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Abstract

Background: A study has been performed in overweight and obese subjects to assess the effects of adiposity and
inflammation indicators on dysmetabolic biomarkers via red cell distribution width (RDW) and mean corpuscular
volume (MCV), taking into account pro-antioxidant balance.

Methods: Data from 166 overweight subjects were analyzed by a path analysis model using structural equation
modelling (SEM) to evaluate the direct and indirect pathway effects of adiposity, measured by body mass index
(BMI) and waist circumference (WC), and inflammation status, measured by pro-antioxidant balance [reactive
oxygen species (ROS)], lag-time and slope and C-reactive protein (CRP) values on dysmetabolic biomarkers, via RDW
and MCV.

Results: BMI was strongly linked to CRP and ROS levels. Moreover, there was a significant negative decrease of
MCV (1.546 femtoliters) linked to BMI indirectly via high CRP levels. Furthermore, WC affected RDW, indicating a
possible mediatory role for RDW in relation to the relationship between WC and homeostatic model assessment
(HOMA), insulin and high density lipoprotein (HDL), respectively. This was evident by the elevated HOMA and
insulin levels and the decreased levels of HDL. Finally, ROS-related markers did not affect directly RDW and MCV.
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Conclusion: The reported outcomes suggest that RDW might play a mediatory role in the relationship between
WC and the dysmetabolic outcomes in overweight and obese individuals. CRP seems to modulate the linkage
between BMI and MCV. This study provides the backbone structure for future scenarios and lays the foundation for
further research on the role of RDW and MCV as suitable biomarkers for the assessment of cardiovascular disease
(HDL-cholesterol), inflammatory bowels and insulin resistance.

Keywords: Obesity, Inflammation, Metabolism, Pathway, Red cell distribution width, Mean corpuscular volume,
Reactive oxygen species, Path analysis, Structural equation modelling

Introduction
Red blood cell distribution width (RDW), a measure of
the variability in size of circulating erythrocytes, has
been demonstrated to be altered under various disease
conditions linked to inflammation [1], including chronic
heart failure (CHF), pulmonary embolism, septic shock
[2, 3] and haematological disease, in particular certain
forms of anaemia [4]. Evidence suggest that in addition
to inflammation, elevated levels of RDW are also linked
to nutritional habits [5], both representing the two main
characteristics of insulin resistance in obesity, and meta-
bolic syndrome (MetS) as previously reported in the
ibermutuamur cardiovascular risk assessment (ICARIA)
study [6].
It is now well recognized that chronic low-grade

inflammatory state is a crucial factor that links obes-
ity to insulin resistance and its comorbidities [7].
Consequently, recent studies have focused on investi-
gating the relationship between RDW and inflamma-
tion in obese subjects with conflicting results. For
instance, RDW differed significantly between normal-
weight adolescents and overweight adolescents and
RDW was positively correlated with biomarkers of
inflammation [8]. Moreover, in an animal model of
diet-induced obesity, nutritional changes increased
RDW, while overweight by definition did not alter
RDW [8]. In contrast, the study by Vaya et al.
pointed out that RDW should not be considered as
an inflammatory marker in morbidly obese patients
as it is not related to inflammatory status, in spite of
reporting elevated RDW in morbidly obese patients
compared to controls [9]. Inflammation and oxida-
tive damage are correlated in obesity and it has been
theorized that not only inflammation, but also oxida-
tive damage may affect RDW, as previously demon-
strated in older patients [10]. Moreover, oxidative
stress increases the level of RDW by impairing iron
metabolism, reducing red cell life span, and modu-
lating the response to erythropoietin by the bone
marrow [11]. Consequently, oxidative stress may be
a potential underlying biological mechanism for in-
creased RDW, however, there are no studies to date

evaluating the correlation between oxidative stress
and RDW in obese patients.
Given this background, the aim of the study was to as-

sess the links between RDW and the markers of adipos-
ity [assessed by body mass index (BMI) and waist
circumference (WC)], inflammation status [assessed by
C-reactive protein (CRP)] and oxidative stress [assessed
by reactive oxygen species (ROS) and lag-time and
slope]. It is speculated that oxidative stress increases
RDW and, consequently, increases metabolic-related dis-
orders, as assessed by the lipid profile [total cholesterol,
high density lipoprotein (HDL) cholesterol, low density
lipoprotein (LDL) cholesterol, and triglycerides], insulin,
homeostatic model assessment (HOMA), and blood
pressure in obese subjects (Fig. 2). These markers of me-
tabolism, inflammation and oxidative stress were used
due to previous investigations which reported elevated
RDW being associated with high-sensitive CRP [12], al-
tered glycemic patterns [13], hypertension [14], obesity
[15] and unfavourable lipid profile, especially in women
[16]. Finally, the core study hypothesis defines path ef-
fects of RDW and MCV on dysmetabolic biomarkers, by
verifying their mediation roles in a pro-antioxidant bal-
ance (ROS-related) framework.

