DEGLI STUDI
g

UNIVERSITA
DI PAVIA

©3 UNIVERSITA’

== ONVTIN [

UNIVERSITA DECLI STUDI DI MILANO-BICOCCA
UNIVERSITA DEGLI STUDI DI PAvVIA
IsTITUTO NAZIONALE DI ALTA MATEMATICA

JOINT PH.D. PROGRAM IN MATHEMATICS
XXXVI CYCLE

Unique continuation principles for elliptic
and parabolic equations and spectral
stability for Aharonov-Bohm operators

Ph.D. candidate: Supervisor:
Giovanni SICLARI Prof. Veronica FELLI



Not for money,
nor love,
nor the heavens.

Non al denaro,
non all’amore,
ne al cielo.

F. De André.



Abstract

The present dissertation consists of three parts.

In the first part we study unique continuation principles and the asymptotic behaviour of
weak solutions to some elliptic problems. Our approach is based on the combination of an
Almgren-type monotonicity formula with a blow-up analysis. Pohozaev-type identities play
a key role in the derivation of Almgren’s monotonicity formulas and can be challenging to
derive when the solution lacks regularity. Then we also present a regularity result in weighted
Sobolev spaces and a Pohozaev identity obtained as an application.

More precisely, in Chapter 2 we derive local asymptotics of solutions to second order
elliptic equations at the edge of a (N — 1)-dimensional crack, with homogeneous Neumann
boundary conditions prescribed on both sides of the crack. We provide a complete classi-
fication of all possible asymptotic degrees of homogeneities of solutions at the crack’s tip,
together with a strong unique continuation principle.

In Chapter 3 we recall some useful results about weighted Sobolev spaces which are used
throughout the present dissertation. Furthermore, we prove Sobolev-type regularity results
for solutions to a class of second order elliptic equations with a singular or degenerate weight,
under non-homogeneous Neumann conditions. As an application, we derive a Pohozaev-type
identity.

In Chapter 4 we investigate unique continuation properties and asymptotic behaviour at
boundary points for solutions to a class of elliptic equations involving the spectral fractional
Laplacian. An extension procedure leads us to study a degenerate or singular equation on
a cylinder, with a homogeneous Dirichlet boundary condition on the lateral surface and a
non homogeneous Neumann condition on the basis. For the extended problem, we classify
the local asymptotic profiles at the edge where the transition between boundary conditions
occurs. Passing to traces, an analogous blow-up result and its consequent strong unique
continuation property are deduced for the non-local fractional equation.

In Chapter 5 strong unique continuation properties and a classification of the asymptotic
profiles are established for spectral fractional powers of a Schrédinger operator with a Hardy-
type potential singular at 0. Similarly to Chapter 4, we make use of an extension procedure
and classify the local behaviour for the extended problem, which turns out to depend on the
coefficient of the singular potential.

In the second part of the present dissertation, we investigate unique continuation principles
and the asymptotic behaviour of weak solutions to a class of parabolic equations. More
precisely, in Chapter 6 we obtain a classification of local asymptotic profiles and strong unique
continuation properties for a class of fractional heat equations with a Hardy-type potential.
Similarly to the elliptic case, we make use of an extension procedure to localize the problem.

In the third part of the present dissertation, we study the asymptotic behaviour of simple
eigenvalues of Aharonov-Bohm operators with half integer circulation on a simple connected
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bounded domain Q C R? with Dirichlet boundary conditions as many poles coalesce to a fixed
point. More precisely, in Chapter 7, we make use of a gauge transformation to reformulate the
problem as an eigenvalue problem for the Laplacian in a domain with straight cracks, laying
along the moving directions of poles. For this problem, we obtain an asymptotic expansion
for eigenvalues, in which the dominant term is related to the minimum of an energy functional
associated with the configuration of poles and defined on a space of functions suitably jumping
through the cracks. Concerning configurations with an odd number of poles, an accurate
blow-up analysis identifies the exact asymptotic behaviour of eigenvalues and the sign of the
variation in some cases. An application to the special case of two poles is also discussed.
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Chapter 1

Introduction

The present dissertation deals with two subjects. The first one is strong unique continuation
and classification of local behaviour of solutions to some elliptic and parabolic equations. We
recall that a family of functions F = {f;}ics, with f; : A — R, A C R, satisfies the strong
unique continuation property if no function in F, besides possibly the trivial null function,
has a zero of infinite order at any point zg € A. We study unique continuation properties
for several classes of problems, also involving fractional operators, by monotonicity approach.
The proof of monotonicity formulas in a fractional setting rises delicate regularity issues;
these require the development of ad-hoc Sobolev-type regularity results, which happen to be
of independent interest.

The second subject treated in this thesis is spectral stability for Aharonov-Bohm operators,
on a simple connected bounded domain Q C R?, with Dirichlet boundary condition. We
focus on the case of half-integer-circulation, which is of particular interest from a physical
and mathematical point of view. More precisely, we consider operators with many poles
coalescing to a fixed point and study the sharp asymptotic behaviour of eigenvalues.

In this introduction we give a brief and not exhaustive overview of the vast literature on
this two subjects and outline our results and methods.

