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Abstract
The field of artificial neural networks is expected to strongly benefit from recent devel-
opments of quantum computers. In particular, quantum machine learning, a class of
quantum algorithms which exploit qubits for creating trainable neural networks, will
provide more power to solve problems such as pattern recognition, clustering and
machine learning in general. The building block of feed-forward neural networks con-
sists of one layer of neurons connected to an output neuron that is activated according
to an arbitrary activation function. The corresponding learning algorithm goes under
the name ofRosenblatt perceptron.Quantumperceptronswith specific activation func-
tions are known, but a general method to realize arbitrary activation functions on a
quantum computer is still lacking. Here, we fill this gap with a quantum algorithm
which is capable to approximate any analytic activation functions to any given order of
its power series. Unlike previous proposals providing irreversible measurement–based
and simplified activation functions, here we show how to approximate any analytic
function to any required accuracy without the need to measure the states encoding the
information. Thanks to the generality of this construction, any feed-forward neural
network may acquire the universal approximation properties according to Hornik’s
theorem. Our results recast the science of artificial neural networks in the architecture
of gate-model quantum computers.
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1 Introduction

A quantum neural network encodes a neural network by the qubits of a quantum
processor. In the conventional approach, biologically inspired artificial neurons are
implemented by software as mathematical rate neurons. For instance, the Rosemblatt
perceptron (1957) [1] is the simplest artificial neural network consisting of an input
layer of N neurons and one output neuron behaving as a step activation function. Mul-
tilayer perceptrons [2] are universal function approximators, provided they are based
on squashing functions. The latter consist of monotonic functions which compress
real values in a normalized interval, acting as activation functions [3].

In principle, a quantum computer is suitable for performing tensor calculations
typical of neural network algorithms [4, 5]. Indeed, the qubits can be arranged in cir-
cuits acting as layers of the quantum analogue of a neural network. If equipped with
common activation functions such as the sigmoid and the hyperbolic tangent, they
should be able to process deep learning algorithms such those used for problems of
classification, clustering and decision making. As qubits are destroyed at the mea-
surement event, in the sense that they are turned into classical bits, implementing an
activation function in a quantum neural network poses challenges requiring a subtle
approach. Indeed the natural aim is to preserve as much as possible the information
encoded in the qubits while taking advantage of each computation at the same time.
The goal therefore consists in delaying the measurement action until the end of the
computational flow, after having processed the information through neurons with a
suitable activation function.

Within the field of quantum machine learning (QML) [6, 7], if one neglects the
implementation of quantum neural networks on adiabatic quantum computers [8],
there are essentially two kind of proposals of quantum neural networks on a gate-
model quantum computer. The first consists of defining a quantum neural network as
a variational quantum circuit composed of parameterized gates, where nonlinearity is
introduced by measurements operations [9–11]. Such quantum neural networks are
empirically evaluated heuristic models of QML not grounded on mathematical theo-
rems [12] Furthermore, this type of models based on variational quantum algorithms
suffers from an exponentially vanishing gradient problem, the so-called barren plateau
problem [13], which requires some mitigation techniques [14, 15]. Quite differently,
the second approach seeks to implement a truly quantum algorithm for neural net-
work computations and to really fulfill the approximation requirements of Hornik’s
theorem [3, 16] perhaps at the cost of a larger circuit depth. Such approach pertains to
semi-classical [17, 18] or fully quantum [19, 20] models whose nonlinear activation
function is again computed via measurement operations.

Furthermore, quantum neural network proposals can be classified with respect to
the encodingmethod of input data. Since a qubit consists of a superposition of the state
0 and 1, few encoding options are distinguishable by the relations between the number
of qubits and the maximum encoding capability. The first is the 1-to-1 option by which
each and every input neuron of the network corresponds to one qubit [19–23]. The
most straightforward implementation consists in storing the information as a string
of bits assigned to classical base states of the quantum state space. A similar 1-to-1
method consists in storing a superposition of binary data as a series of bit strings in
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a multi-qubit state. Such quantum neural networks are based on the concept of the
quantum associative memory [24, 25]. Another 1-to-1 option is given by the quron
(quantum neuron) [26]. A quron is a qubit whose 0 and 1 states stand for the resting
and active neural firing state, respectively [26].

Alternatively, another encoding option consists in storing the information as coeffi-
cients of a superposition of quantum states [27–32]. The encoding efficiency becomes
exponential as an n-qubit state is an element of a 2n-dimensional vector space. To
exemplify, the treatment by a quantum neural network of a real image classification
problem of few megabits makes the 1-to-1 option currently not viable [33]. Instead,
the choice n-to-2n allows to encode a megabit image in a state by using ∼ 20 qubits
only.

However, encoding the inputs as coefficients of a superposition of quantum states
requires an algorithm for generic quantum state preparations [34–36] or, alternatively,
to directly feed quantum data to the network [37]. For instance, quantum encoding
methods such as flexible representation of quantum images (FRQI) [38] have been
proposed. Generally, to prepare an arbitrary n-qubit quantum state requires a number
of quantum gates that scales exponentially in n. Nonetheless, in the long run, an
encoding of kind n-to-2n guarantees a better applicability to real problems than the
options 1-to-1.Moreover, such encodingmethod satisfies the requirements ofHornik’s
theorem in order to guarantee the universal function approximation capability [16].
Despite some relatively heavy constraints, such as the digital encoding and the fact
that the activation function involves irreversible measurements, examples toward this
direction have been reported [28, 30, 31]. Instead, differently from both the above
proposals and from quantum annealing based algorithms applied to neural networks
[8], we develop a fully reversible algorithm.

In a novel alternative approach, we define here a n-to-2n encoding model that
involves inputs, weights and bias in the interval [−1, 1] ∈ R. The model exploits the
architecture of gate-model quantum computers to implement any analytical activation
function at arbitrary approximation only using reversible operations. The algorithm
consists in iterating the computation of all the powers of the inner product up to d-
th order, where d is a given overhead of qubits with respect to the n used for the
encoding. Consequently, the approximation of most common activation functions can
be computed by rebuilding its Taylor series truncated at the d-th order.

The algorithm is implemented in the QisKit environment [39] to build a one-layer
perceptron with 4 input neurons and different activation functions generated by power
expansion such as hyperbolic tangent, sigmoid, sine and swish function, respectively,
truncated up to the 10-th order. Already at the third order, which corresponds to the
least number of qubits required for a nonlinear function, a satisfactory approximation
of the activation function is achieved.

This work is organized as follows: in Sect. 2, the definitions and the general strategy
are summarized; in Sect. 3, the quantumcircuits for the computation of the power terms
and next of the polynomial series are obtained. Next, in Sect. 4 the approximation of
analytical activation functions algorithm is outlined while in Sect. 5 the computation
of the amplitude is shown. Section 6 concerns the estimation of the perceptron output.
The final Section is devoted to the conclusions.
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2 Definitions and general strategy

In order to define our quantum version of the perceptron with continuous parameters
and arbitrary analytic activation function, let us consider a one-layer perceptron. The
latter represents the fundamental unit of a feed-forward neural network. A one-layer
perceptron is composed of Nin input neurons and one output neuron equipped of an
activation function f : R → I where I is a compact set. The output neuron computes
the inner product between the vector of the input values �x = (

x0, x1, . . . , xNin−1
) ∈

R
Nin and the vector of the weights �w = (

w0, w1, . . . , wNin−1
) ∈ R

Nin plus a bias
value b ∈ R. Such scalar value is taken as the argument of an activation function. The
real output value y ∈ I of the perceptron is defined as y ≡ f ( �w · �x + b) as in Fig. 1a.