Subjects and methods
Subjects
The study was approved by the ethics committee of the
Department of Internal Medicine and Medical Therapy
at the University of Pavia, Italy (Reg. no 0905/15122017).
All subjects gave their informed written consent to par-
ticipate in the study, which was carried out in accord-
ance with the Helsinki Declaration.
The subjects, both male and female, ranged in age be-

tween 18 and 50 years. Female subjects had to be pre-
menopausal, not pregnant with normal menstrual cycles
and having a BMI between 25 and 35 kg/m2. All subjects
were asked to submit their complete medical history,
and undergo a physical examination with anthropomet-
ric assessment and routine laboratory testing at the Diet-
etic and Metabolic Unit of the "Santa Margherita’
Institute, University of Pavia, Italy. Eligibility included
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subjects not showing significant alterations in lipid and
carbohydrate metabolism (glucose < 6.11 mmol/L, total
cholesterol < 6.20 mmol/L, triglycerides < 2.28 mmol/L)
or being affected by any acute or disabling conditions or
pathologic conditions (e.g., endocrinological, neoplastic
and autoimmune diseases). Moreover, subjects with a
history or signs and symptoms of heart disease were ex-
cluded. Subjects with mild hypertension (systolic pres-
sure 140–150 mm/Hg, diastolic pressure 80–95 mm/Hg)
and sedentary subjects, who did not drink more than 6
glasses of wine per week and no hard liquor were
allowed in the study. Smoking habits were also recorded
in a dichotomous way (yes or no) and previous smokers
were considered as smokers.

Observed variables
Nutritional status
Nutritional status was assessed using anthropometric
measurements. Body weight was measured to the nearest
0.1 kg with a precision scale in light indoor clothing and
without shoes, while WC was recorded to the nearest
centimeter using standardized technique [17]. BMI was
calculated (kg/m2).

Biochemical analyses

Lipid and glycemic pattern Fasting venous blood sam-
ples were drawn from each subject in a sitting position
between 08.00 and 10.00 AM. Blood collection and
handling was performed under strictly standardized con-
ditions and in line with manufacturer recommendations.
Blood samples for clinical chemistry analysis were col-
lected into evacuated tubes without anticoagulant, left
for one hour at room temperature, and then centrifuged
for 15 min at 1500 x g. The serum was then transferred
into plastic tubes, rapidly frozen and stored at − 80 °C
until analysis within one month. Whole blood with
EDTA as anticoagulant was used for hematological indi-
ces. Total cholesterol, triglycerides and HDL cholesterol
were measured by enzymatic-colorimetric methods.
Serum LDL cholesterol was calculated according to the
Friedewald formula for samples with triglyceride levels
less than 400 mg/dL (< 4.5 mmol/L). Erythrocyte, white
blood cell and platelet counts together with haemoglobin
concentrations, mean cell volumes, and mean cell
haemoglobin concentrations were measured using a
Coulter automated cell counter MAX-M (Beckman
Coulter, Inc., Fullerton, USA). This instrument takes ad-
vantage of the volume, conductivity and scatter (VCS)
technology. Serum insulin levels were measured on a
Roche Elecsys 2010 analyzer (Roche Diagnostics, Basel,
Switzerland) using dedicated commercial electrochemi-
luminescent immunoassays. To determine insulin resist-
ance, subjects were instructed to fast for 12 h before

blood was taken. Furthermore, the subjects refrained
from any form of exercise for 48 h before the study. Fe-
male subjects were tested during the early follicular
phase of their menstrual cycles (days 3–10). Insulin re-
sistance was calculated using the HOMA formula [18]:
HOMA-IR = [(fasting insulin, μU/mL) x (plasma glucose,
mmol/L)] divided by 22.5 [17].

Oxidative stress assessment
Whole blood with heparin as an anticoagulant was used
to obtain plasma. The blood was immediately centri-
fuged (1000 x g for 15 min) and plasma aliquots were
immediately frozen in liquid nitrogen and stored at −
80 °C until further assays. Red blood cells (RBCs), after
buffy coat removal, were washed twice with phosphate
buffered saline and aliquots were immediately frozen in
liquid nitrogen and stored at − 80 °C until further assays.
The susceptibility of plasma to peroxidation was mea-

sured by determining the kinetics of copper-stimulated
plasma peroxidation using a fluorescent method [19].
Briefly, this method is based on the evaluation of the
peroxidation kinetics monitored following the formation
of fluorescent adducts originating from the reaction of
aldehydes (derived from lipid peroxidation promoted by
Cu++ bound to apolipoproteins) with amino groups of
plasma proteins and/or phospholipids. The development
of fluorescence emission was monitored at 430 nm, set-
ting the excitation at 360 nm, every 30 min for 8 h. The
kinetic profile of these curves allows the evaluation of
two indices of lipoprotein susceptibility to peroxidation:
the lag-time of the initial latency phase expressed in mi-
nutes and the maximal rate of oxidation in the propaga-
tion phase calculated from the slope of the curve in this
phase.

