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Abstract

A new sampling design is derived for sampling a rare and clustered population under
both cost and logistic constraints. It is motivated based on the example of national TB
prevalence surveys, sponsored by WHO for high TB-burden countries and usually located in
the poorest parts of the world. A Poisson-type sampling design named Poisson Sequential
Adaptive (PoSA) is proposed with a twofold purpose: (i) to increase the detection rate
of positive cases; and (ii) to reduce survey costs by accounting for logistic constraints at
the design level of the survey. PoSA is derived by integrating both an adaptive component
able to enhace detectability and a sequential component for dealing with costs and logistic
constraints. An unbiased HT-type estimator for the population prevalence (mean) is derived
by adjusting for both the over-selection bias and for the conditional structure induced by
the sequential selection. Unbiased variance estimation in a closed form is also provided.
Simulation results are presented and show a significant pontential of PoSA in improving
the sampling methodology currently suggested by WHO guidelines.

Key Words: low prevalence surveys, adaptive design, sequential sampling, poisson sam-
pling design

1. Introduction and motivation

Sampling a rare and clustered trait over a finite population may be challenging.
In fact when using traditional sampling designs large sample sizes are needed for
reasonably accurate estimation and still many cases may be missed.
This paper is inspired by the challenges the World Health Organisation (WHO)
faces when carrying out tubercoulosis (TB) prevalence surveys. TB prevalence sur-
veys are performed in those countries considered to bear a high burden of TB [3].
Although considered high TB-burden countries, the number of TB positives ranges
around 150-300 per 100000 individuals. As TB is an infectious disease, the cases are
expected to be clustered, configuring a sampling situation where the population of
interest is rare and clustered. Moreover, in this setting, the samplers aim not only
at correctly estimating the overall prevalence but also at finding ideally the largest
number of cases (i.e. oversample cases) as every found case could be a treated one.
The sampling strategy currently suggested in the latest WHO guidelines [13] is quite
traditional: primary sampling units are geographical areas of (approximately) equal
size in terms of number of eligible population. The number of areas to be sampled
is chosen according to a fixed sample size computed as a function of (i) a prior
guess of the true population prevalence, (ii) a chosen level of precision of the final
estimate (usually around 25% relative to the true value), and (iii) an estimate of the
variability existing between the areas’ prevalences, measured in terms of coefficient
of variation. A moving lab reaches the selected areas and all eligible individuals
(i.e. people aged ≥ 15) are invited to undertake the medical examination. The
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classic Horvitz-Thompson approach is then employed to estimate the population
prevalence.
This is essentially an Unequal Probability Cluster Sampling (UPCS) considered
sufficiently easy to implement and understand to fit general guidelines. However
limitations can be pointed out. The rarity of TB positives and their uneven dis-
tribution over the inspected areas lead to the need for a very large sample size to
obtain an accurate estimate of the true prevalence (the final sample size usually
ranges between 30000 and 100000 individuals). Prior information on between areas
variability is accounted for in the sample size computation usually leading to an
increase as the between-areas variation is higher. We believe that the between ar-
eas variability might be exploited for concentrating surveying efforts in areas where
spotting a case is more likely. Moreover, when the countries involved in the survey
are developing countries, there may be logistic constraints due to reduced accessi-
bility of some areas and the large survey costs may not allow for much flexibility
in the final sample size. Therefore there seems to be room for improvement of the
currently suggested sampling methodology especially with regards to (i) the num-
ber of detected cases and (ii) the managing of logistic constraints and costs. The
purpose of this paper is to develop an improved sampling strategy with respect to
both points (i) and (ii) above.

2. Steps towards an improved sampling design

A focus on case-detection may be achieved by using adaptive designs. They were
originally introduced by Thompson ([10]) and are a popular tool for dealing with
the problem of estimating the prevalence of a rare and clustered trait (see [11]
for a review). The distinctive characteristic of adaptive designs is to make use of
information collected while sampling and adaptively adjust the procedure, on the
bases of a pre-defined distance measure, for oversampling in the proximity of de-
tected cases. If the investigated trait is clustered, the number of detected cases is
expected to be larger than under a traditional non-adaptive sampling design. Thus
an Adaptive Cluster Sampling design (ACS in the following) seems a natural choice
for enhancing detectability in the context of national TB prevalence surveys. How-
ever a disadvantage of this method is that the final sample size would be in fact a
random number, thus survey costs may be hard to control and logistic constraints
not considered.
On the other hand, a focus on managing costs and logistic constraints while dealing
with spatial correlation would suggest to adopt a sequential sampling design based
on a pre-ordered population ([2] and [6]). For instance in planning a TB survey in a
Sub-Saharian African country, logistic constraints and costs control would suggest
ordering areas along a specific route and then conditioning the sample selection
to be sequential along such prescribed route. As opposed to adaptive designs the
sequential approach offers some way to control the final sample size ([2]) and can
naturally accomodate for a predefined route, but it does not allow, in its current
formulation, for over-sampling positive cases. Adaptive designs and the sequen-
tial approach seem to individually overcome different limitations as discussed above
when surveying a rare and clustered population, which suggests the perspective of
an integrated strategy.
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3. The proposed methodology: Poisson Sequential Adaptive design