Here, we develop a quantum circuit that computes an approximation of y. The
algorithm starts by calculating the inner product �w · �x plus the bias value b. Next,
it evaluates the output y by calculating an approximation of the activation function
f . On a quantum computer, a measurement operation apparently represents the most
straightforward implementation of a nonlinear activation function, as done for instance
in Ref. [28] to solve a binary classification problem on a quantum perceptron. Such
approach, however, cannot be generalized to build a multi-layered qubit-based feed-
forward neural network.

First of all, measurement operations break the quantum algorithm and impose ini-
tialization of the qubits layer by layer, thus preventing a single quantum run of a
multi-layer neural network. Secondly, other activation functions—beside that implied
by themeasurement operations, aremore suitable to solve generic problemsofmachine
learning.

We avoid both of these shortcomings with a new quantum algorithm, which is
based on two theorems as detailed below. The quantum algorithm is composed of
two steps (Fig. 1b). First, the powers of �w · �x + b are stored as amplitudes of a
multi-qubit quantum state. Next, the chosen activation function is approximated by
building its polynomial series expansion through rotations of the quantum state. The
rotation angles are determined by the coefficients of the polynomial series of the
chosen activation function.They canbe explicitly computedbyour quantumalgorithm.
Let us first summarize the notation used throughout the text. Let H stand for the 2-
dimensional Hilbert space associated to one qubit. Then, the 2n-dimensional Hilbert
space associated to a register q of n qubits is written asH⊗n

q ≡ Hqn−1 ⊗Hqn−2 ⊗ . . .⊗
Hq0 . If we denote by {|0〉 , |1〉} the computational basis in H, then the computational
basis inH⊗n

q reads {|sn−1sn−2 . . . s0〉 , sk ∈ {0, 1} , k = 0, 1, . . . , n−1}. An element
|sn−1sn−2 . . . s0〉 of this computational basis can be alternatively written as |i〉 where
i ∈ {0, 1, . . . , 2n − 1} is the decimal integer number that corresponds to the bit string
sn−1sn−2 . . . s0. In particular, if N = 2n , then |N − 1〉 ≡ |2n − 1〉 ≡ |11 . . . 1〉 ≡
|1〉⊗n . In this notation, the number of qubits of a register is indicated with a lowercase
letter, such as n and d, while the dimension of the associated Hilbert space is indicated
by the correspondent uppercase letter, such as N = 2n and D = 2d .

The expression U⊗n
q = Uqn−1 ⊗ Uqn−2 ⊗ · · · ⊗ Uq0 represents a separable unitary

transformation constructed with one-qubit transformations Uqj acting on each qubit
of the register q. A non-separable unitary multi-qubit transformation is usually written
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Fig. 1 Graphical representation of a one-layer perceptron and relative qubit-based version. A one-layer
perceptron architecture (a) is composed by an input layer of Nin neurons connected to the single output
neuron. It is characterized by an input vector �x , a weight’s vector �w and a bias b. In the classical version,
the activation function takes as argument the value z = �w · �x +b and it returns the perceptron output y. The
quantum version (b) follows the same architecture but the calculus consists of a sequence of transformations
of a n-qubits quantum state initialized with the coefficients of the inputs vector �x as probability amplitudes.
The quantum states at each step are represented by a qsphere (graphical representation of a multi-qubit
quantum state). In a qsphere, each point is a different coefficient of the superposition quantum state.
Generally, the coefficients are complex and in a qsphere the modules of the coefficients are proportional
to the radius of the points while the phases depend on the color. In the blue box, it is shown the starting
quantum state with the inputs stored as probability amplitudes. Instead, in the green box it is shown the
quantum state with the weights and the bias. In the first red box, at each step one qubit is added in order to
store the power terms of z up to d (d = 3 in the Figure). In the last red box, the output of the perceptron is
given by a series of rotations which compose a polynomial Pd (z) (d = 3 in the Figure).
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as Uq and, in some cases, simply U . Two registers a and q, respectively, with d and
n qubit, can be compound in a single register supporting the N + D Hilbert space
H⊗d

a ⊗H⊗n
q with computational basis {|i〉a | j〉q , i = 1, . . . , D, j = 1, . . . , N }. For

brevity, we will use the compact notation Oq for 1a ⊗ Oq and Oa for 1a ⊗ Oq for
operators O acting on only one of two registers. In particular, we write

|i〉 〈i |q ≡ 1a ⊗ |i〉q q〈i |

for the D−dimensional projection onto the state |i〉 of the q register.
Particular cases of unitary operators implementable on a circuital model quantum

computer are the controlled gates. LetCqiUq j represent a controlled-U transformation:
the operator U is applied on the qubit q j (called target qubit) if qi is in the state |1〉
(called control qubit). The transformation C̄qiUq j is a controlled transformation where
the gate U is applied on the qubit q j if qi is in the state |0〉. Therefore, C̄qiUq j =
Xqi CqiUq j Xqi . In a more general case, a d-controlled operator has a notation of kind
Cd
aUq j where, in such case, a is the set of the qubits control while q j is the target.
In the following, two-qubit registers q and a of n and d qubits, respectively, are

assumed to be assigned.

3 Computation of the polynomial series

As stated above, our aim is to build a (n + d)-qubits quantum state containing the
Taylor expansion of f (z) to order d, where z = �w · �x +b up to a normalization factor.
The number n of required qubits, in addition to d, is determined by the dimension of
the input vector. We first need to encode the powers (1, z, z2, . . . , zd ) in the (n + d)

qubits. The following Lemma provides the starting point:

Lemma 1 Given two vectors �x, �w ∈ [−1, 1]Nin and a number b ∈ [−1, 1], and given
a register of n qubits such that N = 2n ≥ Nin + 3, then there exists a quantum circuit
realizing a unitary transformation Uz(�x, �w, b) such that

〈N − 1|Uz(�x, �w, b) |0〉 = �w · �x + b

Nin + 1
≡ z (1)

where |0〉 ≡ |0〉⊗n and |N − 1〉 ≡ |1〉⊗n.

In Lemma 1, a n−qubit unitary operatorUz is defined by the requirement that Eq. 1
holds, where b ∈ [−1, 1], �x = (

x0, . . . , xNin−1
)
and �w = (

w0, . . . , wNin−1
)
, where

Nin ≤ 2n − 3 and xi , wi ∈ [−1, 1]. The existence of infinitely many such operators
is trivially obvious from the purely mathematical point of view. The problem is to
provide an explicit realization in terms of realistic quantum gates.

