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Abstract
In this article we deal with the problem of portfolio allocation by enhancing network theory
tools. We propose the use of the correlation network dependence structure in construct-
ing some well-known risk-based models in which the estimation of the correlation matrix
is a building block in the portfolio optimization. We formulate and solve all these portfo-
lio allocation problems using both the standard approach and the network-based approach.
Moreover, in constructing the network-based portfolios we propose the use of three different
estimators for the covariance matrix: the sample, the shrinkage toward constant correlation
and the depth-based estimators . All the strategies under analysis are implemented on three
high-dimensional portfolios having different characteristics. We find that the network-based
portfolio consistently performs better and has lower risk compared to the corresponding
standard portfolio in an out-of-sample perspective.

Keywords Portfolio optimization · Mean-variance · Smart Beta strategies · Networks ·
Dependence · Interconnectedness

1 Introduction

Modern portfolio theory originates with the seminal work of Markowitz (1952). This work
proposes the innovative idea of relating the return of an asset (the mean) and its risk (the
variance) together with those of the other assets in the portfolio selection, through the mean-
variance model. Nevertheless the prominent role in modern investment theory, this model,
when applied in asset management setting, can lead to a poor out-of-sample portfolio per-
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formance, due to the estimation errors of the input parameters (see, for instance Merton
1980; Jobson and Korkie 1981). Furthermore, the risk, measured through the variance and
the correlation, is based on expected values representing only a statistical statement about
the future. Such measures often cannot capture the true statistical features of the risk and
return which often follow highly skewed distributions.
To overcome these main drawbacks, several variations and extensions of the original
methodology have been proposed in the literature. In Jagannathan and Ma (2003), a higher
out-of-sample performance is derived by imposing specific constraints, and these results
have been further confirmed in Behr et al. (2013) and Hitaj and Zambruno (2016). Alterna-
tive approaches deal with the problem of optimal portfolio choice by employing a Bayesian
methodology to estimate unknownmean-variance parameters reducing the estimation errors.
In this context, one of the most prominent is the Bayes-Stein approach based on the idea of
shrinkage estimation (Jorion 1985, 1986; Bauder et al. 2018). The authors in Ledoit and
Michael (2004) propose the shrinkage estimator toward the constant correlation, while in
Martellini and Ziemann (2009) and Hitaj et al. (2012) this approach has been extended to
higher moments such as skewness and kurtosis. Empirical analyses have shown that the use
of shrinkage estimators for the mean-variance parameters often improves the out-of-sample
performance (see Hitaj and Zambruno 2016, 2018). Robust optimization is widely used for
dealing with uncertainty in parameters. For instance, Goldfarb and Iyengar (2003) proposed
robust portfolio selection problems reformulated as second order cone programs under uncer-
tainty structures for themarket parameters. Similarly, robustmean-variancemodels have been
put forward by Garlappi et al. (2007) and Fliege and Werner (2014). The authors in Pan-
dolfo et al. (2020) proposed a robust estimation for mean and variance through the use of the
weighted L p depth function. In particular they considered p = 2 and performed empirical
analysis using market portfolios. The authors concluded that the use of weighted L p depth
function for the estimation of mean and variance is a valuable alternative in a portfolio selec-
tion problem. Exhaustive reviews about robust portfolio selection are Fabozzi et al. (2010)
and Scutella and Recchia (2013) where the authors focus on the application of robust opti-
mization only in basic mean-variance, mean-CVaR, and mean-VaR problems. Theoretical
contributions can be found for other models based on either different risk measures (see Zhu
and Fukushima 2009; Zymler et al. 2013; Benati andConde 2022), or alternative performance
indicators (see Kapsos et al. 2014). Concerning the empirical aspect, recently (Georgantas et
al. 2021) compare the performance of several models based on well-known risk measures.

It is well known that the effects of the estimation errors of the returns are higher than
the effects of the estimation errors of the covariance matrix (see, among others, Chopra and
Ziemba 2013). For this reason many portfolio strategies proposed in literature have put aside
returns. These are called risk based strategies because they rely only on the estimation of the
covariance matrix. Some well-known risk based strategies are Global Minimum Variance,
Equally Weighted, (DeMiguel et al. 2007), Equal Risk Contribution (Qian 2006; Maillard
et al. 2010) and Maximum Diversified Portfolio (Choueifaty and Coignard 2008). The risk
based strategies are also calledSmartBeta1 strategies, as they are also proposed as alternatives
to market capitalization-weighted indices, which are claimed to be not efficient (Choueifaty
and Coignard 2008). The literature on constructing new portfolios able to beat a benchmark
is vast and is not limited to the papers cited above. In particular, there is a wide literature on
enhanced indexingwhere the objective is to outperform the index (see, e.g., Bruni et al. 2017;

1 The term Smart Beta is popular to denote any strategy which attempts to take advantage of the benefits
of traditional passive investments, adding a source of outperformance in order to beat traditional market
capitalization-weighted indices. For more information on the risk-based strategies see e.g. Amenc and Goltz
(2013) and the references therein.
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de Paulo et al. 2016; Dentcheva and Ruszczynski 2003; Guastaroba et al. 2016; Roman et al.
2013). We highlight that in this paper we focus only the Smart Beta strategies.

In the last few years the problem of asset allocation has been discussed under a different
perspective. Clustering methods for financial time series has been used to build a portfolio
of assets selected by the resulting partition (see Iorio et al. 2018). Another approach consists
in using network theory to represent the financial market. Indeed, in network-based portfolio
models, the correlation matrix is included in the network structure, in order to reproduce the
dependence among the assets (see, for instance, Mantegna 1999; Onnela et al. 2003b; Pozzi
et al. 2013; Zhan et al. 2015), providing in this way useful insights in the portfolio selection
process.