Statistical analysis
The first aim of the research was to assess and quantify
a causal path analysis model [20, 21] that describes the
expected causal biomedical relationships between, adi-
posity indicators, such as BMI and WC, inflammation
markers (i.e., CRP), ROS-related indicators (i.e., ROS,
slope and lag-time), and blood indicators, such as RDW
and MCV, and dysmetabolic markers as outcomes. The
causal path diagram of the conceptual biomedical model
is shown in Fig. 2, which is hierarchically structured by
four sections: i) BMI and WC as antecedent nodes; ii)
the inflammation markers, that are potentially first-level
mediators; iii) the red blood markers, RDW and MCV
that are potentially second-level mediators and finally iv)
the dysmetabolic markers as outcomes.
Path analysis is a special type of structural equations

modelling (SEM), a multivariate approach based on the
use of a system of simultaneous equations to describe a
priori path relationships that generate the data (SEMs
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belong to the confirmatory models class), where a given
variable can appear explanatory in one or several equa-
tions, and as well as the outcome in other equations [20].
According to the conceptual model, the causal mech-

anism of a path analysis model defines 3 types of effects:
direct, indirect, and correlation effect. The direct effect
of an explanatory (exogenous) variable on a response
(endogenous) variable is the net effect of a predictor,
compared to the other predictors in the built-in equa-
tions. The indirect effect is the effect mediated by the
other variables belonging to the pathway; these two are
interpreted as a multiple linear regression coefficient
(e.g., variation of response variable for unit increase of
explanatory variable keeping fixed the others in the
built-in equations). Finally, the correlation effect is de-
fined by the classic Pearson correlation.
In this framework, by two tail z-tests on effects (null

hypothesis, H0: β = 0, a P-value< 0.05 was considered sig-
nificant), verification of (i) the direct effects of RDW and
MCV on dysmetabolic markers as outcomes, (ii) whether
adiposity markers affect RDW and MCV directly and/or
indirectly via inflammation status, and (iii) whether
RDW, MCV and inflammation markers could assume
the role of mediators of the relationships between adi-
posity and dysmetabolic outcomes was possible. The re-
siduals of the endogenous variables could be correlated
(i.e. correlation coefficients = ρ), and they were inter-
preted as pairwise residual correlations.
Robust standard errors (sandwich type) were used

to manage non-normality joint distribution. The au-
thors evaluated the model fitting procedure by
goodness-of-fit indexes such as variability explained of
each response variable through the determination co-
efficients (R2), comparative fit index (CFI) and
Tucker-Lewis index (TLI), and by badness-of fit indi-
ces such as root mean square error of approximation
(RMSEA) and standardized root mean square residual
(SRMR). CFI, TLI > 0.90, and RMSEA, SRMR< 0.08
were retained for “adequate approximation” fitting of
the model to data.
The sample size (n = 166) was sufficient to fit the

models because it is based on the ratio of sample size
(N) to number of parameters (t) (i.e., N:t rule expected
to be ≥2:1) to be estimated in SEM framework [22].
Finally, we performed a model selection procedure

using a stepwise strategy by removing and adding
new direct effects to the initial model. This modifica-
tion was useful to refine the conceptual representa-
tion of the whole biomedical pathway. The criteria
used for the model selection are based on the com-
bination of two elements: (i) improvement of the pre-
viously mentioned indexes and (ii) z-tests of the
maximum likelihood estimates (MLE) to detect the P-
values < 0.10. However, from a statistical perspective,

the authors acknowledge that once the conceptual
model is revised the confirmatory modelling becomes
exploratory modelling. Indeed, the data are random
and the modifications based on the current sample
may not be the modifications from another sample
sampled under the same conditions. Hence, a further
estimation procedure was tested, based on the semi-
confirmatory approach via penalized likelihood [3, 6]
by using the lasso penalization and the Akaike Infor-
mation Criterion (AIC).
It is worth to point out that no extensive model

searching has been done and the authors did not follow
an exploratory approach. A stepwise regression model
selection method was used to provide a potential and
more consistent backbone model (supported by medical
literature) that could be useful in future, larger studies
and scenarios. In the end, the decision was to conduct a
theory-driven study as much as possible relevant and
concordant with the medical literature.
The path analysis parameters (effects) were computed

by the maximum likelihood estimation (MLE) method.
The P-values of the estimates were evaluated by z-tests
(i.e., estimate over standard error), and were considered
statistically significant if P < 0.05 in two sided tests. Stan-
dardized effects (β*) were also computed to compare the
effect magnitudes (i.e., after adjustment for unit of meas-
ure of the variables). Statistical analysis was performed
on R 3.6.3 using lavaan [23] and lslx [14] packages.