Proof Let us define two vectors inRN : �vx = (�x, 1, Ax , 0) and �vw,b = ( �w, b, 0, Aw,b
)

where N ≡ 2n . In suchvectors N−Nin−3, coefficients are always nullwhile the values
Ax and Aw,b are suitable constants defined such that �vx · �vx = �vw,b · �vw,b = Nin + 1.
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It then follows that �vTw,b�vx = �w�x + b ∈ [−Nin − 1, Nin + 1]. We now define two
n-qubit quantum states |ψx 〉 and

∣∣ψw,b
〉
as follows

|ψx 〉 =
N−1∑

i=0

vx,i√
Nin + 1

|i〉 ,
∣∣ψw,b

〉 =
N−1∑

i=0

vw,b,i√
Nin + 1

|i〉 . (2)

Then, by construction

〈
ψx |ψw,b

〉 = �w · �x + b

Nin + 1
≡ z .

The initialization algorithm mentioned above allows us to consider unitary transfor-
mations Ux = U (�vx ) and Uw,b = X⊗nU†

(�vw,b
)
, where X stands for the quantum

NOT gate, such that Ux |0〉 = |ψx 〉 and Uw,b
∣∣ψw,b

〉 = |1〉. It follows that
〈
ψw,b|ψx

〉 = 〈
ψw,b

∣∣U †
w,bUw,b |ψx 〉 = 〈N − 1|Uw,b |ψx 〉

= 〈N − 1|Uw,bUx |0〉⊗n
(3)

Comparing with Eq. 1, we see that Uz(�x, �w, b) = Uw,bUx = X⊗nU†
(�vw,b

)

U (�vx ). �
Since the amplitudes of the states |ψx 〉 and

∣∣ψw,b
〉
are real, the phases are either

0 or π and it is no longer necessary to apply a series of multi-controlled RZ to set
them. A single diagonal transformation suffices, with either 1 or −1 on the diagonal.
For such purpose, hypergraph states prove effective [41]. Thanks to such kind of
states, a small number of Z, CZ and multi-controlled Z gates are needed to achieve
the transformation U (�v). The transformations, which introduce the phases of the
amplitudes of a n-qubits quantum state, are summarized by an operator called Ph†n
in the Fig. 2. More details about the strategy adopted for quantum–state initialization
are reported in Supplementary Note 1 and Supplementary Note 2.

There are many alternatives to the states |ψx 〉 and
∣
∣ψw,b

〉
which give the same inner

product
〈
ψw,b|ψx

〉 = z. Defining the two vectors

�vx = (
Ax , x0, . . . , xNin−1, 1, 0, . . . , 0, 0

) ∈ R
N

�vw,b = (
0, w0, . . . , wNin−1, b, 0, . . . , 0, Aw,b

) ∈ R
N

(4)

then the transformations U (�vx ) and U (�vw,b
)
applied on the state |0〉⊗n return two

states, |ψx 〉 and
∣∣ψw,b

〉
, respectively, such that

〈
ψw,b|ψx

〉 = z. The reason for the
choice shown above is due to the phases to add. Since the values Aw,b and Ax do not
appear in the inner product, then their phases are not relevant. Therefore, such states
|ψx 〉 and

∣∣ψw,b
〉
make unnecessary a (n − 1)-controlled Z gate to adjust the phases

of the amplitudes associated with |0〉 and |N − 1〉. In Fig. 2, the composition of the
transformations Ux (Fig.2a) and Uw,b (Fig. 2b) is shown in the case of a one-layer
perceptronwith Nin = 4 neurons. In such case, the number of input neurons is 4. Since
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Fig. 2 Fundamental gates composition of the transformations Uw,b and Ux . The transformations U (�vx )
and U (�vw,b

)
encode, respectively, the coefficients of the vectors vx and vw,b in a superposition quantum

state. They are composed of the inverse of the operatorsUi where i = 1, . . . , n and Ph3, which introduces
the phases of the probability amplitudes. The operatorsU3 (c),U2 (d) andU1 (e) are shown as composition
of multi-controlled rotations Ry which are equal to a composition of gates Ry and Controlled-Not [40]. The
transformation Ph†3 (a) introduces the phases of the amplitudes while Ph3(b) removes them. The details of
the arbitrary quantum state preparation circuit are described in Supplementary Note 1

n = log2N and N ≥ Nin + 3 then, given Nin input neurons the minimum number
of required qubits is n = � log2(Nin + 3)�. Therefore, with Nin = 4, n=3 qubits are
required to store z in a quantum state.

The variable z generalizes in two respects the inner product of Ref. [28] where
inputs and weights only take binary values {−1, 1} and no bias is involved.
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The transformation Uz(�x, �w, b) is a key building block of the quantum perceptron
algorithm. Indeed, in our quantum circuit such transformation is iterated several times
over the Hilbert space enlarged to H⊗d

a ⊗ H⊗n
q by the addition of another register a

of d qubits. The existence of such a quantum circuit is guaranteed by the following
theorem that provides its explicit construction:

Theorem 1 Let z be the real value in the interval [−1, 1] assumed by ( �w · �x + b) /

(Nin + 1), where �x, �w ∈ [−1, 1]Nin and b ∈ [−1, 1]. Let q and a be two registers of n
and d qubits, respectively, with N = 2n ≥ Nin+3. Then, there exists a quantum circuit
which transforms the two registers from the initial state |0〉a |0〉q to a (n + d)-qubit
entangled state |ψd

z 〉 of the form

|ψd
z 〉 = |ψd

z 〉⊥ + 1

2d/2
|z〉⊗d

a |N − 1〉q , (5)

where

|N − 1〉 〈N − 1|q |ψd
z 〉⊥ = 0

where 0 is the null element of the Hilbert space and

|z〉 ≡ |0〉 + z |1〉 .

where |z〉 is not to be intended as a quantum state but as an element of space Ha.
The circuit is expressed by SV X⊗n

q (Fig. 3a) where X is the quantum NOT gate and

SV = Vd−1 · · · V1V0

with

Vm = CamUz(�x, �w, b)qCam X
⊗n
q Cn

q Ham , m = 0, 1, . . . , d − 1 .

Proof The thesis of the theorem is the existence of a transformation which, acting
on two registers of qubit q and a with n and d qubits, respectively, returns a state∣∣ψd

z

〉 ∈ H⊗d
a ⊗ H⊗n

q as defined in Equation 5. The demonstration consists of the
construction of such a circuit. For such purpose, let us define the d states

∣
∣ψm

z

〉 ∈
Ham−1 ⊗ Ham−2 ⊗ · · · ⊗ Ha0 ⊗ H⊗n

q , where m = 0, . . . , d − 1

|ψm
z 〉 =|ψm

z 〉⊥ + |ψm
z 〉‖

=|ψm
z 〉⊥ + 1

2m/2
|z〉⊗m |N − 1〉q ,

(6)

where |N − 1〉 〈N − 1|q |ψm
z 〉⊥ = 0 ∀m.

From such definition, it follows that the states
∣∣ψm

z

〉
are states of (n + m)-qubits

and
∣∣ψ0

z

〉 ≡ |N − 1〉q is a n-qubits state.
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The proof of the theorem is therefore reduced to demonstrating the existence of a
sequence of transformations Vm , wherem = 0, . . . , d −1, such that Vm |0〉am

∣∣ψm
z

〉 =∣
∣ψm+1

z

〉
where am is the m-th qubit in the register a. Therefore, Vm is a unitary trans-

formation defined over the space Ham ⊗ Ham−1 ⊗ · · · ⊗ Ha0 ⊗ H⊗n
q .

