ∀β̂ ∈ (0,1) ∃C
β̂

< ∞ such that ∀N ∈N : E
[
ẐA

N,βN
(x)2]≤ C

β̂
aN .

The proof, given below, is elementary but slightly technical (see Section 3.4).
We conclude with an alternative viewpoint on the bound (3.2). If we denote by S and S̃

two independent copies of the random walk, by (1.21)–(1.22) we can compute

(3.5) E
[
Z2

N,βN

]= EE
[
eHN,βN

(S)+HN,βN
(S̃)]= E

[
e(λ(2βN)−2λ(βN))LN(S,S̃)],

where LN(S, S̃) is the overlap of the two copies S, S̃ up to time N , defined by

(3.6) LN(S, S̃) :=
N∑

n=1

1{Sn=S̃n} =
∣∣S ∩ S̃ ∩ ({1, . . . ,N} ×Z

2)∣∣.
Since λ(β) ∼ 1

2β2 as β ↓ 0, see (1.19), we get

(3.7) E
[
Z2

N,βN

]= E
[
e(1+εN )β2

NLN(S,S̃)] where lim
N→∞ εN = 0.

Note that π
logN

LN(S, S̃) converges in law to a mean 1 exponential random variable; see, for

example, [19]. This matches with limN→∞E[Z2
N,βN

] = (1 − β̂2)−1 for βN as in (1.18).

3.2. Positive moments via hypercontractivity. We will bound higher positive moments
of our partition functions using the hypercontractivity of polynomial chaos [38], which we
recall (with some strengthening) in Appendix B.

By (2.17), each partition function ZN,βN
(x), ZA

N,βN
(x), ẐA

N,βN
(x) can be expressed as a

series

(3.8)
∞∑

k=0

X
(N)
k

(actually a finite sum) where X
(N)
k is a multilinear polynomial of degree k in the i.i.d. ran-

dom variables (ξ
(N)
n,x )(n,x)∈N×Z2 , which have zero mean and unit variance; see (2.16). These

random variables have uniformly bounded higher moments,

(3.9) ∀p ∈ (2,∞) : sup
N∈N

E
[∣∣ξ (N)

n,x

∣∣p]< ∞,

as one can check directly from (2.16) and (1.19) (see [6], equation (6.7)).
Under these conditions, hypercontractivity ensures that, for every p ∈ (2,∞), the pth

moment of the series (3.8) can be bounded in terms of second moments,

(3.10) E

[∣∣∣∣∣
∞∑

k=0

X
(N)
k

∣∣∣∣∣
p]

≤
( ∞∑

k=0

(
ck
p

)2
E
[(

X
(N)
k

)2])p/2

,
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where cp ∈ (1,∞) is a constant, uniform in N , which only depends on the laws of the ξ
(N)
n,x .

This is proved in [38], Section 3.2 (extending [30]), where a nonoptimal value of cp is given.
We will recall these results in Appendix B, where we will prove that the optimal cp satisfies

(3.11) lim
p↓2

cp = 1.

This result, which is of independent interest, is crucial in order to apply (3.10) to our
partition functions ZN,βN

(x), ZA
N,βN

(x), ẐA
N,βN

(x), because for any subcritical β̂ < 1 we can

fix p > 2 such that cpβ̂ < 1 is still subcritical. More precisely, note that multiplying X
(N)
k

by ck
p amounts to replacing σN by cpσN (see (2.17)), and this corresponds asymptotically to

replacing β̂ by cpβ̂; see (2.15) and (1.18). Then, by (3.2)–(3.4), we obtain

∀β̂ ∈ (0,1) ∃p = p
β̂
∈ (2,∞) ∃C′

β̂
< ∞ such that ∀N ∈N

E
[
ZN,βN

(x)p
]≤ C′

β̂
, E

[
ZA

N,βN
(x)p

]≤ C′
β̂
, E

[∣∣ẐA
N,βN

(x)
∣∣p]≤ C′

β̂
(aN)p/2.

(3.12)

3.3. Negative moments via concentration. We give bounds on the negative moments of
partition functions ZN,βN

(x) and ZA
N,βN

(x) (see (1.22), (2.17) and (2.3),(2.19)). We work
with the general partition function Z,β(x) defined in (2.1), which coincides with ZN,βN

(x),
respectively, ZA

N,βN
(x), for  = {1, . . . ,N} ×Z

2, respectively,  = Ax
N .

For fixed (say bounded)  ⊆N×Z
2, it is not difficult to show that the log partition func-

tion logZ,β is a convex and Lipschitz function of the random variables (ω(n, y) : (n, y) ∈
). However, if β = βN and the subset  grows with N , its Lipschitz constant can diverge
as N →∞, hence we cannot directly apply the concentration inequality (1.20). However, it
turns out that, for any  = N ⊆ {1, . . . ,N}×Z

2, the Lipschitz constant is tight as N →∞.
This yields the following estimate for the left tail of logZN,βN

, proved below.

PROPOSITION 3.1 (Left tail). For any β̂ ∈ (0,1), there exists c
β̂
∈ (0,∞) with the fol-

lowing property: for every N ∈N and for every choice of  ⊆ {1, . . . ,N} ×Z
2, one has

∀t ≥ 0 : P(logZ,βN
≤−t) ≤ c

β̂
e
−tγ /c

β̂ ,(3.13)

where γ > 1 is the same exponent appearing in assumption (1.20).

As a corollary, for every p ∈ (0,∞) we can estimate, uniformly in  ⊆ {1, . . . ,N} ×Z
2,

E
[
(Z,βN

)−p]= E
[
e−p logZ,βN

]= p

∫ ∞
−∞

ept
E[1{t<− logZ,βN

}]dt

≤ 1 + p

∫ ∞
0

eptc
β̂

exp
(−tγ /c

β̂

)
dt =: C

p,β̂
< ∞.

Choosing  = {1, . . . ,N} ×Z
2 or  = Ax

N , we finally obtain the bounds

∀β̂ ∈ (0,1) ∀p ∈ (0,∞) ∃C
p,β̂

< ∞ : sup
N∈N

E
[
ZN,βN

(x)−p]≤ C
p,β̂

< ∞,(3.14)

sup
N∈N

E
[
ZA

N,βN
(x)−p]≤ C

p,β̂
< ∞.(3.15)

For later use, let us also state the following consequence:

(3.16) ∀β̂ ∈ (0,1) ∀p ∈ (0,∞) ∃C
p,β̂

< ∞ : sup
N∈N

E
[∣∣logZA

N,βN
(x)
∣∣p]≤ C

p,β̂
< ∞.
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The proof of this fact is simple: we can bound | logy| ≤ Cp(y1/p + y−1/p) for all y > 0 and
for suitable Cp < ∞ (just distinguish y ≥ 1 and y < 1). This leads to E[| logZA

N,βN
(x)|p] ≤

Cp(E[ZA
N,βN

(x)]+E[ZA
N,βN

(x)−1]) = Cp(1+E[ZA
N,βN

(x)−1]), so (3.16) follows by (3.15).
It remains to prove Proposition 3.1. To this goal, we follow the strategy developed in [9]

for the pinning model, which generalizes [37]. We need the following result, which is [9],
Proposition 3.4, inspired by [35], Proposition 1.6.

PROPOSITION 3.2. Assume that disorder ω has the concentration property (1.20). There
exist constants c1, c2 ∈ (0,∞) such that, for every n ∈ N and for every differentiable convex
function f : Rn →R, the following bound holds for all a ∈R and t, c ∈ (0,∞):

P
(
f (ω) ≤ a − t

)
P
(
f (ω) ≥ a,

∣∣∇f (ω)
∣∣≤ c

)≤ c1 exp
(
−(t/c)γ

c2

)
,(3.17)

where ω = (ω1, . . . ,ωn) and |∇f (ω)| :=
√∑n

i=1(∂if (ω))2 is the norm of the gradient.

We can deduce the bound (3.13) from (3.17) applied to the function f = fN given by

(3.18) fN(ω) = logZ,βN
.

We only need to bound from below the second probability in the left-hand side of (3.17). This
is provided by the next lemma, which completes the proof of Proposition 3.1.

LEMMA 3.3. For any β̂ ∈ (0,1), there exist c
β̂
∈ (0,∞) and ϑ

β̂
∈ (0,1) such that

inf
N∈N inf

⊆{1,...,N}×Z2
P
(
fN(ω) ≥− log 2,

∣∣∇fN(ω)
∣∣≤ c

β̂

)≥ ϑ
β̂

> 0.(3.19)

PROOF. We set a =− log 2. For any c > 0, we have

P
(
fN(ω) ≥ a,

∣∣∇fN(ω)
∣∣≤ c

)= P
(
fN(ω) ≥ a

)− P
(
fN(ω) ≥ a,

∣∣∇fN(ω)
∣∣> c

)
.(3.20)

The first probability can be estimated using the Paley–Zygmund inequality:

P
(
fN(ω) ≥ a

)= P

(
Z,βN

≥ 1

2

)
= P

(
Z,βN

≥ 1

2
E[Z,βN

]
)
≥ E[Z,βN

]2
4E[(Z,βN

)2] .(3.21)

Note that E[Z,βN
] = 1. For  ⊆ {1, . . . ,N} × Z

2 we have E[(Z,βN
)2] ≤ E[(ZN,βN

)2] ≤
C

β̂
(see (3.2)), hence

(3.22) P
(
fN(ω) ≥ a

)≥ 1

4C
β̂

=: 2ϑ
β̂
.

We now proceed to estimate the second term in (3.20). First, we compute for n ∈N, x ∈ Z
2,

∂fN(ω)

∂ωn,x

= 1

Z,βN

E
[
βN1(n,x)∈S∩eH,βN

(S)] and

∣∣∇fN(ω)
∣∣2 = ∑

(n,x)∈N×Z2

(
∂fN

∂ωn,x

)2
= 1

(Z,βN
)2 E

[
β2

N |S ∩ S̃ ∩|eH,βN
(S)+H,βN

(S̃)],
where S and S̃ are two independent copies of the random walk, and with some abuse of
notation, we also denote by S the random subset {(n, Sn)}n∈N ⊆N×Z

2.
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For  ⊆ {1, . . . ,N} × Z
2, we have |S ∩ S̃ ∩ | ≤ LN(S, S̃) (see (3.6)), where LN(S, S̃)

denotes the overlap up to time N of the two trajectories S and S̃. On the event that fN(ω) ≥
a =− log 2, that is, Z,βN

≥ 1/2, we can thus bound∣∣∇fN(ω)
∣∣2 ≤ 4E

[
β2

NLN(S, S̃)eH,βN
(S)+H,βN

(S̃)],
and note that, arguing as in (3.5)–(3.7), for every δ > 0 we have, for all N large enough,

EE
[
β2

NLN(S, S̃)eH,βN
(S)+H,βN

(S̃)]≤ E
[
β2

NLN(S, S̃)e(1+δ)β2
NLN(S,S̃)]

≤ 1

δ
E
[
e(1+2δ)β2

NLN(S,S̃)],
where we used the bound x ≤ 1

δ
eδx . Thus, for all N large enough we have

P
(
fN(ω) ≥ a,

∣∣∇fN(ω)
∣∣> c

)≤ 1

c2E
[∣∣∇fN(ω)

∣∣21{fN(ω)≥a}
]≤ 4

c2

1

δ
E
[
e(1+2δ)β2

NLN(S,S̃)].
Let us now define β̂ ′ := 1+β̂

2 , so that β̂ < β̂ ′ < 1, and define β ′
N := β̂ ′/

√
RN ; see (1.18).

Then we can fix δ = δ
β̂

> 0 small enough so that (1 + 2δ)β2
N < λ(2β ′

N)− 2λ(β ′
N) (note that

λ(2β)− 2λ(β) ∼ β2 as β → 0), hence by (3.5) and (3.2),

P
(
fN(ω) ≥ a,

∣∣∇fN(ω)
∣∣> c

)≤ 4

c2

1

δ
β̂

C
β̂ ′ .

Choosing c = c
β̂

large enough, we can make the right-hand side smaller than ϑ
β̂

; see (3.22).
Looking back at (3.20), we see that (3.19) is proved. �

3.4. Proof of equation (3.4). The quantity E[ẐA
N,βN

(x)2] admits a representation similar
to the first line of (3.1), without the constant term 1 and with the inner sum restricted to
space-time points such that (ni, xi) /∈ Ax

N for some i = 1, . . . , k, that is, either ni > N1−aN or

|xi − x| ≥ N
1
2− aN

4 . Since there are k space-time points, for some j = 1, . . . , k we must have

either nj − nj−1 > 1
k
N1−aN or |xj − xj−1| ≥ 1

k
N

1
2− aN

4 (we recall that n0 = 0 and x0 = x).
Defining the new variables �i := ni − ni−1 and zi := xi − xi−1, and enlarging the range
0 < n1 < · · · < nk ≤ N to �1, . . . , �k ∈ {1, . . . ,N}, we can then bound

E
[
ẐA

N,βN
(x)2]≤ N∑

k=1

(
σ 2

N

)k ∑
�1,...,�k∈{1,...,N}

z1,...,zk∈Z2

k∑
j=1

(1{�j> 1
k
N1−aN }

+ 1{�j≤ 1
k
N1−aN ,|zj |≥ 1

k
N

1
2 − aN

4 })
k∏

i=1

q�i
(zi)

2.

