
Anonymizing Test Data in Android: Does It Hurt?
Elena Masserini

e.masserini2@campus.unimib.it
University of Milano - Bicocca

Milan, Italy

Davide Ginelli
davide.ginelli@unimib.it

University of Milano - Bicocca
Milan, Italy

Daniela Micucci
daniela.micucci@unimib.it

University of Milano - Bicocca
Milan, Italy

Daniela Briola
daniela.briola@unimib.it

University of Milano - Bicocca
Milan, Italy

Leonardo Mariani
leonardo.mariani@unimib.it
University of Milano - Bicocca

Milan, Italy

ABSTRACT
Failure data collected from the field (e.g., failure traces, bug reports,
and memory dumps) represent an invaluable source of information
for developers who need to reproduce and analyze failures. Unfortu-
nately, field data may include sensitive information and thus cannot
be collected indiscriminately. Privacy-preserving techniques can
address this problem anonymizing data and reducing the risk of
disclosing personal information. However, collecting anonymized
information may harm reproducibility, that is, the anonymized
data may not allow the reproduction of a failure observed in the
field. In this paper, we present an empirical investigation about
the impact of privacy-preserving techniques on the reproducibil-
ity of failures. In particular, we study how five privacy-preserving
techniques may impact reproducibilty for 19 bugs in 17 Android ap-
plications. Results provide insights on how to select and configure
privacy-preserving techniques.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
data anonymization, privacy-preserving, privacy, bug reproduction,
mobile applications, debugging, testing.
ACM Reference Format:
Elena Masserini, Davide Ginelli, Daniela Micucci, Daniela Briola, and Leonardo
Mariani. 2024. Anonymizing Test Data in Android: Does It Hurt? . In 5th
ACM/IEEE International Conference on Automation of Software Test (AST
2024) (AST ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3644032.3644463

1 INTRODUCTION
Collecting bug reports and information about the failures expe-
rienced by end-users while interacting with their applications is
extremely important to reveal bugs [23, 24], and improve the qual-
ity and the reliability of the applications. Indeed, several problems

AST 2024, April 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0588-5/24/04.
https://doi.org/10.1145/3644032.3644463

are detected only once the software has been released [9], and the
extensive collection of failure data is a key factor to enable the
reproduction of the bugs, and later their correction.

Several approaches have been defined to reproduce failures from
runtime data extracted from the field. For instance, failures have
been reproduced starting from the flow of events executed in the
app immediately before a crash [17], from executions traces with
the operations performed before a crash [4, 10, 15], as well as from
the content of the stack trace [16, 19], and bug reports [21, 22].
Despite the benefit of collecting data from the field to reproduce
failures, user data can be fairly collected only by taking the sen-
sitivity of the data into consideration. Indiscriminately collecting
data may reveal sensitive information that should not be available
outside the boundary of the app. For instance, failure traces may
include sensitive information such as age, gender, financial data,
and personal interests.

In specific cases, data can be partially anonymized. For instance,
concerning the data stored in databases, kb-Anonymity can be
used to mitigate the issue of sharing sensitive information through
the databases used for testing [2]. When the execution path of
the failure is available and symbolic execution is applicable to
the target program, new synthetic executions that reproduce the
failures might be derived to also mitigate issues with sensitive
data [3, 11, 12].

The field of data mining has been investigating this challenge for
several years defining a number of privacy-preserving techniques
that can be used to alleviate the problem of incidentally disclosing
sensitive information [8, 14, 20]. These techniques work by applying
generalization or suppression operations to the data, so that the
original information is not immediately available anymore [13]. For
instance, a string 123456 representing an account number could
be automatically rewritten as a random string of the same length,
such as xhfprt. These techniques can be readily applied to the
data collected from the field to prevent disclosing sensitive data to
third-parties.

While privacy-preserving techniques can clearly eliminate, or
reduce, privacy issues, their impact on the capability of revealing
failures has not been studied so far. Indeed, using anonymized data
to reproduce failures is harder than using clear text data. That is,
protecting the privacy of the users and facilitating the reproduction
of failures experienced in the field are two competing goals.

In this paper we propose the first, to the best of our knowledge,
empirical study about the impact of privacy-preserving techniques

This work licensed under Creative Commons Attribution International 4.0 License.

88

2024 IEEE/ACM International Conference on Automation of Software Test (AST)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3644032.3644463&domain=pdf&date_stamp=2024-06-10

AST 2024, April 2024, Lisbon, Portugal Elena Masserini, Davide Ginelli, Daniela Micucci, Daniela Briola, and Leonardo Mariani

on failure reproduction. We focused our study on failures expe-
rienced by users of mobile apps due to the popularity of mobile
applications and their exposure to privacy issues [7]. Our study con-
siders 19 bugs in 17 open source Android applications, and discloses
insights about the trade-off between guaranteeing the privacy of
the users and easing the reproduction of failures. In particular, we
show that there is no unique choice about the privacy-preserving
techniques to be used. Different contexts may require different
techniques depending on the aspect to privilege.

This paper is organized as follows. Section 2 introduces and rig-
orously defines privacy-preserving techniques. Section 3 describes
the design of the experiment conducted to evaluate the impact of
privacy-preserving techniques on failure reproduction. Section 4
reports the empirical results and answers our research questions.
Section 5 discusses related work. Finally, Section 6 provides final
remarks.

2 PRIVACY-PRESERVING TECHNIQUES
Privacy-preserving techniques can be used to effectively anonymize
data. This section defines the techniques that we considered in our
study, describing how we adapted them to the problem of failure
reproduction, when necessary.

Privacy-preserving techniques are typically used in the context
of data mining, especially with records of databases. In fact, data
contained in tables do not usually satisfy privacy requirements,
and thus they cannot be shared without applying anonymization
operations [8]. These operations may target individual records or
sets of records. The former class of operations is useful when a
third-party that accesses the data can essentially access only to
individual records, and cannot compare the (anonymized) records
between them. The latter class of operations is useful when a third-
party can access the full set of records, and thus may infer facts by
cross-analyzing the content of multiple (anonymized) records. In
such a case, privacy-preserving techniques must consider the full
set of records when anonymizing the individual records to prevent
the incidental disclosure of sensitive information.

In the case of software failures, they are usually experienced once
a while for the released apps, and only few failures are normally
collected from a same user. To guarantee that user data is fairly
collected, the application of strategies specifically designed to deal
with large sets of repeated failures collected from the same users is
likely not needed. For this reason, we focus on privacy-preserving
techniques that can be applied to individual records.