In particular, the minimum spanning tree has been used in Onnela et al. (2003b), the
authors in Pozzi et al. (2013) use Planar Maximally Filtered Graphs, while in Zhan et al.
(2015) hierarchical clustering trees and neighbor-nets have been applied in order to reduce
the complexity of the network, characterizing the heterogeneous spreading of risk across
a financial market. The work of Peralta and Zareei (2016) establishes a bridge between
Markowitz’s framework and the network theory, showing a negative relationship between
optimal portfolio weights and the centrality of assets in the financial market network. As a
result, the centrality measures of constructed networks can be used to facilitate the portfolio
selection. A generalization to this approach has been provided in Vỳrost et al. (2019).
Recently, an alternativemethodology to tackle the asset allocation problem using the network
theory has been proposed in Clemente et al. (2019). Specifically, the authors catch howmuch
a node is embedded in the system, by adapting to this context the clustering coefficient, a
specific network index (see Barrat et al. 2004; Clemente and Grassi 2018; Fagiolo 2007;
McAssey and Bijma 2015; Wasserman and Faust 1994; Watts and Strogatz 1998), mean-
ingful in financial literature to assess systemic risk (Bongini et al. 2018; Minoiu and Reyes
2013; Tabak et al. 2014). The underlying structure of the financial market network is used
as an effective tool in enhancing the portfolio selection process. In particular, the optimal
allocation is obtained by maximizing a specific objective function that takes into account
the interconnectedness of the system, unlike the classical global minimum variance model
that is based only on the pairwise correlation between assets. Furthermore, in constructing
the dependence structure of the portfolio network, various dependence measures are tested,
namely, the Pearson correlation, Kendall correlation and lower tail dependence. All these
measures are estimated using the sample approach. The results obtained in Clemente et al.
(2019) show that, independently from the length of the rolling window and from the used
dependence structure, the network-based portfolio leads to better out-of-sample performance
compared with the classical approach.

The aim of this paper is to move one step further by enhancing the role of the network
theory in solving portfolio allocation problem. The main contribution is the extension of
the existing network-based approaches to different portfolio selection problems where the
objective function depends on the variance-covariance matrix. In particular, we contribute to
the existing literature along various dimensions.

On the one hand, we exploit the network theory constructing the Smart Beta strategies
and the mean-variance portfolio, where alternative values of the trade-off parameter are
considered.On the other hand,we extend the network-theory to the estimation of the variance-
covariance matrix using alternative methodologies, as the shrinkage (toward the constant
correlation) and the weighted L p depth function.

Theout-of-sample performanceof the proposedmethodology is empirically tested. Specif-
ically, the Pearson correlation is used in order to capture the dependence structure of the
portfolio network. Moreover, we apply the network theory to various well-known models in
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which the estimation of the correlation matrix is a building block in the portfolio optimiza-
tion. We consider in this paper Equally Risk Contribution, Maximum Diversified Portfolio,
GlobalMinimumVariance, and themean-variancemodel. In this last case we consider differ-
ent levels of the trade-off parameter. Moreover, since recent academic papers and practitioner
publications suggest that equal-weighted portfolios appear to outperform various other price-
weighted or value-weighted strategies (see, e.g., DeMiguel et al. 2007), we also include the
Equally Weighted (EW) portfolio in our analysis.

Through empirical analyses, we test the impact of the estimation method on both
the standard and network-based portfolios. For the sake of completeness, three different
high-dimensional datasets with different characteristics are considered. The first dataset is
composed by 266 among largest banks and insurance companies in the world, whose daily
returns have been collected in the time-period ranging from January 2001 to December 2017.
The second dataset is composed by the components of the S&P 100 index (with Bloomberg
ticker OEX) and the third dataset includes the components of the Nikkei-225 Stock Aver-
age (with Bloomberg ticker NKY) . The OEX and the NKY datasets contain daily returns
in the time-period ranging from January 2001 to July 2021. All the obtained portfolios are
compared in an out-of-sample perspective using some well-known performance measures.
Main results show that, in the majority of the cases, the use of network-based approach leads
to higher out-of-sample performances and lower volatility with respect to the correspond-
ing sample strategy. The network-based portfolio is more robust with respect to the standard
approach being only slightly affected by the estimation method of the covariance matrix. The
out of-sample results suggest that the network-based strategy represents a viable alternative
to classical portfolio strategies.

The remainder of the paper is organized as follows. Sect. 2 briefly recalls the investor’s
problems for each strategy under analysis. Section 2 explains the two estimationmethods used
for the covariance matrix. Section 3 explains in detail the approach of portfolio selection via
network theory. Section 4 presents the empirical analysis and Sect. 5 drawsmain conclusions.

2 Portfolio selection strategies

In this section, we briefly set out the strategies used in the rest of the paper for the empirical
analysis. We first introduce what we refer to as standard strategies. We start with the mean-
variance problem and then we describe the most important Smart Beta approaches proposed
as alternatives to the market capitalization-weighted indices, in the equity world.

Mean-variance (MV)

Let us first introduce the standard mean-variance model for a portfolio with N risky assets.
Let Ri be the random variable (r.v.) of daily log returns. Let r = [ri ]i=1,...,N be the returns’
vector observed in a specific time period/window (w) andμ (�) be themean vector (variance-
covariance matrix) between assets estimated in the same period. Let e and x = [xi ]i=1,...,N

be, respectively, the vector of ones and the vector of portfolio weights, i.e. the proportional
investments in the N risky assets. We denote with μp = xTμ, σi and σP = √

xT� x
the portfolio mean, the standard deviation of the i th asset and the standard deviation of the
portfolio, respectively.We recall that all optimizationmodels considered in this paper include
realistic investment constraints such as budged constraint (i.e. eT x = 1) and non-short selling
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constraints xi ≥ 0 ∀i = 1, . . . , N since many institutional investors are restricted to long
positions only.

