
DOCTORAL SCHOOL

UNIVERSITY OF MILANO-BICOCCA

Department of Informatics, Systems and Communication

PhD program in Computer Science

Cycle XXXV

Three Perspectives on Anomaly
Detection in Deep Learning

Francesco CRAIGHERO

Registration number : 854389

Supervisor : Prof. Marco ANTONIOTTI

Co-supervisor : Dr. Alex GRAUDENZI

Tutor : Prof. Francesca ARCELLI

PhD Program Director : Prof. Leonardo MARIANI

ACADEMIC YEAR 2021/22

Abstract

Real-world applications of deep learning are rapidly growing, but so are the concerns
on the fairness and safety of such models. Understanding what a deep model knows,
while discarding what it is unsure about, represents a key step in reaching a more
trustworthy AI. Towards this goal, anomaly detection strives to define scoring
methods for input examples that distinguish normal, well-represented, instances
from the ones that are rarely occurring, corrupted or out-of-distribution. Ranking
instances is not only a way to allow users to discard untrustworthy inputs, but
provides useful insights about the data itself. Indeed, since modern datasets are
ever-growing, methods that perform automated data auditing such as anomaly
detectors are of crucial importance.

In this thesis, I will discuss three approaches related to anomaly detection
in deep learning. First, I will introduce the Activation Pattern DAG (APD), a
Directed Acyclic Graph (DAG) that summarizes the latent space’s properties of
Deep Neural Networks (DNNs). I will also show that the APD can be used to
cluster input instances based on their similarity in the latent space. More in detail,
the APD exploits DNNs’ activation patterns, a discrete representation of latent
features resulting from the application of piecewise linear activations functions.
Experiments show that the cluster size can be used to rank input instances by
difficulty, allowing one to predict misclassified instances, but also to reduce the size
of a dataset by identifying a meaningful subset of representatives. Second, I will
present the ENsemble Adversarial Detector (ENAD), a new method for adversarial
examples detection in Convolutional Neural Networks (CNNs), based on the idea
of integrating score functions from state-of-the-art detectors. Results prove the
goodness of its performances against state-of-the-art detectors, with both known
and unknown adversarial attacks. Furthermore, ENAD allows for flexibility in
the number of detectors in the ensemble, making it possible to incorporate newly
introduced methods. Third, I will present a study investigating the behaviour
of deep models on imbalanced data, by considering the uncertainty of the model
and the complexity of data. I will discuss two case studies, one on predicting
the binding affinity between T-cell receptors (TCRs) and epitopes, a recent and
important application of deep learning in immunology, and a more standard task of

iii

image classification. In order to analyse the deep models, I selected three metrics
related to uncertainty estimation and anomaly detection. Moreover, I will discuss
the use of data dimensionality estimation to detect imbalanced class complexities.

Overall, these efforts provide three contributions to the broad and important
area of anomaly detection in deep learning, which is recently gaining a lot of
attention for its connections with generalization and safety.

Three additional projects in computational biology are available in the appendix.
They include a review on imputation and denoising methods for single-cell data,
a classifier to predict cancer samples from the topological properties of metabolic
networks, and a deep learning model to predict relative fluxes in reaction systems.

iv

Contents

1 Introduction 1
1.1 Anomaly Detection in Deep Learning 1
1.2 Thesis Goals . 2
1.3 Contributions . 3

2 Background: Anomaly Detection in Deep Learning 7
2.1 Introduction . 7
2.2 Motivations: Why We Have To Deal With Anomalies 8

2.2.1 Closed-world Assumption 8
2.2.2 Long-tailed Distributions . 9

2.3 How to Detect Anomalies . 9
2.3.1 Example Difficulty Estimation 10
2.3.2 OOD and Adversarial Examples Detection 10
2.3.3 Uncertainty Estimation . 12

2.4 Outcomes: How Anomaly Detection Improves Deep Learning 12
2.4.1 Interpretability . 12
2.4.2 Safety . 13

3 Quantifying Example Difficulty from Activation Patterns 15
3.1 Introduction . 16
3.2 Background . 17
3.3 Methods . 18

3.3.1 Basic Definitions . 18
3.3.2 From Activation Patterns to the APD 19
3.3.3 APD Clustering . 21
3.3.4 Forgetting Events . 22

3.4 Results . 24
3.4.1 APD as an Auditing Tool . 24
3.4.2 APD Evolution During Training 27
3.4.3 APD as a Visualization Tool 28

3.5 Conclusions . 31

4 Adversarial Examples Detection with Ensemble Approaches 33
4.1 Introduction . 34
4.2 Background . 36

v

CONTENTS

4.2.1 Adversarial Attacks . 36
4.3 Methods . 37

4.3.1 Data partitioning . 38
4.3.2 Feature Extraction . 38
4.3.3 Standalone Detectors . 38
4.3.4 ENsemble Adversarial Detector (ENAD) 42
4.3.5 Performance Metrics . 43

4.4 Results . 44
4.4.1 Known Attacks . 45
4.4.2 Transfer attacks . 50
4.4.3 Visualizing Adversarial Examples in the Score Space 53
4.4.4 Computational time . 55

4.5 Conclusions . 55
4.A Supplementary Material . 57

5 Uncertainty and Complexity in Imbalanced Classification Tasks 67
5.1 Introduction . 68
5.2 Background . 70

5.2.1 Intrinsic Dimensionality and Sample Complexity 70
5.2.2 Imbalanced Binary Classification 70

5.3 Metrics . 71
5.3.1 Metrics 1 & 2: Aleatoric and Epistemic Uncertainty 71
5.3.2 Metric 3: Intrinsic Dimensionality Estimation 74
5.3.3 Metric 4: Sensitivity to OOD Data 76

5.4 Case Study 1: Binding Affinity Prediction 76
5.4.1 Experimental Setup . 76
5.4.2 The Epistemic Gradient . 77

5.5 Case Study 2: Image Classification 80
5.5.1 Experimental Setup . 82
5.5.2 Controlling Class Complexity with Modalities 82
5.5.3 Sensitivity to OOD Data with Even Modalities 85

5.6 Conclusions . 88

6 Conclusions 91

A Interdisciplinary Publications in Computational Biology 97
A.1 Denoising and Imputation of Single-Cell Transcriptomic Data . . . 97
A.2 Classifying Cancer Samples from Metabolic Networks 118
A.3 Deep Learning for Predicting Relative Fluxes in Reaction Systems . 129

References 143

vi

List of Figures

1.1 Thesis summary . 5

2.1 Background summary of anomaly detection in deep learning . . . 7
2.2 Motivations for anomaly detection in deep learning 8

3.1 Evaluation of a Feedforward Neural Network with activated units 19
3.2 An example APD and the resulting partitioning 21
3.3 APD cluster size distribution and average number of forgetting events 26
3.4 Cumulative distribution of errors and forgetting events, by increas-

ing APD cluster size . 26
3.5 Cluster size distribution for correctly and wrongly classified instances 27
3.6 Evolution of activation patterns during training 29
3.7 Distribution of cardinalities and misclassified instances of APD

clusters at different epochs . 29
3.8 APD visualization through Sankey diagrams 30

4.1 ENAD framework for adversarial detection 34
4.2 OCSVM hyperparameter optimization 40
4.3 Comparison of standalone adversarial detectors’ performance . . . 45
4.4 Comparative assessment of ENAD and competing methods in the

Transfer Attacks (hard attacks) scenario 52
4.5 Visualization of adversarial and benign examples in the low-dimensional

score space . 54
4.6 OCSVM fit times by layer . 55
4.A.1 Influence of layers in adversarial detection (ResNet model) in the

Known Attack scenario . 58
4.A.2 Comparison of predictions of single detectors in the Known Attack

scenario . 61
4.A.3 Pairwise layer-specific scores comparison in the Known Attack

scenario . 62
4.A.4 Comparative assessment of ENAD and competing methods in the

Transfer Attacks (hard attacks) scenario 63

5.1 Aleatoric and Epistemic Uncertainty in binary classification 72
5.2 Two examples of estimated intrinsic dimensionality 75
5.3 Overview TITAN’s architecture . 78

vii

LIST OF FIGURES

5.4 Projection on a tSNE embedding of TITAN’s test set aleatoric and
epistemic uncertainty . 79

5.5 Relation between TITAN’s test set aleatoric and epistemic uncertainty 79
5.6 Stability of Epistemic Gradient across multiple seeds 80
5.7 Toy example of imbalanced binary classification and sensitivity to

OOD . 81
5.8 Evolution of the intrinsic dimensionality during training 83
5.9 Intrinsic dimensionality and sensitivity to OOD 84
5.10 OOD sensitivity and the decision boundary 86
5.11 OOD sensitivity in target class dependant 87
5.12 The Epistemic Gradient is correlated with the targets 88

viii

List of Tables

3.1 Architecture tested for the results on the APD as auditing tool . . 24
3.2 Using the APD for dataset reduction on the MNIST dataset 27

4.1 Comparative assessment of ENAD and competing methods in the
Known Attacks scenario . 47

4.2 Comparative assessment of ENAD and voting-based strategies in
the Known Attacks scenario . 49

4.3 Comparison between ENAD and ExAD performances 50
4.4 Comparative assessment of ENAD and competing methods in the

Transfer Attacks (cheap training) scenario 51
4.A.1 Hyperparameters configurations (all settings) 57
4.A.2 Best hyperparameters for the OCSVM detector 59
4.A.3 Best hyperparameters for Mahalanobis and LID detectors 60
4.A.4 Comparative assessment of ENAD with all possible combinations

of competing methods in the Known Attack scenario (DenseNet) . 64
4.A.5 Comparative assessment of ENAD with all possible combinations

of competing methods in the Known Attack scenario (ResNet) . . 65
4.A.6 Precision Pr and recall Re of ENAD and voting-based strategies in

the Known Attacks scenario . 66

ix

List of Abbreviations

AI Artificial Intelligence.
APD Activation Pattern DAG.
AUPR Area Under the Precision-Recall curve.
AUROC Area Under the Receiver Operating Characteristic.
AU Aleatoric Uncertainty.
BIM Basic Iterative Method.
CNN Convolutional Neural Network.
CW Carlini-Wagner.
DAG Directed Acyclic Graph.
DNN Deep Neural Network.
ENAD ENsemble Adversarial Detector.
EU Epistemic Uncertainty.
ExAD Ensemble approach for Explanation-based Adver-

sarial Detection.
FGSM Fast Gradient Signed Method.
FNN Feedforward Neural Network.
FN False Negative.
FP False Positive.
GMM Gaussian Mixture Model.
ID Intrinsic Dimensionality.
LID Local Intrinsic Dimensionality.
OCSVM One-Class Support Vector Machine.
OOD Out-of-Distribution.
PCA Principal Component Analysis.
Pr Precision.
RBF Radial Basis Function.
RNN Recurrent Neural Network.
ReLU Rectified Linear Unit.
Re Recall.
SVM Support Vector Machine.
TCR T-cell receptor.

xi

List of Abbreviations

TITAN Tcr epITope bimodal Attention Networks.
TN True Negative.
TP True Positive.
aK-LPE averaged K (nearest neighbors) Localized p-value

Estimation.
tSNE t-distributed Stochastic Neighbor Embedding.
twoNN two Nearest Neighbours.

xii

Chapter 1
Introduction

Deep learning achieved impressive results in many areas, including bio-
sciences [Sap+22], medical imaging [Lit+17; Lei+17], natural language process-
ing [Bro+20], large-scale image recognition [KSH12], autonomous driving [Gri+20;
Boj+16], and playing mind games and video games [Sil+16; Vin+19]. Examples
of such groundbreaking achievements are protein structure prediction [Jum+21]
or beating professional human players in the game of Go [Sil+16], considered the
most challenging mind game.

The ever-growing number of applications of deep learning, including safety-
critical settings such as medical imaging [Lei+17] and self-driving cars [Boj+16],
pushed machine learning research towards a safer and more explainable AI [Mur+19;
Amo+16; Moh+23; Die17]. Examples of such results are feature attribution
methods, used to explain the model’s decisions [STY17; SGK17; STY17; Spr+15]
or detectors to identify possible failure points of the model [Yan+22].

This thesis will contribute to the broad field of anomaly detection (also referred
to as Out-of-Distribution detection [Yan+22]) in deep learning, with the dual aim of
increasing the interpretability and safety of a given model. In contrast to classical
anomaly detection [Ruf+21], that usually involves applying a detector directly on
the input data, I will present methods that detect anomalies from the properties of
a trained Deep Neural Network (DNN), such as its latent features. Accordingly,
characterizing anomalies allows us to both interpret the behaviour of the model on
outliers [Mur+19] and to define run-time error detection methods [Moh+23].

1.1 Anomaly Detection in Deep Learning

The main objective of anomaly detection in deep learning is to assign scores to input
instances in order to distinguish the “normal” from the “anomalous” ones. Normal
examples are well-represented in the training set, and the model is more confident
when making predictions on them. On the other hand, anomalous examples may
fall into different categories such as rare instances from small subpopulations, or

1

CHAPTER 1. INTRODUCTION

inputs deliberately altered by an adversary to fool the model [Sze+14; GSS15].
In real-world applications of deep learning, anomalies can be a result of the

so-called closed-world assumption [Yan+22]. Indeed, while benchmark data is
usually defined in such a way that training and test data are drawn from the
same underlying distribution, in real applications we have to deal with Out-of-
Distribution (OOD) data [Yan+22]. Moreover, large datasets typically have a
long-tailed distribution [ZAR14], therefore the model can be biased towards more
frequently occurring instances [Fel20], while performance could degrade for the
under-represented examples. These issues will be discussed in section 2.2, as
important motivations of anomaly detection in deep learning.

Tackling anomalous examples requires the definition of a ranking that separates
normal points from the others. In contrast to standard anomaly detection [Ruf+21],
in this thesis we will identify anomalies by considering the properties of trained deep
models. As an example, recent approaches consider the learning dynamics [Ton+19]
or the variance of model’s gradients [ADH22] as informative features to characterize
abnormality. Other methods estimate the model’s uncertainty [LPB17; GG16] to
distinguish when the model is confident from when the prediction is untrustworthy.
Indeed, the model’s uncertainty might reflect the difficulty of the input data,
allowing to discard anomalous inputs [Lei+17]. Other approaches apply standard
anomaly detection to DNNs, for example by using nearest neighbours [PM18] or
the Mahalanobis distance [Lee+18] in the latent space. An exhaustive discussion of
anomaly detection in deep learning is available in section 2.3.

According to the taxonomy of machine learning interpretations defined
in [Mur+19], anomaly detection can be classified as a post-hoc analysis method
that provides data-level interpretations. In other words, characterizing anomalies
provides practitioners useful insights on the relationships (e.g., common vs rare)
learned by a fitted model. Indeed, it is of great importance to understand the
model’s behaviour on outlier inputs [ADH22]. In this regard, in chapter 3 we will
introduce a method to perform automated data auditing based on example difficulty
and in chapter 5 we will employ anomaly detection to interpret the behaviour of a
model on imbalanced datasets.

Anomaly detection is also fundamental for AI safety [Moh+23; Die17; Amo+16],
since it can be adopted to improve the robustness to distributional change [Amo+16]
by monitoring the model predictions [Moh+23]. In this thesis, we will discuss the
important aspect of adversarial attack detection in chapter 4, where we will discuss
how to identify images crafted to fool a trained classifier [GSS15].

Additional details on interpretability and safety in deep learning are provided
in section 2.4.

1.2 Thesis Goals

In this thesis, we will present three different projects on anomaly detection in deep
learning. In particular, all the methods will try to address the following research

2

CHAPTER 1. INTRODUCTION

objectives:

Given a trained Deep Neural Network (DNN), are there measurable
properties that characterize anomalous data? Can such properties be
exploited to improve the interpretability and safety of the model?

As I will discuss in section 2.3, many approaches towards these research aims
have already been proposed. My contributions to the field either involve the
application of anomaly detection in a novel setting or an advancement over existing
methods:

1. introduction of an anomaly detector for piecewise linear DNNs chapter 3.

2. improvement of the state-of-the-art in adversarial detection using ensemble
approaches in chapter 4.

3. studying DNNs on imbalanced classification tasks with anomaly detection
through uncertainty estimation in chapter 5.

The common thread among all the approaches is the use of the latent features of
DNNs as relevant knowledge to characterize anomalies. Indeed, we expect anomalous
inputs to be outliers in the hidden representation learned by the fitted model. In
chapter 3 we introduce an approach that considers a binarized version of the
latent features, called activation patterns, proving to be sufficient in characterizing
anomalous instances. In chapter 4 each layer of the DNN is considered as a
standalone anomaly detection task, and the final outcome is obtained through an
aggregation function. Last, in chapter 5 we use the latent features to estimate the
uncertainty of the model on a given input.

In the next section, I will describe the thesis structure and the contributions
more in detail.

1.3 Contributions

The first contribution to the field presented in the thesis will be the Activation
Pattern DAG (APD) [Cra+20a; Cra+20b], discussed in chapter 3. The APD is a
Directed Acyclic Graph (DAG) that summarizes the behaviour of a piecewise linear
DNN on a dataset. More in detail, input examples will be clustered based on the
activations of each hidden layer of the model, that characterize their similarity.
Anomalous instances, in this case, will be the input examples that belong to small
clusters. Experiments performed on computer vision data will further confirm that
misclassified instances belong to small clusters, while larger ones contain similar
instances that could be represented by just one prototype, with a small impact on
the performances.

A particular type of anomaly, first introduced in computer vision [Sze+14;
GSS15], are adversarial examples. These images are crafted by adding imperceptible

3

CHAPTER 1. INTRODUCTION

noise to normal, correctly predicted, instances, in order to fool the model into making
a wrong prediction. In the literature, many techniques have been proposed to detect
adversarial examples (reviewed in section 2.3.2). ENsemble Adversarial Detector
(ENAD) [Cra+21], introduced in chapter 4, is a novel adversarial detector that
ensembles existing state-of-the-art anomaly detectors ([Lee+18; Ma+18; Sch+99])
to improve the detection performance. The effectiveness of ENAD is driven by the
fact that the crucial layer and detector vary based on the adversarial attack being
addressed. As a result, combining these detectors in an ensemble leads to improved
generalization capabilities. Detailed experimental results will consider both the
known attack scenario, in which the adversarial attack is the same in the train and
test set, and the harder transfer attack scenario, in which the generalization to
unseen attacks will be evaluated.

In chapter 5, I will discuss a project focused on the application of uncertainty
estimation techniques (reviewed in section 2.3.3), and data complexity estimates, in
the form of the intrinsic dimensionality (introduced in section 5.2.1), to interpret the
behaviour of deep models for imbalanced binary classification tasks. In particular,
I will present two case studies: T-cell receptor (TCR) and epitope binding affinity
prediction using the TITAN [WBR21] deep model (in section 5.4.1), and a more
standard image classification task (in section 5.5). In the first study, we found that
instances of one target class were closer together in the latent space than instances
of the second class. We referred to this as the “Epistemic Gradient” and speculated
that it is a result of data imbalance. We also suggested that a binary classifier
trained on imbalanced data could act as an anomaly detector by only fitting the
well-represented class, and proposed using sensitivity to Out-of-Distribution (OOD)
data (defined in section 5.3.3) to detect this behaviour. All in all, this analysis
approaches an interpretability problem (understanding deep models on imbalanced
data) from an anomaly detection point of view, opening a valuable future research
direction given the frequency of these problems in real-world scenarios [FAK19].

To summarize, this thesis will discuss three different perspectives on anomaly
detection: example difficulty estimation in chapter 3, adversarial examples detection
in chapter 4 and interpreting deep models in imbalanced binary classification tasks
in chapter 5. A schematic depiction of the thesis structure is presented in fig. 1.1.

Moreover, in appendix A I reported three additional works in computational
biology, to which I contributed during my PhD: a review of imputation and denoising
techniques for single-cell data [Pat+20] (appendix A.1), a classification method to
predict cancer samples from metabolic networks [Mac+21] (appendix A.2), and a
deep model to predict relative fluxes in reaction systems [Pat+21] (appendix A.3).

Throughout this thesis I will use “we”, instead of “I”, since in this thesis I
will discuss works that are either part of an article, and therefore a contribution
of multiple authors, or the result of projects involving also other researchers. In
particular, the people involved are members of the Data and Computational Biology
(DCB) Lab at the University of Milano-Bicocca (Dr. Fabrizio Angaroni, Prof. Marco
Antoniotti, Prof. Chiara Damiani, Dr. Alex Graudenzi, Dr. Davide Maspero and
Lucrezia Patruno), of the Scientific Computing Group (SCG) at the University

4

CHAPTER 1. INTRODUCTION

APD
chapter 3

ENAD
chapter 4

Imbalanced
Classificat.
chapter 5

Data
Modality

DNN’s
Property Metrics Experiments

Im
age

s

Seq
uen

ces

La
ten

t F
eat

ure
s

Mod
el’s

Co
nfi
den

ce

AP
D
Clu

ste
r S

ize

(E
nse

mb
le)

An
om

aly
Sco

re

Ep
ist
em

ic+
Al
eat

ori
c U

nce
rta

int
y

Misc
las
sifi

cat
ion

Ris
k

Pr
oto

typ
e S

ele
cti
on

Di
ffic

ult
y E

sti
ma

tio
n

Ad
ver

sar
ial

De
tec

tio
n

Un
cer

tai
nty

Es
tim

ati
on

Figure 1.1: Thesis summary. In this diagram we provide a description of the
three main tasks carried out during the PhD project: the Activation Pattern DAG
(APD) (chapter 3), the ENsemble Adversarial Detector (ENAD) (chapter 4) and the
project on imbalanced binary classification (chapter 5). In particular, we considered
(1) the data modality (images or sequences), (2) the property of the DNN that the
detectors uses to output a scoring (latent features or model’s confidence), (3) the
kind of metric defined, and (4) the experiments performed to validate the metric.

of São Paulo (Prof. Odemir Martinez Bruno and Dr. Jeaneth Machicao) and of
the Computational Systems Biology Lab at IBM Research Zürich (Dr. Nicolas
Deutschmann and Dr. Maŕıa Rodŕıguez Mart́ınez).

5

Chapter 2
Background: Anomaly Detection in Deep
Learning

2.1 Introduction

Anomaly detection in deep learning involves identifying those inputs that differ
from the ones considered “normal”. On such points, the model can perform badly,
therefore their characterization is important in order to discard untrustworthy
predictions, in particular for safety-critical settings [Amo+16; Moh+23; Die17].

There are many kinds of anomalous inputs in deep learning, from adversarial
examples [GSS15], that are instances perturbed to fool the model, to points drawn
from unknown distribution, i.e., Out-of-Distribution (OOD). In this thesis, we are
mainly concerned with adversarial examples (introduced in detail in section 4.2.1)
and challenging examples, where the difficulty is given by a proxy metric (introduced
in section 2.3.1). In chapter 5, we will also consider OOD data to interpret the
model’s behaviour. For a more detailed characterization of anomalous inputs, refer
to [Yan+22].

In section 2.2 and section 2.4, we introduce the motivations that justify the

Anomaly Detection

Motivations

Closed-world
Assumption

Long-tailed
Distributions

Detection

Example Difficulty

OOD and Adversarial
Examples Detection

Uncertainty Estimation

Outcomes

Interpretability

Safety

Figure 2.1: Background summary of anomaly detection in deep learning.

7

CHAPTER 2. ANOMALY DETECTION

(M1) Closed-world assumption

Closed-world Open-world

Out-of-distrib.
data

Adversarial
examples

Unseen
Domains

Trainset

Testset

Data Distribution

(M2) Long-tailed distributions

Well-represented
classes

Rare instances &
subpopulations

Target classes by frequency

F
re
q
u
en
cy

Figure 2.2: Motivations for anomaly detection in deep learning. Closed-
world assumption (M1), section 2.2.1: when violated, data is no longer drawn
from the same distribution of train and test data. Examples are Out-of-Distribution
(OOD) data, adversarial examples or instances from unseen domains. Long-tailed
distributions (M2), section 2.2.2: real-world data frequently shows a long-tailed
distribution, with many examples that are either from small subpopulations or
belong to rare events. Dealing with this kind of data is important in order to
challenge biases of the model and to improve the trustworthyness of the predictions.

use of anomaly detection in deep learning and its benefits, respectively, while in
section 2.3 we introduce three families of anomaly detectors. The chapter structure
is reported in the diagram in fig. 2.1.

2.2 Motivations: Why We Have To Deal With

Anomalies

Anomaly detection in deep learning is motivated by two main factors (see fig. 2.2).
The first, introduced in section 2.2.1, is the fact that in real-world tasks the
assumption that the test data is drawn from the same distribution as training data
(known as the closed-world assumption) is often violated, making the generalization
of the model more challenging. The second factor, described in section 2.2.2, is
the presence of long-tailed distributions in real-world datasets, which can contain
many under-represented modalities. This can lead to untrustworthy predictions
and fairness concerns.

2.2.1 Closed-world Assumption

When evaluating a model based on the so-called closed-world assumption [Yan+22],
we expect test examples to lie in the same distribution of the training data.

8

CHAPTER 2. ANOMALY DETECTION

Although, in real-world applications this assumption might no longer hold for many
reasons. For example, an attacker might generate adversarial examples that fool
the model [GSS15], or the training data could be under-representative of all the
possible unseen domains, a common issue in precision medicine such as AI-aided
drug discovery [Ji+22b].

There are two main ways to handle OOD data: either by using detectors
that detect and reject anomalous inputs (as discussed in section section 2.3.2 and
demonstrated in chapter 4 for adversarial examples), or by creating models that
are more robust and generalize better to unseen domains [Shu+21].

For a detailed taxonomy of anomalies and detection schemes, refer to [Yan+22].

2.2.2 Long-tailed Distributions

The ever-growing size of datasets used to train and evaluate deep models makes the
analysis of all the data points almost impossible. For small data tasks, like precision
medicine, we might have a different, but equally challenging, situation in which
one does not know which are the anomalous instances. Consequently, the main
concerns include the fairness towards under-represented subpopulations [And+21]
and untrustworthy predictions, that for safety-critical settings should be detected
and discarded.

Vision datasets have been showed to have long-tailed distributions [ZAR14],
and are therefore probably susceptible to under-represented modalities. In this
regard, Feldman [Fel20] showed that deep models have to memorize long-tailed
subpopulations to achieve generalization. Recently, long-tailed distributions have
been studied in medical imaging in order to improve the safety of classifier of
dermatological conditions [Roy+22].

In order to automate data analysis, reducing the required human contribution
and the prior knowledge of the data, one can consider at least two approaches. The
first one consists of methods that use the model’s properties to define a score for
each example based on their difficulty (see section 2.3.1), such as the Activation
Pattern DAG (APD) that we introduced in chapter 3. The second approach is
estimating the predictive uncertainty (see section 2.3.3), to distinguish simple
examples from the untrustworthy ones. The intuition is that by ranking examples,
we are able to separate points belonging to the tail from the well-represented ones.

2.3 How to Detect Anomalies

In this section, we will introduce methods to characterize anomalies in deep learning.
The first category (section 2.3.1) is about example difficulty estimators, that rank
input instances based on their difficulty. Difficult examples could be misclassified
instances, rarely occurring examples or corrupted inputs. Second, in section 2.3.2 we
will introduce the detectors for OOD and adversarial examples. Last, in section 2.3.3

9

CHAPTER 2. ANOMALY DETECTION

will describe uncertainty estimation in deep learning, that characterizes anomalous
inputs by mainly estimating the predictive uncertainty.

Despite being in three different categories, the detection methods that we will
introduce are not completely independent. The taxonomy that we used follows
the scope of each work, but example difficulty scores or uncertainty metrics can
be applied also for adversarial or OOD detection. Indeed, it is an interesting
research question to evaluate how the methods that we will introduce differ, for
example from the point of view of aleatoric and epistemic uncertainty (introduced
in section 2.3.3).

2.3.1 Example Difficulty Estimation

Example difficulty estimation in deep learning concerns all the methods that
define a ranking of input examples based on their expected difficulty or hardness.
Uncertainty estimation and anomaly detection techniques (described in sections 2.3.2
and 2.3.3, respectively) can also be used to define rankings of samples, although
in this section we consider methods that are designed to estimate a more abstract
idea of difficulty. A good ranking considers misclassified, out-of-distribution and
rarely occurring points as challenging for the model, while well-represented inputs
in the training set should be considered easy examples. The applications of example
difficulty estimation methods are many, from detecting rare subpopulations in
long-tailed datasets to predicting misclassified examples.

The first category of example difficulty rankings ([Ton+19; ADH22]) considers
the learning dynamics to assign a score to each example. For example, in [Ton+19]
the ranking is defined by the number of times an example is learned, and then
forgotten, during training, where the counts are proportional to the difficulty. On
the other hand, in [ADH22] the variance of the gradients through training is used
to distinguish easy (low variance) to difficult (high variance) examples.

The second group considers piecewise linear DNNs, by using the (smoothed)
local empirical error estimated in each linear region [Ji+22a] or the Jacobian norm
of a linear region [Nov+18] as proxies for example difficulty. In addition to the
previous categories, in [Jia+21] the authors estimated the contribution of each
instance to the model’s generalization performance and in [CEP19] the authors
compared different scoring methods, such as the adversarial robustness. Lastly,
in [BMN21] the authors estimated the layer at which an instance is correctly
predicted as an example difficulty proxy.

2.3.2 OOD and Adversarial Examples Detection

The last anomaly detection topic that we will discuss is Out-of-Distribution (OOD)
and adversarial examples [GSS15] detection in deep learning. These methods,
similarly to example difficulty estimation (describe in section 2.3.1), define a scoring
of input instances to distinguish anomalous from normal examples. Although, in
contrast to example difficulty, the main purpose of these methods is either detecting

10

CHAPTER 2. ANOMALY DETECTION

if a point is OOD or an adversarial example. For a recent review, refer to [Yan+22].
In the following, mostly taken from [Cra+21], we will refer to anomalies in general,
although not all the methods are designed for both OOD and adversarial example
detection.

First, let us consider a classifier N trained on a training set X train and a test
example x0 ∈ X test, with predicted label ŷ0. Detectors can be broadly categorized
according to the features they consider: (i) the features of the test example x0,
(ii) the hidden features hl(x0), or (iii) the features of the output of the network
out(x0), i.e., the logits σlgt(x0) or the confidence scores σsm(x0).

The first family of detectors tries to distinguish normal from anomalous examples
by focusing on the input data. For instance, in [HG17b] the coefficients of low-ranked
principal components of x0 are used as features for the detector. In [Gro+17], the
authors employed the statistical divergence, such as Maximum Mean Discrepancy,
between X train and X test to detect the presence of anomalous examples in X test.
Lastly, in [Var+21] the feature attributions of the input image are considered as
features of deep models for anomaly detection.

The second family of detectors aims at exploiting the information of the hidden
features hl(x0). In this group, some detectors rely on the identification of the near-
est neighbours of hl(x0) to detect anomalous examples, by considering either: the
Euclidean distance to the neighbours [Car+17], the conformity of the predicted class
among the neighbours [PM18; Rag+21], the Local Intrinsic Dimensionality [Ma+18],
the impact of the nearest neighbours on the classifier decision [CSG20], or the pre-
diction of a graph neural-network trained on the nearest neighbours graph [Abu+21].
In the same category, additional detectors take into account the conformity of
the hidden representation hl(x0) to the hidden representation of instances with
the same label in the training set, i.e., to {hl(x0) : ŷ0 = y, (x, y) ∈ X train}, by
computing either the Mahalanobis distance [Lee+18; KK20] to the class means, or
the likelihood of a Gaussian Mixture Model (GMM) [ZH18]. Other detectors take
the hidden representation hl(x0) itself as a discriminating feature, by training either
a DNN [Met+17], a Support Vector Machine (SVM) [LIF17], a One-Class Support
Vector Machine (OCSVM) [Ma+19] or by using a kernel density estimate [Fei+17].
Additional methods within this family use the hidden representation hl(x0) as a
feature to train a predictive model ml. The model ml either seeks to predict the
same C classes of the original classifier [Ma+19; Sot+20] or to reconstruct the
input data x0 from hl(x0) [HG17b; HG17a]. The detector then classifies x0 as
anomalous either by relying on the confidence of the prediction ŷ0 in the former
case or on its reconstruction error in the latter.

The third family of detectors employs the output of the network out(x0) to detect
adversarial inputs. In this category, some detectors consider the divergence between
out(x0) and out(ϕ(x0)), where ϕ is a function such as a squeezing function that
reduces the features of the input [XEQ18], an autoencoder trained on X train [MC17],
a denoising filter [Lia+21] or a random perturbation [RKH19; HWW19], or an
operation of erase and restore of random pixels [ZZ21]. Some others take the
confidence score of the predicted class ŷ, which is expected to be lower when the

11

CHAPTER 2. ANOMALY DETECTION

example is anomalous [HG17b; HG17a; LLS18]. Lastly, in [AD19] a DNN detector
was trained directly on the logits, whereas in [Fei+17] Bayesian uncertainty of
dropout DNNs was used as a feature for the detector.

Detectors exist that do not fall within any of the above families, which employ,
for instance, the layer-wise norm of the gradients [LC20] and the consistency of the
softmax scores σsm(x0) of multiple models [Mon+19].

2.3.3 Uncertainty Estimation

Anomalous data points can be detected by estimating the uncertainty of the
model, since we expect abnormal or unexpected examples to be under-represented
or not represented at all in the training data manifold. In contrast to example
difficulty estimation (introduced in section 2.3.1) and out-of-distribution detection
(introduced in section 2.3.1), that mainly define a scoring of input instances,
uncertainty is modelled in a probabilistic way and has a stronger theoretical
basis (refer to [HW21] for a recent review).

In order to evaluate the uncertainty of a DNN, one can employ variational
inference [Blu+15], dropout-based variational inference [GG16] or deep ensem-
bles [LPB17]. For a comparison of methods for uncertainty estimation in deep
learning, refer to [Sno+19].

The uncertainty can also be divided in two different components: aleatoric
uncertainty, a result of randomness and for this reason irreducible, and epistemic un-
certainty, that is the effect of lack of knowledge, and for this reason reducible [HW21].
On this distinction, in [KG17] the authors investigated both aleatoric and epistemic
uncertainty in computer vision tasks.

2.4 Outcomes: How Anomaly Detection Im-

proves Deep Learning

Anomaly detection in deep learning contributes to the important goal of a more
interpretable [Mur+19] and safe [Moh+23; Die17; Amo+16] AI, towards the mile-
stone of a Responsible AI [Arr+20]. In the following, we briefly introduce the two
challenges and why this thesis contributes to them.

2.4.1 Interpretability

According to Murdoch et al. [Mur+19], interpretable machine learning involves
“the extraction of relevant knowledge from a machine-learning model concerning
relationships either contained in data or learned by the model”.

Interpretability can be obtained by designing models that expose their decision
process, as in the case of glassbox models [Nor+19]. On the other hand, when
dealing with black-box models such as DNNs, the most adopted approach is post-hoc
interpretability. In this case, we try to extract information from an already trained

12

CHAPTER 2. ANOMALY DETECTION

model. Post-hoc interpretations can be local, at prediction-level, or global, at
dataset-level. In the former family, we assign feature attribution methods [Spr+15;
SGK17; STY17], that assign an importance score to each input feature based
on its contribution to a prediction. In the latter category, the interpretations
provide an insight of global relationships learned by the model. An example is
anomaly detection, that characterizes outlier inputs or trends in the data, allowing
practitioners to use this information to improve the model [Lei+17] or to provide
example-based explanations [KKK16].

2.4.2 Safety

In addition to interpretability, a crucial requirement for the adoption of AI systems
in the real-world is their safety. The objective is to prevent the occurrence of
accidents, defined by Amodei et al. as “unintended and harmful behavior that
may emerge from machine learning systems when we specify the wrong objective
function, are not careful about the learning process, or commit other machine
learning-related implementation errors” [Amo+16]. In the following, we briefly list
three safety strategies, following the taxonomy introduced in [Moh+23].

A first approach to improve safety is designing models that are interpretable
by design, such as glassbox models [Nor+19], or by using post-hoc interpretability
techniques such as feature attribution methods [Spr+15; SGK17; STY17]. It is
worth noting that interpretability and safety are intertwined goals, as interpretability
can be viewed as an essential requirement for achieving safety.

Given a machine learning algorithm, we can also try to increase its robustness
with the so-called proactive methods. With regard to deep learning, these techniques
include adversarial training [Sze+14; GSS15], defensive distillation [Pap+16] or
ensemble approaches [AG17; BBS17; Str+18].

Last, we can perform run-time monitoring of the predictions to detect failure
points, named reactive methods. In this category we find anomaly detection, as a
last defence layer to prevent accidents. A simple example is prediction with reject
options [BW08], in order to prevent the model to make low-confidence predictions.

13

Chapter 3
Quantifying Example Difficulty from
Activation Patterns

Contribution. In this chapter, we report the work introduced in:

[Cra+20a] Francesco Craighero et al. “Investigating the Compositional
Structure of Deep Neural Networks”. In: Machine Learning,
Optimization, and Data science - 6th International Conference,
LOD, Siena, Italy, July 19–23, 2020.

[Cra+20b] Francesco Craighero et al. “Understanding Deep Learning with
Activation Pattern Diagrams”. In: Proceedings of the Italian
Workshop on Explainable Artificial Intelligence Co-Located with
19th International Conference of the Italian Association for
Artificial Intelligence. 2020

Summary. The evaluation of deep learning models is becoming more and more
difficult due to the ever-growing size of modern datasets and models. Even
when data is of moderate size, such as in AI for precision medicine, the data
itself can be hard to be interpreted or might be corrupted due to the many
sources of technological and experimental noise. These challenges raised the
interest towards methods that automate data auditing, so to identify difficult
examples or to predict misclassified instances. In this chapter, we introduce the
Activation Pattern DAG (APD), a novel graph representation summarizing the
features of a piecewise linear DNNs, inducing a ranking of data points based
on example difficulty. The APD not only automates data auditing, but is also
a useful visualization tool to interpret the behaviour of the model on the input
dataset.

Implementation. The experiments performed in [Cra+20a] has been open-
sourced on a Github repositorya.

ahttps://github.com/BIMIB-DISCo/ANNAPD

15

https://github.com/BIMIB-DISCo/ANNAPD

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

3.1 Introduction

An important requirement for the widespread adoption of deep learning models in
real-world applications is their trustworthiness. Although, the so-called glassbox
machine learning models [Nor+19] allow for an interpretation of the decisions that
led to the final prediction, black-box models are, by definition, much harder to be
interpreted.

In this chapter we tackle the challenge towards a more trustworthy AI from the
perspective of example difficulty (introduced in section 2.3.1). Our aim is defining
a score to differentiate simple input examples against more challenging one that are
more prone to be misclassified or belong to under-represented modalities. As stated
in [ADH22], knowing input difficulty allow us not only to identify and potentially
discard atypical examples [BW08], but also to improve interpretability, e.g., through
example-based explanations [KKK16]. Ultimately, the ability to extract difficult
examples enables a more comprehensive understanding of the model’s behaviour.

Example difficulty estimators are particularly helpful with modern large-scale
datasets, since they provide an automated interpretation of the input examples
without human intervention. Indeed, the long-tailed distribution of common
datasets, discussed in section 2.2.2, is an additional reason to employ this kind of
scoring metrics. Moreover, the estimation of example difficulty could be of great
help also on smaller datasets, as an additional metric on top of the more commonly
adopted uncertainty estimators (introduced in section 2.3.3).

Our method, that we will introduce in the following, is specific to piecewise
linear DNNs, such as ReLU DNNs [GBB11]. Such models apply a distinct linear
function to specific regions of the input space, called activation regions [HR19b].
Each activation region is uniquely identified by an activation pattern, obtained
by concatenating the binarized output of each layer. Given that multiple input
instances could belong to the same activation region, activation patterns can be
shared among multiple examples. Montúfar et al. [Mon+14] showed how shared
activation patterns are the result of the redundancies in the data found by the
model.

In section 3.3.2, we will introduce a novel graph approach that summarizes the
activation patterns given a model and a dataset, called the Activation Pattern
DAG (APD). The APD is a Directed Acyclic Graph (DAG) that allows us to better
understand how the patterns of each layer are shared among instances. Inspired by
decision trees, in section 3.3.3 we will also define a clustering algorithm based on
the APD with the aim of finding clusters of instances that share the same pattern
in multiple layers and have the same predicted label.

The APD clustering is the main building block of our new example difficulty
scoring, that considers the cluster size as a proxy for example difficulty: well-
represented examples belong to larger clusters, while challenging points belong to
smaller ones. To test our new metric, in section 3.4, we studied if cluster size is
able to (i) detect misclassified examples, (ii) correlate with other example difficulty
metrics and (iii) compress a dataset by identifying a subset of representative

16

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

instances.
In addition to example difficulty, in section 3.4.3 we will also propose to employ

the APD as a visualization tool, allowing to interpret the learned function given
a group of instances. We remark that data visualization is another perspective
towards trustworthy AI, in particular for black-box models as DNNs [Bau+17;
OMS17]. Indeed, also the ENAD method that we will present in chapter 4 will have
a data visualization perspective in section 4.4.3.

Main Contributions The main contributions of this work can be summarized
as follows.

• The Activation Pattern DAG (APD), a novel data structure to summarize
activation patterns: given a dataset and a piecewise linear DNN with ReLU
activations, we introduce the Activation Pattern DAG (APD) to both summa-
rize and visualize the activation patterns that occur in the latent space of the
model.

• Clustering the APD for example difficulty estimation: we defined a clustering
algorithm based on the APD that partitions the input data by exploiting the
redundancy of the activation patterns. We then used the cluster size as a
proxy for example difficulty, where anomalous instances are characterized by
small under-represented clusters.

• Validation of APD cluster size for misclassified example prediction: we tested
the reliability of cluster size as a metric to predict misclassified examples
using multiple architectures trained on the MNIST [LCB10] dataset.

• Using the APD cluster size for dataset compression: we showed how APD
clusters could be used to identify data prototypes: a subset of the training data
that can be employed as an alternative to the full dataset, while preserving
the model’s performances.

3.2 Background

Example difficulty has already been introduced in section 2.3.1. In the following,
we will present the main works related to piecewise linear DNNs and activation
patterns.

Activation patterns identify the linear regions defined by piecewise linear DNNs,
such as ReLU DNNs [GBB11]. Activation patterns can be used as a proxy to
estimate function complexity, while the geometry of linear regions can be exploited
to study the properties of the learned function. In the following, we will introduce
some interesting results on piecewise linear DNNs.

The geometry of piecewise linear DNNs has been investigated from many per-
spectives, including approximation theory [Bal+19], circuit complexity [Aro+18]
and tropical polynomials [CM18].

17

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

One of the most studied properties of DNNs is their representational power or
expressivity. Early results by Pascanu et al. [PMB14] and Montúfar et al. [Mon+14]
studied how deeper networks are more expressive by defining theoretical bounds
on the number of activation patterns. Successive results proposed ways to achieve
tighter bounds [Rag+17; STR18; SR20; HR19b; HR19a], for example through
Mixed-Integer Linear Programming in [STR18; SR20].

On the intersection between example difficulty and activation patterns, the
relation between linear regions’ properties and the performance of the model has
been observed in [Ji+22a; Nov+18]. In particular, in [Nov+18] the authors showed
how the linear region’s Jacobian norm is predictive of the cross-entropy loss, while
in [Ji+22a] the linear region’s empirical training error was used as a proxy for
example difficulty.

3.3 Methods

In this section, we will formally define the Activation Pattern DAG (APD) and
present a novel algorithm to cluster input examples based on activation patterns.
In the following definitions, we will employ the notation used in [Mon+14], while
we refer to [HR19b] for an extensive formal description of activation patterns and
activation regions.

3.3.1 Basic Definitions

Let Nθ(x0) be a Feedforward Neural Network (FNN) with input x0 ∈ Rn0 of n0

dimensions and trainable parameters θ. Each layer hl, for l ∈ 1, . . . , L, is represented
as a vector of dimension nl, i.e., hl = [hl,1, . . . , hl,nl

]T , where each component hl,i

(i.e., a neuron or unit) is the composition of a linear preactivation function fl,i and
a nonlinear activation function gl,i, i.e. hl,i = gl,i ◦ fl,i.

Let xl be the output of the l-th layer for l = 1, . . . , L and the input of the
network for l = 0, then, we define fl,i(xl−1) = Wlxl−1 + bl,i, where both Wl ∈ Rnl−1

and bl,i ∈ R belong to the trainable parameters θ. Regarding activation functions,
in this thesis we will focus on piecewise linear activation functions. Thus, for
the sake of simplicity, we define gl,i as a ReLU activation function [GBB11], i.e.,
gl,i(x) = max{0, x}. When clear from the context, we will omit the second index of
fl,i and gl,i to refer to the vector composed by all of them.

Finally, we can represent the FNN Nθ as a function Nθ : Rn0 → Rout that can
be decomposed as

Nθ(x) = fout ◦ hL ◦ · · · ◦ h1(x), (3.1)

where fout is the output layer (e.g., softmax, sigmoid, . . .).

18

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

x1
0

x2
0

x3
0

x4
0

y3

h1Input h2 h3 fOUT

Figure 3.1: Evaluation of a Feedforward Neural Network with activated
units. The example neural FNN N is being evaluated on an input instance x0 =
[x1

0, x
2
0, x

3
0, x

4
0]. The hidden units are depicted with varying levels of transparency

based on the value of the positive output, and units with output 0 are indicated by
a black border. In the final layer, the output label y3 indicates the output unit with
the highest value. In this example, we have A1 = [1, 0, 1, 1, 0], A2 = [0, 1, 1, 0, 0],
and A3 = [1, 1, 1, 1, 0].

3.3.2 From Activation Patterns to the APD

Given a FNN Nθ and a dataset D, we define the activation pattern of layer l given
input x ∈ D as follows:

Definition 1 (Activation Pattern) Let Nθ(x0) be the application of a FNN N
with parameters θ on an input x0 ∈ D, with D ⊆ Rn0. Then, by referring to xl−1

as the input to layer l ∈ {1, . . . , L}, we can compute the activation pattern Al(x0)
of layer l on input x0 as follows:

Al(x0) = {ai | ai = 1 if hl,i(xl−1) > 0 else ai = 0, ∀i = 1, . . . , nl}. (3.2)

Thus, we can represent Al(x0) as a vector in {0, 1}nl, i.e.:

Al(x0) = [a1, a2, . . . , anl
]. (3.3)

The above definition can also be easily extended to other binary piecewise
activations, e.g. Leaky-ReLUs [MHN+13], or to maxout activations [Goo+13], by
using k-ary activation patterns due to the k thresholds. In fig. 3.1 we show a simple
example of a FNN N (x0) and its activation patterns. In the following, we will
represent generic activation patterns as a or ai, and with layer(a) we will refer to
the layer corresponding to that pattern. In addition, we allow us to simplify the
notation of Al and refer to Al(X0) on X0 ⊆ Rn0 as Al(X0) =

⋃
x0∈X0

Al(x0).
Given an activation pattern â, or a set of patterns A belonging to different

layers, and a set of instances X ⊆ D, we call activation region the set composed
by the instances in X that generate that activation pattern, or patterns, in their
respective layers.

19

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

Definition 2 (Activation Region) The activation region (AR) identified by an
activation pattern â on an input subset X ⊆ D is given by:

AR(â,X) = {x ∈ X | Al(x) = â, l = layer(â)}. (3.4)

Given a set of activation patterns A belonging to different layers, i.e., ∀ai, aj ∈ A
layer(ai) ̸= layer(aj), we define their activation region as:

AR(A,X) =
⋂
â∈A

AR(â,X). (3.5)

Given a dataset D and a FNN Nθ, we introduce the Activation Pattern DAG
(APD) as the Directed Acyclic Graph (DAG) defined by all the activation patterns
generated by instances in D and the way in which they are composed.

Definition 3 (Activation Patterns DAG) Given a FNN Nθ and a dataset
D ⊆ Rn0, the Activation Pattern DAG (APD) is a Directed Acyclic Graph (DAG)
APDNθ

(D) = (V,E), where:

• V is the set of vertices defined by

V = {1, . . . , |A|},

where A =
⋃L

l=1Al(D) is the set of all possible activation patterns and |A|
is its cardinality. In addition, let patt : V → A be a labelling function that
associates each vertex to the corresponding activation pattern.

• E is the set of edges defined by:

E = {(v1, v2) ∈ V × V | patt(v1) and patt(v2) are consecutive}, (3.6)

where two patterns ai, aj are called consecutive if

layer(ai) = l = layer(aj)− 1

and there exists x ∈ D such that Al(x) = ai and Al+1(x) = aj.

From definition 3, it follows that the APD has the same depth of the corre-
sponding FNN, and that a node at depth d in the APD corresponds to a pattern of
the d-th layer in the FNN. In fig. 3.2 we show a toy-example for the APDN defined
by the FNN N of fig. 3.1, as generated on five example samples.

20

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

•
x0

•
x1

••
x2

•••
x3

•••
x4

•••
x5

•••
x6


1
0
1
1
0




1
0
0
1
1




1
0
0
1
0




0
1
1
0
0




1
0
1
0
0




1
1
1
1
0




1
1
1
1
0




0
0
1
1
1



y1

y2

y3x0

x 1
x2

x3

x 4
x5

x6

•
x0

••
•

x 3

••
x2

•x
1

•••
{x4, x5, x6}

•

{x0, x
1}

••
x2

••
{x

3 , x
4 , x

5 , x
6}

•{x0 , x1}

•{x2 , x3}

•

{x4
, x5

, x6
}

Figure 3.2: An example APD and the resulting partitioning. Representation
of APDN (x0, . . . , x6), where the thicker lines indicate the edges generated by the
input instance x0 shown in fig. 3.1. The label predicted by the network is also
displayed on the right. The colored bullets above the instances show the splitting
history of the clusters, starting from the right and moving towards the left, according
to the procedure described algorithm 1.

3.3.3 APD Clustering

Activation patterns identify the linear transformation applied by the model to a given
input instance. On the one hand, the model might characterize each instance by its
own patterns, on the other hand the model might find redundancies or symmetries
in feature space, as shown in [Mon+14], and apply the same linear transformation
to a set of examples. For example, in fig. 3.2, the linear transformation defined by
pattern a = [1, 1, 1, 1, 0] of the third layer is common to both x0 and x1. In the
following, we will define a procedure to cluster a dataset based on these symmetries
found by the model, expressed by the activation patterns. Moreover, since the
symmetries might happen in an intermediate layer, we will consider only the
patterns of some layers, instead of the pattern of the whole network.

We are using the meaning of activation patterns to group similar instances
together, while also expecting these instances to have the same target label. Acti-
vation patterns that represent instances with the same target label will be referred
to as “stable”, while those that represent instances with different target labels will
be referred to as “unstable”. In fig. 3.2, for example, the third layer’s pattern
a = [0, 0, 1, 1, 1] is unstable since its instances belong to both label y1 and y2.

We expect well-represented instances to belong to the same (stable) activation

21

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

pattern, while rare or hard instances would either belong to unstable patterns or
be characterized by their own pattern, given that the model is unable to exploit
redundancies in the data. In fig. 3.2, instances {x0, x1} belong to the same target
y3 and are assigned the same pattern in the second and third layer, therefore we
expect those instances to be similar and to represent a well-represented property of
the dataset.

The APD clustering algorithm is defined in algorithm 1. The first partition of
input data is performed by considering only the activation patterns of the last layer.
Then, similarly to decision trees, if one of the identified clusters contains instances
with distinct labels, we split again by considering which activation pattern they
activate in the previous layer. Intuitively, there is a trade-off between the density
of the partitioning and the number of stable activation patterns (in the extreme
case, there is one stable pattern for each instance). Since we will use the cluster
size as a proxy for example difficulty, the information gain measure [Qui86] will be
used as a splitting criterion, where a decrease of entropy implies more homogeneous
partitions.

In fig. 3.2 coloured bullets mark the splitting history of the six instances, following
the clustering order from the output layer to the input layer. For example, the first
partition is identified by cyan and blue colour, i.e. {{x2, x3, x4, x5, x6},{x0, x1}}.
Cluster {x0, x1} is not split further, because both instances are classified with y3
label (stable pattern). Conversely, the other cluster is partitioned twice: the first
splitting occurs when considering the second layer, as x2 has a different activation
pattern than the others and is classified with a different class; the same occurs at
the first layer, this time between x3 and the other instances. The final partition
is the following {{x0, x1}, {x4, x5, x6}, {x3}, {x2}}. In section 3.4, we will present
some preliminary results on how cluster size of the instances partition can be used
to estimate example difficulty.

3.3.4 Forgetting Events

Example difficulty metrics define a score for input examples to characterize their
“hardness” (see section 2.3.1). In [Ton+19], the authors proposed to estimate
example difficulty by counting the forgetting events: the number of times an
example is correctly predicted and then misclassified again during training. The
intuition is that harder examples close to the decision boundary will have more
forgetting events than one that is further away.

Definition 4 (Forgetting event [Ton+19]) Let x be an instance with label k
and prede(x) the predicted label of x at epoch e. A learning event at epoch e occurs
when prede−1 ̸= k and prede = k. A forgetting event at epoch e occurs when
prede−1 = k and prede ̸= k. If an instance has no forgetting event during the
learning process, is called unforgettable, otherwise is a forgettable instance.

22

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

Algorithm 1 APD clustering algorithm. Procedure that defines a partitioning
of dataset D given an APD G.

function split(APD G = (V,E), dataset D, FNN N)
n.pred() ← predecessors of node n ∈ V
L ← # layers of N
out ← dummy ending node
for v ∈ V s.t. layer(patt(v)) == L do

E.add((v, out))
end for
P ← {(out,D)}) ▷ Current partition
F ← ∅ ▷ Final partition
while P ≠ ∅ do

(n, C) ← P .pop() ▷ Extract (current node, cluster)
if n.pred() == ∅ ∨ |C| == 1 then ▷ Check if splittable cluster
F .add(C)
break

end if
S ← ∅
for v ∈ n.pred() do ▷ Split current cluster
V ← AR(patt(v), C)
S.add((v,V))

end for
S ′ ← {V | (v,V) ∈ S}
ig ← InformationGain(C,S ′)
if ig > 0 then ▷ Check splitting gain
P ← P ∪ S

else
F .add(C)

end if
end while
return F

end function

23

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

Network 32full 32bottl 16full

FC layers 32, 32, 32, 32, 32 32, 16, 12, 10, 8 16, 16, 16, 16, 16

Optimizer SGD, 1e−3

Epochs 500

Test Accuracy 98.3% 97.2% 95.8%

Table 3.1: Architecture tested for the results on the APD as auditing tool.
We tested three different architectures to evaluate the APD on the MNIST [LCB10]
dataset: 32full, 32full and 16full. We chosed different widths to evaluate the effect
on the dataset partitioning.

3.4 Results

Clustering a dataset using the APD clustering algorithm defined in section 3.3.3
partitions the instances in sets of different sizes. The size of the set will then be
used as a proxy for the difficulty of its elements: easy instances should belong to
large clusters, while outliers and misclassified instances are expected to end up in
smaller clusters.

We will present the following results on the APD and its clustering algorithm:

1. section 3.4.1: experimental setting with the MNIST [LCB10] datasets where
we use the APD clustering algorithm to rank test instances.

2. section 3.4.2: analysis on the evolution of the APD during training.

3. section 3.4.3: visualizing the APD as a Sankey diagram for model diagnosis.