In this paper, we consider failure traces consisting of streams of
GUI events executed on the app when the failure occurred, as done
in many failure reproduction techniques, such as CaRCrash [17]
and ReCDroid [22]. That is, a failure trace is a sequence of events
(𝑎𝑖 ,𝑤𝑖 , 𝑑𝑖) where 𝑎𝑖 is a GUI action (e.g., a click event) performed
on a widget 𝑤𝑖 (e.g., a button) possibly using data 𝑑𝑖 (e.g., the
text entered into an input field). The set of values 𝑑𝑖 that occur
in a failure trace are the data values subject to the anonymization
process. We do not consider in our experiment the anonymization
of other elements, such as the action or the widget. That is, we
study how to prevent the failure trace from disclosing information
such as the age, the address, or the personal income through the
data values 𝑑𝑖 entered into a form, while it is out of the scope of

the study to hide the fact that a user has registered into an app by
clicking on the Register button.

The operations performed by privacy-preserving techniques to
anonymize data vary based on the type of data. In particular, it is
possible to distinguish three different classes of data to be analyzed:
continuous values, categorical values, and string values. Continuous
values are numeric values (e.g., someone’s age or income) that can
be used, for instance, as part of arithmetic operations. Categorical
values are enumerated values that cannot be normally used as part
of arithmetic operations [6]. Finally, string values are sequences of
alpha-numeric characters.

We now present the privacy-preserving techniques based on
the type of anonymization strategy they implement: generalization,
suppression, and perturbation. Table 1 shows the specific techniques
that we considered (Column Technique), classified according to
the strategy they implement (Column Strategy) and associated
with type of data that they can be applied to (Columns Continuous,
Categorical, and String). The set of selected techniques reflects the
taxonomy proposed by Mendes et al. [13]. We have excluded the
anatomization strategy presents in the taxonomy, since it is strictly
related to databases and cannot be applied to our context, and
both the Top/Bottom Coding and the Post-Randomization (PRAM)
techniques since our dataset does not include cases where they can
be applied.

Table 1: Overview of privacy-preserving techniques.

Strategy Technique Continuous Categorical String

Generalization Global Recoding ✓ ✓ -
Top Coding ✓ - -
Bottom Coding ✓ - -
Rounding ✓ ✓ -

Suppression Local Suppression ✓ ✓ ✓
Special Char Driven LS - - ✓

Perturbation Noise Addition ✓ - -
PRAM - ✓ -

2.1 Generalization Techniques
Techniques that belong to this strategy replace values with more
general ones [13]. These privacy-preserving techniques disclose
some general information, while hiding the original value.

Global Recoding.

Definition: Global Recoding anonymizes a value by only dis-
closing information about the interval it belongs to. This technique
can be applied to both categorical and continuous variables. In the
former case, Global Recoding anonymizes a value by combining sev-
eral categories into fewer ones. For example, if the categorical value
represents different age groups (e.g., newborns, infants, toddlers,
kids, and adults), Global Recodingmay reduce them into two groups
(e.g., ’baby’ and ’kids or older’). In the latter case, Global Recoding
replaces a variable with its interval. For example, the numerical age
value can be replaced with its categorical age group [18].

Failure Reproduction: In the context of failure reproduction,
replacing a categorical or continuous value with its interval (e.g.,

89

Anonymizing Test Data in Android: Does It Hurt? AST 2024, April 2024, Lisbon, Portugal

replacing the categorical input infant or the numerical input 1with
the category baby) would make the failure trace non-executable.
In fact, the new value would not be processable by the application
that expects either values from a specific enumeration of categories
or numerical values. To obtain a processable input, and thus to
attempt to reproduce the failure from the anonymized trace, the
values anonymized with Global Recoding are then replaced with
random concrete values within the anonymized interval.

Example: If a variable in the range [0, 10] is anonymized accord-
ing to the sub-intervals [0, 5) and [5, 10], and the value to anonymize
is 4.0, Global Recoding replaces the original value with the interval
[0, 5). Failure reproduction shall generate random values within this
interval to attempt to reproduce the failure. Similarly, if a categori-
cal value newborns is anonymized with a more general category
baby (that includes newborns, infants, and toddlers), test gener-
ation shall use values in the set newborns, infants, and toddlers
to reproduce the failure.

Rounding.

Definition: This technique identifies several rounding points
in the domain and maps the input value to be anonymized to the
closest rounding point [6]. These rounding points could be identi-
fied by dividing the domain into multiple intervals, then selecting
the middle point of each interval as rounding point.

Failure Reproduction: The anonymized value is an actual do-
main value and thus failure reproduction simply uses the value
readily available in the trace.

Example: Given an input in the range (0, 10], the rounding
points can be defined as the middle points of the intervals (0, 5) and
[5, 10], that is, the values 2.5 and 7.5. Every value to be anonymized
is mapped to one of these two values.

2.2 Suppression Techniques
Techniques that belong to this strategy entirely drop the values to be
anonymized, or retain minimal information, to protect privacy [13].

Local Suppression.

Definition: This technique can be trivially applied to any data
type (continuous, categorical, and string), since it replaces the in-
put value with a missing value, whose semantics depends on the
context [18]. For example, considering a record in a database, the
corresponding missing value is NULL. In the context of Android
applications, Local Suppression simply logs the empty string for
any input value.

Failure Reproduction: In this case, failure reproduction is left
with no information about the original value and thus it can only
generate a random value coherent with the domain of the original
value. In particular, if the original value is continuous, the technique
generates a random value within the allowed range. If the original
value is categorical, the technique chooses a random element from
the set of possible values. If the original value is a string, the tech-
nique generates a string that matches a specific regular expression
(in such a case, we consider both the case the new string has a

length unrelated to the original string or has a length matching the
original string).

Example: In all the cases, the anonymized value is the empty
value. The generation is driven by the full range of values allowed
by the input field. For instance, a random number between 0 and
100 could be generated for an input field representing the age of a
person.

Special Char Driven Local Suppression.

Definition: Since sometimes bugs are triggered by anomalous
characters that cannot be parsed or processed correctly, we defined
a version of the Local Suppression that only preserves the special
characters (defined as any non-alphanumeric character, such as *,
!, and ?) contained in the value to anonymize. Special characters
usually reveal virtually nothing about the original input, but they
might be helpful to reproduce misbehaviors.

Failure Reproduction: The generation works the same than in
Local Suppression, but the special characters in the input value are
copied in random places within the generated value.

Example: Given the value example! to be anonymized, the tech-
nique generates a new random string that includes the special
character !, such as HQb!Ha.

2.3 Perturbation Techniques
Techniques that belong to this strategy replace the original values
with synthetic values close to the original ones [8, 13].

Noise Addition.

Definition: This technique is typically applied to continuous
variables (i.e., to numbers). The general idea is to change the orig-
inal value by adding or multiplying a stochastic or randomized
number (i.e., the noise) to the original data [18]. Given a domain
range [𝑚𝑖𝑛,𝑚𝑎𝑥], a percentage of noise amplitude 𝑛, and a value
to anonymize 𝑣 , the technique generates a random value in the
interval [𝑣 − 𝑛 ∗ (𝑣 −𝑚𝑖𝑛), 𝑣 + 𝑛 ∗ (𝑚𝑎𝑥 − 𝑣)].