(3.23)

We now switch the sum over j with the double sum over �i , zi’s. We can sum over all
variables zj ’s with i �= j , replacing each kernel q�i

(zi)
2 by q2�i

(0) (see (1.17)), and then sum
q2�i

(0) for all �i’s with i �= j , which gives (RN)k−1 (see again (1.17)). This yields

E
[
ẐA

N,βN
(x)2]≤ N∑

k=1

(
σ 2

N

)k
Rk−1

N k
∑

�∈{1,...,N}
z∈Z2

(1{�> 1
k
N1−aN } + 1{�≤ 1

k
N1−aN ,|z|≥ 1

k
N

1
2 − aN

4 })q�(z)
2.

We now consider separately the contributions of the two indicator functions.
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• Recalling (1.17), (1.18), (2.15), the contribution of {� > 1
k
N1−aN } is controlled by

N∑
k=1

(
σ 2

N

)k
Rk−1

N k
∑

1
k
N1−aN <�≤N

q2�(0) ≤ C

N∑
k=1

k
(
β̂2)k 1

logN

∑
1
k
N1−aN <�≤N

1

�

≤ C′
N∑

k=1

k
(
β̂2)k aN logN + log k

logN

≤ C ′
(
C̃

β̂
aN + Ĉ

β̂

1

logN

)
,

where C̃
β̂
:= ∑∞

k=1 k(β̂2)k and Ĉ
β̂
:= ∑∞

k=1 k(log k)(β̂2)k are finite, β̂-dependent con-
stants. This contribution is consistent with (3.4) (recall (2.2)).

• The contribution of {� ≤ 1
k
N1−aN , |z| ≥ 1

k
N

1
2− aN

4 } is given by

(3.24)
N∑

k=1

(
σ 2

N

)k
Rk−1

N k
∑

1≤�≤ 1
k
N1−aN

∑
|z|> 1

k
N

1
2 − aN

4

q�(z)
2.

Note that we can enlarge the range of the last sum to |z| > ϑ
√

�, with ϑ = N
aN
4 /

√
k. Note

that supz∈Z2 q�(z) ≤ c/�, by Gnedenko’s local limit theorem. Then, by Gaussian estimates
for the simple random walk on Z

2, there is η > 0 such that∑
|z|>ϑ

√
�

q�(z)
2 ≤ c

�
P
(|S�| > ϑ

√
�
)≤ c

�
e−ηϑ2 ∀� ∈N,∀ϑ > 0.

Then we can bound (3.24) by a constant multiple of

(3.25)
N∑

k=1

(
β̂2)kk 1

RN

∑
1≤�≤N

c

�
e−ηϑ2 ≤ C

N∑
k=1

(
β̂2)kke−η N

aN
2

k .

We split the sum according to k ≤ (N
aN
2 )1/2 and k > (N

aN
2 )1/2, getting the bound{ ∞∑

k=1

(
β̂2)kk}e−η(N

aN
2 )1/2 +

{ ∞∑
k=1

β̂kk

}
β̂(N

aN
2 )1/2

.

Both brackets are finite, β̂-dependent constants, while the other factors are both o(aN) as
N →∞, by (2.2), because β̂ < 1 and N

aN
2 = exp(1

2(logN)γ ) � logN .

This completes the proof of (3.4).

4. Edwards–Wilkinson fluctuations for directed polymer. In this section, we prove
Theorem 1.6, which consists of proving Propositions 2.1, 2.2, 2.3 and 2.4 as described in
Section 2. The proofs are given in the following subsections.

4.1. Proof of Proposition 2.1. Recalling (2.8), we need to show that

logN

N2

∑
x,y∈Z2

Cov
[
ON(x),ON(y)

]
φ

(
x√
N

)
φ

(
y√
N

)
−−−−→
N→∞ 0.

By translation invariance and Cauchy–Schwarz, it suffices to show that for any x ∈ Z
2,

(4.1) (logN)E
[
ON(x)2]−−−−→

N→∞ 0.
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We recall that ON(x) is defined in (2.7), and in view of (2.5) we can write

ON(x) = log
(

1 + ẐA
N,βN

(x)

ZA
N,βN

(x)

)
− ẐA

N,βN
(x)

ZA
N,βN

(x)
.

We can bound, for a suitable constant C < ∞,

(4.2)
∣∣log(1 + y)− y

∣∣≤ C ·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
|y|

1 + y
if − 1 < y < 0,

y2 if − 1

2
≤ y ≤ 1

2
,

|y| if 0 < y < ∞.

The three domains are chosen to overlap on purpose: in fact, we will apply these inequalities
in the domains (−1,−a

2/7
N ), [−a

2/7
N ,a

2/7
N ] and (a

2/7
N ,∞) (recall aN from (2.2)). We define

D±
N :=

{
± ẐA

N,βN
(x)

ZA
N,βN

(x)
> a

2/7
N

}
, DN := D+

N ∪D−
N =

{∣∣∣∣ ẐA
N,βN

(x)

ZA
N,βN

(x)

∣∣∣∣> a
2/7
N

}
,

and we bound

P(DN) ≤ P
(
ZA

N,βN
(x) < a

1/7
N

)+ P
(∣∣ẐA

N,βN
(x)
∣∣> a

3/7
N

)
≤ a

1/7
N E

[
ZA

N,βN
(x)−1]+ a

−6/7
N E

[
ẐA

N,βN
(x)2]≤ (C2,β̂

+C
β̂
)a

1/7
N ,

(4.3)

thanks to (3.15) and (3.4). Then by (4.2),

1

C
E
[
ON(x)2]≤ E

[( ẐA
N,βN

(x)

ZA
N,βN

(x)

)4
1Dc

N

]
+E

[( ẐA
N,βN

(x)

ZA
N,βN

(x)

)2
1D+

N

]

+E

[ |ẐA
N,βN

(x)/ZA
N,βN

(x)|
1 + ẐA

N,βN
(x)/ZA

N,βN
(x)

1D−
N

]
,

and given that

1 + ẐA
N,βN

(x)

ZA
N,βN

(x)
= ZN,βN

(x)

ZA
N,βN

(x)
,

we can choose p = p
β̂

> 2 close to 2 as in (3.12) such that

1

C
E
[
ON(x)2]≤ E

[( ẐA
N,βN

(x)

ZA
N,βN

(x)

)4
1Dc

N

]
+E

[( ẐA
N,βN

(x)

ZA
N,βN

(x)

)2
1D+

N

]
+E

[∣∣∣∣ ẐA
N,βN

(x)

ZN,βN
(x)

∣∣∣∣1D−
N

]

≤ a
8
7
N +E

[
ẐA

N,βN
(x)p

] 2
p
(
E
[
ZA

N,βN
(x)

− 2p
p−2 1D+

N

]1− 2
p +E

[
ZN,βN

(x)−21D−
N

] 1
2
)

≤ a
8
7
N +C′

β̂
aN

(
E
[
ZA

N,βN
(x)

− 4p
p−2
] 1

2− 1
pP(DN)

1
2− 1

p

+E
[
ZN,βN

(x)−4] 1
4P(DN)

1
4
)

≤ a
8
7
N +C′

β̂
aNP(DN)

1
4∧( 1

2− 1
p
) ≤ C′

β̂
a

1+ 1
7 ( 1

2− 1
p
)

N ,

where the second last inequality holds by (3.12), (3.14) and (3.15); in the last inequality, we
applied (4.3), and C′

β̂
< ∞ is a generic constant depending only on β̂ . Recall from (2.2) that
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aN = (logN)γ−1. We can then choose γ ∈ (0, γ ∗) with γ ∗ > 0 small enough such that

(4.4) E
[
ON(x)2]≤ C′

β̂
a

1+ 1
7 ( 1

2− 1
p
)

N = C′
β̂
(logN)

−(1−γ )(1+ 1
7 ( 1

2− 1
p
)) = o

(
(logN)−1).

Therefore, (4.1) holds.

4.2. Proof of Proposition 2.2. We need to show that

(4.5)
logN

N2

∑
x,y∈Z2

Cov
[
logZA

N,βN
(x), logZA

N,βN
(y)
]
φ

(
x√
N

)
φ

(
y√
N

)
−−−−→
N→∞ 0.

We recall that ZA
N,βN

(x) depends only on the disorder within set Ax
N , defined in (2.3), hence

ZA
N,βN

(x) and ZA
N,βN

(y) are independent for |x − y| > 2N
1
2− aN

4 . By Cauchy–Schwarz and
(3.16), we can bound the left-hand side of (4.5) as follows:

C2,β̂

logN

N2

∑
x,y∈Z2:|y−x|≤2N

1
2 − aN

4

φ

(
x√
N

)
φ

(
y√
N

)

≤ cC2,β̂

logN

N2 N1− aN
2 |φ|∞

∑
x∈Z2

∣∣∣∣φ( x√
N

)∣∣∣∣
≤ c′C2,β̂

(logN)N− aN
2 |φ|∞|φ|L1(R2) = c′C2,β̂

elog(logN)− 1
2 (logN)γ |φ|∞|φ|L1(R2) −−−−→

N→∞ 0,

where c, c′ are generic constants, and the last equality holds by definition of aN in (2.2).

4.3. Proof of Proposition 2.3. We need to show that
√

logN

N

∑
x∈Z2

ẐA
N,βN

(x)

ZA
N,βN

(x)
φ

(
x√
N

)

−
√

logN

N

∑
x∈Z2

(
ZB≥

N,βN
(x)− 1

)
φ

(
x√
N

)
L1(P)−−−−→
N→∞ 0.

(4.6)

We recall that B
≥
N := ((N1−9aN/40,N] ∩N)×Z

2; see (2.10). We define new subsets

BN := ((N1−aN ,N] ∩N
)×Z

2,(4.7)

Cx
N := {(n, z) ∈N×Z

2 : n ≤ N1−aN , |z − x| ≥ N
1
2− aN

4
}
,(4.8)

and we introduce new “partition functions”:

Z
A,C
N,βN

(x) := ∑
τ⊂{1,...,N}×Z2:τ∩Cx

N �=∅

σ
|τ |
N q(0,x)(τ )ξ(τ ),(4.9)

Z
A,B
N,βN

(x) := ∑
τ⊂Ax

N∪BN :τ∩BN �=∅

σ
|τ |
N q(0,x)(τ )ξ(τ ),(4.10)

similar to the polynomial chaos expansions for ZN,βN
, ZA

N,βN
and ZB≥

N,βN
in (2.18)–(2.19).

See Figure 2 for a graphical representation of the chaos expansions.
Recall that Ax

N was defined in (2.3), and note that ({1, . . . ,N} × Z
2) \ Ax

N = Cx
N ∪ BN .

We can then decompose ẐA
N,βN

(x), defined in (2.5), as follows:

ẐA
N,βN

(x) = Z
A,B
N,βN

(x)+Z
A,C
N,βN

(x).(4.11)

We split the sequel in three steps. The first step is:
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FIG. 2. The figures depict the chaos expansions of Z
A,C
N,βN

(x), Z
A,B
N,βN

(x). Each term in the expansion for

Z
A,C
N,βN

(x) must include disorder from Cx
N ; while each term in the expansion for Z

A,B
N,βN

(x) contain only dis-

order from Ax
N ∪BN , with at least some disorder from BN .

(1) We will show that the contribution of the term Z
A,C
N,βN

is negligible for (4.6).

To treat the term Z
A,B
N,βN

(x), we decompose its chaos expansion (4.10) according to the last
point (t,w) of τ that lies in Ax

N and the first point (r, z) of τ that lies in BN :

Z
A,B
N,βN

(x) = ∑
(t,w)∈{(0,x)}∪Ax

N
(r,z)∈BN

ZA
0,t,βN

(x,w) · qr−t (z −w) · σNξr,z ·Zr,N,βN
(z),(4.12)

where ZA
0,t,βN

(x,w) is the “point-to-point” partition function from (0, x) to (t,w), defined

by ZA
0,t,βN

(x,w) := 1 if (t,w) = (0, x) and by

ZA
0,t,βN

(x,w) := ∑
τ⊂Ax

N∩([0,t]×Z2):τ�(t,w)

σ
|τ |
N q(0,x)(τ )ξ(τ ) if t > 0,(4.13)

while Zr,N,βN
(z) is the “point-to-plane” partition function starting at (r, z) and running until

time N :

(4.14) Zr,N,βN
(z) := ∑

τ⊂{r+1,...,N}×Z2

σ
|τ |
N q(r,z)(τ )ξ(τ ).