3.4.1 APD as an Auditing Tool

We applied the clustering algorithm discussed in section 3.3.3 on theMNIST [LCB10]
dataset and tested it on different architectures. We will show that misclassified and
difficult instances belong to smaller clusters, confirming that the ranking defined by
the APD clustering is a valid example difficulty estimator. The results of figs. 3.3
to 3.5 were obtained on the MNIST [LCB10] dataset set with the architectures
listed in table 3.1.

Higher Cluster Size Corresponds to Less Forgetting Events

In fig. 3.3 we reported the clusters size distribution, by architecture type. The
majority of the clusters are small (average size ≈ 4, 3, 5 for 32full, 16full and 32bottl,
respectively), while even very large clusters (containing up to 2000 instances) are
observed for all architectures.

24

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

To validate the goodness of the APD clustering, we estimated example difficulty
using another metric: the number of forgetting events [Ton+19] (introduced in sec-
tion 2.3.1). In fig. 3.3 (right) we display the average number of forgetting events
with respect to (log-binned) cluster size. Also, the average number of forgetting
events decreases with the cluster size, confirming our hypothesis that challenging
instances (more forgetting events) belong to smaller clusters. This trend is also
confirmed by looking at the cumulative distributions of forgetting events in fig. 3.4.

Misclassified Examples are Concentrated in Small Clusters

The cluster size is further shown to be important in our results on predicting
misclassified instances. In fig. 3.5, we present the distribution of cluster sizes for
correctly and wrongly classified instances. Across all architectures, we see that
wrongly classified instances are more likely to belong to very small clusters, often
singletons, while correctly classified instances are more likely to be in larger clusters
with greater variance in size. This trend is also depicted in fig. 3.4, which shows
the cumulative distribution of misclassified instances by increasing cluster size. We
observe that the majority of misclassified instances are in smaller clusters. These
findings suggest correlation between cluster size and the difficulty of the examples.

Using Cluster Representatives for Dataset Reduction

The APD clustering exploits redundancies found by the deep model in the data
manifold. Therefore, another test that we can perform is performing dataset
compression, by leaving only one example (or prototype) for each cluster. More in
detail, we performed the following steps:

1. the MNIST training set was split in 50 000 and 10 000 instances, for training
and validation, respectively;

2. the 32full architecture was trained with SGD, a learning rate of 0.01 and early
stopping;

3. we performed the APD clustering;

4. two more training sets were defined: one with only one representative for each
cluster, and one with the same number of instances, but randomly selected;

5. training was performed again, with the same parameters as (ii).

The results, reported in table 3.2, confirm the validity of our clustering procedure:
with randomly selected instances, we decreased the generalization performances by
more than 4%, while with selected instances the loss was only of 2%.

Dataset reduction is useful to reduce the computational resources requirements,
but also is a proxy for sample complexity: the harder the task to be learned,
the less we expect to be able to reduce the dataset size without heavily hurting

25

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

32full 32bottl 16full
0

500

1000

1500

2000

Cl
us

te
r s

ize

[0; 10) [10; 100) [100;1000) [1000;+inf)
Cluster size bin

0

1

2

3

4

5

6

Av
er

ag
e

fo
rg

et
tin

g
ev

en
ts

32full
32bottl
16full

Figure 3.3: APD cluster size distribution and average number of forgetting
events. (Left) Boxplots of cluster size distributions by architecture type.
For all the architectures, the mean is small (average size ≈ 4, 3, 5 for 32full, 16full
and 32bottl, respectively), while there are many clusters with size greater than 500.
(Right) Average number of forgetting events against log-binned cluster
size. As the log-size of the clusters increase, we have a clear decrease in the number
of forgetting events. Note that this is an important confirmation of the goodness of
the APD clustering as an example difficulty estimation approach.

Figure 3.4: Cumulative distribution of errors and forgetting events, by
increasing APD cluster size. Cumulative distribution of forgetting events (in
blue), errors (in red) and number of instances (green), sorted by the respective
cluster size and for all the architectures. The vertical dashed lines indicate where
90% of the total is reached.

26

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

Figure 3.5: Cluster size distribution for correctly and wrongly classified
instances. For all the architectures, wrongly classified instances (in orange) are
concentrated in small clusters.

Trainset selection Trainset size Test error

All 50 000 inst. 96, 37± 0, 2
Cluster representatives 8 871 inst. 94, 64± 0, 3

Random 8 871 inst. 92, 26± 0, 4

Table 3.2: Using the APD for dataset reduction on the MNIST dataset. The
table reports the mean test error and standard deviation of 5 model initializations
for 3 possible training sets: (i) the whole MNIST training set, (ii) one representative
for each cluster and (iii) a random selection, with the same cardinality of the
representative selection.

the generalization performance. With regard to the APD clustering, complex
tasks should be characterized by mostly singletons or small clusters. As a future
development, it would be interesting to check the sample complexity of different
tasks using the APD clustering approach, from the easier MNIST [LCB10] to the
harder ImageNet [Den+09].

3.4.2 APD Evolution During Training

In the previous section, we considered the APD after training the model for a fixed
amount of epochs. In this section, we will show some results about what happens
to activation patterns during training. In particular, the results were obtained with
a FNN with L = 3 layers with 40 neurons each, trained on the MNIST [LCB10]
dataset with SGD and fixed learning rate at 0.001.

In fig. 3.6 (left) we plotted the loss (90 : 10 train/validation split of the
60,000 total instances). In fig. 3.6 (right) we have the evolution of the number
of unique activation patterns, i.e. |Al(D)| for l ∈ 1, . . . 3, where D is the training
set. Interestingly, the number of unique patterns at each epoch decreases with the
layer’s depth. This justifies starting from the last layer when clustering the APD,
given that the raw number of patterns monotonically decreases from the first layer

27

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

to the last. Moreover, the number of activation patterns of each layer is always far
below the theoretical upper bound of 240 possible patterns (refer to [HR19b] for
further details) and less than the 54,000 training instances, thus activation patterns
are redundant and shared between instances.

In fig. 3.7, we analysed the evolution of the clusters induced by activation
patterns during training. We first clustered instances based on the pattern of
both the second and last layer, i.e., if x0, x1 belong to the same cluster, then
A2(x0) = A2(x1) and A3(x0) = A3(x1). Note that such clusters correspond to
paths from the second to third layer in fig. 3.2. Then, we investigated that the
distribution of all (second row) or wrongly classified (first row) instances among
the clusters with regard to two measures: purity (proportion of instances of the
most frequently predicted class in the cluster) and cluster size. We can observe
that there are a number of instances belonging to clusters with high purity and
high strength (bottom right of the heatmaps in the second row), that are almost
always correct from epoch 150, while wrongly classified instances usually belong to
small clusters or clusters with low purity (bottom left of each heatmap).

3.4.3 APD as a Visualization Tool

Until now, we used the APD as a data structure of activation patterns, but here
we show its value also as a visualization tool. In Figure 3.8, we plotted APDs for
500 instances of label “1” using a model at epochs 10, 50, 150, and 300. These
plots, called Sankey diagrams from the Plotly library [Plo15], show blue rectangles
representing the activation patterns of the layers and predicted labels (from left to
right), with the height and colour intensity proportional to the number of instances
activating or predicting each pattern or label. The edges between the rectangles are
coloured according to the proportion of instances that were misclassified, and sized
according to the number of instances following that edge. To further clarify the
diagram, the thin red edges correspond to the singletons of misclassified instances
that we evaluated in the previous results. Since the last layer of the Sankey
represents the predicted label, and the correctly classified instances belong to the
large blue cluster at the top, the red edges that contain misclassified instances
belong to different clusters.

From fig. 3.8 we can observe that activation patterns are shared more in deeper
layers, as emerges from fig. 3.6 (large-sized blue rectangles and green edges). In
particular, from epoch 150, large clusters appear in the last layer (the penultimate
in the diagrams, since the last is the predicted label). Lastly, wrongly classified
instances mostly belong to small clusters (the thin lines in red).

Although this represents a small study on using the APD as a visualization tool,
we consider the flow diagram an interesting approach to interpret the transforma-
tions applied by piecewise linear DNNs.

28

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

0 200 400

Epoch

10−1

100

L
o
g

L
o
ss

Losses
Valid

Train

0 200 400

Epoch

0

10000

20000

30000

40000

50000

N
u
m

b
er

o
f
p
a
tt

er
n
s

Number of Patterns

layer
Layer 1

Layer 2

Layer 3

Figure 3.6: Evolution of activation patterns during training. (Left) Train
(orange) and validation (blue) loss. The best validation is achieved at epoch
309. (Right) Evolution of activation patterns. Number of unique activation
patterns per layer, i.e., |A∗

l (D)|, with regard to the network at a given epoch.
All the layers steadily increase the number of activation patterns during training.
Furthermore, the first layer (blue) has 4 times the number of activation patterns
of the second layer, while the third layer (green) doesn’t reach more that 4000
activation patterns in all the 500 epochs.

1 2 20 54 403

0.0

0.2

0.5

0.8

1.0E
rr
o
rs

d
is
tr
.

Epoch 10

1 2 20 54 403

0.0

0.2

0.5

0.8

1.0

Epoch 50

1 2 20 54 403

0.0

0.2

0.5

0.8

1.0

Epoch 150

1 2 20 54 403

0.0

0.2

0.5

0.8

1.0

Epoch 300

1 2 20 54 403

0.0

0.2

0.5

0.8

1.0

In
st
a
n
ce

d
is
tr
.

1 2 20 54 403

0.0

0.2

0.5

0.8

1.0

1 2 20 54 403

0.0

0.2

0.5

0.8

1.0

1 2 20 54 403

0.0

0.2

0.5

0.8

1.0

100

101

102

103

100

101

102

103

104

Binned Strength

B
in
n
ed

P
u
ri
ty

Figure 3.7: Distribution of cardinalities and misclassified instances of APD
clusters at different epochs. Distribution of wrongly classified instances (first
row) and all instances (second row) among clusters defined by activation patterns
of second and third layer. Clusters correspond to the edges in the APD between
the activation patterns of the second and third layer, respectively. In the x-axis
we have the cardinality of the clusters, with log-bins, while in the y-axis we have
the purity of the cluster, that is, the proportion of instances belonging to the most
frequently predicted label in the cluster.

29

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

(a) Epoch 10. (b) Epoch 50.

(c) Epoch 150. (d) Epoch 300.

Figure 3.8: APD visualization through Sankey diagrams. Four APDs for
the same 500 instances of label “1” that were learned by the model at different
epochs (10, 50, 150, and 300). Each APD is made up of four levels of blue nodes,
which represent the activation patterns of the three layers of the network and the
predicted labels for each instance. The height and color intensity of the nodes
indicate the number of instances they represent. As expected from fig. 3.6, the first
layer typically has more patterns than the other layers. In the level for predicted
labels, there is a tall node on top that represents the most frequently predicted
label, which is “1” in this case. The edges between nodes are sized based on the
number of instances they represent and are colored based on the proportion of
errors.

30

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

3.5 Conclusions

In this chapter, we introduced the Activation Pattern DAG (APD), a novel data
structure that summarizes the seen activation patterns given a piecewise linear
DNN and a dataset. More in detail, activation patterns are obtained by binarizing
the output of ReLU activation functions: a “1” corresponds to a positive output, “0”
otherwise. In this way, given an input instance, each layer defines its own activation
patterns.

Previous studies observed that overlapping activation patterns between dif-
ferent inputs represent how the model exploits redundancies of the learned func-
tion [Mon+14]. We continued on that line, by clustering input instances based
on activation patterns, encoded in the APD. The APD allows us to consider not
only overlapping patterns in a single layer, but also how input instances overlap in
multiple layers. The clustering algorithm that we defined is inspired by decision
trees, and has the objective of finding groups of instances with the same patterns
in multiple layers and the same predicted label.

After applying the APD clustering algorithm on a given dataset, we claimed that
the size of each cluster is a valid scoring to estimate the difficulty of its elements.
Accordingly, we propose a connection between activation patterns and example
difficulty estimators, introduced in section 2.3.1. The intuition is that large clusters
contain well-represented instances that the model assigns to the same activation
patterns based on their similarity, while anomalous or misclassified instances should
belong to small clusters or singletons. In section 3.4, we validated our hypothesis on
the MNIST [LCB10] dataset, considering multiple model architectures. The results
confirmed that the cluster size allows distinguishing misclassified from correctly
predicted examples. Moreover, cluster size is a good predictor of another example
difficulty metric: the number of forgetting events [Ton+19], further confirming our
claims.

In addition to example difficulty, in section 3.4.1 we showed how the APD
clustering can be used for dataset compression. In particular, by taking only one
representative for each cluster, i.e., a prototype, we obtained better generalization
performances than a random selection of prototypes. Furthermore, in section 3.4.2
we investigated the evolution of activation patterns during training, validating our
design choices for the clustering algorithm.

Given the efficacy of APD clustering in distinguishing well-represented from
anomalous instances, it can be employed for automated dataset auditing, in par-
ticular for the modern large-scale datasets, but also in safety critical settings,
as an alternative to uncertainty estimation, in the context of human-in-the-loop
pipelines [Lei+17].

Lastly, in section 3.4.3, we proposed to employ the APD as a visualization tool to
diagnose the behaviour of the model on a group of instances. Given the importance
of data visualization, in particular for black-box models like DNNs [OMS17; Bau+17],
we consider the APD an interesting novel perspective to better understand the
behaviour DNNs.

31

CHAPTER 3. ACTIVATION PATTERN DIAGRAM

Among the many possible lines of research stemming from the APD, one could
study the effect of different hyperparameters on the clustering, such as regulariz-
ers [Sri+14; IS15]. Moreover, it would be interesting to extend the APD to other
types of models, such as CNNs or Recurrent Neural Network (RNN).

32

Chapter 4
Adversarial Examples Detection with
Ensemble Approaches

Contribution. In this chapter I will discuss the work presented in the following
article:

[Cra+21] Francesco Craighero et al. “Unity Is Strength: Improving the
Detection of Adversarial Examples with Ensemble Approaches”.
Preprint (under review).

Summary. In this chapter, we present a framework called ENsemble Adver-
sarial Detector (ENAD) for detecting adversarial examples in Convolutional
Neural Networks. ENAD combines the scoring functions of multiple state-of-the-
art detectors based on Mahalanobis distance, Local Intrinsic Dimensionality
(LID), and One-Class Support Vector Machines (OCSVMs), which analyze the
hidden features of Deep Neural Networks (DNNs). Extensive testing on various
datasets, models, and adversarial attacks shows that ENAD performs better
than competing methods in most cases. ENAD is also highly standardized and
reproducible, and its flexible design allows for the easy integration of additional
detectors and strategies.

Implementation. The experiments performed in [Cra+21] has been open-
sourced on a Github repositorya.

ahttps://github.com/BIMIB-DISCo/ENAD-experiments

33

https://github.com/BIMIB-DISCo/ENAD-experiments

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

4.1 Introduction

Recent studies have shown that state-of-the-art DNNs for object recognition tasks
are vulnerable to adversarial examples [Sze+14; GSS15]. For instance, in the field of
computer vision, adversarial examples are perturbed images that are misclassified by
a given DNN, even if being almost indistinguishable from the original (and correctly
classified) image. Adversarial examples have been investigated in many additional
real-world applications and settings, including malware detection [Kol+18] and
speech recognition [Qin+19].

Thus, understanding and countering adversarial examples has become a crucial
challenge for the widespread adoption of DNNs in safety-critical settings, and
resulted in the development of an ever-growing number of defensive techniques.
Among the possible countermeasures, some aims at increasing the robustness of the
DNN model during the training phase, via adversarial training [Sze+14; GSS15],
defensive distillation [Pap+16] or by training more robust models [AG17; BBS17;
Str+18] (sometimes referred to as proactive methods). Alternative approaches aim
at detecting adversarial examples in the test phase, by defining specific functions
for their detection and filtering-out (reactive methods).

In this chapter, we introduce a novel ensemble approach for the detection
of adversarial examples, named ENsemble Adversarial Detector (ENAD), which
integrates scoring functions computed from multiple detectors that process the

(a) Adversarial attacks (b) Layer-specific scoring function (c) Adversarial Detection

Plane

Input Image
Pre-trained

model Prediction

Layer l activation

Adversarial
attack

Deer

6=

Layer l activation

instances of class 1/2
adversarial neighbors

Layer l scores

Layer-specific scoring functions

MahalanobisOCSVM LID

H
id

d
en

ac
ti

va
ti

on
s

L
ay

er
-s

p
ec

ifi
c

sc
or

es
L

og
is

ti
c

re
gr

es
si

on

Layer 1

Scoring

Layer n

Scoring

...

Scores

P
ro
b
a
b
il
it
y
(c
) adversarial

benign

Figure 4.1: ENAD framework for adversarial detection. A schematic depiction
of the ENAD framework is displayed. (a) Given an input image, which can be either
benign or adversarial, and a pre-trained deep neural network, the activations of the
hidden layers are extracted. (b) In order to measure the distance of the image with
respect to training examples, layer-specific scores are computed via functions based
either on One-Class Support Vector Machine, Mahalanobis distance [Lee+18] or
Local Intrinsic Dimensionality [Ma+18]. (c) In the current implementation, layer-
and detector-specific scores are integrated via logistic regression, so to classify the
image as benign or adversarial, with a confidence c.

34

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

hidden layer activation of pre-trained DNNs. The underlying rationale is that, given
the high-dimensionality of the hidden layers of Convolutional Neural Networks
(CNNs) and the difficulty of the adversarial detection problem, different algorithmic
strategies might be effective in capturing and exploiting distinct properties of
adversarial examples. Accordingly, their combination might allow us to better tackle
the classical trade-off between generalization and overfitting, while outperforming
single detectors, as already suggested in [AS17], in the distinct context of outlier
identification.

To the best of our knowledge, this is the first time that an ensemble approach
is applied to the hidden features of DNNs for adversarial detection. However,
ensemble-based proactive defences have been previously introduced in [AG17;
BBS17; Str+18]. Recently, two ensembling methods for adversarial [Var+21],
which focuses on feature attributions rather than the latent features, and out-of-
distribution detection [Kau+21] have been proposed. We will compare the former
approach, named ExAD, with ENAD in section 4.4.1.

In detail, ENAD includes two state-of-the-art detectors, based on Mahalanobis
distance [Lee+18] and Local Intrinsic Dimensionality (LID) [Ma+18], and a newly
developed detector based on One-Class Support Vector Machine (OCSVM) [Sch+99].
OCSVMs were previously adopted for adversarial detection in [Ma+19], but we
extended the previous method by defining both a pre-processing step and a Bayesian
hyperparameter optimization strategy, both of which result fundamental to achieve
performances comparable to [Lee+18; Ma+18]. In the current implementation, the
output of each detector is then integrated via a logistic regression that returns
both the adversarial classification and the overall confidence of the prediction. A
schematic depiction of the ENAD framework is provided in fig. 4.1.

For the sake of reproducibility, the performance of ENAD and competing meth-
ods was assessed with the extensive setting originally proposed in [Lee+18]. In
particular, we performed experiments with two models, namely ResNet [He+16]
and DenseNet [Hua+17], trained on CIFAR-10 [Kri09], CIFAR-100 [Kri09] and
SVHN [Net+11], and considered four benchmark adversarial attacks, i.e.,
FGSM [GSS15], BIM [KGB17], DeepFool [MFF16] and CW [CW17b]. In the
various tests, ENAD was compared against its constituting standalone detectors
(section 4.4.1) and other ensemble strategies (section 4.4.1).

We executed an additional array of experiments aimed at assessing the perfor-
mance of the distinct detectors when trained on a given attack and tested against
others (transfer attacks).

Main Contributions The main contributions of this work can be summarized
as follows.

• Improvement of OCSVM performance in adversarial detection: we introduced
an evolved version of the OCSVM strategy for adversarial detection (first
described in [Ma+19]), by designing a new pipeline with Bayesian hyperpa-

35

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

rameter optimization and data preprocessing on top of the default training
process. Results highlight performance improvements.

• Assessment of layer- and attack-specificity of standalone detectors: thanks
to extensive tests on benchmark datasets, models and attacks, we show
that the performance of state-of-the-art standalone detectors is layer- and
attack-specific, possibly guiding the improvements of such methods. Impor-
tantly, we demonstrate that the predictions of different detectors are scarcely
overlapping.

• Introduction of the ENAD ensemble framework for adversarial detection:
we propose a new detector, named ENAD, which integrates layer-specific
scoring functions from multiple independent detectors. Its performance is
assessed against standalone detectors, different ensemble strategies and other
integration schemes (e.g., voting) in a variety of experimental settings. The
framework is described by clearly stating all design choices, paving the way
to future extensions with different detectors and integration schemes.

• Performance evaluation in attack transfer settings : we present a quantitative
evaluation of the performance ENAD and competing methods in transfer
attack settings. We show the limitations of existing strategies and provide
guidelines for future research.

• Visualization of adversarial examples in low-dimensional space: we deliver an
easy-to-interpret way of visualizing adversarial examples on a low-dimensional
projection of the score space, which provides a proxy of their “hardness”, and
may be particularly useful in real-world applications.

4.2 Background

A survey of OOD and adversarial examples detectors is available in section 2.3.2.
In section 4.2.1, we will detail adversarial attacks, that is, methods that generate
adversarial examples.

4.2.1 Adversarial Attacks

In the following, we describe the adversarial attacks that were employed in our exper-
iments, namely FGSM [GSS15], BIM [KGB17], DeepFool [MFF16] and CW [CW17a]:

• FGSM [GSS15] defines optimal L∞ constrained perturbations as:

x̃ = x+ ϵ · sign (∇xJ(x, t)),

such that ϵ is the minimal perturbation in the direction of the gradient with
respect to the input image (∇x) that changes the prediction of the model
from the true class y to the target class t.

36

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

• BIM [KGB17] extends FGSM by applying it k times with a fixed step size α,
while also ensuring that each perturbation remains in the ϵ-neighbourhood of
the original image x by using a per-pixel clipping function clip:

x̃0 = x

x̃n+1 = clipx,ϵ (xn + α · sign (∇x̃nJ(x̃n, t)))

• DeepFool [MFF16] iteratively finds the optimal L2 perturbations that are
sufficient to change the target class by approximating the original non-linear
classifier with a linear one. Thanks to the linearization, in the binary clas-
sification setting the optimal perturbation corresponds to the distance to
the (approximated) separating hyperplane, while in the multiclass the same
idea is extended to a one-vs-all scheme. In practice, at each i-th step the
method computes the optimal perturbation pi of the simplified problem, until
x̃ = x+

∑
i pi is misclassified.

• the CW attack [CW17a], in two variants:

– the original L2 norm attack, that we will refer as CW: this variant uses
gradient descent to minimize ∥x̃− x∥2 + c · lcw(x̃), where the loss lcw is
defined as:

lcw(x) = max (max{σlgt(x̃)
i : i ̸= t} − σlgt(x̃)

t,−κ).

The objective of the optimization is to minimize the L2 norm of the
perturbation and to maximize the difference between the target logit
σlgt(x̃)

t and the one of the next most likely class up to real-valued
constant κ, that models the desired confidence of the crafted adversarial.

– the L∞ norm variant defined in [ACW18], that we will refer to as CW∞,
since it employs the same lcw loss. In this variant, we optimize for lcw,
while clipping the adversarial such that ∥x̃− x∥∞ = ϵ, with ϵ given as a
parameter. Furthermore, we use the constant κ to obtain high-confidence
adversarial examples.

4.3 Methods

In this section, we illustrate the ENAD ensemble approach for adversarial detection,
as well as the properties of the scoring functions it integrates, respectively based on
OCSVM (Detector A–new), Mahalanobis (Detector B) and LID (Detector C), which
can also be used as standalone detectors. We also describe the background of both
adversarial examples generation and detection, the partitioning of the input data
and the extraction of the features processed by ENAD and standalone detectors.

37

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

4.3.1 Data partitioning

Let X train be the training set on which the classifier N was trained, X test the test
set and Lnorm ⊆ X test the set of correctly classified test instances. Following the
setup done in [Lee+18; Ma+18], from Lnorm we generate (i) a set of noisy examples
Lnoisy by adding random Gaussian noise, with the additional constraint of being
correctly classified, and (ii) a set of adversarial examples Ladv generated via a given
attack. We also ensure that Lnorm, Lnoisy and Ladv have the same size. The set
L = Lnorm ∪ Lnoisy ∪ Ladv will be our labelled dataset, where the label is adv for
adversarial examples and adv for benign ones. As detailed in the following sections,
L will be split into a training set Ltrain, a validation set Lvalid for hyperparameter
tuning and a test set Ltest for the final evaluation.

4.3.2 Feature Extraction

In our experimental setting, hl(x), with l ∈ [1, . . . , L], corresponds to either the
first convolutional layer or to the output of the lth dense (residual) block of a DNN
(e.g. DenseNet or ResNet). As proposed in [Lee+18], the size of the feature map is
reduced via average pooling, so that hl(x) has a number of features equal to the
number of channels of the lth layer. Detectors A, B, and C and ENAD are applied
to such set of features, as detailed in the following.

4.3.3 Standalone Detectors

Detector A: OCSVM

This newly designed detector is based on a standard anomaly detection technique
called One-Class Support Vector Machine (OCSVM) [Sch+99], which belongs to
the family of one-class classifiers [Tax01]. One-class classification is a problem
in which the classifier aims at learning a good description of the training set
and then rejects the inputs that do not resemble the data it was trained on,
which represent outliers or anomalies. This kind of classifier is usually adopted
when only one class is sufficiently represented within the training set, while the
others are undersampled or hard to be characterized, as in the case of adversarial
examples, or anomalies in general. OCSVM was first employed for adversarial
detection in [Ma+19]. Here, we modified it by defining an input pre-processing
step based on PCA-whitening [KLS18], and by employing a Bayesian optimization
technique [SLA12] for hyperparameter tuning. The pseudocode is reported in
algorithm 2.

Preprocessing OCSVM employs a kernel function (in our case a Gaussian RBF
kernel) that computes the Euclidean distance among data points. Hence, it might
be sound to standardize all the features of the data points, at the preprocessing
stage, to make them equally important. To this end, each hidden layer activation

38

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

Algorithm 2 OCSVM detector (see the main text for an explanation of the notation
employed)

Input: Act. hl of layer l, trainset X train, labelled set L
1: for each l in 1, . . . , L do
2: Centering and PCA-whitening of hl: h

∗
l

3: Select best layer-specific parameters θ = {ν, γ}
4: Fit OCSVMl(θ) on {h∗

l (x) : x ∈ X train}
5: OCSVMl(θ) decision function: Ol

6: Layer l score of x0: Ol(x0)
7: end for
8: Scores vector: O(x0) := [O1(x0), . . . ,OL(x0)]
9: Fit adv posterior on Ltrain: p(adv | O(x0))
10: OCSVM of x0: OCSVM(x0) := p(adv | O(x0))
11: return OCSVM

hl(x0) is first centered on the mean activations µl,c of the examples of the training
set X train of class c. Then, PCA-whitening WPCA

l is applied:

h∗
l (x0) = WPCA

l · (hl(x0)− µl,c)

= Λ
−1/2
l ·UT

l · (hl(x0)− µl,c),

where UT
l is the eigenmatrix of the covariance Σl of activations hl and Λl is the

eigenvalues matrix of the examples of X train. Whitening is a commonly used
preprocessing technique for outlier detection, since it enhances the separation of
points that deviate in low-variance directions [Agg20]. Moreover, in [KK20] it
was conjectured that the effectiveness of the Mahalanobis distance [Lee+18] for
out-of-distribution and adversarial detection is due to the strong contribution of
low-variance directions. Thus, this preprocessing step allows the one-class classifier
to achieve better overall performances1.

Layer-specific scoring function After preprocessing, OCSVM with a Gaussian
RBF kernel is trained on the hidden layer activations hl of layer l of the training set
X train. Once the model has been fitted, for each instance x0 layer-specific scores
O(x0) = [O1(x0),O2(x0), . . . ,OL(x0)] are evaluated. More in detail, let Sl be the
set of support vectors, the decision function Ol(x0) for the l

th layer is computed as:

Ol(x0) =
∑
sv∈Sl

αsvk(hl(x0), sv)− ρ, (4.1)

1In a test on the DenseNet, CIFAR-10, CW scenario, the AUROC returned by the OCSVM
detector with PCA-whitening preprocessing improves from 82.56 to 90.24, and the AUPR from
78.17 to 82.98, with respect to the same method without preprocessing (see section 4.4 for further
details).

39

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

2−15 2−10 2−5 20 25

Kernel width γ

2−7

2−6

2−5

2−4

2−3

2−2

2−1

Re
gu

lar
iza

tio
n

fa
ct

or
ν

−0.78

−0.72

−0.66

−0.60

−0.54

−0.48

−0.42

−0.36

−0.30

Accuracy

Figure 4.2: OCSVM hyperparameter optimization. The influence of different
combinations of OCSVM hyperparameters {ν, γ} on the validation accuracy is
explored via Bayesian optimization [Hea+], in the example scenario of DenseNet
model, CIFAR-10 dataset and DeepFool attack. The gradient returns the validation
accuracy estimated on Lvalid. The red star represents the optimal configuration,
which is then employed for adversarial detection in both the OCSVM and the ENAD
detectors.

where αsv is the coefficient of the support vector sv in the decision function, ρ is
the intercept of the decision function and k is a Gaussian RBF kernel with kernel
width γ:

k(x,y) = exp
(
−γ∥x− y∥2

)
. (4.2)

Hyperparameter optimization The layer-specific scoring function takes two
parameters as input: the regularization factor ν ∈ (0, 1) that represents an up-
per bound on the fraction of training errors (controlling for overfitting), and the
kernel width γ. This hyperparameters must be carefully chosen to achieve good
performances. For this purpose, many approaches have been proposed for hyperpa-
rameters selection in OCSVM [Ala+20]. In our setting, we used the validation set
of labelled examples Lvalid to choose the best combination of parameters, based
on the validation accuracy. To avoid a full (and infeasible) exploration of the
parameters space, we employed Bayesian hyperparameter optimization, via the
scikit-optimize library [Hea+]. In fig. 4.2, we report the estimated accuracy of
the explored solutions in the specific case of the OCSVM detector, in a representative
experimental setting.

Adversarial detection Once the scores have been obtained for each layer, they
can serve either as input for the standalone Detector A or as partial input of the
ensemble detector ENAD. In the former case, in order to aggregate the scores of

40

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

the separate layers O(x0), this detector employs a logistic regression to model the
posterior probability of adversarial (adv) examples:

p(adv | O(x0)) =
(
1 + exp

(
β0 + βTO(x0)

))−1

, (4.3)

The parameters {β0,β} are fitted with a cross-validated procedure using the labelled
training set Ltrain.

Detector B: Mahalanobis

The Mahalanobis detector (Maha) was originally introduced in [Lee+18]. The
algorithmic procedure is akin to that of the OCSVM detector, and includes a final
layer score aggregation step via logistic regression, but it is based on a different
layer-specific scoring function.

Layer-specific scoring function Given a test instance x0, the layer score is
computed via a three-step procedure: first, for each instance, the class ĉ is selected,
such that:

ĉ = argmin
c

MahaScorel(x0, c),

where MahaScorel(x, c) is the Mahalanobis distance for the lth layer between the
activations hl(x) and the mean values µl,c of the examples in the training set X train:

MahaScorel(x, c) = (hl(x)− µl,c)
TΣ−1

l (hl(x)− µl,c), (4.4)

where Σl is the covariance matrix of the examples of X train in layer l. Then,
the instance is preprocessed to obtain a better separation between benign and
adversarial examples similar to what is discussed in [LLS18]:

x∗
0 = x0 − λ sign∇x0MahaScorel(x0, ĉ),

where λ is a positive real number, called the perturbation magnitude. The scoring
for instance x0 is computed as:

M(x0) = [M1(x0),M2(x0), . . . ,ML(x0)],

where

Ml(x0) = −max
c

MahaScorel(x
∗
0, c).

Adversarial detection The scores can serve either as input for the standalone
Detector B or as partial input for the ensemble detector ENAD. In the latter case,
the Mahalanobis detector uses logistic regression to identify adversarial examples,
with a procedure similar to that already described for standalone Detector A.

41

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

Hyperparameter optimization Differently from Detector A, the hyperparame-
ter selection is performed downstream of the adversarial detection stage. In order to
select the best λ (unique for all layers), the method selects the value that achieves
the best Area Under the Receiver Operating Characteristic (AUROC) (detailed
in section 4.3.5) on Lvalid computed on the posterior probability p(adv |M(x0)),
which is obtained via the logistic regression fitted on Ltrain.

Detector C: LID

The third detector uses a procedure similar to Detectors A–B, but the layer-
specific scoring function is based on the Local Intrinsic Dimensionality (LID)
approach [Ma+18].

Layer-specific scoring function Given a test instance x0, the LID layer-specific
scoring function L is defined as:

Ll(x0) = −
(
1

k

k∑
i=1

log
ri(hl(x0))

maxi ri(hl(x0))

)−1

, (4.5)

where, k is the number of nearest neighbours, ri is the Euclidean distance to the
i-th nearest neighbour in the set of normal examples Lnorm. The layer-specific
scores are:

L(x0) = [L1(x0),L2(x0), . . . ,LL(x0)]

Adversarial detection When considered alone, the LID detector employs a
logistic regression to identify adversarial examples, similarly to the other detectors
(see above).

Hyperparameter optimization Similarly to Detector B, the hyperparameter
selection is performed downstream of the adversarial detection stage. k is selected
as the value that achieves the best AUROC on Lvalid computed on the posterior
probability p(adv | L(x0)), which is obtained via the logistic regression fitted on
Ltrain. Note that k is unique for all layers.

4.3.4 ENsemble Adversarial Detector (ENAD)

The ENAD approach exploits the effectiveness of Detectors A, B, and C in capturing
different properties of data distributions, by explicitly integrating the distinct
layer-specific scoring functions in a unique classification framework. More in detail,
given a test instance x0, it will be characterized by a set of layer-specific and
detector-specific features, computed from the scoring functions defined above,
that is: E(x0) = [O(x0),M(x0),L(x0)]. It should be noted that training and
hyperparameter optimization is executed for each detector independently.

42

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

Algorithm 3 ENAD detector.

Input: Act. hl of layer l, trainset X train, labelled set L
1: Select best hyperparameters for OCSVM, Maha, LID
2: for each layer l in 1, . . . , L do
3: Layer l scores of x0: Ol(x0),Ml(x0),Ll(x0)
4: end for
5: Scores vector: E(x0) := [O(x0),M(x0),L(x0)]
6: Fit adv posterior on Ltrain: p(adv | E(x0))
7: ENAD on x0: ENAD(x0) := p(adv | E(x0))
8: return ENAD

Adversarial detection In its current implementation, in order to integrate the
scores of the separate layers E(x0), ENAD employs a simple logistic regression to
model the posterior probability of adversarial (adv) examples:

p(adv | E(x0)) =
(
1 + exp

(
β0 + βTE(x0)

))−1

. (4.6)

Like Detectors A, B, and C, the logistic is fitted with a cross-validation procedure
using the labelled training set Ltrain. Fitting the logistic allows one to have different
weights, i.e., the elements of βT , for the different layers and detectors, meaning
that a given detector might be more effective in isolating an adversarial example
when processing its activation on a certain layer of the network. The pseudocode is
reported in algorithm 3.

4.3.5 Performance Metrics

Let the positive class be the adversarial examples (adv) and the negative class be
the benign examples (adv). Then, the correctly classified adversarial and benign
examples correspond to the True Positive (TP) and True Negative (TN), respectively.
Conversely, the wrongly classified adversarial and benign examples are the False
Negative (FN) and False Positive (FP), respectively.

To evaluate the detectors’ performances, we employed two standard threshold
independent metrics, namely AUROC and AUPR [DG06], the Accuracy and the
F1-score, defined as follows:

• Area Under the Receiver Operating Characteristic (AUROC): the area under
the curve identified by Specificity = TN/(TN+ FP) and Fall-out = FP/(TN+
FP).

• Area Under the Precision-Recall curve (AUPR): the area under the curve
identified by Precision (Pr) = TP/(TP+FP) and Recall (Re) = TP/(TP+FN).

• Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN).

43

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

• F1-score (F1) = 2× (Pr× Re)/(Pr+ Re).

The AUROC and AUPR were evaluated given the adversarial posterior learned
by the logistic function p(adv | X), where X is the set of layer-specific scores.
The layer-specific scores are computed from Lvalid when the AUROC is used for
hyperparameters optimization for the Mahalanobis and LID detectors, and from
Ltest in all the other settings, i.e., the detector’s performance evaluation. Moreover,
AUROC and AUPR were also used to evaluate the performance of each detector
in each layer, by considering the layer-specific scores evaluated on Ltest (see, e.g.,
fig. 4.3b). Note that for the OCSVM and Mahalanobis detectors, lower values
correspond to adversarial examples, while the opposite applies to the LID detector.
The accuracy was used for the Bayesian hyperparameter selection procedure [SLA12]
of the OCSVM detector. Lastly, F1-score, Precision and Recall were used to evaluate
ensembling methods in section 4.4.1 and transfer attacks in section 4.4.2.

4.4 Results

Four benchmark adversarial attacks were selected to test the effectiveness of our
ENAD approach and competing methods, namely: Fast Gradient Signed Method
(FGSM) [GSS15], Basic Iterative Method (BIM) [KGB17], DeepFool [MFF16] and
Carlini-Wagner (CW) [CW17b]. In particular, to evaluate the performances in
distinct scenarios, we designed two separate arrays of experiments:

1. Known attacks (section 4.4.1): the same adversarial attack is employed both
in the training and in the test phase, as proposed in [Lee+18].

2. Transfer attacks (also unknown attacks, section 4.4.2): a given attack is
employed for training and another one for the test phase. In this case, two
sub-scenarios were defined:

a. cheap training, i.e., training on the FGSM attack and testing on the
other three benchmark attacks.

b. hard attacks, i.e., testing against high-confidence adversarial examples
with many distortion levels generated using CW∞.

We compared the performance of ENAD with standalone Detectors A (OCSVM),
B (Mahalanobis [Lee+18]), and C (LID [Ma+18]). All four detectors integrate
layer-specific anomaly scores via logistic regression and classify any example as
adversarial if the posterior probability is > 0.5, benign otherwise (see the Methods
for additional details). Moreover, we also evaluated the performance of the ExAD
detector [Var+21] and alternative ensembling strategies, i.e., based on voting
schemes, in the known attack scenario.

In section 4.4.3 we finally propose a strategy to visualize benign and adversarial
examples on a low-dimensional space, based on the similarity of their layer- and
detector-specific score profiles, and which may be useful in real-world applications.

44

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

FGSM

CI
FA

R1
0 19816 12

116 36

BIM

24209 84

188 359

DeepFool

19044 1174

839 4053

CW

19399 1709

1171 3101
CI

FA
R1

00 18380 76

64 110

18879 200

149 482

13958 821

575 3816

15639 1142

709 3030

SV
HN

27229 79

70 162

63151 869

752 1648

57281 2111

1686 5342

60574 2631

1027 2728 0%

1%

10%

100%

%
oftotalinstances

MO O

M Ø

(a)

0
25
50
75

100
FGSM BIM DeepFool CIFAR10

CW

0
25
50
75

100

CIFAR100

0 1 2 3
0

25
50
75

100

0 1 2 3 0 1 2 3 0 1 2 3

SVHN

Layer

AU
RO

C
(%

)

LID Maha OCSVM

(b)

Figure 4.3: (a) Comparison of predictions of standalone detectors in the
Known Attacks scenario (OCSVM vs. Mahalanobis–DenseNet). The
contingency table shows the number of adversarial examples of the test set Ltest

correctly identified by: both the OCSVM and the Mahalanobis detectors (MO), either
one of the two methods (O or M), none of them (∅). The results of the DenseNet
model, with respect to the distinct datasets and attacks are shown, whereas the
remaining pairwise comparisons are displayed in fig. 4.A.2. (b) Influence of the
hidden layers in adversarial detection in the Known Attacks scenario
(DenseNet). For each configuration of datasets and attacks on the DenseNet model,
the AUROC of each layer-specific score for Detectors A–C is returned. For each
configuration and detector, the best-performing layer is highlighted with a darker
shade (see Methods for further details). The same results for the ResNet model are
available in fig. 4.A.1.

The assessment of the computational time of ENAD is discussed in section 4.4.4.
Regarding hyperparameter selection, table 4.A.1 contains the hyperparameter
configurations and tables 4.A.2 and 4.A.3 contain the best hyperparameters for
each setting.

4.4.1 Known Attacks

Standalone Detectors Capture Distinct Properties of Adversarial Exam-
ples

In order to assess the ability of standalone Detectors A, B and C to exploit different
properties of input instances, we first analysed the methods as standalone, and
computed the subsets of adversarial examples identified: (i) by all detectors, (ii)
by a subset of them, (iii) by none of them.

45

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

In fig. 4.3a, we reported a contingency table in which we compare the OCSVM
and Mahalanobis detectors on all the experimental settings with the DenseNet
model, while the remaining pairwise comparisons are presented in the fig. 4.A.2. We
note that while the class of examples identified by both approaches is, as expected,
the most crowded, we observe a substantial number of instances that are identified
by either one of the two approaches. This important result appears to be general,
as it is confirmed in the other comparisons between standalone detectors.

In addition, in fig. 4.A.3 one can find the layer-specific scores returned by all
detectors in a specific setting (ResNet, DeepFool, CIFAR-10). For a significant
portion of examples, the ranking ordering among scores is not consistent across
detectors, confirming the distinct effectiveness in capturing different data properties
in the hidden layers.

To investigate the importance of the layers with respect to the distinct attacks,
models and datasets, we also computed the AUROC directly on the layer-specific
scores, i.e., the anomaly scores returned by each detector in each layer. In fig. 4.3b,
one can find the results for all detectors in all settings, with the DenseNet model (the
same results for the ResNet model are available in fig. 4.A.1). For the FGSM attack,
the scores computed on the middle layers consistently return the best AUROC
in all datasets, while for the BIM attack the last layer is apparently the most
important. Notably, with the DeepFool and CW attacks, the most important layers
are dataset-specific. This result demonstrates that each attack may be vulnerable
in distinct layers of the network.

ENAD Outperforms standalone Detectors

Table 4.1 reports the AUROC and AUPR computed on the fitted adversarial posterior
probability for Detectors A, B, and C, respectively, on all 24 experimental settings.

It can be noticed that ENAD exhibits both the best AUROC and the best
AUPR in 22 out of 24 settings (including 1 tie with OCSVM), with the greatest
improvements emerging in the hardest attacks, i.e. DeepFool and CW. Remarkably,
the newly designed OCSVM detector outperforms the other standalone detectors in
12 and 14 settings (out of 24) in terms of AUROC and AUPR, respectively.

Notice that in table 4.A.4, we also evaluated the performance of all pairwise
combinations of the three detectors, so to quantitatively investigate the impact of
integrating the different algorithmic approaches, proving that distinct ensembles of
detectors can be effective in specific experimental settings.

Comparison with voting schemes

ENAD employs a logistic classifier as a meta-learner to aggregate the scoring of
every detector in each layer, although other ensembling strategies may be employed,
e.g., voting schemes.

In this section, we compare ENAD with a voting scheme among the predictions
of standalone Detectors A, B, C. In detail, we considered three voting schemes: Or,

46

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

 Attack FGSM BIM DeepFool CW

 AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

Model Dataset Detector

DenseNet

CIFAR-10

LID 96.37 98.30 99.52 99.73 75.21 85.22 69.75 80.88

Maha 99.80 99.96 99.46 99.75 74.46 82.73 78.43 87.42

OCSVM 99.58 99.88 99.24 99.69 77.01 84.74 82.98 90.24

ENAD 99.70 99.89 99.90 99.96 83.70 89.36 85.30 91.50

CIFAR-100

LID 98.39 99.29 96.31 98.11 55.88 70.12 59.67 72.80

Maha 99.49 99.87 97.64 99.10 67.79 78.49 74.99 86.86

OCSVM 99.49 99.84 98.23 99.30 69.17 79.27 78.71 88.95

ENAD 99.78 99.93 98.37 99.47 73.05 83.07 83.40 92.15

SVHN

LID 98.59 99.07 92.13 94.79 85.80 91.83 90.47 94.61

Maha 99.45 99.85 97.93 99.26 90.00 94.93 90.95 97.16

OCSVM 99.51 99.86 97.38 99.17 91.40 95.00 96.54 98.50

ENAD 99.83 99.91 98.93 99.57 93.27 96.04 98.13 99.16

ResNet

CIFAR-10

LID 99.18 99.67 94.37 96.50 79.40 88.58 73.95 82.29

Maha 99.87 99.90 99.06 99.58 85.64 91.60 92.28 95.90

OCSVM 99.99 99.99 98.95 99.44 83.90 90.83 92.26 95.68

ENAD 99.99 99.99 99.58 99.78 87.77 92.89 93.35 96.46

CIFAR-100

LID 97.53 98.78 94.52 96.76 56.10 69.87 65.53 78.51

Maha 99.48 99.72 93.51 96.92 73.32 85.23 83.00 91.68

OCSVM 99.63 99.86 91.70 95.79 71.69 84.17 83.17 91.24

ENAD 99.63 99.78 98.22 99.26 76.58 86.34 88.26 94.08

SVHN

LID 94.52 97.84 83.46 90.78 86.60 92.31 79.46 88.16

Maha 97.90 99.60 92.22 97.16 93.04 95.74 84.95 92.13

OCSVM 98.06 99.64 95.91 98.12 92.15 95.58 89.19 93.29

ENAD 98.33 99.69 96.80 98.59 93.70 96.18 90.66 94.62

Table 4.1: Comparative assessment of ENAD and competing methods in the
Known Attacks scenario. Performance comparison of the ENAD, LID [Ma+18],
Mahalanobis [Lee+18], OCSVM detectors (all the pairwise combinations of the
three single detectors are available in table 4.A.4). The Table contains the AUROC
and AUPR for all the combinations of selected datasets (CIFAR-10, CIFAR-100 and
SVHN), models (DenseNet and ResNet), and attacks (FGSM, BIM). See Methods for
further details.

47

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

And and Maj (Majority), that is: an example is identified as adversarial if at least
one detector, all detectors, or the majority of the detectors, respectively, classify it
as adversarial.

In table 4.2 we report the F1 score comparison in the Known attack setting (see
above), while in table 4.A.6 we report Precision and Recall. In almost all settings
ENAD proves to be the best-performing strategy. As expected, we note that the Or
voting scheme leads to high Recall, but low Precision, while the opposite holds
for the And scheme. In this regard, we point out that voting scheme requires the
training of three separate logistics, one for each detector, while ENAD requires only
one.

Comparison with other ensemble approaches

In this section, we present the comparison of ENAD with another post hoc detector
employing an ensembling technique, named Ensemble approach for Explanation-
based Adversarial Detection (ExAD) [Var+21]. This method exploits explanation
maps [Spr+15; SGK17; STY17] to distinguish normal from adversarial examples.
More in detail, ExAD applies multiple types of explanation maps to a given unseen
instance, and ensembles multiple DNNs, one for each combination of explanation
technique and target class. In comparison to ENAD, only one type of detector
is employed (DNNs), the detection task is performed on the feature attribution
instead of the latent features and a detector is trained for each target class, in
addition to each explanation technique.

In our experiments, we considered only three explanation techniques, given
the requirements of the Captum library [Kok+20] and the properties of our pre-
trained models: Guided Backpropagation [Spr+15], Input×Gradient [SGK17] and
Integrated Gradients [STY17] (using a black image as reference, the Gauss-Legendre
quadrature for integral approximation and 100 approximation steps). Furthermore,
given the noisy nature of feature attribution techniques [Hoo+19], we employed
SmoothGrad-Squared to ensemble 10 attributions obtained from perturbed versions
of the original image, given a Gaussian noise ϵ ∼ N (0, 0.2). Moreover, we tested
both CNNs and Autoencoders as detectors, as suggested by the authors.

Autoencoders were trained on normal examples only, and then the reconstruction
loss (L2 loss) is used to distinguish normal (low loss) from adversarial examples
(high loss). Each autoencoder was fitted on the explanations of the instances
belonging to X train, then the model was regularized using early stopping given the
AUROC on the validation set Lvalid. Lastly, the threshold to separate normal from
adversarial was chosen such that the False Positive Rate on Lvalid is 5%. As for
ENAD, performances were evaluated on the test set Ltest. Ltrain was not used. On
the other hand, the CNNs were trained on Ltrain, regularized with early stopping
using Lvalid and tested on Ltest.

In table 4.3 we report the results for the DenseNet model (the F1-score is reported
for all the combinations of dataset and attack). We did not consider CIFAR-100

48

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

 Attack FGSM BIM DeepFool CW

Model Dataset Ensemble

DenseNet

CIFAR-10

ENAD 99.13 98.90 74.83 76.89

Or 95.15 96.32 70.93 72.71

Maj 99.12 97.23 67.24 71.98

And 95.20 96.70 55.75 54.13

CIFAR-100

ENAD 99.31 96.59 65.52 78.02

Or 97.46 92.93 59.45 69.70

Maj 98.97 95.30 53.72 63.77

And 95.30 91.87 34.10 41.31

SVHN

ENAD 99.12 95.84 86.23 93.87

Or 97.27 91.59 83.40 87.74

Maj 98.99 94.69 84.00 91.42

And 95.44 85.27 75.32 83.03

ResNet

CIFAR-10

ENAD 99.72 97.23 77.61 85.86

Or 97.87 92.64 76.84 80.93

Maj 99.78 96.30 74.93 84.23

And 98.10 88.32 65.71 64.67

CIFAR-100

ENAD 98.77 95.24 67.19 81.26

Or 97.47 86.77 64.45 74.99

Maj 98.86 88.49 61.46 76.03

And 92.53 82.94 27.80 52.17

SVHN

ENAD 97.68 91.44 85.51 82.98

Or 95.25 86.43 83.55 78.93

Maj 97.91 89.41 85.09 79.22

And 91.42 73.47 76.99 66.59

Table 4.2: Comparative assessment of ENAD and voting-based strategies
in the Known Attacks scenario. The F1-score returned by ENAD and the
ensembling strategies based on voting schemes – i.e., And, Or, Maj(ority) – is
shown for the the Known Attacks scenario (see the main text for further details).
Precision and Recall results are available in table 4.A.6.

49

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

Attack FGSM BIM DeepFool CW
Model Dataset Detector

DenseNet

CIFAR-10
ExAD [CNN] 72.73 37.46 52.69 53.11
ExAD [AE] 8.55 28.93 14.79 13.73
ENAD 99.13 98.90 74.83 76.89

SVHN
ExAD [CNN] 50.84 0.02 15.68 27.77
ExAD [AE] 21.66 27.88 19.40 15.64
ENAD 99.12 95.84 86.23 93.87

Table 4.3: Comparison between ENAD and ExAD performances. F1-score
for ENAD and ExAD with the two detector types, i.e., the CNN and the Autoen-
coder (AE), for the DenseNet model, the CIFAR-10 and SVHN datasets and all the
attacks (FGSM, BIM, DeepFool, CW). In all the settings, ENAD achieves the best
performances. ExAD with the CNN detectors achieves good performances only for
the CIFAR-10–FGSM setting, while ExAD with the Autoencoder has always bad
performances.

due to the demanding resources required for 300 models (one for each combination
of the target class and explanation method). ExAD achieved good performances
only with CNN as the detector type and on easy attacks, such as FGSM, and always
performs worse than ENAD. Our hypothesis is that a careful hyperparameter search
has to be performed on the hyperparameters of both the explanation maps and the
detectors to achieve competitive results. However, the resource requirements to
perform such search is expected to be huge. For all the above reasons, we did not
consider ExAD in further tests.

4.4.2 Transfer attacks

Transfer attacks with cheap training via FGSM

In this section, we discuss the performance of ENAD and Detectors A, B, and C
when a transfer attack is performed. In particular, we tested the performance of all
the detectors when trained on the cheapest benchmark attack, i.e. FGSM, that only
requires the multiplication of the gradient by the perturbation size. Afterwards, we
tested the performance on BIM, DeepFool and CW attacks.

In table 4.4 one can see how, despite the expected worsening of the performances,
either ENAD or OCSVM achieve the best AUROC and AUPR in almost all settings,
further demonstrating the robustness of our approach.

Training matters with harder transfer attacks

A particular kind of transfer attack is the so-called adaptive attack, where an attacker
generates adversarial examples exploiting the full knowledge of the detector. Many
works address the topic of adaptive attacks [He+17; ACW18; Tra+20; CW17b], in

50

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

 Detector LID Maha OCSVM ENAD

 AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

Model Dataset Attack

DenseNet

CIFAR-10

BIM 88.28 92.97 98.00 99.24 98.93 99.59 99.06 99.62

DeepFool 57.95 69.94 73.94 82.88 73.82 82.81 74.72 82.68

CW 58.25 70.26 76.45 87.23 78.88 88.00 79.96 88.40

CIFAR-100

BIM 28.62 31.45 95.07 98.11 90.94 95.84 57.70 60.27

DeepFool 55.28 70.30 65.19 76.83 66.23 77.51 68.90 79.21

CW 57.77 72.57 66.78 82.06 72.61 84.57 73.86 84.71

SVHN

BIM 87.40 91.40 96.32 98.21 97.26 99.14 96.46 97.54

DeepFool 73.50 79.50 86.76 91.17 88.74 93.40 85.59 88.58

CW 75.48 84.63 88.43 94.33 91.48 97.50 88.62 92.16

ResNet

CIFAR-10

BIM 89.82 93.34 97.28 98.03 98.85 99.42 99.02 99.47

DeepFool 61.62 73.92 75.55 81.34 79.23 86.38 79.63 85.66

CW 67.79 78.05 79.01 84.75 91.04 94.69 90.01 94.55

CIFAR-100

BIM 43.29 46.06 92.83 95.69 90.26 94.18 93.70 96.68

DeepFool 55.23 68.12 68.31 78.24 72.08 83.45 73.26 83.26

CW 64.89 76.24 81.72 88.70 80.53 87.56 85.08 91.51

SVHN

BIM 71.38 85.03 88.10 95.15 90.67 96.90 84.54 93.38

DeepFool 49.97 67.36 53.92 69.29 59.65 75.11 55.45 68.95

CW 58.75 76.43 75.45 86.85 80.03 89.70 68.30 81.72

Table 4.4: Comparative assessment of ENAD and competing methods in
the Transfer Attacks (cheap training) scenario. Performance comparison
of the ENAD, LID [Ma+18], Mahalanobis [Lee+18], and OCSVM detectors when
both the hyperparameter optimization and the logistic regression fit are performed
on the FGSM attack. The Table contains the AUROC for all the combinations of
selected datasets (CIFAR-10, CIFAR-100 and SVHN), models (DenseNet and ResNet),
and attacks (BIM, DeepFool and CW). See Methods for further details.

51

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

2 4 6 8 10

eps

0

20

40

60

80

100

F
1

sc
or

e

ENAD LID Maha OCSVM

F: FGSM B: BIM D: DeepFool C: CW

(a)

0

25

50

75

100

F
1

sc
or

e

DenseNet ResNet

0

25

50

75

100

F
1

sc
or

e

2 4 6 8 10

eps

0

25

50

75

100

F
1

sc
o
re

2 4 6 8 10

eps

C
IF

A
R

10
S

V
H

N
C

IF
A

R
100

ENAD

LID

Maha

OCSVM

(b)

Figure 4.4: Comparative assessment of ENAD and competing methods in
the Transfer Attacks (hard attacks) scenario. (a) The of F1-score returned
by ENAD, LID [Ma+18], Mahalanobis [Lee+18], and OCSVM detectors against the
CW∞ transfer attack is shown (DenseNet–SVHN). The dataset employed in this
test contains 800 samples of, respectively, adversarial, noisy and clean examples
(see the main text for further details). Colors are used to distinguish the detectors,
and letters to distinguish the attack on which the detector is trained, e.g., the blue
C stands for ENAD trained on CW. The remaining settings are shown in fig. 4.A.4.
(b) Analysis restricted on the performance of detectors when trained on the CW
attack. In both figures, eps stands for the L∞ attack max perturbation size (in the
[0, 255] scale).

some cases by targeting ensembles of detectors [He+17]. In particular, in [ACW18]
the authors discuss on how to design an effective attack when a defence method has
some gradient masking. The LID detector falls in this category, as its loss function
proves to be particularly difficult to differentiate.