Failure Reproduction: The anonymized value is an actual do-
main value and thus failure reproduction simply uses the value
readily available in the trace.

Example: Given a range [0, 10], a noise 0.30, and the value to
anonymize 8.0, Noise Addition generates a random value in the
interval [8.0 − 0.30 ∗ (8.0 − 0), 8.0 + 0.30 ∗ (10.0 − 8.0)] = [5.6, 8.6].

3 EXPERIMENT DESIGN
3.1 Goals and Research Questions
The goal of this study is to investigate the impact of privacy-
preserving techniques on the capability to reproduce the failures
experienced in the field. To this end, we framed the following re-
search questions.
RQ1 - Effectiveness: What is the failure-reproduction rate
for anonymized failure traces? This research question stud-
ies how failure-reproducing test cases derived from failure traces

90

AST 2024, April 2024, Lisbon, Portugal Elena Masserini, Davide Ginelli, Daniela Micucci, Daniela Briola, and Leonardo Mariani

Table 2: Reproducible Android application faults

Application Domain Version Fault description

Binary Eye Barcode scanner 1.56.2 Generating QR codes from some string values cause the app to crash.
Birday Birthdays and events 1.9.0 The app crashes if the user adds a birthday on February 29th.
Catima Loyalty Card management 2.16.0 Although only the initial of a card name should be shown in the icon, certain combination of initial

characters are all erroneously shown in the icon.
Catima Loyalty Card management 2.8.0 Expiry date for cards set before 1970 are not shown.
Contact Diary Event and contact tracker 1.2.0 The app crashes when the input includes a malformed event duration that does not match the pattern

hh:mm, such as :mm, hh:.
Debitum Debts and lents tracker 1.4.0 Transactions are sometimes saved with an amount that slightly differs from the entered one.
Did I take my meds? Medicine tracker 1.6.2 Some combinations of system time and edited time cause the edited time to be saved as P.M. even if

it was A.M., and vice versa.
EinkBro Browser 8.21.0 Some queries are considered as URLs and lead to webpage not found error.
Food Scale Droid Grocery management 1.2 App crashes when weights contain a comma.
GrowTracker Gardening 2.5.1 Entering a value with a dot in from date or to date fields causes the app crash.
Money Wallet Accounting 4.0.4.1 Initial amounts in wallets can be incorrectly saved.
NoNonsense Notes Notes 5.5.1 Closing and re-opening the app after a SD synchronization causes the loss of all notes contained in

lists whose name includes a / .
Simple Calendar Calendar 6.19.0 When importing birthdays from Simple Contacts, the age shown for contacts born before 1970 is

incorrect.
Simple Money Tracker Accounting 0.8.9 If the transaction amount is too big, the app crashes.
SplitBills Shared expenses 0.3.10 Group names containing a / as a middle or final symbol are not correctly exported.
Tasks Habit tracker 9.7.3 When creating a task, subtask names containing the sequence ’ @’ are truncated.
To don’t Negative habits tracker 1.1 App crashes - changes are not saved when editing a task with an apostrophe in the name.
Track & Graph Personal data tracker 1.5.1 Using a | symbol in the name of the first option in multiple option values causes the app to crash.
Track & Graph Personal data tracker 1.5.1 A wrong number is saved if the used decimal separator does not match the one defined in the

Android settings.

are impacted by privacy-preserving techniques. That is, it inves-
tigates how hard reproducing failures is, if the source traces are
anonymized with the techniques presented in Section 2.
RQ2 - Cost: How many runs are necessary to reproduce fail-
ures with high confidence? This research question studies the
number of test executions that must be performed to establish if
either the failure has been reproduced or the failure cannot be
reproduced from the anonymized trace.
RQ3 - Information Disclosure: How often is the original value
disclosed? This research question investigates how often the
anonymized value is reconstructed while reproducing a failure,
thus potentially revealing sensitive information that should remain
hidden.

3.2 Selection of the Subject Android Apps and
Faults

To select the subject apps and faults, we performed an extensive
manual analysis to look for failures that depend on user data, that
is, failures that can be observed only if certain input values are
entered. We restricted our selection to open-source F-Droid [5]
apps with repositories present in either GitHub or GitLab, to make
sure it is possible to inspect the app and actually identify the fault
responsible for a given failure. We considered apps in the Money,
Science & Education, Sports & Health, Time, Internet, and Writing
categories, since these apps have a better chance of exploiting user
inputs than apps in categories like Theming and Connectivity.

For every category, we manually checked at least 50 apps per
category to identify the ones that have fillable fields, considering
both the screenshots and the descriptions on their own page in
F-Droid. For every identified app, we checked all the issues labeled

as “bug” (or simply all the issues when labels are not available) to
select the issues that are reported to be caused by specific inputs.
We identified a total of 29 potentially useful issues spanning 26
apps.

To verify the presence of these issues, we downloaded the APK
file corresponding to the version with the issue and reproduced the
failure as reported in the issue. When the APKwas not available, we
checked out the correct version from the GitLab or GitHub reposi-
tory of the application and generated the compiled app ourselves
with Android Studio. We also checked the code of the app to deter-
mine if two same failures of a same app were originated by a same
fault. We then classified failures as reproducible or non-reproducible,
depending on the possibility to reproduce the failure with either an
automatic Espresso [1] test case or a failure reproducing routine.
In particular, we consider a failure non-reproducible if we could
neither reproduce it with Espresso nor we could establish a clear
relationship between the inputs and the fault present in the app.

We found eight non-reproducible failures and two identical fail-
ures generated by faults that were already included in the selec-
tion. We ended up with 19 reproduced input-dependent failures
caused by distinct bugs in 17 Android apps. Detailed information
about all the considered cases is publicly available in our repository,
alongside with the material needed to reproduce the experiments
and the results that we obtained: https://gitlab.com/sal-unimib-
anonymization/experimentation. Table 2 reports the apps, their
domain and version, and a description of the bugs present in the
apps.

For each reproduced failure, with the exception of two cases
where the app was incompatible with Espresso, we recorded an
automatic Espresso test case that exposes it. For the two cases of

91

Anonymizing Test Data in Android: Does It Hurt? AST 2024, April 2024, Lisbon, Portugal

incompatibility, we inspected the faulty code in the apps and im-
plemented a failure reproducing routine that given an anonymized
input determines if the fault is exposed.

3.3 Configuration of the Privacy-Preserving
Techniques

Depending on the nature of the data that must be anonymized,
the techniques presented in Section 2 may require to be properly
configured. In the following, we describe the configurations that
we used.