Let us consider the following ansatz for the transformation Vm :

Vm = CamUz(�x, �w, b)qCam X
⊗n
q Cn

q Ham (7)

whose graphical representation is given in Fig. 3a.
Let us apply Vm , as defined in Equation 7, on the state |0〉am

∣∣ψm
z

〉
.

CamUz(�x, �w, b)qCam X
⊗n
q Cn

q Ham |0〉am
∣∣ψm

z

〉

= CamUz(�x, �w, b)qCam X
⊗n
q

[
|0〉am

∣
∣ψm

z

〉
⊥ + 1√

2

(|0〉am + |1〉am
) ∣
∣ψm

z

〉
‖
] (8)

The transformationCamUz(�x, �w, b)qCam X
⊗n
q consists in the applicationofUz(�x, �w, b)

X⊗n on the qubits q controlled by the qubit am which means the transformation act
only on

∣∣ψm
z

〉
‖ so focusing only on its subspace it results

Uz(�x, �w, b)q X
⊗n
q

∣
∣ψm

z

〉
‖ = 1

2m/2
|z〉⊗m Uz(�x, �w, b) |0〉⊗n

q (9)

Therefore, the transformation Vm applied on |0〉am
∣∣ψm

z

〉
returns the following state

Vm |0〉am
∣
∣ψm

z

〉 = |0〉am
∣
∣ψm

z

〉
⊥

+ 1√
2

(
|0〉am

1

2m/2
|z〉⊗m |N − 1〉q + |1〉am

1

2m/2
|z〉⊗m Uz(�x, �w, b) |0〉⊗n

q

)
(10)

To demonstrate that the state just obtained is
∣
∣ψm+1

z

〉
, the projection over the

state |N − 1〉q must return 1√
2m+1

|z〉⊗(m+1) |N − 1〉q as from the definition of the

states
∣∣ψm

z

〉
. Let us apply the projection |N − 1〉 〈N − 1| N − 1q on the result-

ing state in the Eq. 10. Since |N − 1〉 〈N − 1| N − 1q
∣∣ψm

z

〉
⊥ = 0 by definition,

and 〈N − 1|Uz(�x, �w, b) |0〉⊗n
q = z as from Lemma 1, the result of the projection

|N − 1〉 〈N − 1| N − 1q is the following.

1√
2

(
|0〉am

1√
2m

|z〉⊗m |N − 1〉q + z |1〉am
1

2m/2
|z〉⊗m |N − 1〉q

)

= 1

2m+1
|z〉⊗(m+1) |N − 1〉q =

∣∣∣ψm+1
z

〉

‖

(11)

Having demonstrated that Vm |0〉am
∣∣ψm

z

〉 = ∣∣ψm+1
z

〉
, the proof of the existence of

the transformation which returns
∣∣ψd

z

〉
if applied on |0〉⊗d

a |0〉⊗n
q proceeds by recur-

sion. Indeed, by applying Vd−1 · · · V1V0 to the state |0〉⊗d
a

∣∣ψ0
z

〉 = |0〉⊗d
a |N − 1〉q the

resulting state will be
∣∣ψd

z

〉
. �
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To summarize, the quantum circuit of the quantum perceptron algorithm starts by
expressing the unitary operator which initializes the q and a registers from the state
|0〉a |0〉q to the state

∣∣ψd
z

〉
. Such a unitary operator is expressed by SV X⊗n where SV

is the subroutine of the quantum circuit which achieves the goal of the first step of the
quantum perceptron algorithm, i.e., to encode the powers of z up to d in a quantum
state as from the following Corollary.

Corollary 3.1 The state |ψd
z 〉 stores as probability amplitudes all the powers zk , for

k = 0, 1, . . . , d, up to a trivial factor. Indeed Eq. 5 in Theorem 1 implies

q〈N − 1| a

〈
2k − 1|ψd

z

〉
= 2−d/2zk , k = 0, 1, . . . , d . (12)

The first step of the quantum perceptron algorithm consists of the storage of all
powers of z ≡ ( �w · �x + b) / (Nin + 1) up to d in a (n + d)-qubits state. The proof of
Theorem 1 implies that the first step of the algorithm is the quantum circuit shown
in the Fig. 3a, consisting of a subroutine composed by a Pauli gate X applied on
each qubit in the register q and a transformation SV = Vd−1 · · · V0. Indeed from the
Corollary 3.1, the state

∣∣ψd
z

〉 = SV X⊗n
q |0〉⊗d

a |0〉⊗n
q stores as probability amplitudes

all the powers of z up to d less than a factor 2−d/2. The proof of the Corollary 3.1 is
straightforward as follows.

Proof As shown above, the state
∣
∣ψd

z

〉
can be written as

∣
∣ψd

z

〉 = ∣
∣ψd

z

〉
⊥ + ∣

∣ψd
z

〉
‖

where |N − 1〉 〈N − 1| N − 1q
∣∣ψd

z

〉
⊥ = 0, therefore, q 〈N − 1|a

〈
2k − 1|ψd

z

〉 =q

〈N − 1|a
〈
2k − 1|ψd

z

〉
‖.

Since
∣∣ψd

z

〉
‖ = 1√

2d
|z〉⊗d

a |N − 1〉q then

q 〈N − 1|a
〈
2k − 1|ψd

z

〉

‖

= 1√
2d

〈
2k − 1|z

〉⊗d

a
〈N − 1|N − 1〉q

(13)

Let us rewrite
∣
∣2k − 1

〉
in a binary form |sd−1sd−2 · · · s0〉 where s j = 1 from j = 0 to

j = k − 1 and 0 otherwise.

1√
2d

〈s0, s1, . . . , sd−1|z〉⊗d
a = 1√

2d

d∏

i=1

〈sd−i |z〉ad−i
= 2−d/2zk (14)

The latter holds because, ∀ j = 0, . . . , d − 1,

〈
s j |z

〉
a j

= 〈
s j |0

〉
a j

+ z
〈
s j |1

〉
a j

= zsa j (15)

Therefore, q 〈N − 1|a
〈
2k − 1|ψd

z

〉 = 2−d/2zk . �
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The next step of the algorithmconsists in transforming the state |ψd
z 〉 so as to achieve

a special recursively defined d-degree polynomial in z. Such step is identifiable with
the subroutine SU of the quantum perceptron circuit, see Fig. 3a.

By Eq. 5 in Theorem 1, there must exist a unitary operator SU which acts as
the identity on Hq and returns, when applied to |z〉⊗d

a , a new state which stores the
polynomial. In fact, it holds the following

Theorem 2 Let { fk, k = 1, . . . , d} be the family of polynomials in z defined by the
following recursive law

fk(z) = fk−1(z) cosϑk−1 − zk sin ϑk−1 , k = 1, . . . , d , (16)

with f0(z) = 1 and ϑk ∈ [−π
2 , π

2

]
for any k = 0, . . . , d − 1.

Then, there exists a family {Uk, k = 1, . . . , d} of unitary operators such that

a〈0|Uk |z〉⊗d
a = fk(z) . (17)

These unitary operators are, in turn, defined by the recursive law

Uk = Ca0Xak C̄ak Ry(−2ϑk−1)a0Uk−1 , k = 1, . . . , d , (18)

with U0 = 1.