We still refer to our motivational example of national TB prevalence survey. We
start from the design currently suggested in the WHO guidelines and we propose a
sampling design comprising both a sequential component and an adaptive compo-
nent. As a first proposal and for the sake of its simplicity we consider a Poisson-type
design [9] which we will name Poisson Sequential Adaptive Sampling Design, PoSA
for short. Notice that a known feature of the Poisson design is the random sample
size which may be a drawback with respect to survey cost planning. A proposal for
controlling the final sample size in a PoSA design will be illustrated in section 4.

In the most recent WHO guidelines for TB prevalence surveys it is suggested to
first select a sample of areas from a grid of M covering the national territory, and
successively to collect data from all eligible individuals included in each selected
area. The M areas have to be formed under the constraint of equal/very close
size in terms of population eligible for the surveys. In our proposal such equal
size constraint is relaxed in favour of the choice of a sequence of the M areas
(anyhow formed), for instance as already mentioned, formed by following a specific
route across the country pre-defined according to costs and logistic constraints.
The sequential component of the proposed sampling design consists in following
the chosen sequence in selecting the areas to be included in the final sample. At
the j-th step of the sequential selection, area j is/is not selected in the sample
according to a chosen adaptive rule aiming at enhancing the case-detection rate. For
instance in a TB survey suppose that, at a given step of the sequential selection,
a significant number of TB cases is collected, say greater/much greater than the
expected national prevalence. This is assumed as an indication that further TB cases
should be present in the neighbourhood, i.e. a TB cluster has been detected. As
a consequence data collection would proceed by certainly selecting the subsequent
area in the sample. More formally, let ykj be the survey value of the k-th individual
included into area j, e.g. ykj = 1 if k is a TB-positive case and 0 otherwise. Thus the
prevalence of area j is ȳj =

∑
k∈j ykj/Nj where Nj denotes the area (population)

size. Finally let c, (0 < c < 1) be a threshold chosen such that the following
(adaptive) condition qualifies j as an area with a significant number of TB cases

ȳj =
1

Nj

Nj∑
k=1

ykj ≥ c (1)

A set of inclusion probabilities πj is given for the sequence of all areas j = 1, . . . ,M ,
for instance proportional to their (possibly unequal) size Nj . At the j-th step of
the sequential selection, area j is certainly selected (i.e. is selected with probability
1) if the adaptive condition (1) holds for the previous area j − 1, otherwise it
is selected with probability πj . The proposed PoSA sampling procedure can be
synthetized in a ready-to-implement set of instructions. In Algorithm 1 the usual
sample membership indicator of area j is denoted by Sj , i.e. the random variable
taking value 1 if area j is included in the sample and 0 otherwise. At each step of
the sequential selection, Sj is updated adaptively by means of a further indicator
yj taking value 1 if the adaptive condition (1) holds in area j, and 0 otherwise.
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Algorithm 1 PoSA Algorithm

procedure
Input: Ordered sequence of M areas with initial inclusion probabilities πj .
Output: A sample of random size.

Visit unit j = 1 and select with probability π1.
for j in 2 : M

1. point unit j & select with probability πj if yj−1Sj−1 = 0

2. point unit j & select with probability 1 if yj−1Sj−1 = 1

3. if Sj = 1, collect yj

Return: vector of sample membership indicators of size M
end procedure

The PoSA selection procedure is expected to lead to a sample of over-represented
cases. As a matter of fact this is a purpose of the sampling design at the selection
stage of the survey which must be corrected at the estimation stage in order to
produce an unbiased estimate of the parameter of interest, e.g. the national TB

prevalence N−1
∑M

j=1

∑Nj

k=1 ykj , where N =
∑M

j=1Nj is the population size.
We now illustrate how an unbiased Horvitz-Thompson type (HT) estimator can be
derived under the PoSA sampling design. The main point is that the sequential
feature of the design induces a conditional structure over each pair of subsequent
sample membership indicator Sj−1 and Sj which has to be accounted for according
to the adaptive feature formallly represented by the indicator yj . Hence an unbiased
HT estimator for the population prevalence (mean) under PoSA sampling design
has the following form:

ŶPoSA =
1

N

M∑
j=1

Nj∑
k=1

ykj
Sj |Sj−1

E(Sj |Sj−1)
=

1

N

M∑
j=1

Nj ȳj
Sj |Sj−1

E(Sj |Sj−1)
(2)

The conditional sample membership indicator for area j has the following form: for
j = 1, S1 is a Bernoulli random variable with parameter π1; and for j = 2, . . . ,M

Sj |Sj−1 = Bernoulli(πj)(1− Sj−1yj−1) + Sj−1yj−1 (3)

with expectation given by the following recoursive formula

E(S1) = E(S1|S0) = π1; and for j = 2, . . . ,M

E(Sj |Sj−1) = πj − πjE(Sj−1|Sj−2)yj−1 + E(Sj−1|Sj−2)yj−1 (4)

Furthermore, it is easily proved that for every pair (j, i) such that j = 2, . . . ,M and i <
j we have:

Cov[(Sj |Sj−1), (Si|Si−1)] =


E(S1) y1 [1− E(S2|S1)] if j = 2

E(Si|Si−1)yj−1[1− E(Sj |Sj−1)] if j > 2, i = j − 1

0 if j > 2, i < j − 1

(5)
which allows for deriving the exact variance of estimator ŶPoSA as given by
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V (ŶPoSA) =
1

N2

 M∑
j=1

(Nj ȳj)
2 1− E(Sj |Sj−1)

E(Sj |Sj−1)

+2

M∑
j=2

∑
i<j

Nj ȳj Niȳi Cov[(Sj |Sj−1), (Si|Si−1)]

 (6)

Finally, let s be the sample of areas selected under the PoSA design; an unbiased
variance estimator readly follows from equations 5 and 6 as given by:

v(ŶPoSA) =
1

N2

∑
j∈s

(Nj ȳj)
2 1− E(Sj |Sj−1)

E(Sj |Sj−1)2

+2
∑
j∈s

∑
i<j∈s

Nj ȳj Niȳi
Cov[(Sj |Sj−1), (Si|Si−1)]

E[(Sj |Sj−1)(Si|Si−1)]

 (7)

Being Poisson sampling-based, PoSA sampling design leads to a random number of
selected areas and hence to an unplanned final sample size. In the following section
a proposal will be discussed for controlling the final sample size whithout the loss
of the simplicity inherent to an (unconditional) Poisson design.

4. Controlling the final sample size

An appreciable feature of the customary (unconditional) Poisson sampling design
is its simplicity due to independence between unit selections [9] . In the proposed
PoSA design such a feature leads to exactly unbiased formulae for point and variance
estimation in a simple closed form despite the conditional structure between subse-
quent sample membership indicators. The need for planning the final sample size at
the design level of the survey and formal easiness of PoSA estimation as illustrated
in the previous section, are actually conflicting objectives. A reasonable compromise
for sample size controlling may be that of fixing an upper bound n, (integer, > 1)
that must not be exceeded while performing a PoSA selection. In other words, once
the maximum sample size n is attained, the sampling procedure simply stops. Al-
gorithm 2 illustrates how to implement a Poisson Sequential Adaptive design with
maximum sample size n (PoSAn). The procedure is analogous to that listed in
Algorithm 1 with the additional definition of an indicator Λj , j = 1, . . . ,M . At
each step j, Λj takes value 1 if the pre-stated maximum sample size n has not been
attained yet, so that sampling selection should proceed at step j; it equals 0 if the
pre-stated sample size n has been reached at (any of) the previous step(s) so that
the sampling procedure must be stopped.
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Algorithm 2 PoSAn algorithm

procedure
Input: Ordered sequence of M areas with initial inclusion probabilities πj and the
sample size n that does not have to be exceeded.
Output: A sample of size ≤ n.