String values can be anonymized with the Local Suppression
and the Special Char Driven Local Suppression techniques. In both
cases, the new value that must replace the original one is obtained
according to a regular expression. We use the following four regular
expressions that capture the cases we encountered in our subject
apps: [!-~], when all possible string values including special char-
acters are allowed; [A-Za-z0-9], when only alphanumeric values
are allowed; [0-9.,], when only numbers with any decimal sep-
arator are allowed; and [0-9,] or [0-9.] or [0-9:], when only
number with specific separators are allowed. All these cases are
summarized in table Table 3.

Table 3: Regular expressions for string values.

Value type Regex

All possible string values with special char. [!-~]
Alphanumeric values [A-Za-z0-9]
Numbers allowing both the decimal separators [0-9.,]
Numbers allowing only a specific separator [0-9,] or

[0-9.] or
[0-9:]

When the Special Char Driven Local Suppression technique is
used and the original string includes one or more special characters,
these special characters are inserted in random places within the
new anonymized string. We configure the length of the generated
string in two ways, experiencing both in our evaluation. That is,
the length of the generated string can be random or equal to the
length of the original string. In the case of random length, we use
the interval [1-25] for short inputs (e.g., a note title or a loyalty
card name) and [1-150] for long inputs (e.g., a description). In case
the length of an input is bounded to a value lower than the maxi-
mum defined by these intervals, we set the maximum length to the
maximum length accepted by the text field.

Numeric values can be anonymized with most of the privacy-
preserving techniques. Local Suppression anonymizes values by
generating new values within a specified interval. If the value to
anonymize has boundaries defined by the application (e.g., the
time can be only assigned with a value in the interval [0-24]), we
configure the technique with these limits. Otherwise, we set the
interval depending on the nature of the value: when a small value
is expected (e.g., an age), we use the interval [0-100], otherwise if
bigger values can be used (e.g., a currency) we use the interval [0-
1.000.000]. Global Recoding and Rounding require the definition of
the number of partitions to be used to split the interval of definition.

Consistently with the previous definition of small and big values,
we run the techniques with three configurations (using 2, 3, and 4
partitions) when a small value is expected by the app, and we use
three different configurations (using 50, 100, and 500 partitions)
when a big value is expected. Finally, we experience three different
noise values (30%, 40%, and 50%) for Noise Addition.

The configurations that we used for the techniques applicable to
numeric values are summarized in Table 4.

Table 4: Configurations for techniques applied to numbers.

Technique Parameters Possible Config.

All Interval of Definition 1) As in the app
2) [0-100]
3) [0-1.000.000]

Global Recoding &
Rounding

Number of Partitions 1) Small intervals:
2, 3, and 4
2) Big intervals: 50,
100, and 500

Noise Addition Width of Noise 1) 30%, 40%, 50%

3.4 Experimental Procedure
To answer RQ1-3, we follow the procedure visually illustrated in
Figure 1. We start from the Espresso test case that reproduces
the bug as reported from the field by the user of the application,
including the data reported in the original online issue. We identify
ourselves a value coherent with the description in the issue, in the
few cases a specific value was not available. To study the impact of
privacy-preserving techniques, we anonymize the user data that the
failure is dependent on with every applicable technique configured
as discussed in Section 3.3.

The anonymization of the data resulted in a new Espresso test
case that uses the values derived from the anonymization process
rather than the original values. We then executed the new test and
checked if the same failure could be reproduced after the anonymiza-
tion process. Since anonymization and failure reproduction imply
randomness, we repeat the anonymization process 100 times for
every configuration, for a total of more than 11K test executions.
All tests were executed on a Huawei P9 Lite smartphone with An-
droid 9, except for the few cases that required a specific Android
version and were tested on virtual devices. In the two cases of apps
incompatible with Espresso, we executed our failure reproducing
routine.

The implementation of the privacy-preserving techniques pre-
sented in this paper and the tool to run the failure reproduction pro-
cess are publicly available in the following repository: https://gitlab.
com/sal-unimib-anonymization/anonymization-android-tool.

The set of applications used in the study, the input that has been
anonymized, the technique used for the anonymization, and the
configurations used for the anonymization process are reported
in detail in table Table 5. We add the labels Lo, Me, Hi next to the
configurations present in the table, to identify the configurations

92

AST 2024, April 2024, Lisbon, Portugal Elena Masserini, Davide Ginelli, Daniela Micucci, Daniela Briola, and Leonardo Mariani

Password field:
"password?#"

Selection of the
data to anonymize

Local
Suppression

Special Char
Driven Local
Suppression

Rounding

Anonymization
of the values based on
different configurations

@Test
public void loginActivityTest() {

 ...
 onView(withId(R.id.email)).
 perform(replaceText(username));
 onView(withId(R.id.password)).
 perform(replaceText(password));
 onView(withId(R.id.button_login)).perform(click());
 ...
 intended(hasComponent(
 UserPreferencesActivity.class.getName()));
 }

Bug Reproduction
Frequency

Original Input
Replication Frequency

Computed Metrics

Test case that reveals the bug

Input data
username password
john.doe@email.com password?#

Execution of the tests

 regex = [A-Za-z.0-9]
 length = 10
shjepwlcn4
lpqmxgddhp
...

 regex = [A-Za-z.0-9]
 length = 8
58jsp1ax
jd9amcq!
...

Application of the
compatible privacy
techniques to use

 regex = [A-Za-z.0-9]
 length = 5
c?x#p
?#nqk
...

 regex = [A-Za-z.0-9]
 length = 7
#dx2qn?
yaw?m#q
...

anonymization_2.drawio https://app.diagrams.net/

1 di 1 05/10/23, 13:14

Figure 1: Overview of the experiment.

that retain less (Lo), medium (Me), or more (Hi) information from
the original non-anonymized value.

To answer RQ1, we measure the bug reproduction frequency, that
is, the ratio between the number of anonymized tests that reveal
the same failure revealed by the original test and the number of
anonymized tests. The more often a failure is revealed, the less im-
pact a privacy-preserving technique has on the failure reproduction
capability of the test cases. To answer RQ2, we compute the number
of repetitions to reveal the original failure with a probability of 95%,
that is, we estimate the number of tests that must be derived and ex-
ecuted from failure traces to be reasonably sure that a bug has been
either reproduced or it is not feasible to reproduce it. To answer
RQ3, we measure the replication frequency of the original input, that
is, we measure the number of times the original non-anonymized
value is generated during the failure reproduction process.

4 RESULTS
4.1 RQ1 - Effectiveness
Table 6 reports the bug reproduction frequency for the privacy-
preserving techniques applied to strings and numbers.