The subroutine SU shown in Fig. 3a corresponds to Ud . The Proof of Theorem 2
follows.

Proof The proof of the theorem follows two steps, namely the statement for the first
term of the polynomial and an inductive step as follows. The first step consists of
demonstrating that

a 〈0|U1 |z〉⊗d
a = cos θ0 − z sin θ0 = f1(z)

with U1 = Ca0Xa1C̄a1Ry(−2ϑ0)a0 as defined in Eq. 18. In the second step, instead,
the proof proceeds for Uk ∀k = 1, 2, . . . , d recursively.

It aims to prove a 〈0|Uk |z〉⊗d
a = fk(z) assuming that a 〈0|Uk−1 |z〉⊗d

a = fk−1(z),
where

Uk = Ca0Xak C̄ak Ry(−2ϑk−1)a0Uk−1)

as defined in Eq. 18. Let us preliminary consider the statesUk |z〉⊗d
a , where d ≥ k ≥ 1.

The state |z〉⊗d
a is considered in the case with k = 0. Next, let us focus on the subspace

of H⊗d
a defined as H{0,1} = {|0〉⊗d , |0〉⊗(d−1) |1〉}. The operator which projects the

elements of H⊗d
a in the subspace H{0,1} is P{0,1} = |0〉 〈0| 0a + |1〉 〈1| 1a .

Let us now move to the first step of the demonstration. The first operation consists
of applyingU1 to the state |z〉⊗d

a . Because of the definition of the state |z〉⊗d
a , it follows
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that
〈
2i − 1|z〉⊗d

a = zi where i = 0, . . . , d (Corollary 3.1), therefore, the projection
over H{0,1} of the state |z〉⊗d

a is

P{0,1} |z〉⊗d
a = |0〉⊗d + z |0〉⊗(d−1) |1〉

The operator C̄a1Ry(−2ϑ0)a0 = Xa1Ca1Ry(−2ϑ0)a0Xa1 rotates the qubit a0, along
the y-axis of the Bloch sphere of angle −2ϑ0, only if the qubit a1 is in |0〉, therefore,
such operator acts on the subspace H{0,1}.

The projection on such subspace of the state C̄a1Ry(−2ϑ0)a0 |z〉⊗d
a is

(cos θ0 − z sin θ0) |0〉⊗d

+ (sin θ0 + z cos θ0) |0〉⊗(d−1) |1〉
= f1(z) |0〉⊗d + (sin θ0 + z cos θ0) |0〉⊗(d−1) |1〉

Since Ca0Xa1 is a controlled-NOT gate which acts only if the qubits a0 is in the state
|1〉 then

a 〈0|U1 |z〉⊗d
a = a 〈0|Ca0Xa1C̄a1Ry(−2ϑ0)a0 |z〉

= cos θ0 − z sin θ0 = f1(z)

which completes the first step of this demonstration. Let us now demonstrate the
recursive step. Here, the only assumption is a 〈0|Uk−1 |z〉⊗d

a = fk−1(z), therefore,
differently from the previous step where the projection of |z〉⊗d

a on the subspace
H{0,1} was known, here the projection of Uk−1 |z〉⊗d

a is equal to

fk−1(z) |0〉⊗d + Bk−1 |0〉⊗(d−1) |1〉 (19)

where Bk−1 is an unknown real value. Let us apply Ca0Xak C̄ak Ry(−2ϑk−1)a0 on the
state Uk−1 |z〉⊗d

a so as to obtain the state Uk |z〉⊗d
a . From Eq. 19:

a 〈0|Uk |z〉⊗d
a = fk−1(z) cosϑk−1 − Bk−1 sin ϑk−1

To prove the theorem, Bk−1 must be equal to zk since fk(z) = fk−1(z) cosϑk−1 −
zk sin ϑk−1.

The purpose of the second step of the proof can be achieved just proving that

Bk−1 = zk ∀k = 1, . . . , d. That is already proved for k = 0 because
〈
2i − 1|z〉⊗d

a = zi

as said above. Let us prove that Bk−1 = zk for k = 1 while for k > 1 the proof will
proceed recursively.

The state
∣
∣2i − 1

〉
is a state of the computational bases ofH⊗d

a . Writing such state
in the binary version it results equal to |sd−1sd−2 · · · s0〉 where s j = 1 from j = 0 to
j = i − 1 and 0 otherwise.
As said before, the operator C̄a1Ry(−2ϑ0)a0 acts only on the state |sd−1sd−2 · · · s0〉

where s1 = 0, therefore, it does not act on the states
∣∣2i − 1

〉 ∀i > 1. Instead, the
operator Ca0Xa1 acts on the state |sd−1sd−2 · · · s0〉 where s0 = 1 and it applies a
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NOT operation on the bit s1. That means the states
∣∣2i − 1

〉
become

∣∣2i − 1 − 2
〉

∀i > 1. Therefore, since
〈
2i − 1|z〉 = zi , thanks toU1(ϑ0) = Ca0Xa1C̄a1Ry(−2ϑ0)a0

then
〈
2i − 1 − 2

∣∣U1 |z〉⊗d
a = zi ∀i > 1. In particular, taking the value of i such

that
∣
∣2i − 1 − 2

〉 = |0 · · · 01〉, that is i = 2, 〈0 · · · 01|U1 |z〉⊗d
a = z2 and, therefore,

B1 = z2. Let us proceed recursively for k > 1 assuming that

〈
2i−1−∑k−1

h=1 2
h
∣
∣Uk−1(�ϑk−2) |z〉 = zi where d > i ≥ k (20)

The state
∣∣2i−1−∑k−1

h=1 2
h
〉
written in a binary form is |sd−1sd−2 · · · s0〉 where s j = 1

from j = k to j = i − 1 and for j = 0 while is 0 otherwise. In particular, for i = k,∣∣2i−1−∑k−1
h=1 2

h
〉 = |0 · · · 01〉 and therefore a 〈1|Uk−1 |z〉⊗d

a = zk which means Bk−1 =
zk . The recursive procedure consists of proving that

〈
2i−1−∑k

h=1 2
h
∣
∣Uk |z〉⊗d

a = zi

starting from the assumption in Eq. 20. Let us start from the state Uk−1 |z〉⊗d
a and

let us apply on it the transformation Ca0Xak C̄ak Ry(−2ϑk−1)a0 . The transformation
C̄ak Ry(−2ϑk−1)a0 acts only on the state |sd−1sd−2 · · · s0〉 where sk = 0, therefore, it
does not act on the states

∣∣2i−1−∑k−1
h=1 2

h
〉 ∀i > k. Instead Ca0Xak is a bit-flip transfor-

mation which acts on the state |sd−1sd−2 · · · s0〉 only if s0 = 1 and it applies a NOT
operation on the bit sk , therefore

Ca0Xak

∣
∣2i−1−∑k−1

h=1 2
h
〉 = ∣

∣2i−1−∑k
h=1 2

h
〉

(21)

That means

〈
2i−1−∑k

h=1 2
h
∣∣Uk(�ϑk−1) |z〉 = zi

for d > i > k and, in particular, for i = k + 1, a 〈1|Uk−1 |z〉⊗d
a = zk therefore

Bk = zk+1. Such final result proves that Bk = zk+1 ∀k = 0, . . . , d − 1, therefore

a 〈0|Uk |z〉⊗d
a = fk−1(z) cosϑk−1 − Bk−1 sin ϑk−1 = fk(z)

The second step is therefore concluded and thus the proof of the theorem. �
In Fig. 3a, SU is the subroutine which achieves the second step of the percep-

tron algorithm, the composition of the polynomial expansion in z, and it is equal to
Ud(�ϑd−1).