Given that ENAD is an ensemble of multiple detectors, making its loss function
is at least as difficult as that of the LID detector. We here applied the same strategy
proposed in [ACW18] to define a harder attack. In particular, we considered the
L∞ variant of the CW attack (labelled as CW∞), which allows one to generate
high-confidence adversarial examples with small distortions.

To this end, we generated 800 further adversarial examples with CW∞ and
distortion ϵ, and by scanning ϵ ∈ {i/255 | i ∈ {2, 4, 6, 8, 10}}. This setting allowed
us to assess the performance of the distinct detectors with respect to the distortion

52

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

size. Also in this case, we defined three balanced partitions of adversarial, noisy,
and clean examples (labels are coherent with the other experiments, see above),
and tested ENAD and competing methods when trained on either FGSM, BIM,
DeepFool, or CW, and tested against the CW∞ attack.

In fig. 4.4a we report the F1-score for the DenseNet and SVHN setting. All
detectors perform better when trained either on DeepFool or CW, with ENAD
showing the overall best performance for all values of ϵ. All detectors appear to
be unable to classify CW∞ adversarial examples when trained on FGSM (cheap
training), which in this case is not advisable. All the other settings are reported in
fig. 4.A.4.

In fig. 4.4b we report the F1-score for all settings when the detectors are trained
on CW, which appears to be best choice as for fig. 4.4a. ENAD is the best performing
in the DenseNet and SVHN setting, while being the second best in all remaining
settings, showing good overall performance. OCSVM has analogous performances,
while the other detectors exhibit unstable performances, confirming the results of
section 4.4.2.

4.4.3 Visualizing Adversarial Examples in the Score Space

In the following, we remark our interest in data visualization, as done with the APD
in section 3.4.3, by providing a graphical representation of the adversarial examples
in a low-dimensional embedding of the score space. More in detail, in order to
explore the relationship between the scoring functions and the overall performance
of ENAD, it is possible to visualize the test examples on the low-dimensional tSNE
space [vH08], using the (logit weighted and Z-scored) layer- and detector-specific
scores as starting features (3 detectors × 4 hidden layers = 12 initial dimensions).

This representation allows one to intuitively assess how similar the score profiles
of the test examples are: closer data points are those displaying more similar score
profiles, which translates in an analogous distance from the set of correctly classified
training instances, with respect to the three scoring functions currently included in
ENAD. Importantly, this allows one to evaluate how many and which adversarial
examples display score profiles closer than those of benign ones, and vice versa,
and visualize them.

As an example, in fig. 4.5 the test set of the SVHN, DenseNet, DeepFool setting
is displayed on the tSNE space. The colour gradient returns the confidence c of
ENAD, i.e., the probability of the logistic regression: an example is categorized as
adversarial if c > 0.5, benign otherwise.

While most of the adversarial examples are identified with high confidence
(leftmost region of the tSNE plot), a narrow region exists in which adversarial
examples overlap with benign ones, hampering their identification and leading to
significant rates of both false positives and false negatives. Focusing on the set of
false negatives, it is evident that some adversarial examples are scattered in the
midst of the set of benign instances (rightmost region of the tSNE plot), rendering
their identification extremely difficult.

53

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

Figure 4.5: Visualization of adversarial and benign examples in the low-
dimensional score space. (DenseNet–SVHN–DeepFool). Representation of
the test data Ltest for the configuration DeepFool, DenseNet and SVHN in the
tSNE low-dimensional space [vH08]. The layer- and detector-specific scores are
weighted with the logit weights, Z-scored, and then used as features for the tSNE
computation, via the computation of the k-nearest neighbour graph (k = 50) with
Pearson correlation as metric (further tSNE parameters: perplexity = 100, early
exaggeration = 100, learning rate = 10000). In each quadrant the true positives
(a), false positives (b), true negatives (c) and false negatives (d) are displayed.
Each point in the plot represents either an adversarial or a benign example and
the color returns the confidence c provided by ENAD, i.e., the probability returned
by the logistic classifier. (e) The barplots return the absolute number of TPs, TNs,
FPs and FNs for this experimental setting.

54

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

0 1 2 3 4
Layer

2h

4h

6h

8h

Ti
m

e
(h

ou
rs

)

Figure 4.6: OCSVM fit times by layer. Fitting times of the OCSVM stand-alone
detector, for each reported configuration in table 4.A.2. Attack, model and dataset
are aggregated, since the mean fit time depends only on the layer on which the
detector was trained, i.e., the deeper the layer, the higher the mean fit time.

4.4.4 Computational time

All tests were executed on a n1-standard-8 Google Cloud Platform instance, with
eight quad-core Intel® Xeon® CPU (2.30GHz), 30GB of RAM and a NVIDIA
Tesla® K80.

The fitting time of each parameter explored in all configurations for OCSVM
is reported in fig. 4.6. For the computation times of the Mahalanobis and LID
detectors, please refer to [Lee+18] and [Ma+18].

The computational time of ENAD is approximately the sum of that of the
detectors employed to compute the layer-specific scores and, in the current version,
it is mostly affected by OCSVM. In particular, its fitting time for each parameter
explored in all configurations is reported in fig. 4.6 (note that the time is dominated
by outliers that can be easility pruned out). For the computation times of the
Mahalanobis and LID detectors, please refer to [Lee+18] and [Ma+18].

OCSVM hyperparameter search time can be improved in many ways: by consider-
ing SVM’s implementations that support GPU [Wen+18] or by adding a Hyperband
scheduler [FKH18], in addition to the Bayesian sampler that we employed in our
experiments.

4.5 Conclusions

We introduced the ENAD ensemble approach for adversarial detection, motivated by
the observation that distinct detectors are able to isolate non-overlapping subsets
of adversarial examples by exploiting different properties of the input data in the
internal representation of a DNN. Accordingly, the integration of layer-specific scores
extracted from three independent detectors (LID, Mahalanobis and OCSVM) allows
ENAD to achieve significantly improved performance on benchmark datasets, models
and attacks, with respect to the state-of-the-art, even when a simple integration
scheme (i.e., the logistic regression) is adopted.

It is also worth of note that the newly introduced OCSVM detector proved highly

55

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

effective as a standalone in our tests, indicating that the use of one-class classifiers for
this specific task deserves an in-depth exploration. Most important, the theoretical
framework of ENAD is designed to be general and as simple as possible, so to show
the advantages of adopting ensemble approaches in the “cleanest” scenario. Yet,
the framework might be easily extended and improved.

On the one hand, ENAD may accommodate different scoring functions, generated
via any arbitrary set of independent algorithmic strategies. In this regard, ongoing
efforts aim at integrating detectors processing the hidden layer features with others
processing the properties of the output, which have already proven their effectiveness
in adversarial detection (see, e.g. [HG17a; LLS18; RKH19]). Similarly, one may
explore the possibility of exploiting the information on activation paths and/or
regions, as suggested in [LIF17; Cra+20a], as well as of refining the score definition
by focusing on class-conditioned features.

On the other hand, more effective strategies for the integration of such scoring
functions might be devised. As shown the in the results section, adversarial examples
generated with a given attack might be more easily identified by a specific detector
and by exploiting the properties of a specific layer. In other terms, the attack type
is closely related to the detector performance and the layer relevance, and this
results in attack-specific optimal weights of the logit currently employed by ENAD
and competing methods, possibly limiting its effectiveness as a result. This aspect
is even more relevant when facing transfer attacks, for which the logit training
is executed on a separate attack, worsening the overall performance. This also
suggests that the training phase should be considered with extreme caution when
developing a detector for production.

For such reasons, more sophisticated strategies to combine scoring functions
might be considered to improve the generality and robustness of our approach, e.g.,
via weighted averaging or by employing test statistics [Rag+21], as well as via the
exploitation of more robust feature selection and classification strategies.

On a side note, we specify that, despite their simplicity, ensembling strategies
based on voting schemes might be also considered as an alternative to the logit
in safety-critical settings. For example, as presented in the results section, the Or
voting scheme may be the method of choice if Recall matters more than Precision,
as in several real-world biomedical scenarios (e.g., one might want to minimize the
false negatives in diagnostic testing).

To conclude, given the virtually limitless possibility of algorithmic extensions
of our framework, the superior performance exhibited in benchmark settings in a
purposely simple implementation, and the theoretical and application expected
impact, we advocate for a widespread and timely adoption of ensemble approaches
in the field of adversarial detection.

56

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

4.A Supplementary Material

Detector Parameter Configurations

OCSVM
ν 2−7, 2−6, . . . , 2−1

γ 2−15, 2−14, . . . , 25

LID k 10, 20, . . . , 90

Maha λ
0.0, 0.01, 0.005, 0.002,
0.0014, 0.001, 0.0005

Table 4.A.1: Hyperparameters configurations (all settings). Hyperparameters
space explored in the optimization step for the three detectors OCSVM, LID and
Mahalanobis and for all the of models (DenseNet, ResNet), datasets (CIFAR-10,
CIFAR-100, SVHN) and attacks (FGSM, BIM, DeepFool, CW).

57

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

0

25

50

75

100

CIFAR10 CIFAR100

FGSM

SVHN

0

25

50

75

100

BIM

0

25

50

75

100 DeepFool

0 1 2 3 4
0

25

50

75

100

0 1 2 3 4 0 1 2 3 4

CW

Layer

AU
RO

C
(%

)

LID Maha OCSVM

Figure 4.A.1: Influence of layers in adversarial detection (ResNet model)
in the Known Attack scenario. For each configuration of datasets and attacks
on the ResNet model, the AUROC of each layer-specific score for OCSVM, LID
and Mahalanobis detectors is returned. For each configuration and detector, the
best-performing layer is highlighted with a darker shade.

58

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

B
es
t
V
a
lu
e

L
ay
er

0
1

2
3

4
P
ar
am

et
er

ν
γ

ν
γ

ν
γ

ν
γ

ν
γ

M
o
d
el

D
at
as
et

A
tt
ac
k

D
en
se
N
et

C
IF
A
R
-1
0

F
G
S
M

1
.2
7
e-
2

9
.4
3
e-
2

7
.8
1
e-
3

2
.5
3
e-
4

7
.8
1
e-
3

1
.7
9
e-
4

2
.0
6
e-
2

3
.0
5
e-
5

B
IM

9
.4
0
e-
3

9
.7
8
e-
3

4
.1
5
e-
2

1
.2
3
e-
2

1
.8
7
e-
2

1
.4
5
e-
2

1
.2
6
e-
2

6
.0
8
e-
5

D
ee
p
F
o
ol

1
.1
2
e-
2

3
.0
5
e-
5

7
.8
1
e-
3

1
.8
7
e-
2

1
.2
9
e-
1

9
.8
6
e-
5

1
.2
3
e-
1

6
.2
1
e-
3

C
W

1
.1
3
e-
2

1
.3
2
e-
4

4
.1
9
e-
2

2
.8
6
e-
2

1
.1
7
e-
1

1
.6
5
e-
2

5
.6
9
e-
2

8
.6
2
e-
3

C
IF
A
R
-1
00

F
G
S
M

8
.2
5
e-
2

2
.8
1
e-
4

7
.8
1
e-
3

3
.0
5
e-
5

7
.8
1
e-
3

3
.0
5
e-
5

2
.0
4
e-
2

3
.0
5
e-
5

B
IM

1
.4
1
e-
2

1
.7
5
e-
2

7
.8
1
e-
3

1
.7
e-
2

6
.1
7
e-
2

7
.9
3
e-
4

2
.0
9
e-
2

4
.1
1
e-
3

D
ee
p
F
o
ol

1
.1
0
e-
2

1
.2
e-
4

8
.8
1
e-
2

7
.8
3
e-
3

4
.6
7
e-
2

1
.0
1
e-
2

1
.0
8
e-
1

2
.5
1
e-
4

C
W

7
.8
1
e-
3

3
.0
5
e-
5

1
.2
2
e-
1

9
.6
9
e-
3

1
.3
7
e-
1

3
.3
5
e-
5

1
.1
0
e-
1

3
.0
5
e-
5

S
V
H
N

F
G
S
M

7
.8
1
e-
3

6
.1
e-
2

7
.8
1
e-
3

2
.5
2
e-
4

7
.8
1
e-
3

4
.8
8
e-
5

7
.8
1
e-
3

3
.0
5
e-
5

B
IM

7
.8
1
e-
3

2
.3
2
e-
4

2
.1
7
e-
2

2
.9
8
e-
4

4
.0
3
e-
2

7
.6
3
e-
4

2
.4
5
e-
2

3
.0
5
e-
5

D
ee
p
F
o
ol

7
.8
1
e-
3

3
.0
5
e-
5

1
.4
5
e-
2

1
.7
4
e-
3

2
.8
4
e-
2

3
.0
5
e-
5

4
.5
5
e-
2

4
.1
6
e-
4

C
W

7
.8
1
e-
3

3
.0
5
e-
5

1
.1
8
e-
2

1
.3
5
e-
2

8
.9
2
e-
3

1
.5
5
e-
2

1
.4
3
e-
2

7
.1
8
e-
3

R
es
N
et

C
IF
A
R
-1
0

F
G
S
M

7
.8
1
e-
3

3
.0
5
e-
5

7
.8
1
e-
3

3
.0
5
e-
5

8
.4
2
e-
3

7
.6
9
e-
5

3
.0
6
e-
2

9
.4
2
e-
3

7
.8
1
e-
3

2
.2
5
e-
3

B
IM

7
.8
1
e-
3

3
.0
5
e-
5

2
.9
5
e-
2

7
.7
e-
3

4
.1
2
e-
2

3
.0
5
e-
5

4
.0
9
e-
2

1
.0
1
e-
3

1
.0
4
e-
2

3
.6
3
e-
3

D
ee
p
F
o
ol

7
.8
2
e-
3

3
.1
6
e-
5

5
.5
9
e-
2

3
.5
0
e-
4

7
.1
5
e-
2

9
.2
3
e-
3

7
.9
3
e-
2

5
.2
2
e-
3

7
.1
5
e-
2

4
.7
3
e-
5

C
W

7
.8
1
e-
3

3
.0
5
e-
5

1
.0
1
e-
1

5
.9
2
e-
3

9
.7
2
e-
2

5
.5
3
e-
4

9
.6
4
e-
2

9
.3
5
e-
3

7
.8
1
e-
3

4
.6
e-
3

C
IF
A
R
-1
00

F
G
S
M

7
.8
1
e-
3

9
.7
7
e-
5

1
.9
3
e-
2

3
.2
3
e-
5

2
.5
4
e-
2

5
.5
8
e-
4

4
.6
e-
2

1
.0
1
e-
3

4
.2
9
e-
2

1
.2
8
e-
3

B
IM

7
.8
1
e-
3

3
.1
2
e-
5

1
.2
e-
1

1
.0
7
e-
3

1
.2
9
e-
1

1
.1
0
e-
4

6
.9
0
e-
2

2
.3
6
e-
3

1
.1
8
e-
1

6
.2
1
e-
4

D
ee
p
F
o
ol

7
.8
1
e-
3

3
.0
5
e-
5

1
.1
0
e-
1

3
.2
8
e-
3

3
.7
1
e-
2

9
.0
3
e-
3

7
.2
4
e-
2

3
.0
5
e-
5

1
.5
8
e-
1

5
.4
3
e-
5

C
W

7
.8
1
e-
3

3
.0
5
e-
5

1
.5
4
e-
2

4
.3
2
e-
2

1
.4
4
e-
1

3
.0
5
e-
5

1
.0
8
e-
1

4
.4
6
e-
5

4
.7
7
e-
2

2
.3
5
e-
3

S
V
H
N

F
G
S
M

7
.8
1
e-
3

3
.0
5
e-
5

2
.8
1
e-
2

1
.2
e-
4

4
.3
6
e-
2

3
.0
5
e-
5

5
.5
3
e-
2

1
.0
2
e-
3

2
.0
3
e-
2

1
.3
3
e-
4

B
IM

7
.8
1
e-
3

3
.0
5
e-
5

1
.1
9
e-
1

3
.7
6
e-
2

1
.4
e-
1

1
.8
2
e-
2

6
.8
8
e-
2

1
.1
8
e-
3

5
.6
5
e-
2

1
.3
3
e-
4

D
ee
p
F
o
ol

7
.8
1
e-
3

3
.0
5
e-
5

7
.8
1
e-
3

3
.0
5
e-
5

1
.7
8
e-
2

1
.1
2
e-
2

1
.2
2
e-
1

1
.1
7
e-
3

2
.4
e-
2

4
.1
2
e-
5

C
W

7
.8
1
e-
3

3
.0
5
e-
5

7
.8
1
e-
3

4
.6
3
e-
2

1
.5
8
e-
1

1
.1
8
e-
2

1
.0
9
e-
2

9
.8
2
e-
3

4
.6
3
e-
2

1
.6
2
e-
4

T
ab

le
4.
A
.2
:
B
e
st

h
y
p
e
rp

a
ra

m
e
te
rs

fo
r
th

e
O
C
S
V
M

d
e
te
c
to

r.
O
p
ti
m
al

O
C
S
V
M

h
y
p
er
p
ar
am

et
er
s
(ν
,
γ
)
fo
r
al
l
th
e

co
m
b
in
at
io
n
s
of

la
ye
r,
m
o
d
el

(D
en
se
N
et
,
R
es
N
et
),
d
at
as
et

(C
IF
A
R
-1
0,

C
IF
A
R
-1
00
,
S
V
H
N
)
an

d
at
ta
ck

(F
G
S
M
,
B
IM

,
D
ee
pF

o
ol
,

C
W
).

59

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

Best Value
Parameter ϵ k

Model Dataset Attack

DenseNet

CIFAR-10

FGSM 0.001 60
BIM 0.0 90

DeepFool 0.0 20
CW 0.0 20

CIFAR-100

FGSM 0.0014 90
BIM 0.0014 90

DeepFool 0.0 80
CW 0.0 70

SVHN

FGSM 0.0005 90
BIM 0.001 80

DeepFool 0.0005 20
CW 0.0 20

ResNet

CIFAR-10

FGSM 0.001 80
BIM 0.0005 90

DeepFool 0.001 20
CW 0.0 50

CIFAR-100

FGSM 0.0005 90
BIM 0.001 90

DeepFool 0.001 80
CW 0.001 90

SVHN

FGSM 0.0005 80
BIM 0.0005 30

DeepFool 0.001 20
CW 0.0 20

Table 4.A.3: Best hyperparameters for Mahalanobis and LID detectors.
Optimal Mahalanobis and LID hyperparameters, i.e. perturbation magnitude ϵ and
number of neighbors k, respectively, for all the combinations of method, model
(DenseNet, ResNet), dataset (CIFAR-10, CIFAR-100, SVHN) and attack (FGSM, BIM,
DeepFool, CW).

60

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

FGSM

CI
FA

R1
0 18752 23

1177 28

BIM

23904 401

403 132

DeepFool

17556 2368

2337 2849

CW

17388 1989

3191 2812
CI

FA
R1

00 17843 83

652 52

18101 309

929 371

12754 890

1758 3768

14056 900

2207 3357

SV
HN

26306 197

1000 37

57932 1382

5978 1128

53840 3626

5095 3859

56146 3515

5463 1836 0%

1%

10%

100%

%
oftotalinstances

ML L

M Ø

(a): LID (L) vs Maha. (M),
DenseNet.

FGSM

CI
FA

R1
0 17619 51

405 15

BIM

21805 376

1869 250

DeepFool

18940 1233

1924 2473

CW

18906 825

3727 1652

CI
FA

R1
00 16273 54

894 59

17249 1271

1324 406

12788 1464

3103 2895

14247 1100

3123 2050

SV
HN

30344 255

2120 221

52148 3152

8217 2363

47807 1821

4755 3667

50884 4420

6944 5252 0%

1%

10%

100%

%
oftotalinstances

ML L

M Ø

(b): LID (L) vs Maha. (M),
ResNet.

FGSM

CI
FA

R1
0 18715 1113

60 92

BIM

23873 420

432 115

DeepFool

17511 2707

2413 2479

CW

17159 3949

2218 2054

CI
FA

R1
00 17807 649

119 55

18101 978

309 322

12547 2232

1097 3294

13781 3000

1175 2564

SV
HN

26311 997

192 40

57951 6069

1363 1037

53983 5409

3483 3545

56991 6214

2670 1085 0%

1%

10%

100%
%

oftotalinstances

LO O

L Ø

(c): LID (L) vs OCSVM (O),
DenseNet.

FGSM

CI
FA

R1
0 17654 408

16 12

BIM

21630 1851

551 268

DeepFool

18868 1765

1305 2632

CW

18818 3719

913 1660

CI
FA

R1
00 16256 858

71 95

16871 1278

1649 452

12650 3047

1602 2951

14249 3324

1098 1849
SV

HN

30332 2134

267 207

52745 8806

2555 1774

47804 4698

1824 3724

51136 7680

4168 4516 0%

1%

10%

100%

%
oftotalinstances

LO O

L Ø

(d): LID (L) vs OCSVM (O),
ResNet.

FGSM

CI
FA

R1
0 19815 13

114 38

BIM

24189 104

118 429

DeepFool

19046 1172

847 4045

CW

19406 1702

1173 3099

CI
FA

R1
00 18435 21

60 114

18883 196

147 484

13915 864

597 3794

15528 1253

735 3004

SV
HN

27230 78

76 156

63144 876

766 1634

57252 2140

1683 5345

60581 2624

1028 2727 0%

1%

10%

100%

%
oftotalinstances

MO O

M Ø

(e): Maha (M) vs OCSVM (O),
DenseNet.

FGSM

CI
FA

R1
0 18010 52

14 14

BIM

23330 151

344 475

DeepFool

20198 435

666 3271

CW

22118 419

515 2058

CI
FA

R1
00 17060 54

107 59

17836 313

737 1364

15181 516

710 3843

16647 926

723 2224

SV
HN

32356 110

108 366

59371 2180

994 3335

51828 674

734 4814

56092 2724

1736 6948 0%

1%

10%

100%

%
oftotalinstances

MO O

M Ø

(f): Maha (M) vs OCSVM (O),
ResNet.

Figure 4.A.2: Comparison of predictions of single detectors in the Known
Attack scenario. The contingency table shows the number of adversarial examples
correctly identified: by both the detectors (top-left box), by either one of the two
methods (diagonal boxes), by none of them (lower-right box), in all the experimental
settings described in the main text.

61

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

Figure 4.A.3: Pairwise layer-specific scores comparison in the Known
Attack scenario. Comparison of the layer scores of OCSVM, LID and Mahalanobis
detectors, i.e. Ol, Ll and Ml, respectively, for each layer l and for the Resnet,
CIFAR-10, DeepFool configuration.

62

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

0

20

40

60

80

100
F

1
sc

or
e

DenseNet

C
IF

A
R

10

ResNet

0

20

40

60

80

100

F
1

sc
or

e

C
IF

A
R

100

2 4 6 8 10

eps

0

20

40

60

80

100

F
1

sc
or

e

2 4 6 8 10

eps

S
V

H
N

F: FGSM B: BIM D: DeepFool C: CWENAD LID Maha OCSVM F: FGSM B: BIM D: DeepFool C: CW

Figure 4.A.4: Comparative assessment of ENAD and competing methods
in the Transfer Attacks (hard attacks) scenario. The of F1-score returned
by ENAD, LID [Ma+18], Mahalanobis [Lee+18], and OCSVM detectors against the
CW∞ transfer attack is shown (all settings). The dataset employed in this test
contains 800 samples of, respectively, adversarial, noisy and clean examples (see
the main text for further details). Colours are used to distinguish the detectors,
while letters distinguish the attack on which the detector is trained. The eps on
the x-axis is the strength of the attack, i.e., the perturbation eps/255. For all the
settings FGSM is the worst performing training set, while DeepFool and CW are
the best.

63

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

A
tt
ac
k

F
G
S
M

B
IM

D
ee
p
F
o
ol

C
W

A
U
P
R

A
U
R
O
C

A
U
P
R

A
U
R
O
C

A
U
P
R

A
U
R
O
C

A
U
P
R

A
U
R
O
C

M
o
d
el

D
a
ta
se
t

D
et
ec
to
r

D
en

se
N
et

C
IF
A
R
-1
0

L
ID

96
.3
7

98
.3
0

99
.5
2

99
.7
3

75
.2
1

85
.2
2

69
.7
5

80
.8
8

M
ah

a
99

.8
0

9
9
.9
6

99
.4
6

99
.7
5

74
.4
6

82
.7
3

78
.4
3

87
.4
2

O
C
S
V
M

99
.5
8

99
.8
8

99
.2
4

99
.6
9

77
.0
1

84
.7
4

82
.9
8

90
.2
4

M
ah

a
+
L
ID

99
.6
9

99
.8
9

99
.8
3

99
.9
3

81
.1
1

88
.4
9

81
.2
2

89
.1
1

O
C
S
V
M
+
L
ID

99
.7
9

99
.9
5

9
9
.9
0

9
9
.9
6

83
.1
7

89
.0
0

8
5
.3
0

9
1
.5
0

O
C
S
V
M
+
M
a
h
a

9
9
.8
5

99
.9
4

99
.4
7

99
.7
8

79
.7
8

86
.5
2

83
.1
7

90
.4
9

E
N
A
D

99
.7
0

99
.8
9

9
9
.9
0

9
9
.9
6

8
3
.7
0

8
9
.3
6

8
5
.3
0

9
1
.5
0

C
IF
A
R
-1
00

L
ID

98
.3
9

99
.2
9

96
.3
1

98
.1
1

55
.8
8

70
.1
2

59
.6
7

72
.8
0

M
ah

a
99

.4
9

99
.8
7

97
.6
4

99
.1
0

67
.7
9

78
.4
9

74
.9
9

86
.8
6

O
C
S
V
M

99
.4
9

99
.8
4

98
.2
3

99
.3
0

69
.1
7

79
.2
7

78
.7
1

88
.9
5

M
a
h
a+

L
ID

99
.6
9

99
.9
0

97
.8
5

99
.1
1

70
.8
6

81
.0
2

79
.0
6

89
.8
2

O
C
S
V
M
+
L
ID

9
9
.8
0

9
9
.9
3

9
8
.8
5

9
9
.5
7

7
3
.2
4

83
.0
6

82
.3
2

91
.7
8

O
C
S
V
M
+
M
ah

a
99

.6
2

99
.8
9

98
.1
5

99
.3
7

69
.7
1

80
.0
7

81
.3
7

90
.2
0

E
N
A
D

99
.7
8

9
9
.9
3

98
.3
7

99
.4
7

73
.0
5

8
3
.0
7

8
3
.4
0

9
2
.1
5

S
V
H
N

L
ID

98
.5
9

99
.0
7

92
.1
3

94
.7
9

85
.8
0

91
.8
3

90
.4
7

94
.6
1

M
a
h
a

99
.4
5

99
.8
5

97
.9
3

99
.2
6

90
.0
0

94
.9
3

90
.9
5

97
.1
6

O
C
S
V
M

99
.5
1

99
.8
6

97
.3
8

99
.1
7

91
.4
0

95
.0
0

96
.5
4

98
.5
0

M
ah

a
+
L
ID

99
.8
0

9
9
.9
3

98
.6
4

99
.5
0

92
.1
5

95
.6
5

95
.2
9

98
.3
2

O
C
S
V
M
+
L
ID

99
.8
1

99
.9
3

98
.4
5

99
.4
4

92
.6
3

95
.5
8

9
8
.2
1

9
9
.1
9

O
C
S
V
M
+
M
a
h
a

99
.5
4

99
.8
7

98
.5
0

99
.4
2

92
.3
8

95
.6
6

96
.9
7

98
.6
5

E
N
A
D

9
9
.8
3

99
.9
1

9
8
.9
3

9
9
.5
7

9
3
.2
7

9
6
.0
4

98
.1
3

99
.1
6

T
ab

le
4.
A
.4
:
C
o
m
p
a
ra

ti
v
e
a
ss
e
ss
m
e
n
t
o
f
E
N
A
D

w
it
h
a
ll
p
o
ss
ib
le

c
o
m
b
in
a
ti
o
n
s
o
f
c
o
m
p
e
ti
n
g
m
e
th

o
d
s
in

th
e

K
n
o
w
n
A
tt
a
ck

sc
e
n
a
ri
o
(D

en
se
N
et
).

P
er
fo
rm

an
ce

co
m
p
ar
is
on

of
th
e
E
N
A
D
,
L
ID

[M
a+

18
],
M
ah

al
an

ob
is
[L
ee
+
18
],
O
C
S
V
M

d
et
ec
to
rs
,
an

d
of

th
e
p
ai
rw

is
e
in
te
gr
at
io
n
of

th
e
th
re
e
si
n
gl
e
d
et
ec
to
rs
.
T
h
e
ta
b
le

re
tu
rn
s
th
e
A
U
R
O
C
an

d
A
U
P
R
fo
r
th
e

D
en
se
N
et

m
o
d
el

an
d
al
l
th
e
co
m
b
in
at
io
n
s
of

se
le
ct
ed

d
at
as
et
s
(C

IF
A
R
-1
0,

C
IF
A
R
-1
00

an
d
S
V
H
N
)
an

d
at
ta
ck
s
(F
G
S
M
,
B
IM

,
D
ee
pF

o
ol

an
d
C
W
).
S
ee

M
et
h
o
d
s
fo
r
fu
rt
h
er

d
et
ai
ls
.

64

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

A
tt
a
ck

F
G
S
M

B
IM

D
ee
p
F
o
ol

C
W

A
U
P
R

A
U
R
O
C

A
U
P
R

A
U
R
O
C

A
U
P
R

A
U
R
O
C

A
U
P
R

A
U
R
O
C

M
o
d
el

D
a
ta
se
t

D
et
ec
to
r

R
es
N
et

C
IF
A
R
-1
0

L
ID

99
.1
8

99
.6
7

94
.3
7

96
.5
0

79
.4
0

88
.5
8

73
.9
5

82
.2
9

M
a
h
a

99
.8
7

99
.9
0

99
.0
6

99
.5
8

85
.6
4

91
.6
0

92
.2
8

95
.9
0

O
C
S
V
M

9
9
.9
9

9
9
.9
9

98
.9
5

99
.4
4

83
.9
0

90
.8
3

92
.2
6

95
.6
8

M
ah

a
+
L
ID

99
.9
7

99
.9
8

99
.4
5

99
.7
3

86
.4
0

92
.2
6

92
.5
3

96
.0
7

O
C
S
V
M
+
L
ID

9
9
.9
9

9
9
.9
9

99
.5
4

99
.7
5

85
.3
6

91
.7
1

92
.8
1

96
.0
8

O
C
S
V
M
+
M
ah

a
9
9
.9
9

9
9
.9
9

99
.3
4

99
.6
7

8
7
.9
5

92
.4
5

93
.2
4

96
.3
6

E
N
A
D

9
9
.9
9

9
9
.9
9

9
9
.5
8

9
9
.7
8

87
.7
7

9
2
.8
9

9
3
.3
5

9
6
.4
6

C
IF
A
R
-1
00

L
ID

97
.5
3

98
.7
8

94
.5
2

96
.7
6

56
.1
0

69
.8
7

65
.5
3

78
.5
1

M
ah

a
99

.4
8

99
.7
2

93
.5
1

96
.9
2

73
.3
2

85
.2
3

83
.0
0

91
.6
8

O
C
S
V
M

9
9
.6
3

9
9
.8
6

91
.7
0

95
.7
9

71
.6
9

84
.1
7

83
.1
7

91
.2
4

M
ah

a
+
L
ID

99
.5
8

99
.7
9

97
.6
3

98
.9
4

74
.6
6

85
.6
5

83
.5
6

92
.5
0

O
C
S
V
M
+
L
ID

99
.2
1

99
.6
5

9
8
.2
4

99
.1
3

73
.6
4

85
.1
8

84
.4
3

92
.7
4

O
C
S
V
M
+
M
ah

a
99

.6
3

99
.7
8

94
.4
8

97
.6
3

76
.2
4

85
.7
4

87
.1
6

93
.0
1

E
N
A
D

9
9
.6
3

99
.7
8

98
.2
2

9
9
.2
6

7
6
.5
8

8
6
.3
4

8
8
.2
6

9
4
.0
8

S
V
H
N

L
ID

94
.5
2

97
.8
4

83
.4
6

90
.7
8

86
.6
0

92
.3
1

79
.4
6

88
.1
6

M
a
h
a

97
.9
0

99
.6
0

92
.2
2

97
.1
6

93
.0
4

95
.7
4

84
.9
5

92
.1
3

O
C
S
V
M

98
.0
6

99
.6
4

95
.9
1

98
.1
2

92
.1
5

95
.5
8

89
.1
9

93
.2
9

M
ah

a
+
L
ID

98
.0
5

99
.6
6

93
.7
1

97
.7
4

93
.5
2

96
.0
9

87
.4
3

93
.6
0

O
C
S
V
M
+
L
ID

98
.1
2

9
9
.6
9

9
6
.8
4

98
.5
8

93
.0
3

95
.9
6

9
0
.8
8

94
.5
9

O
C
S
V
M
+
M
ah

a
9
8
.3
9

99
.6
8

95
.8
3

98
.1
4

93
.4
8

96
.0
0

89
.1
9

93
.4
1

E
N
A
D

98
.3
3

9
9
.6
9

96
.8
0

9
8
.5
9

9
3
.7
0

9
6
.1
8

90
.6
6

9
4
.6
2

T
ab

le
4.
A
.5
:
C
o
m
p
a
ra

ti
v
e
a
ss
e
ss
m
e
n
t
o
f
E
N
A
D

w
it
h
a
ll
p
o
ss
ib
le

c
o
m
b
in
a
ti
o
n
s
o
f
c
o
m
p
e
ti
n
g
m
e
th

o
d
s
in

th
e

K
n
o
w
n

A
tt
a
ck

sc
e
n
a
ri
o
(R

es
N
et
).

P
er
fo
rm

an
ce

co
m
p
ar
is
on

of
th
e
E
N
A
D
,
L
ID

[M
a+

18
],
M
ah

al
an

ob
is
[L
ee
+
18
],
O
C
S
V
M

d
et
ec
to
rs
,
an

d
of

th
e
p
ai
rw

is
e
in
te
gr
at
io
n
of

th
e
th
re
e
si
n
gl
e
d
et
ec
to
rs
.
T
h
e
ta
b
le

re
tu
rn
s
th
e
A
U
R
O
C
an

d
A
U
P
R
fo
r
th
e
R
es
N
et

m
o
d
el

an
d
al
l
th
e
co
m
b
in
at
io
n
s
of

se
le
ct
ed

d
at
as
et
s
(C

IF
A
R
-1
0,

C
IF
A
R
-1
00

an
d
S
V
H
N
)
an

d
at
ta
ck
s
(F
G
S
M
,
B
IM

,
D
ee
pF

o
ol

an
d

C
W
).
S
ee

M
et
h
o
d
s
fo
r
fu
rt
h
er

d
et
ai
ls
.

65

CHAPTER 4. ENSEMBLE ADVERSARIAL DETECTOR

Att FGSM BIM DeepFool CW
Pr Re Pr Re Pr Re Pr Re

Md Ds Ens

DN

C10

ENAD 98.68 99.58 98.55 99.26 78.91 71.16 76.30 77.48
Maj 98.88 99.35 97.33 97.14 79.28 58.38 79.12 66.02
Or 90.82 99.92 93.76 99.03 66.48 76.02 65.20 82.17
And 99.75 91.04 99.63 93.94 91.81 40.02 91.55 38.43

C100

ENAD 99.04 99.58 95.56 97.64 72.51 59.77 77.28 78.77
Maj 98.45 99.48 94.72 95.89 77.11 41.22 79.39 53.29
Or 95.22 99.81 88.33 98.04 65.29 54.57 69.90 69.50
And 99.41 91.51 97.46 86.89 84.22 21.38 85.87 27.19

SVHN

ENAD 99.30 98.94 96.68 95.01 89.51 83.19 92.74 95.01
Maj 98.53 99.44 95.75 93.65 90.00 78.76 92.20 90.66
Or 94.86 99.81 86.41 97.43 78.59 88.84 80.06 97.04
And 99.93 91.33 99.00 74.88 95.92 62.01 98.37 71.82

RN

C10

ENAD 99.73 99.70 96.41 98.07 85.33 71.17 88.30 83.56
Maj 99.70 99.85 96.70 95.90 83.22 68.14 89.04 79.92
Or 95.87 99.97 87.72 98.15 75.64 78.08 76.18 86.31
And 99.91 96.35 99.26 79.56 89.02 52.08 93.51 49.43

C100

ENAD 98.94 98.61 95.12 95.35 74.55 61.16 84.65 78.13
Maj 99.16 98.56 90.89 86.21 73.76 52.68 85.11 68.70
Or 95.43 99.60 78.72 96.67 65.96 63.01 69.78 81.05
And 99.64 86.37 97.42 72.21 90.38 16.43 89.85 36.75

SVHN

ENAD 98.09 97.28 91.79 91.09 91.02 80.63 85.03 81.03
Maj 98.32 97.51 92.65 86.39 90.75 80.09 86.86 72.80
Or 91.61 99.19 79.25 95.04 81.36 85.87 73.24 85.58
And 99.15 84.81 97.02 59.12 95.05 64.69 93.46 51.72

Table 4.A.6: Precision Pr and recall Re of ENAD and voting-based strategies
in the Known Attacks scenario. This Table complements the result in table 4.2.
As expected, the Or voting scheme has the highest recall (an example is adversarial
if at least one detector classifies it as adversarial). In contrast, the And voting
has the highest precision (all detectors must agree on classifying an output as
adversarial). Nevertheless, as reported in table 4.2, ENAD achieves the best overall
F1-score and is therefore our method of choice.

66

Chapter 5
Uncertainty and Complexity in
Imbalanced Classification Tasks

Contribution. This chapter contains the work mainly done during my six-
month visiting period at the Computational Systems Biology lab at IBM
Research Züricha, from March to September 2022. During the period, I was
supervised by Dr. Maŕıa Rodŕıguez Mart́ınezb and Dr. Nicolas Deutschmannc

Summary. Many real-world applications of deep learning involve solving
imbalanced binary tasks, where only one of the two classes is well-represented.
In this chapter, we will illustrate two case studies to investigate the behaviour
of deep models in imbalanced classification tasks. One will be TCR-epitope
binding affinity prediction, a recent and important application of machine
learning for immunology, while the other will be a standard image classification
task on the CIFAR-100 [Kri09] dataset. In order to analyse the behaviour of a
DNN classifier on imbalanced data we will estimate: the epistemic and aleatoric
uncertainties, and the sensitivity of each target class to Out-of-Distribution
(OOD) data. Moreover, we propose to employ the Intrinsic Dimensionality (ID)
of each target class to detect when they have uneven complexities, due to the
presence of sub-clasters (small disjuncts) or noisy examples.

Implementation. The work done in this project contributed to “The
Uncertainty Quantification 360” (UQ360) open-source toolkit [Gho+21], which
is available on Githubd. Three anomaly detection algorithms (used for Epistemic
Uncertainty estimation, as discussed in 2.3.3) have been added to the “Extrinsic
UQ Algorithms”, as “Latent Space Anomaly Detection Scores”. Special thanks
goes to Nicolas Deutschmann for having fine-tuned the methods, and for having
fulfilled all the requirements for its final distribution.

ahttps://researcher.watson.ibm.com/researcher/view_group.php?id=8226
bhttps://researcher.watson.ibm.com/researcher/view.php?person=zurich-MRM
chttps://research.ibm.com/people/nicolas-deutschmann
dhttps://github.com/IBM/UQ360

67

https://researcher.watson.ibm.com/researcher/view_group.php?id=8226
https://researcher.watson.ibm.com/researcher/view.php?person=zurich-MRM
https://research.ibm.com/people/nicolas-deutschmann
https://github.com/IBM/UQ360

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

5.1 Introduction

In this chapter, we will investigate imbalanced classification tasks from the point of
view of uncertainty and complexity. In this context, we are no longer interested in
detecting and characterizing unseen anomalies, but rather interpreting the behaviour
of the model on the classes of an imbalanced binary classification task.

Anomaly detection is a standard approach when dealing with imbalanced
data [Ruf+21], since we can employ one-class methods such as OCSVM [Sch+99] to
fit only the well-represented class, while considering all the remaining observations
as anomalies. To the best of our knowledge, only few results compared the
performance of anomaly detection and binary classification in imbalanced settings,
such as [BSJ12].

A dataset can be imbalanced not only due to unequal class proportions, but
also uneven complexity, which is another important aspect to consider. In fact,
it is not rare in real-world scenarios that one class is well-represented, while the
other is characterized by many sub-clusters (small disjuncts) or noisy examples.
The problem is even more significant in safety-critical settings such as medical
diagnosis [FAK19], where imbalanced data is quite frequent and the performance
of the model has a direct impact on the patient and the medical costs. In this case,
imbalanced datasets are directly related to the problem of long-tailed distributions
we discussed in section 2.2.2, but in this case the tail mostly belongs to one class
(the most difficult one).

In the following, we will investigate two case studies of deep models applied
to imbalanced data, by considering four metrics to interpret the behaviour of the
model and to estimate the complexity of the data. To quantify the uncertainty of
the model, and possible biases towards one of the classes, we will first estimate the
Aleatoric and Epistemic uncertainties of the model (metrics 1 & 2, section 5.3.1).
The first is higher for isolated points, due to lack of information, and will be
quantified using an anomaly detector on the latent features of the deep models. The
second, on the other hand, will consider the fitted conditional class probabilities,
where a high entropy corresponds to the inability of the model to make a decision,
such as for points in the overlapping area between two classes. To estimate the
complexity of the classes, we will compute their Intrinsic Dimensionality (metric
3, section 5.3.2), that is equal to the minimum number of dimensions required to
represent the information in the data. Lastly, we will consider the sensitivity of
the easier class to Out-of-Distribution (OOD) data (metric 4, section 5.3.3). The
intuition is that if one class is much easier (i.e., well-represented) than the other,
the model could behave like an anomaly detector and fit only the easier class, while
classifying all the rest (including OODs!) as the harder one.

The first case study (section 5.4) is binding affinity prediction, i.e., the task
of predicting whether two molecules bind or not. In particular, we will focus on
predicting the affinity of T-cell receptors (TCRs) (a component of the immune
system that acts as a detector) and epitopes (the recognized component of a
pathogen), that is a significant recent application of machine learning [Mös+19].

68

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

Indeed, thanks to advances in high-throughput sequencing techniques [RSS15],
we now have sufficient data to train deep models, such as TITAN [WBR21], to
predict the binding affinity between TCRs and epitopes. The binding affinity
prediction problem resembles an anomaly detection task, since a model could learn
the properties that make a TCR and an epitope bind, while all the non-binding
couples can be considered anomalies. In our analysis, we discovered a phenomenon
we called the “Epistemic Gradient”, since the Epistemic Uncertainty (metric 2)
is lower for one class (the binding points) and higher for the other. We claimed
that the Epistemic Gradient is a consequence of data imbalance, opening a new
interesting research line on understanding the learning mechanisms of deep models.

The second case study (section 5.5) will consider a more standard image classi-
fication task based on the CIFAR-100 [Kri09] dataset, in which we will evaluate the
use of the Intrinsic Dimensionality and the sensitivity to OOD data to investigate
imbalanced classification tasks and the behaviour of the classifier. We will first
build datasets with an uneven distribution of image labels (modalities), to test
whether the number of modalities controls their Intrinsic Dimensionality. The
motivation of this experiment is that this should reproduce the phenomena we saw
on the TCR-epitope case study. Then, we will evaluate the sensitivity to OOD both
with uneven and even distribution of modalities and with different OOD datasets,
such as SVHN [Net+11] and LSUN [Yu+15]. The claim is that if the classifier
fitted only the easy class, behaving like an anomaly detector (see fig. 5.7 for a toy
example), it will predict all the OOD data as the harder class, i.e., “the rest”.

Although the results are preliminary and will have to be evaluated in a larger
scale experiment, we strongly believe in the importance of this analysis given
the relevance of imbalanced classification for many real-world scenarios, such as
medical AI [Gao+20; FAK19], and the recent interest of the research community
into studying Intrinsic Dimensionality in deep models [Ans+19; Pop+21], OOD
detection and related topics [Yan+22] and uncertainty estimation [HW21].

Main Contributions The main contributions of this line can be summarized as
follows.

• Joint analysis of aleatoric and epistemic uncertainty in deep models: we
defined an approach to estimate the epistemic and aleatoric uncertainty in
deep models that, given a test example, jointly evaluates both its predictive
confidence and its neighbourhood density in the latent space.

• Discovery of the Epistemic Gradient, a new phenomenon in binary classifi-
cation of imbalanced datasets: in a binary classification task, the Epistemic
Gradient occurs when the epistemic uncertainty is bimodal and correlated
with the target class. We also claim that the gradient is correlated to data
imbalance.

• Controlling class imbalance with modalities : we introduced a novel approach

69

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

to control the class complexity by assigning an uneven number of modalities
(sub-clusters) to each class.

• Intrinsic Dimensionality as class complexity estimate: inspired by [Ans+19],
we proposed the intrinsic dimensionality in the latent space, estimated through
the twoNN [Fac+17] method, as a proxy for the target class complexity to
characterize imbalance in binary classification tasks.

• Using the sensitivity to OOD to characterize the anomaly detector behaviour of
the model : we propose to use the model’s predictions on Out-of-Distribution
data to characterize the biases of a model. The hypothesis is that a classifier
behaving as anomaly detector fits the easier class, while assigning anomalous
data to the harder one.

5.2 Background

5.2.1 Intrinsic Dimensionality and Sample Complexity

What is known as the manifold hypothesis states that “high dimensional data tend
to lie in the vicinity of a low dimensional manifold” [FMN16]. As an example, this
hypothesis has been supported by results on natural images [Car+08; Pop+21].
In this context, given a dataset with dimensionality d, we call d the extrinsic
dimensionality, and we define the Intrinsic Dimensionality (ID) as the minimal
number of variables necessary to represent the information in the dataset.

A number of methods have been proposed to estimate the Intrinsic Dimension-
ality of a dataset [Bac+21]. For example, in [Fac+17] the Intrinsic Dimensionality
is estimated using only two Nearest Neighbours (twoNN), i.e., the distance from the
two closest nearest neighbours for each data point. The two Nearest Neighbours
(twoNN) algorithm will be described in detail in section 5.3.2.

In [Pop+21; KKL22] experimental results show that only the ID, and not the
extrinsic one, is correlated with sample complexity, i.e., the minimal number of
training instances required to learn a given task.

With regard to deep learning, the twoNN method has been employed to study the
latent representation of DNNs [Ans+19]. While in [Pop+21] the authors investigated
the relationship between the Intrinsic Dimensionality of computer vision data and
the performance of Convolutional Neural Networks trained on those datasets.

5.2.2 Imbalanced Binary Classification

In [Jap01], the author distinguished between-class imbalance, i.e., when the two
classes have a different number of samples, from within-class imbalance, i.e., when
sub-clusters with different sizes exist within a single class. In agreement with
the previous result, in [Lóp+13] the authors pointed out that also data intrinsic

70

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

properties, such as lack of density or sub-clusters, should be considered in imbalanced
data classification.

The relationship between Intrinsic Dimensionality and sample complexity in
binary tasks have been studied in [Pop+21; KKL22]. Furthermore, in [KKL22] the
authors showed that also the entanglement of the class manifolds, i.e., the curvature
of the decision boundary, has an effect on sample complexity.

Last, in [BL19] the authors investigated the effect of importance weighting in
deep models, with a particular focus on binary tasks. In particular, they showed
that the impact of the weighting vanishes during training, also with imbalanced
classes. Moreover, they studied how OOD images are classified when varying the
ratio of the two classes, with and without importance weighting.

5.3 Metrics

In this chapter, we will define four metrics to analyse and interpret deep models.
In particular, we will use the Aleatoric and Epistemic Uncertainty (metrics 1 &
2) as metrics to estimate the confidence of the model in its predictions. Then,
we will study the Intrinsic Dimensionality (metric 3) as a proxy to estimate the
complexity of a dataset, since it quantifies the minimum dimensions required to
represent the information in the data. Lastly, we will consider the sensitivity to
OOD data (metric 4) to understand which class is more sensitive to anomalous
data.

5.3.1 Metrics 1 & 2: Aleatoric and Epistemic Uncertainty

In a setting with an infinite amount of data, the approximation uncertainty would
eventually disappear. The model uncertainty, on the other hand, becomes negligible
if the chosen model (the so-called hypothesis space H) can learn the target function
f ∗ (f ∗ ∈ H). Consequently, when estimating uncertainty in powerful models such as
DNNs, that are well known to be universal approximators [HSW89], approximation
uncertainty becomes much more important than model uncertainty.

As we defined in section 2.3.3, the Aleatoric Uncertainty (AU) and Epistemic
Uncertainty (EU) are a result of randomness and lack of data, respectively. In
fig. 5.1, we provided a simple representation of the two uncertainty types, inspired
by [HW21]. Given the absence of global assumptions on f ∗ by DNNs, the uncertainty
is mainly related to the local properties of data: AU is higher when two classes
are overlapping (the classifier makes random decisions) and EU is higher when the
input example is isolated (due to lack of data).

Let us consider a training set D = {(xxxi, yi)}Ni=1, where xxxi is an input example
and yi is either one of the K target classes. Moreover, given an input xxx, let pθ(y | xxx)
be the probabilistic predictive distribution over the classes estimated by a DNN
fitted on D with parameters θ. The AU can be estimated from the conditional class
probabilities pθ(y | xxx) and the EU can be estimated employing anomaly detection

71

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

Figure 5.1: Aleatoric and Epistemic Uncertainty in binary classification.
Reproduction of Figure 12 from [HW21]. On the left, Aleatoric Uncertainty (AU)
is higher for a query point (identified by the question mark “?”) in between the
two classes, while the Epistemic Uncertainty (EU) is higher for the isolated point.
For the point with high AU, the model has to “toss a coin” to make a decision, and
the same holds also for the isolated point as reported in the remaining two panels.

methods, that typically estimate the density p(xxx). Note that the previous definitions
can be easily extended to the regression case where y is a real value.

In the following, we will describe which technique we employed to estimate
AU and EU, respectively. Refer to section 2.3.3 and [HW21] for further details on
uncertainty estimation in DNNs.

Metric 1: Aleatoric Uncertainty

In order to estimate the Aleatoric Uncertainty (AU), we will use the predictive
uncertainty, or conditional class probabilities, of the model pθ(y | xxx). The predictive
uncertainty is higher when a model is unsure about the prediction, such as when
a point lies in the overlapping region between two different targets, therefore it
is a good proxy for estimating the AU. It should be noted, nevertheless, that the
predictive uncertainty is not completely independent of the contribution of EU.
For this reason, we will always consider AU and EU jointly in all the experimental
results.

The predictive uncertainty can be robustly estimated through deep ensem-
bles [LPB17]. More formally, given an ensemble of M models, the average prediction
confidence estimated through deep ensembles can be defined as follows:

p(y | xxx) = M−1

M∑
m=1

pθm(y | xxx),

where pθm(y | xxx) is the predictive confidence of model m with parameters θm.
Then, the predictive uncertainty can be simply computed considering the entropy,
i.e., H(p(y | xxx)). Lastly, we approximate the AU as the predictive uncertainty, i.e.,

72

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

Algorithm 4 aK-LPE algorithm [QS12].

Input: Bootstrapping times B, training set X train, query point η, number of
neighbours K

1: n = |X train|
2: procedure Training
3: for each b in 1, . . . , B do
4: Randomly split X train into two equal sets of size n/2: S1 and S2

5: Define Gb(x) := G(x, S2, K) if x ∈ S1 else G(x, S1, K)
6: end for
7: Define Gtrain(x) := 1

B

∑B
i=1Gb(x)

8: end procedure

9: procedure Testing(η)
10: for each b in 1, . . . , B do
11: Randomly pick a subset S of X train with size n/2
12: Define Gb(η) := G(η, S,K)
13: end for
14: return 1

n
|{Gtest(η) ≤ Gtrain(x) | x ∈ X train}| ▷ Return p-value

15: end procedure

given a query point η:

AU(η) ≈ p(y | η)
The deep ensembles method was chosen because it performs as well as other

methods, such as Bayesian DNNs [GG16], while requiring no modifications of the
model. Moreover, we considered the version of deep ensembles without adversarial
training [GSS15], since its application was not straightforward in the experimental
settings and we expected the gain not to be significant.

Metric 2: Epistemic Uncertainty

As already discussed, we will estimate the Epistemic Uncertainty (EU) by means
of an anomaly score, that will tell us how much a given point is isolated. More in
detail, I will here introduce an anomaly detector, that will then be used on the
latent features of the given DNN.

Given that we are estimating the uncertainty, we would like to have a normalized
metric in [0, 1]. Many anomaly detectors do not satisfy such requirement, up to
some post hoc normalization [Kri+11], therefore we chose a detector that provides
a p-value estimate. More in detail, we will employ a method based on k-nearest
neighbours called averaged K (nearest neighbors) Localized p-value Estimation (aK-
LPE) [QS12]. Of the three detectors we employed in ENAD (introduced in chapter 4),
only the Mahalanobis distances allows a straightforward p-value estimate [McL99],

73

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

although we preferred the more flexible approach employing nearest neighbours
that was recently shown to have superior for OOD detection [Sun+22]. Indeed,
nearest neighbours can be considered a possible effective future addition to the
ENAD ensemble.

Let η be a query instance, S a dataset, and K a hyperparameter controlling
the nearest neighbours computation, the aK-LPE algorithm defines the G-statistic
of η as:

G(η, S,K) =
1

K

K+⌊K
2
⌋∑

i=K−⌊K−1
2

⌋

D(η, S, i),

where D(η, S, k) the Euclidean distance from x to its k-th nearest neighbour in
S.

Algorithm 4 describes the aK-LPE algorithm, that employs a bootstrapping
strategy to estimate the G-statistic. In particular, at line 2 the training procedure is
defined, computing the bootstrapped G-statistic for all the training points (Gtrain).
At line 9 is reported the procedure to compute the p-value for a query point η is
reported: first, the bootstrapped G-statistic for η (Gtest(η)) is obtained, similarly
to the training procedure, then the percentage of training points with G-statistic
greater than Gtest(η) is used as an empirical p−value. Smaller p−values will then
characterize points with a higher chance of being anomalous.

Let p̂(η) be the empirical p−value computed with the aK-LPE algorithm, then
we define the epistemic uncertainty of η as:

EU(η) := 1− p̂(η)

To summarize, the empirical uncertainty can be estimated using aK-LPE, given
only the hyperparameters K and B, controlling the nearest neighbours and the
number of bootstraps, respectively.

The implementation of the aK-LPE algorithm [QS12] can be found in “The
Uncertainty Quantification 360” (UQ360) open-source toolkit [Gho+21], which is
available on GitHub1.

5.3.2 Metric 3: Intrinsic Dimensionality Estimation

To estimate the intrinsic dimensionality of a given dataset X , we will employ the
TwoNN [Fac+17] approach, described in algorithm 5.