Concerning the anonymization of strings, Local Suppression se-
verely compromises the capability to reproduce failures (the mean

success rate varies between 11% and 19%), depending on the con-
figuration. The low bug reproduction frequency for Local Suppres-
sion is expected, since almost no information is retained from the
original string. Interestingly, retaining more information from the
original input (configuration Hi) has, in the majority of the cases,
a negligible or negative effect on the bug reproduction frequency.
This happens because preserving the length of the original string
is often not a relevant factor in failure reproduction, while using
(longer) random strings may increase the chance of using the right
combination of characters that may trigger the failure.

In line with this intuition, SCD Local Suppression has a signifi-
cantly better performance than Local Suppression (mean success
rate of 49%). This confirms our intuition that by just disclosing
a syntactic information that is largely irrelevant on the point of
view of the user (i.e., the presence of a special character), failure
reproduction might be often improved. Again, retaining the length
of the string has not an impact on failure reproduction. Clearly,
the presence of special characters alone is not always enough to
reproduce failures. In these cases Local Suppression and SCD Local
Suppression have similar performance, as for the Catima Loyalty
and the Binary Eye apps. In some other cases, they are helpful but
not sufficient alone, since the special character(s) might have to
occur at a specific position, as in the first bug of the Track & Graph
app, or in the context of a specific string, as in the Task app. In some

93

Anonymizing Test Data in Android: Does It Hurt? AST 2024, April 2024, Lisbon, Portugal

Table 5: Configurations of the techniques for each application’s bugs analyzed.

App bug Input Technique Configuration

Binary Eye
com.taobao.arthas.boot
.ProcessUtils.findJavaHome
(ProcessUtils.java:222)

Local Suppression &
SCD Local Suppression regex: [!- ∼], length: equal to original (Hi) or [1-150] (Lo)

Birday 29 2 1996

Local Suppression interval: [1-31] [1-12] [1937-2036]
Global Recoding &
Rounding

interval: [1-31] [1-12] [1937-2036], partitions: 2 (Lo) or 3 (Me) or 4 (Hi)

Noise Addition interval: [1-31] [1-12] [1937-2036], noise width: 0.3 (Hi) or 0.4 (Me) or 0.5 (Lo)

Catima Loyalty - bug 1 Atelier
Local Suppression &
SCD Local Suppression

regex: [!- ∼], length: equal to original (Hi) or [1-25] (Lo)
regex: [A-Za-z0-9], length: equal to original (Hi) or [1-25] (Lo)

Catima Loyalty - bug 2 19 4 1963

Local Suppression interval: [1-31] [1-12] [1900-2100]
Global Recoding &
Rounding

interval: [1-31] [1-12] [1900-2100], partitions: 2 (Lo) or 3 (Me) or 4 (Hi)

Noise Addition interval: [1-31] [1-12] [1900-2100], noise width: 0.3 (Hi) or 0.4 (Me) or 0.5 (Lo)

Contact Diary :30
Local Suppression &
SCD Local Suppression

regex: [0-9:], length: equal to original (Hi) or [1-5] (Lo)

Debitum 4.60

Local Suppression interval: [0-100)
Global Recoding &
Rounding

interval: [0-100), partitions: 2 (Lo) or 3 (Me) or 4 (Hi)

Noise Addition interval: [0-100), noise width: 0.3 (Hi) or 0.4 (Me) or 0.5 (Lo)

Did I Take My Meds 15:30 20:36

Local Suppression interval: [0-23] [0-59] [0-23] [0-59]
Global Recoding &
Rounding

interval: [0-23] [0-59], partitions: 2 (Lo) or 3 (Me) or 4 (Hi)

Noise Addition interval: [0-23] [0-59], noise width: 0.3 (Hi) or 0.4 (Me) or 0.5 (Lo)

EinkBro how to open design.psd
Local Suppression &
SCD Local Suppression

regex: [!- ∼], length: equal to original (Hi) or [1-25] (Lo)

Food Scale Droid 543,
Local Suppression &
SCD Local Suppression

regex: [0-9,.], length: equal to original (Hi) or [1-25] (Lo)

Grow Tracker 3.6

Local Suppression &
SCD Local Suppression

regex: [0-9,.], length: equal to original (Hi) or [1-25] (Lo)

Local Suppression interval: [0-100)
Global Recoding &
Rounding

interval: [0-100), partitions: 2 (Lo) or 3 (Me) or 4 (Hi)

Noise Addition interval: [0-100), noise width: 0.3 (Hi) or 0.4 (Me) or 0.5 (Lo)

Money Wallet 4362.65

Local Suppression interval: [0-1000000)
Global Recoding &
Rounding

interval: [0-1000000), partitions: 50 (Lo) or 100 (Me) or 500 (Hi)

Noise Addition interval: [0-1000000), noise width: 0.3 (Hi) or 0.4 (Me) or 0.5 (Lo)

NoNonsense Notes list/name
Local Suppression &
SCD Local Suppression

regex: [0-9,.], length: equal to original (Hi) or [1-25] (Lo)

Simple Calendar 1 1 1960

Local Suppression interval: [1-31] [1-12] [1900-2100]
Global Recoding &
Rounding

interval: [1-31] [1-12] [1900-2100], partitions: 2 (Lo) or 3 (Me) or 4 (Hi)

Noise Addition interval: [1-31] [1-12] [1900-2100], noise width: 0.3 (Hi) or 0.4 (Me) or 0.5 (Lo)

Simple Money Tracker 20000000000000000000
Local Suppression &
SCD Local Suppression

regex: [0-9.], length: equal to original (Hi) or [1-25] (Lo)

SplitBills group/name
Local Suppression &
SCD Local Suppression

regex: [!- ∼], length: equal to original (Hi) or [1-25] (Lo)

Tasks Subtask 1 @home
Local Suppression &
SCD Local Suppression

regex: [!- ∼], length: equal to original (Hi) or [1-25] (Lo)

To Don’t task’name add
Local Suppression &
SCD Local Suppression

regex: [!- ∼], length: equal to original (Hi) or [1-25] (Lo)

Track & Graph - bug 1 option | Local Suppression &
SCD Local Suppression

regex: [!- ∼], length: equal to original (Hi) or [1-25] (Lo)

Track & Graph - bug 2 2.7

Local Suppression &
SCD Local Suppression

regex: [!- ∼], length: equal to original (Hi) or [1-25] (Lo)

Local Suppression interval: [0-100)
Global Recoding &
Rounding

interval: [0-100), partitions: 2 (Lo) or 3 (Me) or 4 (Hi)

Noise Addition interval: [0-100), noise width: 0.3 (Hi) or 0.4 (Me) or 0.5 (Lo)

94

AST 2024, April 2024, Lisbon, Portugal Elena Masserini, Davide Ginelli, Daniela Micucci, Daniela Briola, and Leonardo Mariani