4 Approximation of analytical activation functions

The transformation SU = Ud⊗X⊗n applied on |ψd
z 〉 returns a statewith the probability

amplitude associated to |0〉a |0〉q equal to 2−d/2 fd(z). Let us denote suchfinal quantum
state of (n+d)-qubits as |ψd

f (z)〉. Equation 16 defines fd(z) as a d-degree polynomial
with coefficients depending on d angles ϑk, k = 0, . . . , d−1. From Theorem 2, there
follows a Corollary which shows how to set such angles in order to approximate an
arbitrary analytical activation function f (z) by fd(z).
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Fig. 3 Quantum circuit of a qubit-based one-layer perceptron in two different cases. (a)The quantum circuit
which returns the state |ψd

f (z)〉 encodes the value fd (z) as stated by Theorems 1 and 2 . In a more general
context, fd (z) is the output value of a neuron of a deep neural network hidden layer, as no measurement
is required when the information is sent to the next layer. The subroutines SV and SU are described in the
upper boxes, where the general case of SV is shown, and in the lower box, respectively. In the latter, it is
shown a particular case at d = 9. Such value corresponds to the maximum order of d = 9 of the polynomial
expansion used for approximating the activation functions tanh, sigmoid and sine. (b)A complete quantum
circuit of a qubit-based one-layer perceptron is shown. In such case, by performing the measurements of
all the qubits and averaging after many repetitions of the circuit, it is possible to estimate the output yq of
the one-layer perceptron

Corollary 4.1 Let f be a real analytic function over a compact interval I . If fd is
the top member of the family of polynomials defined in Theorem 2 (Eq. 16) then the
angles ϑk, k = 0, . . . , d − 1 can be chosen in such a way that fd(z) coincides with
the d-order Taylor expansion of f (z) around z = 0, up to a constant factor Cd which
depends on f and on the order d as

Cd = ak

d−1∏

j=k

(
cosϑ j

)−1
, (22)
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where ak = 1
k! f

(k)(0) is the first nonzero coefficient of the expansion and f (k) the
k-order derivative of f .

Proof Let us denote with Td(z) the truncated polynomial series expansion of an ana-
lytical function f at the order d expressed by Td(z) = ∑d

i=0 ai z
i .

Let f be an analytical function then it exists k, where 0 ≤ k ≤ d andai = 0 ∀i < k,
such that, factorizing ak , Td(z) results

Td(z) = ak

[

zk +
d−1∑

i=k

ai+1

ak
zi+1

]

(23)

Let us consider the value fd(z), defined by the Eq. 16. If cosϑi �= 0 ∀i = k, . . . , d−1
and ϑi = −π

2 otherwise, then, factorizing any cosϑi �= 0, it can be expressed as

fd(z) = Adk

[

zk −
d−1∑

i=k

tan ϑi

Aik
zi+1

]

(24)

where Aik=∏i−1
j=k cosϑ j . Let us choose the angles ϑi in order to satisfy the equality

Td(z) = ak
Adk

fd(z) (25)

Therefore, equalizing term by term in powers of z, the resulted equation for i ≥ k is

ϑi = arctan

(
−ai+1

ak
Aik

)
(26)

Since the values Aik depend by the angles ϑk, . . . , ϑi−1 then the angles ϑi in turn
depend on them. It means that the computation of all the angles must been ordered
from ϑk to ϑd−1. From such definition of the angles ϑi , where i = 0, . . . , d − 1, the
Eq. 25 is satisfied. Therefore, fd(z) is equal to the series expansion of f (z) at the
order d less than a constant factor Cd

Cd = ak
Adk

= ak
∏d−1

j=k cosϑ j
(27)

Its value is constant while z changes, and it depends on the coefficients ai of the Taylor
expansion of the function f where i = k, . . . , d. �

5 Computation of the amplitude

To summarize, the quantum circuit so far defined employs n+d qubits and it performs
two transformations: the first sends the state |0〉⊗d

a |0〉⊗n
q into |ψd

z 〉, as a consequence
of Theorem 1, while the second is SU ⊗ X⊗n which returns a state having 2−d/2 fd(z)
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as probability amplitude corresponding to the state |0〉a |0〉q . An important property
of such quantum circuit, which is shown in Fig. 3a, is that it encodes the value fd(z)
(up to the constant 2−d/2), which is nonlinear with respects to the input values �x , in a
quantum state (the state |ψd

f (z)〉). Indeed, in a generic context, the quantum circuit in
Fig. 3a can be integrated in a circuit for a multi-layer qubit-based neural network. In
such context, the value fd(z) corresponds to the output value of a hidden neuron. The
freedom left by the non-destroying activation function makes possible to build a deep
qubit-based neural network. Each new layer receives quantum states, like the state
prepared to enter the network at the first layer. As last result, here we explicitly show
how to operate the last layer of the network, by focusing on the case of a one-layer
perceptron.

While the circuit in Fig. 3a returns a state |ψd
f (z)〉 which has the value 2−d/2 fd(z)

encoded as a probability amplitude, the circuit in Fig. 3b allows to estimate such
amplitude. It implements a qubit-based version of a one-layer perceptron. Any quan-
tum algorithm ends by extracting information from the quantum state of the qubits by
measurement operations. Applying the measurement operations to the qubits of the
circuit of Fig. 3a allows to estimate only the probability to measure a given quantum
state, but from the probability it is not possible to compute the inherent amplitude.
Indeed, the probability is the square module of the amplitude; therefore, it does not
preserve the information about the phase factor (the sign for real values) of the ampli-
tude. To achieve such a goal a straightforward method consists in defining a quantum
circuit which returns a quantum state with a value 1

2 (1 + 2−d/2 fd(z)) stored as a
probability amplitude, a task operated by the circuit in the Fig. 3b.

Such quantum circuit operates on a register l of a single qubit, in addition to the
registers q and a, and it returns the probability 1

4 |1 + 2−d/2 fd(z)|2 to observe the
state |0〉l |0〉a |0〉q . Let us now focus on such circuit devoted to the estimation of the
perceptron output. Let us consider an n-qubits state |ψ〉 with real amplitudes and a
unitary operatorU such thatU |0〉⊗n = |ψ〉. In order to estimate the amplitude 〈0|ψ〉,
where |0〉 ≡ |0〉⊗n , a three-step algorithm can be defined to achieve the goal. The
algorithm foresees the use of (n + 1)-qubits, n of which to store |ψ〉 labeled with q
and one additional qubit l. The said three steps consist of a Hadamard gate on l, the
transformationU applied to the qubits of the register q and controlled by l and another
Hadamard gate on l. Indeed, starting from the state |0〉l |0〉⊗n

q , after the first Hadamard

gate the (n + 1)-qubits state becomes 1√
2

(|0〉 + |1〉) |0〉⊗n .