Themean-variancemodel proposed inMarkowitz (1952) consists in optimizing a trade-off
between risk and return. The standard mean-variance (MV) portfolio optimization problem
is given by:

⎧
⎪⎨

⎪⎩

min
x

λxT�x − (1 − λ)xTμ

eT x = 1
0 ≤ xi ≤ 1, i = 1, . . . , N

, (1)

where λ ∈ [0, 1] expresses the trade-off between risk and return of the portfolio. It is possible
to compute alternative points on the efficient frontier by solving problem (1) for different
levels of λ. The level of λ plays a crucial role in the portfolio diversification and it can be
set by the decision manager according to its preferences. A risk-prone investor may choose
a low level of λ. The extreme case λ = 0 will lead to a highly concentrated portfolio as the
investor is ignoring the risk and the portfolio will be concentrated to the asset with the higher
mean. On the contrary, for λ = 1 the portfolio will be diversified as in this case the manager
is ignoring the portfolio return and seeking the portfolio with the lower risk. Therefore, the
lower is λ the less diversified may be the portfolio. For this reason in the empirical analysis
we considered four alternative levels, λ ∈ {0.2 0.4 0.6 0.8}

It is evident from (1) that the MV portfolio optimization relies on estimators of the means
and covariances of the asset returns. Thismeans that theMVportfolio strongly depends on the
input data, see among others Jorion (1992) and Chopra and Ziemba (2013). The estimation
methods used in this paper will be explained in more details in Sect. 2.1

Global minimum-variance portfolio (GMV)

The GMV strategy selects weights that minimize the variance of the portfolio ignoring
completely the portfolio return. The GMV optimization problem is formulated as:

⎧
⎪⎨

⎪⎩

min
x

xT�x

eT x = 1
0 ≤ xi ≤ 1, i = 1, . . . , N

, (2)

Equally weighted portfolio (EW)

The EW strategy consists in holding a portfolio characterized by the same weight 1
N in

each component. In the literature, it has been empirically showed that the EW portfolios
perform better than many other quantitative models, with higher Sharpe Ratio and Certainty
Equivalent return (see DeMiguel et al. 2007). Being the weights equally allocated among the
assets, this strategy disregards the data and, of course, it does not require any optimization
or estimation procedure.

Equal risk contribution portfolio (ERC)

The equal risk contribution strategy (ERC) is characterized by weights such that each asset
provides the same contribution to the risk of the portfolio. The marginal contribution of the
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asset i to the portfolio risk is:

∂xi σP = ∂σP

∂xi
= (� x)i√

xT� x
.

Hence, σi (x) = xi∂xi σP represents the risk contribution of the i th asset to the portfolio P .
The authors in Maillard et al. (2010) proved that the portfolio risk can be expressed as:

σP =
N∑

i

σi (x)

that is the sum of risk contributions of the assets. The characterizing property of the ERC
strategy is that weights are such that σi (x) = σ j (x) ∀ i, j . The result is a portfolio extremely
diversified in terms of risk.

To obtain the optimal weights we have to solve an optimization problem consisting in
minimizing the sum of all squared deviations under budged and non short-selling constraints.
The mathematical formulation is the following:

⎧
⎪⎨

⎪⎩

min
x

∑N
i=1

∑N
j=1

(
xi (� x)i − x j (� x) j

)2

eT x = 1
xi ≥ 0 i = 1, ...N

, (3)

Maximum diversified portfolio (MDP)

The Maximum Diversification approach aims to construct a portfolio that maximizes the
benefits from diversification. This goal can be achieved by solving a maximization problem

where the objective function is given by the so-called Diversification Ratio DR =
∑N

i=1 xiσi
σP

,
under the usual constraints. The mathematical formulation for the MDP strategy is:

⎧
⎪⎨

⎪⎩

max
x

∑N
i=1 xiσi√
xT �x

eT x = 1
xi ≥ 0 i = 1, ...N

(4)

This approach creates portfolios characterized by minimally correlated assets, providing
lower risk levels and higher returns than market cap-weighted portfolios strategies (see
Choueifaty and Coignard 2008).

2.1 Estimationmethods for covariancematrix

Unlike the investment problems (2), (3) and (4), in which only the estimate of the covariance
matrix between assets in a given time interval is needed, we have to estimate both the covari-
ance matrix and the mean vector in order to solve problem (1). A common way to estimate
them is through the sample approach. This method allows to obtain each component μ̂i and
σ̂i, j by means of classical unbiased estimators. However, it is well known that the sample
estimator of historical returns is likely to generate high sampling error. For this reason several
methods have been introduced in order to improve the estimation ofmoments and comoments
(see, among others, (Jorion 1985, 1986; Ledoit and Michael 2004; Martellini and Ziemann
2009) and Pandolfo et al. 2020). These methods are grounded on the idea of imposing some
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structure on the moments (comoments) with the aim to reduce the number of parameters,
leading in this way to a reduction of the sampling error at the cost of specification error.
It is worth stressing that in this work we mainly focus on the estimation of the covariance
matrix. For this reason, we estimate the mean only through the sample approach, whereas we
pay more attention to the estimate of the covariance matrix, considering also the shrinkage
toward the constant correlation (CC)method (see Elton andGruber 1973; Ledoit andMichael
2004) and wighted LP data depth function (see Pandolfo et al. 2020). The idea of the CC
approach is to estimate the covariance based on the fact that the correlation is assumed
constant for each pair of assets, and it is given by the average of all the sample correlation
coefficients (seeElton andGruber 1973). The covariance between two assets is then computed
as

σCC
i, j = σ̂i σ̂ j

1

N (N − 1)

N∑

i, j=1
i �= j

(
ρ̂i, j

)
, (5)

where ρ̂i, j is the sample correlation between assets i and j .
This approach resizes the problem, as only one correlation coefficient and N standard devi-
ations have to be estimated. The �CC covariance matrix, constructed by using previous
formula, is characterized by a lower estimation risk due to the assumed structure, neverthe-
less it involves some misspecification in the artificial structure imposed by this estimator.
In the attempt to find a trade-off between the sample risk and the model risk, the authors in
Ledoit and Michael (2004) introduce the asymptotically optimal linear combination of the
sample estimator and the structured estimator (in our case, the CC estimator) in the context of
the covariancematrix, with theweight given by the optimal shrinkage intensity κ .2 Therefore,
the shrinkage toward CC covariance matrix is given by:

σ shrink
i, j = κσCC

i, j + (1 − κ)σ̂i, j . (6)

Recently, in Pandolfo et al. (2020) the robust estimation of the mean and variance based
on statistical data depth functions has been used in finance. LetF be the class of distributions
on the Borel sets ofRN (N > 1) and FR be the joint distribution of a random vectorR ∈ R

N

A statistical data depth function is a bounded and non-negative function D(·; · ) : RN ×
F → R which satisfies the following desirable properties:

– Affine Invariance D(Ar+b; FAR+b) = D(r, FR) holds for any vectorR ∈ R
N , for any

nonsingular N × N matrix A and for any vector b, r ∈ R
N . This implies that the depth

of r should be invariant to scale and location.
– Maximality at Center Let r� ∈ R

N be a uniquely defined center (e.g., the point of symme-
try with respect to some notion of symmetry) of FR then D(r�; FR) = sup

r∈RN
D(r; FR);

this means that D attains the maximum at the center.
– Monotonicity Relative to Deepest Point D(r; FR) ≤ D(r� + β(r − r�); FR) for any

β ∈ [0, 1] and r ∈ R
N . This implies that as the r moves away from the center (r�) the

depth at r should decrease monotonically.
– Vanishing at Infinity D(r; FR) → 0 as ||r|| → ∞. The depth of r should approaches 0

as ||r|| approaches infinity.
As in Pandolfo et al. (2020), in the empirical part of this paper we use a statistical data

depth function based on the distance approach, where the non negative distance function
belongs to the L p norm (p > 0).

2 For further information on how is estimated the shrinkage intensity κ see Ledoit and Michael (2004).
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A distance function of r ∈ R
N from R, based on the L p norm, can be written as:

DLp (r, FR) = 1

1 + E ||r − R||p . (7)

We recall that the distance DLp does not possess the affine invariance property. As reported
in Zuo (2004) and Zuo et al. (2004), different distances with respect to the data may not
have the same importance. For this reason in order to obtain location and scatter estimators,
designed to achieve greater robustness, the authors proposed a weighted L p depth function,
given by:

WDLp (r, FR) = 1

1 + E
[
W

(||r − R||p
)] , (8)

where W (·) is a weight function, non-decreasing and continuous on [0, ∞), that down-
weights outlying observations.

Let (r1, . . . , rd)′ be a N -variate simple random sample of size d from R ∼ FR. The
authors in Pandolfo et al. (2020) used the weighted L2 data depth function to obtain robust
estimates of the mean (¯WDL2 ) and covariance matrix (�WDL2 ) of the asset returns, given
respectively by:

¯WDL2 =
∑d

t=1 W1 (D(rt , FR)) rt
∑d

t=1 W1 (D(rt , FR))
(9)

and

�WDL2 =
∑d

t=1 W2 (D(rt , FR))
(
rt − ¯WDL2

) (
rt − ¯WDL2

)′
∑d

t=1 W2 (D(rt , FR))
(10)

where W1 (D(rt , FR)) and W2 (D(rt , FR)) are two weighted functions non decreasing and
continuous on [0, ∞]. Wj (D(·, ·)) , for j = 1, 2, is given in Pandolfo et al. (2020) by:

Wj (h) =
⎧
⎨

⎩

exp

(

−k
(
1−( hc )2 j

)2 j
)

−exp (−k)

1−exp(−k) if h < c
1 if h ≥ c

, (11)

where c is the median of the data depth function and the value k determines how heavily
the weight function penalizes as h get away from c. Following (Pandolfo et al. 2020), in the
empirical part we set p = 2 and k = 3.

The advantages of the robust approaches considered in this paper are that both are non-
parametric approaches and are less sensitive to changes in the asset return distribution
compared to the sample estimate.
We highlight that in the empirical part the depth data function is D(r; F̂R,d), where F̂R,d is
the empirical joint distribution of R estimated from the observed returns (r1, . . . , rd)′.

In the following section we recall the network correlation-based portfolio model and
explain how the three estimators of the variance-covariancematrix (sample, shrinkage toward
CC and WDL2 ) can be used.

123



Annals of Operations Research (2022) 316:1519–1541 1527

3 Optimal portfolio via network theory

The portfolio selection problem and its variants can be formulated in a networks context
and several researchers dealt with the assets allocation problem using network theory tools,
contributing to the related literature (Peralta and Zareei 2016; Clemente et al. 2019; Li et al.
2019; Pozzi et al. 2013). All these articles share the same framework, namely the financial
market is represented as a network, in which nodes are assets and weights on the edges
identify a dependence measure between returns.
We describe in this section the approach proposed by Clemente et al. (2019). The authors
formulate an investment strategy that benefits from the knowledge of the dependency structure
that characterizes the market. Unlike the risk-based strategies, based on an objective function
that accounts for pairwise correlations among assets, the objective function considers here
the interconnectedness of the whole system.

In order to make the paper self-consistent, we briefly remind some preliminary definitions
and notations about networks. A network G = (V , E) consists in a set V of nodes and a
set E of edges between nodes, where the edge (i, j) connects a pair of nodes i and j . If
( j, i) ∈ E whenever (i, j) ∈ E , the network is undirected. A network is complete if every
pair of vertices is connected by an edge. We denote with A the real N -square matrix whose
elements are ai j = 1 whenever (i, j) ∈ E and 0 otherwise (the adjacencymatrix). A network
is weighted if a weight wi j ∈ R is associated to each edge (i, j). In this case, both adjacency
relationships between vertices ofG and weights on the edges are described by a non negative,
real N -squarematrixW (the weighted adjacencymatrix).We denote with ki and si the degree
and strength of the node i (i = 1, ..., N ), respectively.

Relationships between assets are quantified through three different levels of dependence.
For the sake of brevity, we report here only the approach referring to the classical linear
correlation network, which is the most used dependence measure in the literature. Since all
assets are correlated in themarket, the correlation structure is represented through aweighted,
complete and undirected network G, where weights on the edges are given by the Pearson
correlation coefficient between them, that is wi j = ρ

(
Ri , R j

) ∀i �= j . In order to assure
nonnegativeweights, a distance can be associatedwith the correlation coefficient (seeGiudici
and Spelta 2016; Mantegna 1999; Onnela et al. 2003a). In our case, this transformation does
not affect the results in terms of optimal portfolio.

The extension of the pairwise correlations, included in the quadratic form of the problem
(2), to a general intercorrelation among all stocks at the same time is obtained optimizing
a function that includes the clustering coefficient. The classic clustering coefficient and its
variants defined in the literature (see Watts and Strogatz 1998; Cerqueti et al. 2018; Fagiolo
2007; Clemente and Grassi 2018) are not computable for complete networks, then we have
to adapt its formulation to this framework.