Table 6: Bug Reproduction Frequency

Strings Numbers

Local Sup SCD Local Sup Local Sup Global Recoding Rounding Noise Addition

Lo Hi Lo Hi Lo Me Hi Lo Me Hi Lo Me Hi

Binary Eye 0% 0% 0% 0% Birday 0% 0% 2% 1% 0% 0% 0% 6% 5% 8%
Catima Loyalty - bug1 8% 10.5% 9% 9.5% Catima Loyalty - bug 2 39% 62% 100% 39% 100% 100% 0% 56% 64% 60%
Contact Diary 8% 16% 49% 38% Debitum 5% 9% 5% 6% 0% 0% 0% 6% 5% 6%
EinkBro 0% 1% 3% 7% Did I Take My Meds 52% 100% 49% 100% 100% 0% 100% 74% 84% 90%
Food Scale Droid 61% 28% 92% 90% Grow Tracker 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Grow Tracker 77% 27% 100% 100% Money Wallet 4% 5% 9% 13% 0% 0% 0% 8% 8% 8%
NoNonsense Notes 18% 8% 100% 100% Simple Calendar 27% 74% 100% 36% 100% 100% 0% 63% 63% 61%
Simple Money Tracker 1% 16% 5% 15% Track & Graph - bug 2 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
SplitBills 10% 9% 81% 93%
Tasks 0% 0% 20% 6%
To Don’t 18% 9% 99% 99%
Track & Graph - bug 1 3% 2% 13% 21%
Track & Graph - bug 2 35% 15% 59% 53%

Mean 18% 11% 49% 49% 41% 56% 58% 49% 63% 50% 38% 52% 54% 54%
’Lo’, ’Me’ and ’Hi’ in the header refer to configurations that retain less, medium, or more information from the input

other cases the fault was dependent on the semantic of the value
and the mere presence of the special character was not enough to
reproduce the failure.

For numeric inputs, Local Suppression is the technique with
the lowest success rate (41%), with only Rounding - Hi performing
worst (38%). Noise Addition and Global Recoding perform similarly:
the effectiveness of Global Recoding ranged between 49% and 58%,
and Noise Addition ranged between 52% and 54%. Rounding per-
formed best in some cases, but with higher performance variance,
with an effectiveness between 38% and 63%. Global Recoding and
Rounding are more sensitive than Noise Addition to the choice of
the configuration. In fact, Noise Addition works with intervals that
are defined around the original input value. On the contrary, the
intervals used in Global Recoding and Rounding are independent
from the original input value, which could fall very near or on the
edge of the interval, affecting the reproduction probability in cases
where the fault is caused by values near to the original one.

The characteristics of the failure to be reproduced also have an
impact. In fact, there are some easy cases where most of the tech-
niques were systematically successful, for instance due to values
formatted according to the Android settings that systematically
generate failures if incompatible with the expectation of the app.
We also had some hard cases with a failure reproduction rate below
10%. This is due to the small set of domain values that trigger the
failure (e.g., in Birday only February 29 of leap years lead to the
malfunction, over all the possible dates). In cases where the bug was
caused by values in a range close to the original input (e.g., Simple
Calendar, Did I Take My Meds, Catima Loyalty), Local Suppression
is affected by its inability to preserve any information, leading to an
overall lower success rate compared to other techniques. Noticeable,
although if with low probability, it was always possible to replicate
a bug using Global Recoding and Noise Addition, while Rounding
tends to quickly reveal the failure or miss it.

For three apps, the attempt to reproduce the original failure led
to the discovery of new bugs. In Binary Eye some strings used to
generate a QR code differ from the ones obtained when scanning

the code generated by the app (e.g., }c:+8ha when coded and then
decoded becomes ∼c:+8ha). In To Don’t some task names when
saved cause all the other task names to be cancelled and replaced
by a null value (e.g., the random string S 0O}_(’ was sufficient to
reveal the bug). In Track & Graph - bug 1, the bug makes the app
crash while creating a new multiple-value tracked habit, when the
first option ends with ‘|’, but we also discovered that option names
with ‘| |’ cause the habit to not be saved.

Answer to RQ1: SCD Local Suppression should be preferred
to Local Suppression when applied to strings, since it significantly
increases the failure reproduction capability, while disclosing mini-
mal information (the presence of a special character in the original
string). Local Suppression applied to numbers had a significant,
but not dramatic, impact on failure reproduction (41% success rate).
Techniques approximating and perturbing the original value might
increase the success rate (up to 63% in our experiments) at the cost
of disclosing some information about the original value. Deciding
how much information preserving from the input values should be
done carefully, since preserving information not correlated with
the failure trigger may negatively influence reproduction.

4.2 RQ2 - Cost
To measure the cost of using anonymized data to reproduce failures
instead of using actual values, we computed the number of attempts
(i.e., generation of anonymized values and then generation of the
concrete test cases) thatmust be completed to reproduce the original
failure with a probability of 95%. Table 7 shows the Mean and Max
number of attempts necessary across all faults for a given technique
and configuration, the number of non-reproduced faults (row # NR),
and the results per fault. Note that a higher average success rate does
not imply fewer attempts in average since there is a logarithmic
relationship between reproduction probabilities and number of
attempts.

When anonymizing strings, Local Suppression introduces a cost
hardly affordable in practice, with close to 60 test generations and
executions attempts needed in average, and up to 299 attempts in

95

Anonymizing Test Data in Android: Does It Hurt? AST 2024, April 2024, Lisbon, Portugal

Table 7: Iterations for Reproducing Failures with 95% probability

Strings Numbers

Local Suppression SCD Local Suppression Local Sup Global Recoding Rounding Noise Addition

Lo Hi Lo Hi Lo Me Hi Lo Me Hi Lo Me Hi

Binary Eye - - - - Birday - - 149 299 - - - 49 59 36
Catima Loyalty - bug 1 36 28 32 31 Catima Loyalty - bug 2 7 4 1 7 1 1 - 4 3 4
Contact Diary 36 18 5 7 Debitum 59 32 59 49 - - - 49 59 49
Einkbro - 299 99 42 Did I Take My Meds 5 1 5 1 1 - 1 3 2 2
Food Scale Droid 4 10 2 2 Grow Tracker 1 1 1 1 1 1 1 1 1 1
Grow Tracker 3 10 1 1 Money Wallet 74 59 32 22 - - - 36 36 36
NoNonsense Notes 16 36 1 1 Simple Calendar 10 3 1 7 1 1 - 4 4 4
Simple Money Tracker 299 18 59 19 Track & Graph - bug 2 1 1 1 1 1 1 1 1 1 1
SplitBills 29 32 2 2
Tasks - - 14 49
To Don’t 16 32 1 1
Track & Graph - bug 1 99 149 22 13
Track & Graph - bug 2 7 19 4 4

Mean* 55 60 21 15 23 15 32 49 1 1 1 19 21 17
Max 299 299 99 49 74 59 149 299 1 1 1 49 59 49
NR 3 2 1 1 1 1 0 0 3 4 5 0 0 0
’Lo’, ’Me’ and ’Hi’ in the header refer to configurations that retain less, medium, or more information from the input
*mean value is calculated only over defined values (- cases are ignored in the computation of the mean)

the worst case. SCD Local Suppression is more practical since it
requires between 15 and 21 attempts in average, with a maximum
between 49 and 99.