Visit unit j = 1 and select with probability π1, set Λ1 = 1.

for j in 2 : M

define Λj =

{
1 if

∑j−1
i=1 Si|Si−1 < n

0 otherwise

while Λj = 1

1. point unit j & select with probability πj if yj−1Sj−1 = 0

2. point unit j & select with probability 1 if yj−1Sj−1 = 1

3. if Sj = 1, collect yj

Return: vector of sample membership indicators of size M
end procedure

Equations 2-7 shall be adjusted with the introduction of the stopping rule Λj ,
which affects the inclusion probabilities of all areas j > n. An unbiased HT-type
estimator for the population prevalence (mean) replacing equation 2, is:

ŶPoSAn =
1

N

M∑
j=1

Nj∑
k=1

ykj
Sj |(Sj−1,Λj)

E(Sj |(Sj−1,Λj))
(8)

where the conditional sample membership indicator for area j has the following
form

Sj |(Sj−1,Λj) = Λj [Bernoulli(πj)(1− Sj−1yj−1) + Sj−1yj−1] (9)

and its expectation is given by the following recoursive formula:

for j = 1 E(S1) = E(S1|S0,Λ1) = π1; and for j = 2, . . . ,M

E(Sj |Sj−1,Λj) =


πj if Sj−1 = 0 ∪ {Sj−1 = 1 ∩ yj−1 = 0} ∩ j ≤ n
1 if Sj−1 = 1 ∩ {Sj−1 = 1 ∩ yj−1 = 1} ∩ j ≤ n
wjπj if Sj−1 = 0 ∪ {Sj−1 = 1 ∩ yj−1 = 0} ∩ Λj = 1 ∩ j > n

wj if Sj−1 = 1 ∪ {Sj−1 = 1 ∩ yj−1 = 1} ∩ Λj = 1 ∩ j > n

where
wj = 1−Πi∈AjP (Si = 1|Si−1)Πi∈Āj

P (Si = 0|Si−1)

and Aj is an index set including areas selected at any of the previous steps 1, . . . , j−1
while Āj is the complement set referring to the un-selected areas.

Finally for variance estimation purposes, notice that, for every pair (j, i) such
that j = 2, . . . ,M and i < j, equation 5 shall be replaced by:
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Figure 1: Simulated population of N = 100000 individuals unevenly spread with three
clusters of positive cases (black triangles) and ≈ 0.015 true population prevalence

Cov[(Sj |Sj−1,Λj), (Si|Si−1,Λi)] =

=


E(S1) y1 [1− E(S2|S1,Λ2)] if j = 2 ∩ Λ2 = 1

E(Si|Si−1,Λi)yj−1[1− E(Sj |Sj−1,Λj)] if j > 2, i = j − 1 ∩ Λj = 1

0 if j > 2, i < j − 1 ∪ Λj = 0

5. Some empirical evidence

In this Section some significant results are presented from a simulation study aim-
ing at evaluating the performance of the proposed PoSA sampling design. Sim-
ulations focus on the key features discussed in the previous sections, namely the
over-sampling of positive cases when surveying a rare and clustered trait under
both cost and logistic constraints, as it is the case for our inspirational example of
a national TB prevalence survey. The proposed PoSA design has been empirically
compared with i) a purely Adaptive Cluster Sampling (ACS); ii) a purely sequen-
tial design known as Spatially Correlated Poisson Sampling (SCPS with maximal
weights strategy; see [4] and [5] for further details): and iii) a traditional Unequal
Probability Cluster design (UPCS) as currently suggested in WHO guidelines. Fig-
ure 1 depicts the simulated population composed by N = 100000 individuals evenly
spread over a two-dimensional space, with three clusters of cases (for instance TB
positive) and ≈ 0.015 true population prevalence. The overimposed 10 × 10 grid
generates a set of M = 100 areas to be sampled.

According to WHO guidelines we assumed to have a good guess of the true
prevalence (0.01) and a 0.5 coefficient of between areas’ prevalences variation. Un-
der the suggested UPCS, a sample of 23 areas is selected with 100% participation
rate within selected areas (which is a best-scenario approximation of the actual
participation rate for TB prevalence surveys, usually in the range 85 − 90% [13]).
For all the compared designs, the total survey cost has been computed based on a
linear cost function including (i) a fixed cost, for instance for equipment and staff;
(ii) a unitary cost for each selected area, for instance for transportation and instal-
lation of the moving lab in the selected location; and (iii) a unitary cost for each
individual data collected in every selected area. Under both the purely sequential
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design SCPS and the proposed PoSA design, a 30% reduction of the unitary cost for
selected area has been considered as allowed by planning the route (area sequence)
in advance. Under both purely adaptive design ACS and the proposed PoSA design
the threshold c = 0.01 has been set for the adaptive condition (1).

Tables 1- 3 show elementary statistics (quartiles and avarage), over 5000 Monte
Carlo runs, with a focus on the selection stage of the survey, namely final sample
size, number of cases detected and the total cost. Under these respects, empiri-
cal results indicate that the proposed PoSA sampling design uniformly improves
the WHO’s guidelines suggested design (UPCS); notice that PoSA shows an inter-
mediate performance between ACS and SCPS as the result of integrating both a
sequential and an adaptive component.