The next steps are:

(2) We will show that in (4.12) the contribution from r < N1−9aN/40 is negligible for
(4.6).

(3) We will show that in (4.12) we can replace the kernel qr−t (z − w) by qr(z − x), that
is, the transition kernel from (0, x) to (r, z), because their difference is negligible for (4.6).

Finally, note that when we restrict the sum in (4.12) to r ≥ N1−9aN/40, that is, to (r, z) ∈
B

≥
N (recall (2.10)), and we replace qr−t (z − w) by qr(z − x), the right-hand side of (4.12)

becomes exactly ZA
N,βN

(x)(ZB≥
N,βN

(x)− 1) (recall (2.19)). This completes the proof of (4.6).
It remains to prove the three steps stated above.
Step (1). We show that the contribution of Z

A,C
N,βN

in (4.11) to (4.6) is negligible, that is,

(4.15)

√
logN

N

∑
x∈Z2

Z
A,C
N,βN

(x)

ZA
N,βN

(x)
φ

(
x√
N

)
L2(P)−−−−→
N→∞ 0.
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Since the chaos expansion of Z
A,C
N,βN

(x) in (4.9) contains disorder ξ outside Ax
N , not con-

tained in the expansion of ZA
N,βN

(x), we have that E[ZA,C
N,βN

(x)/ZA
N,βN

(x)] = 0 thus L2(P)

and variance computations are equivalent. We then have

Var
(√

logN

N

∑
x∈Z2

Z
A,C
N,βN

(x)

ZA
N,βN

(x)
φ

(
x√
N

))

= logN

N2

∑
x,y∈Z2

E

[Z
A,C
N,βN

(x)

ZA
N,βN

(x)
· Z

A,C
N,βN

(y)

ZA
N,βN

(y)

]
φ

(
x√
N

)
φ

(
y√
N

)
.

By Cauchy–Schwarz, we can further bound this as follows, for some constant c:

logN

N2 E

[(Z
A,C
N,βN

(0)

ZA
N,βN

(0)

)2] ∑
x,y∈Z2

∣∣∣∣φ( x√
N

)∣∣∣∣∣∣∣∣φ( y√
N

)∣∣∣∣
≤ c logN · |φ|2

L1(R2)
E

[(Z
A,C
N,βN

(0)

ZA
N,βN

(0)

)2]

≤ c logN · |φ|2
L1(R2)

E
[
Z

A,C
N,βN

(0)2p]1/p
E

[
1

ZA
N,βN

(0)2q

]1/q

,

(4.16)

where in the last step we used Hölder inequality with parameters (p, q) with p−1 +
q−1 = 1, and p will be chosen sufficiently close to 1, to be determined below. The term
E[ZA

N,βN
(0)−2q ]1/q can be uniformly bounded by the negative moment estimate (3.15).

We can use hypercontractivity (see (3.10)) to bound

E
[
Z

A,C
N,βN

(0)2p]1/p ≤ ∑
τ⊂{1,...,N}×Z2:τ∩C0

N �=∅

(c2pσN)2|τ |q(0)(τ )2.

The right-hand side is the second moment of the partition function (see (3.1)) except that σN

is replaced by c2pσN (which corresponds asymptotically to replacing β̂ by β̂ ′ := c2pβ̂ , see
(2.15) and (1.18)) and the random walk S must satisfy max{|Sn| : n < N1−aN } > N1/2−aN/4.
In particular, recalling (3.7) and (3.6), this can be bounded by

E
[
e
(1+o(1))(c2pβN)2L

N1−aN
(S(1),S(2)); max

n≤N1−aN

∣∣S(i)
n

∣∣> N
1
2− aN

4 , for i = 1,2
]
,(4.17)

where S(1), S(2) are two independent random walk copies. This is bounded via Hölder by

E
[
e
(1+o(1))p(c2pβN)2L

N1−aN
(S(1),S(2))]1/pP

(
max

n≤N1−aN

|Sn| > N
1
2− aN

4

)2/q
.

We can now choose p > 1 sufficiently close to 1 so that
√

pc2pβ̂ < 1, that is, still subcrit-
ical, which is possible because limp→1 c2p = 1; see (3.11). Hence the expectation above is
uniformly bounded in N as shown in Section 3.1. On the other hand, standard moderate
deviation estimates for the simple symmetric random walk show that

P
(

max
n≤N1−aN

|Sn| > N
1
2− aN

4

)
≤ exp

(−cNaN/2)= exp
(−ce(logN)γ /2),

where we recall that aN = (logN)γ−1; see (2.2). Inserting these estimates in (4.16), we get

Var
(√

logN

N

∑
x∈Z2

Z
A,C
N,βN

(x)

ZA
N,βN

(x)
φ

(
x√
N

))
≤ c logN · |φ|2

L1(R2)
exp

(−ce(logN)γ /2)−−−−→
N→∞ 0.



THE 2D KPZ EQUATION IN THE SUBCRITICAL REGIME 1105

Step (2). We show that in the chaos expansion (4.12) for Z
A,B
N,βN

(x), the contribution from

(r, z) with r < N1−9aN/40 is negligible for (4.6). The contribution we are after is

Z
A,B<

N,βN
(x) := ∑

(t,w)∈Ax
N

(r,z)∈BN : r<N1−9aN /40

ZA
0,t,βN

(x,w) · qr−t (z −w) · σNξr,z ·Zr,N,βN
(z),(4.18)

and we want to show that

(4.19) E

[(√
logN

N

∑
x∈Z2

φ

(
x√
N

)Z
A,B<

N,βN
(x)

ZA
N,βN

(x)

)2]
−−−−→
N→∞ 0.

The left-hand side of (4.19) equals

logN

N2

∑
x,y∈Z2

φ

(
x√
N

)
φ

(
y√
N

)
E

[Z
A,B<

N,βN
(x)

ZA
N,βN

(x)
· Z

A,B<

N,βN
(y)

ZA
N,βN

(y)

]
.(4.20)

We can restrict the summation over x, y to |x − y| > N
1
2− aN

10 . Indeed, in the complementary
regime, we first bound the expectation in (4.20) by Cauchy–Schwarz and obtain the bound

logN

N2 E

[(Z
A,B<

N,βN
(0)

ZA
N,βN

(0)

)2] ∑
|x−y|≤N

1
2 − aN

10

∣∣∣∣φ( x√
N

)∣∣∣∣∣∣∣∣φ( y√
N

)∣∣∣∣
≤ N1− aN

5
logN

N
E

[(Z
A,B<

N,βN
(0)

ZA
N,βN

(0)

)2]
|φ|∞|φ|L1(R2)

= (logN)e−
1
5 (logN)γ

E

[(Z
A,B<

N,βN
(0)

ZA
N,βN

(0)

)2]
|φ|∞|φ|L1(R2),

which goes to zero as N →∞, since expectation can be bounded via Hölder with an exponent
p for Z

A,B<

N,βN
(0)2 chosen sufficiently close to one, so that the hypecontractivity bound (3.12)

can be applied, while the negative moment E[ZA
N,βN

(0)−2q] can be bounded by (3.15). The
argument is the same as that for (4.16) and we omit the details.

To deal with (4.20) when (x, y) ∈ I> := {x, y ∈ Z
2 : |x − y| > N

1
2− aN

10 }, we use the chaos
expansion for Z

A,B<

N,βN
, (4.18) and write (4.20) in this case as follows (recall that E[ξ2] = 1):

σ 2
N logN

N2

∑
x,y∈I>

φ

(
x√
N

)
φ

(
y√
N

) ∑
(t,w)∈Ax

N

(s,v)∈A
y
N

E

[ZA
0,t,βN

(x,w)

ZA
N,βN

(x)

]
E

[ZA
0,s,βN

(y, v)

ZA
N,βN

(y)

]

× ∑
(r,z)∈BN : r<N1−9aN /40

qr−t (z −w)qr−s(z − v)E
[
Zr,N,βN

(z)2],
(4.21)

where the first point (r, z) ∈ BN in the expansion for ZA
N,βN

(x) and ZA
N,βN

(y) must match
because an unmatched (r, z) gives E[ξr,z] = 0, and we used the independence between

ZA
0,t,βN

(x,w)

ZA
N,βN

(x)
,

ZA
0,s,βN

(y, v)

ZA
N,βN

(y)
, and Zr,N,βN

(z),

because they depend on disorder in the disjoint regions Ax
N , A

y
N and BN .
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We can simplify (4.21) by noticing that E[Zr,N,βN
(z)2] is independent of z and that∑

z qr−t (z −w)qr−s(z − v) = q2r−t−s(w − v). Thus we can write it as

σ 2
N logN

N2

∑
x,y∈I>

φ

(
x√
N

)
φ

(
y√
N

) ∑
(t,w)∈Ax

N

(s,v)∈A
y
N

E

[ZA
0,t,βN

(x,w)

ZA
N,βN

(x)

]
E

[ZA
0,s,βN

(y, v)

ZA
N,βN

(y)

]

× ∑
N1−aN <r<N1−9aN /40

q2r−t−s(w − v)E
[
Zr,N,βN

(0)2].
(4.22)

Note that E[Zr,N,βN
(0)2] ≤ E[ZN,βN

(0)2] ≤ C
β̂

uniformly in N by (3.2). Moreover,

∣∣∣∣E[ZA
0,t,βN

(x,w)

ZA
N,βN

(x)

]∣∣∣∣≤ E
[
ZA

0,t,βN
(x,w)2]1/2

E

[
1

ZA
N,βN

(x)2

]1/2
≤ C2,β̂

E
[
ZA

0,t,βN
(x,w)2]1/2

,

where the constant C2,β̂
comes from the negative moment bound (3.15). The same bound

holds with (x, t,w) replaced by (y, s, v). Therefore, (4.22) can be bounded by

C
β̂
C2,β̂

σ 2
N logN

N2

∑
x,y∈I>

∣∣∣∣φ( x√
N

)∣∣∣∣∣∣∣∣φ( y√
N

)∣∣∣∣
× ∑

(t,w)∈Ax
N

(s,v)∈A
y
N

E
[
ZA

0,t,βN
(x,w)2]1/2

E
[
ZA

0,s,βN
(y, v)2]1/2

× ∑
N1−aN <r<N1−9aN /40

q2r−t−s(w − v).

By our definitions of σN and βN in (2.15) and (1.18), we have σ 2
N logN = O(1). Applying

Cauchy–Schwarz for the sum over (t,w) and (s, v), we obtain the bound

C

N2

∑
x,y∈I>

∣∣∣∣φ( x√
N

)∣∣∣∣∣∣∣∣φ( y√
N

)∣∣∣∣( ∑
(t,w)∈Ax

N

E
[
ZA

0,t,βN
(x,w)2] ∑

(s,v)∈A
y
N

E
[
ZA

0,s,βN
(y, v)2])1/2

× ∑
N1−aN <r<N1−9aN /40

( ∑
(t,w)∈Ax

N,(s,v)∈A
y
N

q2r−t−s(w − v)2
)1/2

.

We next observe that
∑

(t,w)∈Ax
N
E[ZA

0,t,βN
(x,w)2] = E[ZA

N,βN
(x)2] ≤ C

β̂
(see (4.13), (2.18)

and (3.3)), and similarly for the sum over (s, v). This leads to the bound

CC
β̂

N2

∑
x,y∈I>

∣∣∣∣φ( x√
N

)∣∣∣∣∣∣∣∣φ( y√
N

)∣∣∣∣
× ∑

N1−aN <r<N1−9aN /40

( ∑
(t,w)∈Ax

N,(s,v)∈A
y
N

q2r−t−s(w − v)2
)1/2

.

(4.23)

Since |x − y| > N
1
2− aN

10 and |x −w|, |y − v| ≤ N
1
2− aN

4 , we have |w − v| > 1
2N

1
2− aN

10 . Given
r < N1−9aN/40, we then have

q2r−t−s(w − v)2 ≤ c exp
(
− |w − v|2

(2r − t − s)

)
≤ c exp

(−cNaN/40)= exp
(−ce(logN)γ /40).
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The sums over (t,w), (s, v) and r give only a polynomial factor in N , and hence (4.23) can
be bounded by

c

N2

∑
x,y∈I>

φ

(
x√
N

)
φ

(
y√
N

)
·N3 exp

(−ce(logN)γ /40)−−−−→
N→∞ 0.

This proves (4.19) and completes the step.
Step (3). Let Z

A,B≥
N,βN

(x) be defined as in (4.18) but with the constraint r ≥ N1−9aN/40

instead of r < N1−9aN/40, that is, with the sum over (r, z) ∈ B
≥
N instead of BN (recall (2.10)):

Z
A,B≥
N,βN

(x) := ∑
(t,w)∈Ax

N,(r,z)∈B
≥
N

ZA
0,t,βN

(x,w) · qr−t (z −w) · σNξr,z ·Zr,N,βN
(z).(4.24)

In view of (4.6), we focus on the averaged quantity

(4.25)

√
logN

N

∑
x∈Z2

Z
A,B≥
N,βN

(x)

ZA
N,βN

(x)
φ

(
x√
N

)
.