When working with numbers, Noise Addition seems to be the
most affordable solution, since it reproduced all failures with 95%
confidence with a mean number of attempts between 17 and 21 and
up to 59 in the worst case (Me). Global Recoding is a good choice too,
as it performs similar to Noise Addition except with Birday, which
determines the higher mean and max values for this technique.
This difference is due to the necessity of preserving day and month
unchanged in the original input date (29-02-1996) to reproduce
the failure, which is more likely to happen with Noise Addition
since it creates intervals around the input value. Rounding can be
useful to reduce the failure reproduction effort, but it also severally
reduces the number of reproduced failures. Local Suppression is a
valid alternative to Noise Addition when no information about the
original value has to be disclosed, at the risk of failing to reproduce
some failures.

Answer to RQ2: SCD Local Suppression is a cost-effective solu-
tion to anonymize strings. Numbers can be feasibly addressed with
Noise Addition or Local Suppression, depending on the amount of
information that can be disclosed.

4.3 RQ3 - Information Disclosure
We computed how often the failure reproduction process has gener-
ated the value before the anonymization during failure reproduction.
Table 8 shows the percentage of cases it happened for the various
combinations of apps and techniques. In case of strings, obtaining
the original value is unlikely to happen due to the size of the space
of possibilities. In fact, it happened only once for one app, where
the format of the string was particularly constrained by the regular
expression. In case of numbers, the replication of the original value
happened slightly more frequently, with Noise Addition being re-
sponsible of the highest number of cases (which anyway consists

Table 8: Frequency of replication of the original value.

App Technique Replication Freq.

String
Track & Graph - 2 Local Suppression 0.50%

Numbers
Birday Global Recoding 0.67%
Birday Noise Addition 1.67%
Catima Loyalty - 2 Noise Addition 0.67%
Debitum Noise Addition 0.33%

of only three cases with a probability below 1.67%). This is due to
the relatively smaller size of the numeric domain and the type of
perturbations introduced by Noise Addition. Interestingly, it was
not strictly necessary to reconstruct the original value in any of
these cases, so the reproduction of the value was incidental and the
user would not be really aware of this fact. The only exception is
Birday where the failure requires the date 29-2-year where year
is any leap year. Thus the user would discover the date and month
of the birthday, and would restrict the birthday to leap years.

Answer to RQ3: All the anonymization techniques largely hide
the values they are applied to. Sometime the failure reproduction
process may generate the original input in the attempt to reproduce
the failure. This is unlikely to happen frequently, with only Noise
Addition causing the reproduction of the original input in some
rare cases.

4.4 Threats to Validity
A threat is about the limited set of bugs considered in the experi-
ments. To mitigate this threat, we systematically searched for real
bugs contained in open source applications andwe selected Android
applications from different categories to have multiple contexts in
which to experiment with privacy-preserving techniques. The con-
struction of the experimental dataset that we publicly released is

96

AST 2024, April 2024, Lisbon, Portugal Elena Masserini, Davide Ginelli, Daniela Micucci, Daniela Briola, and Leonardo Mariani

already the result of significant manual effort with hundreds of
apps and reports manually inspected, as described in Section 3.2.
Enlarging this dataset to address new domains is part of our future
work.

Another concern is about the way we configured the privacy-
preserving techniques. To avoid introducing any bias, we defined a
configuration policy that we described in the paper. All the config-
urations are finally reported in our online repository.

Finally, another concern is related to the correctness of the im-
plementation of the privacy-preserving techniques that we used
for the experiments. To mitigate this threat, we extensively tested
our tools and made our artifacts publicly available.

5 RELATEDWORK
The studies most related to our work concern with the approaches
designed for the anonymization of the data collected during failures,
and with solutions for bugs reproduction.

One of the first approaches designed for releasing private data in
the context of testing and debugging activities, while ensuring peo-
ple’s privacy, is kb-Anonymity [2]. This approach exploits symbolic
execution and k-anonymity to generate anonymized database tu-
ples that do not alter the behavior of the program, that is, the same
program path is executed when the program uses both the original
and anonymized values. The approach is limited to numbers and
programs whose code is accessible and analyzable with symbolic
execution. Castro et al. [3] investigated a similar approach but ap-
plied to the data included in crash reports. MultiPathPrivacy [11]
and RESPA [12] investigated how to weaken the requirement about
preserving the same execution path when introducing anonymized
values by identifying alternative paths that shall still lead to the
reproduction of the same bug.

Different from this body of work, we studied the effectiveness of
privacy-preserving techniques that have been extensively applied
to databases and that can be easily used to anonymize data collected
during failures, without running any complicated analysis on the
code of the application. The results reported in this paper provide
useful insights about their effectiveness and cost, and the specific
configurations that best fit the problem of anonymizing failure data.

Our work also relates to failure reproduction. We target the case
of reproducing failures from (anonymized) failure traces collected
from Android applications. The reproduction of failures from simi-
lar non-anonymized traces has been also considered in other works,
such as CaRCrash [17] that collects and dispatches failures traces
every time a failure is detected. Similarly, CrashDroid [19] can
reconstruct replayable scripts from stack traces collected during
failures.

Some other techniques considered reproducing failures from
bug reports using NLP techniques, such as S2RMiner [21] and ReC-
Droid [22]. In this study, we considered the impact of anonymiza-
tion techniques on failure traces and the corresponding test cases.
We left to future work investigating more in details the impact
of privacy-preserving techniques on test cases derived from bug
reports, although in principle the artefact used to derive the test
cases should not significantly affect the conclusions of our study.

Finally, some techniques addressed the problem of reproduc-
ing failures in Java, such as, BugRedux [10], JCHARMING [15],

STAR [4], and EvoCrash [16]. We targeted Android since apps are
often used to process personal information. Investigating other
technical contexts is part of our future work.

6 CONCLUSIONS
Analyzing and reproducing failures from failure traces is impor-
tant to timely fix faults and develop reliable applications. However,
failure traces may disclose sensitive information about the users of
the applications, and must be properly anonymized before they can
be used for failure reproduction. This paper studies how privacy-
preserving techniques extensively exploited in the context of data-
base systems can be adapted to the problem of failure reproduction,
and presents an empirical evaluation that discloses findings about
their effectiveness and cost. In particular, our results show that the
SCD Local Suppression technique introduced in this paper can be
effective with the anonymization of strings, while numbers can be
effectively anonymized with Local Suppression or Noise Addition,
depending on the possibility to disclose some information about the
original value that was anonymized. Our future work concerns with
experiencing and studying privacy-preserving techniques applied
to additional domains, such as Web Applications.