Results
Subject characteristics
A total of 166 subjects (137 women and 29 men, includ-
ing 38 ex- and current smokers), with a mean age of
39.38 ± 10.34 years admitted to the Dietetic and Meta-
bolic Unit of the “Santa Margherita’ Institute, University
of Pavia, Italy between January 2013 to the end of May
2015 were assessed. Figure 1 displays the subjects’ selec-
tion. General characteristics of the study population
within gender are given in Table 1.

Path analysis model
Table 2 shows the estimates of the fit on the conceptual
model. In order to achieve a more conservative and in-
terpretable model, a first model selection procedure was
performed using a backward technique where the
unnecessary outcomes, whose regression coefficients
returned P-value> 0.1, were removed. In this way, dia-
stolic and systolic blood pressure, triglycerides, choles-
terol, LDL cholesterol, and cholesterol/HDL cholesterol
ratio were deleted from the model.

Goodness of fit indexes
The variability explained for each endogenous variable
by its exogenous variables returned through the
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determination coefficients (R2) were in decreasing order:
25.2% for RDW, 21.3% for lag-time, 10.8% for CRP, 5.9%
for slope, 5.2% for HDL cholesterol, 4.2% for MCV, 3.2%
for HOMA, 2.9% for insulin, 1.8% for ROS and 0.9% for
blood glucose levels. After model selection, the
goodness-of-fit statistics as chi-square statistics = 88.839
(P < 0.001), baseline chi-square = 932.538 (P < 0.001),
SRMR = 0.104, RMSEA = 0.084 (90%CI = 0.061; 0.107),
CFI = 0.944, and TLI = 0.906 gave evidence of a moder-
ate model appropriateness. All goodness of fit statistics
was performed by the Satorra-Bentler correction.

Direct effects
The main output for the selected path analysis model is
shown in Table 3. Notably, WC was linked to RDW as a
red blood marker whereby, when WC increased, there
was a corresponding increase in RDW (β = 0.123, P <
0.001). Moreover, RDW affected HDL cholesterol make
it decrease (β = − 0.038, P = 0.006), and HOMA (β =
0.086, P = 0.010) and insulin (β = 0.343, P = 0.020) make
them increase. Then, adiposity markers acted on inflam-
matory status. The results revealed that BMI was
strongly linked to CRP (β = 0.048, P < 0.001), whereby an
increase in BMI unit resulted in an increase in CRP
(0.048mg/dL), and ROS (β = 0.233, P = 0.049). In the
same regards, WC significantly acted on lag-time (β = −

0.365, P < 0.001) with a 10-cm increase in WC resulting
in a decreased lag-time of 3.2 min, which in turn led to
the decision to communicate the value per 10 cm in ac-
cordance to size when interpreting the effect of WC.
Regarding the inflammation pathways, Table 3 also shows

a significant effect of CRP on MCV (β = − 1.546, P < 0.001)
in which MCV decreased by 1.546 femtoliters for each unit
of CRP increase. Moreover, ROS-related process showed
significant effects of ROS on both lag-time (β = − 1.278, P <
0.001) and slope (β = 0.011, P = 0.010). For every ten units
of ROS increase, lag-time decreased by 12.78min, while
slope increased by 0.11 fluorescence units/min. Notably,
the effects linking the ROS-related markers to RDW and
MCV were all non-significant (P > 0.05). Finally, MCV af-
fected insulin (β = − 0.036, P = 0.003).
In order to compare the main effects, the standardized

versions were evaluated as shown in Table 3. Accounting
for this, regarding the significant ones, the effect of WC
on RDW (in absolute value) was the strongest (β* =
0.646) of the selected path analysis model. In addition,
the effect of ROS on lag-time was very marked (β* = −
0.396) as well as the BMI effect on CRP (β* = 0.328).

Indirect effects
Table 3 displays the significant indirect effects, com-
puted as product of the direct effects involved. These

Fig. 1 Flow diagram of the subjects studied
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effects set shown as RDW might be considered a medi-
ator of the relationships of WC on some dysmetabolic
outcomes. In particular, WC affected RDW (β = 0.123)
with the latter being linked negatively to the three dys-
metabolic outcomes, i.e., decreased HDL cholesterol
(β = − 0.005 = 0.123 × − 0.038, P = 0.010), increased
HOMA (β = 0.011 = 0.123 × 0.086, P = 0.013) and insuli-
nemia (β = 0.042 = 0.123 × 0.343, P = 0.024).
Finally, BMI-induced CRP negatively affected MCV in

a significant manner (β = − 0.075 = 0.048 × − 1.546, P =
0.012), and CRP affected insulin by MCV in damaging
way (β = 0.055 = 1.546 × − 0.036, P = 0.015).