We will show that replacing in (4.24) the kernel qr−t (z − w) by qr(z − x) has a negligible
effect on (4.25), in the sense that the difference tends to zero in L1(P).

We introduce the notation (recall (2.10))

B
≥
N(x) := {(r, z) ∈ B

≥
N : |z − x| < r

1
2+ aN

80
}
.

Recall that gt (·) denotes the heat kernel on R
2; see (1.12). By a refined local limit theorem

for the simple random walk (see Theorem 2.3.11 in [33]), we have that for (r, z) ∈ B
≥
N(x),

qr(z − x) = 2gr/2(z − x) exp
(
O

(
1

r
+ |z − x|4

r3

))
= 2gr/2(z − x) exp

(
O
(
r−1+ aN

20
))

,

and similarly for (t,w) ∈ Ax
N (see (2.3)),

qr−t (z −w) = 2g(r−t)/2(z −w) exp
(
O

(
1

r − t
+ |z −w|4

(r − t)3

))
= 2g(r−t)/2(z −w) exp

(
O
(
r−1+ aN

20
))

,

because |z − w| ≤ |z − x| + |w − x| ≤ r
1
2+ aN

80 + N
1
2− aN

4 , and hence, for large N , we can
bound

|z −w| ≤ 2r
1
2+ aN

80 and |r − t | ≥ 1

2
r for t ≤ N1−aN , r ≥ N1−9aN/40.(4.26)

By a straightforward but tedious computation, there exists a positive constant c such that

sup
{∣∣∣∣ gr/2(z − x)

g(r−t)/2(z −w)
− 1

∣∣∣∣ : r > N1− 9aN
40 , t < N1−aN , |w − x| < N

1
2− aN

4 ,

|z − x| < r
1
2+ aN

80

}
= O

(
e−c(logN)γ )(4.27)

as N tends to infinity, and by the local limit theorem, this bound can be transferred to the
ratio qr(z − x)/qr−t (z −w).
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We are ready to estimate the error of replacing qr−t (z−w) by qr(z−x) in (4.24). We first
restrict the sum on (r, z) ∈ B

≥
N(x). Then the contribution to (4.25) is

√
logN

N

∑
x∈Z2

φ

(
x√
N

) ∑
(t,w)∈Ax

N

(r,z)∈B
≥
N(x)

ZA
0,t,βN

(x,w)

ZA
N,βN

(x)

× (qr−t (z −w)− qr(z − x)
) · σNξr,z ·Zr,N,βN

(z),

(4.28)

whose L1(P) norm is bounded by
√

logN

N

∑
x∈Z2

∣∣∣∣φ( x√
N

)∣∣∣∣E[ 1

ZA
N,βN

(x)

×
∣∣∣∣ ∑

(t,w)∈Ax
N

(r,z)∈B
≥
N(x)

ZA
0,t,βN

(x,w)

{
1 − qr(z − x)

qr−t (z −w)

}

× qr−t (z −w) · σNξr,z ·Zr,N,βN
(z)

∣∣∣∣]

≤
√

logN

N

∑
x∈Z2

∣∣∣∣φ( x√
N

)∣∣∣∣E[ 1

ZA
N,βN

(x)2

]1/2

×E

[( ∑
(t,w)∈Ax

N

(r,z)∈B
≥
N(x)

ZA
0,t,βN

(x,w)

{
1 − qr(z − x)

qr−t (z −w)

}

× qr−t (z −w) · σNξr,z ·Zr,N,βN
(z)

)2]1/2
.

(4.29)

We recall that E[ZA
N,βN

(x)−2] is uniformly bounded by the negative moment estimate (3.15),
while by orthogonality of terms in the chaos expansion and applying (4.27), the last expecta-
tion can be bounded as∑

(t,w)∈Ax
N

(r,z)∈B
≥
N(x)

E
[
ZA

0,t,βN
(x,w)2]{1 − qr(z − x)

qr−t (z −w)

}2
qr−t (z −w)2σ 2

NE
[
Zr,N,βN

(z)2]

= O
(
e−c(logN)γ ) ∑

(t,w)∈Ax
N

(r,z)∈B
≥
N(x)

E
[
ZA

0,t,βN
(x,w)2]qr−t (z −w)2σ 2

NE
[
Zr,N,βN

(z)2].

By (4.24), this last sum is bounded by E[ZA,B≥
N,βN

(0)2] ≤ E[ZN,βN
(0)2] ≤ C

β̂
uniformly in

N ; see (3.2). These estimates show that (4.29) is O(
√

logN exp(−c(logN)γ )), and hence
converges to zero, thus the L1(P) norm of (4.28) converges to zero, too.

To complete the step, it remains to check that in the chaos expansion (4.24) for Z
A,B≥
N,βN

(x),

the contribution of the complementary regime (r, z) ∈ B
≥
N \ B

≥
N(x), that is, |z − x| ≥

r1/2+aN/80, vanishes in L1(P) as N → ∞, and the same is true if we replace the kernel
qr−t (z −w) by qr(z − x). Note that in this regime, by moderate deviation estimates,

(4.30) qr(z − x) ≤ exp
{
−c

|z − x|2
r

}
≤ exp

{−craN/40}≤ exp
{−cec(logN)γ },
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and the same bound holds for qr−t (z−w), because |w − x| ≤ N
1
2− aN

4 = o(r1/2) as N →∞
(since r ≥ N1−9aN/40), and hence |w− x| = o(|z− x|) in this regime. These bounds can then
be used to show that√

logN

N

∑
x∈Z2

φ

(
x√
N

) ∑
(t,w)∈Ax

N,(r,z)∈B
≥
N

|z−x|>r1/2+aN /80

ZA
0,t,βN

(x,w)

ZA
N,βN

(x)

× qr−t (z −w) · σNξr,z ·Zr,N,βN
(z)

L1(P)−−−−→
N→∞ 0,

and the same holds when qr−t (z − w) is replaced by qr(z − x). Indeed, we can argue as in
(4.29) and then use the fact that the number of terms in the sums over x, (t,w), (r, z) is only
polynomial in N , while (4.30) decays faster.

4.4. Proof of Proposition 2.4. Recalling (2.14), we want to prove that√
logN√
πβ̂

1

N

∑
x∈Z2

(
ZB≥

N,βN
(x)− 1

)
φ

(
x√
N

)
d−−−−→

N→∞
〈
v

(
√

2c
β̂
)
(1/2, ·), φ〉,(4.31)

where v(c)(s, x) is the solution of the two-dimensional additive SHE as in (1.11).
The proof of (4.31) follows the same line as the proof of Theorem 2.13 in [7], which

proved the convergence of the fluctuations of the polymer partition function ZN,βN
(x) as

a space-time random field to the solution of the additive SHE. To see heuristically why
the limit in (4.31) should be Gaussian, we can write the LHS of (4.31) as a polyno-
mial chaos expansion (see (4.35)) where the dominant contribution (in L2) comes from
terms of finite order in the expansion because β̂ ∈ (0,1). Each such term is of the form
σk

N

∏k
i=1 qni−ni−1(xi − xi−1)ξni ,xi

, which due to the random walk transition kernels q·(·), de-
pends only on disorder ξ·,· in a neighborhood of (n0, x0) := (0, x) that is negligible on the
diffusive scale. Given such local dependence on the disorder, it is then not surprising that
when averaged over (0, x) on the diffusive scale with weight φ(x/

√
N), we should get a

Gaussian limit. The proof in [7] also shows that terms of order two and higher in the chaos
expansion leads to an independent white noise in the limit, which leads to a noise coefficient
c
β̂

> 1 in (1.11).
We now recall the key element in the proof of Theorem 2.13 in [7] and show how it can

be adapted to our setting. The key technical tool is the following variant of Proposition 8.1
in [7], specialized to the simple random walk on Z

2 (where we average in space, rather than
in space-time). It will show that, in the polynomial chaos expansion of the left-hand side
of (4.31), there are “building blocks” that converge in distribution to independent Gaussian
random variables.

PROPOSITION 4.1. For integer M and i ∈ {1, . . . ,M}, define intervals Ii := (N
i−1
M ,

N
i
M ]. A k-tuple (i1, . . . , ik) ∈ {1, . . . ,M}k is said to belong to {1, . . . ,M}k� if |ij − ij ′ | ≥ 2

for all j �= j ′.
For N ∈N, let ξ = (ξ

(N)
n,x )(n,x)∈N×Z2 be i.i.d. with zero mean and unit variance.

Given N,M ∈ N, a k-tuple (i1, . . . , ik) ∈ {1, . . . ,M}k� and a point x ∈ Z
2, we define a

random variable �
N;M
i1,...,ik

(x), a multilinear polynomial of degree k in the variables ξ ’s, as
follows:

�
N;M
i1,...,ik

(x) :=
(

M

RN

) k−1
2 ∑

n1∈Ii1 ,n2−n1∈Ii2 ,...,nk−nk−1∈Iik

n0:=0,x0:=x,x1,...,xk∈Zd

k∏
j=1

qnj−nj−1(xj − xj−1)

k∏
i=1

ξni,xi
,
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where qn(x) is the transition kernel of the simple symmetric random walk on Z
2, and RN is

the expected overlap, defined in (1.17). For φ ∈ Cc(R
2), we define the space-averaged version

�
N;M;φ
i1,...,ik

:= 1

N

∑
x∈Z2

�
N;M
i1,...,ik

(x)φ

(
x√
N

)
.

Let DM denote the subset of (i1, . . . , ik) ∈ {1, . . . ,M}k� that satisfy i1 > max{i2, . . . , ik},
called dominated sequences. Then, for any fixed M ∈ N and φ ∈ Cc(R

2), the family of
random variables (�

N;M;φ
(i1,...,ik)

)(i1,...,ik)∈DM
converges in distribution as N → ∞ to a family

(ζ
φ
(i1,...,ik)

)(i1,...,ik)∈DM
of independent Gaussian random variables with

(4.32) E
[
ζ

φ
(i1,...,ik)

]= 0, Var
[
ζ

φ
(i1,...,ik)

]= 2σ 2
φ1{i1=M},

that is, the variance is nonzero only if i1 = M , and is given by

(4.33) σ 2
φ =

∫
(R2)2

φ(x)K 1
2
(x, y)φ(y)dx dy with K 1

2
(x, y) =

∫ 1
2

0

1

4πu
e−

|x−y|2
4u du.

The proof of Proposition 4.1 in [7] is based on a variant of the fourth-moment theorem for
polynomial chaos expansions, as formulated in [7], Theorem 4.2, which was obtained in [40]
building on [15, 16, 41]. To check the variance, note that

Var
[
�

N;M;φ
i1,...,ik

]= 1

N2

∑
x,y∈Z2

∑
n1∈Ii1 ,x1∈Z2

φ

(
x√
N

)
φ

(
y√
N

)
qn1(x1 − x)qn1(x1 − y)

×
(

M

RN

)k−1 ∑
n2−n1∈Ii2 ,...,nk−nk−1∈Iik

x2,...,xk∈Z2

k∏
j=2

qnj−nj−1(xj − xj−1)
2,

(4.34)

where the second line tends to 1 as N →∞ by the definition of RN and Ii . We can write∑
x1∈Z2

qn1(x1 − x)qn1(x1 − y) = q2n1(x − y) =
n1→∞

(
gn1(x − y)+ o

(
1

n1

))
21{x−y∈Z2

even}

by the local limit theorem, where Z
2
even := {(a, b) ∈R

2 : a + b is even}, gt (x) is as in (1.12),
the factor 2 is due to random walk periodicity and we have gn1(·) instead of g2n1(·) because
the random walk Sn has covariance matrix n

2 I . Then, by a Riemann sum approximation, as
N →∞ the first line in (4.34) is close to the integral

∫
(R2)2

φ
(
x′)φ(y′)(∫ N

i1
M

−1

N
i1−1
M

−1
gu

(
x′ − y′)du

)
dx′ dy′ −−−−→

N→∞

{
0 if i1 < M,

2σ 2
φ if i1 = M,

with σ 2
φ defined in (4.33). Also note that for i1 = M , the dominant contribution comes from

n1 ∈ [εN,N ] for ε small, and hence restricting to n1 ∈ [1,N], or n1 ∈ IM = (N1− 1
M ,N], or

n1 ≥ N1−9aN/40 makes no difference as N →∞ (for any fixed M ∈N).
Let us show how Proposition 4.1 can be applied to prove (4.31). Recall from (2.19) that

(4.35) ZB≥
N,βN

(x)− 1 =
N∑

k=1

σk
N

∑
N1−9aN /40<n1<···<nk≤N

n0:=0,x0:=x,x1,...,xk∈Z2

k∏
i=1

qni−ni−1(xi − xi−1)ξni ,xi
.
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For fixed M ∈ N, grouping each ni − ni−1 according to which interval Ij := (N
j−1
M ,N

j
M ] it

belongs to, and recalling (2.15) and (1.18), we have the following approximation:√
logN√
πβ̂

1

N

∑
x∈Z2

(
ZB≥

N,βN
(x)− 1

)
φ

(
x√
N

)

≈
M∑

k=1

β̂k−1

M(k−1)/2

∑
(i1,...,ik)∈{1,...,M}k�

i1=M

�
N;M;φ
i1,...,ik

,

(4.36)

where ≈ means that the difference of the two sides vanishes in L2(P) as N → ∞ followed
by M → ∞. The restriction i1 = M in (4.36) is due to n1 > N1−9aN/40, which gives rise to

a dominated sequence. The error from relaxing n1 > N1−9aN/40 to n1 ∈ IM = (N
M−1
M ,N] is

negligible in L2, as noted above, while the error from restricting to (i1, . . . , ik) ∈ {1, . . . ,M}k�
(rather than the whole {1, . . . ,M}k) is also negligible in L2(P), when we first send N →∞
and then M →∞, as shown in [7], Lemma 6.2.