ACKNOWLEDGMENTS
This work has been partially supported by the Engineered Ma-
chinE Learning-intensive IoT systems (EMELIOT) national research
project (PRIN 2020 program Contract 2020W3A5FY).

REFERENCES
[1] Android Developers Official Website. 2021. Espresso. https://developer.android.

com/training/testing/espresso Accessed: 2023-01-11.
[2] Aditya Budi, David Lo, Lingxiao Jiang, and Lucia Lucia. 2011. kb-anonymity: a

model for anonymized behaviour-preserving test and debugging data. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). https://doi.org/10.1145/1993498.1993551

[3] Miguel Castro, Manuel Costa, and Jean-Philippe Martin. 2008. Better bug re-
porting with better privacy. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS). https://doi.org/10.1145/1346281.1346322

[4] Ning Chen and Sunghun Kim. 2015. STAR: Stack Trace Based Automatic Crash
Reproduction via Symbolic Execution. IEEE Trans. Software Eng. 41, 2 (2015),
198–220. https://doi.org/10.1109/TSE.2014.2363469

[5] F-Droid Contributors. [n. d.]. F-Droid: Free and Open Source Android App Reposi-
tory. https://f-droid.org/ Accessed: 2023-03-26.

[6] Josep Domingo-Ferrer. 2008. A Survey of Inference Control Methods for Privacy-
Preserving Data Mining. In Privacy-Preserving Data Mining - Models and Algo-
rithms, Charu C. Aggarwal and Philip S. Yu (Eds.). Advances in Database Systems,
Vol. 34. Springer, 53–80. https://doi.org/10.1007/978-0-387-70992-5_3

[7] Fahimeh Ebrahimi, Miroslav Tushev, and Anas Mahmoud. 2021. Mobile app pri-
vacy in software engineering research: A systematic mapping study. Information
and Software Technology (IST) 133 (2021), 106466. https://doi.org/10.1016/j.infsof.
2020.106466

[8] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. 2010. Privacy-
preserving data publishing: A survey of recent developments. ACM Comput.
Surv. 42, 4 (2010), 14:1–14:53. https://doi.org/10.1145/1749603.1749605

[9] Luca Gazzola, Leonardo Mariani, Fabrizio Pastore, and Mauro Pezze. 2012. An
Exploratory Study of Field Failures. In Proceeding of the IEEE International
Symposium on Software Reliability Engineering (ISSRE). https://doi.org/doi:
10.1109/ISSRE.2017.10.

[10] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing field failures for
in-house debugging. In Proceeding of the International Conference on Software
Engineering (ICSE). https://doi.org/10.1109/ICSE.2012.6227168

[11] Pedro Louro, João Garcia, and Paolo Romano. 2012. MultiPathPrivacy: Enhanced
Privacy in Fault Replication. In Proceeding of the European Dependable Computing
Conference (EDCC). https://doi.org/10.1109/EDCC.2012.31

[12] João Matos, João Garcia, and Paolo Romano. 2015. Enhancing privacy protection
in fault replication systems. In Proceeding of the IEEE International Symposium

97

Anonymizing Test Data in Android: Does It Hurt? AST 2024, April 2024, Lisbon, Portugal

on Software Reliability Engineering (ISSRE). https://doi.org/10.1109/ISSRE.2015.
7381827

[13] Ricardo Mendes and João P. Vilela. 2017. Privacy-Preserving Data Mining:
Methods, Metrics, and Applications. IEEE Access 5 (2017), 10562–10582. https:
//doi.org/10.1109/ACCESS.2017.2706947

[14] Suntherasvaran Murthy, Asmidar Abu Bakar, Fiza Abdul Rahim, and Ramona
Ramli. 2019. A Comparative Study of Data Anonymization Techniques. In Pro-
ceeding of the Intl Conference on Big Data Security on Cloud (BigDataSecurity),
IEEE Intl Conference on High Performance and Smart Computing (HPSC), and IEEE
Intl Conference on Intelligent Data and Security (IDS). https://doi.org/10.1109/
BigDataSecurity-HPSC-IDS.2019.00063

[15] Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiène Tahar, and Alf Larsson.
2015. JCHARMING: A bug reproduction approach using crash traces and directed
model checking. In Proceedings of the IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER). https://doi.org/10.1109/SANER.
2015.7081820

[16] Mozhan Soltani, Annibale Panichella, and Arie van Deursen. 2020. Search-Based
Crash Reproduction and Its Impact on Debugging. IEEE Trans. Software Eng. 46,
12 (2020), 1294–1317. https://doi.org/10.1109/TSE.2018.2877664

[17] Junmei Sun, Kai Yan, Xuejiao Liu, Min Zhu, and Lei Xiao. 2019. Automatically
Capturing and Reproducing Android Application Crashes. In Proceedings of
the IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS). https://doi.org/10.1109/QRS-C.2019.00106

[18] Matthias Templ. 2017. Methods for Data Perturbation. Springer International
Publishing, Cham, 99–132. https://doi.org/10.1007/978-3-319-50272-4_4

[19] Martin White, Mario Linares Vásquez, Peter Johnson, Carlos Bernal-Cárdenas,
and Denys Poshyvanyk. 2015. Generating reproducible and replayable bug
reports from Android application crashes. In Proceedings of the IEEE International
Conference on Program Comprehension (ICPC). https://doi.org/10.1109/ICPC.2015.
14

[20] Lei Xu, Chunxiao Jiang, Jian Wang, Jian Yuan, and Yong Ren. 2014. Information
Security in Big Data: Privacy and Data Mining. IEEE Access 2 (2014), 1149–1176.
https://doi.org/10.1109/ACCESS.2014.2362522

[21] Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. 2019. Auto-
matically Extracting Bug Reproducing Steps from Android Bug Reports. In Pro-
ceedings of the International Conference on Software and Systems Reuse (ICSR).
https://doi.org/10.1007/978-3-030-22888-0_8

[22] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William
G. J. Halfond. 2019. ReCDroid: automatically reproducing Android application
crashes from bug reports. In Proceedings of the International Conference on Soft-
ware Engineering (ICSE). https://doi.org/10.1109/ICSE.2019.00030

[23] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schröter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? IEEE Trans.
Software Eng. 36, 5 (2010), 618–643. https://doi.org/10.1109/TSE.2010.63

[24] Weiqin Zou, David Lo, Zhenyu Chen, Xin Xia, Yang Feng, and Baowen Xu. 2020.
How Practitioners Perceive Automated Bug Report Management Techniques.
IEEE Trans. Software Eng. 46, 8 (2020), 836–862. https://doi.org/10.1109/TSE.2018.
2870414

98