Following a similar procedure to that proposed byMcAssey and Bijma (2015), a threshold
s ∈ [−1, 1] is introduced on the matrix W in order to define the new matrix As , whose
elements asi j are

asi j =
{
1 if wi j ≥ s

0 otherwise
. (12)

As is the adjacency matrix describing the existing links in the network with weights wi j at,
or above the threshold s. Through this matrix we are selecting the strongest edges, namely
those greater than a given threshold, bringing out the mean cluster prevalence of the network.
On this new network we compute the clustering coefficient proposed in Watts and Strogatz
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(1998) and then we repeat the process, varying the threshold s. The clustering coefficient Ci

for a node i corresponding to the graph is the average of Ci (As) overall s ∈ [−1, 1]:

Ci =
∫ 1

−1
Ci (As)ds (13)

Since 0 ≤ Ci ≤ 1, Ci is well-defined. Now, we define the N -square matrix C, of entries

ci j =
{
CiC j if i �= j

1 otherwise
. (14)

This matrix accounts for the level of interconnection for all pairs with the whole system,
therefore, it can be used to construct the matrix

H = �TC� (15)

where � = diag(si ) is a diagonal matrix with diagonal entries

si = σ̂i
√

∑N
i=1 σ̂ 2

i

.

Notice that the element si considers the contribute of the standard deviation of the return i
to the total standard deviation, computed in case of independence. In Clemente et al. (2019),
the authors solve the optimization problem defined in (2) replacing the covariance matrix �

with H.
The main difference between the classical and the network portfolio selection problem is

due to the use of the interconnectedness matrix in order to consider howmuch each couple of
assets is related to the system. In particular, being C dependent on a network-based measure
of systemic risk (i.e. the clustering coefficient), we are implicitly including a measure of the
state of stress of the financial system in the time period.

4 Dataset description and empirical analysis

4.1 Dataset description

The goal of this section is to examine the out-of-sample properties of the Smart Beta and
mean-variance network-based portfolios in which the covariance matrix is estimated using
the network theory though the methodology described in Sect. 3. In particular, we make a
comparison between network-based portfolios and standard portfolio strategies, where the
three previously described estimators of the covariance matrix are considered: the sample,
the shrinkage and the weighted L2 depth function. We summarize in Table 1 the alternative
asset allocation models applied in this analysis.
As a robustness check we consider three large-dimensional portfolios with different char-
acteristics. The investment universe of the first portfolio is composed by 266 among largest
banks and insurance companies in the world.3 In particular we have 120 insurers and 144
banks. The dataset of this portfolio contains daily returns in the time-period ranging from
January 2001 to December 2017. The investment universe of the second portfolio consists
of the components of the S&P 100 index. A third portfolio consists of the components of

3 The greatest firms by market capitalization in the banking and insurance sector are considered.
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Table 1 List of asset allocation models considered in the empirical study

Number Model Label

1 Standard sample based mean-variance (MV) S-sample MV

2 Standard shrinkage toward constant correlation based mean-variance (MV) S-shrinkage MV

3 Standard WDL2 based mean-variance (MV) S-WDL2 MV

4 Network sample based mean-variance (MV) NB-sample MV

5 Network shrinkage toward constant correlation based mean-variance (MV) NB-shrinkage MV

6 Network WDL2 based mean-variance (MV) NB-WDL2 MV

7 Standard sample based Maximum Diversified Portfolio (MDP) S-sample MDP

8 Standard shrinkage toward constant correlation based MDP S-shrinkage MDP

9 Standard WDL2 based Maximum Diversified Portfolio (MDP) S-WDL2 MDP

10 Network sample based MDP NB-sample MDP

11 Network shrinkage toward constant correlation based MDP NB-shrinkage MDP

12 Network WDL2 based Maximum Diversified Portfolio (MDP) NB-WDL2 MDP

13 Standard sample based Equally Risk Contribution (ERC) S-sample ERC

14 Standard shrinkage toward constant correlation based ERC S-shrinkage ERC

15 Standard WDL2 based Equally Risk Contribution (ERC) S-WDL2 ERC

16 Network sample based ERC NB-sample ERC

17 Network shrinkage toward constant correlation based ERC NB-shrinkage ERC

18 Network WDL2 based Equally Risk Contribution (ERC) NB-WDL2 ERC

19 Standard sample based Global Minimum Variance (GMV) S-sample GMV

20 Standard shrinkage toward constant correlation based GMV S-shrinkage GMV

21 Standard WDL2 based Global Minimum Variance (GMV) S-WDL2 GMV

22 Network sample based GMV NB-sample GMV

23 Network shrinkage toward constant correlation based GMV NB-shrinkage GMV

24 Network WDL2 based Global Minimum Variance (GMV) NB-WDL2 GMV

25 Equally Weighted EW

The last column of the table indicates the label used to refer to each strategy in the empirical section, where
the performance of the various approaches is compared

Nikkei-225 Stock Average, that considers the 225 stocks selected from domestic common
stocks in the first section of the Tokyo Stock Exchange. Last two portfolios contain daily
returns in the time-period ranging from January 2001 to August 2021.4

All the portfolios discussed in this paper are analysed and compared in an out-of-sample
perspective. In particular the first four moments, the Sharpe Ratio (SR), the Omega Ratio
(OR) the Information Ratio (IR) and the out-of-sample performance are used to compare
the portfolios. All these aspects are investigated through a rolling window methodology,
which is characterized by an in-sample period of length d and an out-of-sample period of
length k.5 This means that the first in-sample window of width d contains the observations
of all the components in the portfolio from t = 1 to t = d . The dataset of the first in-sample
window is used to estimate the optimal weights, using the different portfolio selectionmodels
considered in this paper and listed in Table 1. These optimal weights are then invested in the

4 All the data have been downloaded from Bloomberg (2012).
5 In the literature different lengths for the in-sample and out-of-sample period has been used, see among others
Cesarone et al. (2013) and Consigli et al. (2018).
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out-of-sample period, from t = d + 1 to t = d + k, where the out-of-sample performance is
computed. The process is repeated rolling the window k steps forward. Hence, weights are
updated by solving the optimal allocation problem in the new subsample and the performance
is estimated once again using data from t = d + k + 1 to d + 2k. Repeating these steps until
the end of the dataset is reached, we buy-and-hold the portfolios and we record out-of-sample
portfolio returns in each rebalancing period.