We can then apply Proposition 4.1 to conclude that, as we let N → ∞ for fixed M ∈ N,
the right-hand side of (4.36) converges in distribution to the same expression with �

N;M;φ
i1,...,ik

replaced by ζ
φ
i1,...,ik

, that is, to a Gaussian random variable with zero mean and with variance

(4.37)
M∑

k=1

(β̂2)k−1

Mk−1 2σ 2
φ · ∣∣{(i1, . . . , ik) ∈ {1, . . . ,M}k� : i1 = M

}∣∣.
If we let M →∞, since |{(i1, . . . , ik) ∈ {1, . . . ,M}k� : i1 = M}| = Mk−1(1 + o(1)), the sum
in (4.37) converges to the following explicit expression, with c

β̂
as in (1.11):

2σ 2
φ

∑
k≥1

β̂2(k−1) = 2σ 2
φ

1

1 − β̂2
= (

√
2c

β̂
)2σ 2

φ .

This agrees with the variance of 〈v(
√

2c
β̂
)
(1/2, ·), φ〉 (see (1.13)), which proves (4.31).

5. Edwards–Wilkinson fluctuations for KPZ. In this section, we prove Theorem 1.1,
which gives Edwards–Wilkinson fluctuations for the Hopf–Cole solution hε(t, z) =
loguε(t, z) of the mollified KPZ (where uε(t, z) solves the mollified SHE; see (1.5)).

The proof follows the same lines as in the directed polymer case. This is possible because
uε(t, z) admits a Feynman–Kac representation, which casts it in a form close to the directed
polymer partition function of size N = ε−2t . Indeed, by [2], Section 3 (see also [7], equa-
tion (2.27)), for fixed (t, z) we have the following equality in law:

uε(t, z)
d= Eε−1z

[
exp

{∫∫
(0,ε−2t)×R2

(
βεj (Bs − x)ξ(s, x)ds dx − 1

2
β2

ε j (Bs − x)2 ds dx

)}]

= Eε−1z

[
exp

{∫ ε−2t

0

∫
R2

βεj (Bs − x)ξ(s, x)ds dx − 1

2
β2

ε

(
ε−2t

)‖j‖2
L2(R2)

}]
,

(5.1)

where B = (Bs)s∈[0,∞) under Px is a standard Brownian motion on R
2 started at x.

We first perform a decomposition of uε(t, z) similar to that described described in Sec-
tion 2, which reduces Theorem 1.1 to the four Propositions 5.1–5.4 (see Section 5.1). These
are proved later (see Section 5.3) in analogy with the corresponding results for directed poly-
mer (see Section 4), exploiting moment bounds analogous to those in Section 3 (see Sec-
tion 5.2).

Henceforth, we set t = 1 and we focus on uε(z) := uε(1, z).
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5.1. Decomposition, linearization and Wiener chaos. By (5.1) and (1.21)–(1.22), uε(z)

is comparable to ZN(x), provided we identify N = ε−2, x = ε−1z.
As in (2.2)–(2.3), we define (for a γ ∗ small enough, depending only on β̂ as in (2.2))

aε := 1

(log ε−2)1−γ
for fixed γ ∈ (0, γ ∗),(5.2)

Az
ε :=

{
(s, x) : 0 < s ≤ (ε−2)1−aε ,

∣∣x − ε−1z
∣∣< (

ε−2) 1
2− aε

4
}
,(5.3)

and we introduce a modified partition function uε
A(z), obtained by restricting the double

integral in the first line of (5.1) to the set (s, x) ∈ Az
ε . This yields the decomposition

uε(z) = uε
A(z)+ ûε

A(z),(5.4)

where ûε
A(z), defined by this relation, is a “remainder” which, for fixed z, can be shown to be

much smaller than uε
A(z). More precisely, as in (2.6)–(2.7), we define Oε(z) by

(5.5) loguε(z) = loguε
A(z)+ ûε

A(z)

uε
A(z)

+Oε(z),

and we have the following analogues of Propositions 2.1–2.2.

PROPOSITION 5.1. Let Oε(·) be defined as above, then for any φ ∈ Cc(R
2),√

log ε−1
∫
R2

(
Oε(z)−E

[
Oε(z)

])
φ(z)dz

L2(P)−−−→
ε↓0

0.

PROPOSITION 5.2. Let uε
A(·) be defined as above, then for any φ ∈ Cc(R

2),√
log ε−1

∫
R2

(
loguε

A(z)−E
[
loguε

A(z)
])

φ(z)dz
L2(P)−−−→
ε↓0

0.

Next, in analogy with (2.10)–(2.11), we introduce the subset

(5.6) B≥
ε := ((ε−2)1−9aε/40

, ε−2)×R
2,

and we introduce uε
B≥(z), obtained by restricting the double integral in the first line of (5.1)

to the set (s, x) ∈ B≥
ε . We have the following analogues of Propositions 2.3–2.4.

PROPOSITION 5.3. Let uε
A(·), ûε

A(·), uε
B≥(·) be defined as above, then for any φ ∈

Cc(R
2),

(5.7)
√

log ε−1
∫
R2

(
ûε

A(z)

uε
A(z)

− (uε
B≥(z)− 1

))
φ(z)dz

L1(P)−−−→
ε↓0

0.

PROPOSITION 5.4. Let uε
B≥(·) be defined as above, then for any φ ∈ Cc(R

2),

(5.8)

√
log ε−1

√
2πβ̂

∫
R2

(
uε

B≥(z)− 1
)
φ(z)

d−−→
ε↓0

〈
v

(c
β̂
)
(1, ·), φ〉.

Theorem 1.1 is a direct consequence of Propositions 5.1–5.4. Regarding the centering, by
(5.5) we have E[loguε(z)] = E[loguε

A(z)]+E[Oε(z)], because ûε
A(z)/uε

A(z) has zero mean,
as we show in a moment.
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By (5.1) and the definition of Wick exponential [30], Section 3.2, we have the following
Wiener chaos representation for uε(z), where we set t0 := 0 and y0 := ε−1z:

uε(z)
d= 1 +∑

k≥1

βk
ε

∫
· · ·
∫

0<t1<···<tk<ε−2

 x∈(R2)k

(∫
(R2)k

k∏
i=1

gti−ti−1(yi − yi−1)j (yi − xi)d y
)

×
k∏

i=1

ξ(ti, xi)dti dxi,

(5.9)

where gt (·) is the transition kernel of the Brownian motion.
The modified partition function uε

A(z) admits a similar Wiener chaos expansions, with the
outer integrals restricted to the set {(t1, x1), . . . , (tk, xk)} ⊆ Az

ε . It follows that the Wiener
chaos expansion of ûε

A(z) := uε(z) − uε
A(z) contains at least one factor ξ(ti , xi) with (ti, xi)

outside Aε
z , which is not present in uε

A(z), hence E[ûε
A(z)/uε

A(z)] = 0.
Similarly, the Wiener chaos expansions of uε

B≥(z) is obtained by restricting the outer inte-
grals in (5.9) to the set {(t1, x1), . . . , (tk, xk)} ⊆ B≥

ε , that is, imposing t1 > (ε−2)1−9aε/40.

5.2. Moment bounds. We estimate positive and negative moments of uε(z).
We start with the second moment. We prove below the following bounds for uε(z), uε

A(z)

and ûε
A(z), which are close analogues of (3.2), (3.3), (3.4):

∀β̂ ∈ (0,1) ∃C
β̂

< ∞ such that ∀ε > 0 :
E
[
uε(z)2]≤ C

β̂
, E

[
uε

A(z)2]≤ C
β̂
, E

[
ûε

A(z)2]≤ C
β̂
aε.

(5.10)

We can now easily deduce bounds for higher positive moments. By hypercontractivity
[30], Theorem 5.1, the Lp norm of a Wiener chaos expansion like (5.9) is bounded by the L2

norm of a modified expansion, with the kth order term multiplied by (cp)k (i.e., β̂ replaced
by cpβ̂), with cp := √

p − 1. For β̂ ∈ (0,1), we can choose p > 2 such that β̂cp < 1, so as
to apply the bounds in (5.10). This yields an analogue of (3.12):

∀β̂ ∈ (0,1) ∃p = p
β̂
∈ (2,∞) ∃C′

β̂
< ∞ such that ∀ε > 0 :

E
[
uε(z)p

]≤ C′
β̂
, E

[
uε

A(z)p
]≤ C′

β̂
, E

[∣∣ûε
A(z)

∣∣p]≤ C′
β̂
(aε)

p/2.
(5.11)

PROOF OF (5.10). We compute E[uε(z)2] by using (5.9), applying the identity gt (y)×
gt (y

′) = 4g2t (y − y′)g2t (y + y′), and switching to new variables zi := yi − y′
i , wi := yi + y′

i .
This leads to the following expression (see [8], Section 8.2, for details):

E
[
uε(z)2]= 1 +∑

k≥1

(
β2

ε

)k ∫ · · ·
∫

0<t1<···<tk<ε−2

 z∈(R2)k,  w∈(R2)k

(
k∏

i=1

g2(ti−ti−1)(zi − zi−1)J (zi)·

· g2(ti−ti−1)(wi −wi−1)

)
k∏

i=1

dti dzi dwi,

(5.12)

where J := j ∗ j and we set z0 := 0, w0 := 2ε−1z. Integrating out wk,wk−1, . . . ,w1, we get

E
[
uε(z)2]= 1 +∑

k≥1

(
β2

ε

)k ∫ · · ·
∫

0<t1<···<tk<ε−2

 z∈(R2)k

(
k∏

i=1

g2(ti−ti−1)(zi − zi−1)J (zi)

)
k∏

i=1

dti dzi .

We recall that j , hence J , has compact support. If we define

r̄(t) := sup
z′∈supp(J )

∫
R2

g2t

(
z − z′

)
J (z)dz,



1114 F. CARAVENNA, R. SUN AND N. ZYGOURAS

we can bound

E
[
uε(z)2]≤ 1 +∑

k≥1

(
β2

ε

)k ∫ · · ·
∫

0<t1<···<tk<ε−2

k∏
i=1

r̄(ti − ti−1)dti

≤ 1 +∑
k≥1

{
β2

ε

∫ ε−2

0
r̄(t)dt

}k

.

Note that r̄(·) is bounded for t ≥ 0 and it satisfies r̄(t) = 1
4πt

+O(1) as t →∞, by (1.12). Re-

calling (1.2), we see that the bracket converges to β̂2 as ε → 0, hence the series is uniformly
bounded for β̂ < 1. This proves the first bound in (5.10).

The second bound in (5.10) follows because E[uε
A(z)2] ≤ E[uε(z)2], since the Wiener

chaos expansion for uε
A(z) is a subset of the expansion for uε(z).

Finally, the third bound in (5.10) can be proved similarly to (3.4) (see Section 3.4), because
E[ûε

A(z)2] can be bounded by an expression analogous to (5.12).1 �

We next estimate negative moments, establishing the following analogues of (3.14)–(3.16):

∀β̂ ∈ (0,1) ∀p ∈ (0,∞) ∃C
p,β̂

< ∞ such that ∀ε > 0 :
E
[
uε(z)−p]≤ C

p,β̂
< ∞,(5.13)

E
[
uε

A(z)−p]≤ C
p,β̂

< ∞,(5.14)

E
[∣∣loguε

A(z)
∣∣p]≤ C

p,β̂
< ∞.(5.15)

Since (5.15) follows easily from (5.14), it suffices to prove (5.13)–(5.14). These are direct
corollaries of the following result, analogous to Proposition 3.1.