Residual correlations
The residual correlation (ρ) estimates of the endogenous
variables are shown in the upper triangular matrix section
of Table 4. Accounting for outcome section, insulin and

HOMA residuals were strongly correlated between them
(ρ = 0.981, P < 0.001). Regarding the other two model sec-
tions, i.e., inflammation and red blood markers, it should
be noted that the slope-lag-time and the slope-CRP re-
sidual correlations were slightly significant, ρ = − 0.233
(P = 0.013) and ρ = 0.160 (P = 0.033), respectively.

Semi-confirmatory approach
Following this approach, the model selection might also sug-
gest the inclusion of effects (βPL) that were not stated in the
conceptual model (Fig. 2), that may explain more variability,
in addition to improving adequacy of the model to data. In
this way, the direct effects of the adiposity on the dysmeta-
bolic outcomes were probed, accounting for the small sam-
ple size of the study. In this case, overall, the goodness of fit
indexes were not satisfactory by giving evidence of a poor
model appropriateness (data not shown). Nevertheless, it is

Table 1 Baseline descriptive statistics of the sample

Variable Women (137) Men (29) Total (166)

mean ± sd mean ± sd mean ± sd

age (years) 38.92 ± 10.48 41.55 ± 9.53 39.38 ± 10.34

Adiposity markers

Body weight (kg)* 75.80 ± 10.11 94.90 ± 13.09 79.13 ± 12.89

Body Mass Index (kg/m2)* 29.70 ± 3.11 31.65 ± 3.67 30.04 ± 3.29

Waist circumference (cm)* 98.88 ± 8.96 109.31 ± 9.75 100.70 ± 9.91

Inflammation markers

CRP (mg/dl) * 0.43 ± 0.52 0.26 ± 0.21 0.40 ± 0.48

Reactive Oxygen Species (mg/dl)* 31.71 ± 5.92 29.38 ± 3.57 31.30 ± 5.64

Slope (fluorescence units/min) 1.26 ± 0.28 1.23 ± 0.20 1.26 ± 0.26

Lag-time (min) 137.52 ± 18.86 141.90 ± 13.17 138.29 ± 18.04

Red Blood markers

Red blood cell distribution width (%)* 14.48 ± 1.96 15.32 ± 1.32 14.63 ± 1.89

Mean Corpuscular Volume (femtoliters) 89.11 ± 3.84 89.39 ± 2.55 89.15 ± 3.65

Dysmetabolic markers (outcomes)

Systolic Blood Pressure (mmHg) 132.89 ± 11.00 135.69 ± 7.27 133.38 ± 10.48

Diastolic Blood Pressure (mmHg) 81.52 ± 4.38 83.45 ± 5.01 81.86 ± 4.55

Blood glucose level (mmol/l) 5.01 ± 0.90 5.06 ± 0.59 5.02 ± 0.85

Insulin (mUI/L) 8.24 ± 3.69 9.07 ± 5.01 8.38 ± 3.95

HOMA (units) 1.81 ± 0.84 2.04 ± 1.16 1.85 ± 0.90

Triglycerides (mmol/l) 1.04 ± 0.53 1.27 ± 0.77 1.08 ± 0.58

Total Cholesterol (mmol/l) 5.27 ± 1.01 5.46 ± 1.14 5.31 ± 1.03

HDL Cholesterol (mmol/l)* 1.56 ± 0.36 1.36 ± 0.35 1.52 ± 0.37

LDL cholesterol (mmol/l) 3.11 ± 0.89 3.52 ± 1.04 3.19 ± 0.92

Total Cholesterol/HDL Cholesterol (units)* 3.45 ± 1.02 4.27 ± 1.44 3.60 ± 1.14

Data are expressed as mean ± standard deviation
*Statistically significant differences (T test or Mann-Whitney test, P < 0.05) between women and men
CRP C-Reactive Protein, ROS Reactive Oxygen Species, HOMA Homeostasis Model Assessment, HDL high-density lipoprotein cholesterol, LDL low-density
lipoprotein cholesterol
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worth reporting the significant results on the new direct
effects inserted by this approach: BMI had a significant effect
on insulin (βPL = 0.281, P= 0.023, 95%CI = 0.005; 0.558) and
HOMA (βPL = 0.086, P= 0.004, 95%CI = 0.023; 0.150), while
WC had an effect on LDL cholesterol (βPL = 0.022, P= 0.049,
95%CI = 0.000; 0.047), triglycerides (βPL = 0.025, P= 0.001,
95%CI = 0.009; 0.041) and the total cholesterol – HDL chol-
esterol ratio (βPL = 0.04, P < 0.001, 95%CI = 0.022; 0.058).