To ensure the robustness of our results, we analyse three alternative estimation windows;
namely, 6 months in-sample and 1 month out-of-sample, 1 year in-sample and 1 month
out-of-sample and two years in-sample and 1 month out-of-sample.

4.2 Performancemeasures

In order to assess the magnitude of potential gains/losses that can be attained by an investor
adopting a network-based portfolio selection, we implement an out-of-sample analysis. For
this reason several performancemeasures are calculated. First, for each optimization strategy,
we compute the first four moments of the out-of-sample portfolio returns. Further, for each
strategy j , we determine the out-of-sample Sharpe Ratio of the optimal portfolio6:

SR�
j = μ�

p j
− μ f

σ�
p j

,

where μ�
p j

and σ�
p j

are, respectively, the average return and the standard deviation of the

optimal portfolio according to the strategy j and μ f indicates the average risk-free rate.7

This ratio measures the average return of a portfolio in excess of the risk-free rate, also called
the risk premium, as a fraction of the portfolio total risk, measured by its standard deviation.
As alternatives performance measures we also calculate the Information ratio (IR) and the
Omega ratio (OR). The Information ratio of the optimal portfolio is defined as:

I R�
j = μ�

p j
− μ�

pre f

σ(r�
p, j − r�

pre f )
.

where μ�
pre f is the average return of the reference portfolio and r�

p, j , r
�
pre f represent the

out-of-sample time series of optimal portfolio returns corresponding to a strategy j and the
reference strategy, respectively.

Once identified the reference portfolio, managers seek to maximize I R j , i.e. to reconcile
a high residual return and a low tracking error. This ratio allows to check if the risk taken by
the manager in deviating from the reference portfolio is sufficiently rewarded.
The Omega Ratio has been introduced by Keating and Shadwick in Keating and Shadwick
(2002) and it is defined as:

OR�
j =

∫ +∞
ε

(1 − Fj (x)) dx
∫ ε

−∞ Fj (x)dx
=

E

(
r�
p j

− ε
)+

E

(
ε − r�

p j

)+ ,

6 In general, the superscript � indicates that the statistic is calculated using the out-of-sample time series of
returns of the optimal portfolio.
7 As a proxy for the risk-free rate the literature suggests the use of 1month or 3months maturity U.S. Treasury
Bills (see e.g Deguest et al. 2013) or, alternatively, an exogenously given value (for instance, μ f = 5% is
considered in Brennan 1998). In the empirical part of this paper, for illustration purposes, we set μ f = 0%.
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where Fj (x) is the cumulative distribution function of the portfolio returns for a strategy j and
ε is a specified threshold.8 Returns below (respectively above) the threshold are considered
as losses (respectively gains). In general, a value of the OR j greater than 1 indicates that
strategy j provides more expected gains than expected losses. The portfolio with the highest
ratio will be preferred by the investor. The OR j implicitly embodies all the moments of the
return distribution without any a-priori assumption.

4.3 Empirical results

As previously explained, for robustness purposes we consider three large-dimensional
datasets. The first is the Banks and Insurers dataset composed by 266 among largest banks
and insurance companies in the world. The second is composed by the assets of the S&P
100 index and the third regards the constituents of the Nikkei-225 Stock Average (NKY).
This empirical analysis is based on a buy and hold strategy. For the sake of completeness we
consider three alternative strategies, with an in-sample period of two years, one year and six
months, respectively, and an out-of-sample period of one month. For the sake of brevity, we
report in the following the results obtained for the NKY dataset with a rolling window of one
year in-sample and one month out-of-sample. However, all the detailed statistics of the three
analysed portfolios, for all strategies and estimation methods used for the covariance matrix
are reported in the Supplementary Material.

The proposed network approaches allow to visualize the portfolio composition and the
dependence structure between assets. To have a preliminary idea of the results, we depict
in Fig. 1a the structure of the network of the NKY dataset based on the correlation matrix,
obtained via sample estimation, at different time periods. Each node represents an asset and
the weighted edge (i, j) measures the correlation between assets i and j .

As shown in Fig. 1a (top, right) that covers the window January 2008-December 2008, it
is noticeable a higher dependence and a higher volatility of the returns in periods of financial
crisis. A prominent volatility is partially observed also in 2020 (see Fig. 1a (bottom, right))
due to the effects of Covid-19 announcements on the financial market.

As described in Sect. 3, we solve a network-based portfolio model where the clustering
coefficient is used in the optimal problem to catch the structure of interconnections. Indeed,
the intensity of the relations between assets is related to the pairwise correlations, that affect
the value of the clustering coefficient and, therefore, the optimal solution.
We report in Fig. 1b the optimal solutions of the sample network-based GMV problem, i.e.
NB-sample GMV, for the same windows w considered in Fig. 1a. In this network represen-
tation, the size of bullets is instead proportional to the allocated weight. We observe that the
initial endowment is invested in a limited number of assets. As expected, the approach tends
to allocate weights on assets characterized by a low volatility and with a preference on assets
that are negatively correlated to the rest of the network.

As mentioned before, we will focus in this section on the NKY dataset, but similar results
have been obtained for the other datasets. To provide an example, we depict in Fig. 2 the
sample correlation network obtained in the window that covers the period December 2015-
November 2017 for the Bank and Insurers dataset. In this case, the initial endowment is
invested in only 26 firms, specifically 10 banks and 16 insurance companies. However,
approximatively 94% of the total amount is invested in insurers that are characterized on
average in this time period by both a lower volatility and a lower clustering coefficient.