PROPOSITION 5.5 (Left tail for KPZ). For  ⊆ (0, ε−2)×R
2, denote by uε

(z) what we
obtain by restricting the double integral in the first line of (5.1) to (s, x) ∈ , that is,

(5.16)

uε
(z) := Eε−1z

[
exp

{∫∫
(s,x)∈

(
βεj (Bs − x)ξ(s, x)ds dx

− 1

2
β2

ε j (Bs − x)2 ds dx

)}]
.

For any β̂ ∈ (0,1) there is c
β̂
∈ (0,∞) with the following property: for any ε > 0 and for any

choice of subset  ⊆ (0, ε−2)×R
2, one has

∀t ≥ 0 : P
(
loguε

(z) ≤−t
)≤ c

β̂
e
−t2/c

β̂ .(5.17)

It remains to prove Proposition 5.5. We first need to recall concentration inequalities for
white noise (see Appendix C for more details).

The white noise ξ = (ξ(s, y))(s,y)∈[0,∞)×R2 can be viewed as a random element of a sepa-
rable Banach space E of distributions on [0,∞)×R

2 (e.g., a negative Hölder space; see [10]).

1Note that ûε
A(z) contains at least one point (ti , xi) outside Az

ε in the Wiener chaos representation (5.9). Since

j (·) has compact support, say included in the ball Br := {x ∈ R
2 : |x| ≤ r}, the corresponding point (ti , yi ) in

(5.9) must be close to (i.e., at distance at most r from) the point (ti , xi ). Then E[ûε
A(z)2] can be bounded by

an expression analogous to (5.12), with the integrals restricted to the set where at least one point (ti ,
1
2wi) =

(ti ,
1
2 (yi + y′

i )) is close to (Az
ε)

c . This allows us to follow the proof in Section 3.4.
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Its law μ is the Gaussian measure on E with Cameron–Martin space H = L2([0,∞)×R
2),

and the triple (H,E,μ) is a so-called abstract Wiener space. In this setting, sharp concentra-
tion inequalities are known to hold for (not necessarily convex) functions f : E →R that are
Lipschitz in the directions of H , see [34], equations (4.7) and (4.8).

We need to work with convex functions f : E → R ∪ {−∞,+∞} that are not globally
Lipschitz. Remarkably, such functions still enjoy concentration inequalities for the left tail
(but not, in general, for the right tail). For x ∈ E with |f (x)| < ∞, denote by |∇f (x)| ∈
[0,∞] the maximal gradient of f in the directions of H , defined by

(5.18)
∣∣∇f (x)

∣∣ := sup
h∈H :‖h‖H≤1

lim
δ↓0

|f (x + δh)− f (x)|
δ

,

where the limit exists by convexity. Then the following inequality holds (see Theorem C.1):

(5.19) μ(f ≤ a − t)μ∗(f ≥ a, |∇f | ≤ c
)≤ e−

1
4 (t/c)2 ∀a ∈R,∀t, c ∈ (0,∞),

where μ∗ is the outer measure (to avoid the issue of measurability of |∇f |).
Note that, if we fix a, c such that μ∗(f ≥ a, |∇f | ≤ c) > 0, relation (5.19) gives a bound

on the left tail μ(f ≤ a − t) for all t > 0.

PROOF OF PROPOSITION 5.5. We can set z = 0, since the law of uε
(z) in (5.16) does

not depend on z, and we write uε
 := uε

(0). We denote by Hξ
ε (B) the argument of the expo-

nential in (5.16), so that uε
 = E[exp(Hξ

ε (B))]. We also introduce the shorthand

(5.20)
〈
j (B), ξ

〉 := ∫∫
(s,x)∈

j (Bs − x)ξ(s, x)ds dx.

We start with a second moment computation:

(5.21) E
[(

uε


)2]= E
[
E
[
eH

ξ
ε (B)+Hξ

ε (B̃)]]= E
[
eβ2

εL(B,B̃)],
where B , B̃ are independent Brownian motions, and L(B, B̃) is their overlap on :

(5.22) L(B, B̃) :=
∫∫

(s,x)∈
j (Bs − x)j (B̃s − x)ds dx.

Note that uε
 is a function of the white noise ξ , so we can define

(5.23) hε(ξ) := loguε
.

The function hε(·) is convex by Hölder’s inequality, because ξ !→ 〈j (B), ξ 〉 is linear (more
precisely, we can ensure that hε(·) is convex by choosing a suitable version of the stochastic
integral 〈j (B), ξ 〉; see Appendix D). Then (5.17) follows by (5.19) if we show that μ∗(hε ≥
a, |∇hε| ≤ c) is uniformly bounded from below, for a =− log 2 and for suitable c = c

β̂
.

We need to evaluate the maximal gradient |∇hε(ξ)|; see (5.18). We define a Gibbs change
of measure Pξ on the Brownian path B = (Bs)s≥0 by

dPξ

dP
(B) := eH

ξ
ε (B)

uε


.

Let us fix f ∈ H = L2([0,∞)×R
2). Recalling (5.20) and (5.23), we have

lim
δ↓0

hε(ξ + δf )− hε(ξ)

δ
= lim

δ↓0

1

δ
log Eξ [eβε〈j (B),δf 〉]= βεEξ [〈j (B),f

〉]
= βε

∫∫
(s,x)∈

Eξ [j (Bs − x)
]
f (s, x)ds dx.
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Taking f with ‖f ‖L2 ≤ 1 and recalling (5.22), it follows by Cauchy–Schwarz that

∣∣∇hε(ξ)
∣∣2 ≤ β2

ε

∫∫
(s,x)∈

Eξ [j (Bs − y)
]2 ds dy = E[β2

εL(B, B̃)eH
ξ
ε (B)+Hξ

ε (B̃)]
(uε

)2 .

Then, on the event hε(ξ) > a =− log 2, that is, uε
 > 1

2 , recalling (5.21), we can bound

E
[∣∣∇hε(ξ)

∣∣21{hε(ξ)>a}
]≤ 4EE

[
β2

εL(B, B̃)eHε(B)+Hε(B̃)]
≤ 4E

[
β2

εL(B, B̃)eβ2
εL(B,B̃)]≤ 4

δ
E
[
e(1+δ)β2

εL(B,B̃)],(5.24)

for any δ > 0 (by x ≤ 1
δ
eδx). For any subcritical β̂ ∈ (0,1), we can fix δ = δ

β̂
> 0 small, so

that β̂ ′ := β̂
√

1 + δ < 1 is still subcritical. By (5.21), the last expected value in (5.24) is the
second moment of uε

 with β̂ ′ instead of β̂ , hence it is uniformly bounded by some constant
C

β̂
< ∞, by (5.10), uniformly over all subsets  ⊆ (0, ε−2)×R

2. Summarizing,

(5.25) sup
ε>0

E
[∣∣∇hε(ξ)

∣∣21{hε(ξ)>a}
]≤ C′

β̂
< ∞.

We can continue as in the directed polymer case (see Proposition 3.1), noting that

μ
(
hε ≥ a, |∇hε| ≤ c

)= μ(hε ≥ a)−μ
(
hε ≥ a, |∇hε| > c

)
≥ μ(hε ≥ a)− 1

c2E
[∣∣∇hε(ξ)

∣∣21{hε(ξ)>a}
]
.

(5.26)

Since a := − log 2, we have μ(hε ≥ a) = μ(uε
 ≥ 1

2) ≥ (4C
β̂
)−1 as in (3.21). Plugging this

bound together with (5.25) into (5.26), we are done by choosing c = c
β̂

large enough. �

5.3. Proof of Propositions 5.1–5.4. Propositions 5.1 and 5.2 are proved repeating almost
verbatim the proofs of Propositions 2.1 and 2.2, which are the corresponding results for di-
rected polymers. We omit the details and refer to Sections 4.1 and 4.2.

PROOF OF PROPOSITION 5.3.. We follow closely the proof of Proposition 2.3 in Sec-
tion 4.3. Recall the decomposition uε(z) = uε

A(z)+ ûε
A(z); see (5.4). Then we further decom-

pose

ûε
A(z) = uε

A,C(z)+ uε
A,B(z),(5.27)

where uε
A,C(z), uε

A,B(z) are defined in analogy with Z
A,B
N,βN

(x), Z
A,C
N,βN

(x) from (4.9), (4.10):

uε
A,C(z) := ∑

k≥1

βk
ε

∫
· · ·
∫

0<t1<···<tk<ε−2, x∈(R2)k

{(t1,x1),...,(tk,xk)}∩Cz
ε �=∅

(∫
(R2)k

k∏
i=1

gti−ti−1(yi − yi−1)j (yi − xi)d y
)

×
k∏

i=1

ξ(ti , xi)dti dxi,

uε
A,B(z) := ∑

k≥1

βk
ε

∫
· · ·
∫

0<t1<···<tk<ε−2, x∈(R2)k

{(t1,x1),...,(tk,xk)}⊂Az
ε∪Bz

ε{(t1,x1),...,(tk,xk)}∩Bz
ε �=∅

(∫
(R2)k

k∏
i=1

gti−ti−1(yi − yi−1)j (yi − xi)d y
)

×
k∏

i=1

ξ(ti , xi)dti dxi,
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where we set t0 := 0, y0 := ε−1z, we recall that Az
ε was defined in (5.3), while Bε , Cz

ε are
defined similarly to BN , Cx

N from (4.7), (4.8) with N = ε−2 and x = ε−1z: more precisely,
recalling aε from (5.2), we set

Bε := ((ε−2)1−aε , ε−2],
Cz

ε := {(t, x) ∈R
2 : 0 < t ≤ (ε−2)1−aε ,

∣∣x − ε−1z
∣∣≥ (ε−2)1− aε

4
}
.

The proof of Proposition 5.3, similarly to Proposition 2.3, proceeds in three steps.
The first step is to show that uε

A,C(x) in (5.27) gives a negligible contribution, that is,√
log ε−1

∫
R2

uε
A,C(z)

uε
A(z)

φ(z)dz
L2(P)−−−→
ε→0

0.(5.28)

The proof is identical to the case for directed polymer; see (4.15) and the following lines. The
only difference is that (4.17) will be replaced by its continuum analogue, which is

E
[
exp

{
(c2pβε)

2
∫ ε−2(1−aε)

0
J
(
B(1)

s −B(2)
s

)
ds

}
; sup
s≤ε−2(1−aε)

∣∣B(i)(s)
∣∣> ε−(1− aε

2 ), for i = 1,2
]
,

where c2p := √
2p − 1 is the hypercontractivity constant for white noise, B(1), B(2) are two

independent Brownian motions and we recall that J (·) = (j ∗ j)(·). The rest of the estimates
follow the same lines as in the polymer case.

In view of (5.27) and (5.28), to complete the proof it remains to show that

(5.29)

√
log ε−1

2π

{∫
R2

uε
A,B(z)

uε
A(z)

φ(z)dz −
∫
R2

(
uε

B≥(z)− 1
)
φ(z)dz

}
L1(P)−−−→
ε→0

0.

For uε
A,B(z), we can give an expression analogous to (4.12), integrating over the last point

(t,w) ∈ Az
ε and the first point (r, v) ∈ Bε:

(5.30)

uε
A,B(z) =

∫
· · ·
∫
(t,w)∈Az

ε,w
′∈R2

(r,v)∈Bε,v
′∈R2

uε
A

(
0, z;dt,dw,dw′)

· gr−t

(
v′ −w′)j (v′ − v

)
βεξ(r, v)dr dv dv′

· uε(r, v′; ε−2, ·),
where uε

A(0, z;dt,dw,dw′) is the “point-to-point” partition function from (0, z) to (t,w,w′),
similar to (4.13) (the extra space variable w′ is due to the convolution with j (·)), which is
defined as follows, where we set t0 := 0 and y0 := ε−1z:

uε
A

(
0, z;dt,dw,dw′)
:=∑

k≥1

βk
ε

{∫
· · ·
∫

0<t1<···<tk−1<ε−2

(x1,...,xk−1)∈(R2)k−1

{(t1,x1),...,(tk−1,xk−1)}⊂Az
ε

(∫
(R2)k−1

k−1∏
i=1

gti−ti−1(yi − yi−1)j (yi − xi)

· gt−tk−1

(
w′ − yk−1

)
d y
)

k−1∏
i=1

ξ(ti , xi)dti dxi

}

· j (w′ −w
)
ξ(t,w)dt dw dw′,

while uε(r, v′; ε−2, ·) is the “point-to-plane” partition from (r, v′) until time ε−2, defined by
(5.9) where we set t0 := r , y0 := v′ and we replace 0 < t1 < · · · by r < t1 < · · · .
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In order to prove (5.29), as in the polymer case, we need two more steps: the second
step is to prove that the contribution from r < (ε−2)1−9aε/40 to the decomposition (5.30) is
negligible; the third step is to show that we can replace gr−t (z

′ − w′) by gr(z
′ − ε−1z) in

(5.30), because their difference is negligible for (5.29). These steps are proved using exactly
the same analysis as in the polymer case; see Section 4.3.