Discussion
This study was conducted in a group of obese subjects
using a path analysis model that characterizes and quan-
tifies pathways of adiposity and inflammation on dysme-
tabolic biomarkers through red blood indicators such as
RDW and MCV.
Recently, RDW has been suggested to have an import-

ant role in the final common pathway of multiple patho-
logic processes, including inflammation and therefore
reflecting different forms of anaemia [4].
The authors therefore state that elevated measures of

RDW represent the underlying inflammatory state in
overweight subjects, which is consistent with the current
understanding of the crosstalk between inflammation
and the hematological system. It is well established that
inflammatory cytokines interfere with the maturation of
RBCs in the bone marrow through multiple mechanisms
[24–27].
In addition, a moderate prediction was found for

RDW (25.2%), lag-time (21.3%) and CRP (10.8%). On
the other hand, the main strength of this study was to

Table 2 Effect estimates of the path analysis of the conceptual
model

Estimate
(β)

Standardized
Estimate (β)a

P
(|Z| > z)

95% CI

Direct effect

BMI→ CRP 0.050 0.342 0.008 0.013; 0.087

BMI→ ROS 0.415 0.242 0.047 0.006; 0.825

BMI→ Slope − 0.012 − 0.153 0.192 − 0.031; 0.006

BMI→ Lag-
time

− 0.108 − 0.020 0.873 −1.432; 1.216

BMI→ RDW −0.132 − 0.229 0.022 − 0.244; − 0.019

BMI→MCV 0.078 0.070 0.574 −0.194; 0.350

WC→ CRP −0.002 −0.044 0.682 −0.012; 0.008

WC→ ROS −0.078 − 0.136 0.283 −0.220; 0.064

WC→ Slope 0.000 0.003 0.975 −0.005; 0.006

WC→ Lag-
time

−0.292 − 0.160 0.143 − 0.684; 0.099

WC→ RDW 0.122 0.640 < 0.001 0.089; 0.155

WC→MCV −0.061 − 0.165 0.148 − 0.143; 0.022

CRP→ RDW 0.302 0.077 0.085 −0.042; 0.646

CRP→MCV −1.446 −0.190 < 0.001 −2.170; − 0.721

ROS→ Slope 0.012 0.263 0.006 0.004; 0.021

ROS→ Lag-
time

−1.276 −0.399 < 0.001 −1.867; − 0.685

ROS→ RDW − 0.017 − 0.052 0.548 −0.074; 0.039

ROS→MCV −0.003 − 0.005 0.943 − 0.097; 0.091

Slope→RDW 0.090 0.013 0.868 −0.971; 1.150

Slope→MCV 1.264 0.091 0.256 −0.917; 3.444

Lag-
time→RDW

−0.001 −0.009 0.920 −0.019; 0.017

Lag-
time→MCV

0.017 0.086 0.292 −0.015; 0.050

RDW→ HOMA 0.081 0.168 0.016 0.015; 0.146

RDW→ SBP −0.206 −0.037 0.656 −1.115; 0.702

RDW→DBP 0.080 0.033 0.660 −0.277; 0.438

RDW→ TGL −0.007 −0.021 0.762 −0.049; 0.036

RDW→ CHL −0.009 −0.016 0.831 −0.089; 0.072

RDW→ LDL 0.035 0.071 0.331 −0.036; 0.106

RDW→ HDL −0.037 −0.192 0.007 −0.065; − 0.010

RDW→ CHL/
HDL

0.071 0.117 0.096 −0.012; 0.154

RDW→ BGL 0.044 0.096 0.070 −0.004; 0.091

RDW→ Insulin 0.320 0.153 0.030 0.030; 0.609

MCV→ HOMA −0.028 −0.112 0.149 −0.066; 0.010

MCV→ SBP −0.081 −0.028 0.748 −0.576; 0.414

MCV→ DBP −0.071 −0.057 0.419 −0.244; 0.101

MCV→ TGL −0.013 −0.081 0.270 −0.036; 0.010

MCV→ CHL 0.037 0.132 0.103 −0.008; 0.082

MCV→ LDL 0.028 0.109 0.122 −0.007; 0.062

Table 2 Effect estimates of the path analysis of the conceptual
model (Continued)

Estimate
(β)

Standardized
Estimate (β)a

P
(|Z| > z)