8 We point out that OR ratio is very sensitive to values of ε which can be different from investor to investor.
In the empirical analysis ε is set equal to 0.
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(a)

(b)

Fig. 1 a PearsonCorrelationNetwork computed by using returns ofNKYdataset (based on sample estimation)
referred to different time periods. The rolling window is one year in-sample. The date in the title is the initial
period of the rolling window. Bullets size is proportional to the standard deviation of each firm. Edges opacity
is proportional to edges weights (i.e. intensity of correlations). b The optimal network-based sample GMV
portfolio referred to the same periods as in a, where the covariance matrix is estimated using the sample
approach (NB-sample GMV). In this figure, the bullets size is proportional to the allocated weight. Edges
opacity is proportional to edges weights

It is worth noting the case of two insurers, Nationwide Mutual Insurance Company and One
America, which are characterized by the lowest standard deviations and a high proportion of
negative pairwise correlations (for instance, approximatively 90% of correlations between
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Fig. 2 On the left, Pearson Correlation Network computed by using returns of Banks and Insurers dataset
(based on sample estimation) referred to the last window, from the beginning of December 2015 to the end
of November 2017. Bullets size is proportional to the standard deviation of each firm. Edges opacity is
proportional to edges weights (i.e. intensity of correlations). On the right, the optimal network-based sample
GMV portfolio (NB-sample GMV) referred to the same period. In this figure, the bullets size is proportional
to the allocated weight. Edges opacity is proportional to edges weights

Nationwide Mutual and other firms is lower than zero). As expected, the optimal portfolio
allocates a high proportion of the initial endowment in these two firms (54% and 17%
respectively).

In the following we consider the out-of-sample performances of all the models under
investigation for the NKY dataset. We analyse the Smart Beta and the MV optimal portfo-
lios obtained using standard and network-based approaches for sample, shrinkage and the
weighted L2 depth estimators.
In Fig. 3 the out-of-sample performances of the Smart Beta models under analysis are
reported.

We observe that in all cases the EW strategy has the worst performance. Concerning the
other strategies, focusing on MDP portfolios (see Fig. 3a) we have a remarkable prevalence
of network-based approaches. The improved estimators lead to best performing models over
time, with a prevalence of the network-based model (NB-WDL2 ). However, it should be
pointed out that in all the dataset analysed strategies based on shrinkage andWDL2 estimators
tend to better perform during and immediately after the sovereign debt crisis.
Among the ERC portfolios (see Fig. 3b), the six alternative strategies show a similar pattern,
with a slight preponderance of the NB-shrinkage and NB-WDL2 approaches. Even for the
GMV portfolio (see Fig. 3c), the six alternative strategies show a similar pattern, with a slight
preponderance of the NB-shrinkage approach.
Figure 3d collects the best out-of-sample performances for each risk based analysed portfolio
(i.e. MDP, ERC and GMV). What emerges is that the network-based approaches outperform
classical strategies and the highest out-of-sample performance at the end of the period is
assured by the NB-WDL2 MDP portfolio.

Concluding, from the analysis of the performances of Smart Based portfolios with the
alternative approaches, the network-basedmodels almost always lead to higher out-of-sample
performance compared to the corresponding classical ones. This result is confirmed also by
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(a) (b)

(d)(c)

Fig. 3 Out-of-sample performances for NKY dataset with a rolling window of 1 year in-sample and 1 month
out-sample. In a–c, we display the out-of-sample performances of EW, S-sample, S-Shrinkage, S-WDL2 ,
NB-sample, NB-Shrinkage and NB-WDL2 of MDP, ERC and GMV models, respectively. In d The best
out-of-sample performances for each Smart Beta portfolio (MDP, ERC and GMV) are reported

the analysis carried on the other datasets, for all the estimators of the covariance matrix and
for all the rolling windows strategies considered.
However, the simple inspection of the Fig. 3 is not enough in identifying the best portfolio
selection strategy. To this end, in order to complete the analysis we report in Table 2 the four
moments of the out-of-sample returns’ distributions and values of alternative performance
measures (namely, SR, I R(EW )9 and OR). As well-known, these performance measures
consider different characteristics of the portfolios and they could lead to different rankings
between themodels.However, by the inspectionofTable 2,we canprovide additional insights.

First, we observe that for all the strategies, the network-based approaches lead to a lower
out-of-sample risk,measuredby the standarddeviation, regardless of the estimationmethodof
the covariancematrix.Moreover, for each strategy the network-based approach almost always
leads to a less relevant negative tail, due to a skewness closer to zero and a lower kurtosis
with respect to the corresponding standard approach. These findings are further confirmed
by SR and OR values. In particular, it results that the best portfolio is obtained by one of the
Network Based approaches. In the majority of the results obtained there is a prevalence of
the NB−WDL2 and NB− shrinkage. Hence, the results reported in Table 2 make us more
confident in believing that using the network theory in building the Smart Beta strategies
can be a good alternative to the standard approach not only for the easier visualization of the
results (as reported in Figs. 1 and 3) but also for the better performances that they may reach
in an out-of-sample perspective. The conclusions drawn for NKY portfolio with a monthly

9 The I R(EW ) indicates the Information ratio where the reference portfolio is the Equally Weighted one.
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Table 2 Out-of-sample statistics for the risk-based approaches in case of NKY portfolio with a buy and hold
strategy of 12 months in-sample and 1 month out-of-sample

S-sample S-shrinkage S-WDL2 NB-sample NB-shrinkage NB-WDL2 EW

ERC

μ� 0.00012 0.00013 0.00013 0.00014 0.00015 0.00014 0.00014

σ� 0.013 0.013 0.013 0.012 0.012 0.012 0.014

skew� −0.513 −0.497 −0.520 −0.488 −0.488 −0.481 −0.436

kurt� 12.289 12.068 12.433 11.967 11.967 11.975 10.949

SR� 0.009 0.010 0.010 0.010 0.012 0.010 0.010

I R�(EW ) −0.003 −0.007 −0.004 0.001 0.001 0.000

OR� 1.028 1.030 1.029 1.031 1.032 1.031 1.028

MDP

μ� 0.00022 0.00022 0.00022 0.00032 0.00033 0.00037 0.00014

σ� 0.012 0.011 0.012 0.011 0.011 0.011 0.014

skew� −0.787 −0.787 −0.875 −0.655 −0.552 −0.591 −0.436

kurt� 12.612 12.918 13.772 11.588 11.355 11.334 10.949

SR� 0.018 0.019 0.018 0.026 0.027 0.030 0.010

I R�(EW ) 0.011 0.014 0.016 0.020 0.023 0.025

OR� 1.055 1.057 1.056 1.080 1.081 1.090 1.028

GMV

μ� 0.00012 0.00011 0.00011 0.00013 0.00013 0.00012 0.00014

σ� 0.009 0.009 0.010 0.009 0.008 0.008 0.014

skew� −0.564 −0.477 −0.576 −0.404 −0.404 −0.325 −0.436

kurt� 18.439 18.579 18.769 15.801 15.766 16.428 10.949

SR� 0.013 0.012 0.012 0.016 0.016 0.015 0.010

I R�(EW ) −0.001 −0.005 −0.003 0.000 0.000 −0.002

OR� 1.041 1.030 1.036 1.042 1.043 1.041 1.028

For each strategy (ERC, MDP and GMV), sample, shrinkage and WDL2 estimators are reported for classical
and network-based models. The last column also considers results for EW. The best results are reported in
bold for each measure. All the statistics are reported on daily bases

stepped one-year rolling window are still valid, in general, also for the other rolling windows
and portfolios under analysis.10