Let ri,1 and ri,2 be the two closest points to xi with respect to the Euclidean
distance. We define µi := ri,2/ri,1, for each xi ∈ X (line 3). Moreover, we define
the empirical cumulate F emp(µ) as F emp(µπ(i)) := i/N (line 7), where π is the
permutation of all µs in ascending order.

1https://github.com/IBM/UQ360

74

https://github.com/IBM/UQ360

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

Figure 5.2: Two examples of estimated intrinsic dimensionality. In panel A
there is a three dimensional (3D) Swiss roll, while in panel B a three dimensions of
a three dimensional slice of randomly generated points from [0, 1]20. On the right of
each plot, we reported the points (in blue) corresponding to the line defined by the
twoNN [Fac+17] method (discard fraction = 10%) using the distance of each point
to its two closest neighbors and in pink the fitted straight line, with slope equal to
the intrinsic dimensionality. We note that the roll has intrinsic dimensionality 2,
due to the number of dimensions of the tangent hyperplane, corresponding to the
local dimensionality.

As shown in [Fac+17], given the assumption that the density is constant around
xi (up to the second neighbour), the intrinsic dimensionality d can be approximated
as follows:

log (1− F emp(µ))

log µ
≈ d

In practice, the intrinsic dimensionality d can be estimated by the slope of the
straight line passing through L:

L = {(log µi − log (1− F emp(µi)) | i ∈ {1, . . . , |X |}}

In order to make the above fit more stable, in [Fac+17] the authors also propose
to discard highest values of µi (line 6). Importantly, the discard fraction (default
= 10%) is the only hyperparameter of this method.

A simple toy example with two datasets and the respective estimated slopes is
reported in fig. 5.2.

In the following, we will use for all the experiments the implementation of
twoNN from the library scikit-dimension [Bac+21].

75

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

Algorithm 5 TwoNN algorithm.

Input: Dataset X with size n, discard fraction df
1: for each xi in X do
2: Compute the distance from xi to its first and second neighbour, ri,1 and ri,2,

respectively,
3: Define µi :=

ri,2
ri,1

4: end for
5: Define π to be the permutation of all µs in ascending order.
6: Define S = {i | π(i) ≤ n · df} ▷ Discard df% of highest µi

7: Define the empirical cumulate F emp(µ) as F emp(µπ(i)) :=
i
N

8: Fit a straight line l through {(log µi,− log (1− F emp(µi)) | i ∈ S}}
9: return slope of l ▷ Return the intrinsic dimensionality

5.3.3 Metric 4: Sensitivity to OOD Data

The last metric that we will introduce is the sensitivity to OOD data. Given a
binary classification dataset, e.g., cats and dogs from CIFAR-10 [Kri09], and a model
trained of X , we want to compute the fraction of OOD points, e.g., instances of the
SVHN [Net+11] dataset, that are predicted as either cats or dogs.

Formally, let X be a labelled dataset with two targets, y1 and y2, p(y | xxx) be
the learned conditional class probabilities by a given classifier. Moreover, let Y
be an OOD dataset. The sensitivity of class y1 to Y is defined as the number of
samples from Y classified as y1, that is:

ood(y1,Y) =
|{xi | xi ∈ Y and p(y1 | xi) ≥ 0.5}|

|Y|

5.4 Case Study 1: Binding Affinity Prediction

In this section, we will discuss the results of the uncertainty analysis we performed
on a deep model for TCR-epitope binding affinity prediction: TITAN [WBR21].

5.4.1 Experimental Setup

TCR-epitope Binding Affinity Prediction

T-cells are a type of lymphocyte and an essential component of the adaptive immune
system. The recognition of pathogens is carried out by T-cell receptors, which
interact with foreign molecules by binding with peptides (epitopes) presented on
their surface by major histocompatibility complex molecules. The effectiveness of
the immune system is then expressed by the diversity of its TCR repertoire [LBA15].

Reliably predicting epitope recognition by T-cell receptors would represent a
major breakthrough for immunology and cancer therapy [Sah+17]. However, the

76

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

high diversity of the T-cell receptors (TCRs) repertoire constitutes an important
challenge for generating exhaustive datasets.

Recent advances in high-throughput sequencing [RSS15] allowed producing
more representative data [Lin+15] and pushed the application of machine learning
for TCR–epitope binding affinity prediction [Mös+19]. More in detail, multiple
deep learning methods have already been proposed [WBR21; Mor+21; Cai+22],
where convolutions and attention layers represent the most frequent techniques.

In practice, we used the same dataset and setup used in [WBR21]. The dataset
is a composition of the VDJ database [Bag+20] and a COVID-19 dataset published
by the ImmuneCODE project [Din+20]. The data is composed by binding pairs only,
with 192 unique epitopes and 23,143 unique TCRs. TCRs are then shuffled to
generate negative pairs (the chance of getting a binding pair is very low), leading
to the final dataset of 46,290 examples. The dataset is then split into the train
and test set, with 44,830 and 2360 examples each, such that the test set contains
unseen TCRs.

Model

TITAN [WBR21] is a deep model for TCR-epitope binding affinity prediction (an
overview is reported in fig. 5.3). That is, given a couple composed by a TCR sequence
and an epitope sequence, it will predict whether they bind or not. Starting from
the input, TITAN is composed by 1D convolutional layers with different kernel
sizes, exploiting the local neighbourhood information of each sequence, followed by
context attention layers, where one sequence is used as a context for the other in
computing the attention scores. Lastly, a classifier head with two dense layers (368
and 184 units each, respectively) leads to the binary prediction.

For additional details on the model and the dataset, we refer to [WBR21] and
the implementation2.

Uncertainty Estimation

Aleatoric uncertainty was estimated using deep ensembles [LPB17], using five models
with different initialization seeds. Then, we also applied the aK-LPE algorithm
on the last dense layer features to estimate the epistemic uncertainty. For the
aK-LPE algorithm, we used K = 50 (nearest neighbours hyperparameter) and
B = 5 (number of bootstraps). All the uncertainty scores are computed for test
instances, the training set was used only to fit the aK-LPE algorithm.

5.4.2 The Epistemic Gradient

To visualize Aleatoric and Epistemic Uncertainties, in fig. 5.4 we project the scores
into a 2D embedding. The embedding of choice is tSNE [vH08], applied on the
last layer features of one of the five instantiations of TITAN. From left to right,

2https://github.com/PaccMann/TITAN

77

https://github.com/PaccMann/TITAN

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

Figure 5.3: Overview TITAN’s architecture. TITAN’s [WBR21] architecture
takes as input the encoding of the TCR and epitope’s sequences, then 1D con-
volutions with various kernel sizes (K) are applied to both input streams. The
convolutions are feeded to context attention layers, that consider one sequence as
the context for the other, and viceversa. Lastly, a classifier head of dense layers is
applied to predict the binding probability.

the first and second plot are the Epistemic and Aleatoric uncertainties (note that
the aleatoric was estimated through an ensemble, but is plotted on an embedding
of one of the five instantiations), respectively, and the last one is the target class
(either binding or non-binding).

The aleatoric uncertainty follows our expectation, and is higher in the over-
lapping region between the two targets, and lower in the boundary points. The
epistemic uncertainty, on the other hand, is not always higher in the boundary
points, as one would expect, but is correlated with the target class: binding points,
in fact, have lower epistemic uncertainty than non-binding points.

As we observed in section 2.3.3, is important to compare the two sources of
uncertainty jointly, as reported in fig. 5.5. From this visualization, is quite evident
that the binding points have higher aleatoric (x-axis, right) and lower epistemic
uncertainty (y-axis, lower), while non-binding points have high epistemic uncertainty
(y-axis, higher) and a heavier tailed aleatoric uncertainty (x-axis, left) than the
binding. From the marginal density, the epistemic uncertainty is bimodal with
regard to the target class, from now on we will refer to this phenomenon as the
Epistemic Gradient.

The Epistemic Gradient suggests an intrinsic imbalance between the binding
and non-binding class. Indeed, they are semantically imbalanced, given that we

78

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

tsne_1

ts
ne

_2

Epistemic uncertainty

tsne_1

Aleatoric uncertainty

tsne_1

Target
BIND
NOT BIND

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Figure 5.4: Projection on a tSNE embedding of TITAN’s test set aleatoric
and epistemic uncertainty. From left to right, projection of the epistemic
and aleatoric uncertainties and the target class on a 2D embedding of the last
layer’s features, obtained using the tSNE algorithm [vH08] (n components= 2,
perplexity= 30.0, early exaggeration= 12.0).

0.0 0.2 0.4 0.6 0.8 1.0
Aleatoric uncertainty

0.0

0.2

0.4

0.6

0.8

1.0

Ep
ist

em
ic

un
ce

rta
in

ty

Target
BIND
NOT BIND

Figure 5.5: Relation between TITAN’s test set aleatoric and epistemic
uncertainty. Joint visualization of aleatoric (x-axis) and epistemic (y-axis) uncer-
tainties. Binding points have higher aleatoric (x-axis, right) and lower epistemic
uncertainty (y-axis, lower), while non-binding points have high epistemic uncer-
tainty (y-axis, higher), while the aleatoric one has a heavier tail (x-axis, left) than
the binding points. The epistemic uncertainty appears to be bimodal with regard
to the target class. We refer to this phenomenon as the Epistemic Gradient.

79

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

0 2000 4000 6000 8000 10000
Step

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sp
ea

rm
an

Run
0
1
2
3
4

Figure 5.6: Stability of Epistemic Gradient across multiple seeds. Evolution
during training of the Spearman’s rank correlation coefficient between the target
class and the epistemic uncertainty for five different instantiations of the TITAN
model. All the settins achieve the same value of ≈ 0.5.

would expect the features of a binding pair of sequences to be learnable, while the
non-binding sequences could be framed as “anomalies”. Consequently, the model
appears to behave as an anomaly detector, where the binding points are close to
each other, i.e., denser, while the non-binding ones are more sparse.

To further validate the results, it is important to check if the Epistemic Gradient
is present in all the models we used to compute the aleatoric uncertainty. More in
detail, we computed the Spearman’s rank correlation coefficient between the target
class and the epistemic uncertainty, to measure if a correlation exists in all settings.

In fig. 5.6 we reported the Spearman correlation evolution during training for
all the seeds. Despite some initial fluctuations, a correlation value of around 0.5 is
achieved in all settings, confirming the reproducibility of the Epistemic gradient
phenomenon.

5.5 Case Study 2: Image Classification

In this case study we will try to reproduce the conditions that led to the Epistemic
Gradient, but in a more controllable setting, i.e., with benchmark computer vision
data.

As we discussed in the previous case study, we believe that the Epistemic
Gradient is a result of the imbalance of the two classes involved in the binary
classification (the EASY and the HARD class). Therefore, we anticipated that the
model will fit the EASY class while classifying all the other examples, including
“anomalies”, as the HARD class, essentially behaving like an anomaly detector.
Thus, we can formulate the following hypothesis:

Hypothesis 1 Given an imbalanced binary classification, the model will behave as
an anomaly detector by fitting the EASY class.

80

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

OOD

Figure 5.7: Toy example of imbalanced binary classification and sensitivity
to OOD. (Left) A toy binary classification task with a balanced number of
instances, but imbalanced number of modalities. The classifier behaves as an
anomaly detector (hypothesis 1) by fitting the distribution of the target with
one modality only (the EASY class). (Right) Given the uneven distribution of
modalities of the two target classes and the anomaly detection behaviour of the
model (hypothesis 1), we expect OOD to fall in the HARD class (in yellow).

A toy example of this hypothesis depicting two imbalanced classes is reported
in fig. 5.7, and will be further discussed in the following paragraphs.

The first step towards investigating our hypothesis is understanding which
source of imbalance might be responsible for the observed Epistemic Gradient.
Given that the TITAN training set has an even size of target classes, we decided
to check if the imbalance was due to the complexity of the two classes. For the
TCR–epitope binding problem, for example, we can have a great variety of molecules
that do not bind, while conversely only in few conditions they do bind. In the
following, we will try to reproduce the variety of the non-binding class by assigning
an uneven number of modalities, or clusters, to each of the targets. For example,
the HARD class (the non-binding points) could have 15 modalities, while the EASY
class (the binding class) only one. We can then formulate a second hypothesis:

Hypothesis 2 The number of modalities of a class is correlated with its complexity.

In order to validate hypotheses 1 and 2, in section 5.5.3 we considered a case
study on images, employing CIFAR-100 [Kri09]. More in detail, the CIFAR-100
dataset is composed by 20 superclasses (flowers, fish, . . .), each one containing
5 classes (e.g., the fish superclass contains the aquarium fish, flatfish, ray, shark,
and trout). In section 5.5.2, we will investigate a setting in which the dataset is
strongly imbalanced: 15 superclasses vs 1. On the other hand, in section 5.5.3 we
will perform additional analysis with only one modality for each target.

Since we believe that the number of clusters or modalities serves as an indicator
of class complexity, we also want to assess the impact of uneven modalities on the
Intrinsic Dimensionality (metric 3, introduced in section 5.2.1) which was previously
used to measure sample complexity in previous studies [Pop+21; KKL22].

81

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

Moreover, to test the anomaly detection behaviour (hypothesis 1), we also
considered the sensitivity to OOD data (metric 4, defined in section 5.3.3). Referring
back to the toy example in fig. 5.7, on the left we have a binary classification
task with imbalanced modalities, where the classifier fits the EASY class as an
anomaly detector would. On the right, we represented our hypothesis, where OOD
data always fall in the HARD class. A similar application of sensitivity to OOD
was employed in [BL19] to study the effect of importance weighting in binary
classification.

5.5.1 Experimental Setup

Model

For all the experiments, we considered a standard Convolutional Neural Network
with two convolutional layers (30 and 15 features maps each, respectively), each
followed by a max-pooling layer. After the feature extraction, a classifier head of two
fully connected layers (256 units each) was used for the classification. The models
were trained using the Adam optimizer, learning rate of 0.001 and early-stopping.

Dataset

In the following settings, we will consider an imbalanced scenario with 10 randomly
generated binary classification tasks where one target is composed by 15 superclasses
of CIFAR-100 [Kri09] (the HARD class) and the other by only one (the EASY class).
In the balanced case, on the other hand, we will assign just one superclass to each
target.

To check the sensitivity to OOD, we will first consider the SVHN [Net+11] dataset
only. Then, similarly to [LLS18], we will also take into account the LSUN [Yu+15]
dataset, by either centre cropping the images or resizing them down to 32×32 pixels.
Moreover, we generated images by sampling images from a uniform distribution in
[0, 1]. Each dataset was downsampled to 10,000 instances.

5.5.2 Controlling Class Complexity with Modalities

In the following, we will present the result of the experiments performed to investi-
gate hypothesis 2. In particular, we will check whether modalities are correlated
with the ID.

Dynamics of the Intrinsic Dimensionality during Training

Before considering the Intrinsic Dimensionality (ID) as a proxy to estimate target
complexity, we want to study its dynamic during training. In particular, a necessary
requirement is that the dimensionality reaches a stable point that we can consider
as a complexity estimate. Our analysis complements the work of Ansuini et al.
in [Ans+19], even though we focus on small CNNs rather than large-scale CNNs.

82

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

15

20

25

30

35

ID

setting = 0 | class = EASY setting = 0 | class = HARD

0 100 200 300
step

15

20

25

30

35

ID

setting = 1 | class = EASY

0 100 200 300
step

setting = 1 | class = HARD
conv0
conv1
dense0
dense1

Figure 5.8: Evolution of the intrinsic dimensionality during training.
Evolution of the intrinsic dimensionality for two different imbalanced settings
(rows) of 15 against 1 superclasses, for the HARD and EASY class, respectively
(columns). Different colors correspond to different layers of the CNN in which
the intrinsic dimensionality was computed, while the columns correspond to the
EASY and HARD class, respectively. The first two convolutional layers (conv0 and
conv1) have always the highest intrinsic dimensionality, apart from the top-left case,
while the last two layers (dense0 and dense1) show a dimensionality compression
phenomenon later in training.

In fig. 5.8, we reported the ID in the latest space for two different settings (one
for each row), for both the EASY and HARD class (the first and second column,
respectively). The ID always reaches a stable point (up to negligible variations),
in particular in the first two layers (conv0 and conv1). Moreover, as observed
in [Ans+19] the last layers have a smaller ID than the previous ones. However,
given that we are considering small CNNs, the highest ID is achieved in the first
two layers, rather than in the intermediate ones as in large-scale CNNs [Ans+19].

Another interesting effect, is that the ID of the first two layers shows a monotonic
increase in three out of four plots, until reaching a plateau, while the last two
layers (in particular the last one) show the opposite behaviour. These preliminary
results, in addition to [Ans+19], make the dynamics of the ID in the latent space
an interesting line of research to investigate the behaviour of DNNs in the latent
space.

83

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

16 21 26 31 36
ID LAYER EASY

16

21

26

31

36

ID
 L

AY
ER

 H
AR

D

layer = conv0

16 21 26 31 36
ID LAYER EASY

16

21

26

31

36

layer = conv1

0.2

0.4

0.6

0.8

SV
HN

_E
AS

Y

1

2

3 3 1

2

3 3

Figure 5.9: Intrinsic dimensionality and sensitivity to OOD. Intrinsic di-
mensionality of the EASY (x-axis) and HARD (y-axis) class of the CNN last layer’s
latent features. Each point is a different imbalanced dataset with 15 against 1
superclass, for the HARD and EASY class, respectively. The color represents the
sensitivity of the EASY class to OOD data, in this case the SVHN [Net+11] dataset.
In red the settings where OOD instances are mostly assigned to the EASY class,
the opposite for the blue points. We observe a cluster with low sensitivity of the
EASY class (1), in contrast to the ones with high sensitivity (2). In 3 , SVHN is
assigned evenly to the EASY and HARD class.

Lastly, we observe that in setting 0 (first row) the ID of the HARD class is always
higher than the EASY class, while in setting 1 (second row) we have the opposite
scenario. These results suggest that an uneven distribution of modalities is not
sufficient to control the class complexity, refuting hypothesis 2. In this regard, in
the next section, we discuss additional results on the relation between modalities
and dimensionality.

Intrinsic Dimensionality, Modalities, and Sensitivity to OOD

In fig. 5.9, we show the results of our investigations into hypotheses 1 and 2. First,
to validate hypothesis 2, we consider the ID of the EASY (x-axis) and HARD (y-axis)
jointly, for both the first and the second layer. Moreover, for each setting, we
computed the sensitivity to the SVHN [Net+11] dataset (in this case, an OOD
dataset) of the EASY class, to control for hypothesis 1. A blue point means low
sensitivity, and therefore the OOD data is assigned to the HARD class, while the
opposite holds for the red coloured points.

As we observed in the previous section, we have cases in which the EASY class
has a greater ID than the HARD class, refuting hypothesis 2.

Regarding the sensitivity to OOD, we can distinguish three situations:

1 The majority of the settings have low sensitivity (in blue).

2 Points with high ID of the HARD class have high sensitivity (in red).

3 Points with either the lowest or highest ID of the EASY class, represent

84

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

settings where OOD data is assigned evenly between the EASY and the HARD
classes.

In summary, there appears to be a connection between the ID and sensitivity
to OOD data, however, further experimentation is needed to fully understand this
phenomenon.

5.5.3 Sensitivity to OOD Data with Even Modalities

Based on the previous section’s results, the first conclusion we can draw is that the
number of clusters or modalities is either not a reliable measure of class complexity,
which would refute hypothesis 2, or the ID is not a suitable metric for our purposes.
It is noteworthy that in [KKL22] it has been found that the entanglement between
classes should also be taken into account when estimating sample complexity.

Since the number of modalities did not correlate with the dimensionality, we
cannot consider these results to be conclusive in regard to hypothesis 1. In the
following, we will further investigate the sensitivity to OOD data by using a training
set with an even number of modalities and different OOD datasets. Therefore, only
one superclass (e.g., “fish” vs “flowers”) will be assigned to each of the two targets.

Sensitivity to OOD Data is Dataset Dependant

In fig. 5.11, we studied the sensitivity to four types of OOD: from top-left to
bottom-right, SVHN [Net+11], LSUN [Yu+15] cropped and resized to 32× 32 and
uniform noise OODs. The x and y axis denote the superclass assigned to each of
the two targets, while the colour represents the percent of OOD instances that are
assigned to the class in the y-axis.

A subset of rows correlates between SVHN [Net+11] and LSUN [Yu+15]
(cropped). For example, “flowers” and “fruit and vegetables” are blue coloured
against all classes in both the OOD datasets. The uniform dataset (bottom-right
corner), on the other hand, shows a completely different behaviour than all the
other three datasets.

Another interesting observation, is that while the uniform dataset has a sensi-
tivity equal to 0 or 1 in the majority of the cases, the other datasets have a more
uniform distribution of values in [0, 1]. Since the sensitivity is computed based on
the model’s predictions, it mainly depends on the position in the input space of
the OOD dataset with regard to the decision boundary (as depicted in fig. 5.10).
Consequently, while SVHN, LSUN cropped and resized sometimes fall above the
boundary, leading to sensitivity between 0 and 1, the uniform dataset is mostly far
from the boundary, resulting in exactly 1 or 0 as sensitivity.

Based on these results, we can classify OOD data in two groups: the ones that
keep the semantics of the training set (in this case, a natural image), and can fall
above the decision boundary, and the ones that don’t have a specific semantic, like
the uniform dataset, and fall away from the boundary. Overall, this analysis is

85

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

OOD
OOD

Figure 5.10: OOD sensitivity and the decision boundary. Visualization of
the different results we get between SVHN and LSUN (cropped and resized) versus
the uniform dataset in fig. 5.11. On the left we have the situation of the uniform
dataset, where the OOD data is all on one side of the boundary. In this case, the
sensitivity of the purple class is 0, while for the yellow class is 1. On the right
we have a different situation, in which the OOD data is above the boundary and
therefore the sensitivity to OOD data is between 0 and 1 for both classes.

interesting from both the point of view of OOD detection and for understanding
the decision boundary of DNNs.

Moreover, it would be interesting to investigate the properties of the “flowers”
and “fruit and vegetables” classes, that make them have low sensitivity to OOD
data.

Lastly, the high variance of the sensitivity to OOD that we observed among
different datasets, suggests that we should carefully choose the properties of the
OOD dataset to validate the anomaly detection behaviour of the classifier we
hypothetized in the previous section (hypothesis 1).

Epistemic Gradient and OOD Sensitivity

In this last analysis, we go back to the Epistemic Gradient we observed in sec-
tion 5.4.2. In fig. 5.12, we repeated the analysis done for fig. 5.6, for all the settings.
More in detail, we computed the epistemic uncertainty using the aK-LPE algorithm
in the last layer of the CNN (with the same hyperparameters used in the previous
section) and correlated it with the target class. We remark that we consider the
class in the y-axis as the EASY class and the class in x-axis as the HARD.

Again, the “flowers” and “fruit and vegetables” clearly emerge as having the
higher correlation. In the TITAN architecture, we hypothetized this phenomenon as
an effect of the model fitting only on the EASY class (hypothesis 1). Furthermore,
this result on the epistemic uncertainty, taken together with what we saw in fig. 5.11,
make the “flowers” and “fruit and vegetables” classes a valuable case study to
investigate the Epistemic Gradient phenomenon.

86

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

aquatic_mammals

fish
flowers

food_containers
fruit_and_vegetables

household_electrical_devices
household_furniture

insects
large_carnivores

large_man-made_outdoor_things
large_natural_outdoor_scenes

large_omnivores_and_herbivores
medium_mammals

non-insect_invertebrates

people

1vs1 - svhn_easy 1vs1 - lsun_crop_easy

aq
ua

tic
_m

am
m

al
s

fis
h

flo
we

rs
fo

od
_c

on
ta

in
er

s
fru

it_
an

d_
ve

ge
ta

bl
es

ho
us

eh
ol

d_
el

ec
tri

ca
l_d

ev
ice

s
ho

us
eh

ol
d_

fu
rn

itu
re

in
se

ct
s

la
rg

e_
ca

rn
iv

or
es

la
rg

e_
m

an
-m

ad
e_

ou
td

oo
r_

th
in

gs
la

rg
e_

na
tu

ra
l_o

ut
do

or
_s

ce
ne

s
la

rg
e_

om
ni

vo
re

s_
an

d_
he

rb
iv

or
es

m
ed

iu
m

_m
am

m
al

s
no

n-
in

se
ct

_in
ve

rte
br

at
es

pe
op

le

aquatic_mammals

fish
flowers

food_containers
fruit_and_vegetables

household_electrical_devices
household_furniture

insects
large_carnivores

large_man-made_outdoor_things
large_natural_outdoor_scenes

large_omnivores_and_herbivores
medium_mammals

non-insect_invertebrates

people

1vs1 - lsun_resize_easy

aq
ua

tic
_m

am
m

al
s

fis
h

flo
we

rs
fo

od
_c

on
ta

in
er

s
fru

it_
an

d_
ve

ge
ta

bl
es

ho
us

eh
ol

d_
el

ec
tri

ca
l_d

ev
ice

s
ho

us
eh

ol
d_

fu
rn

itu
re

in
se

ct
s

la
rg

e_
ca

rn
iv

or
es

la
rg

e_
m

an
-m

ad
e_

ou
td

oo
r_

th
in

gs
la

rg
e_

na
tu

ra
l_o

ut
do

or
_s

ce
ne

s
la

rg
e_

om
ni

vo
re

s_
an

d_
he

rb
iv

or
es

m
ed

iu
m

_m
am

m
al

s
no

n-
in

se
ct

_in
ve

rte
br

at
es

pe
op

le

1vs1 - uniform_easy

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.11: OOD sensitivity in target class dependant. OOD sensitivity of the
class in the y-axis (the EASY class) when changed the other target class, in the x-axis,
with regard to the binary classification task. Each heatmap corresponds to a different
OOD dataset: from top-left to bottom-right, SVHN [Net+11], LSUN [Yu+15]
cropped and resized to 32× 32 and uniform noise OODs.

87

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

aq
ua

tic
_m

am
m

al
s

fis
h

flo
we

rs

fo
od

_c
on

ta
in

er
s

fru
it_

an
d_

ve
ge

ta
bl

es

ho
us

eh
ol

d_
el

ec
tri

ca
l_d

ev
ice

s

ho
us

eh
ol

d_
fu

rn
itu

re

in
se

ct
s

la
rg

e_
ca

rn
iv

or
es

la
rg

e_
m

an
-m

ad
e_

ou
td

oo
r_

th
in

gs

la
rg

e_
na

tu
ra

l_o
ut

do
or

_s
ce

ne
s

la
rg

e_
om

ni
vo

re
s_

an
d_

he
rb

iv
or

es

m
ed

iu
m

_m
am

m
al

s

no
n-

in
se

ct
_in

ve
rte

br
at

es

pe
op

le

hard

aquatic_mammals

fish

flowers

food_containers

fruit_and_vegetables

household_electrical_devices

household_furniture

insects

large_carnivores

large_man-made_outdoor_things

large_natural_outdoor_scenes

large_omnivores_and_herbivores

medium_mammals

non-insect_invertebrates

people

ea
sy

Spearman([easy, hard], epistemic uncertainty)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 5.12: The Epistemic Gradient is correlated with the targets. Spear-
man’s rank correlation between target class and the epistemic uncertainty, measured
with the aK-LPE algorithm as done in section 5.4.2. Each cell corresponds to a
binary task using the superclass in the y-axis and in the x-axis. Interestingly, the
“flower” and “fruit and vegetables” superclasses have the epistemic gradient in most
of the cases (high Spearman correlation), while also having low sensitivity of OOD
in fig. 5.11.

5.6 Conclusions

In this chapter we discussed the work done during my visiting at the Computational
Systems Biology lab at IBM Research Zürich, supervised by Dr. Maŕıa Rodŕıguez
Mart́ınez and Dr. Nicolas Deutschmann. The project involved investigating im-
balanced binary classification tasks from the point of view of uncertainty and
complexity.

We presented two different case studies, TCR-epitope binding affinity prediction
(section 5.4.1) and image classification (section 5.5), where we tested four different
metrics to evaluate the behaviour of the model and the complexity of the classes:
the Epistemic and Aleatoric uncertainties (metrics 1 & 2, section 5.3.1), the
Intrinsic Dimensionality (ID) (metric 3, section 5.2.1) and the sensitivity to Out-of-
Distribution (OOD) data (metric 4, section 5.3.3).

88

CHAPTER 5. UNCERTAINTY, COMPLEXITY AND IMBALANCE

The results on TCR-epitope binding affinity prediction with the TITAN [WBR21]
deep model showed that the binding points have a lower epistemic uncertainty
than the non-binding points. We called this phenomenon Epistemic Gradient, and
claimed that it is a result of the imbalance of the data. In fact, binding affinity
prediction resembles an anomaly detection task, where the non-binding points are
considered as anomalies.

In order to further investigate the Epistemic Gradient, and also study how we
can employ the ID and sensitivity to OOD to interpret the behaviour of deep models
in imbalanced tasks, we defined a second case study on image classification. More
in detail, we built imbalanced datasets using the superclasses in CIFAR-100 [Kri09]
and showed that, in contrast to our expectation, an uneven number of modalities
(classes) in each of the two targets does not correlate with the ID. Moreover, we
evaluated the sensitivity to OOD data both with an even and uneven number of
modalities in each target class. The result showed that the choice of the OOD
dataset strongly impacts the final results, since only for a subset of the settings the
sensitivity is comparable among different OOD datasets. Interestingly, we observed
that for a group of settings, the sensitivity is correlated with the presence of the
Epistemic Gradient, motivating additional experimental analyses.

Many research direction can be considered from this preliminary results. First, it
would be interesting to further investigate the factors contributing to the ID of data,
that we started by taking into account the number of modalities. Additional factors
to consider could be the within-class imbalance [Jap01], or the amout and kind of
noise in the data. The final objective would be to employ the ID to investigate
real-world datasets such as TCR–epitope binding datasets. Second, inspired by the
results from [KKL22], we should take into account also the entanglement of the
classes when estimating the complexity of data and the causes of the Epistemic
Gradient phenomenon.

In conclusion, we think that relating uncertainty, intrinsic dimensionality and
sensitivity to OOD is a valuable direction to better understand imbalanced binary
classification tasks. In particular, this might help in distinguishing when binary
classification and anomaly detection are comparable to when one should be preferred
to the other. While for datasets with imbalanced class size this is more trivial
(anomaly detection works best when one class has not enough samples to train a
classifier), for data that is imbalanced in terms of complexity, to the best of our
knowledge, there is still no clear guideline.

89

Chapter 6
Conclusions

In this thesis, we have discussed three perspectives on anomaly detection in deep
learning. The research question was how to exploit properties of Deep Neural
Networks (DNNs) to characterize anomalies, and how this result could help us
towards a more interpretable and safe AI.

We approached our objective from three different angles, as summarized in
fig. 1.1. In particular, we investigated different data modalities (images and
sequences), distinct types of anomalies (adversarial, rare or uncertain examples) and
various evaluation metrics (misclassified example prediction, adversarial detection,
and more). Regarding the similarities between our approaches, all of them used
the latent features of the models as relevant knowledge for the detection task.

The main Contributions (C), corresponding to the different chapters, are the
following:

C1) The definition of the Activation Pattern DAG (APD) [Cra+20a; Cra+20b],
a novel method to perform example difficulty estimation in piecewise linear
DNNs (chapter 3).

C2) The design and development of the ENsemble Adversarial Detector
(ENAD) [Cra+21], a new approach for adversarial example detection in
Convolutional Neural Networks (chapter 4).

C3) Uncertainty estimation and sample complexity analysis on deep models for
imbalanced binary classification tasks in two different case studies (chapter 5).

Throughout the thesis, we presented many results contributing to the goal of
Responsible AI [Arr+20], discussed in section 2.4:

• Visualizations of the input data clustering induced by activation patterns
in fig. 3.8 and of the combined anomaly score from multiple layers in fig. 4.5.

• Understanding trends in data, by identifying challenging points in chap-
ter 3, adversarial examples in chapter 4 and by analysing the uncertainty
distribution among targets in chapter 5.

91

CHAPTER 6. CONCLUSIONS

• Interpreting the importance of hidden layers, by investigating the
distribution of activation patterns in fig. 3.6 and fig. 3.8, by comparing the
detection performances of different layers in fig. 4.3b, and by comparing the
Intrinsic Dimensionality (ID) in different layers in fig. 5.8.

Contributions

Before discussing the impact of the contributions to the field of anomaly detection
in deep learning, we will describe each of them in detail in the following.

C1) Definition of the Activation Pattern DAG (APD) [Cra+20a; Cra+20b] is a
Directed Acyclic Graph (DAG) summarizing the activation patterns of a
piecewise linear DNN on a given dataset. Starting from the APD, we designed
a new clustering algorithm that partitions examples into clusters of different
sizes. By performing experiments on the MNIST [LCB10] dataset and different
architectures, we showed that the cluster size is a proxy of example difficulty.
In particular, misclassified and challenging instances (mostly) occur in smaller
clusters. Moreover, we proved that selecting one representative for each
cluster hurts less the generalization performance than choosing examples at
random, confirming that our clustering algorithm is able to group similar
instances.

C2) The ENsemble Adversarial Detector (ENAD) [Cra+21] is a novel ensembling
technique to detect adversarial examples from the latent features of Convolu-
tional Neural Networks (CNNs), based on the intuition that distinct detectors
are able to capture different properties of the input data. Our method achieves
state-of-the-art performance, after a comprehensive evaluation on 3 bench-
mark vision datasets (CIFAR-10 [Kri09], CIFAR-100 [Kri09], SVHN [Net+11]), 2
state-of-the-art CNNs (DenseNet [Hua+17] and Resnet [He+16]), 4 adversarial
attacks (FGSM [GSS15], BIM [KGB17], DeepFool [MFF16] and CW [CW17b]),
and 2 experimental scenarios (testing on a known and unknown adversarial
attack). Our method not only achieves state-of-the-art performance, but is
also defined to allow an easy extension by adding additional detectors to
the ensemble and set a possible foundation for the adoption of ensemble
approaches in adversarial detection.

C3) Project investigating the behaviour of deep models on imbalanced binary clas-
sification tasks, where the source of imbalance is not the uneven proportion
of the classes, but rather their uneven complexity. One of our most important
claims is that a binary classifier on imbalanced data will fit the easier class
only, while considering the other class as “the rest”, behaving like an anomaly
detector. To delve into our hypotheses, we selected four metrics to interpret
the model and estimate the input complexity: the Epistemic and Aleatoric
uncertainties (impacted by lack of data and randomness, respectively), the

92

CHAPTER 6. CONCLUSIONS

Intrinsic Dimensionality, and the sensitivity to Out-of-Distribution (OOD)
data. Moreover, we considered two different case studies: predicting the
binding affinity between T-cell receptor (TCR) and epitopes and image classi-
fication. Interestingly, we observed that the deep model we used for the first
study (TITAN [WBR21]) had the epistemic uncertainty correlated with the
target class, a phenomenon we named “Epistemic Gradient”. In the second
case study we tried to investigate the sources of data imbalance, like the
number of modalities in each class, and how a binary classifier trained on
such data behaves with regards to OOD data. Preliminary results opened
possible research lines to understand the causes of the Epistemic Gradient.

We want to emphasize that all code used to obtain these results was developed
following the principles of open science, and is publicly accessible through various
repositories referenced in the text. Reproducibility of research and results is a crucial
aspect in artificial intelligence and computational sciences, and it is important to
prioritize it.

Impact

In this thesis, various techniques were presented to identify abnormal inputs for a
trained Deep Neural Network (DNN). These techniques can be utilized in various
ways such as: identifying misclassified inputs (C1), detecting adversarial examples
(C2) and recognizing when the model is operating as an anomaly detector (C3).
In the following, the potential real-world applications and improvements to current
state-of-the-art techniques that result from our contributions will be discussed.

The Activation Pattern DAG (C1) is a new, valuable tool in efforts to “open the
black-box” of DNNs [Pet+21; OMS17], as we leveraged the properties of piecewise
linear networks to provide both an interpretation and a visual representation of the
learned function. Unlike previous works that used activation patterns to assess the
expressivity of the model [HR19b; STR18], the APD contributes to the research line
exploiting activation patterns to evaluate the model’s performance [Nov+18; Ji+22a].
Use-case scenarios of the APD are: automating data auditing [ADH22] by ranking
input examples by difficulty, to develop human-in-the-loop pipelines [Lei+17] or to
re-train the model using curriculum learning [Ben+09], and data visualization, to
understand and interpret how a deep model process the input data (see section 3.4.3).

The research on the ENsemble Adversarial Detector (ENAD) (C2) advanced
the field by demonstrating the ability of ensembles to enhance adversarial detection
performance in Convolutional Neural Networks (CNNs) compared to state-of-the-art
methods. Our evaluation of standalone detectors can serve as a guide for future
enhancements to the ENAD, which, due to its versatility, enables the seamless
integration of additional detectors. ENAD can be applied to pre-trained CNNs to
enhance their robustness and safety, making it suitable for safety-critical computer
vision applications such as medical imaging [Ma+21; KHS22].

93

CHAPTER 6. CONCLUSIONS

In chapter 5, we presented an analysis of deep models for imbalanced binary
classification scenarios. Our preliminary analysis can be considered a first step to-
wards an interpretability toolkit focused on imbalanced classification problems. The
first use-case is to detect uneven class complexities through intrinsic dimensionality
estimators [Fac+17], recently employed to study the latent representation in deep
models [Ans+19]. Second, we showed how to employ uncertainty estimation and
Out-of-Distribution data to interpret the behaviour of deep models on imbalanced
data. Given the recent interest towards Out-of-Distribution data detection and
generalization [Yan+22], even in topic-specific scenarios [Ji+22b], as we observed
many times throughout this thesis, we consider our analysis timely and valuable
to the field. Furthermore, we remark the importance of studying imbalanced
classification tasks, given their frequency in real-world applications such as medical
diagnosis [FAK19].

Limitations

In this thesis, we mostly focused on image datasets, except the binding affinity
prediction task in chapter 5. Moreover, all the image datasets we considered are
benchmark data and not real-world datasets. Hence, applying our methods in
practical use-case scenarios should take into consideration additional tests and
adaptations.

Going through the specific limitations of each contribution, the APD (C1)
was tested only on vanilla small-scale Feedforward Neural Network, therefore
additional experiments should take into account more complex datasets, standard
regularization strategies (e.g., Dropout [Sri+14] and Batch Normalization [IS15])
and larger models.

ENAD (C2) ensembles multiple detectors to improve the adversarial detection
performance. The main downside is that fitting the overall pipeline requires training
each detector, scaling at worst as the sum of each training time (results as shown
in section 4.4.4). For this reason, a trade-off between resources and performance
should be considered. Moreover, as noted in the transfer attack experiments
(section 4.4.2), fitting the hyperparameters and the logistic aggregator function
might be challenging due to the problem of selecting representative anomalies. In
our experiments, we found that choosing harder attacks improve the generalization
performance of the detector, although further experiments should confirm our
results in a broader repertoire of adversarial attacks and datasets.

Lastly, our analysis on imbalanced dataset in chapter 5 (C3) should be considered
a preliminary investigation of the problem, given the novelty of the research and the
number of open questions that still have to be investigated. In particular, we are
still trying to understand the reasons behind the Epistemic Gradient phenomenon
(see section 5.4.2) and the factors correlated with the intrinsic dimensionality of a
class in the latent space of a DNN.

94

CHAPTER 6. CONCLUSIONS

Future Work

Example difficulty estimation (C1), anomaly detection (C2) and uncertainty esti-
mation (C3) are three approaches to quantify the properties of anomalous instances
in deep learning. In this thesis, we used them for different tasks, like misclassi-
fication prediction or adversarial detection, although we did not investigate the
correlation between the different scoring methods. A challenging and important
future work could focus on how scoring methods differ with regard to their assump-
tions and properties. For example, an interesting first analysis could classify each
approach based on the type of uncertainty that predominantly impacts it, either
the Epistemic or the Aleatoric Uncertainty (due to lack of data and randomness,
respectively). While for the APD ranking further experiments have to evaluate the
correlation with the Uncertainty type, we claim that ENAD is mostly affected by
the Epistemic Uncertainty, since it measures how much an instance is isolated in
the latent space.

All the three methods we proposed are data agnostic, since they either work
with the latent features (all of them) or by considering the softmax output of the
network (C3). As we already addressed in the limitations, future analysis could
consider the validity of our approaches with different data modalities, such as
sequences or tabular data.

Examining the future research lines for each contribution in detail, we tested the
APD (C1) only in one small-scale scenario, therefore a large batch of experiments
should be considered. Moreover, inspired by recent results [Ji+22a], we could revisit
the clustering algorithm to consider smoothed clusters, by employing a kernel and
a proper distance for activation patterns, such as the Hamming distance.

Regarding ENAD, future work should consider novel aggregation schemes first.
We already tested voting schemes in section 4.4.1, but alternative approaches could
consider other meta-learners beside the logistic regression, such as OCSVM [Sch+99]
or the aK-LPE algorithm [QS12], as done in [Rag+21]. Furthermore, it would be
interesting to formalize why the best performing layer and detector, as we studied
in section 4.4.1, change depending on the chosen adversarial attack.

Finally, our preliminary analysis of imbalanced datasets (C3) can be developed
in many ways. Key areas for further studies are the Epistemic Gradient phenomenon
(section 5.4.2) and its relation with the sensitivity to OOD (section 5.5.3), and using
the intrinsic dimensionality to quantify the target class complexity (section 5.2.1).
One line of research could also consider the classes’ entanglement to evaluate their
complexity, as suggested in [KKL22]. Another work could compare the uncertainty
of a binary classifier and a model trained with a one-class loss function, such as
Deep-SVDD [Ruf+18], to control if an imbalanced dataset makes the two models
behave similarly, with regard to our analysis, like we claimed in hypothesis 1.

95

Appendix A
Interdisciplinary Publications in
Computational Biology

In addition to my efforts in developing new theoretical approaches and methods
for anomaly detection, I also worked on the implementation and application of
deep and machine learning methods to real-world problems. In particular, I have
collaborated to the following three projects in computational biology:

• Denoising and Imputation of Single-Cell Transcriptomic Data (appendix A.1).

• Classifying Cancer Samples from Metabolic Networks (appendix A.2).

• Deep Learning for Predicting Relative Fluxes in Reaction Systems (ap-
pendix A.3).

A.1 Denoising and Imputation of Single-Cell

Transcriptomic Data

Contribution. In this chapter I will discuss the work done for the following
articles:

[Pat+20] L. Patruno, D. Maspero, F. Craighero, F. Angaroni, M. Anto-
niotti, A. Graudenzi. “A Review of Computational Strategies for
Denoising and Imputation of Single-Cell Transcriptomic Data”.
In: Briefings in Bioinformatics 22.4 (Oct. 2020)

Summary. Single-cell RNA sequencing (scRNA-seq) data is now widely
adopted [Vie+19] given its high single-resolution, providing insights into cell
population heterogeneity that were not previously achievable with traditional
bulk sequencing [KBQ11]. However, single-cell sequencing protocols are still

97

APPENDIX A. INTERDISCIPLINARY PUBLICATIONS

characterized by experimental limitations such as capture efficency [Haq+17] or
the batch effect [GWW17] that may lead to noisy measurements. Consequently,
a zero in the data could be both a non-expressed gene or a missing read,
while non-zero values could be different from the true transcript abundance.
To solve these issues, a number of imputation methods that recover missing
values, and denoising methods that correct wrong measurements have been
recently proposed. In order to investigate the strengths and weaknesses of these
methods, and provide guidelines for their use, we performed a comprehensive
evaluation of 19 imputation and denoising methods. Our contributions can be
summarized as follows:

• Extensive benchmarking on both synthetic and real datasets. We com-
pared each method using synthetic data generated using the tool Sym-
Sim [ZXY19] and four real-world datasets.

• Comprehensive evaluation of the methods under different objectives. We
characterized the quality of each method from different perspectives, such
as their ability to recover the true expression value or their reliability in
respecting cell-similarity.

• Selection of the best performing methods among 19 tested. We reduced
the 19 methods to a selection of 4 that, in our experiments, performed
best in the majority of the tests.

• Operative guidelines for practitioners. We provided guidelines for prac-
titioners based on the different qualities of each method, including the
scalability and the usability of the code.

Implementation. The experiments performed in the paper has been open-
sourced on a Github repositorya.

ahttps://github.com/BIMIB-DISCo/review-scRNA-seq-DENOISING

98

https://github.com/BIMIB-DISCo/review-scRNA-seq-DENOISING

1

Briefings in Bioinformatics, 22(4), 2021, 1–19

https://doi.org/10.1093/bib/bbaa222
Method Review

A review of computational strategies for denoising
and imputation of single-cell transcriptomic data
Lucrezia Patruno, Davide Maspero, Francesco Craighero, Fabrizio Angaroni,
Marco Antoniotti and Alex Graudenzi

Corresponding authors: Marco Antoniotti, Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy.
Tel: +39 0264487901; E-mail: marco.antoniotti@unimib.it; Alex Graudenzi, Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale
delle Ricerche (IBFM-CNR), Segrate, Milan, Italy. Tel: +39 0221717551; E-mail: alex.graudenzi@ibfm.cnr.it
Lucrezia Patruno and Davide Maspero are equal contributors. Marco Antoniotti and Alex Graudenzi are co-senior authors.

Abstract

Motivation. The advancements of single-cell sequencing methods have paved the way for the characterization of cellular
states at unprecedented resolution, revolutionizing the investigation on complex biological systems. Yet, single-cell
sequencing experiments are hindered by several technical issues, which cause output data to be noisy, impacting the
reliability of downstream analyses. Therefore, a growing number of data science methods has been proposed to recover lost
or corrupted information from single-cell sequencing data. To date, however, no quantitative benchmarks have been
proposed to evaluate such methods. Results. We present a comprehensive analysis of the state-of-the-art computational
approaches for denoising and imputation of single-cell transcriptomic data, comparing their performance in different
experimental scenarios. In detail, we compared 19 denoising and imputation methods, on both simulated and real-world
datasets, with respect to several performance metrics related to imputation of dropout events, recovery of true expression
profiles, characterization of cell similarity, identification of differentially expressed genes and computation time. The
effectiveness and scalability of all methods were assessed with regard to distinct sequencing protocols, sample size and
different levels of biological variability and technical noise. As a result, we identify a subset of versatile approaches
exhibiting solid performances on most tests and show that certain algorithmic families prove effective on specific tasks but
inefficient on others. Finally, most methods appear to benefit from the introduction of appropriate assumptions on noise
distribution of biological processes.

Key words: denoising; imputation; single-cell RNA-sequencing; machine learning

Lucrezia Patruno is a PhD student in computer science at the Department of Informatics, Systems and Communication of the University of Milan-Bicocca.
Her studies focus on data analysis and machine learning methods for the study of complex biological phenomena.
Davide Maspero is a PhD student in computer science at the Department of Informatics, Systems and Communication of the University of Milan-Bicocca.
His studies focus on data integration methods for complex biological systems.
Francesco Craighero is a PhD student at the Department of Informatics, Systems and Communication of the University of Milan-Bicocca. His research is
devoted to deep learning and explainable AI, with the aim of explaining deep networks inner sparse representations.
Fabrizio Angaroni is a postdoc researcher at the Department of Informatics, Systems and Communication of the University of Milan-Bicocca. His research
is focused on mathematical methods for modeling and data analysis of complex biological system.
Marco Antoniotti is an associate professor at the Department of Informatics, Systems and Communication of the University of Milan-Bicocca. His main
research topics are bioinformatics, computational systems biology, simulation, verification and cancer data analysis.
Alex Graudenzi is a research fellow at the IBFM-CNR. His research integrates (bio)informatics, complex systems, statistics and systems biology to deliver
computational methods for the investigation of complex biological phenomena.
Submitted: 26 May 2020; Received (in revised form): 7 August 2020

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

2 Patruno et al.

Introduction

In recent years, an increasing number of studies has involved
data generated from single-cell RNA sequencing (scRNA-seq)
experiments [1, 2], which quantify gene expression levels at
single-cell resolution, thus providing insights into cell popu-
lation heterogeneity [3]. scRNA-seq methods can be used to
perform accurate transcriptome quantification with a relatively
small number of sequencing reads, isolating a typically large
number of single cells. In optimal conditions, scRNA-seq data
can recapitulate the results of standard sequencing experiments
from bulk samples, yet with a much higher resolution [4].

This is a great advantage, as many works report that even
cells in a homogeneous population may have heterogeneous
expression profiles [5–8]. For instance, scRNA-seq data can be
used to characterize rare cell subpopulations that had been
hidden in the output of bulk RNA sequencing experiments [9],
as well as in the analysis of cancer evolution, where they can
be exploited to study the heterogeneity of tumor cell subpop-
ulations [10] and the processes that lead to drug resistance or
metastasis [11]. The wide use of scRNA-seq technologies has also
allowed the creation of cell atlases for simple organisms such
as, for example, the Caenorhabditis elegans [12]; most importantly,
there is an ongoing effort to create such map for the human
organism, i.e. the Human Cell Atlas [13]. However, the analysis of
single-cell sequencing data is affected by the complex combina-
tion of biological variation and technical noise, which typically
result in sparse and noisy single-cell expression profiles.

On the one hand, stochasticity of gene expression is inherent
in most biological systems, with respect to both the biochemical
processes related to gene regulation and the fluctuations of
other cellular components and phenomena [14]. For this reason,
even cells of the same type within the same tissue may display
different gene expression distributions, complicating the iden-
tification and characterization of cellular states and transitions
[15].

On the other hand, currently available sequencing technolo-
gies are still hindered by various technical issues [2, 16, 17].
In particular, the most common approaches for scRNA-seq are
based on either droplet platforms (e.g. Drop-seq [18], InDrop [19]
and Chromium 10x [20]) or plate-based platforms (e.g. Smart-
Seq2 [21], MATQseq [22], MARS-seq [23], CEL-seq [24] and SPLIT-
seq [25]), while some further approaches rely on microfluidics
(e.g. C1 SMARTer [26]) or nanowell arrays (e.g. SEQ-well [27]).
Typically, droplet platforms allow to isolate a large number of
single cells (from a few to many thousands), by sequencing the
3′-end and by employing unique molecular identifiers (UMIs)
[28], which allow the tagging of each transcript before amplifi-
cation, thus distinguishing original transcripts from amplifica-
tion duplicates [29]. Conversely, plate-based platforms usually
employ full-length sequencing protocols and, accordingly, allow
to sequence a much lower number of single cells (∼hundreds),
yet with a considerably higher coverage. Overall, all sequencing
protocols are affected by a number of technological and experi-
mental issues, which typically result in noisy measurements.

• Capture efficiency: due to (i) the low quantity of RNA in
a given single cell, and (ii) the stochastic nature of gene
expression patterns at the single-cell level, certain gene
can display null expression level, since none of its tran-
scripts may be captured, thus resulting in zero expression
levels. These are the so-called dropout events [30] and might
be particularly relevant for scarcely expressed genes. This
issue causes both noise and a high sparsity in the data [9].

• Amplification bias: the amplification phase may be subject
to potential PCR biases in the quantification of the abun-
dance of each gene, such as preferential amplification of
certain templates. UMI-based approaches are able to miti-
gate this issue, yet in any case, amplification biases can be
a potential source of noise in the data.

• Sequencing depth: the number of sequenced reads per cell
varies between different experimental settings and plat-
forms, and this can result in noisy and sparse outputs,
especially when the depth is relatively low [29].

• Batch effects: technical sources of systematic variation may
add a confounding factor in downstream analysis. Batch
effects can be generated by analyzing samples with dif-
ferent technologies, in different laboratories or in differ-
ent runs [31, 32]. When multiple experiments are consid-
ered, it is appropriate to remove such bias. In recent years,
many methods were proposed to reach this goal. However,
the comparison of the performance of methods for batch
removal requires an in-depth investigation that is beyond
the scope of this work (see [33] for a recent review).

As a consequence, it is safe to suppose that (i) nonzero
expression values may not coincide with the true transcript
abundance in the cell and (ii) zero values observed in the gene
expression profiles may be either due to truly non-expressed
genes—in this case, we refer to structural zeros, as proposed in
[34]—or to technical limitations of the sequencing technology,
i.e. dropout events.

For this reason, many computational approaches have been
developed to retrieve lost and corrupted information from
scRNA-seq data, with the goal of returning an estimation of
the correct expression levels in each single cell. Such methods
are typically grouped in two major categories: (i) imputation
methods, with the general goal of recovering the missing values
in the data and (ii) denoising methods, aimed at adjusting the
data by removing biological and technical noise. Very often, the
two categories are mentioned indistinctly (see e.g. [35]), even
though they comprise substantially different computational
tasks.

To better distinguish the two categories, here, we propose a
rigorous categorization of imputation and denoising methods
for scRNA-seq data, in order to reduce the possible ambiguity
in the definition of the underlying computational tasks (an
analogous distinction was recently proposed in [36]).

• Imputation methods for scRNA-seq data include two major
steps. The first step is aimed at distinguishing structural
zeros (associated to non-expressing genes) from dropout
events (i.e. genes whose transcripts were not captured dur-
ing the sequencing process due to technical issues). Accord-
ingly, in the second step, such methods strive to impute
the values of dropout entries only. Nonzero entries and
structural zeros are left unchanged.

• Denoising methods for scRNA-seq data ideally include both
an imputation step (see above) and an additional com-
putational step, which is aimed at modifying the entries
which include falsely increased or decreased gene expres-
sion levels due to, e.g. biological variation or technical noise.
According to this definition, all denoising methods are also
imputation methods while the opposite is typically not true
(a rigorous definition of the two categories is provided in
section 1 of the Supplementary Material).

Methods in both categories rely on different assumptions and
employ different algorithmic strategies to perform their tasks.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

A review of denoising methods for scRNA-seq data 3

Thus, as reported in [37], a comprehensive comparison of all
available approaches might be useful and timely to clarify which
methods are more suitable for different circumstances and dis-
tinct data types. In particular, in [37], the different approaches
are grouped in the following typologies.

• Data smoothing: the methods in this category aggregate
the expression profiles of similar cells in order to perform
denoising and imputation. In this category, we find DrIm-
pute [38], DEWÄKSS [39], scHinter [40], kNN-smoothing [41],
LSImpute [42], MAGIC [43], netSmooth [44], PRIME [45] and
RESCUE [46]. Finally, other methods that use data smoothing
to impute missing values are G2S3 [47] and scTSSR [48].
However, the former aggregates the information across sim-
ilar genes to perform imputation, while the latter considers
both similar cells and similar genes.

• External knowledge integrators: these methods exploit
external knowledge to impute or denoise gene expression
profiles. In this category, we find ADImpute [49], netSmooth
[44], netNMF-sc [50], SAVER-X [51], SCRABBLE [52], scNPF
[53] TRANSLATE [54] and URSM [55].

• Machine learning (ML): these methods employ ML tech-
niques to correct for technical noise. We can find very recent
methods that employ Artificial Neural Networks (ANNs) to
infer the denoised or imputed version of the dataset, which
are AutoImpute [56], DeepImpute [57], DCA [58], EnImpute
[59], GraphSCI [60], LATE [54], scIGANs [61], SAUCIE [62],
scScope [63], scVI [64] and SISUA [65]. Next, we have meth-
ods that use regression to correct for noise in the dataset,
which are 2DImpute [66] and RIA [67].

• Matrix theory: these methods decompose the observed
gene expression matrix in a low-dimensional space to
remove noise. In this category, we find ALRA [68], ENHANCE
[69], scRMD [70], CMF-Impute [71], deepMc [72], McImpute
[73], PBLR [74], WEDGE [75], ZIFA [76] and Randomly [77].