With the controlled-U transformation, the state becomes 1√
2

(|0〉 |0〉⊗n + |1〉 |ψ〉)

and, with the last Hadamard gate, 1
2

[|0〉 (|0〉⊗n + |ψ〉) + |1〉 (|0〉⊗n − |ψ〉)]. After a
measurement of the n + 1 qubits, the probability to measure the state |0〉l |0〉⊗n

q is

P0 = 1
4 |1 + 〈0|ψ〉|2. After the estimation of P0 the amplitude 〈0|ψ〉 is achievable by

reversing the formula, therefore 〈0|ψ〉 = 2
√
P0 − 1. The square module is invertible

in such case because |〈0|ψ〉| ≤ 1. Let us apply such a method of amplitude esti-
mation in the case of the quantum perceptron. The quantum circuit, exposed in the
previous sections and shown in the Fig. 3a, applied on two-qubit registers q and a,
each initialized in the state |0〉, it returns an (n + d)-qubits state

∣
∣
∣ψd

f (z)

〉
. The circuit is

summarized as a series of X gates applied on the qubits in the register q, the subroutine
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SV applied on the two-qubit registers followed by SU applied on the register a and
another series of X gates applied on the qubits in the register q. The circuit turns out
X⊗n SU SV X⊗n |0〉⊗d |0〉⊗n =∣

∣
∣ψd

f (z)

〉
. Therefore, to estimate q〈0| a〈0|

∣
∣
∣ψd

f (z)

〉
=2−d/2 fd (z),

let us apply the amplitude estimation algorithm described above where the transforma-
tionU is X⊗n SU SV X⊗n and, in turn, the state |ψ〉 is the state |ψ〉df (z). Therefore, after
a measurement all over the qubits, the probability to obtain the state |0〉l |0〉⊗d

a |0〉⊗n
q

is

P0 = 1

4

∣∣∣1 + 2−d/2 fd(z)
∣∣∣
2

(28)

From the estimation of P0, it is possible to compute an estimation of 2−d/2 fd(z).
Summarizing, the circuit, which allows to estimate the amplitude 2−d/2 fd(z), is
HlCl(X⊗n SU SV X⊗n)Hl with a measurement for each qubits in the registers q, a
and l, respectively. Notice that such quantum circuit is partially different with respect
from the circuit in the Fig. 3b. As from Fig. 3b the subroutine SV is not controlled by
l. Indeed SV is built such that SV |0〉⊗d |0〉⊗n = |0〉⊗d |0〉⊗n . Therefore, the circuit
HlCl(X⊗n SU SV X⊗n)Hl and HlCl(X⊗n SU )SVCl(X⊗n)Hl allows to achieve the same
purpose of building a state with P0 as probability to obtain the state |0〉l |0〉⊗d

a |0〉⊗n
q

after a measurement for each qubits.
Let us remark that Theorems 1 and 2 imply that a quantum state with 2−d/2 fd(z)

as superposition coefficient does exist and, since any quantum state |ψ〉 is normalized
then 2−d/2 fd(z) ≤ 1. From such results, by defining P0 = 1

4 |1 + 2−d/2 fd(z)|2 it is
possible to reverse the equation to find fd(z), once given the probability P0.

Therefore, the quantum perceptron algorithm consists of an estimation of the prob-
ability P0 feasible with a number s of measurement operations of all the qubits. The
error over the estimation of P0 depends on the number of samples s. The resulting
output of the qubit-based perceptron is written

yq = 2d/2(2
√
P − 1)Cd (29)

where P is the estimation of P0 and Cd is defined in the Eq. 22. Hence yq pro-
vide the estimation of the value fd(z), which is the polynomial expansion of the
activation function f at the order d. Once the estimation of P0 is obtained by a quan-
tum computation, the value yq is derived by a classical computation. The estimation
of P0 is given by P = m/S where S is the total number of the measurements of
|0〉 〈0|l ⊗ |0〉 〈0|a ⊗ |0〉 〈0|q and m is the number of those measurements which return
1 as result. A second way to estimate yq is given by the quantum amplitude estimation
algorithm [42]. Briefly, let us consider a transformation A such that A |0〉 = |�〉 =√
1 − a |ψ0〉 + √

a |ψ1〉 where |ψ0〉 and |ψ1〉 are n-qubits states and a ∈ [0, 1], the
quantum amplitude estimation algorithm computes, with an additional register of m
qubits, a value ã such that at most |ã − a| ∼ O(M−1) where M = 2m . Therefore, to
apply to the case under consideration namely X⊗n SU SV X⊗n |0〉⊗d |0〉⊗n = |ψd

f (z)〉,
one may take A = X⊗n SU SV X⊗n , |�〉 = |ψd

f (z)〉 being the latter a state over n + d

qubits, and
√
a = 2−d/2 fd(z), respectively, so that the output of the perceptron results
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as

yq = 2d/2
√
ãCd − γ (30)

where γ is the shift value used to make the function fd(z) ∈ [0, 1] within z ∈ [−1, 1].

6 Discussion

The results derived above allow to implement a multilayered perceptron of arbitrary
size in terms of neurons per layer aswell as number of layers. To test it, onemay restrict
the quantum algorithm to a one-layer perceptron. The tensorial calculus to obtain both
z and fd(z) has to be performed by a quantum computer and eventually ends with a
probability estimation. The estimation P of the probability, accordingly over yq , is
subject to two distinct kinds of errors: one depending on the quantum hardware and a
random error due to the statistics of m which is hardware independent.

In the following discussions, the error is analyzed as a function of the required
qubits (n and d) and the number of samples S. The case of a qubit-based one-layer
perceptron with Nin = 4 is then explored in order to verify the capability of the
algorithm to approximate f (z). Because of the significant number of quantum gates
involved, a quantum simulator has been used.

6.1 Error estimation and analysis

From Eq. 29, yq depends on P , the estimation of the probability that a measurement
of |0〉 〈0|l ⊗ |0〉 〈0|a ⊗ |0〉 〈0|q returns 1 as a result. The estimation P is subject to
a random error. Indeed P = m/S, where the number of successes m is a random
variable that follows the binomial distribution

B(m, S, P0) =
(
S

m

)
Pm
0 (1 − P0)

S−m .

Therefore, Var [m] = SP0(1− P0) ≤ 1
4 S and Var [P] = P0(1− P0)/S ≤ 1

4S . Then,
Eq. 29 implies that

σyq ∝
√
2d

S
Cd (31)

where σyq = (Var [yq ])1/2. This means that s must grow at least as 2d in order to
hold σyq constant in d. Since also Cd increases with d, S should grow even faster. The
error σyq is clearly hardware independent. The implementation on a quantum device,
rather than a simulator, requests further analysis of the hardware-dependent errors.