Let us now analyse the results obtained in case of the Mean-Variance portfolio where
different levels of trade-off between risk and return are considered. In particular we report
the results for λ equal to 0.2, 0.4, 0.6, 0.8, respectively. A low level of λ indicates that the
investor gives higher importance to the portfolio return. In particular, λ = 0 indicates that
the decision maker is completely ignoring the risk of the portfolio. In this case, the optimal
portfolio is usually concentrated only in the asset with the higher return.11 On the contrary,
high values of λ indicate a higher relevance to the risk with respect to the return. The extreme
case of λ = 1 corresponds to the GMVportfolio, meaning that the decisionmaker completely
ignores the portfolio return.

10 Detailed results are reported in the Supplementary Material.
11 The optimal portfolio when λ = 0 may not be unique, since more than one asset with the highest return
can exist.
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(a) (b)

(d)(c)

Fig. 4 Out-of-sample performances for NKY portfolio with a rolling window of 12 months in-sample and
1 month out-sample. In a–d we report the out-of-sample performances for S − sample, S − Shrinkage,
S − WDL2 , N B − sample, N B − Shrinkage and N B − WDL2 strategies according to alternative values
of the trade-off parameter (namely, λ = 0.2, λ = 0.4, λ = 0.6 and λ = 0.8 respectively)

To this end, Fig. 4 reports the out-of-sample performances of the NKY dataset, with a
buy and hold strategy of 12 months in-sample and one month out-of-sample, in case of
the MV model. As previously described in Sect. 2.1, for this strategy μ and � have to be
estimated. We estimate μ using the sample approach while � is estimated using the sample,
the shrinkage toward constant correlation and the weighted-depth L2 methods. Notice that
the matrix � is also used in the network-based approaches to construct the network and to
obtain the interconnectedness matrix C. Figure 4a displays the out-of-sample performances
obtained setting λ = 0.2, which means that the investor tends to prefer high potential returns
with respect to low levels of uncertainty. Although it is not possible to define a univocal
ranking between methods in terms of performance, we observe higher returns at the end of
the period with the network-based approaches. Indeed, it is noticeable a fast decrease in the
out-of-sample performance of the Standard approaches after the crisis of 2008 while the
performance of the Network Based approaches is much more stable leading at the end of the
period at a prevalence of NB models.

Post-crisis effect is also evident for the other values of λ (see Fig. 4b–d).
To have a complete view of the effect of the network based strategies on the MV model,

we report in Table 3 the first four moments and alternative performance measures.
The results in Table 3 clearly shows that, for all considered values of λ, the MV network-
based portfolio has a lower volatility than the corresponding standard approach. Moreover,
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in the majority of the cases the network-based portfolios lead also to higher out-of-sample
performances in terms of Sharpe ratio and Omega ratio. These results are in line with those
obtained for the risk-based approaches, presented in Fig. 3 and Table 2, confirming that
applying network tools to portfolio selection models may enhance the portfolio selection
process.

The use of network tools to manage the optimal portfolio selection proved to be effective,
especially in the case of risk-based strategies. Looking at the results of the MV portfolios, in
the Supplementary Material we can observe that the network-based portfolios lead to better
out-of-sample results for some levels of the trade-off parameters. However, there is not an
absolute dominance of these approaches, since in some cases the standard methods behave
better for specific values of the trade-off parameter. This behaviour depends on the trade-off
parameter value and to the estimator used for the portfolio mean.

5 Conclusions

In this work we applied network tools to the most used portfolio models characterized by
an objective function depending on the covariance matrix of assets. Following Clemente
et al. (2019), we took advantage of the correlations network to capture the interconnected-
ness between assets, that explicitly enters through the clustering coefficient in the objective
function. We extended the approach of Clemente et al. (2019), tested to the GMV model,
proposing the application of network theory also for the most used Smart Beta models, as
well as the MV model. We estimated the network-correlation structure through the sample
(as in Clemente et al. 2019), the shrinkage toward the constant correlation and the weighted
depth - L2 approaches.

To test the robustness of our methodology, we performed numerical analyses, based on
three large-dimensional portfolios. We implemented both the standard and the network-
based models, using sample, shrinkage WDL2 estimators for the covariance matrix, and
we compared the out-of-sample performances based on a rolling sample optimization. The
results obtained show in most cases the effectiveness of network-based portfolios compared
to the standard approaches and to the equally weighted portfolios. Network-based strategies
show higher out-of-sample performances and lower out-of-sample volatility, reducing the
risk. Results appeared significant especially for Smart Beta strategies, which are based only
on the risk measure, that refers to the covariance matrix or the interconnectedness matrix.
Results in case of mean-variance portfolio do not provide a univocal ranking of the models.
However, the network-based approaches lead to better results in the most cases, although
there is a good percentage of cases in which the standard approaches behave better. This
behaviour depends obviously on the trade-off parameter value and to the estimator used for
the portfolio mean. We believe that better out-of-sample results can be obtained in case the
network theory is used for the estimation of not only of the risk measure but also of the
performance measure, which is left for future research.
In conclusion, we hope that this empirical analysis will help to shed some light on how
network theory can be implemented in portfolio selection problems and encourage portfolio
managers in considering and testing the network-based portfolio selection models as an
alternative to the standard approaches.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10479-022-04675-7.
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