• Model-based: these methods make assumption on the sta-
tistical model of the distribution of technical and biological
variability and noise and perform denoising and imputation
by estimating the parameters of the distributions. In this
category, we find bayNorm [78], BISCUIT [79], BUSseq [80],
CIDR [81], MISC [82], SAVER [83], scImpute [84], scRecover
[85], SCRIBE [86], SIMPLEs [87] and VIPER [88].

We here present a comparative assessment of denoising
and imputation methods for scRNA-seq data, with the goal of
providing a general overview of their features, strengths and
limitations, in order to understand in which data analysis task
they are most computationally and statistically efficient. In par-
ticular, we selected a subset of 19 different methods out of the
list mentioned above, by including some of the most widely used
approaches and which fall in the following categories.

• Data smoothing methods: DrImpute [38], kNN-smoothing
[41] and MAGIC [43].

• ML methods: AutoImpute [56], DCA [58], DeepImpute [57],
SAUCIE [62], SAVER-X [51], SCScope[63] and scVI [64].

• Matrix factorization/theory methods: ALRA [68], ENHANCE
[69], McImpute [73], Randomly [77] and scRMD [70].

• Model-based methods: bayNorm [78], SAVER [83], scImpute
[84] and VIPER [88].

The comparative assessment was carried out both on sim-
ulated data, generated via the widely used tool SymSim [89],
and four real-world scRNA-seq datasets from [90–93]. All com-
putational methods were tested with respect to a number of
metrics, in order to assess the effectiveness in imputing dropout

events, recovering the true expression profiles, characterizing
the similarity among cells and improving the identification of
differentially expressed genes (DEGs), in addition to quantify
their scalability. In the Results section, we present the results
of the extensive comparative assessment, also by releasing a
summary for a quick evaluation of the distinct techniques in
different scenarios and experimental settings.

We note that previous works reviewing imputation methods
have been proposed. In particular, in [94], the authors focus on
understanding whether six different imputation strategies intro-
duce false positives in the results of differential expression anal-
ysis. In [95], eight different methods are analyzed to understand
whether they improve the result of clustering and differential
expression analysis. Both works, however, do not include in the
analysis the most recent methods and assess the performance
of a relatively limited number of computational strategies. In
addition, both works mainly focus on the imputation task, with-
out assessing how denoising techniques may recover corrupted
information. Finally, a recent preprint on a similar subject [35]
exploits real-world data to assess the performance of imputation
methods on downstream analyses. While this work includes
a more extensive assessment of recent methods, it does not
employ simulated data, which are necessary to evaluate a num-
ber of ground truth (GT)-based performance metrics. Further
comments in this respect are provided in the Discussion section.

In the Methods section, we provide a brief description of
each denoising and imputation method included in the study,
discuss the performance assessment describing both the syn-
thetic data generation and the real-world datasets and present
the different metrics used in the analysis. In the Results section,
we present the results of the comparative assessment on both
simulated and real data, also by releasing a summary for a
quick evaluation of the distinct techniques in different scenarios
and experimental settings. Finally, in the Discussion section, we
draw conclusions about the comparison and discuss possible
future developments.

Methods
In this section, we describe in detail the 19 methods included in
the comparative assessment; we discuss the synthetic data gen-
eration and present the 4 real-world scRNA-seq datasets from
[90–93] employed in the analysis, as well as the performance
metrics.

Description of denoising and imputation methods

The 19 methods that have been analyzed and tested can be
partitioned into the following four families, according to their
assumptions and modeling techniques: smoothing, model-
based, matrix factorization/theory and ML. In the following
sections, we provide a brief description of each method. For
additional details, we refer the reader to the original papers.

Data smoothing methods

The first category includes methods that aggregate the expres-
sion profiles of similar cells, e.g. by averaging the expression
values, in order to impute (DrImpute) or denoise (MAGIC and
kNN-smoothing) their expression values.

DrImpute [38] imputes dropout events with the following
three steps: first, it computes a distance matrix between cells,
then it runs the k-means algorithm and, lastly, it defines the
expected value of a dropout event as the average value of that

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

4 Patruno et al.

gene over the cells belonging to the same cluster. To make
the estimations more robust, the similarity matrix is computed
with both Pearson and Spearman correlations and a range of
number of clusters is tested. The averaged estimation over all
combinations is taken as the final imputation value, reducing
the risk of over-imputation.

kNN-smoothing [41] improves the signal-to-noise ratio of
single-cell expression profiles with a two-phase algorithm: first,
the k-nearest neighbors (kNNs) of each cell are identified, then
the gene expression profile of each cell is smoothed by consid-
ering its neighbor profiles. The initial step of the algorithm is
performed by normalizing the expression profiles and stabilizing
their variance. Then, to overcome the problem of finding the best
assignment for k, smoothing is applied in a progressive fashion,
by starting from k = 1 and increasing k step-by-step until the
desired level of smoothness is reached.

MAGIC [43] extracts the true similarity between cells by
amplifying biological trends, while simultaneously filtering out
spurious correspondences due to noise in the data. First, to
overcome the problem of data sparsity, a nearest neighbor graph
based on cell–cell expression distance is built. Then, an affinity
matrix is defined by applying a Gaussian kernel on the principal
components of the graph. Lastly, a diffusion process [96] is
applied on the similarity matrix to obtain a smoothed, more
faithful affinity matrix. The final imputation involves computing
the new expression of each gene as a linear combination of
the same expression in similar cells, weighted by the similarity
strength obtained in the previous steps.

ML methods

This group includes methods that apply ANNs to solve the
denoising problem (further details on ANN types are reported in
section 2 of the Supplementary Material). As reported in [37], an
increasing number of methods fall in this category (see above).
In particular, we selected DeepImpute, DCA, SAVER-X, SAUCIE,
scScope, AutoImpute and scVI.

AutoImpute [56] employs a sparse autoencoder, to learn the
distribution of the input gene expression matrix and perform
imputation. With regard to the implemented loss function,
this method takes advantage of standard reconstruction errors
such as (root) mean squared error, applied only on the nonzero
expressed genes. After training the autoencoder (AE), the
reconstructed matrix is taken as the imputed output.

DCA [58] employs AEs to perform denoising. Instead of the
classical AE decoder output, it defines a parametric decoder that
models each gene count as a negative binomial (NB) or a zero-
inflated negative binomial (ZINB) distribution; consequently, the
reconstruction error is defined as a likelihood. The predicted
distribution is then used to generate the denoised output.

DeepImpute [57] employs a deep feedforward network (DFN)
to perform imputation. After the initial preprocessing, where
only relevant genes are kept, N random groups of genes Gi are
defined. Then, for each gene in each Gi, a set Ii with the top five
Pearson correlated genes not in Gi is built. Lastly, each Ii will be
an input for a different DFN, trained to output Gi. The output of
each DFN is then used for imputing dropout events.

SAUCIE [62] is an AE-based denoising method that also sup-
ports batch correction and enhanced clustering and visualiza-
tion capabilites. More in detail, the AE embedding layer is used
for both low-dimensional visualization and batch correction, by
minimizing the difference between the probability distribution
of layer’s activations belonging to different batches. Moreover,
the activations of the decoding part are binarized to define an

encoding of each cell, which is then used for clustering. Lastly,
denoising is performed by minimizing the reconstruction error,
i.e. the mean squared error, that deals both with noise and
dropout events.

SAVER-X [51] is an extension of SAVER [83] that pairs the
Bayesian model with an AE. A NB distribution is used to
model technical and biological noise, while the AE is used to
estimate the portion of gene expression that is predictable by
the other genes. Lastly, Bayesian shrinkage is used to compute a
weighted average of the predicted expression values and the
observed data, to get the final denoised value. Additionally,
SAVER-X allows transfer learning [97] across species, thanks
to the flexibility of AEs, allowing to extract information
from data belonging to different species and experimental
conditions.

scScope [63] exploits a deep learning approach for imputa-
tion, combining an AE with a recurrent layer. The architecture
of the neural network is composed by a first layer that performs
batch correction. Successively, the encoding and decoding layers
of the AE perform compression and reconstruction, respectively,
of the batch corrected input. Lastly, the imputation layer corrects
the missing values and sends back the imputed output to the
encoding-decoding layers, to re-learn a compressed representa-
tion. The loss function is defined as a standard reconstruction
error, on the nonzero entries.

scVI [64] employs a variational AE to specify a ZINB distri-
bution, which models the true gene expression. More in detail,
the neural network takes as input each batch-annotated cell
expression and successively learns a variational distribution
accounting for, separately, the cell-specific scaling factor and
the remaining gene variation; furthermore, the defined latent
space allows to perform both clustering and visualization. Lastly,
the ZINB distribution is specified based on the learned latent
representation and the cell scaling factor.

Matrix factorization and matrix theory methods

The third category comprises four methods that denoise
(ENHANCE) or impute (ALRA, McImpute and scRMD) the
observed gene expression data by solving a matrix factorization
problem [98]. For the sake of simplicity, we added to this category
also a method that performs imputation by exploiting random
matrix theory (RMT): Randomly.

ALRA [68] performs imputation by low-rank matrix comple-
tion [99] of the observed gene expression matrix. The algorithm
is composed by two phases: firstly, a low-rank approximation
with Singular Value Decomposition [100] is computed. Then, to
distinguish dropouts from true zeros, the authors observed that
biological zeros in the computed low-rank matrix are assigned
to small values around 0, due to the approximation error. Conse-
quently, by taking the magnitude of the smallest negative value
of each gene as an approximation of the error, it is possible to
define a gene-wise threshold to distinguish dropouts and extract
the imputed values.

ENHANCE [69] is a method that combines PCA and cell aggre-
gation using kNNs to denoise the observed count matrix. The
algorithm can be divided into two main steps. The first one
accounts for reducing the bias toward highly expressed genes,
by aggregating the expression of similar cells based on the
distance between their principal component scores. The second
phase projects the aggregate matrix on the first k principal
components, where k is selected to represent only true biological
differences. Lastly, the selected components are used to derive
the final denoised matrix.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

A review of denoising methods for scRNA-seq data 5

McImpute [73] is a low-rank matrix completion approach to
impute missing values in a gene expression matrix. This method
aims at finding a lower-dimensional decomposition of the input
matrix. They formulated a low-dimensional nonnegative matrix
factorization problem as an optimization problem, solved using
the majorization-maximization technique [101]. To ensure the
convexity of the problem, McImpute solves a relaxed version of
the original objective: nuclear norm minimization. Lastly, the
resulting decomposition is used to impute missing values.

Randomly [77] is a recent denoising method that extracts
the true biological signal from the gene expression data by
analyzing the eigenvector statistics predicted by RMT [102]. The
algorithm is composed by three steps. In the pre-processing
step, expression counts are normalized and genes contributing
to a sparsity-induced nonbiological signal are removed; then,
the random matrix accounting for the noise is estimated. Lastly,
the eigenvalues carrying the true biological signal are extracted
following RMT, providing a low-rank representation of the input
data; additionally, the genes that are mostly responsible for
the signal directions can be separated from the less relevant
ones.

ScRMD [70] is a method that approaches the imputation task
by means of a robust matrix decomposition (RMD) approach
[103]. The authors assumed that we can decompose each gene
expression in the following components: the mean expression
of cells belonging to the same cluster, the specific cell variability,
the measurement error and the dropouts events. The method
defines each component as a matrix decomposition problem,
solved with an alternating direction method of multiplier, by
also applying a regularizer to account for the low-rank of the
biological signal and the sparseness of the observed counts.

Model-based methods

This category is composed by methods that model the observed
expression value of each gene in each cell as a random variable
and perform imputation (scImpute and VIPER) and denoising
(bayNorm and SAVER) by estimating the parameters of their
distributions.

bayNorm [78] employs a Bayesian approach to perform
denoising. The posterior distribution of the original counts
is composed by (i) the likelihood of obtaining the observed
transcripts, modeled as a Binomial distribution, and (ii) a prior
on each gene expression value. In order to model biological
variability, bayNorm employs a prior on the underlying true
gene expression levels, by modeling them as variables following
an NB distribution. Parameters can then be estimated locally
or globally, depending on one’s interest in amplifying or not,
respectively, the intergroup differences between cells.

SAVER [83] estimates the true gene expression levels by mod-
eling observed counts as a NB distribution. More in detail, the
technical noise in the gene expression signal is approximated
by the Poisson distribution, while the gamma prior accounts
for the uncertainty in the true expression. The final recovered
expression is a weighted average of the normalized observed
counts and the predicted true counts.

scImpute [84] is a method that performs imputation, in a
three-step algorithm. Initially, it identifies subpopulations of
cells by first applying PCA and, successively, spectral clustering
[104] on the remaining dimensions. To infer which genes are
affected by dropout, it models genes in each subpopulation with
a gamma-normal mixture model. Lastly, only highly probable
dropout events are considered, to reduce over-imputation, and
the final imputation value is computed as a linear combination

of the expression of the other cells in the same subpopulation,
weighted by the pairwise similarity.

VIPER [88] is an imputation method composed of four phases.
The first step performs a pre-selection of candidate similar cells,
to reduce overfitting. Then, a least-squares method is used to
choose a local neighborhood for each cell. To prevent imputing
missing values, VIPER estimates the dropout probability and
the expected expression for each zero-valued neighbor. Further-
more, to adjust dropout events, the gene expressions in each
neighborhood are assumed to follow a zero-inflated Poisson
mixed model, estimated using expectation maximization. Lastly,
imputation is performed by computing the weighted sum of the
expression of each neighbor, by also taking into account the
computed dropout adjustments.

Performance assessment

In the original articles, the imputation and denoising meth-
ods introduced above are often compared with competing
approaches. However, such comparisons typically involve a
limited number of denoising methods and a small number
of selected experimental settings. In order to provide a
comprehensive evaluation of performances, in this work, we
tested all methods on a large number of both simulated and
real-world datasets, with respect to several metrics.

In particular, we generated an extensive array of simulated
data, for which the GT is available and which allow to quantify
the ability of each method to actually recover the lost infor-
mation (see Supplementary Material section 3 for details about
the generation of such data). Moreover, we tested all methods
on four real-world scRNA-seq datasets generated via distinct
experimental protocols and settings.

Simulations

We employed the tool SymSim [89] to generate a large number of
synthetic scRNA-seq datasets (for a total of 90 distinct synthetic
datasets). SymSim takes as input the number of single cells, the
number of genes, the number of cell subpopulations (charac-
terized by distinct gene expression patterns) and a number of
parameters that tune the amount of biological variability and
technical noise.

The tool returns as output (i) a GT expression matrix, which
includes biological variability but no noise; (ii) a theoretical
expression profile (TEP) for each cell subpopulation, which is
obtained by removing the biological variability from the GT; and
(iii) a noisy (and sparse) expression matrix (NEM), which is finally
derived by simulating the steps of a sequencing experiment.

In this work, we generated datasets simulating two main
experimental scenarios and, in particular,

(i) non-UMI full-length datasets (i.e. high-coverage, high-
amplification bias), including 100 single cells and modeling
a typical plate-based full-length sequencing experiment
(e.g. Smart-Seq2). Thirty datasets were generated with
distinct parameter settings;

(ii) UMI datasets (i.e. low-coverage, low-amplification bias),
including 3000 single cells (30 datasets) and 10000 sin-
gle cells (30 datasets) and modeling a typical droplet
sequencing experiment (e.g. Chromium 10x).

The different datasets in each scenario are characterized by
distinct parameter settings, in terms of number of cell sub-
populations ({3, 5}), noise level (5 levels), number of selected
(most variable) genes ({500, 2000, 10000}) (Table 1). A detailed

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

6 Patruno et al.

Table 1. Summary of the simulated datasets. We simulated a total
of 90 datasets, with the following combinations of parameters: 3
values of sample size (number of single cells) ×2 different numbers
of subpopulations ×5 levels of noise ×3 numbers of selected most
variable genes

Protocol UMI Non-UMI
full-length

No datasets 60 30
No cells {3000; 10000} 100
GT sub-populations {3; 5} {3; 5}
Capture efficiency Low High
Amplification Bias No Yes
Coverage Low High
Noise levela {1; 2; 3; 4; 5} {1; 2; 3; 4; 5}
No genes {500; 2000; 10000} {500; 2000; 10000}
a The levels of noise present in the simulated datasets are defined in section 3
of the Supplementary Material, which we refer for further details on synthetic
data generation.

description of synthetic data generation can be found in the
Supplementary Material section 3.

Real-world datasets

All methods were tested also on four distinct real-world scRNA-
seq datasets, generated with distinct protocols and experimental
specifications. In detail, we have the following.

• RW-D #1 (PBMCs – 10x) [90]: this widely employed scRNA-
seq dataset is generated via 10x Genomics platform
[20] and includes 68579 peripheral blood mononuclear
cells (PBMCs), which are annotated with 11 cell types
of the immune system, via correlation with benchmark
gene expression profiles. This dataset was used in our
analysis to assess the performance of imputation and
denoising methods in characterizing cell similarities (for
further details on the dataset, please refer to [90]; instruc-
tions for download are provided in the Supplementary
Material).

• RW-D #2 (lung cell lines – 10x) [91]: this scRNA-seq dataset
is generated via the 10x Genomics platform and includes
3918 cells from 5 distinct cell lines, which were assigned
to its corresponding identity by exploiting known genetic
differences (i.e. SNPs) between cell lines [91]; this allows
not to rely on gene expression profiles for cell labeling.
We employed this dataset to assess the robustness of the
characterization of cell similarity.

• RW-D #3 (pancreatic islets – Smart-Seq2) [92]: this scRNA-
seq dataset is generated via the full-length Smart-Seq2
protocol and includes 3514 cells from human pancreatic
islets of four diabetic patients and five healthy samples.
We employed this dataset to assess the performance of
imputation and denoising methods with respect to cell
similarity characterization when processing data from non-
UMI full-length protocols.

• RW-D #4 (melanoma cell lines – 10x, Fluidigm/Smart-
Seq, bulk) [93]: this dataset includes three different
measurements from the same biological samples, namely
(i) bulk RNA-seq experiments, (ii) 10x Genomics scRNA-seq
experiments with 737280 barcodes, (iii) Fluidigm/Smart-
Seq scRNA-seq experiments with approximately 100 single
cells. Since no cell type labels are provided in this dataset,
we here used the data to compare the performance

of imputation and denoising methods with respect to
the correct identification of DEGs, by setting the results
obtained on bulk data as baseline.

All real-world datasets were preprocessed to consider only
high-quality single cells, and downsampled, to ensure a uniform
assessment scheme for all methods. In Table 2, one can find
the main features of all datasets employed in the analyses
(see Supplementary Material section 4 for further details on
preprocessing and downsampling).

Performance metrics

To evaluate the performance of the 19 selected methods, we
employed a number of metrics, which were assessed with
respect to either simulated or real-world data, according to the
specific cases. All metrics are further detailed in section 5 of the
Supplementary Material.

Imputation of dropout events (simulations) The effectiveness
of the methods in identifying and correcting dropouts events can
be evaluated by employing the GT expression matrix obtained
from simulations (see Supplementary Material section 5 for
additional details). In order to quantify the correct imputation of
the dropout entries present in the GT, we employed three distinct
metrics.

In particular, we computed (i and ii) precision and recall on
dropout entries only (i.e. entries that are > 0 in the GT and are
= 0 in the NEM), (iii) the Spearman correlation delta between the
imputed/denoised expression matrix (for the sake of readability,
we will refer to as denoised expression matrix, from now on) and
the GT with respect to all the zero entries in the NEM, which
allows to evaluate how imputed entries are correlated with GT
values (this metric is shown in the Supplementary Material
section 5).

Notice that the false discovery rate (FDR) can be easily deter-
mined from precision (FDR = 1−precision) and, in this case,
allows to evaluate the effectiveness of the methods in not imput-
ing structural zeros (i.e. entries that are 0 both in the GT and in
the NEM).

Recovery of true gene expression profiles (simulations) To
estimate the ability of each method in recovering the true single-
cell gene expression profiles, we relied on both the GT and the
NEM obtained from simulations.

In particular, we computed the difference between the
Spearman correlation coefficient ρ computed after imputation
or denoising (i.e. ρ between denoised expression matrix and
GT) and that computed before imputation or denoising (i.e.
ρ between NEM and GT). This measure is denoted as delta
correlation in the following, �ρ.

Characterization of cell similarity (simulations and real-
world data) In order to evaluate the effectiveness of each
method in capturing the similarity among cells, we computed
the average silhouette coefficient (or width) [105] by grouping
single cells according to the GT labels, i.e. cell subpopulations
labels for both simulated data, and cell type/line labels for real
data. Higher values of the average silhouette coefficient indicate
that cells are grouped consistently with GT labels. Therefore, we
here measured the difference between the average silhouette
coefficient obtained from denoised data and that computed
from the NEM (i.e. silhouette delta). Further detail about the
evaluation of such metric is given in the Supplementary Material
section 5.

We finally remark that, with regard to simulations, we here
employed the TEP of all cell subpopulations as performance
benchmark.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

A review of denoising methods for scRNA-seq data 7

Table 2. Features of real-world datasets. Main features of the four real-world datasets used in the assessment of imputation and denoising
methods: RW-D#1 [90], RW-D#2 [91], RW-D#3 [92] and RW-D#4 [93]

Dataset Number of cells

RW-D Name Protocol Original Employed Task

#1 PBMC [90] UMI 68579 3000 Cell sim.
UMI 68579 10000 Cell sim.

#2 Lung cell lines [91] UMI 3918 3918 Cell sim.
#3 Pancreatic islets [92] Non-UMI 352 245 Cell sim.

Non-UMI 383 243 Cell sim.
Non-UMI 383 197 Cell sim.
Non-UMI 383 224 Cell sim.
Non-UMI 383 196 Cell sim.
Non-UMI 383 263 Cell sim.
Non-UMI 383 93 Cell sim.
Non-UMI 384 275 Cell sim.
Non-UMI 384 293 Cell sim.

#4 Sake (Parent.) [93] UMI 737280 3178 DEGs
Non-UMI 113 113 DEGs

Sake (Resist.) [93] UMI 737280 3085 DEGs
Non-UMI 84 84 DEGs

Identification of DEGs (real-world data)
To assess the improvement on the identification of DEGs due to
the application of imputation/denoising methods, we employed
real-world dataset RW-D#4 which includes two independent cell
populations, namely parental and resistant, for which single-
cell 10x, single-cell Fluidigm/Smart-Seq and bulk sequencing
experiments were executed.

We proceeded as follows: for each single-cell dataset (10x and
Fluidigm/Smart-Seq), we performed a standard Wilcoxon test
to select the DEGs (p < 0.05) between parental and resistant
populations, with respect to both the NEM and the denoised
expression matrix, and which results in two distinct lists of
DEGs.

The expression profiles of the DEGs are then used to calcu-
late the Spearman correlation coefficient between each single
cell and the corresponding bulk profile. The distribution of the
difference of the Spearman correlation coefficient as computed
on denoised data and that on the NEM is used to evaluate the
performance for this task.

Computation time (simulations) We finally analyzed the
computational time of each tested method to impute or denoise
datasets with distinct numbers of observations (i.e. single cells)
and of variables (i.e. genes), with respect to a selected number of

simulated datasets. All computations were performed on a HP
®

Z8 G4 Workstation equipped with two Intel
®

Xeon
®

Gold 6240
processors at 2.60 GHz, 1 TB DDR4 RAM at 2933 MHz and Linux
Mint 19.2 Tina.

We note that, in the original papers, the authors do not
declare any theoretical worst-case performance in terms of O(·)
notation; although for many of them, it would be derivable from
literature. We therefore present an empirical study of the relative
performances of the methods.

Parameter settings of computational methods

Most methods were run on both simulated and real-world
datasets using default settings and following guidelines
provided from the authors, if any. For additional details on
parameter settings of all methods, please refer to section 6 of
the Supplementary Material and to Supplementary Table 4.

Note that we report the results SAVER-X without pre-training,
as its performance seems to be only slightly affected by pre-
training on real-world datasets, as shown in Supplementary
Figure 9. Besides, for analyses involving synthetic datasets, we
did not run AutoImpute, McImpute, scImpute and VIPER on
datasets with 10 000 cells and 10 000 genes, and we did not
execute VIPER on RW-D#1 (downsampled to 10 000 cells and
10 000 genes), due to the high computational time required by
such methods. Furthermore, for 10 out of 30 non-UMI full-length
simulated datasets, SAUCIE collapsed all cells into one unique
profile. Thus, such datasets were not included in the analysis.
Finally, please note that for Fluidigm/Smart-Seq datasets in RW-
D#4, the computation of bayNorm and ENHANCE raised errors
and, therefore, their results are not reported.

Results
We start by providing a qualitative example of the effect of the
tested imputation and denoising methods: Figures 1 and 2 show
the tSNE low-dimensional representation [106] of a synthetic
dataset (3000 cells, 5 subpopulations and 2000 genes) and of
one real dataset (RW-D#1, downsampled to 3000 cells and 2000
genes; see the Methods section for further details). For the
synthetic dataset, we show the GT expression matrix, the NEM
and the denoised datasets returned by each method, whereas
for RW-D#1 we show its original expression matrix and the
corresponding denoised versions.

From this qualitative analysis, one can appreciate the sub-
stantial different data transformations which are determined by
the distinct methods.

While it is difficult to draw conclusion from single exper-
iments, certain methods apparently tend to reduce the vari-
ability of gene expression profiles, resulting in more compact
representations on the tSNE space (e.g. kNN-smoothing, SAUCIE,
MAGIC), some others appear to enhance the inter-cluster dis-
tance (scImpute, SAVER and ENHANCE), while most methods
seem to preserve the original disposition in the transcriptomic
space, with some exceptions (note that in this and subsequent
analyses, AutoImpute seems not to have reached convergence,
with default parameters).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

8 Patruno et al.

Figure 1. Effect of 19 imputation and denoising methods on a selected simulated scenario via tSNE low-dimensional representation. tSNE low-dimensional

representation [106] of the gene expression profile of 3000 single cells of a selected synthetic UMI dataset with 5 subpopulations and 2000 genes. For this dataset,

we present the tSNE plot of the GT expression matrix generated via SymSim and the NEM obtained after simulating the sequencing experiment. The remaining tSNE

plots represent the gene expression of the cells after the application of all tested denoising and imputation methods to the NEM.

The visualization of three further synthetic datasets and of
real-world datasets RW-D#2 and RW-D#3 are shown in Supple-
mentary Figures 1–5. The results of the quantitative assessment
with respect to the metrics described in the Methods section are
presented in the following.

Imputation of dropout events (simulations)
We first assessed the performance of all methods in imputing
dropout events (i.e. entries = 0 in the NEM but > 0 in the
GT expression matrix), leaving structural zeros unchanged (i.e.
entries = 0 both in the NEM and the GT). The parameters of all

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

A review of denoising methods for scRNA-seq data 9

Figure 2. Effect of 19 imputation and denoising methods on real-world dataset RW-D #1 via tSNE low-dimensional representation. tSNE low-dimensional representation

[106] of the gene expression profile of 3000 selected cells from RW-D #1 (PBMCs – 10x) [90] as computed on the 2000 most variable genes. For this dataset, we present

the tSNE projection of the original dataset, which includes nine cell types and the tSNE plots of the single-cell expression profiles after the application of all methods

under analysis.

simulations are recapitulated in Table 1 and in Supplementary
Tables 1 and 2. Please refer to the Methods section and to
Supplementary Material sections 3 and 5 for details on synthetic
data generation and performance metrics. Note that Randomly
was not included in this test, since it provides an already scaled
expression matrix as output.

In Figure 3, one can find, for each method, the median
precision and recall on correctly imputed dropouts (in this case,
a true positive is an entry > 0 both in the GT and in the denoised
expression matrix but = 0 in the NEM), grouped according to the
number of (most variable) selected genes ({500, 2000, 10 000})
and the number of single cells (100 for non-UMI full-length

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

10 Patruno et al.

Figure 3. Performance assessment on imputation of dropout events (simulations). Assessment of imputation of dropouts, as evaluated on non-UMI full-length simu-

lated datasets (100 single cells) and UMI simulated datasets ({3000, 10000} single cells), with {500, 2000, 10000} genes. In each panel, we display a scatter-plot returning,

for each imputation and denoising method, the median precision (y-axis) and recall (x-axis) as computed on correctly imputed dropouts (computed on 10 simulations

per setting). In this case, a true positive, is an entry that is > 0 in the denoised expression matrix and in the GT but is = 0 in the NEM (see the Methods section for

further details and Supplementary Table 3 for the confusion matrix). The squared shade indicates methods with precision and recall > 0.80. In Supplementary Figure 6,

the distribution of precision and recall is displayed.

and {3000, 10000} for UMI datasets). In order to identify the
methods showing high precision (i.e. how many imputed entries
are dropouts) and high recall (i.e. how many dropouts are
imputed) scatter-plot areas corresponding to high values for
both measures (> 0.80) were highlighted (in Supplementary
Figure 6 the distributions of precision and recall on settings are
displayed).

As a first result, most methods struggle when dealing with
non-UMI full-length datasets (with 100 cells), as proven by the
relatively lower value of average precision. This aspect is likely
due to the low number of observations (single cells) as compared
with the number of variables (genes) and consistently affects the
performance of all methods on most tasks (see below).

Conversely, we observe a subset of methods that achieve
extremely positive performances (both precision and recall >

0.80) for UMI datasets with 3000 and 10 000 cells. In detail, VIPER
provides the best performance with datasets with 500 genes,
while for datasets with 2000 and 10 000 genes, ALRA, bayNorm,
DrImpute, ENHANCE, kNN-smoothing, MAGIC, SAVER, SAVER-
X and scVI consistently provide optimal and analogous perfor-
mances. In particular, such methods show values of recall very
close to 1 in all experimental settings (with the exception of kNN-
smoothing). While this effect might be due to over-imputation,
such methods also display significantly high precision in most
settings. Notice also that higher values of precision implicate a

lower fraction of wrongly imputed structural zeros (entries = 0
both in the GT and the NEM), as measured by the false discovery
rate (FDR = 1− precision).

Finally, we note that scRMD and scImpute display the high-
est values of precision in most settings, which, however, are
most likely due to the conservative nature of the approaches,
which tend to limit the number of imputed values. This obser-
vation is strengthened by considering the low values of recall for
both methods: indeed, as recall corresponds to the fraction of
imputed dropouts, a value close to 0 indicates that the method
did not impute most of the events.

To further extend the analysis on imputation of dropouts,
in Supplementary Material section 7 (Supplementary Figure 7),
we return the analysis of the Spearman correlation coefficient
computed considering zero entries of the NEM and which allows
to quantify the correlation between imputed entries and the
corresponding GT expression values. On the one hand, bayNorm,
DrImpute, ENHANCE, MAGIC, SAVER and SAVER-X provide the
most accurate and robust results in most scenarios, proving
effective in correctly recovering the true expression values of
imputed entries. On the other hand, ALRA, kNN-smoothing and
scVI and VIPER, which exhibit good values of precision and
recall on imputed dropouts (see above), display a relatively lower
performance in terms of correlation of the imputed entries with
respect to the GT expression values.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

A review of denoising methods for scRNA-seq data 11

Figure 4. Performance assessment on recovery of true gene expression profiles (simulations). Assessment of recovery of true expression profiles, as evaluated on non-

UMI full-length simulated datasets (100 single cells, panel A) and UMI simulated datasets ({3000, 10000} single cells, panels B and C), with {500, 2000, 10000} genes. The

boxplots return the distribution of correlation delta, �ρ, i.e. the difference between the Spearman correlation coefficient computed between the denoised expression

matrix and the GT and that computed between the NEM and the GT, for all methods in each experimental setting. The baseline median Spearman correlation coefficient

(MSC) between the NEM and GT is reported on top of the panels, for each setting, while in Supplementary Figure 8, the relative distributions are returned.

Recovery of true gene expression profiles (simulations)

We next tested the capability of each method in recovering the
GT gene expression profiles, by using simulated data. In Figure 4,
one can find the difference of the Spearman correlation coeffi-
cient as computed between the GT and the denoised expression
matrix after the application of all 19 methods and that computed
between the GT and the NEM. Such difference is denoted as
correlation delta, �ρ, from now on (see the Methods section and
Supplementary Material section 5 for further details).

In particular, the results are displayed according to the num-
ber of genes, {500, 2000, 10000} and number of cells, 100 for non-
UMI full-length and {3000, 10 000} for UMI experiments, as this
allows to analyze the performance under different experimental
settings. Note that, as for the analysis on imputed entries, we
here do not include the output of Randomly, which provides a
scaled output matrix.

As expected, sample size and protocol-type highly influence
the capability of any method to recover corrupted information,
as the performance of all methods generally improves with
datasets with a larger number of single cells and generated via
UMI-based protocols. More specifically, most methods appear to
struggle when processing non-UMI full-length datasets charac-
terized by a low number of cells (i.e. = 100), delivering unreliable
and often erroneous denoised expression profiles, as proven by
the negative Spearman correlation delta observed in most cases
(up to −0.45 for some methods).

Conversely, correlation deltas progressively improve with
UMI datasets including larger numbers of cells and/or genes,
and, in particular, all methods with the exception of ALRA and
scScope, achieve a positive median delta with datasets with
10 000 genes and 10 000 cells.

Examining the methods in greater detail, we observe that
bayNorm, SAVER and SAVER-X are the methods with the best
overall performance, as they always provide a positive corre-
lation delta and achieve the best results with both non-UMI
full-length and UMI datasets. Furthermore, we note that such
approaches show an extremely low variance, suggesting that the
results are robust. Among the other approaches, we note that
DrImpute displays a high correlation delta with UMI datasets,
whereas both ENHANCE and MAGIC exhibit remarkable perfor-
mances with datasets with more than 3000 cells and more than
2000 genes.

All in all, the results of this and the previous analyses sug-
gest that bayNorm, SAVER and SAVER-X might be an adequate
choice for both imputing dropouts and recovering corrupted

information, as they show the most accurate and stable per-
formances with both UMI and non-UMI full-length datasets,
whereas DrImpute, ENHANCE and MAGIC are similarly effective
when processing UMI datasets.

Characterization of cell similarity (simulations
and real-world data)

When analyzing scRNA-seq data, one might be interested in
characterizing the possible heterogeneous populations included
in the dataset, typically performing unsupervised clustering. For
example, the Scanpy [107] and Seurat [108] packages for single-
cell analyses incorporate the Louvain and Leiden algorithms
for community detection [109], which identify clusters based
on a nearest neighbors graph constructed from the profiles of
each single cell. Therefore, it is clear that improving the iden-
tification of cell similarities might result in better clustering
performances. To this end, we assessed the effectiveness of all
tested methods in enhancing cell similarity with respect to both
simulated and real data.

In Figure 5, we show the difference between the average
silhouette coefficient computed on denoised expression matrix
and that obtained from the NEM, by grouping single cells accord-
ing to the GT labels. Higher values of the average Silhouette
coefficient indicate that cells are close to other cells of the
same subpopulation and separated from those belonging to
other subpopulations. In particular, GT labels are provided by
cell subpopulation labels for simulated data and by cell type/line
labels for real-world datasets (see the Methods section and the
Supplementary Material for further details). We remark that
the silhouette coefficient allows one not to rely on arbitrarily
chosen clustering approaches, to evaluate the correct grouping
of single cells. In fact, currently available clustering methods
for scRNA-seq data are characterized by different properties,
goals and specifications and produce results that are extremely
sensitive to parameter choices and variations, and which might,
in turn, undermine the comparison of denoising and imputation
methods on this specific task.

Results are shown for simulated datasets with {500, 2000,
10000} genes and 100 (non-UMI full-length) or {3000, 10000} sin-
gle cells (UMI), as well as for real-world datasets RW-D#1, RW-
D#2 and RW-D#3. Note that we employed the TEP of all cell
subpopulations as benchmark for the assessment on simulated
datasets: in particular, the silhouette coefficient delta between
the TEP and the NEM represents the largest theoretical improve-
ment in each setting.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

12 Patruno et al.

Figure 5. Performance assessment on cell similarity characterization (simulations and real-world data). Assessment of enhancement of cell similarity characterization

after denoising, as evaluated on (i) simulated datasets (non-UMI full-length with 100 single cells and UMI-simulated datasets with {3000, 10000} single cells, panels

A–C) and (ii) real-world datasets RW-D#1 (downsampled to {3000, 10000} cells, 10x platform, panels D and E), RW-D#2 (3918 cells, 10x platform, panel F) and RW-D#3

({93, 196, 197, 224, 243, 245, 263, 275, 293} cells, Smart-Seq2, panel G). The boxplots (respectively, barplots) in all panels, depict the distribution (respectively, values) of

the Silhouette delta, i.e. the difference between the average silhouette coefficient computed on the denoised expression matrix and that computed on the NEM, for all

methods. The difference between the average silhouette coefficient evaluated on the TEP and that computed on the NEM is also shown for all simulated datasets.

Overall, most methods cause an increase of the average sil-
houette coefficient in most settings, suggesting that imputation
and denoising approaches are indeed effective in enhancing the
similarity of the expression profiles of cells belonging to the
same sub-populations.

This effect is significantly intensified with datasets with
larger sample size and generated (or simulated) with UMI pro-
tocols, as proven by the overall increase in delta magnitude.
In particular, MAGIC and ENHANCE appear to produce the best
results, with respect to both simulated and real-world datasets,
yet with noteworthy variance in some scenarios, and with the
latter method improving its performance with UMI datasets.
We further notice that ALRA, kNN-smoothing and scVI deliver
notable performances in most scenarios, closely followed by
DCA. Surprisingly, SAUCIE exhibits a negative delta with sim-
ulated non-UMI full-length datasets but produces good results
with real-world Smart-Seq2 dataset RW-D#3.

We recall that, among the best performing methods for the
imputation and expression recovery tasks (see above), in addi-
tion to the aforementioned MAGIC and ENHANCE, SAVER-X
and SAVER consistently produce improvements of the average
silhouette delta in most simulated and real-world scenarios,
whereas bayNorm and DrImpute appear to be less effective with
respect to this specific task.

We finally specify that the results on simulated and real-
world datasets are mostly coherent across experimental scenar-
ios, further proving the suitability of simulations in assessing the
performance of imputation and denoising methods.

Identification of DEGs (real-world data)

In order to quantify the effect of denoising and imputation
methods on the identification of DEGs, we leveraged on bulk
RNA-sequencing data included in real-world dataset RW-D#4
[93]. In detail, we first computed the DEGs between the parental

and resistant samples included in the dataset, with respect to
both the original expression matrix and the denoised matrix (via
Wilcoxon test, P < 0.05), and which resulted in two distinct lists
of DEGs. The analysis was repeated for both the Fluidigm/Smart-
Seq dataset (84 and 113 single cells for resistant and parental cell
lines, respectively) and the 10x datasets (3085 and 3178; see the
Methods section and the Supplementary Material section 4 for
further details).

In Figure 6, we display the difference of the Spearman cor-
relation coefficient between the expression profile of the DEGs
obtained from the denoised expression matrix and the bulk
expression profile (computed for each single cell), and the one
computed on the profiles of DEGs determined from the original
expression matrix.

Noteworthy, most approaches produce an increase of the
correlation with respect to the bulk expression profile. In par-
ticular, kNN-smoothing, MAGIC and SAUCIE deliver a median
Spearman delta > 0.10 for both the Fluidigm/Smart-Seq and the
10x datasets, while bayNorm, ENHANCE, SAVER, SAVER-X and
scVI show a median Spearman delta > 0.10 for the latter protocol
only.

Overall, this result indicates that, in many cases, imputa-
tion and denoising methods might be effective in improving
downstream analyses, such as the identification of DEGs.

Computation time (simulations)

Figure 7 reports the results of the computational time assess-
ment on three simulated datasets: (i) non-UMI full-length (100
cells) (ii) UMI (3000 cells), and (iii) UMI (10 000 cells), with respect
to {500, 2000, 5000} genes, plotted in logarithmic scale.

We can observe that all methods suffer an approximately
exponential increase of computational time with respect to
the number of cells and the number of genes, with extremely
significant difference in magnitude. Overall, the most scalable

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

A review of denoising methods for scRNA-seq data 13

Figure 6. Performance assessment on identification of DEGs (real-world data). Assessment of identification of DEGs, as computed on RW-D#4 [93]. DEGs between

parental and resistant cell lines of RW-D#4 are identified via Wilcoxon test (P < 0.05), both starting from the original scRNA-seq dataset and from the corresponding

denoised matrices, for both Fluidigm/Smart-Seq and 10x datasets (panel A and B). The Spearman correlation coefficient between the expression profile of all single

cells and the corresponding bulk expression profile is computed with respect to all the DEGs included in the distinct lists. The distribution (on all single cells) of the

difference between the Spearman correlation coefficient computed with original data matrix and that computed with the denoised version is then shown as boxplots

for both 10x and Fluidigm/Smart-Seq datasets. In the rightmost panels, the baseline distribution of the Spearman correlation coefficient between the NEM and bulk

data (with respect to the corresponding list of DEGs) is shown, for both scenarios.

algorithms appear to be ALRA, kNN-smoothing and scRMD
while, in general, matrix theory appears to be the most
computationally efficient category.

Summary of the performance assessment on denoising
and imputation methods

In Figure 8, we present a recapitulation of the performance
assessment. The schema includes seven panels, structured as
follows:

• imputation of dropout events,
• recovery of gene expression profiles,

• characterization of cell similarity,
• identification of DEGs,
• computation time,
• task,
• release code quality.

In particular, we selected a subset of simulated datasets,
characterized by selected parameter settings in terms of
single-cell number ({100, 3000, 10000}), sequencing protocol
{non-UMI full-length, UMI} and number of genes (2000 for all
settings)—and all four real-world datasets (see the Methods
section), which we employed to compute a schematic ranking of
all methods with respect to the distinct tasks.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

14 Patruno et al.

Figure 7. Computational time assessment. Running time of each method in denoising/imputing datasets with increasing number of cells and genes. In (A) results with

100 cells, in (B) results with 3000 cells and in (C) results with 10 000 cells. Values are plotted in logarithmic scale.

More in detail, for each selected parameter setting of the
simulated dataset and for each real-world dataset, we ordered all
19 methods with respect to the average values of the following
metrics:

(i) average Spearman correlation delta for zero entries of the
NEM (for imputation of dropout events),

(ii) average Spearman correlation delta on the whole expres-
sion matrix (for recovery of gene expression profiles),

(iii) average silhouette delta (for characterization of cell similar-
ity),

(iv) average Spearman correlation delta (for identification of
DEGs),

(v) computation time.

The ranking is visually represented with dots with respect to
each experimental setting, where the largest dot corresponds to
the best performing method (green) and the smallest dot to the
worst performing method (red).

The task panel indicates whether each method performs
either denoising or imputation (see the Introduction section
and Supplementary Material section 1 for a rigorous classifica-
tion of the two tasks). Finally, the last panel reports a summary
of selected quality code metrics, which were used to evaluate the
different tools. In particular, usability and documentation range
from 1, i.e. the worst result, to 4, corresponding to the best score.
Usability is calculated by considering a set of characteristics that
contribute in worsening the overall usability of the tool: (i) either
input preprocessing, preliminary operation, e.g. clustering, or
output post-processing, e.g. re-normalization, are required to the
user; (ii) at least one parameter depends on the input, i.e. a grid-
search is required; (iii) parameters meaning is not intuitive, e.g. it
has no biological meaning; (iv) the tool is not available on a pack-
age distribution platform, e.g. Bioconductor or pip/conda. If a
tool has none of the previously introduced features is assigned
to the maximum score of 4; otherwise, the scoring is reduced to
a minimum of 1. Documentation score is assigned as follows: 1
indicates that the authors did provide neither a documentation

nor a detailed tutorial, 2 indicates that the authors provided a
tutorial but did not write a detailed explanation for the param-
eters, 3 indicates that a detailed tutorial is available and 4 indi-
cates that the authors provided both a detailed tutorial and a full
explanation of all parameters. Finally, we indicate both whether
the program is maintained, i.e. updated in the past 2 years, and
the programming language on which the tool was implemented.

Discussion
We presented a review of the current state-of-the art of compu-
tational approaches for denoising and imputation of scRNA-seq
data. Extensive tests on both real and synthetic datasets allowed
to evaluate the performances and the robustness of each method
under different experimental scenarios.

In light of the presented results, distinct methods appear
to be more suitable for different tasks. In particular, ENHANCE,
MAGIC, SAVER, and SAVER-X provide the best overall compro-
mise and show robust performances with respect to all consid-
ered tasks. In addition to such methods, bayNorm and DrImpute
are especially effective in recovering the true expression pro-
files and imputing dropout entries, while kNN-smoothing and
scVI in improving the characterization of cell similarity and the
grouping of single cells in coherent subpopulations, as well as
the identification of DEGs.

We also note that, as expected, most methods appear to
struggle with non-UMI full-length datasets, likely due to the
low number of observations (cells) as compared with the high
number of variables (genes). Furthermore, as already mentioned
and as reported in [110], denoised expression values returned
by any method should be considered with caution, due to the
presence of possible artifacts, as proven by the low correlation
with GT expression profiles from simulations recorded in many
cases and, particularly, with non-UMI full-length datasets.

By focusing on machine learning frameworks, we notice
that methods that employ assumptions on biological variability
and technical noise (i.e. DCA, SAVER-X, scVI) typically exhibit

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

A review of denoising methods for scRNA-seq data 15

Figure 8. Summary of the performance assessment on denoising and imputation methods. The five leftmost panels report a schematic ranking of all 19 tested

denoising and imputation methods, as computed on a selected panel of synthetic and real-world datasets, in terms of average Spearman correlation delta for zero

entries of the NEM (for imputation of dropout events), average Spearman correlation delta on the whole expression matrix (for recovery of gene expression profiles),

average silhouette delta (characterization of cell similarity), average Spearman correlation delta (identification of DEGs) and computation time. The size of each round

marker is proportional to the ranking, with the largest (green) dots corresponding to the best performing tool and the smallest (red) dots to worst performing tool, with

respect to the considering metric. The task panel indicates whether the method can perform either denoising or imputation tasks. Finally, the rightmost panel reports

a summary of a quality code metrics that were used to evaluate the different tools in terms of usability, documentation, maintenance and availability (please refer to

the Methods section (Summary of the performance assessment on denoising and imputation Methods) for further details).

better performances, hinting at the importance of including
prior knowledge to inform the learning algorithms. Model-
based methods present a typically good performance in both
imputation and expression recovery, yet at a usually high com-
putational cost, and generally showing suboptimal performance
in cell similarity enhancement. Matrix theory-based techniques
show good performance in terms of characterization of cell
similarity, in addition to noteworthy scalability, even with large
datasets. Finally, data smoothing approaches present typically
good performances, yet with significant differences according
to the specific task.

All in all, the performance of all methods appear to be highly
dependent on the specific features of the dataset, as very distinct

results are observed for the same method in different experi-
mental scenarios, as recapped in Figure 8. This summary should
guide potential users in selecting an optimal method according
to the research needs and the available data types.

We further note that a review on a similar subject can be
found as a preprint in [35]. Despite achieving similar conclusions
on several methods included in our review, such work does
not include comparisons on simulated data, which allow to
evaluate a number of metrics with respect to the GT. For instance,
certain methods that were identified as highly performing in
[35], appear to struggle in dealing with true expression profiles
recovery, an effect that can be evaluated only via simulations.
The virtually unlimited number of in silico scenarios that can

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

16 Patruno et al.

be generated via methods such SymSim [89] suggests that simu-
lations should be increasingly used to quantitatively assess the
performance of data science methods and especially to test the
robustness of their results.

Possible limitations of our assessment might be related to
the application of most methods with default parameters, while
one can expect improvements when fine tuning the parameters.
In this respect, setting guidelines provided by the authors were
followed when present and appear to be extremely beneficial to
increase the overall usability and performance of the methods.

We also recall that for some methods, such as those based on
AEs, it would be possible to use the latent variable space to per-
form single-cell clustering, while in our analysis we chose to use
the denoised expression profiles, to provide a fair comparison
for all methods.

We finally remark that scalable methods for denoising of
single-cell transcriptomic data might pave the way for refined
downstream analyses, for instance, by improving the reliability
and accuracy of variant calling pipelines from scRNA-seq data
to provide an accurate mapping of genotype and phenotype of
single cells [111, 112], as well as by allowing a better estimation
of metabolic fluxes from scRNA-seq data in the investigation of
cancer metabolism [113, 114].

Key Points
• Extensive tests on synthetic and real datasets pro-

vide a quantitative assessment of the performance of
denoising and imputation methods in distinct scenar-
ios.

• Some methods are effective in improving the char-
acterization of cell similarity, some others in recov-
ering the true gene expression profiles and imputing
dropouts.

• Appropriate assumptions on the noise model are ben-
eficial to recover lost information.

• Overall, ENHANCE, MAGIC, SAVER and SAVER-X con-
stitute a good compromise on all tasks.

• Corrected expression values returned by any method
should be considered with caution in downstream
analyses.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.

Data availability

The source code used to replicate all our analyses, including
synthetic and real datasets, is available at this link: https://
github.com/BIMIB-DISCo/review-scRNA-seq-DENOISING.

Acknowledgments

We thank Chiara Damiani, Daniele Ramazzotti and Giulio
Caravagna for helpful discussions.

Funding

This work was supported by the Cancer Research UK and
Associazione Italiana per la Ricerca sul Cancro (CRUK/AIRC)

“Accelerator Award” (award #22790) ‘Single-cell Cancer Evo-
lution in the Clinic’. Partial support was also provided by the
Italian node of the Elixir network (https://elixir-europe.org/a
bout-us/who-we-are/nodes/italy) and the SysBioNet project,
a Ministero dell’Istruzione, dell’Universitá e della Ricerca ini-
tiative for the Italian Roadmap of European Strategy Forum
on Research Infrastructures.

References
1. Dalerba P, Kalisky T, Sahoo D, et al. Single-cell dissection of

transcriptional heterogeneity in human colon tumors. Nat
Biotechnol 2011;29(12):1120.

2. Vieth B, Parekh S, Ziegenhain C, et al. A systematic evalua-
tion of single cell RNA-seq analysis pipelines. Nat Commun
2019;10(1):1–11.

3. Angela RW, Norma F, Neff TK, et al. Quantitative assess-
ment of single-cell RNA-sequencing methods. Nat Methods
2014;11(1):41.

4. Kalisky T, Blainey P, Quake SR. Genomic analysis at the
single-cell level. Annu Rev Genet 2011;45:431–45.

5. Huang S. Non-genetic heterogeneity of cells in devel-
opment: more than just noise. Development 2009;136(23):
3853–62.

6. Li L, Clevers H. Coexistence of quiescent and active adult
stem cells in mammals. Science 2010;327(5965):542–5.

7. Shalek AK, Satija R, Shuga J, et al. Single-cell RNA-seq
reveals dynamic paracrine control of cellular variation.
Nature 2014;510(7505):363–9.

8. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing
technologies and bioinformatics pipelines. Exp Mol Med
2018;50(8):1–14.

9. AlJanahi AA, Danielsen M, Dunbar CE. An introduction to
the analysis of single-cell RNA-sequencing data. Mol Ther
Methods Clin Dev 2018;10:189–96.

10. Lawson DA, Kessenbrock K, Davis RT, et al. Tumour hetero-
geneity and metastasis at single-cell resolution. Nat Cell Biol
2018;20(12):1349–60.

11. Shaffer SM, Dunagin MC, Torborg SR, et al. Rare cell variabil-
ity and drug-induced reprogramming as a mode of cancer
drug resistance. Nature 2017;546(7658):431.

12. Cao J, Packer JS, Ramani V, et al. Comprehensive single-cell
transcriptional profiling of a multicellular organism. Science
2017;357(6352):661–7.

13. Regev A, Teichmann SA, Lander ES, et al. Science forum: the
human cell atlas. elife 2017;6:e27041.

14. Elowitz MB, Levine AJ, Siggia ED, et al. Stochastic gene
expression in a single cell. Science 2002;297(5584):
1183–6.

15. Marinov GK, Williams BA, McCue K, et al. From single-cell to
cell-pool transcriptomes: stochasticity in gene expression
and RNA splicing. Genome Res 2014;24(3):496–510.

16. Haque A, Engel J, Teichmann SA, et al. A practical guide
to single-cell RNA-sequencing for biomedical research and
clinical applications. Genome Med 2017;9(1):75.

17. Ziegenhain C, Vieth B, Parekh S, et al. Comparative anal-
ysis of single-cell RNA sequencing methods. Mol Cell
2017;65(4):631–43.

18. Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-
wide expression profiling of individual cells using nanoliter
droplets. Cell 2015;161(5):1202–14.

19. Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding
for single-cell transcriptomics applied to embryonic stem
cells. Cell 2015;161(5):1187–201.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

A review of denoising methods for scRNA-seq data 17

20. Fraction of mRNA transcripts captured per cell. https://
kb.10xgenomics.com/hc/en-us/articles/360001539051-
What-fraction-of-mRNA-transcripts-are-captured-per-ce
ll.

21. Ramsköld D, Luo S, Wang Y-C, et al. Full-length mRNA-seq
from single-cell levels of RNA and individual circulating
tumor cells. Nat Biotechnol 2012;30(8):777.

22. Sheng K, Cao W, Niu Y, et al. Effective detection of variation
in single-cell transcriptomes using MATQ-seq. Nat Methods
2017;14(3):267–70.

23. Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively
parallel single-cell RNA-seq for marker-free decomposition
of tissues into cell types. Science 2014;343(6172):776–9.

24. Hashimshony T, Wagner F, Sher N, et al. CEL-Seq: single-
cell RNA-Seq by multiplexed linear amplification. Cell Rep
2012;2(3):666–73.

25. Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell pro-
filing of the developing mouse brain and spinal cord with
split-pool barcoding. Science 2018;360(6385):176–82.

26. Pollen AA, Nowakowski TJ, Shuga J, et al. Low-coverage
single-cell mRNA sequencing reveals cellular heterogene-
ity and activated signaling pathways in developing cerebral
cortex. Nat Biotechnol 2014;32(10):1053.

27. Gierahn TM, Wadsworth MH, II, Hughes TK, et al. Seq-well:
portable, low-cost RNA sequencing of single cells at high
throughput. Nat Methods 2017;14(4):395–8.

28. Islam S, Zeisel A, Joost S, et al. Quantitative single-cell
RNA-seq with unique molecular identifiers. Nat Methods
2014;11(2):163.

29. Ziegenhain C, Vieth B, Parekh S, et al. Comparative anal-
ysis of single-cell RNA sequencing methods. Mol Cell
2017;65(4):631–43.

30. Haque A, Engel J, Teichmann SA, et al. A practical guide
to single-cell RNA-sequencing for biomedical research and
clinical applications. Genome Med 2017;9(1):75.

31. Goh WWB, Wang W, Wong L. Why batch effects matter
in omics data, and how to avoid them. Trends Biotechnol
2017;35(6):498–507.

32. Tung P-Y, Blischak JD, Hsiao CJ, et al. Batch effects and the
effective design of single-cell gene expression studies. Sci
Rep 2017;7:39921.

33. Tran HTN, Ang KS, Chevrier M, et al. A benchmark of batch-
effect correction methods for single-cell RNA sequencing
data. Genome Biol 2020;21(1):12.

34. Zhu L, Lei J, Devlin B, et al. A unified statistical framework
for single cell and bulk RNA sequencing data. Ann Appl Stat
2018;12(1):609.

35. Hou W, Ji Z, Ji H, et al. A systematic evaluation of single-cell
RNA-sequencing imputation methods. bioRxiv 2020. doi:
10.1101/2020.01.29.925974.