Multi-qubit operations on a quantum device are subject to two kind of errors [43]
[44]: namely the limited coherence times [45] of the qubits and the physical imple-
mentations of the gates [46]. Therefore, the number of gates (the circuit depth) has a
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double influence on the error: a large number of gates requires a longer circuit run time
which is limited by the coherence times of the qubits moreover each gate introduces
an error due to its fidelity with respect to the ideal gate. The evaluation of the number
of gates gives an estimate of the hardware-dependent error. The number of gates of
the proposed qubit–based perceptron algorithm is ∼ 330 for d = 1 and it increases
by ∼ 400 when d increases by 1, in other words almost linearly with d. Instead,
the number of gates depends exponentially on n [34]. Depending on the size of the
problem and the maturity of the technology to implement the physical qubits, a real
application should require to use logical qubits or at least to integrate quantum error
correction coding embedded within the algorithm. These prerequisites are especially
necessary if the quantum amplitude estimation algorithm is applied to estimate yq as
in Eq. 30. In such algorithm the depth of the circuit increases as O(MNd) instead
O(Nd) of the vanilla method of the Eq. 29, but the error over the estimation of yq
decreases with M−1. Indeed, since at most |ã − a| ∼ O(M−1) and the error over the
average of ã computed with S shots, is at most 1√

SM
, from the error propagation of

the Eq. 30 one has

σyq ∝
√
2d

S

Cd

M
(32)

where M = 2m . Therefore, the error can be reduced exponentially by increasing m,
the number of additional qubits of the quantum amplitude estimation algorithm. A
further analysis of the impact of the noise of a quantum hardware on the output of the
perceptron is present in the SupplementaryNote 3, where the results of the calculations
obtained with a simulated noise model are presented.

6.2 Implementation of a quantum one-layer perceptron with Nin = 4

In order to showapractical example,we consider now the implementation of a quantum
one-layer perceptron with 4 input neurons. With Nin = 4, z is computed with n = 3
qubits. To test the algorithm, the analytic activation functions f to be approximated are
the hyperbolic tangent, the sigmoid, the sine and the swish function [47], respectively
(Fig. 2). To estimate the perceptron output yq , n + d + 1 qubits are required where d
is the order of approximation of the activation function f . The output yq is computed
followingEq. 29where the probability P is estimatedwith themeasurement of s copies
of the quantum circuit in the Fig. 3b. To evaluate the effectiveness of the algorithm in
reconstructing the chosen activation function f , the output yq is compared with f (z)
at different values of the inputs xi , the weights wi and the bias b, where i = 0, 1, 2, 3.
We extend the evaluation on different activation functions also to different orders d,
in order to exhaustively check the algorithm.

The weight vector is set to �w = (1, 1, 1, 1) and the bias to b = 0. The input vector
�x varies as �x = z̄(1, 1, 1, 1) with z̄ ∈ [−1, 1]. In order to make the approximation
capability manifest, since plotting as a function of z̄ the activation functions does not
differ significantly from their linear approximation, we consider a rescaled horizontal
axis by f (kz) with k = 4 for the sigmoid and the sine function, k = 3 for the
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Fig. 4 Enlarged view of the output of a quantum one-layer perceptron with different analytical activation
functions. The output of the classical perceptron y (gray lines) as a function of z̄ is computed with four
different target activation functions f : a hyperbolic tangent tanh(z) (a), a logistic function sigmoid(z)
(b), a sine function sin(z) (c) and the swish function z · sigmoid(z) (d). The estimation of the quantum
perceptron output yq approximates y at the polynomial expansion’s order of d = 3 (cyan line) computed
with S = 216 samples, d = 5 (blue line) with S = 218, d = 7 (violet line) with S = 220 and d = 9 (red
line) with S = 222 in the cases (a), (b) and (c) while for the swish function the same colors are of one extra
order (d + 1) and the same number of samples. In the lower right graphs, the plots of Rc and Rq are shown
in function of z̄ and at different order d. The gray regions delimit the interval of z̄ rescaled by the factor k
which is the relevant region of interest to behave as monotone activation function

swish function and k = 2 for the hyperbolic tangent. In Fig. 4 the different activation
functions f are plotted versus z̄ = 5

4 z ∈ [−1, 1]. The rescaled factor here employed
only to better show the effectiveness of the algorithm, can be set arbitrarily through
the computation of the angles ϑ , according to Theorem 2, by simply considering the
Taylor expansions of f (kz). The case of randomweight vectors and biases are reported
in the Supplementary Figures.

The quantum perceptron algorithm has been developed in Python using the open–
source quantum computing framework QisKit. The quantum circuit was run on the
local quantum simulator qasm_simulator available in the QisKit framework. Using a
simulator, the only error over the estimated value yq is σyq . To keep σyq constant, the
number of samples S must increase with d to compensate the factor 2d/2Cd in Eq. 31.
Figure 4 was obtained with the starting choice S = 216 and d = 3.

To evaluate how well yq approximates the d− order Taylor expansion of a given
activation function, let us define Rq = y− ỹq , where y = f (z) and ỹq is its polynomial
fit. The values Rq are compared with Rc = y − Td , where Td is the Taylor expansion
of order d. For k = 1, the full Taylor series of the activation functions under study
converge in the interval [−1, 1] of z̄. However, only in the case of the sine function the
convergence holds true all overR. As a consequence, for f (z) = sin(4z), Rc goes to 0
for any value of z̄ when d increases. For the other functions in Fig. 4 the convergence
radius of the polynomial series is finite and it depends on k. In the case of tanh(2z),
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for instance, the convergence radius is less than 1 and Rc does not decrease with d
for z̄ large enough. Therefore, it is more representative to compare Rq with Rc rather
than the activation function itself.

To quantify the difference between Rq and Rc, let us compute the mean square
error (MSE) at different orders d in the gray region of z̄ in Fig. 4. The value of MSE
between Rq and Rc is almost always of the order 10−5 for d = 3 (4 for the swish)
and 10−4 when d increases. For the hyperbolic tangent, the MSE is of the order 10−3

when d = 7 and 9.
The reason of such difference between tanh and the other functions is due to the

trend ofCd with d. IndeedCd increaseswith d, therefore, it is not sufficient to duplicate
S when d increases by 1 because Cd becomes relevant. Such an effect is more evident
if the rescale factor k is high. Indeed, for the examined functions, with k = 1 the
contribution of Cd to the error of yq is not relevant also for a high value of d, because
Cd increase as a polynomial with d if k = 1. At higher values of k, Cd increases
exponentially with d and it gives a relevant contribution to the error.

7 Conclusions

A n−to−2n quantum perceptron approach is developedwith the aim of implementing
a general and flexible quantum activation function, capable to reproduce any standard
classical activation function on a circuital quantum computer. Such approach leads
to define a truly quantum Rosenblatt perceptron, scalable to multi-layered quantum
perceptrons, by having prevented the need of performing a measurement to implement
nonlinearities in the algorithm. To conclude, our quantum perceptron algorithm fills
the lack of a method to create arbitrary activation functions on a quantum computer, by
approximating any analytic activation functions to any given order of its power series,
with continuous values as input, weights and biases. Unlike previous proposals, we
have shown how to approximate any analytic function at arbitrary approximation,
without the need to measure the states encoding the information. By construction,
the algorithm bridges quantum neural networks implemented on quantum computers
with the requirements to enable universal approximation as from Hornik’s theorem.
Our results pave the way toward mathematically grounded quantum machine learning
based on quantum neural networks.
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