Finally, when we restrict the integral in (5.30) to r ≥ (ε−2)1−9aε/40, that is, to (r, z) ∈ B≥
ε

(recall (5.6)), and we replace gr−t (z
′ − w′) by gr(z

′ − ε−1z), the right-hand side of (5.30)
becomes exactly uε

A(z)(uε
B≥(z)− 1), which proves (5.29). �

PROOF OF PROPOSITION 5.4. In principle, also this last result could be proved as in the
polymer case (see Section 4.4), using a continuum analogue of Proposition 4.1. However, it
is simpler to deduce it from Proposition 2.4, approximating uε

B≥(z) in L2(P) by a directed

polymer partition function ZB≥
N,βN

(x) with N = ε−2, x = ε−1z built on the same probability
space. The details are described in Section 9 in [7] (where the space-time fluctuations of
uε(·, ·) are shown to converge to the solution of the additive SHE). �

APPENDIX A: SCALING RELATIONS FOR KPZ

We prove a scaling relation between the solutions of the mollified KPZ equations with
different parameters; see also [10], Section 2. In particular, we will verify the identity (1.8)
which relates the solution of the mollified KPZ equation with the small parameter βε either
in front of the noise or in front of the nonlinearity.

Given ν,λ,D > 0, let ψε := ψε;ν,λ,D denote the solution of the mollified KPZ equation

(A.1) ∂tψ
ε = ν

2
�ψε + λ

2

∣∣∇ψε
∣∣2 +√

Dξε, x ∈R
2, t ≥ 0, and ψε(0, ·) ≡ 0,

where ξε(t, x) is the mollification of the space-time white noise ξ in space with jε(x) =
ε−2j (x/ε), and j ∈ Cc(R

2) is a probability density on R
2 with j (x) = j (−x).

PROPOSITION A.1. Let ψε;ν,λ,D be defined as above. Then for any a > 0, we have

(A.2)
(
ψε;ν,λ,D(t, x)

)
t≥0,x∈R2

dist=
(

ν

λ
ψaε;1,1,β2(

a2νt, ax
))

t≥0,x∈R2
,

where β2 := λ2D
ν3 , known as the effective coupling constant; see [5].

REMARK A.2. In (A.2), setting a = 1, ν = 1, λ := βε = β̂

√
2π

log ε−1 and D = 1 gives

(1.8), since the constant term Cε in (1.3) only shifts the solution deterministically.

We need the following scaling relation for the mollified white noise ξε .

LEMMA A.3. Let ξ be the space-time white noise on R×R
2 and let ξε := ξ ∗ jε , where

jε(x) = ε−2j (x/ε). Then for any a > 0 and ν > 0, we have

(A.3) ξε(νa2·, a·) dist= 1

a2
√

ν
ξ

ε
a (·, ·)

in the sense that for all φ ∈ C∞
c (R×R

2),

(A.4)
∫

φ(t, x)ξε(νa2t, ax
)

dt dx
dist= 1

a2
√

ν

∫
φ(t, x)ξ

ε
a (t, x)dt dx.
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PROOF. Since both sides of (A.4) are centered normal random variables, it suffices to
check that their variances equal. Note that

X :=
∫
R×R2

φ(t, x)ξε(a2νt, ax
)
dt dx

=
∫
R×R2×R2

φ(t, x)ε−2j

(
ax − y

ε

)
ξ
(
a2νt, y

)
dt dx dy

= 1

a4νε2

∫
R×R2

(∫
R2

φ

(
t̃

a2ν
,
x̃

a

)
j

(
x̃ − ỹ

ε

)
dx̃

)
ξ(̃t, ỹ) d̃t dỹ.

Therefore,

Var(X) = 1

a8ν2ε4

∫
R×R2

(∫
R2

φ

(
t̃

a2ν
,
x̃

a

)
j

(
x̃ − ỹ

ε

)
dx̃

)2
d̃t dỹ

= 1

νε4

∫
R×R2

(∫
R2

φ(t, x)j

(
a(x − y)

ε

)
dx

)2
dt dy.

On the other hand,

Y := 1

a2
√

ν

∫
R×R2

φ(t, x)ξ
ε
a (t, x)dt dx

= 1

a2
√

ν

∫
R×R2×R2

φ(t, x)
a2

ε2 j

(
a(x − y)

ε

)
ξ(t, y)dt dx dy.

Therefore,

Var(Y ) = 1

νε4

∫
R×R2

(∫
R2

φ(t, x)j

(
a(x − y)

ε

)
dx

)2
dt dy.

Note that the two variances agree, so we are done. �

PROOF OF PROPOSITION A.1. For a, b, ε̃, β > 0 to be chosen later, define

g(t, x) := bψε̃;1,1,β2(
a2νt, ax

)
.

By (A.1), we have

∂tψ
ε̃;1,1,β2 = 1

2
�ψε̃;1,1,β2 + 1

2

∣∣∇ψε̃;1,1,β2 ∣∣2 + βξ ε̃.

Therefore,

(A.5)

∂g

∂t
(t, x) = a2νb

∂ψε̃,1,1,β2

∂t

(
a2νt, ax

)
= a2νb

2
�ψε̃,1,1,β2(

a2νt, ax
)+ a2νb

2

∣∣∇ψε̃,1,1,β2(
a2νt, ax

)∣∣2
+ a2νbβξ ε̃(a2νt, ax

)
dist= ν

2
�g(t, x)+ ν

2b

∣∣∇g(t, x)
∣∣2 + bβ

√
νξ

ε̃
a (t, x),

where we used (A.3).
To find a, b, ε̃ and β such that g solves (A.1) with parameters ν, λ, D, they should satisfy

(A.6) ε = ε̃

a
, λ = ν

b
, D = b2β2ν.
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Therefore, we must have

(A.7) b = ν

λ
, ε̃ = aε, β2 = Dλ2

ν3 ,

while we are free to choose a > 0. This proves (A.2). �

APPENDIX B: HYPERCONTRACTIVITY OF POLYNOMIAL CHAOS

We recall and refine the hypercontractivity property of polynomial chaos established in
[38]. Let (ξi)i∈T be i.i.d. random variables, labeled by a countable set T, with

E[ξi] = 0, E
[
ξ2
i

]= 1.

For every k ∈N, let Xk be a multilinear homogeneous polynomial of degree k in the ξi’s, that
is,

(B.1) Xk = ∑
I⊆T:|I |=k

fk(I )
∏
i∈I

ξi,

where fk(I ) are real coefficients. For k = 0, let X0 = f0 ∈R be a constant. Then for k ≥ 1,

(B.2) E[Xk] = 0, E
[
X2

k

]= ∑
I⊆T:|I |=k

fk(I )2.

If we assume that

(B.3)
∑
k∈N

∑
I⊆T:|I |=k

fk(I )2 < ∞,

then the series X :=∑∞
k=0 Xk is easily seen to define an L2 random variable. The next key

result allows us to control higher moments of X in terms of second moments.
It is useful to allow the law of the ξi = ξ

(N)
i to depend on a parameter N ∈N.

THEOREM B.1 (Hypercontractivity). For N ∈N, let (ξi = ξ
(N)
i )i∈T be i.i.d. such that

(B.4) E
[
ξ

(N)
i

]= 0, E
[(

ξ
(N)
i

)2]= 1, ∃p0 ∈ (2,∞) : sup
N∈N

E
[∣∣ξ (N)

i

∣∣p0
]
< ∞.

Then, for every p ∈ (2,p0), there exists a constant cp ∈ (1,∞) with the following property:
for any choice of coefficients {fk(I )}k∈N,I⊆T,|I |=k satisfying (B.3), if we define Xk by (B.1),
then the pth moment of the random variable X =∑∞

k=0 Xk can be bounded as

(B.5) E

[∣∣∣∣∣
∞∑

k=0

Xk

∣∣∣∣∣
p]

≤
( ∞∑

k=0

(
ck
p

)2
E
[
X2

k

])p/2

,

with E[X2
k ] given in (B.2). The constant cp only depends on the laws of (ξ

(N)
i ) and satisfies

(B.6) lim
p↓2

cp = 1.

Except for relation (B.6), which we prove below, this theorem was proved in [38] as an
extension of the corresponding result in the Gaussian framework; see [30]. In fact, [38],
Proposition 3.16, gave the following explicit bound on cp:

cp ≤ c̃p = 2
√

p − 1 sup
N∈N

E[|ξ (N)
i |p]1/p

E[|ξ (N)
i |2]1/2

= 2
√

p − 1 sup
N∈N

E
[∣∣ξ (N)

i

∣∣p]1/p
,
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and note that limp↓2 c̃p = 2. This extra factor 2 is the byproduct of a nonoptimal symmetriza-
tion argument in the proof in [38]. We now prove (B.6).

PROOF OF EQUATION (B.6). By [38], Section 3.2, relation (B.5) holds with constant cp

if the law of the random vairable ξ = ξi in (B.1) is (2,p,1/cp)-hypercontractive, that is,

∀a ∈R :
∥∥∥∥a + 1

cp

ξ

∥∥∥∥
p

≤ ‖a + ξ‖2,

where ‖ · ‖p := E[| · |p]1/p denotes the Lp norm. Since we allow the law of ξ = ξ (N) to
depend on N ∈N, it follows that we can characterize cp as follows:

(B.7) cp = inf
{
c > 1 :

∥∥∥∥a + 1

c
ξ (N)

∥∥∥∥
p

≤ ∥∥a + ξ (N)
∥∥

2 ∀a ∈R,∀N ∈N

}
.

For simplicity, we split the proof in two steps.
Step 1. We first consider the case of a fixed law for the random variable ξ (independent of

N ∈N) satisfying (B.4). In view of (B.7), we can rephrase our goal limp↓2 cp = 1 as follows:

(B.8) ∀c > 1 ∃p > 2 :
∥∥∥∥a + 1

c
ξ

∥∥∥∥
p

≤ ‖a + ξ‖2 ∀a ∈R.

We will first show that given c > 1, we can find p̄ = p̄c,p0 > 2 and K = Kc,p0 > 0, such that
for all p ∈ (2, p̄] and |a| > K , the inequality in (B.8) holds. We will then find p ∈ (2, p̄] such
that the inequality in (B.8) also holds for all |a| ≤ K .

We first need an elementary estimate: for any p0 ∈ (2,∞) there exists C = Cp0 < ∞ such
that, for all p ∈ [2,p0] and x ∈R,

(B.9) |1 + x|p = 1 + px + p(p − 1)

2
x2 +R(x) with

∣∣R(x)
∣∣≤ C

(|x|3 ∧ |x|p0
)
.

This follows by Taylor’s formula for |x| ≤ 1
2 (say) and by the triangle inequality for |x| > 1

2 .
We may assume that p0 ∈ (2,3] in (B.4) (just replace p0 by p0 ∧ 3). Then for every δ ∈R

with |δ| ≤ 1 we can bound∣∣R(δξ)
∣∣≤ C

(|ξ |3 ∧ |ξ |p0
)|δ|p0 ≤ C

(
1 + |ξ |p0

)|δ|p0 .

Since E[ξ ] = 0, it follows by (B.4) and (B.9) that for every δ ∈R with |δ| ≤ 1,

E
[|1 + δξ |p]= 1 + p(p − 1)

2
δ2
E
[
ξ2]+ r(δ) with

∣∣r(δ)∣∣≤ C′δp0,

where C′ = C′
p0

:= C
(
1 +E

[|ξ |p0
])

.

(B.10)

Then, as |δ| → 0,

‖1 + δξ‖p = 1 + p − 1

2
δ2
E
[
ξ2]+O

(|δ|p0
)
,

uniformly for p ∈ [2,p0]. This implies that as |a| →∞
‖a + 1

c
ξ‖p

‖a + ξ‖2
= ‖1 + 1

ca
ξ‖p

‖1 + 1
a
ξ‖2

=
1 + (p−1)E[ξ2]

2c2|a|2 +O( 1
|a|p0 )

1 + E[ξ2]
2|a|2 +O( 1

|a|p0 )

= 1 +
{
p − 1

c2 − 1
}
E[ξ2]
2|a|2 +O

(
1

|a|p0

)
.

(B.11)

Given c > 1, we can take p̄ = p̄c,p0 := min{1+ c,p0} > 2 so that uniformly in p ∈ (2, p̄], the
term in bracket is bounded by c−1 − 1 < 0. Then the RHS of (B.11) is < 1 for large |a|, say
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for |a| > K , where K = Kp0,c < ∞ only depends on c and p0. This proves the inequality in
(B.8) for all p ∈ (2, p̄] and |a| > K .