36. Agarwal D, Wang J, Zhang NR, et al. Data denoising and
post-denoising corrections in single cell RNA sequencing.
Stat Sci 2020;35(1):112–28.

37. Lähnemann D, Köster J, Szczurek E, et al. Eleven grand chal-
lenges in single-cell data science. Genome Biol 2020;21(1):1–
35.

38. Gong W, Kwak I-Y, Pota P, et al. DrImpute: imputing dropout
events in single cell RNA sequencing data. BMC Bioinformat-
ics 2018;19(1):220.

39. Tjaernberg A, Mahmood O, Jackson CA, et al. Optimal
tuning of weighted kNN- and diffusion-based methods
for denoising single cell genomics data. bioRxiv 2020. doi:
1101/2020.02.28.970202.

40. Ye P, Ye W, Ye C, et al. scHinter: imputing dropout events
for single-cell RNA-seq data with limited sample size.
Bioinformatics 2020;36(3):789–97.

41. Wagner F, Yan Y, Yanai I. K-nearest neighbor smoothing
for high-throughput single-cell RNA-seq data. bioRxiv 2018.
doi: 10.1101/217737.

42. Moussa M, Măndoiu II. Locality sensitive imputation for
single cell RNA-seq data. J Comput Biol 2019;26(8):822–35.

43. Van Dijk D, Sharma R, Nainys J, et al. Recovering gene
interactions from single-cell data using data diffusion. Cell
2018;174(3):716–29.

44. Ronen J, Akalin A. netSmooth: network-smoothing
based imputation for single cell RNA-seq. F1000Res 2018;
7:8.

45. Jeong H, Liu Z. PRIME: a probabilistic imputation method
to reduce dropout effects in single cell RNA sequencing.
Bioinformatics 2020;36(13):4021–9.

46. Tracy S, Yuan G-C, Dries R. RESCUE: imputing dropout
events in single-cell RNA-sequencing data. BMC Bioinfor-
matics 2019;20(1):388.

47. Wu W, Dai Q, Liu Y, et al. G2S3: a gene graph-based impu-
tation method for single-cell RNA sequencing data. bioRxiv
2020. doi: 10.1101/2020.04.01.020586.

48. Jin K, Ou-Yang L, Zhao X-M, et al. scTSSR: gene expression
recovery for single-cell RNA sequencing using two-side
sparse self-representation. Bioinformatics 2020;36(10):3131–
8.

49. Leote AC, Wu X, Beyer A. Network-based imputation of
dropouts in single-cell RNA sequencing data. bioRxiv 2019.
doi: 10.1101/611517.

50. Elyanow R, Dumitrascu B, Engelhardt BE, et al. netNMF-
sc: leveraging gene–gene interactions for imputation and
dimensionality reduction in single-cell expression analy-
sis. Genome Res 2020;30(2):195–204.

51. Wang J, Agarwal D, Huang M, et al. Data denoising with
transfer learning in single-cell transcriptomics. Nat Methods
2019;16(9):875–8.

52. Peng T, Zhu Q, Yin P, et al. SCRABBLE: single-cell RNA-seq
imputation constrained by bulk RNA-seq data. Genome Biol
2019;20(1):88.

53. Ye W, Ji G, Ye P, et al. scNPF: an integrative framework
assisted by network propagation and network fusion for
preprocessing of single-cell RNA-seq data. BMC Genomics
2019;20(1):347.

54. Badsha MB, Li R, Liu B, et al. Imputation of single-cell gene
expression with an autoencoder neural network. Quant Biol
2020;1–17.

55. Zhu L, Lei J, Devlin B, et al. A unified statistical framework
for single cell and bulk RNA sequencing data. Ann Appl Stat
2018;12(1):609.

56. Talwar D, Mongia A, Sengupta D, et al. AutoImpute: autoen-
coder based imputation of single-cell RNA-seq data. Sci Rep
2018;8(1):1–11.

57. Arisdakessian C, Poirion O, Yunits B, et al. DeepImpute: an
accurate, fast, and scalable deep neural network method to
impute single-cell RNA-seq data. Genome Biol 2019;20(1):1–
14.

58. Eraslan G, Simon LM, Mircea M, et al. Single-cell RNA-seq
denoising using a deep count autoencoder. Nat Commun
2019;10(1):390.

59. Zhang X-F, Ou-Yang L, Yang S, et al. EnImpute: imput-
ing dropout events in single-cell RNA-sequencing data via
ensemble learning. Bioinformatics 2019;35(22):4827–9.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

18 Patruno et al.

60. Rao J, Zhou X, Lu Y, et al. Imputing single-cell RNA-seq data
by combining graph convolution and autoencoder neural
networks. bioRxiv 2020. doi: 10.1101/2020.02.05.935296.

61. Xu Y, Zhang Z, You L, et al. scIGANs: single-cell RNA-seq
imputation using generative adversarial networks. bioRxiv
2020. doi: 10.1101/2020.01.20.913384.

62. Amodio M, Van Dijk D, Srinivasan K, et al. Exploring single-
cell data with deep multitasking neural networks. Nat
Methods 2019;62:1139–45.

63. Deng Y, Bao F, Dai Q, et al. Scalable analysis of cell-type
composition from single-cell transcriptomics using deep
recurrent learning. Nat Methods 2019;16(4):311–4.

64. Lopez R, Regier J, Cole MB, et al. Deep generative
modeling for single-cell transcriptomics. Nat Methods
2018;15(12):1053–8.

65. Mehtonen J, González G, Kramer R, et al. Semisupervised
generative autoencoder for single-cell data. J Comput Biol
2019;27(8):1190–203.

66. Zhu K, Anastassiou D. 2DImpute: imputation in single-
cell RNA-seq data from correlations in two dimensions.
Bioinformatics 2020;36(11):3588–9.

67. Tran B, Tran D, Nguyen H, et al. Ria: a novel regression-based
imputation approach for single-cell RNA sequencing. In:
2019 11th International Conference on Knowledge and Systems
Engineering (KSE), 2019. pp. 1–9. New York City, NY, USA: IEEE.

68. Linderman GC, Zhao J, Kluger Y. Zero-preserving impu-
tation of scRNA-seq data using low-rank approximation.
bioRxiv 2018. doi: 10.1101/397588.

69. Wagner F, Barkley D, Yanai I. Accurate denoising of single-
cell RNA-seq data using unbiased principal component
analysis. bioRxiv 2019;655365. doi: 10.1101/655365.

70. Chen C, Wu C, Wu L, et al. scRMD: imputation for sin-
gle cell RNA-seq data via robust matrix decomposition.
Bioinformatics 2020;36(10):3156–61. 03.

71. Xu J, Cai L, Liao B, et al. CMF-Impute: an accurate impu-
tation tool for single-cell RNA-seq data. Bioinformatics
2020;36(10):3139–47.

72. Mongia A, Sengupta D, Majumdar A. deepMc: deep matrix
completion for imputation of single-cell RNA-seq data. J
Comput Biol 2019;27(7):1011–9.

73. Mongia A, Sengupta D, Majumdar A. McImpute: matrix
completion based imputation for single cell RNA-seq data.
Front Genet 2019;10:9.

74. Zhang L, Zhang S. PBLR: an accurate single cell RNA-
seq data imputation tool considering cell heterogeneity
and prior expression level of dropouts. bioRxiv 2018. doi:
10.1101/379883.

75. Hu Y, Li B, Liu N, et al. WEDGE: recovery of gene
expression values for sparse single-cell RNA-seq
datasets using matrix decomposition. bioRxiv 2019;864488.
https://doi.org/10.1101/864488.

76. Pierson E, Yau C. ZIFA: dimensionality reduction for zero-
inflated single-cell gene expression analysis. Genome Biol
2015;16(1):241.

77. Aparicio L, Bordyuh M, Blumberg AJ, et al. A random
matrix theory approach to denoise single-cell data. Patterns
2020;;1(3):100035.

78. Tang W, Bertaux F, Thomas P, et al. bayNorm: Bayesian
gene expression recovery, imputation and normaliza-
tion for single-cell RNA-sequencing data. Bioinformatics
2020;36(4):1174–81.

79. Azizi E, Prabhakaran S, Carr A, et al. Bayesian inference for
single-cell clustering and imputing. Genomics Comput Biol
2017;3(1):e46–6.

80. Song F, Chan GM, Wei Y. Flexible experimental designs
for valid single-cell RNA-sequencing experiments allowing
batch effects correction. Nat Commun 2020;11:3274.

81. Lin P, Troup M, Ho JWK. CIDR: ultrafast and accurate clus-
tering through imputation for single-cell RNA-seq data.
Genome Biol 2017;18(1):59.

82. Yang MQ, Weissman SM, Yang W, et al. MISC: missing
imputation for single-cell RNA sequencing data. BMC Syst
Biol 2018;12(7):114.

83. Huang M, Wang J, Torre E, et al. SAVER: gene expres-
sion recovery for single-cell RNA sequencing. Nat Methods
2018;15(7):539.

84. Li WV, Li JJ. An accurate and robust imputation method
scImpute for single-cell RNA-seq data. Nat Commun
2018;9(1):997.

85. Miao Z, Li J, Zhang X. scRecover: discriminating true and
false zeros in single-cell RNA-seq data for imputation.
bioRxiv 2019;665323. https://doi.org/10.1101/665323.

86. Zhang Y, Liang K, Liu M, et al. SCRIBE: a new approach
to dropout imputation and batch effects correction
for single-cell RNA-seq data. bioRxiv 2019;793463.
https://doi.org/10.1101/793463.

87. Hu Z, Songpeng Z, Liu JS. SIMPLEs: a single-cell RNA
sequencing imputation strategy preserving gene
modules and cell clusters variation. bioRxiv 2020. doi:
10.1101/2020.01.13.904649.

88. Chen M, Zhou X. VIPER: variability-preserving imputation
for accurate gene expression recovery in single-cell RNA
sequencing studies. Genome Biol 2018;19(1):1–15.

89. Zhang X, Xu C, Yosef N. Simulating multiple faceted
variability in single cell RNA sequencing. Nat Commun
2019;10(1):2611.

90. Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel
digital transcriptional profiling of single cells. Nat Commun
2017;8(1):1–12.

91. Tian L, Dong X, Freytag S, et al. Benchmarking single cell
RNA-sequencing analysis pipelines using mixture control
experiments. Nat Methods 2019;16(6):479–87.

92. Segerstolpe Å, Palasantza A, Eliasson P, et al. Single-
cell transcriptome profiling of human pancreatic islets
in health and type 2 diabetes. Cell Metab 2016;24(4):
593–607.

93. Ho Y-J, Anaparthy N, Molik D, et al. Single-cell RNA-
seq analysis identifies markers of resistance to targeted
BRAF inhibitors in melanoma cell populations. Genome Res
2018;28(9):1353–63.

94. Andrews TS, Hemberg M. False signals induced by single-
cell imputation. F1000Res 2018;7:1740.

95. Zhang L, Zhang S. Comparison of computational methods
for imputing single-cell RNA-sequencing data. IEEE/ACM
Trans Comput Biol Bioinform 2018;17(2):376–89.

96. Coifman RR, Lafon S. Diffusion maps. Appl Comput Harmon
Anal 2006;21(1):5–30.

97. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cam-
bridge, MA, USA: The MIT Press, 2016.

98. Wang Y-X, Zhang Y-J. Nonnegative matrix factorization:
a comprehensive review. IEEE Trans Knowl Data Eng
2012;25(6):1336–53.

99. Candès EJ, Recht B. Exact matrix completion via convex
optimization. Found Comput Math 2009;9(6):717.

100. Eckart C, Young GM. The approximation of one matrix by
another of lower rank. Psychometrika 1936;1:211–8.

101. Sun Y, Babu P, Palomar DP. Majorization-minimization
algorithms in signal processing, communications, and

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

A review of denoising methods for scRNA-seq data 19

machine learning. IEEE Trans Signal Process 2016;65(3):816–
794.

102. Livan G, Novaes M, Vivo P. Introduction to Random Matri-
ces: Theory and Practice, Vol. 26. London, UK: Springer,
2018.

103. Hsu D. Kakade SM, Zhang T. Robust matrix decom-
position with sparse corruptions. IEEE Trans Inf Theory
2011;57(11):7221–34.

104. Ng AY, Jordan MI, Weiss Y. On spectral clustering: analysis
and an algorithm. In: Proceedings of the 14th International
Conference on Neural Information Processing Systems: Natural
and Synthetic, 2002. pp. 849–56. Vancouver, BC, Canada: MIT
press.

105. Rousseeuw PJ. Silhouettes: a graphical aid to the interpre-
tation and validation of cluster analysis. J Comput Appl Math
1987;20:53–65.

106. van der Maaten L, Hinton G. Visualizing data using t-SNE. J
Mach Learn Res 2008;9:2579–605.

107. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-
cell gene expression data analysis. Genome Biol 2018;
19(1):15.

108. Butler A, Hoffman P, Smibert P, et al. Integrating single-cell
transcriptomic data across different conditions, technolo-
gies, and species. Nat Biotechnol 2018;36(5):411.

109. Traag VA, Waltman L, van Eck NJ. From Louvain to Lei-
den: guaranteeing well-connected communities. Sci Rep
2019;9(1):1–12.

110. Luecken MD, Theis FJ. Current best practices in single-cell
RNA-seq analysis: a tutorial. Mol Syst Biol 2019;15(6):e8746.

111. Ramazzotti D, Angaroni F, Maspero D, et al. Longitudi-
nal cancer evolution from single cells. bioRxiv 2020. doi:
10.1101/2020.01.14.906453.

112. Zhou Z, Xu B, Minn A, et al. DENDRO: genetic heterogene-
ity profiling and subclone detection by single-cell RNA
sequencing. Genome Biol 2020;21(1):1–15.

113. Damiani C, Maspero D, Di Filippo M, et al. Integra-
tion of single-cell RNA-seq data into population mod-
els to characterize cancer metabolism. PLoS Comput Biol
2019;15(2):e1006733.

114. Graudenzi A, Maspero D, Damiani C. FBCA, a multiscale
modeling framework combining cellular automata and
flux balance analysis. J Cell Autom 2020;15:75–95.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa222/5916940 by U

niversita di M
ilano Bicocca user on 08 January 2023

APPENDIX A. INTERDISCIPLINARY PUBLICATIONS

A.2 Classifying Cancer Samples from Metabolic

Networks

Contribution. In this chapter I will discuss the work done for the following
articles:

[Mac+21] J. Machicao, F. Craighero, D. Maspero, F. Angaroni, C. Dami-
ani, A. Graudenzi, M. Antoniotti, O. M. Bruno. “On the Use of
Topological Features of Metabolic Networks for the Classification
of Cancer Samples”. In: CURRENT GENOMICS 22.2 (2021)

Summary. The recent surge in availability and reliability of -omics data
encouraged the development of computational methods to investigate the
metabolism in cancer [TK12; LA13]. In this regard, classifying cancer samples
from metabolic properties represents a fundamental challenge towards a data-
driven understanding of the disease. As done in [Gra+18; Dam+20], we first
built a dataset by projecting transcriptomic data onto metabolic networks,
allowing to derive an approximate activity value for each reaction, represented
by the edges. Then, our contributions can be summarized as follows:

• Metabolic Networks Pruning: we proposed a pruning strategy to keep
only the relevant edges (metabolic reactions) of the network.

• Metabolic Network Topological Properties as Features: we selected network
metrics such as the average degree and the assortativity as relevant
properties for the classification task.

• Model Selection: we evaluated multiple classifiers with a nested cross-
validation to select the best performing one in our setting.

The experiments were performed using labelled expression profiles from
the TCGA dataset [Cir+15], projected onto the Recon2.2 metabolic net-
work [Jam+19]. The final results confirmed the goodness of metabolic networks’
topological features to distinguish cancer samples, motivating additional studies
on this topic.

Implementation. The experiments performed in the paper has been open-
sourced on a Github repositorya.

ahttps://github.com/BIMIB-DISCo/MET-NET-CLASSIFICATION

118

https://github.com/BIMIB-DISCo/MET-NET-CLASSIFICATION

Send Orders for Reprints to reprints@benthamscience.net

88 Current Genomics, 2021, 22, 88-97

RESEARCH ARTICLE

 1389-2029/21 $65.00+.00 © 2021 Bentham Science Publishers

On the Use of Topological Features of Metabolic Networks for the Classifi-
cation of Cancer Samples

Jeaneth Machicao1,2,+,*, Francesco Craighero3,+, Davide Maspero3,4, Fabrizio Angaroni3,

Chiara Damiani5,6,†, Alex Graudenzi4,7,†,*, Marco Antoniotti3,7,† and Odemir M. Bruno1,†,*

1São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil; 2School of Engineering, University of São

Paulo, São Paulo, Brazil; 3Department of Informatics, Systems and Communication, University of Milan-Bicocca, Mi-

lan, Italy; 4Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR),

Segrate, Milan, Italy; 5Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy; 6Sysbio

Centre for Systems Biology, Milan, Italy; 7Bicocca Bioinformatics, Biostatistics and Bioimaging Center (B4), University

of Milan-Bicocca, Milan, Italy

 Abstract: Background: The increasing availability of omics data collected from patients affected by

severe pathologies, such as cancer, is fostering the development of data science methods for their

analysis.

Introduction: The combination of data integration and machine learning approaches can provide

new powerful instruments to tackle the complexity of cancer development and deliver effective di-

agnostic and prognostic strategies.

Methods: We explore the possibility of exploiting the topological properties of sample-specific met-

abolic networks as features in a supervised classification task. Such networks are obtained by pro-

jecting transcriptomic data from RNA-seq experiments on genome-wide metabolic models to define

weighted networks modeling the overall metabolic activity of a given sample.

Results: We show the classification results on a labeled breast cancer dataset from the TCGA data-

base, including 210 samples (cancer vs. normal). In particular, we investigate how the performance

is affected by a threshold-based pruning of the networks by comparing Artificial Neural Networks,

Support Vector Machines and Random Forests. Interestingly, the best classification performance is

achieved within a small threshold range for all methods, suggesting that it might represent an effec-

tive choice to recover useful information while filtering out noise from data. Overall, the best accu-

racy is achieved with SVMs, which exhibit performances similar to those obtained when gene ex-

pression profiles are used as features.

Conclusion: These findings demonstrate that the topological properties of sample-specific metabolic

networks are effective in classifying cancer and normal samples, suggesting that useful information

can be extracted from a relatively limited number of features.

A R T I C L E H I S T O R Y

Received: July 07, 2020

Revised: December 16, 2020

Accepted: December 18, 2020

DOI:

10.2174/1389202922666210301084151

Keywords: Metabolic networks, cancer sample classification, machine learning, RNA-seq data, topological properties, network
pruning.

1. INTRODUCTION

The development of automated strategies for the classifi-
cation of cancer samples in distinct categories (e.g., sub-
types, risk groups, etc.) is one of the key challenges in cur-
rent biosciences [1]. On the one hand, this might lead to the
discovery of efficient, personalized diagnostic, prognostic,
and therapeutic strategies for cancer patients. On the other

*Address correspondence to these authors at the São Carlos Institute of

Physics, University of São Paulo, São Carlos, Brazil; Institute of Molecular

Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-

CNR), Segrate, Milan, Italy

E-mails: machicao@usp.br, alex.graudenzi@ibfm.cnr.it, bruno@ifsc.usp.br
+Co-first authors; †Co-senior authors.

hand, it could allow unraveling some of the still undeci-
phered mechanisms and processes underlying cancer devel-
opment, leading to a data-driven understanding of the dis-
ease.

It is known that effective classification and clustering of
cancer samples can be achieved by employing the infor-
mation on expression data [2-7], genomic alteration profiles
[8, 9], interaction networks [10], and even signaling path-
ways [11, 12]. In this work, however, we specifically focus
on the metabolic properties that may distinguish cancer from
normal samples. In fact, metabolic deregulation is one of the
key hallmarks of cancer [13-15], even if its underlying
mechanisms are still partially unknown. In this respect, in
recent years, an increasing number of computational strate-

On the Use of Topological Features of Metabolic Networks Current Genomics, 2021, Vol. 22, No. 2 89

gies have been devised, in order to take advantage of the
growing availability and reliability of -omics data to investi-
gate the alterations of metabolism in cancer [16-19]. Very
often, such data have been employed in constraint-based
models, such as Flux Balance Analysis (FBA), in which
metabolic fluxes are simulated to compare different experi-
mental scenarios [20-24].

Moreover, more recently, approaches coupling con-
straint-based metabolic modeling with supervised machine
learning algorithms have been proposed [25]. In our case, we
explore for the first time the possibility of employing the
topological properties of metabolic networks as input fea-
tures of classification algorithms. To this end, we rely on an
approach firstly introduced in [26,27] in which transcriptom-
ic data, such as RNA-seq, are employed to determine the
approximate activity value of the reactions included in a giv-
en metabolic network.

More in detail, by introducing a relevance threshold on
the metabolic activity level, we pruned the original metabolic
network to define individual-specific networks in which only
the significantly active reactions are preserved. The topolog-
ical properties of such individual-specific networks are then
used as features to perform a supervised classification task
via various algorithmic strategies and, in particular, Multi-
Layer Perceptrons (MLPs), Support Vector Machines
(SVMs) and Random Forests (RFs).

To investigate our hypothesis, this work presents the
classification results in a simple scenario in which the sam-
ple categories are known a priori - cancer vs. normal - con-
cerning the TCGA-BRCA breast cancer dataset [28], which
includes 210 total samples.

We show that noteworthy classification performance can
be achieved by using a few key topological properties of met-
abolic networks, i.e., average degree, average hierarchical
degree, average geodesic path length and assortativity. Inter-
estingly, a similar pruning threshold (in the range 0.01 – 0.1) is
identified as optimal for all tested machine learning strategies,
suggesting that it could be an effective choice to extract useful
information from the “relevant” activity of metabolic net-
works, while discarding possible artifacts due to noisy obser-
vations. Overall, the best classification performance is ob-
tained with SVMs and threshold 0.1, which exhibit 0.866 of
(average) accuracy, 0.86 precision and 0.879 recall on the test
set, after k-fold cross-validation and hyper-parameter estima-
tion. Furthermore, we show that the best performing SVM
classifier (with the optimal threshold) delivers similar classifi-
cation performance with respect to an analogous classifier
processing a reduced gene expression feature vector, as com-
puted by selecting the 5 principal components on the list of
1673 metabolic genes from Recon2.2 [29].

These results prove that the projection of transcriptomic
activity on metabolic networks provides useful information
to efficiently classify cancer samples and might pave the way
for the development of strategies for experimental hypothesis
generation.

2. MATERIALS AND METHODS

2.1. Integration of RNA-seq and Metabolic Networks

As proposed earlier [26, 27], it is possible to project tran-
scriptomic data onto human metabolic networks [30], to de-

rive an approximate activity value for each metabolic reac-
tion in any given sample.

We first employ an input metabolic network 𝑀 such as
the Human Metabolic Reaction (HMR) [31] or Recon [29,
32]. 𝑀 is a bipartite-directed graph that includes two kinds of
nodes: (i) metabolites (i.e., substrates or products), and (ii)
metabolic reactions. The edges in 𝑀 connect either: (i) the
substrates and the relative reaction, or (ii) a reaction and the
relative products. The total number of nodes of 𝑀 is N,
whereas the total number of edges is E. Reaction nodes are
associated with Gene-Protein-Reaction (GPR) rules, i.e.,
logical formulas that describe the related catalyses via AND
and OR logical operators. In particular, AND rules are em-
ployed when distinct genes encode different subunits of the
same enzyme, whereas OR rules are used when distinct
genes encode isoforms of the same enzyme.

RNA-seq data are then used to provide an approximate
activity value to each reaction in the input network. In par-
ticular, our method takes as input a n (genes) × m (samples)
matrix T in which each element 𝑇𝑔,𝑠, 𝑔 = 1,… , 𝑛, 𝑠 =
1,… ,𝑚, includes the transcript level of gene g in sample s
(the Reads per Kilobase per Million mapped reads –
RPKM).

For each reaction in the input network 𝑟 ∈ 𝐺 and for each
sample 𝑠 = 1,… ,𝑚, we define a Reaction Activity Score
(RAS), by distinguishing two cases.

Reactions with GPR including an AND operator,

𝑅𝐴𝑆𝑟,𝑠 = min(𝑇𝑔,𝑠: 𝑔 ∈ 𝒜𝓇), (1)

where 𝒜𝑟 is the set of genes that encode the subunits of
the enzyme catalyzing reaction r.

Reactions with GPR including an OR operator,

𝑅𝐴𝑆𝑟,𝑠 = ∑ 𝑇𝑔,𝑠𝑔∈𝒪𝓇
, (2)

where 𝒪𝓇 is the set of genes that encode isoforms of the
enzyme that catalyzes reaction r.

In case of composite reactions, we respect the standard
precedence of the two operators. The rationale underlying
the definition of the RAS is that enzyme isoforms (OR) con-
tribute additively to the overall activity of a certain reaction,
whereas enzyme subunits (AND) limit its activity. RASs are
finally normalized to obtain values in the range [0, 1] (with 0
meaning no activity and 1 meaning maximum activity ob-
served in the dataset).

Even though this simplified approach neglects the heter-
ogeneity of reaction kinetic constants, protein binding affini-
ties and translation rates, it was proven effective in the inves-
tigation of cancer metabolic deregulation and in cancer sam-
ple stratification [26, 27].

2.2. Cancer Sample Classification via Metabolic Network
Pruning

We define the sample-specific metabolic network of a
given sample s as the weighted adjacency matrix 𝑊𝑠, which
contains 𝑁 × 𝑁 elements, such that each element 𝑤𝑖𝑗

𝑠 is equal
to: (i) 𝑅𝐴𝑆𝑗,𝑠 if i is a substrate of reaction j, (ii) 𝑅𝐴𝑆𝑖,𝑠 if i is a
reaction and j one of its products, (iii) 0 otherwise.

90 Current Genomics, 2021, Vol. 22, No. 2 Machicao et al.

 (a) (b)

Fig. (1). Number of nodes ⟨NTl,s⟩ (averaged on all samples) (a) and number of edges ⟨ETl,s⟩ (averaged on all samples) (b) of the giant compo-

nent GTl,s of the sample-specific metabolic network (computed from the Recon2.2 network [29]), in addition to their standard deviation (error

bar), defined by different threshold Tl values either on normal and cancer samples. (A higher resolution / colour version of this figure is avail-

able in the electronic copy of the article).

Fig. (2). The giant components of the metabolic network of the cancer sample of patient TCGA BH A0DZ obtained by projecting RNA-seq

data on Recon2.2 metabolic network [29], are shown. 4 distinct giant components are shown, obtained with the following relevance thresh-

olds: 10−4, 0.1,0.4,0.7. Networks were drawn via Cytoscape [37]. (A higher resolution / colour version of this figure is available in the elec-

tronic copy of the article).

Since we are interested in exploiting the topological

properties of the “giant component” of the sample-specific
metabolic network (as proposed, e.g., in [33]), we employ a
network pruning procedure to select the relevant metabolic
reactions. This threshold criterion was employed earlier [34-
36]. In detail, a threshold parameter 𝑇𝑙 ∈ [0,1] is used to ob-
tain an unweighted and thresholded adjacency matrix 𝐴𝑇𝑙,𝑠,
the elements of which are defined as follows:

 𝐴𝑖𝑗
𝑇𝑙,𝑠 = {

1, 𝑖𝑓 𝑤𝑖𝑗
𝑠 ≥ 𝑇𝑙

 0, 𝑖𝑓 𝑤𝑖𝑗
𝑠 < 𝑇𝑙

 ∀𝑖, 𝑗 = 1,… ,𝑁. (3)

It must be noted that we have focused on the larger than
option, because we can hypothesize that only significantly
active reactions (above the threshold) are responsible for the
phenotypic/functional properties of cells. By scanning differ-
ent values of the threshold, we can then evaluate the impact
on the performance of classifiers that take as input certain
topological measurements of the resulting giant component
(see below), thus identifying an optimal threshold value.

Clearly the threshold parameter determines the size of the
giant component, i.e., the largest connected subgraph of the
sample-specific metabolic network, which we define as
𝐺𝑇𝑙,𝑠 and which includes 𝑁𝑇𝑙,𝑠 nodes and 𝐸𝑇𝑙,𝑠 edges.

For instance, in Fig. (1), one can see how the number of
nodes and edges of the giant component of the sample-
specific metabolic network (computed from the Recon2.2
network [29, 32]) is generally affected by the choice of dis-
tinct thresholds, regarding both cancer and normal samples.
In greater detail, on the left side of Fig. (1a), smaller thresh-
olds, such as 𝑇𝑙 ∈ {10−4, 10−3, 10−2, 10−1}, lead to a larger
size of the giant component (on average), while on the right
side, larger thresholds, such as 𝑇𝑙 ∈ {0.2, 0.3, … , 0.7}, lead to
a radical network reduction, with a threshold 𝑇𝑙 = 0.7 retain-
ing 127 nodes on average, which represents approximately
1.45% of the total number of nodes of the original metabolic
network. As a representative example, the shrinking of the
giant component for a specific sample is visually represented
in Fig. (2).

On the Use of Topological Features of Metabolic Networks Current Genomics, 2021, Vol. 22, No. 2 91

We also note that this behavior occurs similarly on both
cancer and normal samples, even if the size of the giant
component of the former ones tends to be slightly smaller.
One may speculate that cancer subpopulations engage in a
relatively lower number of metabolic functions with respect
to normal cells, given that their main objective is “selfish”
proliferation. Further investigations are needed to validate
this interesting hypothesis [37].

2.3. Algorithmic Methods for Classification

In general, the choice of adequate network descriptors is
crucial for pattern recognition purposes. Typically, the fea-
ture extraction is based on well-established network structur-
al measures (see details in Section 2.3.1). The concurrent use
of well-known measures such as degree, mean degree, clus-
tering coefficient, mean hierarchical degree, centrality, and
even spectral measurements, can identify global properties
shared by a large majority of empirical and synthetic net-
works such as random, small-world, scale-free networks, and
geographic networks models [38, 39].

2.3.1. Features Based on Network Structural Measures

Networks measurements falling in various categories
(e.g., connectivity-related, distance-related, spectral, degree
correlation measures) can be effectively used to characterize
the topological properties of real-world networks [38, 40]. In
our case, we are interested in determining whether certain
topological measurements of the giant component of the
sample-specific metabolic network obtained from RNA-seq
data projection, and after opportune threshold-based pruning,
can be effectively employed as features to classify cancer
samples. In particular, we selected the following measures.

Average Degree: Among the connectivity-related meas-
urements, we here consider the degree (or connectivity) 𝑘𝑖

𝑇𝑙,𝑠
of node i of the giant component of sample s, given threshold
𝑇𝑙, as the number of neighbors of a node 𝑖𝑇𝑙,𝑠 defined by:

𝑘𝑖
𝑇𝑙,𝑠 = ∑ 𝐴𝑖𝑗

𝑇𝑙,𝑠
𝑁𝑇𝑙,𝑠

𝑗=1
.

Accordingly, the average degree of the giant component
is defined by Eq. (4), as follows:

⟨𝑘𝑇𝑙,𝑠⟩ =
1

𝑁𝑇𝑙,𝑠
∑ 𝑘𝑖

𝑇𝑙,𝑠
𝑁𝑇𝑙,𝑠

𝑖=1
. (4)

Average Hierarchical Degree: The hierarchical degree

ki
Tl,s

h

of node i can also be measured considering the connec-

tivity of the neighboring nodes constrained to a hierarchical

level h. As an example, in social networks, the hierarchical

degree of level 2 of given node i, ki
2, is the sum of the de-

grees of the neighbors of its neighbors. Therefore, the mean

hierarchical degree of the giant component of a sample-

specific metabolic network is given by Eq. (5), as follows:

⟨𝑘𝑇𝑙,𝑠
ℎ
⟩ =

1

𝑁𝑇𝑙,𝑠
∑ 𝑘𝑖

𝑇𝑙,𝑠
ℎ𝑁𝑇𝑙,𝑠

𝑖=1
 . (5)

Average Geodesic Path Length: A path is defined as the

sequence of nodes visited to go from node i to j. The distance

between them is the number of edges within the path, and 𝑑𝑖𝑗

is defined as the geodesic path, i.e., the smallest path length.

When there is no path between i and j, 𝑑𝑖𝑗 = 0. The average

geodesic path length of the giant component of the sample-

specific metabolic network is given by:

 ⟨𝑙𝑇𝑙,𝑠⟩ =
1

𝑁𝑇𝑙,𝑠(𝑁𝑇𝑙,𝑠−1)
∑ 𝑑𝑖𝑗𝑖≠𝑗

, (6)

where i and j are two nodes of the giant component and
1

𝑁𝑇𝑙,𝑠(𝑁𝑇𝑙,𝑠−1)
 corresponds to a normalization factor, consider-

ing a fully connected network [40].

Assortativity: The assortativity 𝛤𝑇𝑙,𝑠 [41], i.e., the Pear-
son correlation coefficient of degree among all pairs of
linked nodes i and j of the giant component, quantifies the
tendency of the nodes of a given degree k to connect to
nodes with a similar degree and, in our case, it is defined as
follows:

 𝛤𝑇𝑙,𝑠 =
(

1

𝑁𝑇𝑙,𝑠
)∑ (𝑘𝑖

𝑇𝑙,𝑠𝑘𝑗

𝑇𝑙,𝑠𝐴𝑖𝑗

𝑇𝑙,𝑠)
𝑗>𝑖

−[(1/𝑁𝑇𝑙,𝑠)∑ (1/2)(𝑘𝑖

𝑇𝑙,𝑠+𝑘𝑗

𝑇𝑙,𝑠)𝐴𝑖𝑗

𝑇𝑙,𝑠

𝑗>𝑖
]

2

(
1

𝑁𝑇𝑙,𝑠
)∑ (1/2)(𝑘𝑖

𝑇𝑙,𝑠
2
+𝑘𝑗

𝑇𝑙,𝑠
2
)𝐴𝑖𝑗

𝑇𝑙,𝑠

𝑗>𝑖

−[(1/𝑁𝑇𝑙,𝑠)∑ (1/2)(𝑘𝑖

𝑇𝑙,𝑠+𝑘𝑗

𝑇𝑙,𝑠)𝐴𝑖𝑗

𝑇𝑙,𝑠

𝑗>𝑖
]

2 , (7)

𝛤𝑇𝑙,𝑠 is a value within the range [−1, 1]. Values closer to
1 indicate a positive correlation (nodes with high degree tend
to connect to nodes with high degree), while values closer to
−1, indicate a negative correlation (nodes with a high degree
tend to connect to nodes with low degree), whereas values
close to 0 indicates the absence of linear dependence.

In the following, we will show how to compose a feature
vector by considering a set of topological measurements [35,
36, 38]. In this respect, the giant component of a sample-
specific metabolic network 𝐺𝑇𝑙,𝑠can be characterized by a
tuple containing: (i) the average degree ⟨𝑘𝑇𝑙,𝑠⟩ (Eq. 4), (ii)
the average hierarchical degree of level 2 ⟨𝑘𝑇𝑙,𝑠⟩ (Eq. 5), (iii)
the average hierarchical degree of level 3 ⟨𝑘𝑇𝑙,𝑠

3
⟩ (Eq. 5),

(iv) the average geodesic path length ⟨𝑙𝑇𝑙,𝑠⟩ (Eq. 6) and (v)
the assortativity 𝛤𝑇𝑙,𝑠 (Eq. 7). The vector is given by:

𝜙⃗ (𝑇𝑙 , 𝑠) = [⟨𝑘𝑇𝑙,𝑠⟩, ⟨𝑘𝑇𝑙,𝑠
2
⟩, ⟨𝑘𝑇𝑙,𝑠

3
⟩, ⟨𝑙T𝑙,𝑠⟩, 𝛤𝑇𝑙,𝑠] (8)

We notice that other measures such as the clustering co-
efficient might be employed as features. However, since in
our case the input network is bipartite, there are no triangle
neighborhoods and, accordingly, the clustering coefficient
would always be 0. Since our framework is designed to be
general, one can expect this feature to be relevant in different
experimental scenarios, with distinct datasets and alternative
representations of reaction graphs [42-44].

2.4. Classification Setup

Given any relevance threshold 𝑇𝑙, the feature vectors are
extracted for the resulting giant component of each sample s,
and the classification step can be performed. The main goal
of this analysis is to evaluate the classification performance
of various classifiers ℳ, i.e., MLPs, SVMs and RFs on the
feature vector 𝜙⃗ (𝑇𝑙 , 𝑠). Furthermore, we tested the same
classifiers on a reduced feature vector, including the 5 first
principal components of the expression profiles of the 1673
metabolic genes present in the Recon2.2 model [29], in order
to provide a comparison on the same number of features em-
ployed in our approach.

92 Current Genomics, 2021, Vol. 22, No. 2 Machicao et al.

Table 1. Hyperparameters grid search for the tested classifiers, i.e., MLPs, SVMs and RFs, executed via the scikit-learn Python

library. Parameter names are the sklearn arguments of the related functions (default was used for the other parameters).

Methods Functions Parameters Grid Search Values

MLP neuralnetwork.MLPClassifier

solver

hidden_layer_sizes

batch_size

learning_rate_init

learning_rate

max_iter

[adam, lbfgs]

[(50,),(100,),(50,50)]

[16, 32, 64]

[0.1, 0.01, 0.001]

[constant, adaptative]

10000

RF ensemble.RandomForestClassifier

max_depth

max_features

min_samples_leaf

min_samples_split

n_estimator

[10, 20, 40, None]

[auto, sqrt]

[1, 2, 3]

[2, 3, 5]

[100, 200, 500, 1000]

SVM svm.SVC

C

gamma

tol

kernel

[2-5, 2-4,..., 212]

[2^{-15} 2-14,..., 24]

[10-3, 10-4]

[rbf, sigmoid, linear]

Fig. (3). Kolmogorov-Smirnov statistic (KS-test, [48]) between normal and cancer samples for each threshold and network topological meas-

ure: average degree ⟨kTl,s⟩, assortativity ΓTl,s average hierarchical degree of level 2 ⟨kTl,s
2
⟩ and 3 ⟨kTl,s

3
⟩ and average geodesic path length

⟨lTl,s⟩. The higher the K-S test is, the more the distribution of the network measure is different between normal and cancer samples. The high-

est values are obtained with ⟨kTl,s⟩, ⟨kTl,s
2
⟩, and ⟨kTl,s

3
⟩ and thresholds equal to 10−2 and 0.1. (A higher resolution / colour version of this

figure is available in the electronic copy of the article).

In order to prevent over-optimistic results, we performed

for each classifier a nested cross-validation as proposed ear-
lier [45] and detailed as follows.

The original dataset, including cancer and normal sam-
ples, is split into 5 folds, ensuring the balance between clas-
ses. 5-fold outer cross-validation is executed by using: (i)
one fold as the test set to assess the model performance and
(ii) 4 folds in an inner 5-fold cross-validation procedure to
select the optimal hyperparameters h of the model ℳ(ℎ) via
grid search (Table 1). The whole procedure is repeated 3
times to ensure robustness to the results. The performance of
all classifiers is assessed on average accuracy, precision and
recall with respect to ground-truth labels.

All the experiments described above were performed us-
ing the scikit-learn Python library [46].

2.5. Network Datasets

We tested our approach on the breast cancer dataset
TCGA-BRCA published earlier [28]. We downloaded the
dataset via the cBioPortal [47]. This dataset includes the ex-
pression profile (RNA Seq V2 RSEM) of biopsies taken
from 817 patients. We selected the 105 patients for which the
expression profiles of both cancer and normal tissues are
provided, for a total of 210 samples used in our analysis.

RNA-seq data were projected on the Recon2.2 metabolic
network [29, 32] to obtain a dataset in which a Reaction Ac-
tivity Score is assigned to each metabolic reaction in each
sample (see above). The RASs were then normalized by di-
viding each reaction score by the maximum value of all
samples. Finally, normalized RAS profiles are used to weigh
the metabolic network as described above.

On the Use of Topological Features of Metabolic Networks Current Genomics, 2021, Vol. 22, No. 2 93

Fig. (4). Projection of cancer and normal samples on the space of topological measure pairs and (on the diagonal) the distribution for each

measure and every sample category, for a selected threshold Tl = 0.1. (A higher resolution / colour version of this figure is available in the

electronic copy of the article).

 SVM MLP RF

Fig. (5). From left to right: average accuracy (A), average precision on cancer samples (B) and average recall on cancer samples (C) with

SVMs, MLPs and RFs. The average is computed on the test sets via a repeated nested cross-validation, for three different seeds, whereas the

error bars represent the standard deviation (see Section 2.4 for additional details). The best thresholds are Tl = 10−2 and Tl = 0.1. (A higher

resolution / colour version of this figure is available in the electronic copy of the article).

94 Current Genomics, 2021, Vol. 22, No. 2 Machicao et al.

Fig. (6). Decision boundary of the SVM classifier with optimal hyperparameters and threshold Tl = 0.1 on the full dataset. The axes corre-

spond to the first two principal components of the full feature vector ϕ⃗⃗ (Tl, s). (A higher resolution / colour version of this figure is available

in the electronic copy of the article).

3. RESULTS

3.1. RAS Threshold Analysis

A small 𝑇𝑙 will result in larger giant components while, in
contrast, higher values of 𝑇𝑙 will result in smaller giant com-
ponents. To choose the best classifier, we evaluated the per-
formance obtained by the following distinct threshold values:

 𝑇𝑙 ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, … , 0.7}. (9)

Thus, each feature vector 𝜙⃗ (𝑇𝑙 , 𝑠), contains the five topo-
logical measures defined above as descriptors (see Section
2.3.1).

To test the discrimination power of the feature vectors
𝜙⃗ (𝑇𝑙 , 𝑠), in Fig. (3), we computed the Kolmogorov-Smirnov
statistic [48] between normal and cancer samples for each
threshold and topological measure. The KS statistic 𝐷 (KS-
test) is the distance between the cumulative probability dis-
tributions; hence the higher is the value, the more the net-
work measures are different between normal and cancer
samples.

As a result, in our dataset, degree statistics, i.e., ⟨𝑘𝑇𝑙,𝑠⟩,
⟨𝑘𝑇𝑙,𝑠

2
⟩ and ⟨𝑘𝑇𝑙,𝑠

3
⟩, achieve the highest D (KS-test), in par-

ticular for thresholds equal to 10−2 and 0.1. In Fig. (4), we
plotted the distributions of all pairs of features in 𝜙⃗ (𝑇𝑙 , 𝑠),
for 𝑇𝑙 = 0.1. In accordance with the results of Fig. (3), the
degree statistics distributions and, in particular, ⟨𝑘𝑇𝑙,𝑠

2
⟩ and

⟨𝑘𝑇𝑙,𝑠
3
⟩, have the sharpest difference among normal and can-

cer samples.

3.2. Classification Performance

The classification performance was assessed for all clas-
sifiers (i.e., MLPs, SVMs and RFs) on the feature vector
𝜙⃗ (𝑇𝑙 , 𝑠), with regard to all relevance thresholds, via the nest-
ed cross-validation procedure described above (see Section
2.4). In addition, we employed as benchmark three analo-
gous classifiers (i.e., MLPs, SVMs and RFs), which were

provided as input with a feature vector including the 5 first
principal components (PCs) of the expression profiles of the
1673 metabolic genes.

In Fig. (5), we report the average accuracy, precision and
recall for all tested classifiers, with respect to all relevance
thresholds, as well as the benchmark classifiers on gene ex-
pression PCs, by employing the ground-truth cancer sample
labels (the error bars represent the standard deviation).

Interestingly, the best performance is achieved for all
classifiers with thresholds in the small range 𝑇𝑙 = 10−2 and
𝑇𝑙 = 0.1, and points at the existence of an effective pruning
strategy to maintain the “relevant” active metabolic path-
ways that discriminate cancer from normal samples, while
limiting the confounding effects possibly due to noisy obser-
vations and biological variability.

More in detail, the best performing classifier is provided
by SVMs, which reach an average accuracy of 0.86 and 0.87,
a precision of 0.87 and 0.86 and a recall of 0.86 and 0.88, for
𝑇𝑙 = 10−2 and 𝑇𝑙 = 0.1, respectively.

Interestingly, such performance is extremely similar to
that obtained with SVMs on the vector of gene expression
PCs (average accuracy = 0.88, precision = 0.88 and recall =
0.89) and slightly superior to that of MLPs and RFs on the
same vector. This result suggests that the information ex-
tracted from the few selected topological measures on the
giant component of the sample-specific metabolic network is
effective in discriminating cancer from normal samples, sim-
ilarly to benchmark approaches processing gene expression
data (5).

Finally, in Fig. (6), the decision boundary of the best per-
forming SVM classifier, i.e., obtained with 𝑇𝑙 = 0.1 and
optimal hyperparameters is displayed on the first two PCs of
the feature vector 𝜙⃗ (𝑇𝑙 , 𝑠), from which one can see that the
method is able to correctly classify also the outliers of both
categories.

On the Use of Topological Features of Metabolic Networks Current Genomics, 2021, Vol. 22, No. 2 95

CONCLUSION

In this work, we have introduced a new computational
framework for the classification of cancer samples, which
combines the integration of transcriptomic data and metabol-
ic networks with state-of-the-art machine learning approach-
es. This task is of practical relevance in many biomedical
contexts and might pave the way for the development of au-
tomated strategies for experimental hypothesis generation. In
particular, the introduction of our framework contributes to
the emerging field of approaches combining sample-specific
metabolic modeling with machine learning to classify cancer
samples and/or to predict drug response, as recently re-
viewed [49, 50].

More in detail, we here proved that the information on
the metabolic activity of single samples, derived via integra-
tion of highly accessible RNA-seq data, can be effectively
used to classify healthy and pathological states, a result that
appears to be robust when the original networks are signifi-
cantly pruned via a relevance threshold. All in all, this result
would suggest that the useful information to determine pos-
sibly aberrant states in a given sample can be derived from
the high-level (topological) properties of a relatively limited
number of active processes. The identification and character-
ization of such processes deserve further investigation.

Regarding our machine learning approach, we here relied
on classical topological measures, such as degree, hierar-
chical degrees, average geodesic path length and assortativi-
ty, to encode the structural information of the metabolic net-
work. Additional experiments may employ recent graph rep-
resentation learning techniques [51, 52], including graph
kernels [53] and convolutional neural networks on graphs
[54], to automatically extract a low-dimensional feature vec-
tor of the input network.

We finally remark that extensions of the framework are cur-
rently ongoing to test its applicability to more complex scenari-
os, involving, for instance, multiclass and multi-label classifica-
tion with respect to cancer subtypes and risk categories.

ETHICS APPROVAL AND CONSENT TO PARTICI-
PATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No animals/humans were used for studies that are the ba-
sis of this research.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The datasets generated and analyzed for this study can be
found at this link: https://github.com/BIMIB-DISCo/MET-
NET-CLASSIFICATION.

FUNDING

Financial support from the Italian Ministry of University
and Research (MIUR) through grant “Dipartimenti di Eccel-

lenza 2017” to University of Milano-Bicocca, Department of
Biotechnology and Biosciences is acknowledged. Partial
support was also provided by the CRUK/AECC/AIRC Ac-
celerator Award #22790, “Single-cell Cancer Evolution in
the Clinic”. J.M. is grateful for the support from the National
Council for Scientific and Technological Development
(CNPq grant #155957/2018-0) and São Paulo Research
Foundation (FAPESP grant #2020/03514-9).

O.M.B. acknowledges support from CNPq (Grant
#307897/2018-4) and FAPESP (grant #2014/08026-1 and
2016/18809-9).

This work was also partially supported by a Bicocca
2020 Starting Grant to F.A.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or
otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.;
Fotiadis, D.I. Machine learning applications in cancer prognosis
and prediction. Comput. Struct. Biotechnol. J., 2014, 13, 8-17.

 http://dx.doi.org/10.1016/j.csbj.2014.11.005 PMID: 25750696
[2] Furey, T.S.; Cristianini, N.; Duffy, N.; Bednarski, D.W.; Schum-

mer, M.; Haussler, D. Support vector machine classification and
validation of cancer tissue samples using microarray expression da-
ta. Bioinformatics, 2000, 16(10), 906-914.

 http://dx.doi.org/10.1093/bioinformatics/16.10.906 PMID:
11120680

[3] Sotiriou, C.; Neo, S-Y.; McShane, L.M.; Korn, E.L.; Long, P.M.;
Jazaeri, A.; Martiat, P.; Fox, S.B.; Harris, A.L.; Liu, E.T. Breast
cancer classification and prognosis based on gene expression pro-
files from a population-based study. Proc. Natl. Acad. Sci. USA,
2003, 100(18), 10393-10398.

 http://dx.doi.org/10.1073/pnas.1732912100 PMID: 12917485
[4] Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.;

Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando,
A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. Mi-
croRNA expression profiles classify human cancers. Nature, 2005,
435(7043), 834-838.

 http://dx.doi.org/10.1038/nature03702 PMID: 15944708
[5] CP de Souto, M.; G Costa, I.; SA de Araujo, D.; B Ludermir, T.;

Schliep, A. Clustering cancer gene expression data: a comparative
study. BMC Bioinformatics, 2008, 9(1), 497.

 http://dx.doi.org/10.1186/1471-2105-9-497
[6] Vanneschi, L.; Farinaccio, A.; Mauri, G.; Antoniotti, M.; Provero,

P.; Giacobini, M. A comparison of machine learning techniques for
survival prediction in breast cancer. BioData Min., 2011, 4(1), 12.

 http://dx.doi.org/10.1186/1756-0381-4-12 PMID: 21569330
[7] Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.;

Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.;
Gräf, S.; Ha, G.; Haffari, G.; Bashashati, A.; Russell, R.; McKin-
ney, S.; Langerød, A.; Green, A.; Provenzano, E.; Wishart, G.;
Pinder, S.; Watson, P.; Markowetz, F.; Murphy, L.; Ellis, I.;
Purushotham, A.; Børresen-Dale, A.L.; Brenton, J.D.; Tavaré, S.;
Caldas, C.; Aparicio, S. The genomic and transcriptomic architec-
ture of 2,000 breast tumours reveals novel subgroups. Nature,
2012, 486(7403), 346-352.

 http://dx.doi.org/10.1038/nature10983 PMID: 22522925
[8] Caravagna, G.; Graudenzi, A.; Ramazzotti, D.; Sanz-Pamplona, R.;

De Sano, L.; Mauri, G.; Moreno, V.; Antoniotti, M.; Mishra, B.
Algorithmic methods to infer the evolutionary trajectories in cancer
progression. Proc. Natl. Acad. Sci. USA, 2016, 113(28), E4025-
E4034.

96 Current Genomics, 2021, Vol. 22, No. 2 Machicao et al.

 http://dx.doi.org/10.1073/pnas.1520213113 PMID: 27357673
[9] Caravagna, G.; Giarratano, Y.; Ramazzotti, D.; Tomlinson, I.; Gra-

ham, T.A.; Sanguinetti, G.; Sottoriva, A. Detecting repeated cancer
evolution from multi-region tumor sequencing data. Nat. Methods,
2018, 15(9), 707-714.

 http://dx.doi.org/10.1038/s41592-018-0108-x PMID: 30171232
[10] Hofree, M.; Shen, J.P.; Carter, H.; Gross, A.; Ideker, T. Network-

based stratification of tumor mutations. Nat. Methods, 2013,
10(11), 1108-1115.

 http://dx.doi.org/10.1038/nmeth.2651 PMID: 24037242
[11] Michael, L.G.; Joseph, E.L.; William, T.B.; Jong, W.K; Quanli,

W.; Matthew, D.C; Michael, B.D; Michael, K.; Bernard Mathey,
P.; Anil, P. A pathway-based classification of human breast cancer.
Proceedings of the National Academy of Sciences, 2010, 107(15),
6994-6999.

[12] Graudenzi, A.; Cava, C.; Bertoli, G.; Fromm, B.; Flatmark, K.;
Mauri, G.; Castiglioni, I. Pathway-based classification of breast
cancer subtypes. Front. Biosci., 2017, 22, 1697-1712.

 http://dx.doi.org/10.2741/4566 PMID: 28410140
[13] Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next gen-

eration. Cell, 2011, 144(5), 646-674.
 http://dx.doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

[14] Cantor, J.R.; Sabatini, D.M. Cancer cell metabolism: one hallmark,
many faces. Cancer Discov., 2012, 2(10), 881-898.

 http://dx.doi.org/10.1158/2159-8290.CD-12-0345 PMID:
23009760

[15] Ward, P.S.; Thompson, C.B. Metabolic reprogramming: a cancer
hallmark even warburg did not anticipate. Cancer Cell, 2012,
21(3), 297-308.

 http://dx.doi.org/10.1016/j.ccr.2012.02.014 PMID: 22439925
[16] Tomita, M.; Kami, K. Cancer. Systems biology, metabolomics, and

cancer metabolism. Science, 2012, 336(6084), 990-991.
 http://dx.doi.org/10.1126/science.1223066 PMID: 22628644

[17] Teicher, B.A.; Linehan, W.M.; Helman, L.J. Targeting cancer me-
tabolism. 2012, 18(20), 5537-5545.

[18] Hyduke, D.R.; Lewis, N.E.; Palsson, B.Ø. Analysis of omics data
with genome-scale models of metabolism. Mol. Biosyst., 2013,
9(2), 167-174.

 http://dx.doi.org/10.1039/C2MB25453K PMID: 23247105
[19] Lewis, N.E.; Abdel-Haleem, A.M. The evolution of genome-scale

models of cancer metabolism. Front. Physiol., 2013, 4, 237.
 http://dx.doi.org/10.3389/fphys.2013.00237 PMID: 24027532

[20] Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis?
Nat. Biotechnol., 2010, 28(3), 245-248.

 http://dx.doi.org/10.1038/nbt.1614 PMID: 20212490
[21] Machado, D.; Herrgård, M. Systematic evaluation of methods for

integration of transcriptomic data into constraint-based models of
metabolism. PLOS Comput. Biol., 2014, 10(4), e1003580.

 http://dx.doi.org/10.1371/journal.pcbi.1003580 PMID: 24762745
[22] Jamialahmadi, O.; Hashemi-Najafabadi, S.; Motamedian, E.; Ro-

meo, S.; Bagheri, F. A benchmark-driven approach to reconstruct
metabolic networks for studying cancer metabolism. PLOS Com-
put. Biol., 2019, 15(4), e1006936.

 http://dx.doi.org/10.1371/journal.pcbi.1006936 PMID: 31009458
[23] Damiani, C.; Di Filippo, M.; Pescini, D.; Maspero, D.; Colombo,

R.; Mauri, G. popFBA: tackling intratumour heterogeneity with
Flux Balance Analysis. Bioinformatics, 2017, 33(14), i311-i318.

 http://dx.doi.org/10.1093/bioinformatics/btx251 PMID: 28881985
[24] Damiani, C.; Maspero, D.; Di Filippo, M.; Colombo, R.; Pescini,

D.; Graudenzi, A.; Westerhoff, H.V.; Alberghina, L.; Vanoni, M.;
Mauri, G. Integration of single-cell RNA-seq data into population
models to characterize cancer metabolism. PLOS Comput. Biol.,
2019, 15(2), e1006733.

 http://dx.doi.org/10.1371/journal.pcbi.1006733 PMID: 30818329
[25] Damiani, C.; Gaglio, D.; Sacco, E.; Alberghina, L.; Vanoni, M.