95% CI

MCV→ HDL 0.014 0.136 0.048 0.000; 0.027

MCV→ CHL/
HDL

−0.004 −0.014 0.834 −0.044; 0.035

MCV→ BGL 0.007 0.029 0.514 −0.014; 0.027

MCV→ Insulin −0.160 −0.148 0.050 −0.320; 0.000

In bold: P < 0.05; in italic: 0.05 ≤ P < 0.10
Goodness of fit indexes: chi-square = 168.107 (P < 0.001), baseline chi-square =
1906.191 (P < 0.001), SRMR = 0.091, RMSEA =0.102 (90%CI = 0.084; 0.121),
CFI = 0.940, TLI = 0.847
→ = effect, BMI = Body Mass Index, WC =Waist Circumference, CRP = C-
Reactive Protein, ROS = Reactive Oxygen Species, RDW = Red Cell Distribution
Width, MCV =Mean Corpuscular Volume, HOMA = Homeostasis Model
Assessment, SBP = Systolic Blood Pressure, DBP = Diastolic Blood Pressure,
TGL = Triglycerides, CHL = total cholesterol, LDL = low-density lipoprotein
cholesterol, HDL = high-density lipoprotein cholesterol, BGL = Blood
Glucose Level
aSince the variables are measured on various scales, standardized estimates
(β*) rather than raw effects (β) are shown using the standard deviations as
measurement units for the variables. Therefore, these are standardized partial
regression coefficients are effects of explanatory variable on response variable,
controlling for the other variables of the model
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investigate the mechanism describing the causal rela-
tionships of key metabolic biomedical markers, which
have been separately studied in the literature. They were
included in the hierarchical multivariate model that
tested the effects on dysmetabolic outcomes. These fac-
tors combined with rigorous inclusion and exclusion cri-
teria provided by the model selection used improved the
quality of the results obtained with respect to previous
literature.
Furthermore, this study demonstrated the potentially

adverse effects of BMI on inflammation markers, as

witnessed by the elevated serum levels of CRP and ROS.
Additionally, BMI appears to have an indirect effect on
MCV, whereby the BMI-induced increases in CRP may
have generated a negative trickle-down effect leading to
a reduction in MCV. Emerging data from this study sup-
plements already existing data from studies that previ-
ously demonstrated a strong association between RDW
and CRP [12]. Moreover, a number of studies have re-
ported a correlation in decreased MCV with inflamma-
tion markers in patients with inflammatory bowel
disease [28, 29].

Table 3 Effect estimates of the selected path analysis model (via stepwise regression)

Estimate (β) Standardized
Estimate (β)*

P (|Z| > z) 95% CI

Direct effect retained by model selection

BMI→ CRP 0.048 0.328 0.001 0.019; 0.078

BMI→ ROS 0.233 0.136 0.049 0.001; 0.465

BMI→ RDW −0.138 − 0.241 0.012 − 0.247; − 0.030

WC→ Lag-time (a) − 0.365 − 0.198 < 0.001 − 0.549; − 0.180

WC→ RDW 0.123 0.646 < 0.001 0.091; 0.156

CRP→ RDW 0.292 0.075 0.101 −0.057; 0.642

CRP→MCV −1.546 −0.205 < 0.001 − 2.317; − 0.775

ROS→ Slope 0.011 0.243 0.010 0.003; 0.020

ROS→ Lag-time −1.278 −0.396 < 0.001 − 1.860; − 0.696

RDW→ HOMA 0.086 0.179 0.010 0.021; 0.151

RDW→ HDL −0.038 − 0.196 0.006 −0.065; − 0.011

RDW→ BGL 0.042 0.094 0.074 −0.004; 0.089

RDW→ Insulin 0.343 0.165 0.020 0.055; 0.631

MCV→ HDL 0.011 0.113 0.105 −0.002; 0.025

MCV→ Insulin −0.036 −0.033 0.003 −0.060; − 0.012

(main) indirect effect

BMI→ CRP→MCV − 0.075 −0.067 0.012 −0.133; − 0.016

BMI→ ROS→ Lag-time −0.298 − 0.054 0.070 − 0.620; 0.024

BMI→ RDW→ HOMA −0.012 − 0.043 0.056 − 0.024; 0.000

BMI→ RDW→ HDL 0.005 0.047 0.050 0.000; 0.010

BMI→ RDW→ Insulin −0.047 −0.040 0.069 −0.098; 0.004

WC→ RDW→ HOMA 0.011 0.116 0.013 0.002; 0.019

WC→ RDW→ HDL −0.005 −0.126 0.010 −0.008; − 0.001

WC→ RDW→ BGL 0.005 0.061 0.084 −0.001; 0.011

WC→ RDW→ Insulin 0.042 0.107 0.024 0.005; 0.079

CRP→MCV→ Insulin 0.055 0.007 0.015 0.011; 0.100

In bold: P < 0.05; in italic: 0.05 ≤ P < 0.10
Goodness of fit indexes: chi-square = 88.839 (P < 0.001), baseline chi-square = 932.538 (P < 0.001), SRMR = 0.104, RMSEA = 0.084 (90%CI = 0.061; 0.107),
CFI = 0.944, TLI = 0.906
(a) discovered by the modification indexes
→ = effect, BMI = Body Mass Index, CRP = C-Reactive Protein, ROS = Reactive Oxygen Species, RDW = Red Cell Distribution Width, MCV =Mean Corpuscular Volume,
WC =Waist Circumference, HOMA = Homeostasis Model Assessment, HDL = high-density lipoprotein cholesterol, BGL = Blood Glucose Level
*Since the variables are measured on various scales, standardized estimates (β*) rather than raw effects (β) are shown using the standard deviations as
measurement units for the variables. Therefore, these are standardized partial regression coefficients are effects of explanatory variable on response variable,
controlling for the other variables of the model
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Table 4 Coefficients of determination (R2) and residual correlations (ρ) by section of the selected path analysis model (via stepwise
regression)