The last column of each table shows the results for PoSAn (see section 4) with
the same UPCS choice n = 23. As compared to the PoSA, PoSAn appears to
succeed in reducing survey costs by better controlling the final sample size. However
its case-detection ability, though still improved with respect to UPCS, can decrease
significantly.

Table 1: Final sample size: elementary MC stats

UPCS ACS SCPS PoSA PoSAn

0.25 percentile 22916 32352 22941 26485 22875
Median 23029 35486 23041 30501 23001

Average 23034 34633 23041 30525 22784
0.75 percentile 23144 37662 23143 34382 23129

Table 2: Number (%) of detected cases (total number of cases=1518): elementary MC
stats

UPCS ACS SCPS PoSA PoSAn

0.25 percentile 291 (≈ 19%) 797 (≈ 0.53%) 313 (≈ 20%) 500 (≈ 33%) 402 (≈ 26%)
Median 357 (≈ 24%) 1121 (≈ 74%) 364 (≈ 24%) 660 (≈ 44%) 494 (≈ 33%)

Average 364 (≈ 24%) 953 (≈ 63%) 365 (≈ 27%) 654 (≈ 43%) 488 (≈ 32%)
0.75 percentile. 432 (≈ 28%) 1141 (≈ 75%) 416 (≈ 28%) 810 (≈ 53%) 574.0 (≈ 38%)

Table 3: Total survey costs: elementary MC stats ($100000 of fixed cost, $ 1000 unitary
cost per area, $ 20 unitary cost per individual)

UPCS ACS SCPS PoSA PoSAn

0.25 percentile 352160 466248 340910 377848 340250
Median 353290 504755 341910 420005 341510

Average 353338 493773 341907 420412 339215
0.75 percentile 354440 529923 342930 460815 342790

Figure 2 shows simulation results with regards to the estimation stage. The
Monte Carlo distribution of the HT-type estimator under each of the simulated
sampling design is summarized via boxplots. Although all unbiased, the compared
sampling strategies can differ with respect to variability, i.e. stability/efficiency.
Simulation results confirm that ACS estimator may be heavily asymmetric due
to its tendency to extreme over/under cases detection. They also show that a
purely sequential design, though less able to meet the over-detection objective,
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can be more efficient among the compared designs. The proposed PoSA design
(here limited to its original version with random sample size) shows to be able to
maintain a comparable estimator efficiency while both enhancing cases detectability
and costs/logistics management. Also notice that, despite its adaptive component,
PoSA appears to provide a symmetric estimator’s distribution, which is appreciable
for constructing confidence intervals.

UPCS ACS SCPS POSA
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Figure 2: MC distribution of estimates for the true population prevalence ≈ 0.015 over
5000 runs.

6. Conclusions and research perspectives

In this work a new sampling design is proposed for sampling a rare and clustered
population under both cost and logistic constraints. It is motivated based on the
example of national TB prevalence surveys promoted by WHO for high TB-burden
countries primarily concentrated in the poorest areas of the world. We proposed
a Poisson-type sampling design named Poisson Sequential Adaptive (PoSA) with
the two main purposes of i) increasing the detection rate of positive cases; and ii)
reducing survey costs by accounting for logistic constraints at the design level of the
survey. PoSA has been derived by integrating both an adaptive component able to
enhace cases detectability and a sequential component for dealing with costs and
logistic constraints. An unbiased HT-type estimator for the population prevalence
(mean) is derived based on adjusting for both the over-selection bias and for the
conditional structure induced by the sequential selection. A slightly modified ver-
sion of PoSA for a chosen maximum sample size is also illustrated. Simulaton results
show a significant pontential of PoSA in improving the methodology currently sug-
gested by WHO guidelines with respect to both case-detection and costs controlling.
Interesting perspectives for future research are also opened by empirical evidence.
Particularly the control over the final sample size needs to be further investigated,
as well as the effect of the population ordering defining the sequentiality of selec-
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tion. Simulation results confirm that the ordering choice coupled with the choice
of a maximum sample size affects selection probabilities which tend to decrease as
the selection proceed thus interacting with the adaptive feature. The effect of more
general non linear cost functions tailored for different sources of expenditure and
budgeting flexibility appears worth investigating. Room for improving the sequen-
tial component of PoSA is offered by fully exploiting the potential of a probability
updating system. In fact, instead of having areas with inclusion probability either
(initial) πj or (updated) 1, they could be finely tuned for example by considering
costs or any other available area info. The availability of auxiliary variable and other
meta-data will also be considered for improving PoSA estimation via regression.
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