Systems metabolomics: from metabolomic snapshots to design
principles. Curr. Opin. Biotechnol., 2020, 63, 190-199.

 http://dx.doi.org/10.1016/j.copbio.2020.02.013 PMID: 32278263
[26] Graudenzi, A.; Maspero, D.; Di Filippo, M.; Gnugnoli, M.; Isella,

C.; Mauri, G.; Medico, E.; Antoniotti, M.; Damiani, C. Integration
of transcriptomic data and metabolic networks in cancer samples
reveals highly significant prognostic power. J. Biomed. Inform.,
2018, 87, 37-49.

 http://dx.doi.org/10.1016/j.jbi.2018.09.010 PMID: 30244122
[27] Damiani, C.; Rovida, L.; Maspero, D.; Sala, I.; Rosato, L.; Di Fil-

ippo, M.; Pescini, D.; Graudenzi, A.; Antoniotti, M.; Mauri, G.

MaREA4Galaxy: Metabolic reaction enrichment analysis and visu-
alization of RNA-seq data within Galaxy. Comput. Struct. Biotech-
nol. J., 2020, 18, 993-999.

 http://dx.doi.org/10.1016/j.csbj.2020.04.008 PMID: 32373287
[28] Ciriello, G.; Gatza, M.L.; Beck, A.H.; Wilkerson, M.D.; Rhie,

S.K.; Pastore, A.; Zhang, H.; McLellan, M.; Yau, C.; Kandoth, C.;
Bowlby, R.; Shen, H.; Hayat, S.; Fieldhouse, R.; Lester, S.C.; Tse,
G.M.; Factor, R.E.; Collins, L.C.; Allison, K.H.; Chen, Y.Y.; Jen-
sen, K.; Johnson, N.B.; Oesterreich, S.; Mills, G.B.; Cherniack,
A.D.; Robertson, G.; Benz, C.; Sander, C.; Laird, P.W.; Hoadley,
K.A.; King, T.A.; Perou, C.M. Comprehensive molecular portraits
of invasive lobular breast cancer. Cell, 2015, 163(2), 506-519.

 http://dx.doi.org/10.1016/j.cell.2015.09.033 PMID: 26451490
[29] Swainston, N.; Smallbone, K.; Hefzi, H.; Dobson, P.D.; Brewer, J.;

Hanscho, M.; Zielinski, D.C.; Ang, K.S.; Gardiner, N.J.; Gutierrez,
J.M.; Kyriakopoulos, S.; Lakshmanan, M.; Li, S.; Liu, J.K.; Mar-
tínez, V.S.; Orellana, C.A.; Quek, L.E.; Thomas, A.; Zanghellini,
J.; Borth, N.; Lee, D.Y.; Nielsen, L.K.; Kell, D.B.; Lewis, N.E.;
Mendes, P. Recon 2.2: from reconstruction to model of human me-
tabolism. Metabolomics, 2016, 12(7), 109.

 http://dx.doi.org/10.1007/s11306-016-1051-4 PMID: 27358602
[30] Cazzaniga, P.; Damiani, C.; Besozzi, D.; Colombo, R.; Nobile,

M.S.; Gaglio, D.; Pescini, D.; Molinari, S.; Mauri, G.; Alberghina,
L.; Vanoni, M. Computational strategies for a system-level under-
standing of metabolism. Metabolites, 2014, 4(4), 1034-1087.

 http://dx.doi.org/10.3390/metabo4041034 PMID: 25427076
[31] Mardinoglu, A.; Agren, R.; Kampf, C.; Asplund, A.; Uhlen, M.;

Nielsen, J. Genome-scale metabolic modelling of hepatocytes re-
veals serine deficiency in patients with non-alcoholic fatty liver
disease. Nat. Commun., 2014, 5, 3083.

 http://dx.doi.org/10.1038/ncomms4083 PMID: 24419221
[32] Thiele, I.; Swainston, N.; Fleming, R.M.; Hoppe, A.; Sahoo, S.;

Aurich, M.K.; Haraldsdottir, H.; Mo, M.L.; Rolfsson, O.; Stobbe,
M.D.; Thorleifsson, S.G.; Agren, R.; Bölling, C.; Bordel, S.;
Chavali, A.K.; Dobson, P.; Dunn, W.B.; Endler, L.; Hala, D.;
Hucka, M.; Hull, D.; Jameson, D.; Jamshidi, N.; Jonsson, J.J.; Juty,
N.; Keating, S.; Nookaew, I.; Le Novère, N.; Malys, N.; Mazein,
A.; Papin, J.A.; Price, N.D.; Selkov, E., Sr; Sigurdsson, M.I.; Sim-
eonidis, E.; Sonnenschein, N.; Smallbone, K.; Sorokin, A.; van
Beek, J.H.; Weichart, D.; Goryanin, I.; Nielsen, J.; Westerhoff,
H.V.; Kell, D.B.; Mendes, P.; Palsson, B.Ø. A community-driven
global reconstruction of human metabolism. Nat. Biotechnol.,
2013, 31(5), 419-425.

 http://dx.doi.org/10.1038/nbt.2488 PMID: 23455439
[33] Ma, H-W.; Zeng, A-P. The connectivity structure, giant strong

component and centrality of metabolic networks. Bioinformatics,
2003, 19(11), 1423-1430.

 http://dx.doi.org/10.1093/bioinformatics/btg177 PMID: 12874056
[34] Backes, A.R.; Casanova, D.; Bruno, O.M. A complex network-

based approach for boundary shape analysis. Pattern Recognit.,
2009, 42(1), 54-67.

 http://dx.doi.org/10.1016/j.patcog.2008.07.006
[35] Miranda, G.H.B.; Machicao, J.; Bruno, O.M. An optimized shape

descriptor based on structural properties of networks. Digit. Signal
Process., 2018, 82, 216-229.

 http://dx.doi.org/10.1016/j.dsp.2018.06.010
[36] Machicao, J.; Filho, H.A.; Lahr, D.J.G.; Buckeridge, M.; Bruno,

O.M. Topological assessment of metabolic networks reveals evolu-
tionary information. Sci. Rep., 2018, 8(1), 15918.

 http://dx.doi.org/10.1038/s41598-018-34163-7 PMID: 30374088
[37] Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.;

Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a
software environment for integrated models of biomolecular inter-
action networks. Genome Res., 2003, 13(11), 2498-2504.

 http://dx.doi.org/10.1101/gr.1239303 PMID: 14597658
[38] Costa, L.D.F.; Boas, P.R.V.; Silva, F.N.; Rodrigues, F.A. A pattern

recognition approach to complex networks. J. Stat. Mech., 2010,
2010(11), P11015.

 http://dx.doi.org/10.1088/1742-5468/2010/11/P11015
[39] Banerjee, A.; Jost, J. Spectral plot properties: Towards a qualitative

classification of networks. NHM, 2008, 3(2), 395-411.
 http://dx.doi.org/10.3934/nhm.2008.3.395

[40] Costa, L da F.; Francisco, A.; Rodrigues, G.T.; Villas Boas, P.R.
Characterization of complex networks: A survey of measurements.
Adv. Phys., 2007, 56(1), 167-242.

 http://dx.doi.org/10.1080/00018730601170527

On the Use of Topological Features of Metabolic Networks Current Genomics, 2021, Vol. 22, No. 2 97

[41] Newman, M.E. Assortative mixing in networks. Phys. Rev. Lett.,
2002, 89(20), 208701.

 http://dx.doi.org/10.1103/PhysRevLett.89.208701 PMID:
12443515

[42] Filisetti, A.; Graudenzi, A.; Serra, R.; Villani, M.; De Lucrezia, D.;
Rudolf, M. Füchslin, Stuart A Kauffman, Norman Packard, and
Irene Poli. A stochastic model of the emergence of autocatalytic
cycles. J. Syst. Chem., 2011, 2(1), 2.

 http://dx.doi.org/10.1186/1759-2208-2-2
[43] Filisetti, A.; Graudenzi, A.; Serra, R.; Villani, M.; Füchslin, R.M.;

Packard, N.; Kauffman, S.A.; Poli, I. A stochastic model of auto-
catalytic reaction networks. Theory Biosci., 2012, 131(2), 85-93.

 http://dx.doi.org/10.1007/s12064-011-0136-x PMID: 21979857
[44] Serra, R.; Filisetti, A.; Villani, M.; Graudenzi, A.; Damiani, C.; Pa-

nini, T. A stochastic model of catalytic reaction networks in pro-
tocells. Nat. Comput., 2014, 13(3), 367-377.

 http://dx.doi.org/10.1007/s11047-014-9445-6
[45] Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection

and subsequent selection bias in performance evaluation. J. Mach.
Learn. Res., 2010, 11, 2079-2107.

[46] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Per-
rot, M.; Duchesnay, E. Scikit-learn: Machine learning in Python. J.
Mach. Learn. Res., 2011, 12, 2825-2830.

[47] Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.;
Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.;
Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The
cBio cancer genomics portal: an open platform for exploring multi-

dimensional cancer genomics data. Cancer Discov., 2012, 2(5),
401-404.

[48] Hodges, J.L. The significance probability of the smirnov two-
sample test. Ark. Mat., 1958, 3, 469-486.

 http://dx.doi.org/10.1007/BF02589501
[49] Pacheco, M.P.; Bintener, T.; Sauter, T. Towards the network-based

prediction of repurposed drugs using patient-specific metabolic
models. EBioMedicine, 2019, 43, 26-27.

 http://dx.doi.org/10.1016/j.ebiom.2019.04.017 PMID: 30979684
[50] Zampieri, G.; Vijayakumar, S.; Yaneske, E.; Angione, C. Machine

and deep learning meet genome-scale metabolic modeling. PLOS
Comput. Biol., 2019, 15(7), e1007084.

 http://dx.doi.org/10.1371/journal.pcbi.1007084 PMID: 31295267
[51] Cai, H.Y.; Zheng, V.W.; Chang, K.C.-C. A comprehensive survey

of graph embedding: Problems, techniques, and applications. IEEE
Trans. Knowl. Data Eng., 2018, 30(9), 1616-1637.

 http://dx.doi.org/10.1109/TKDE.2018.2807452
[52] Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on

graphs: Methods and applications. IEEE Data Eng. Bull., 2017,
40(3), 52-74.

[53] Kriege, N.M.; Johansson, F.D.; Morris, C. A survey on graph ker-
nels. Appl. Network Sci., 2020, 5(1), 6.

 http://dx.doi.org/10.1007/s41109-019-0195-3
[54] Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neu-

ral networks for graphs. Proceedings of the 33rd International Con-

ference on Machine Learning, ICML 2016, New York City, NY,

USA. June 19-24, 2016, Volume 48, pp. 2014-2023.

APPENDIX A. INTERDISCIPLINARY PUBLICATIONS

A.3 Deep Learning for Predicting Relative Fluxes

in Reaction Systems

Contribution. In this chapter I will discuss the work done in:

[Pat+21] L. Patruno, F. Craighero, D. Maspero, A. Graudenzi, C. Damiani.
“Combining Multi-Target Regression Deep Neural Networks and
Kinetic Modeling to Predict Relative Fluxes in Reaction Systems”.
In: Information and Computation 281 (Dec. 2021)

Summary. A reaction system, such as metabolic networks [Jam+19], is
characterized by reactions (fluxes) that transform one chemical into another.
To understand the metabolomics of the systems, an important goal is to predict
the variation of fluxes across steady-states. Unfortunately, this task is still
very challenging given the hardness of measuring flux variations, even with
the current technologies. One viable solution is to predict flux variations
from relative chemical abundances, that can be tackled though constrained
optimization [Saj+16]. However, this approach requires a lot of assumptions and
simplifications. In this work, we propose a different method employing a deep
model to predict flux variation from relative abundances. Our contributions
can be summariezed as follows:

• Dataset generation. Given the hardness of measuring flux variations, we
simulated them using kineting modeling [Dam+17].

• Definition of a multi-target DNN. We defined a multi-target DNN to
predict the network’s fluxes variations from chemical abundances and
defined a cross-validated grid search for hyperparameter selection.

• Evaluation under feature reduction. To assess whether flux variations
are affected by chemicals not directly involved into the reaction, we also
investigated the effect of reducing the chemicals given in input to the
model.

We evaluated the proposed model on a simulated dataset of a yeast metabolic
network [Dam+17]. Results confirmed the validity of our approach, even
with feature reduction, that is able to predict fluxes variations from relative
abudances with no constraints a priori. Future work will investigate more
complex simulations, for example by including also transcriptomic data.

Implementation. The experiments performed in the paper has been open-
sourced on a Github repositorya.

ahttps://github.com/BIMIB-DISCo/FLUX-PREDICT

129

https://github.com/BIMIB-DISCo/FLUX-PREDICT

Information and Computation 281 (2021) 104798

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Combining multi-target regression deep neural networks and

kinetic modeling to predict relative fluxes in reaction systems

Lucrezia Patruno a,1, Francesco Craighero a,1, Davide Maspero a,b,
Alex Graudenzi b,c, Chiara Damiani d,e,∗
a Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
b Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy
c Bicocca Bioinformatics Biostatistics and Bioimaging Centre – B4, Milan, Italy
d Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
e SYSBIO/ISBE.IT Centre for Systems Biology, Milan, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 October 2020
Received in revised form 20 May 2021
Accepted 29 August 2021
Available online 6 September 2021

Keywords:
ODE-based modelling
Monte Carlo sampling
Deep neural networks
Metabolomics
Metabolic fluxes

The strong nonlinearity of large and highly connected reaction systems, such as metabolic
networks, hampers the determination of variations in reaction fluxes from variations
in species abundances, when comparing different steady states of a given system. We
hypothesize that patterns in species abundance variations exist that mainly depend on
the kernel of the stoichiometric matrix and allow for predictions of flux variations. To
investigate this hypothesis, we applied a multi-target regression Deep Neural Network
(DNN) to data generated via numerical simulations of an Ordinary Differential Equation
(ODE) model of yeast metabolism, upon Monte Carlo sampling of the kinetic parameters.
For each parameter configuration, we compared two steady states corresponding to
different environmental conditions. We show that DNNs can predict relative fluxes
impressively well even when a random subspace of input features is supplied, supporting
the existence of recurrent variation patterns in abundances of chemical species, which can
be recognized automatically.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The determination of the rate at which a substance is transformed into another through a given reaction or pathway (i.e.
the flux) on the basis of routine measurements of the abundance of chemical species, when the mechanistic dynamics of
the systems is not fully characterized, is an important problem in different fields, from life [1] to environmental sciences [2].
Knowledge on relative fluxes is important, as it may translate into knowledge about the controllable mechanisms underlying
the differences between two steady states of a system (e.g. pathological vs healthy state). This translation occurs more
directly and successfully than in the case of abundances of chemicals, which provide a mere snapshot of the system [1]. Yet,
fluxes are hardly measurable with current technologies, whereas abundances can be largely measured with high throughput
methods.

* Corresponding author at: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
E-mail address: chiara.damiani@unimib.it (C. Damiani).

1 Equal contribution.

https://doi.org/10.1016/j.ic.2021.104798
0890-5401/© 2021 Elsevier Inc. All rights reserved.

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

We investigate the problem of estimating relative fluxes from relative abundances, by means of both theoretical reasoning
and simulations. We show that the problem can be solved analytically only if enzymatic kinetics are neglected. When
enzymatic kinetics are taken into account, extra information is required, namely relative abundances of enzyme-substrate
complexes when mass action rate law formulation is used, kinetic constants (i.e. the binding affinity of enzymes) when the
Michaelis-Menten approximation is used. Both types of information are currently not measurable on a large scale. Moreover,
analytical solutions require knowledge on the abundance of each single substrate involved in a reaction, whereas the current
sensitivity of abundance quantification techniques (as e.g., mass spectrometry) typically allows detecting only a subset of
them at a time.

To overcome this lack of knowledge, current approaches mainly rely on optimization subject to constraints to identify
feasible solutions out of a very large set of candidates. Along with stoichiometric constraints and mass balance, such ap-
proaches incorporate constraints on relative abundances of metabolites in the form of constraints on relative fluxes. For
example, iReMet-flux [3] seeks to minimize the distance between any pair of flux distributions in the feasible region, whose
ratio between each flux is within upper and lower bounds, derived from the ratios of metabolic and enzyme abundances,
according to the mass action formulation (see Section 2). Pandey et al. [4], instead, convert the variation in the abundance of
a given metabolite into a constraint on the generic variation in the fluxes responsible of either its production or consump-
tion and seek to maximize the consistency with such constraints, along with other constraints on relative fluxes assumed
from relative gene expression data.

By requiring relative metabolic abundances to be incorporated in the form of constraints on relative fluxes, the above
approaches require many assumptions and simplifications. Another limitation of these approaches is that they require the
definition of an objective function. Moreover, it is difficult to find the optimal trade-off between narrow constraints leading
to infeasible solutions and loose constraints leading to too wide feasible regions.

Here, we propose a different approach based on the combination of kinetic modeling and Machine Learning (ML). The
combination of computational modeling, and in particular constraint-based modeling, with machine learning techniques
is an emerging field which is revealing great potential. Recent approaches exploit the mechanistically linked information
provided by context-specific models as the input of either supervised or unsupervised machine learning approaches, as
reviewed in [5–7]. Although some of these studies have used neural network to predict e.g., individual fluxes from enzyme
or gene expression data [8] or abundances of metabolites from other -omics data [9,10], to our knowledge, this is the first
time that ML is used to predict overall flux variations from overall relative abundances.

The approach that we are proposing originates from the hypothesis that recurrent patterns resulting from stoichiometric
and mass balance constraints exist. Hence, we can exploit information of the vector of abundance variations δx or, possibly,
of a subspace of it, in order to predict with a good confidence level the vector of flux variations δv . We expect these
patterns to be learned and recognized by ML regression algorithms.

However, given that fluxes are hardly measurable in real-world scenarios, it is unrealistic to obtain a large and hetero-
geneous experimental training set of (δx, δv) pairs to properly train any ML algorithm. To overcome this limitation, we
propose to simulate (δx, δv) pairs with kinetic modeling, namely via standard ODEs. Notice that reaction rate equations
and constants are largely undetermined, otherwise it would suffice to directly simulate δx with a ODE model to predict δv .
Here, we assume that, in light of the steady state constraint, f (δx) = δv is largely independent from the specific values of
kinetic constants.

To investigate the validity of our assumption, we propose to randomly sample the space of kinetic parameters, as in
[11–13]. For each sampled set of parameters, δx and δv can be collected, by comparing the state of the ODE model in two
different environmental conditions in a time invariant condition (i.e., the steady state). In a preliminary phase, we employed
the simulated dynamics of a previously published yeast metabolic network [12,11], undergoing nutritional perturbations, to
train, validate and test different configurations of Deep Neural Networks (DNNs). We also evaluated the predictive perfor-
mance of DNNs in the realistic scenario in which the abundance of metabolites can be measured for a limited subset of the
model species.

2. Motivation and main assumptions

A biochemical reaction system is defined by a set X = {X1, . . . , XM } of molecular species occurring in the system, and
a set R = {R1, . . . , R N} of chemical reactions taking place among the species. We define reactions as: Rr : ∑

q∈Q r
αq Xq ⇒∑

t∈Tr
βt Xt where αq, βt ∈ Q+ are stoichiometric coefficients associated, respectively, with the q-th reactant and the t-th

product of the r-th reaction, and Q r and Tr are the set of reaction substrates and products of reaction r, respectively. Let
[Xm](t), with m = 1, . . . , M be the abundance of Xm at a given time t in the system’s evolution, either expressed as number
of molecules or as concentration. Let Vr , with r = 1, . . . , N be the rate (or flux) through reaction Rr in a unit of time, i.e. the
number of times Rr occurs in that unit of time. Such a system is said to be at steady state if ∂[Xm](t)/∂t = 0, ∀m. Steady
state is thus the condition in which fluxes may occur but the concentration of all species does not change in time. Let S be
a M × N matrix, referred to as stoichiometric matrix, whose element sm,r , takes value −αm,r if species Xm is a substrate of
reaction Rr (i.e., Xm ∈ Q r), βm,r if species Xm is a product of reaction Rr (i.e., Xm ∈ Tr), 0 otherwise. Let v = (V 1, . . . , V N)

be the vector of reaction fluxes, then a system is at steady state when S v = 0.
It is worth mentioning that, if a reaction Rr is reversible, a reaction Rb exists such that sm,r = −sm,b, ∀m. Typically, life

scientists use the term flux to indicate the net rate Vr − Vb , that is, the rate of the forward reaction minus the rate of the

2

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

reverse reaction. However, in this work reversible reactions are represented with two distinct and complementary forward
reactions, thus the terms flux and rate coincide.

Now let i and j be two different steady states of the system and xi = ([X1]i, . . . , [XM]i) be the vector of abundances
of the chemical species in steady state i and vi = (V 1

i, . . . , V N
i) be the vector of reaction fluxes in steady state j, and

let x j = ([X1] j, . . . , [XM] j) be the vector of abundances of the chemical species in steady state j and v j = (V 1
i, . . . , V N

j)

be the vector of reaction fluxes in steady state j. We define the species abundance variation between state i and j as
δxi, j ≡ (δ[X1]i, j, . . . , δ[XM]i, j) = x j − xi , and the variation of reaction fluxes as δvi, j ≡ (δV i, j

1 , . . . , δV i, j
N) = v j − vi . In the

following, δxi, j and δvi, j are also referred to as relative abundances and relative fluxes, respectively.
The aim of this work is to deduce flux variations from species abundance variations, that is, δvi, j from δxi, j . In the

following, we will make use of a very simple and specific example of reaction system to motivate, without loss of generality,
the complexity of the problem and the non linearities that one may encounter when trying to deduce flux variations from
species abundance variations.

Example 1. Let us assume a very simple system composed of 4 chemical species X = {A, B, C, D} (e.g., metabolites) and 3
reactions R = {R1, R2, R3} defined as follows:

R1 : A ⇒ B

R2 : C ⇒ B

R3 : B ⇒ D

In order for the system above to be able to reach a steady state, unbalanced reactions (also referred to as exchange
reactions) must be included, for A and C – which must be fed into the system (∅ ⇒ A; ∅ ⇒ C) – and for D – which must
be depleted (D ⇒ ∅).

At the steady state, the rate of production and consumption of the species must balance. Hence, if any event (e.g., an
external perturbation of the system) determines the increase of either V 1 and/or V 2, then V 3 must eventually increase to
reach a new steady state. Consequently, when comparing two steady states of the system, if δV 1 + δV 2 > 0 then δV 3 > 0.

Let us now suppose that information on δxi, j is given and, for instance, that an increase in [B] (δ[B]i, j > 0) and an
increase in [D] (δ[D]i, j > 0) were observed. This must be imputed to one of the following cases:

1. an increase in V 3 and an increase in V 1,
2. an increase in V 3 and an increase in V 2,
3. an increase in V 3 and an increase in both V 1 and V 2.

Information on δ[A] and δ[C] does not let us to exclude case 1 or case 2. In fact, case 2 is compatible with both: (i)
δ[C] > 0, i.e., an increase in the reaction’s substrate [C] and (ii) δ[C] = 0, if the higher depletion of C , resulting from an
increase in δV 2 > 0, is compensated by a higher influx of C . Along similar lines, case 1 is compatible with both: δ[A] > 0
and δ[A] = 0.

Example 1 demonstrates the complexity of the problem of determining analytically flux variations from relative abun-
dances. The complexity is expected to increase with the number of interconnected reactions and when reactions of higher
order and/or feedback loops come into play, as it is typically observed in real-world scenarios.

However, the following assumptions would allow one to analytically estimate relative fluxes from relative abundances:

• for each reaction r in the system, the mass action law is assumed: Vr = kr ∗ ∏
q∈Q r

[Xq]|Sq,r | , where kr is the kinetic
constant of reaction r, Xq is the qth substrate of the set Q r of substrates of reaction r, and Sq,r is the stoichiometric
coefficient of substrate Xq i.e., how many molecules of the substrate partake to the reaction;

• at (steady) states i and j, the kinetic constant kr of any reaction r of the system is assumed to be identical.

Given such assumptions, the variation between the flux of an irreversible reaction r in two steady states i and j can be
analytically determined as the ratio V i

r/V j
r :

V i
r

V j
r

=
∏

q∈Q r

(
[Xq]i

[Xq] j

)|Sq,r |
(1)

which does not depend on kr .
The above situation completely neglects enzymatic kinetics, which are an important factor in the dynamics of chemical

systems. Let us suppose, for instance, that reaction R1 in the previous example is catalyzed by enzyme E1. Hence, the series
of steps through which reactants bind to specific enzymes before being transformed into products should be taken into
account, as follows:

3

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

R1 : A + E1 ⇔ AE1 ⇒ B + E1

In principle, one can apply equation (1) to the last reaction step, but knowledge of the relative abundance of intermediate
complexes (δAE1) is required. Yet, owing such a level of detail of information is unrealistic with current technologies.

When dealing with cellular metabolic reactions, it is reasonable to assume that they are far from thermodynamic
equilibrium and that substrates are in excess over enzyme-substrate complexes. Hence, the enzyme kinetics is generally
approximated with Michaelis-Menten rate laws [14,15]. The Michaelis-Menten formulation does not explicitly take into ac-
count the abundance of enzymes, but it models saturation kinetics, by describing the variation of the rate of a reaction as
a function of substrate’s abundance. In the simplest scenario, the rate of a reaction Rr involving a single substrate Xr with
unitary stoichiometric coefficient would be described as:

Vr = V M A X
r [Xr]

K M
r + [Xr]

(2)

where, briefly, V M A X
r is the maximum rate of reaction r (when the enzyme is saturated with substrate), whereas K M

r is the
concentration of substrate that permits the enzyme to achieve half V M A X

r , which depends inversely on the affinity of the
enzyme for its substrate. In this scenario, the ratio V i

r/V j
r describing the variation between the flux of a irreversible reaction

r in two steady states i and j is defined as follows:

V i
r

V j
r

= [Xr]i(K M
r + [Xr] j)

[Xr] j(K M
r + [Xr]i)

(3)

which does depend on K M
r . Given the incomplete knowledge of the value of K M

r of metabolic reactions, δvi, j cannot be
analytically derived from δxi, j in this scenario.

Moreover, both equations (1) and (3) require information on the variation of the abundance of each substrate partaking
in reaction Rr . However, in real-life scenarios only a fraction of the species involved in a reaction system is detected by
chemical quantification technologies. Hence, we here investigate the possibility of using information about variations in
other species in the network to improve predictions of δVr when information on the abundance of substrates of Rr is
lacking.

Our hypothesis originates from the consideration that all the steady states of a biochemical reaction system abide by the
constraint S v = 0 and, therefore, relationships among v i and v j exist which are independent from specific rate laws and
kinetic constants of reactions. Hence, we speculate that similar relationships between xi and x j may also exist, which do
not depend on kinetic constants values. In this work, we investigate such hypothesis by means of simulation experiments
and machine learning.

The general idea of the proposed approach is depicted in Fig. 1.

3. Methods

3.1. Synthetic dataset

To preliminarily investigate our hypothesis, we used a dataset previously generated via numerical simulations of an
ODE model [11], in which elementary mass action law was assumed for every reaction rate. The model is defined by a
set of N = 48 reactions and a set of M = 34 metabolites. The metabolic network model is available in SBML format at
this link: github .com /BIMIB -DISCo /FLUX-PREDICT, and a graphical representation of it is shown in Fig. 1. For the sake of
notation simplicity, in the following, we will refer to the name of specific reactions with the name of the first substrate
and the name of the main product separated by the underscore symbol. For instance the reaction in the top left corner
of the map (Glc + AT P ⇒ G6P + AD P) will be referred to as Glc_G6P . Reverse reactions are considered separately and
are indicated with the suffix _reverse. P = 100 000 sets of kinetic constants K1 = {k1, k2, . . . , kN }, K2 = {k1, k2, . . . , kN},
. . . , KP = {k1, k2, . . . , kN } for the model reaction rates were generated randomly from a uniform distribution in [0,1). Initial
abundances of metabolites were defined according to data in literature and are reported in [11]. For each parameter set
Kp , with p = 1, . . . , P , we retrieved two steady states of the model corresponding to two different nutritional conditions:
condition i – low glucose (2.8 mM), condition j – high glucose (25 mM). Glucose concentration is maintained fixed during
the simulation. The model was simulated via integration of ODEs by means of the LSODA solver [16] for a simulated
time of 50 seconds. The quasi-steady state condition was determined according to a small threshold (0.01) on the average
standard deviation (σ) of the value of species concentration for the last 10% of time dynamics. For further details on
the simulations the reader is referred to [12]. For each parameter set Kp , with p = 1, . . . , P , we obtained the vector of
abundances at steady state of the chemical species in condition i xi

p = ([X1]i
p, [X2]i

p, · · · , [XM]i
p) and in condition j x j

p =
([X1] j

p, [X2] j
p, · · · , [XM] j

p) and the vectors of fluxes vi
p = (V i

1,p, V i
2,p, · · · , V i

N,p) and v j
p = (V j

1,p, V j
2,p, · · · , V j

N,p) and we

computed the vector of variations of abundances δxp
i, j = x j

p − xi
p and of fluxes δvi, j

p = v j
p − vi

p between conditions i and
j. We decided to compute the difference rather than the ratio between conditions to avoid problems related to divisions by
zero. We finally obtained 100 000 pairs of metabolites-flux variations (δxp

i, j, δv p
i, j), with p = 1, 2, · · · , 100 000.

4

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

Fig. 1. Schematic representation of the proposed approach and diagram (adapted from [11]) of the yeast metabolic network used to generate the synthetic
dataset. Blue/red represent positive/negative variations in species abundances and fluxes. The DNN diagram is for representative purposes only. In our
setting, the input layer has less nodes (M = 34) that the output layer (N = 48). (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

For the sake of simplicity, in the following we will refer to δx = (δxi, j
1 , . . . , δxi, j

p) as the matrix of size P × M , where δxp
is the vector of variation of abundances for constants Kp and δx∗,m is the vector of variation of abundances of metabolite
m for all the P parameters. Similarly, we will refer to δv = (δvi, j

1 , . . . , δvi, j
p) as the matrix of size P × N , where δv p is

the vector of variation of fluxes for constants Kp and δv∗,r is the vector of variation of flux r for all the P parameters.
In addition, we will refer to a specific metabolite variation δx∗,m and a specific flux variation δv∗,r with the name of the
corresponding metabolite and reaction.

Data pre-processing Prior to training the neural network, the input dataset was pre-processed. We removed zero variance
predictors [17] from the relative metabolites δx and we removed zero variance output features from the relative fluxes δv .
In detail, we removed 1 out of 34 relative metabolites (namely, O 2) and 2 out of 48 relative fluxes (namely the exchange

5

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

reactions of Glc and O 2). Finally, in order to proceed with the training phase of our DNN model, we standardized the input
variables (i.e. metabolite variations), by removing the mean and scaling to unit variance.

3.2. Model definition

In order to define a model that predicts the vectors of flux variations δv p from the vectors of abundance variations δxp ,
we built a multi-target regression DNN. Such model is depicted in Fig. 1: its input layer contains as many nodes as the
number of abundance variations (i.e., M), and the output layer is composed of a number of nodes equal to the number of
flux variations that need to be predicted (i.e., N). As commonly done, networks are trained in order to minimize the Mean
Squared Error (MSE) between true and predicted flux variations.

We considered a multi-target regression DNN rather than single-target to reduce computational costs and hopefully to
exploit relationships among the output variables to improve the goodness of fit [18].

3.3. Cross-validated grid search

The selection of the hyperparameters that define the DNN was performed by a cross-validated grid search over a set H
of 48 possible hyperparameters configurations. More in detail, for each configuration h ∈ H we estimate the performance
on unseen data by cross-validation and then define our chosen model with the best performing h.

Train and test sets We split our dataset in training (outer training set) and test set with a percentage of 90% − 10%. The
former partition is used to fit the neural network and to perform hyperparameter selection, while the latter partition is
used to provide an unbiased evaluation of the prediction error, as it is used neither during the training phase, nor for
hyperparameter optimization.

Hyperparameters The main aim of our grid search is to explore whether there is a need for deep networks or if wide
networks with one single hidden layer may suffice, and to exclude configurations with low predictive power. To this aim,
we varied the following hyperparameters:

• Hidden layers sizes, to take into account different widths (number of neurons for each layer) and depths (number of
layers). In detail, we considered the following settings:

{(100), (200), (500), (100,100), (200,200), (100,100,100)},
with each tuple indicating the number of neurons for each hidden layer.

• Optimization algorithms: {Adam, SG D}.
• Initial learning rate: {0.01, 0.001}.
• With and without the dropout regularization technique, that is commonly used to improve generalization. When used,

we set the dropping rate to 50%.

In addition to varying the hyperparameters just listed, for each neural network configuration h we kept the following
elements fixed: (i) batch normalization method to normalize the input of each activation function, with the aim of im-
proving the stability of the training process. (ii) ReLU activation function. (iii) Early stopping heuristic to halt training if the
model doesn’t improve in 200 epochs, in order to prevent overfitting. (iv) Exponential decay schedule for the learning rate.
(v) Batch size of 128. (vi) Mean Squared Error (MSE) as loss function. For a detailed explanation of all the techniques please
refer to [19].

Cross validation The grid search procedure was combined with a 5-fold cross validation procedure (i.e. cross-validated grid
search), see Fig. 2 for a schematized representation. In detail, the outer training set was split into 5 groups of equal size, the
so-called folds (Step 1 in Fig. 2). Then, each neural network configuration h ∈ H was trained using 4 folds for the training
process (inner training set) and the last one for performance evaluation (valid set). This procedure was repeated 5 times (CV
Loop), so that each fold is employed once as validation set.

In order to have an unbiased estimation of when performing early stopping (i.e. without taking into account the valid
set), for each iteration the inner training set was partitioned in two sets with a percentage of 90%-10% (Step 2b), using the
former for training and the latter for early-stopping.

Then, when the training phase was concluded, the performance of the network was tested over the valid set (Step 2c). In
detail, for our experiments we calculated the coefficient of determination R2 for each flux r:

R2(δv∗,r, δ̂v∗,r) = 1 −
∑F

f =1(δv f ,r − δ̂v f ,r)
2∑F

f =1(δv f ,r − δ̄v∗,r)2
(4)

where F is the number of samples, δv∗,r is the vector of variations for flux r, δ̂v∗,r is the corresponding vector of predicted
values, δv f ,r and δ̂v f ,r are the values for sample f and δ̄v∗,r is the mean variation for flux r. R2 measures the goodness

6

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

Fig. 2. Diagram of the 5 fold cross-validation procedure for hyperparameter selection with DNNs, where we take into account also an additional split for
the early-stopping heuristic (step 2b).

of fit of the model by normalizing the sum of squared errors by the total deviance observed in ground truth data. After
calculating R2 for each flux r, we calculated the average R2.

The final result of this cross-validated grid search consisted in 5 performance scores (average R2) for each DNN configu-
ration. Finally the model h ∈ H showing the best mean score was selected and evaluated on the test set (Step 3).

For details about the selected models see the Results section. See also Supplementary algorithm 1, for the pseudo-code
of the Cross Validated Grid Search.

4. Results

4.1. Selected features

The main goal of this work is to investigate whether the prediction of the flux variation in a given reaction can benefit
from information in the abundance variation of metabolites not directly involved in such reaction. To address this issue,
we assessed the effect of reducing the number of input metabolites on the output prediction. To select a fraction g of the
original features δxp to be removed, with g = 70% and g = 50%, at first instance, we followed the common practice of basing
the choice on their redundancy. Firstly, we computed the pairwise Pearson correlation between metabolites. The heatmap
in Fig. 3 shows the correlation of each pair. As already pointed out in [11], it can be observed that correlations between
metabolites are not obvious. For example H2 O correlates strongly with N AD P even though they are not directly involved
in the same reaction. Next, we ranked the pairs of metabolites by decreasing order of their absolute correlation. Starting
from the most correlated one, we removed one feature from each pair until only a fraction g of the original metabolites
was left.

4.2. Selected hyperparameters

We applied the overall methodology to train, cross-validate and test the best model, given simulated (δxp , δv p) pairs,
with p = 1, 2, · · · , 100 000 (as illustrated in Section 3) for different fractions g of input metabolites.

We first applied the methodology by using the entire set of features, i.e., the variation of all the metabolites in the
simulated network. In this case, the cardinality of δxp coincides with the number of metabolites in the model |δxp | = M .
The cross-validated grid-search procedure selected as best model the DNN with 2 hidden layers of 200 neurons each,
i.e. (200, 200), no dropout, learning rate = 0.001 and optimizer = Adam. By analyzing the performances achieved by
the different configurations (see Supplementary Table 1) we observed that models with one hidden layer provide simi-
lar performances regardless of their width. Thus, increasing the width is not enough to improve the performance and it is
fundamental to explore deeper configurations. Indeed, an improvement in the predictive power of the model is observed
when increasing the depth of the network. Finally, the best configuration provides an increase in the performance of ≈ 4%
with respect to the second best (100, 100, 100). This result indicates that, by employing either wider or deeper models,
the regression performance may be further improved. However, since the goal of this article is proving the potentiality of a
Neural Network-based approach for predicting flux variations, exploring additional architectures is beyond the scope of this
work. See Supplementary Table 1 for details about the performance of all the other DNN configurations tested.

We then tested the performance of the best model for g = 70% and g = 50% of features. On the one hand, the best DNN
model selected by the cross-validated grid search procedure for g = 70% has 3 hidden layers with 100 neurons each, no
dropout, learning rate = 0.001 and optimizer = Adam. On the other hand, for g = 50% the best selected model has 2 hidden

7

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

Fig. 3. Pearson correlation coefficient ρ for each pair of relative metabolites abundance variations δx∗,m . The ρ correlations were computed by considering,
for each metabolite, the vector of abundance variations over all samples in the dataset, with the aim of removing redundant features. For simplicity, we
use metabolite names to refer to their δs, and for improved readability we sorted metabolites by their average absolute correlation |ρ|.

Fig. 4. Distribution of the R2 coefficients calculated between true and predicted values of each flux r , and for different percentages g of features. The
sensitivity of R2 to outliers generates some negative outliers; as an example, AC D_Eth for g = 100%, is plotted in Fig. 5. For simplicity, we use the fluxes
names to refer to their δs.

layers with 200 neurons each, no dropout, learning rate = 0.001 and optimizer = Adam. See Supplementary Table 2 for the
MSE values of the best DNNs.

It is worth noticing that in all the experiments, we observed that configurations with no dropout, learning rate of 0.001
and Adam as optimizer outperformed the other possible combinations of those hyperparameters. This result indicates that
we may rely upon this selection for downstream analyses, without repeating the hyperparameters selection procedure.

4.3. Performance evaluation

The three best configurations selected were retrained on the outer training set and, then, used to predict flux variations
δv p on the test set.

The performance was evaluated computing, for each output feature, the R2 score, which is a measure of the amount of
variance in the target values captured by the values predicted by the model (see Eq. (4)). The median value of R2 obtained
for g = 100% is 0.8, while for g = 70% it is = 0.71 and for g = 50% it is equal to 0.64. The distribution of R2 values for
the three cases is reported in Fig. 4. As expected, the R2 decreases as the fraction g of selected input features gets smaller.
Interestingly, the reduction in the number of features by 30% and 50% corresponds to a modest reduction of R2 by 11% and
20%, respectively.

8

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

Fig. 5. Scatterplots of true and predicted values for selected fluxes. The 95% confidence interval of the regression line is visualized. For simplicity, we use
the flux names to refer to their δs. (A) AC D_Eth for g = 100% with R2 = −0.35, (B) AC D_Eth for g = 100% with the greatest outlier removed improves to
R2 = 0.34, (C-D) The two fluxes with best Pearson coefficient (ρ = 0.971) for g = 50%.

Thus, results in terms of R2 are overall good, except for a very few output features, such as the flux AC D_Eth in the
g = 100% setting (see boxplots in Fig. 4). The existence of outlier reactions may be motivated with the choice of multi-target
modeling. As motivated in Sec. 3.2, in our experiments we relied on MSE over all the predicted fluxes, and we weighed
the error of each flux equally. As a result, the selected model corresponds to the one that performed better on average
over all the fluxes, but the goodness of fit of different hyperparameters may vary across fluxes, as it can be observed in
Supplementary Figure 1. Besides, low values of R2 can be due to outliers in the error distribution of a single flux, especially
when the variance of the true data is small. In fact, if we consider the predictions of the flux AC D_Eth (Fig. 5A), it stands
out the presence of one single point for which the prediction error is many times higher than the deviance of the true
values. The removal of this single outlier makes R2 improve from R2 = −0.35, up to 0.34 (Fig. 5B).

We also considered the Pearson correlation coefficient between true and predicted values (briefly ρ) to evaluate the
models. It can be observed in Fig. 6 that the Pearson correlations are high. The median value of ρ is 0.90 for g = 100%, 0.86
for g = 70% and 0.82 for g = 50%.

To investigate in detail how the DNN performance is affected by a reduction of the number of features considered, we
compared the ρ of each flux for the three g cases in Fig. 7. It can be observed that the worsening of the performance
(decrease in ρ) is not homogeneously distributed among the different fluxes. On the contrary, the capability to predict
many fluxes is nearly not affected by the change in g , whereas it dramatically worsens for a few fluxes.

It is natural to wonder whether the goodness of fit directly depends on the choice of the features that have been
removed. The list of features that have been removed when g = 50% is: AC D , AT P , AcCo Ac, Eth, F 16B P , F AD H2, Glyox,
H2O , MalCo A, Mal, N AD H , N AD P H , N AD P , N AD , P yr, T r P , O 2.

Surprisingly, the list includes most of the metabolites directly involved in the reactions with the best predictions in the
g = 50% case, namely F AD H2_H2O (F AD H2 + AD P + 0.5502 ⇒ F AD + AT P + H20) and N AD H_H2O (N AD H2 + AD P +
0.55O 2 ⇒ N AD + AT P + H20). The ability of the DNN to predict well these two fluxes is also evident in the scatterplots

9

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

Fig. 6. Relation between Pearson and R2 coefficients for true and predicted variation of each flux r , for different fractions of the original metabolites. We
removed in advance the outliers for R2 with a coefficient inferior to -5 (see Fig. 4).

Fig. 7. Pearson correlation coefficient ρ for true and predicted variation of each flux r , for different fractions of the original metabolites. Results are sorted
by decreasing ρ for the 50% fraction. For simplicity, we use the flux names to refer to their δs.

of true and predicted relative fluxes in Fig. 5B-C. This is a remarkable result, because it demonstrates that information on
other metabolites in the network supports predictions in case of missing features.

However this consideration does not always hold. In fact, the list also includes all the metabolites directly involved in
the reaction F 16P _T r P _reverse (2T r P ⇒ F 16B P), and the substrate of the reaction Mal_O A A_reverse (M AL + N AD ⇒
O A A + N AD H), which display the worse prediction in the g = 50% case.

Taken together, the results of the performance evaluation confirm our hypothesis that patterns in metabolite abundance
exist and that information in abundance variation can support the prediction of the flux variation even in reactions not
directly involving those metabolites.

4.4. Performance is robust to feature reduction

Not all variation in the abundance of the different metabolites can be measured in a real system, and the variations that
can be measured are hardly likely to coincide with our set of selected features. For this reason, it is relevant to investigate
the effect of removing a random subset of features, instead of selecting them by looking at their pairwise correlation. To
this aim, we evaluated the model performance for 10 randomly selected subsets of g = 50% and g = 70% metabolites with
the overall best performing hyperparameters (i.e. hidden layers sizes (200,200), learning rate 0.001, optimizer Adam and
no dropout). The results are reported in Fig. 8, where we show the distribution of the median R2 of the test predictions
for each random subset. It can be observed that by keeping g = 50% of the metabolites, the model performance showed
greater variability (standard deviation = 0.058) than the case with g = 70% (standard deviation = 0.034). Interestingly, the
model performance observed for our selected set of features falls within the first quartile and the median, in both cases.

10

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

Fig. 8. Median test R2 of 10 random subsets of g = 50% and g = 70% the original metabolites. The diamond indicates the median test R2 obtained by our
selection of features based on the absolute correlation and the dashed line corresponds to the median test R2 achieved by keeping all the features, i.e.
g = 100%.

Remarkably, the median performance for R2 drops by 6.4% only, when decreasing the cardinality of the set of features from
g = 100% to g = 70%, whereas it exhibits a drop of 16% when 50% of the features are removed.

It is also interesting to investigate whether the sensitivity to feature reduction differs across fluxes. In Supplementary Fig-
ure 2, the distribution of the reduction in the DNN prediction performance is reported for each flux. If we consider g = 50%,
it can be observed that some fluxes tend to be more sensitive to feature reduction, including the F 16P _T r P _reverse flux,
which in fact resulted sensitive also in Fig. 7. On the contrary, flux SuCo A_Succ_reverse does not seem to be particu-
larly sensitive in Fig. 7, while displaying lower goodness of fit on average for random selections, suggesting that the low
sensitivity of this flux observed in our selection was a result of the particular set of selected features.

Taken together, these results demonstrate that DNNs can predict flux variation well for most fluxes, regardless of the
given subset of features. However, a few fluxes are intrinsically sensitive to feature reduction and would deserve further
investigation.

4.5. Availability and scalability

The procedure described above was implemented using the Python libraries Keras [20] and scikit-learn [21].
The code and data used are available at github .com /BIMIB -DISCo /FLUX-PREDICT.

All tests were carried out on a machine with CPU 3.50 GHz Intel Xeon E3-1245 v5 and RAM 32 GB. The mean time
required to train a configuration on the inner training set was 23.83 ± 11.58 minutes, while training the best model on the
outer training set took 8.64 minutes.

Of course, the most computationally demanding step of our approach is the generation of the synthetic dataset by means
of numerical simulations. In the specific case of the model used in this work, the total computational time to produce the
data set was reasonable [11] (i.e., 5.5h to run ODEs simulations on a MacBookPro with CPU 2.6 GHz Intel Core i7, RAM
16 GB and to produce 268 Mb of data). Yet the computational time of this step depends on many factors, including the
kinetic laws, the kinetic parameter values, the number of reactions and the number of simulations. An insufficient number
of simulations, as well as the chosen variation range of each parameter, may impact on the goodness of fit of the ML model.
However, given that we keep parameter values fixed when comparing two steady-states, the impact of under-sampling is
expected to be limited. Furthermore, the computation of a large number of model trajectories may be reduced by exploiting
GPU-accelerated algorithms.

5. Conclusions

We trained different configurations of deep neural networks to predict overall changes in the fluxes of a reaction system
at the steady-state (δv p) from variations in the abundances of all or of some involved species (δxp). As training set, we used
100 thousands (δxp, δv p) pairs, obtained by sampling the parameter space and by simulating for each parameterization the
steady state of a small metabolic network model under two different environmental conditions [12]. We have shown that
DNNs can predict with a good level of confidence (median Pearson correlation between true and predicted values up to 0.9)
changes in most reaction fluxes in the synthetic test dataset.

The fit remains good (ρ = 0.82) when up to 50% of the features are removed from the training set. When analyzing the
goodness of fit for each output feature, we observed that the DNN predicts impressively well the variation in some fluxes,
even when information on variation of the abundance of any species directly involved in the reaction is not given.

Our results indicate that patterns in relative abundances emerge from kinetic simulations of metabolic networks, with
Monte Carlo generation of kinetic constants. These patterns reflect stoichiometric as well as mass balance constraints. The
main advantage of using a DNN model to recognize such patterns a posteriori, instead of imposing constraints a priori as
in constraint-based modeling, is the possibility to directly include information on relative abundances, instead of including
them indirectly in the form of constraints on relative fluxes, which require limitations on admitted reaction rate laws (e.g.,

11

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

mass action) and are prone to feasibility problems. Analytical solutions, on the other hand, solve reactions individually, thus
neglecting mass balance constraints, which are responsible to make predictions less sensitive to missing data.

A validation of the approach with experimental datasets and different metabolic models is of course desirable. Anyway,
our approach has already the potential to pave the way for a systematic evaluation of alterations in metabolic fluxes, which
is expected to guide drug target discovery, without the need for ad hoc laborious and expensive experiments and for explicit
knowledge on kinetic parameters for dynamic simulations.

Our approach is not free from limitations. In order for fluxes to be predicted, the user must provide to the DNN deltas
between two different conditions, whose difference must be controllable in order to be simulated (as e.g., difference in
glucose availability). However, one may want to compare conditions whose triggering differences are not known a priori,
as for instance pathological versus physiological conditions. A solution that we might envision and test in the future is to
simulate many random perturbations to generate more heterogeneous (δxp , δv p) pairs and train a generic DNN.

In the future, we will also test our approach when more complex enzymatic kinetics are simulated. Difference in enzyme
activities may be also taken into account by including proteomics or transcriptomics data. Finally, alternatives to DNNs, such
as multi-target regression trees could also be evaluated.

CRediT authorship contribution statement

LP: Methodology, Software, Formal Analysis, Investigation, Data Curation, Writing - Original Draft, Writing - Review &
Editing, Visualization; FC: Methodology, Software, Formal Analysis, Investigation, Data Curation, Writing - Original Draft,
Writing - Review & Editing, Visualization; DM: Methodology, Formal Analysis, Writing - Review & Editing, Visualization; AG:
Methodology, Formal Analysis, Writing - Review & Editing; CD: Conceptualization, Methodology, Formal Analysis, Writing -
Original Draft, Writing - Review & Editing, Visualization, Supervision.

Declaration of competing interest

The authors declare that they have no competing interests.

Acknowledgments

We warmly thank Dario Pescini for providing the dataset and Giancarlo Mauri for the useful suggestions provided during
the revision process.

Funding

The institutional financial support to SYSBIO.ISBE.IT within the Italian Roadmap for ESFRI Research Infrastructures and
the FLAG-ERA grant ITFoC is gratefully acknowledged. Financial support from the Italian Ministry of University and Research
(MIUR) through grant ‘Dipartimenti di Eccellenza 2017’ to University of Milano Bicocca is also greatly acknowledged. Support
was also provided by the CRUK/AIRC Accelerator Award #22790: “Single-cell Cancer Evolution in the Clinic”.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .ic .2021.104798.

References

[1] C. Damiani, D. Gaglio, E. Sacco, L. Alberghina, M. Vanoni, Systems metabolomics: from metabolomic snapshots to design principles, Curr. Opin. Biotech-
nol. 63 (2020) 190–199.

[2] S. Galmarini, J.V.-G. de Arellano, J. Duyzer, Fluxes of chemically reactive species inferred from mean concentration measurements, Atmos. Environ.
31 (15) (1997) 2371–2374.

[3] M. Sajitz-Hermstein, N. Töpfer, S. Kleessen, A.R. Fernie, Z. Nikoloski, IReMet-flux: constraint-based approach for integrating relative metabolite levels
into a stoichiometric metabolic models, Bioinformatics 32 (17) (2016), i755–i762.

[4] V. Pandey, N. Hadadi, V. Hatzimanikatis, Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermody-
namically consistent metabolic models, PLoS Comput. Biol. 15 (5) (2019) e1007036.

[5] P. Rana, C. Berry, P. Ghosh, S.S. Fong, Recent advances on constraint-based models by integrating machine learning, Curr. Opin. Biotechnol. 64 (2020)
85–91.

[6] G. Zampieri, S. Vijayakumar, E. Yaneske, C. Angione, Machine and deep learning meet genome-scale metabolic modeling, PLoS Comput. Biol. 15 (7)
(2019) e1007084.

[7] M. Cuperlovic-Culf, Machine learning methods for analysis of metabolic data and metabolic pathway modeling, Metabolites 8 (1) (2018) 4.
[8] A. Ajjolli Nagaraja, N. Fontaine, M. Delsaut, P. Charton, C. Damour, B. Offmann, B. Grondin-Perez, F. Cadet, Flux prediction using artificial neural network

(ann) for the upper part of glycolysis, PLoS ONE 14 (5) (2019) e0216178.
[9] A. Zelezniak, J. Vowinckel, F. Capuano, C.B. Messner, V. Demichev, N. Polowsky, M. Mülleder, S. Kamrad, B. Klaus, M.A. Keller, et al., Machine learning

predicts the yeast metabolome from the quantitative proteome of kinase knockouts, Cell Syst. 7 (3) (2018) 269–283.
[10] Z. Costello, H.G. Martin, A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data, NPJ Syst. Biol. Appl.

4 (1) (2018) 1–14.

12

L. Patruno, F. Craighero, D. Maspero et al. Information and Computation 281 (2021) 104798

[11] C. Damiani, R. Colombo, M. Di Filippo, D. Pescini, G. Mauri, Linking alterations in metabolic fluxes with shifts in metabolite levels by means of kinetic
modeling, in: Italian Workshop on Artificial Life and Evolutionary Computation, Springer, 2016, pp. 138–148.

[12] R. Colombo, C. Damiani, G. Mauri, D. Pescini, Constraining mechanism based simulations to identify ensembles of parametrizations to characterize
metabolic features, in: International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, Springer, 2016, pp. 107–117.

[13] R. Colombo, C. Damiani, D. Gilbert, M. Heiner, G. Mauri, D. Pescini, Emerging ensembles of kinetic parameters to characterize observed metabolic
phenotypes, BMC Bioinform. 19 (7) (2018) 45–59.

[14] A. Cornish-Bowden, One hundred years of Michaelis–Menten kinetics, in: Proceedings of the Beilstein ESCEC Symposium - Celebrating the 100th
Anniversary of Michaelis Menten-Kinetics, Perspect. Sci. 4 (2015) 3–9, https://doi .org /10 .1016 /j .pisc .2014 .12 .002.

[15] M.A. Savageau, Michaelis-Menten mechanism reconsidered: implications of fractal kinetics, J. Theor. Biol. 176 (1) (1995) 115–124.
[16] L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations, SIAM J. Sci. Stat. Comput. 4 (1)

(1983) 136–148, https://doi .org /10 .1137 /0904010.
[17] M. Kuhn, K. Johnson, et al., Applied Predictive Modeling, vol. 26, Springer, 2013.
[18] H. Borchani, G. Varando, C. Bielza, P. Larrañaga, A survey on multi-output regression, Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 5 (5) (2015)

216–233, https://doi .org /10 .1002 /widm .1157.
[19] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[20] F. Chollet, et al., Keras, https://keras .io, 2015.
[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

13

Bibliography

[Qui86] J. R. Quinlan. “Induction of Decision Trees”. In: Machine Learning
1.1 (Mar. 1986), pp. 81–106. issn: 0885-6125, 1573-0565. doi: 10.
1007/BF00116251 (cit. on p. 22).

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer
Feedforward Networks Are Universal Approximators”. In: Neural
Networks 2.5 (Jan. 1989), pp. 359–366. issn: 0893-6080. doi: 10.
1016/0893-6080(89)90020-8 (cit. on p. 71).

[McL99] Goeffrey J McLachlan. “Mahalanobis Distance”. In: Resonance 4.6
(1999), pp. 20–26 (cit. on p. 73).

[Sch+99] Bernhard Schölkopf et al. “Support Vector Method for Novelty De-
tection”. In: Advances in Neural Information Processing Systems 12,
[NIPS Conference, Denver, Colorado, USA, November 29 - December
4, 1999]. Ed. by Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller.
The MIT Press, 1999, pp. 582–588 (cit. on pp. 4, 35, 38, 68, 95).

[Jap01] Nathalie Japkowicz. “Concept-Learning in the Presence of Between-
Class and Within-Class Imbalances”. In: Advances in Artificial In-
telligence. Ed. by Gerhard Goos et al. Vol. 2056. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 67–77. isbn: 978-3-540-42144-3
978-3-540-45153-2. doi: 10.1007/3-540-45153-6_7 (cit. on pp. 70,
89).