To complete the proof, we now show that there exists p ∈ (2, p̄] such that the inequality
in (B.8) holds for |a| ≤ K . If this is false, then for any sequence pn ∈ (2,p0] with pn ↓ 2, we
can find an ∈ [−K,K] such that

(B.12)
∥∥∥∥an + 1

c
ξ

∥∥∥∥
pn

> ‖an + ξ‖2 ∀n ∈N.

Extracting subsequences, we may assume that an → a ∈ [−K,K]. Since f (p, a) := ‖a +
1
c
ξ‖p is a continuous function of (p, a) ∈ [2,p0] × [−K,K] (by dominated convergence),

we may take the limit of (B.12) as n →∞ and get

(B.13)
∥∥∥∥a + 1

c
ξ

∥∥∥∥
2
≥ ‖a + ξ‖2,

which is a contradiction, since ‖a + 1
c
ξ‖2 =

√
a2 + 1

c2E[ξ2] < ‖a + ξ‖2 (recall that c > 1).

Step 2. Next, we allow the law of ξ = ξ (N) to depend on N ∈N. In view of (B.7), our goal
limp↓2 cp = 1 can be rephrased as follows:

(B.14) ∀c > 1 ∃p > 2 :
∥∥∥∥a + 1

c
ξ (N)

∥∥∥∥
p

≤ ∥∥a + ξ (N)
∥∥

2 ∀a ∈R,∀N ∈N.

We follow the same proof as in Step 1. We just need to check the uniformity in N ∈N.
Relation (B.10) still holds with ξ replaced by ξ (N), where we stress that C′ = C′

p0
< ∞

because we assume that supN∈N E[|ξ (N)|p0] < ∞; see (B.4). Then (B.11) holds as |a| →∞,
uniformly for p ∈ [2,p0] and also for N ∈ N. This proves that (B.14) holds if we restrict
|a| ≤ K , for a suitable K = Kp0,c depending only on c > 1 and p0.

It remains to fix c > 1, K < ∞ and prove that (B.14) holds, for some p > 2 and for every
|a| ≤ K . Arguing again by contradiction, assume now that there are sequences pn ∈ (2,p0],
an ∈ [−K,K], Nn ∈N, with pn ↓ 2, such that

(B.15)
∥∥∥∥an + 1

c
ξ (Nn)

∥∥∥∥
pn

>
∥∥an + ξ (Nn)

∥∥
2 ∀n ∈N.

Extracting subsequences, we may assume that an → a ∈ [−K,K], and also that ξ (Nn) con-
verges in law to a random variable ξ (the sequence is tight, by (B.4)). Since |aN + 1

c
ξ (Nn)|pn

are uniformly integrable, again by (B.4), we can take the limit of relation (B.15) and we get
precisely (B.13), which we already showed to be a contradiction. �

APPENDIX C: GAUSSIAN CONCENTRATION IN THE CONTINUUM

We prove a Gaussian concentration result, based on [34, 35], which can be viewed as a
“one-sided version” of [21], Theorem 2 (cf. (C.6) below with equation (4) in [21]).

Given a probability measure μ on a measurable space (E,E), we denote by μ∗ and μ∗ the
inner and outer measures: μ∗(A) := sup{μ(A′) : A′ ⊆ B,A′ ∈ E} and μ∗(A) = 1 −μ∗(Ac).

THEOREM C.1. Let μ be a Gaussian measure on a separable Banach space E, with
Cameron–Martin space H .2 Let f : E → R ∪ {−∞,+∞} be convex. For x ∈ E with

2This means that H is a separable Hilbert space, continuously embedded as a dense subset of the separable
Banach space E, and μ is a probability on E that can be described as follows: given any complete orthonormal
set (hn)n∈N in H and given i.i.d. N(0,1) random variables (Zn)n∈N, the sequence of random elements XN :=∑N

n=1 Znhn converges a.s. in the space E, and μ is the law on E of the limit X :=∑
n∈N Znhn. The triple

(H,E,μ) is called an abstract Wiener space. We refer to [34] for more details.
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|f (x)| < ∞, define the maximal gradient |∇f (x)| ∈ [0,∞] in the directions of H by (5.18).
Then

(C.1) μ(f ≤ a − t)μ∗(f ≥ a, |∇f | ≤ c
)≤ e−

1
4 (t/c)2 ∀a ∈R,∀t, c ∈ (0,∞).

(The outer measure μ∗ appears in (C.1) to avoid the issue of measurability of |∇f |.)
Let us denote by K := {h ∈ H : ‖h‖H ≤ 1} the unit ball in the Cameron–Martin space H .

Given a subset A ⊆ E, we define its enlargement A + rK := {x + rh : x ∈ A,h ∈ K}. We
recall the classical concentration property established by Borell [34], Theorem 4.3:

∀A ⊆ E with 0 < μ(A) < 1, setting a := �−1(μ(A)
)
,

μ∗(A+ rK) ≥ �(a + r) ∀r ≥ 0,
(C.2)

where �(x) = ∫ x
−∞ 1√

2π
e−t2/2 dt is the standard Gaussian distribution function.

The proof of Theorem C.1 is based on the following lemma of independent interest, which
follows from (C.2). It is close to [35], Corollary 1.4 (see also [9], Appendix B.1).

LEMMA C.2. For any measurable subset A ⊆ E, the following inequality holds:

μ(A)
(
1 −μ∗(A+ rK)

)≤ e−
1
4 r2 ∀r ≥ 0.(C.3)

PROOF. We may assume 0 < μ(A) < 1 (otherwise (C.3) holds trivially) and we apply
(C.2):

(C.4) 1 −μ∗(A+ rK) ≤ 1 −�(r + a) ≤ e−
1
2 ((r+a)+)2 ∀r ≥ 0,

where x+ := max{x,0} and we used the basic bound 1 −�(x) ≤ e−x2/2 for x ≥ 0.
Consider first the case μ(A) ≥ 1

2 : then a = �−1(μ(A)) ≥ 0 and (r + a)+ ≥ r , so (C.3)
follows by (C.4) (just bound μ(A) ≤ 1). Henceforth, we take μ(A) < 1

2 , so a < 0. Note that

(C.5) μ(A) = �(a) = 1 −�
(|a|)≤ e−

1
2 |a|2 .

Fix r ≥ 0. If |a| ≥ r , then (C.3) follows by (C.5) (just bound 1−μ∗(A+ rK) ≤ 1). If |a| < r ,
then (r + a)+ = (r − |a|)+ = r − |a| and relations (C.4)–(C.5) yield

μ(A)
(
1 −μ∗(A+ rK)

)≤ e−
1
2 {|a|2+(r−|a|)2} ≤ sup

x∈R
e−

1
2 {x2+(r−x)2} = e−

1
4 r2

. �

PROOF OF THEOREM C.1. Fix x, x′ ∈ E such that h := x′ − x ∈ H . The function g :
[0,1]→R defined by g(s) := f ((1− s)x + sx′) = f (x + sh) is convex (since f is convex),
hence

f
(
x′)− f (x) = g(1)− g(0) ≤ g′(1−) := lim

ε↓0

g(1)− g(1 − ε)

ε
= lim

ε↓0

f (x′)− f (x′ − εh)

ε
.

Recalling (5.18), we have shown that

(C.6) f
(
x′)− f (x) ≤ ∣∣∇f

(
x′)∣∣∥∥x′ − x

∥∥
H .

Let us now set

A := {f ≤ a − t}, B := {f ≥ a, |∇f | ≤ c
}
.

In view of Lemma C.2, to prove (C.1) it suffices to show that for any r < t
c

we have B ⊆
(A + rK)c, that is, A + rK⊆ Bc. So we fix x ∈ A, h ∈ H with ‖h‖H < t

c
and we show that

x′ := x + h ∈ Bc. Either f (x′) < a, and then x′ /∈ B , or f (x′) ≥ a, and then (by x ∈ A)∣∣∇f
(
x′)∣∣≥ f (x′)− f (x)

‖x′ − x‖H

≥ a − (a − t)

‖h‖H

>
t

t/c
= c,

hence again x′ /∈ B . This completes the proof. �
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APPENDIX D: STOCHASTIC INTEGRAL AS A LINEAR FUNCTION

We formulate a linearity result for the stochastic integral with respect to the white noise
ξ = (ξ(z))z∈Rd on R

d , which is needed in the proof of Proposition 5.5. Recall that the white
noise can be realized as a random element of a separable Banach space E of distributions on
R

d (e.g., a negative Hölder space), equipped with its Borel σ -algebra. Denoting by μ the law
of the white noise on E, we will use the probability space (E,μ) as a canonical construction
of ξ . We also set H = L2(Rd).

For any h ∈ H , the stochastic integral 〈h, ξ〉 := ∫
Rd h(z)ξ(z)dz ∼ N(0,‖h‖2

H ) is a random
variable in L2(E,μ), so it is not canonically defined for any given ξ ∈ E. The following
results guarantees the existence of a convenient version of 〈h, ξ〉.

THEOREM D.1. It is possible to define 〈h, ξ〉 as a jointly measurable of (h, ξ) ∈ H ×E,
with the following properties:

• 〈h, ξ〉 is a version of the stochastic integral
∫
Rd h(z)ξ(z)dz, for every h ∈ H .

• For any probability measure ν on H , there is a measurable vector space Vν ⊆ E with

μ(Vν) = 1, Vν +H = Vν,

such that the following property holds:

(D.1)
∀ξ, ξ ′ ∈ Vν : 〈

h,αξ + α′ξ ′〉= α〈h, ξ〉 + α′〈h, ξ ′〉< ∞
for ν-a.e. h ∈ H,∀α,α′ ∈R.

REMARK D.2. Given any probability ν on H , we can define f : E →R∪ {+∞} by

(D.2) f (ξ) := log
∫
H

e〈h,ξ 〉ν(dh).

This function is convex when restricted to the vector space Vν of Theorem D.1, by (D.1) and
Hölder’s inequality. If we redefine f (ξ) := +∞ for ξ /∈ Vν , we obtain a version of f (recall
that μ(Vν) = 1) which is convex on the whole space E.

This applies, in particular, to the function hε(ξ) := loguε
 in the proof of Proposition 5.5

(see (5.23)), with uε
 = uε

,ξ (0) defined in (5.16). In this case, Rd =R
1+2 and ν is the law of

the process (βεj (Bs − x))(s,x)∈[0,ε−2]×R2 ∈ L2(R1+2).

PROOF OF THEOREM D.1. Fix a probability density � ∈ C∞
c (Rd) and set �ε(z) :=

ε−d�(ε−1z). Also fix a smooth cutoff function χ : Rd → [0,1] with χ(x) ≡ 1 for |x| ≤ 1
and χ(x) ≡ 0 for |x| ≥ 2, and set χε(z) := χ(εz). For any h ∈ H = L2(Rd), we define
hε ∈ C∞

c (Rd) by

hε(z) := χε(z)(�ε ∗ h)(z).

Since limε↓0 ‖hε − h‖H = 0, we can find (εn = εh
n)n∈N such that ‖hεn − h‖H ≤ 2−n. (We

can ensure that εh
n is measurable in h, for example, εh

n := max{ε ∈ {1
k
: k ∈N} : ‖hε − h‖H ≤

2−n}.)
For every n ∈N, we have hεn ∈ C∞

c (Rd); hence the map

(D.3) (h, ξ) !→ 〈h, ξ〉n := 〈hεn, ξ〉
is canonically defined for any distribution ξ ∈ E, and is jointly measurable in (h, ξ) ∈ H ×E.
By the Itô isometry of the stochastic integral and Borel–Cantelli, for any fixed h ∈ H we have
limn→∞〈h, ξ〉n = 〈h, ξ〉 for μ-a.e. ξ ∈ E. We can finally define the measurable map

〈h, ξ〉 :=
⎧⎨⎩ lim

n→∞〈h, ξ〉n if the limit exists in R,

+∞ otherwise.
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For every n ∈ N, the maps ξ !→ 〈h, ξ〉n are linear, hence the limit map ξ !→ 〈h, ξ〉 is linear,
too, whenever it is finite. More precisely, for every h ∈ H and ξ, ζ ∈ E:

(D.4)
〈h, ξ〉 < ∞, 〈h, ζ 〉 < ∞ =⇒

〈h,αξ + βζ 〉 = α〈h, ξ〉 + β〈h, ζ 〉 < ∞ ∀α,β ∈R.

By construction, for every h ∈ H we have 〈h, ξ〉 ∈ L2(E,μ), so 〈h, ξ〉 < ∞ for μ-a.e.
ξ ∈ E. If we now fix a probability ν on H , and we define the measurable subset Vν ⊆ E by

Vν := {ξ ∈ E : 〈h, ξ〉 < ∞ for ν-a.e. h ∈ H
}
,

it follows by Fubini’s theorem that μ(Vν) = 1. Note that Vν + H = Vν , because 〈h,g〉 < ∞
for all h,g ∈ H . Finally, relation (D.4) implies (D.1), which shows that Vν is a vector space.
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