Inflammation markers
(first level mediators)

Red Blood markers
(second level mediators)

Outcomes

CRP ROS Slope Lag-time RDW MCV Insulin HOMA HDL BGL

Inflammationmarkers
(first level mediators)

CRP 0.108
(P = 0.027)

0.097
(P = 0.294)

0.160
(P = 0.033)

−0.020
(P = 0.708)

– – – – – –

ROS 0.018
(P < 0.001)

– – – – – – – –

Slope 0.059
(P < 0.001)

−0.233
(P = 0.013)

– – – – – –

Lag-time 0.213
(P < 0.001)

– – – – – –

Red Blood-markers
(second level mediators)

RDW 0.252
(P < 0.001)

0.000
(P = 0.998)

– – – –

MCV 0.042
(P < 0.001)

– – – –

Outcomes Insulin 0.029
(P < 0.001)

0.981
(P < 0.001)

−0.171
(P = 0.040)

0.021
(P = 0.629)

HOMA 0.032
(P < 0.001)

−0.157
(P = 0.055)

0.141
(P = 0.003)

HDL 0.052
(P < 0.001)

0.104
(P = 0.293)

BGL 0.009
(P = 0.107)

R2’s are on the diagonal, residual correlations (ρ) in the upper triangular matrix (in bold: P < 0.05)
CRP C-Reactive Protein, ROS Reactive Oxygen Species, RDW Red Cell Distribution Width, MCV Mean Corpuscular Volume, HOMA Homeostasis Model Assessment,
HDL high-density lipoprotein cholesterol, BGL Blood Glucose Level

Fig. 2 Graph of the conceptual path analysis model. Note. → = effect, BMI = Body Mass Index, WC = Waist Circumference, CRP = C-Reactive
Protein, ROS = Reactive Oxygen Species, RDW = Red Cell Distribution Width, MCV = Mean Corpuscular Volume, SBP = Systolic Blood Pressure,
DBP = Diastolic Blood Pressure, BGL = Blood Glucose Level, HOMA = Homeostasis Model Assessment, TGL = Triglycerides, CHL = cholesterol,
HDL= high-density lipoprotein cholesterol, LDL = low-density lipoprotein cholesterol. The grey boxes represent the exogenous variables, the
white boxes the endogenous ones. All the variables are continuous
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The findings of this study showed a direct association
between WC and RDW, which is in line with previous
studies that reported significantly higher mean platelet
volume and RDW in patients with adiposity related
MetS compared to those without MetS or positively cor-
related with high-sensitive CRP, HOMA insulin resist-
ance and BMI [30, 31].
As a result, the effect of RDW may therefore be re-

lated to the reduction of HDL cholesterol and the in-
crease in HOMA and insulin values. In particular, the
possible consequences of the indirect effect involving
adiposity, RDW and HDL cholesterol may be related to
cardiovascular diseases. Indeed, an association between
RDW and lipid profile has been observed in previous
studies showing an inverse relationship between RDW
and all coronary artery diseases and plasma lipids [16,
32]. Finally, WC values showed an association with the
inflammation marker of lag-time.
It is worth mentioning that the authors of this

study have considered the effects of ROS on lag-time.
The findings showed a strong negative effect between
the increase in ROS and the decrease in lag-time. In
addition, ROS had a strong positive effect on the
slope with increasing ROS corresponding to increased
slope. Nevertheless, it must be pointed out that ROS-
related markers had no effect on RDW and MCV.
Therefore, ROS had no indirect side effects on the
metabolic markers.

Study limitations
The results of this study should be evaluated considering
that the main limitation of this study is the relatively small
size of the sample studied. Therefore, further studies,
employing larger number of subjects of both sexes, may
provide more detailed information on the potential direct
links between inflammatory status (e.g., ROS-related
markers) and dysmetabolic outcomes. In addition, adjust-
ment in covariates or confounding might be involved to
refine the parameter estimates.

Conclusion
The present study offers an innovative model that is dir-
ectly involved in the assessment about the effects of red
blood indicators, specifically RDW and MCV, as suitable
markers for cardiovascular disease (HDL cholesterol), in-
flammatory bowels and insulin resistance. In a group of
obese subjects, this statistical model was able to charac-
terizes and quantifies pathways of adiposity and inflam-
mation on dysmetabolic biomarkers through RDW and
MCV. In particular, RDW may be considered a mediator
in the relationships between WC and the dysmetabolic
outcomes, whereas CRP seems to modulate the linkage
between BMI and MCV. Further researches are

necessary to better investigated the role of blood indica-
tors on dysmetabolic outcomes.
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