[Tax01] DMJ Tax. “One-class classification; concept-learning in the absence of
counter-examples”. PhD thesis. Delft University of Technology, 2001.
isbn: 90-75691-05-X (cit. on p. 38).

[DG06] Jesse Davis and Mark Goadrich. “The Relationship between Precision-
Recall and ROC Curves”. In: Machine Learning, Proceedings of
the Twenty-Third International Conference (ICML 2006), Pittsburgh,
Pennsylvania, USA, June 25-29, 2006. Ed. by William W. Cohen and
Andrew W. Moore. Vol. 148. ACM International Conference Proceed-
ing Series. ACM, 2006, pp. 233–240. doi: 10.1145/1143844.1143874
(cit. on p. 43).

143

https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1007/3-540-45153-6_7
https://doi.org/10.1145/1143844.1143874

BIBLIOGRAPHY

[BW08] Peter L. Bartlett and Marten H. Wegkamp. “Classification with a
Reject Option Using a Hinge Loss”. In: Journal of Machine Learning
Research 9 (2008), pp. 1823–1840. doi: 10.5555/1390681.1442792
(cit. on pp. 13, 16).

[Car+08] Gunnar E. Carlsson et al. “On the Local Behavior of Spaces of Natural
Images”. In: International Journal of Computer Vision 76.1 (2008),
pp. 1–12. doi: 10.1007/s11263-007-0056-x (cit. on p. 70).

[vH08] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data
Using T-SNE”. In: Journal of Machine Learning Research 9.86 (2008),
pp. 2579–2605 (cit. on pp. 53, 54, 77, 79).

[Ben+09] Yoshua Bengio et al. “Curriculum Learning”. In: Proceedings of the
26th Annual International Conference on Machine Learning - ICML
’09. Montreal, Quebec, Canada: ACM Press, 2009, pp. 1–8. isbn:
978-1-60558-516-1. doi: 10.1145/1553374.1553380 (cit. on p. 93).

[Den+09] Jia Deng et al. “ImageNet: A Large-Scale Hierarchical Image
Database”. In: 2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Mi-
ami, Florida, USA. IEEE Computer Society, 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848 (cit. on p. 27).

[Kri09] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny
Images. Tech. rep. 2009, p. 60 (cit. on pp. 35, 67, 69, 76, 81, 82, 89,
92).

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST Handwritten
Digit Database”. In: ATT Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist 2 (2010) (cit. on pp. 17, 24, 27, 31, 92).

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rec-
tifier Neural Networks”. In: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2011,
Fort Lauderdale, USA, April 11-13, 2011. Ed. by Geoffrey J. Gordon,
David B. Dunson, and Miroslav Dud́ık. Vol. 15. JMLR Proceedings.
JMLR.org, 2011, pp. 315–323 (cit. on pp. 16–18).

[KBQ11] Tomer Kalisky, Paul Blainey, and Stephen R Quake. “Genomic Anal-
ysis at the Single-Cell Level”. In: Annual review of genetics 45 (2011)
(cit. on p. 97).

[Kri+11] Hans-Peter Kriegel et al. “Interpreting and Unifying Outlier Scores”.
In: Proceedings of the Eleventh SIAM International Conference
on Data Mining, SDM 2011, April 28-30, 2011, Mesa, Arizona,
USA. SIAM / Omnipress, 2011, pp. 13–24. doi: 10 . 1137 / 1 .

9781611972818.2 (cit. on p. 73).

144

https://doi.org/10.5555/1390681.1442792
https://doi.org/10.1007/s11263-007-0056-x
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1137/1.9781611972818.2
https://doi.org/10.1137/1.9781611972818.2

BIBLIOGRAPHY

[Net+11] Yuval Netzer et al. “Reading Digits in Natural Images with Unsuper-
vised Feature Learning”. In: NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011. 2011 (cit. on pp. 35, 69, 76, 82,
84, 85, 87, 92).

[BSJ12] Colin Bellinger, Shiven Sharma, and Nathalie Japkowicz. “One-Class
versus Binary Classification: Which and When?” In: 2012 11th Inter-
national Conference on Machine Learning and Applications. Vol. 2.
Dec. 2012, pp. 102–106. doi: 10.1109/ICMLA.2012.212 (cit. on
p. 68).

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Ad-
vances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012. Proceed-
ings of a Meeting Held December 3-6, 2012, Lake Tahoe, Nevada,
United States. Ed. by Peter L. Bartlett et al. 2012, pp. 1106–1114
(cit. on p. 1).

[QS12] Jing Qian and Venkatesh Saligrama. “New Statistic in P-Value Es-
timation for Anomaly Detection”. In: 2012 IEEE Statistical Signal
Processing Workshop (SSP). IEEE. 2012, pp. 393–396 (cit. on pp. 73,
74, 95).

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. “Practical
Bayesian Optimization of Machine Learning Algorithms”. In: Ad-
vances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012. Proceed-
ings of a Meeting Held December 3-6, 2012, Lake Tahoe, Nevada,
United States. Ed. by Peter L. Bartlett et al. 2012, pp. 2960–2968
(cit. on pp. 38, 44).

[TK12] Masaru Tomita and Kenjiro Kami. “Systems Biology, Metabolomics,
and Cancer Metabolism”. In: Science (New York, N.Y.) 336.6084
(2012), pp. 990–991 (cit. on p. 118).

[Goo+13] Ian J. Goodfellow et al. “Maxout Networks”. In: Proceedings of the 30th
International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013. Vol. 28. JMLR Workshop and Conference
Proceedings. JMLR.org, 2013, pp. 1319–1327 (cit. on p. 19).

[LA13] Nathan E Lewis and Alyaa M Abdel-Haleem. “The Evolution of
Genome-Scale Models of Cancer Metabolism”. In: Frontiers in physi-
ology 4 (2013), p. 237 (cit. on p. 118).

[Lóp+13] Victoria López et al. “An Insight into Classification with Imbalanced
Data: Empirical Results and Current Trends on Using Data Intrinsic
Characteristics”. In: Information Sciences 250 (Nov. 2013), pp. 113–

145

https://doi.org/10.1109/ICMLA.2012.212

BIBLIOGRAPHY

141. issn: 0020-0255. doi: 10.1016/j.ins.2013.07.007 (cit. on
p. 70).

[MHN+13] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. “Rectifier
Nonlinearities Improve Neural Network Acoustic Models”. In: Proc.
Icml. Vol. 30. Atlanta, Georgia, USA. 2013, p. 3 (cit. on p. 19).

[Mon+14] Guido F. Montúfar et al. “On the Number of Linear Regions of Deep
Neural Networks”. In: Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. Ed. by
Zoubin Ghahramani et al. 2014, pp. 2924–2932 (cit. on pp. 16, 18, 21,
31).

[PMB14] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. “On the Num-
ber of Response Regions of Deep Feed Forward Networks with Piece-
Wise Linear Activations”. In: arXiv:1312.6098 [cs] (Feb. 2014). arXiv:
1312.6098 [cs] (cit. on p. 18).

[Sri+14] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. In: Journal of Machine Learning Research
15.56 (2014), pp. 1929–1958 (cit. on pp. 32, 94).

[Sze+14] Christian Szegedy et al. “Intriguing Properties of Neural Networks”.
In: International Conference on Learning Representations. 2014 (cit.
on pp. 2, 3, 13, 34).

[ZAR14] Xiangxin Zhu, Dragomir Anguelov, and Deva Ramanan. “Capturing
Long-Tail Distributions of Object Subcategories”. In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2014,
Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society, 2014,
pp. 915–922. doi: 10.1109/CVPR.2014.122 (cit. on pp. 2, 9).

[Blu+15] Charles Blundell et al. “Weight Uncertainty in Neural Networks”. In:
Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37. ICML’15. Lille, France:
JMLR.org, 2015, pp. 1613–1622 (cit. on p. 12).

[Cir+15] Giovanni Ciriello et al. “Comprehensive Molecular Portraits of Invasive
Lobular Breast Cancer”. In: Cell 163.2 (2015), pp. 506–519 (cit. on
p. 118).

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Ex-
plaining and Harnessing Adversarial Examples”. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. 2015 (cit. on pp. 2, 3, 7, 9, 10, 13, 34–36,
44, 73, 92).

146

https://doi.org/10.1016/j.ins.2013.07.007
https://arxiv.org/abs/1312.6098
https://doi.org/10.1109/CVPR.2014.122

BIBLIOGRAPHY

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift”. In:
arXiv:1502.03167 [cs] (Feb. 2015). arXiv: 1502.03167 [cs] (cit. on
pp. 32, 94).

[LBA15] Daniel J. Laydon, Charles R. M. Bangham, and Becca Asquith. “Es-
timating T-Cell Repertoire Diversity: Limitations of Classical Esti-
mators and a New Approach”. In: Philosophical Transactions of the
Royal Society B: Biological Sciences 370.1675 (Aug. 2015), p. 20140291.
issn: 0962-8436. doi: 10.1098/rstb.2014.0291 (cit. on p. 76).

[Lin+15] Carsten Linnemann et al. “High-Throughput Epitope Discovery Re-
veals Frequent Recognition of Neo-Antigens by CD4+ T Cells in
Human Melanoma”. In: Nature Medicine 21.1 (Jan. 2015), pp. 81–85.
issn: 1546-170X. doi: 10.1038/nm.3773 (cit. on p. 77).

[Plo15] Plotly Technologies Inc. Collaborative Data Science. https://plot.ly.
Montreal, QC, 2015 (cit. on p. 28).

[RSS15] Jason A. Reuter, Damek Spacek, and Michael P. Snyder. “High-
Throughput Sequencing Technologies”. In: Molecular cell 58.4 (May
2015), pp. 586–597. issn: 1097-2765. doi: 10.1016/j.molcel.2015.
05.004 (cit. on pp. 69, 77).

[Spr+15] Jost Tobias Springenberg et al. “Striving for Simplicity: The All
Convolutional Net”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Workshop Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.
2015 (cit. on pp. 1, 13, 48).

[Yu+15] Fisher Yu et al. “LSUN: Construction of a Large-Scale Image Dataset
Using Deep Learning with Humans in the Loop”. In: (2015). doi:
10.48550/ARXIV.1506.03365 (cit. on pp. 69, 82, 85, 87).

[Amo+16] Dario Amodei et al. Concrete Problems in AI Safety. July 2016. doi:
10.48550/arXiv.1606.06565. arXiv: 1606.06565 [cs] (cit. on
pp. 1, 2, 7, 12, 13).

[Boj+16] Mariusz Bojarski et al. “End to End Learning for Self-Driving Cars”.
In: (2016). doi: 10.48550/ARXIV.1604.07316 (cit. on p. 1).

[FMN16] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. “Testing
the Manifold Hypothesis”. In: Journal of the American Mathematical
Society 29.4 (Oct. 2016), pp. 983–1049. issn: 0894-0347, 1088-6834.
doi: 10.1090/jams/852 (cit. on p. 70).

147

https://arxiv.org/abs/1502.03167
https://doi.org/10.1098/rstb.2014.0291
https://doi.org/10.1038/nm.3773
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.48550/ARXIV.1506.03365
https://doi.org/10.48550/arXiv.1606.06565
https://arxiv.org/abs/1606.06565
https://doi.org/10.48550/ARXIV.1604.07316
https://doi.org/10.1090/jams/852

BIBLIOGRAPHY

[GG16] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Ap-
proximation: Representing Model Uncertainty in Deep Learning”. In:
Proceedings of the 33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-24, 2016. Ed. by
Maria-Florina Balcan and Kilian Q. Weinberger. Vol. 48. JMLR Work-
shop and Conference Proceedings. JMLR.org, 2016, pp. 1050–1059
(cit. on pp. 2, 12, 73).

[He+16] Kaiming He et al. “Deep Residual Learning for Image Recognition”.
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2016 (cit. on pp. 35, 92).

[KKK16] Been Kim, Oluwasanmi Koyejo, and Rajiv Khanna. “Examples Are
Not Enough, Learn to Criticize! Criticism for Interpretability”. In: Ad-
vances in Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain. Ed. by Daniel D. Lee et al. 2016, pp. 2280–
2288 (cit. on pp. 13, 16).

[MFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.
“DeepFool: A Simple and Accurate Method to Fool Deep Neural
Networks”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 2574–2582 (cit. on pp. 35–
37, 44, 92).

[Pap+16] Nicolas Papernot et al. “Distillation as a Defense to Adversarial
Perturbations against Deep Neural Networks”. In: IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26,
2016. IEEE Computer Society, 2016, pp. 582–597. doi: 10.1109/SP.
2016.41 (cit. on pp. 13, 34).

[Saj+16] Max Sajitz-Hermstein et al. “iReMet-Flux: Constraint-Based Ap-
proach for Integrating Relative Metabolite Levels into a Stoichiomet-
ric Metabolic Models”. In: Bioinformatics (Oxford, England) 32.17
(2016), pp. i755–i762 (cit. on p. 129).

[Sil+16] David Silver et al. “Mastering the Game of Go with Deep Neural
Networks and Tree Search”. In: Nat. 529.7587 (2016), pp. 484–489.
doi: 10.1038/nature16961 (cit. on p. 1).

[AG17] Mahdieh Abbasi and Christian Gagné. “Robustness to Adversarial
Examples through an Ensemble of Specialists”. In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Workshop Track Proceedings. OpenReview.net,
2017 (cit. on pp. 13, 34, 35).

[AS17] Charu C. Aggarwal and Saket Sathe. Outlier Ensembles - an Introduc-
tion. Springer, 2017. isbn: 978-3-319-54764-0. doi: 10.1007/978-
3-319-54765-7 (cit. on p. 35).

148

https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/978-3-319-54765-7
https://doi.org/10.1007/978-3-319-54765-7

BIBLIOGRAPHY

[BBS17] Alexander Bagnall, Razvan Bunescu, and Gordon Stewart. “Training
Ensembles to Detect Adversarial Examples”. In: arXiv:1712.04006
(Dec. 2017). arXiv: 1712.04006 [cs] (cit. on pp. 13, 34, 35).

[Bau+17] David Bau et al. “Network Dissection: Quantifying Interpretability of
Deep Visual Representations”. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017. IEEE Computer Society, 2017, pp. 3319–3327. doi:
10.1109/CVPR.2017.354 (cit. on pp. 17, 31).

[CW17a] Nicholas Carlini and David Wagner. “Towards Evaluating the Ro-
bustness of Neural Networks”. In: 2017 IEEE Symposium on Security
and Privacy (SP). May 2017, pp. 39–57. doi: 10.1109/SP.2017.49
(cit. on pp. 36, 37).

[CW17b] Nicholas Carlini and David A. Wagner. “Adversarial Examples Are
Not Easily Detected: Bypassing Ten Detection Methods”. In: Pro-
ceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, AISec@CCS 2017, Dallas, TX, USA, November 3, 2017.
Ed. by Bhavani M. Thuraisingham et al. ACM, 2017, pp. 3–14. doi:
10.1145/3128572.3140444 (cit. on pp. 35, 44, 50, 92).

[Car+17] Fabio Carrara et al. “Detecting Adversarial Example Attacks to Deep
Neural Networks”. In: Proceedings of the 15th International Workshop
on Content-Based Multimedia Indexing, CBMI 2017, Florence, Italy,
June 19-21, 2017. ACM, 2017, 38:1–38:7. doi: 10.1145/3095713.
3095753 (cit. on p. 11).

[Dam+17] Chiara Damiani et al. “Linking Alterations in Metabolic Fluxes with
Shifts in Metabolite Levels by Means of Kinetic Modeling”. In: Italian
Workshop on Artificial Life and Evolutionary Computation. Springer.
2017, pp. 138–148 (cit. on p. 129).

[Die17] Thomas G. Dietterich. “Steps Toward Robust Artificial Intelligence”.
In: AI Magazine 38.3 (Oct. 2017), pp. 3–24. issn: 2371-9621. doi:
10.1609/aimag.v38i3.2756 (cit. on pp. 1, 2, 7, 12).

[Fac+17] Elena Facco et al. “Estimating the Intrinsic Dimension of Datasets
by a Minimal Neighborhood Information”. In: Scientific Reports 7.1
(Sept. 2017), p. 12140. issn: 2045-2322. doi: 10.1038/s41598-017-
11873-y (cit. on pp. 70, 74, 75, 94).

[Fei+17] Reuben Feinman et al. “Detecting Adversarial Samples from Artifacts”.
In: CoRR abs/1703.00410 (2017). arXiv: 1703.00410 (cit. on pp. 11,
12).

[GWW17] Wilson Wen Bin Goh, Wei Wang, and Limsoon Wong. “Why Batch
Effects Matter in Omics Data, and How to Avoid Them”. In: Trends
in biotechnology 35.6 (2017), pp. 498–507 (cit. on p. 98).

149

https://arxiv.org/abs/1712.04006
https://doi.org/10.1109/CVPR.2017.354
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1145/3095713.3095753
https://doi.org/10.1145/3095713.3095753
https://doi.org/10.1609/aimag.v38i3.2756
https://doi.org/10.1038/s41598-017-11873-y
https://doi.org/10.1038/s41598-017-11873-y
https://arxiv.org/abs/1703.00410

BIBLIOGRAPHY

[Gro+17] Kathrin Grosse et al. “On the (Statistical) Detection of Adversarial
Examples”. In: CoRR abs/1702.06280 (2017). arXiv: 1702.06280
(cit. on p. 11).

[Haq+17] Ashraful Haque et al. “A Practical Guide to Single-Cell RNA-
Sequencing for Biomedical Research and Clinical Applications”. In:
Genome medicine 9.1 (2017), pp. 1–12 (cit. on p. 98).

[He+17] Warren He et al. “Adversarial Example Defense: Ensembles of Weak
Defenses Are Not Strong”. In: 11th USENIX Workshop on Offensive
Technologies (WOOT 17). 2017 (cit. on pp. 50, 52).

[HG17a] Dan Hendrycks and Kevin Gimpel. “A Baseline for Detecting Misclas-
sified and Out-of-Distribution Examples in Neural Networks”. In: 5th
International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017 (cit. on pp. 11, 12, 56).

[HG17b] Dan Hendrycks and Kevin Gimpel. “Early Methods for Detecting
Adversarial Images”. In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Work-
shop Track Proceedings. OpenReview.net, 2017 (cit. on pp. 11, 12).

[Hua+17] Gao Huang et al. “Densely Connected Convolutional Networks”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 4700–4708 (cit. on pp. 35, 92).

[KG17] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in
Bayesian Deep Learning for Computer Vision?” In: Advances in Neural
Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA. Ed. by Isabelle Guyon et al. 2017, pp. 5574–5584 (cit. on
p. 12).

[KGB17] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial
Examples in the Physical World”. In: 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings. OpenReview.net, 2017 (cit. on
pp. 35–37, 44, 92).

[LPB17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell.
“Simple and Scalable Predictive Uncertainty Estimation Using Deep
Ensembles”. In: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle
Guyon et al. 2017, pp. 6402–6413 (cit. on pp. 2, 12, 72, 77).

150

https://arxiv.org/abs/1702.06280

BIBLIOGRAPHY

[Lei+17] Christian Leibig et al. “Leveraging Uncertainty Information from Deep
Neural Networks for Disease Detection”. In: Scientific Reports 7.1
(Dec. 2017), p. 17816. issn: 2045-2322. doi: 10.1038/s41598-017-
17876-z (cit. on pp. 1, 2, 13, 31, 93).

[Lit+17] Geert Litjens et al. “A Survey on Deep Learning in Medical Image
Analysis”. In: Medical Image Analysis 42 (Dec. 2017), pp. 60–88.
issn: 1361-8415. doi: 10.1016/j.media.2017.07.005 (cit. on
p. 1).

[LIF17] Jiajun Lu, Theerasit Issaranon, and David A. Forsyth. “SafetyNet:
Detecting and Rejecting Adversarial Examples Robustly”. In: IEEE
International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp. 446–454.
doi: 10.1109/ICCV.2017.56 (cit. on pp. 11, 56).

[MC17] Dongyu Meng and Hao Chen. “MagNet: A Two-Pronged Defense
against Adversarial Examples”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. Ed. by
Bhavani M. Thuraisingham et al. ACM, 2017, pp. 135–147. doi:
10.1145/3133956.3134057 (cit. on p. 11).

[Met+17] Jan Hendrik Metzen et al. “On Detecting Adversarial Perturbations”.
In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017 (cit. on p. 11).

[OMS17] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature
Visualization”. In: Distill (2017). doi: 10.23915/distill.00007
(cit. on pp. 17, 31, 93).

[Rag+17] Maithra Raghu et al. “On the Expressive Power of Deep Neural
Networks”. In: Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings
of Machine Learning Research. PMLR, 2017, pp. 2847–2854 (cit. on
p. 18).

[Sah+17] Ugur Sahin et al. “Personalized RNA Mutanome Vaccines Mobi-
lize Poly-Specific Therapeutic Immunity against Cancer”. In: Nature
547.7662 (July 2017), pp. 222–226. issn: 1476-4687. doi: 10.1038/
nature23003 (cit. on p. 76).

[SGK17] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning
Important Features Through Propagating Activation Differences”. In:
Proceedings of the 34th International Conference on Machine Learning.
PMLR, July 2017, pp. 3145–3153 (cit. on pp. 1, 13, 48).

151

https://doi.org/10.1038/s41598-017-17876-z
https://doi.org/10.1038/s41598-017-17876-z
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1109/ICCV.2017.56
https://doi.org/10.1145/3133956.3134057
https://doi.org/10.23915/distill.00007
https://doi.org/10.1038/nature23003
https://doi.org/10.1038/nature23003

BIBLIOGRAPHY

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attri-
bution for Deep Networks”. In: Proceedings of the 34th International
Conference on Machine Learning. PMLR, July 2017, pp. 3319–3328
(cit. on pp. 1, 13, 48).

[Aro+18] Raman Arora et al. “Understanding Deep Neural Networks with
Rectified Linear Units”. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018 (cit. on
p. 17).

[ACW18] Anish Athalye, Nicholas Carlini, and David Wagner. “Obfuscated
Gradients Give a False Sense of Security: Circumventing Defenses
to Adversarial Examples”. In: Proceedings of the 35th International
Conference on Machine Learning. PMLR, July 2018, pp. 274–283
(cit. on pp. 37, 50, 52).

[CM18] Vasileios Charisopoulos and Petros Maragos. “A Tropical Approach
to Neural Networks with Piecewise Linear Activations”. In: (2018).
doi: 10.48550/ARXIV.1805.08749 (cit. on p. 17).

[FKH18] Stefan Falkner, Aaron Klein, and Frank Hutter. “BOHB: Robust
and Efficient Hyperparameter Optimization at Scale”. In: Proceedings
of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by
Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings of Machine
Learning Research. PMLR, 2018, pp. 1436–1445 (cit. on p. 55).

[Gra+18] Alex Graudenzi et al. “Integration of Transcriptomic Data and
Metabolic Networks in Cancer Samples Reveals Highly Significant
Prognostic Power”. In: Journal of Biomedical Informatics 87 (Nov.
2018), pp. 37–49. issn: 1532-0480. doi: 10.1016/j.jbi.2018.09.
010 (cit. on p. 118).

[KLS18] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. “Optimal Whiten-
ing and Decorrelation”. In: The American Statistician 72.4 (2018),
pp. 309–314. doi: 10.1080/00031305.2016.1277159. eprint: https:
//doi.org/10.1080/00031305.2016.1277159 (cit. on p. 38).

[Kol+18] Bojan Kolosnjaji et al. “Adversarial Malware Binaries: Evading Deep
Learning for Malware Detection in Executables”. In: 26th European
Signal Processing Conference, EUSIPCO 2018, Roma, Italy, September
3-7, 2018. IEEE, 2018, pp. 533–537. doi: 10.23919/EUSIPCO.2018.
8553214 (cit. on p. 34).

[Lee+18] Kimin Lee et al. “A Simple Unified Framework for Detecting Out-of-
Distribution Samples and Adversarial Attacks”. In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8,

152

https://doi.org/10.48550/ARXIV.1805.08749
https://doi.org/10.1016/j.jbi.2018.09.010
https://doi.org/10.1016/j.jbi.2018.09.010
https://doi.org/10.1080/00031305.2016.1277159
https://doi.org/10.1080/00031305.2016.1277159
https://doi.org/10.1080/00031305.2016.1277159
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214

BIBLIOGRAPHY

2018, Montréal, Canada. Ed. by Samy Bengio et al. 2018, pp. 7167–
7177 (cit. on pp. 2, 4, 11, 34, 35, 38, 39, 41, 44, 47, 51, 52, 55, 63–65).

[LLS18] Shiyu Liang, Yixuan Li, and R. Srikant. “Enhancing the Reliability
of Out-of-Distribution Image Detection in Neural Networks”. In: 6th
International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018 (cit. on pp. 12, 41, 56, 82).

[Ma+18] Xingjun Ma et al. “Characterizing Adversarial Subspaces Using Local
Intrinsic Dimensionality”. In: 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018
(cit. on pp. 4, 11, 34, 35, 38, 42, 44, 47, 51, 52, 55, 63–65).

[Nov+18] Roman Novak et al. “Sensitivity and Generalization in Neural Net-
works: An Empirical Study”. In: 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018 (cit. on pp. 10, 18, 93).

[PM18] Nicolas Papernot and Patrick McDaniel. “Deep K-Nearest Neighbors:
Towards Confident, Interpretable and Robust Deep Learning”. In:
arXiv:1803.04765 [cs, stat] (Mar. 2018). arXiv: 1803.04765 [cs,

stat] (cit. on pp. 2, 11).

[Ruf+18] Lukas Ruff et al. “Deep One-Class Classification”. In: Proceedings of
the 35th International Conference on Machine Learning. PMLR, July
2018, pp. 4393–4402 (cit. on p. 95).

[STR18] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam.
“Bounding and Counting Linear Regions of Deep Neural Networks”. In:
Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018.
Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings
of Machine Learning Research. PMLR, 2018, pp. 4565–4573 (cit. on
pp. 18, 93).

[Str+18] Thilo Strauss et al. “Ensemble Methods as a Defense to Adversarial
Perturbations Against Deep Neural Networks”. In: arXiv:1709.03423
(Feb. 2018). arXiv: 1709.03423 [cs, stat] (cit. on pp. 13, 34, 35).

[Wen+18] Zeyi Wen et al. “ThunderSVM: A Fast SVM Library on GPUs and
CPUs”. In: Journal of Machine Learning Research 19 (2018), pp. 797–
801 (cit. on p. 55).

153

https://arxiv.org/abs/1803.04765
https://arxiv.org/abs/1803.04765
https://arxiv.org/abs/1709.03423

BIBLIOGRAPHY

[XEQ18] Weilin Xu, David Evans, and Yanjun Qi. “Feature Squeezing: De-
tecting Adversarial Examples in Deep Neural Networks”. In: 25th
Annual Network and Distributed System Security Symposium, NDSS
2018, San Diego, California, USA, February 18-21, 2018. The Internet
Society, 2018 (cit. on p. 11).

[ZH18] Zhihao Zheng and Pengyu Hong. “Robust Detection of Adversarial
Attacks by Modeling the Intrinsic Properties of Deep Neural Networks”.
In: Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada. Ed. by Samy Bengio
et al. 2018, pp. 7924–7933 (cit. on p. 11).

[AD19] Jonathan Aigrain and Marcin Detyniecki. “Detecting Adversarial
Examples and Other Misclassifications in Neural Networks by In-
trospection”. In: CoRR abs/1905.09186 (2019). arXiv: 1905.09186
(cit. on p. 12).

[Ans+19] Alessio Ansuini et al. “Intrinsic Dimension of Data Representations in
Deep Neural Networks”. In: Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada. Ed. by Hanna M. Wallach et al. 2019, pp. 6109–6119 (cit. on
pp. 69, 70, 82, 83, 94).

[Bal+19] Randall Balestriero et al. “The Geometry of Deep Networks: Power
Diagram Subdivision”. In: Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada. Ed. by Hanna M. Wallach et al. 2019, pp. 15806–15815 (cit.
on p. 17).

[BL19] Jonathon Byrd and Zachary Lipton. “What Is the Effect of Importance
Weighting in Deep Learning?” In: Proceedings of the 36th International
Conference on Machine Learning. PMLR, May 2019, pp. 872–881 (cit.
on pp. 71, 82).

[CEP19] Nicholas Carlini, Úlfar Erlingsson, and Nicolas Papernot. Distribution
Density, Tails, and Outliers in Machine Learning: Metrics and Appli-
cations. Oct. 2019. arXiv: 1910.13427 [cs, stat] (cit. on p. 10).

[FAK19] Sara Fotouhi, Shahrokh Asadi, and Michael W. Kattan. “A Com-
prehensive Data Level Analysis for Cancer Diagnosis on Imbalanced
Data”. In: Journal of Biomedical Informatics 90 (Feb. 2019), p. 103089.
issn: 1532-0464. doi: 10.1016/j.jbi.2018.12.003 (cit. on pp. 4,
68, 69, 94).

154

https://arxiv.org/abs/1905.09186
https://arxiv.org/abs/1910.13427
https://doi.org/10.1016/j.jbi.2018.12.003

BIBLIOGRAPHY

[HR19a] Boris Hanin and David Rolnick. “Complexity of Linear Regions in
Deep Networks”. In: International Conference on Machine Learning.
2019, pp. 2596–2604 (cit. on p. 18).

[HR19b] Boris Hanin and David Rolnick. “Deep ReLU Networks Have Surpris-
ingly Few Activation Patterns”. In: Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada. Ed. by Hanna M. Wallach et al. 2019, pp. 359–368
(cit. on pp. 16, 18, 28, 93).

[Hoo+19] Sara Hooker et al. “A Benchmark for Interpretability Methods in Deep
Neural Networks”. In: Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada. Ed. by Hanna M. Wallach et al. 2019, pp. 9734–9745 (cit. on
p. 48).

[HWW19] Bo Huang, Yi Wang, and Wei Wang. “Model-Agnostic Adversarial
Detection by Random Perturbations”. In: Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019. Ed. by Sarit Kraus. ijcai.org,
2019, pp. 4689–4696. doi: 10.24963/ijcai.2019/651 (cit. on p. 11).

[Jam+19] Oveis Jamialahmadi et al. “A Benchmark-Driven Approach to Re-
construct Metabolic Networks for Studying Cancer Metabolism”. In:
PLoS computational biology 15.4 (2019), e1006936 (cit. on pp. 118,
129).

[Ma+19] Shiqing Ma et al. “NIC: Detecting Adversarial Samples with Neural
Network Invariant Checking”. In: 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019 (cit. on pp. 11, 35,
38).

[Mon+19] João Monteiro et al. “Generalizable Adversarial Examples Detection
Based on Bi-Model Decision Mismatch”. In: 2019 IEEE International
Conference on Systems, Man and Cybernetics, SMC 2019, Bari, Italy,
October 6-9, 2019. IEEE, 2019, pp. 2839–2844. doi: 10.1109/SMC.
2019.8913861 (cit. on p. 12).

[Mös+19] Anja Mösch et al. “Machine Learning for Cancer Immunotherapies
Based on Epitope Recognition by T Cell Receptors”. In: Frontiers in
Genetics 10 (2019). issn: 1664-8021 (cit. on pp. 68, 77).

[Mur+19] W. James Murdoch et al. “Definitions, Methods, and Applications
in Interpretable Machine Learning”. In: Proceedings of the National
Academy of Sciences 116.44 (Oct. 2019), pp. 22071–22080. doi:

155

https://doi.org/10.24963/ijcai.2019/651
https://doi.org/10.1109/SMC.2019.8913861
https://doi.org/10.1109/SMC.2019.8913861

BIBLIOGRAPHY

10.1073/pnas.1900654116. (Visited on 04/03/2023) (cit. on pp. 1,
2, 12).

[Nor+19] Harsha Nori et al. “InterpretML: A Unified Framework for Machine
Learning Interpretability”. In: arXiv preprint arXiv:1909.09223 (2019).
arXiv: 1909.09223 (cit. on pp. 12, 13, 16).

[Qin+19] Yao Qin et al. “Imperceptible, Robust, and Targeted Adversarial
Examples for Automatic Speech Recognition”. In: Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA. Ed. by Kamalika Chaudhuri
and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning
Research. PMLR, 2019, pp. 5231–5240 (cit. on p. 34).

[RKH19] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. “The Odds Are
Odd: A Statistical Test for Detecting Adversarial Examples”. In:
Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA. Ed. by
Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings
of Machine Learning Research. PMLR, 2019, pp. 5498–5507 (cit. on
pp. 11, 56).

[Sno+19] Jasper Snoek et al. “Can You Trust Your Model’s Uncertainty? Eval-
uating Predictive Uncertainty under Dataset Shift”. In: Advances in
Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, Decem-
ber 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach
et al. 2019, pp. 13969–13980 (cit. on p. 12).

[Ton+19] Mariya Toneva et al. “An Empirical Study of Example Forgetting dur-
ing Deep Neural Network Learning”. In: 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019 (cit. on pp. 2, 10, 22, 25, 31).

[Vie+19] Beate Vieth et al. “A Systematic Evaluation of Single Cell RNA-Seq
Analysis Pipelines”. In: Nature communications 10.1 (2019), pp. 1–11
(cit. on p. 97).

[Vin+19] Oriol Vinyals et al. “Grandmaster Level in StarCraft II Using Multi-
Agent Reinforcement Learning”. In: Nature 575.7782 (Nov. 2019),
pp. 350–354. issn: 1476-4687. doi: 10.1038/s41586-019-1724-z
(cit. on p. 1).

[ZXY19] Xiuwei Zhang, Chenling Xu, and Nir Yosef. “Simulating Multiple
Faceted Variability in Single Cell RNA Sequencing”. In: Nature com-
munications 10.1 (2019), pp. 1–16 (cit. on p. 98).

[Agg20] Charu C. Aggarwal. Linear Algebra and Optimization for Machine
Learning - A Textbook. Springer, 2020. isbn: 978-3-030-40343-0. doi:
10.1007/978-3-030-40344-7 (cit. on p. 39).

156

https://doi.org/10.1073/pnas.1900654116
https://arxiv.org/abs/1909.09223
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1007/978-3-030-40344-7

BIBLIOGRAPHY

[Ala+20] Shamshe Alam et al. “One-Class Support Vector Classifiers: A Survey”.
In: Knowl. Based Syst. 196 (2020), p. 105754. doi: 10.1016/j.
knosys.2020.105754 (cit. on p. 40).

[Arr+20] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence
(XAI): Concepts, Taxonomies, Opportunities and Challenges toward
Responsible AI”. In: Inf. Fusion 58 (2020), pp. 82–115. doi: 10.
1016/j.inffus.2019.12.012 (cit. on pp. 12, 91).

[Bag+20] Dmitry V. Bagaev et al. “VDJdb in 2019: Database Extension, New
Analysis Infrastructure and a T-Cell Receptor Motif Compendium”. In:
Nucleic Acids Research 48.Database-Issue (2020), pp. D1057–D1062.
doi: 10.1093/nar/gkz874 (cit. on p. 77).

[Bro+20] Tom Brown et al. “Language Models Are Few-Shot Learners”. In:
Advances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., 2020, pp. 1877–1901 (cit. on p. 1).

[CSG20] Gilad Cohen, Guillermo Sapiro, and Raja Giryes. “Detecting Adver-
sarial Samples Using Influence Functions and Nearest Neighbors”. In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer
Vision Foundation / IEEE, 2020, pp. 14441–14450. doi: 10.1109/
CVPR42600.2020.01446 (cit. on p. 11).

[Cra+20a] Francesco Craighero et al. “Investigating the Compositional Struc-
ture of Deep Neural Networks”. In: Machine Learning, Optimization,
and Data Science. Ed. by Giuseppe Nicosia et al. Cham: Springer
International Publishing, 2020, pp. 322–334. isbn: 978-3-030-64583-0
(cit. on pp. 3, 15, 56, 91, 92).

[Cra+20b] Francesco Craighero et al. “Understanding Deep Learning with Ac-
tivation Pattern Diagrams”. In: Proceedings of the Italian Workshop
on Explainable Artificial Intelligence Co-Located with 19th Interna-
tional Conference of the Italian Association for Artificial Intelligence,
XAI.it@AIxIA 2020, Online Event, November 25-26, 2020. Ed. by
Cataldo Musto et al. Vol. 2742. CEUR Workshop Proceedings. CEUR-
WS.org, 2020, pp. 119–126 (cit. on pp. 3, 15, 91, 92).

[Dam+20] Chiara Damiani et al. “MaREA4Galaxy: Metabolic Reaction Enrich-
ment Analysis and Visualization of RNA-Seq Data within Galaxy”.
In: Computational and structural biotechnology journal 18 (2020),
pp. 993–999 (cit. on p. 118).

[Din+20] Jennifer N. Dines et al. “The ImmuneRACE Study: A Prospective
Multicohort Study of Immune Response Action to COVID-19 Events
with the ImmuneCODE™ Open Access Database”. In: medRxiv : the
preprint server for health sciences (2020). doi: 10.1101/2020.08.

157

https://doi.org/10.1016/j.knosys.2020.105754
https://doi.org/10.1016/j.knosys.2020.105754
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1093/nar/gkz874
https://doi.org/10.1109/CVPR42600.2020.01446
https://doi.org/10.1109/CVPR42600.2020.01446
https://doi.org/10.1101/2020.08.17.20175158
https://doi.org/10.1101/2020.08.17.20175158
https://doi.org/10.1101/2020.08.17.20175158

BIBLIOGRAPHY

17.20175158. eprint: https://www.medrxiv.org/content/early/
2020/08/21/2020.08.17.20175158.1.full.pdf (cit. on p. 77).

[Fel20] Vitaly Feldman. “Does Learning Require Memorization? A Short Tale
about a Long Tail”. In: Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing. 2020, pp. 954–959 (cit. on pp. 2,
9).

[Gao+20] Long Gao et al. “Handling Imbalanced Medical Image Data: A Deep-
Learning-Based One-Class Classification Approach”. In: 108 (2020),
p. 101935. doi: 10.1016/j.artmed.2020.101935 (cit. on p. 69).

[Gri+20] Sorin Grigorescu et al. “A Survey of Deep Learning Techniques for
Autonomous Driving”. In: Journal of Field Robotics 37.3 (2020),
pp. 362–386. issn: 1556-4967. doi: 10.1002/rob.21918 (cit. on
p. 1).

[KK20] Ryo Kamoi and Kei Kobayashi. “Why Is the Mahalanobis Distance
Effective for Anomaly Detection?” In: CoRR abs/2003.00402 (2020).
arXiv: 2003.00402 (cit. on pp. 11, 39).

[Kok+20] Narine Kokhlikyan et al. “Captum: A Unified and Generic Model
Interpretability Library for PyTorch”. In: (2020). arXiv: 2009.07896
[cs.LG] (cit. on p. 48).

[LC20] Julia Lust and Alexandru Paul Condurache. “GraN: An Efficient
Gradient-Norm Based Detector for Adversarial and Misclassified Ex-
amples”. In: 28th European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning, ESANN
2020, Bruges, Belgium, October 2-4, 2020. 2020, pp. 7–12 (cit. on
p. 12).

[Pat+20] Lucrezia Patruno et al. “A Review of Computational Strategies for
Denoising and Imputation of Single-Cell Transcriptomic Data”. In:
Briefings in Bioinformatics 22.4 (Oct. 2020). issn: 1477-4054. doi:
10.1093/bib/bbaa222. eprint: https://academic.oup.com/bib/
article-pdf/22/4/bbaa222/39136488/patruno\textbackslash\

_et\textbackslash_al\textbackslash_sm\textbackslash\

_bbaa222.pdf (cit. on pp. 4, 97).

[SR20] Thiago Serra and Srikumar Ramalingam. “Empirical Bounds on Lin-
ear Regions of Deep Rectifier Networks”. In: The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Arti-
ficial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020. AAAI Press, 2020, pp. 5628–5635 (cit. on p. 18).

158

https://doi.org/10.1101/2020.08.17.20175158
https://doi.org/10.1101/2020.08.17.20175158
https://doi.org/10.1101/2020.08.17.20175158
https://doi.org/10.1101/2020.08.17.20175158
https://www.medrxiv.org/content/early/2020/08/21/2020.08.17.20175158.1.full.pdf
https://www.medrxiv.org/content/early/2020/08/21/2020.08.17.20175158.1.full.pdf
https://doi.org/10.1016/j.artmed.2020.101935
https://doi.org/10.1002/rob.21918
https://arxiv.org/abs/2003.00402
https://arxiv.org/abs/2009.07896
https://arxiv.org/abs/2009.07896
https://doi.org/10.1093/bib/bbaa222
https://academic.oup.com/bib/article-pdf/22/4/bbaa222/39136488/patruno\textbackslash_et\textbackslash_al\textbackslash_sm\textbackslash_bbaa222.pdf
https://academic.oup.com/bib/article-pdf/22/4/bbaa222/39136488/patruno\textbackslash_et\textbackslash_al\textbackslash_sm\textbackslash_bbaa222.pdf
https://academic.oup.com/bib/article-pdf/22/4/bbaa222/39136488/patruno\textbackslash_et\textbackslash_al\textbackslash_sm\textbackslash_bbaa222.pdf
https://academic.oup.com/bib/article-pdf/22/4/bbaa222/39136488/patruno\textbackslash_et\textbackslash_al\textbackslash_sm\textbackslash_bbaa222.pdf

BIBLIOGRAPHY

[Sot+20] Angelo Sotgiu et al. “Deep Neural Rejection against Adversarial
Examples”. In: EURASIP J. Inf. Secur. 2020 (2020), p. 5. doi:
10.1186/s13635-020-00105-y (cit. on p. 11).

[Tra+20] Florian Tramèr et al. “On Adaptive Attacks to Adversarial Example
Defenses”. In: Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, Virtual. Ed. by Hugo Larochelle
et al. 2020 (cit. on p. 50).

[Abu+21] Ahmed Abusnaina et al. “Adversarial Example Detection Using Latent
Neighborhood Graph”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). Oct. 2021, pp. 7687–7696
(cit. on p. 11).

[And+21] McKane Andrus et al. “What We Can’t Measure, We Can’t Under-
stand: Challenges to Demographic Data Procurement in the Pursuit
of Fairness”. In: Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency. FAccT ’21. New York, NY,
USA: Association for Computing Machinery, 2021, pp. 249–260. isbn:
978-1-4503-8309-7. doi: 10.1145/3442188.3445888 (cit. on p. 9).

[Bac+21] Jonathan Bac et al. “Scikit-Dimension: A Python Package for Intrinsic
Dimension Estimation”. In: Entropy. An International and Interdis-
ciplinary Journal of Entropy and Information Studies 23.10 (2021).
issn: 1099-4300. doi: 10.3390/e23101368 (cit. on pp. 70, 75).

[BMN21] Robert J. N. Baldock, Hartmut Maennel, and Behnam Neyshabur.
“Deep Learning through the Lens of Example Difficulty”. In: Advances
in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, Decem-
ber 6-14, 2021, Virtual. Ed. by Marc’Aurelio Ranzato et al. 2021,
pp. 10876–10889 (cit. on p. 10).

[Cra+21] Francesco Craighero et al. “Unity Is Strength: Improving the Detection
of Adversarial Examples with Ensemble Approaches”. In: (2021) (cit.
on pp. 4, 11, 33, 91, 92).

[Gho+21] Soumya Ghosh et al. “Uncertainty Quantification 360: A Holistic
Toolkit for Quantifying and Communicating the Uncertainty of AI”.
In: (2021). arXiv: 2106.01410 [cs.AI] (cit. on pp. 67, 74).

[HW21] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and Epistemic
Uncertainty in Machine Learning: An Introduction to Concepts and
Methods”. In: Machine Learning 110.3 (2021), pp. 457–506 (cit. on
pp. 12, 69, 71, 72).

159

https://doi.org/10.1186/s13635-020-00105-y
https://doi.org/10.1145/3442188.3445888
https://doi.org/10.3390/e23101368
https://arxiv.org/abs/2106.01410

BIBLIOGRAPHY

[Jia+21] Ziheng Jiang et al. “Characterizing Structural Regularities of Labeled
Data in Overparameterized Models”. In: Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event. Ed. by Marina Meila and Tong Zhang. Vol. 139.
Proceedings of Machine Learning Research. PMLR, 2021, pp. 5034–
5044 (cit. on p. 10).

[Jum+21] John Jumper et al. “Highly Accurate Protein Structure Prediction
with AlphaFold”. In: Nature 596.7873 (2021), pp. 583–589 (cit. on
p. 1).

[Kau+21] Ramneet Kaur et al. “Detecting OODs as Datapoints with High
Uncertainty”. In: CoRR abs/2108.06380 (2021). arXiv: 2108.06380
(cit. on p. 35).

[Lia+21] Bin Liang et al. “Detecting Adversarial Image Examples in Deep
Neural Networks with Adaptive Noise Reduction”. In: IEEE Trans.
Dependable Secur. Comput. 18.1 (2021), pp. 72–85. doi: 10.1109/
TDSC.2018.2874243 (cit. on p. 11).

[Ma+21] Xingjun Ma et al. “Understanding Adversarial Attacks on Deep Learn-
ing Based Medical Image Analysis Systems”. In: Pattern Recognition
110 (2021), p. 107332. doi: 10.1016/j.patcog.2020.107332 (cit.
on p. 93).

[Mac+21] Jeaneth Machicao et al. “On the Use of Topological Features of
Metabolic Networks for the Classification of Cancer Samples”. In:
CURRENT GENOMICS 22.2 (2021), pp. 88–97. doi: 10.2174/
1389202922666210301084151 (cit. on pp. 4, 118).

[Mor+21] Pieter Moris et al. “Current Challenges for Unseen-Epitope TCR In-
teraction Prediction and a New Perspective Derived from Image Clas-
sification”. In: Briefings in Bioinformatics 22.4 (July 2021), bbaa318.
issn: 1467-5463, 1477-4054. doi: 10.1093/bib/bbaa318 (cit. on
p. 77).

[Pat+21] Lucrezia Patruno et al. “Combining Multi-Target Regression Deep
Neural Networks and Kinetic Modeling to Predict Relative Fluxes in
Reaction Systems”. In: Information and Computation 281 (Dec. 2021),
p. 104798. issn: 0890-5401. doi: 10.1016/j.ic.2021.104798 (cit.
on pp. 4, 129).

[Pet+21] Vitali Petsiuk et al. “Black-Box Explanation of Object Detectors
via Saliency Maps”. In: Computer Vision and Pattern Recognition
(CVPR). 2021 (cit. on p. 93).

[Pop+21] Phillip Pope et al. “The Intrinsic Dimension of Images and Its Im-
pact on Learning”. In: 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021 (cit. on pp. 69–71, 81).

160

https://arxiv.org/abs/2108.06380
https://doi.org/10.1109/TDSC.2018.2874243
https://doi.org/10.1109/TDSC.2018.2874243
https://doi.org/10.1016/j.patcog.2020.107332
https://doi.org/10.2174/1389202922666210301084151
https://doi.org/10.2174/1389202922666210301084151
https://doi.org/10.1093/bib/bbaa318
https://doi.org/10.1016/j.ic.2021.104798

BIBLIOGRAPHY

[Rag+21] Jayaram Raghuram et al. “A General Framework For Detecting
Anomalous Inputs to DNN Classifiers”. In: Proceedings of the 38th
International Conference on Machine Learning. PMLR, July 2021,
pp. 8764–8775 (cit. on pp. 11, 56, 95).

[Ruf+21] Lukas Ruff et al. “A Unifying Review of Deep and Shallow Anomaly
Detection”. In: Proc. IEEE 109.5 (2021), pp. 756–795. doi: 10.1109/
JPROC.2021.3052449 (cit. on pp. 1, 2, 68).

[Shu+21] Yang Shu et al. “Open Domain Generalization with Domain-
Augmented Meta-Learning”. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2021, Virtual, June 19-25, 2021.
Computer Vision Foundation / IEEE, 2021, pp. 9624–9633. doi:
10.1109/CVPR46437.2021.00950 (cit. on p. 9).

[Var+21] Raj Vardhan et al. “ExAD: An Ensemble Approach for Explanation-
Based Adversarial Detection”. In: arXiv:2103.11526 (Mar. 2021).
arXiv: 2103.11526 [cs] (cit. on pp. 11, 35, 44, 48).

[WBR21] Anna Weber, Jannis Born, and Maŕıa Rodriguez Mart́ınez. “TITAN:
T-Cell Receptor Specificity Prediction with Bimodal Attention Net-
works”. In: Bioinformatics (Oxford, England) 37.Supplement 1 (2021),
pp. i237–i244 (cit. on pp. 4, 69, 76–78, 89, 93).

[ZZ21] Fei Zuo and Qiang Zeng. “Exploiting the Sensitivity of L2 Adversarial
Examples to Erase-and-Restore”. In: ASIA CCS ’21: ACM Asia
Conference on Computer and Communications Security, Virtual Event,
Hong Kong, June 7-11, 2021. Ed. by Jiannong Cao et al. ACM, 2021,
pp. 40–51. doi: 10.1145/3433210.3437529 (cit. on p. 11).

[ADH22] Chirag Agarwal, Daniel D’souza, and Sara Hooker. “Estimating Ex-
ample Difficulty Using Variance of Gradients”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 10368–10378 (cit. on pp. 2, 10, 16, 93).

[Cai+22] Michael Cai et al. “ATM-TCR: TCR-Epitope Binding Affinity Pre-
diction Using a Multi-Head Self-Attention Model”. In: Frontiers in
Immunology 13 (2022). issn: 1664-3224 (cit. on p. 77).

[Ji+22a] Xu Ji et al. Test Sample Accuracy Scales with Training Sample Density
in Neural Networks. July 2022. doi: 10.48550/arXiv.2106.08365.
arXiv: 2106.08365 [cs, stat] (cit. on pp. 10, 18, 93, 95).

[Ji+22b] Yuanfeng Ji et al. “DrugOOD: Out-of-Distribution (OOD) Dataset
Curator and Benchmark for AI-Aided Drug Discovery – a Focus on
Affinity Prediction Problems with Noise Annotations”. In: CoRR
(2022). doi: 10.48550/ARXIV.2201.09637 (cit. on pp. 9, 94).

161

https://doi.org/10.1109/JPROC.2021.3052449
https://doi.org/10.1109/JPROC.2021.3052449
https://doi.org/10.1109/CVPR46437.2021.00950
https://arxiv.org/abs/2103.11526
https://doi.org/10.1145/3433210.3437529
https://doi.org/10.48550/arXiv.2106.08365
https://arxiv.org/abs/2106.08365
https://doi.org/10.48550/ARXIV.2201.09637

BIBLIOGRAPHY

[KHS22] Sara Kaviani, Ki Jin Han, and Insoo Sohn. “Adversarial Attacks
and Defenses on AI in Medical Imaging Informatics: A Survey”. In:
Expert Systems with Applications 198 (July 2022), p. 116815. issn:
0957-4174. doi: 10.1016/j.eswa.2022.116815 (cit. on p. 93).

[KKL22] Daniel Kienitz, Ekaterina Komendantskaya, and Michael Lones. “The
Effect of Manifold Entanglement and Intrinsic Dimensionality on
Learning”. In: Proceedings of the AAAI Conference on Artificial In-
telligence 36.7 (June 2022), pp. 7160–7167. issn: 2374-3468. doi:
10.1609/aaai.v36i7.20676 (cit. on pp. 70, 71, 81, 85, 89, 95).

[Roy+22] Abhijit Guha Roy et al. “Does Your Dermatology Classifier Know
What It Doesn’t Know? Detecting the Long-Tail of Unseen Condi-
tions”. In: Medical Image Anal. 75 (2022), p. 102274. doi: 10.1016/
j.media.2021.102274 (cit. on p. 9).

[Sap+22] Nicolae Sapoval et al. “Current Progress and Open Challenges for
Applying Deep Learning across the Biosciences”. In: Nature Commu-
nications 13.1 (Apr. 2022), p. 1728. issn: 2041-1723. doi: 10.1038/
s41467-022-29268-7 (cit. on p. 1).

[Sun+22] Yiyou Sun et al. “Out-of-Distribution Detection with Deep Nearest
Neighbors”. In: International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA. Ed. by Kamalika
Chaudhuri et al. Vol. 162. Proceedings of Machine Learning Research.
PMLR, 2022, pp. 20827–20840 (cit. on p. 74).

[Yan+22] Jingkang Yang et al. “Generalized Out-of-Distribution Detection: A
Survey”. In: (Aug. 2022). doi: 10.48550/arXiv.2110.11334. arXiv:
2110.11334 [cs] (cit. on pp. 1, 2, 7–9, 11, 69, 94).

[Moh+23] Sina Mohseni et al. “Taxonomy of Machine Learning Safety: A Survey
and Primer”. In: ACM Comput. Surv. 55.8 (2023), 157:1–157:38. doi:
10.1145/3551385 (cit. on pp. 1, 2, 7, 12, 13).

[Hea+] Tim Head et al. Scikit-Optimize: Sequential Model-Based Optimization
in Python. doi: 10.5281/zenodo.1157319 (cit. on p. 40).

162

https://doi.org/10.1016/j.eswa.2022.116815
https://doi.org/10.1609/aaai.v36i7.20676
https://doi.org/10.1016/j.media.2021.102274
https://doi.org/10.1016/j.media.2021.102274
https://doi.org/10.1038/s41467-022-29268-7
https://doi.org/10.1038/s41467-022-29268-7
https://doi.org/10.48550/arXiv.2110.11334
https://arxiv.org/abs/2110.11334
https://doi.org/10.1145/3551385
https://doi.org/10.5281/zenodo.1157319

	Introduction
	Anomaly Detection in Deep Learning
	Thesis Goals
	Contributions

	Background: Anomaly Detection in Deep Learning
	Introduction
	Motivations: Why We Have To Deal With Anomalies
	Closed-world Assumption
	Long-tailed Distributions

	How to Detect Anomalies
	Example Difficulty Estimation
	OOD and Adversarial Examples Detection
	Uncertainty Estimation

	Outcomes: How Anomaly Detection Improves Deep Learning
	Interpretability
	Safety

	Quantifying Example Difficulty from Activation Patterns
	Introduction
	Background
	Methods
	Basic Definitions
	From Activation Patterns to the APD
	APD Clustering
	Forgetting Events

	Results
	APD as an Auditing Tool
	APD Evolution During Training
	APD as a Visualization Tool

	Conclusions

	Adversarial Examples Detection with Ensemble Approaches
	Introduction
	Background
	Adversarial Attacks

	Methods
	Data partitioning
	Feature Extraction
	Standalone Detectors
	ENAD
	Performance Metrics

	Results
	Known Attacks
	Transfer attacks
	Visualizing Adversarial Examples in the Score Space
	Computational time

	Conclusions
	Supplementary Material

	Uncertainty and Complexity in Imbalanced Classification Tasks
	Introduction
	Background
	Intrinsic Dimensionality and Sample Complexity
	Imbalanced Binary Classification

	Metrics
	Metrics 1 & 2: Aleatoric and Epistemic Uncertainty
	Metric 3: Intrinsic Dimensionality Estimation
	Metric 4: Sensitivity to OOD Data

	Case Study 1: Binding Affinity Prediction
	Experimental Setup
	The Epistemic Gradient

	Case Study 2: Image Classification
	Experimental Setup
	Controlling Class Complexity with Modalities
	Sensitivity to ood Data with Even Modalities

	Conclusions

	Conclusions
	Interdisciplinary Publications in Computational Biology
	Denoising and Imputation of Single-Cell Transcriptomic Data
	Classifying Cancer Samples from Metabolic Networks
	Deep Learning for Predicting Relative Fluxes in Reaction Systems

	References