1.0.1 Part I: Unique continuation for elliptic problems

In the first part of this dissertation we study unique continuation for some elliptic equations.
The first result about strong unique continuation for second order problems was obtained
by Carleman in [38] for bounded potentials in dimension 2, by means of weighted a priori
inequalities. The so-called Carleman estimates are still today one of the main techniques used
in this research field. They have been adapted by many authors to generalize Carleman’s
results and prove unique continuation for more general classes of elliptic equations. Among
the numerous contributions in this area we mention [16, 88, 122, 133] and in particular [92],
where strong unique continuation is established under sharp scale invariant assumptions on
the potentials. Garofalo and Lin developed in [79] an alternative approach to the study of
unique continuation, based on local doubling inequalities, which are in turn deduced by the
monotonicity of an Almgren-type frequency function, see [14]. In the present dissertation we
follow this latter approach.

For some fixed zy € RV, the Almgren frequency function N, associated to the solution u
of some problem, can be defined as the ratio between a local energy D and a local mass or



height H around zy. For example, for the model problem
—Au = hu

and xg = 0, the energy and height functions are defined as

1 1
D(r) := N3 /B (IVu|?* = hu*)dz and H(r) := m/&B u?® ds,

respectively, while the frequency function N is given by

For any r > 0, we are denoting with B, the set
B, :={z e RY :|z| < r}. (1.1)

The notion of frequency introduced above has been adapted to several classes of elliptic
problems, see [65, 67, 68] for equations with singular potentials and [63] for domains with
corners, to prove not only unique continuation, but also, in combination with a blow-up
analysis, a classification of possible asymptotic profiles of solutions.

In Chapter 2 we establish a strong unique continuation principle and analyse the asymp-
totic behaviour of solutions, from the edge of a flat crack I, for the following elliptic problem
with homogeneous Neumann boundary conditions on both sides of the crack

otu 9 u r (1.2)
8? = 8V7_ = 0, on 1,

where Bg € R¥ isasin (1.1), N > 2, T'is a closed subset of R¥~1 x {0} with C"!-boundary,
and the potential f is a measurable function satisfying suitable regularity or growth conditions
(see (2.6) and (2.7)). The boundary operators g/—i and g/—i in (1.2) are defined as

M.__a(u‘ ) and M._a(u| >
ovt " dxn \ 'Bg ov— " Odxy \ 'Br)’

where we are denoting, for all » > 0,

Bf ={(2,xn_1,2Nn) € B, :xny >0}, B, :={(z',zn_1,7n) € B, : x5 <0},
being the total variable x € RN written as = (2/,zny_1,2x) € RV "2 x R x R.

The interest in elliptic problems in domains with cracks is motivated by elasticity theory,
see e.g. [90, 43]. In particular, in crack problems, the coefficients of the asymptotic expansion
of solutions near the crack’s tip are related to the so called stress intensity factor, see [43].
We refer to [40, 41, 52] and references therein for the study of the behaviour of solutions at
the edge of a cut.

The derivation of a monotonicity formula around a boundary point presents some addi-
tional difficulties with respect to the interior case, due to the role that the regularity and the
geometry of the domain may play.



Among papers dealing with unique continuation from the boundary under homogeneous
Dirichlet conditions we cite [12, 13, 63, 94, 130]. Instead, for Neumann problems, we refer
to [12] and [126] for the homogeneous case and to [49] for unique continuation from the
vertex of a cone under non-homogeneous Neumann conditions. We also mention that unique
continuation from Dirichlet-Neumann junctions for planar mixed boundary value problems
was established in [61].

In order to estimate the derivative of the Almgren frequency function, see Proposition
2.3.10, a Pohozaev type identity is needed. However, the high non-smoothness of the domain
Bgr \ T at points on the edge of the crack causes two kinds of difficulties in its proof. A first
difficulty is a lack of regularity that can prevent us from integrating Rellich-Necas identities
of type (2.67). A second issue is related to the interference with the geometry of the crack,
which manifests in the form of extra terms, produced by integration by parts, which could be
problematic to estimate.

In [45], where homogeneous Dirichlet conditions on the crack are considered, this latter
difficulty is overcome by assuming a local star-shapedness condition for the cracked domain.
This geometric assumption forces the extra terms, produced by integration by parts, to have
a sign favourable to the desired estimates. The problem produced by lack of regularity is
instead solved in [45] by approximating B, \ I' with a sequence of smooth domains €2,,, C B,.
The solutions u,, of approximating problems in €2, . converge in H!(B,) to the solution of the
original cracked problem for r € (0, R) small enough. Each function w,, is sufficiently regular
to satisfy a Pohozaev type identity, in which it is possible to pass to the limit as n — oo.
In this way it is possible to establish the inequality needed to estimate the derivative of the
Almgren frequency function.

In Chapter 2 we use a similar approximation technique, which however entails additional
difficulties and requires substantial modifications due to the Neumann boundary conditions.
In particular, the existence of an extension operator for Sobolev functions on €2, uniform
with respect to n, is obvious under Dirichlet boundary conditions but it turns out to be more
delicate in the Neumann case, see Proposition 2.2.11. Furthermore, the different boundary
conditions produce remainder terms with different signs, requiring a modified profile for the
approximating domains, see Section 2.2.3.

Unlike [45], we do not require any geometric star-shapedness condition on the crack T,
limiting ourselves to a C''!'-regularity assumption, see (2.4) below. The removal of the star-
shapedness condition assumed in [45] requires a more sophisticated monotonicity formula,
which is developed for the auxiliary problem (2.23), obtained after straightening the crack
I' with a diffeomorphism introduced in [12], see Section 2.2.1. We mention that the same
diffeomorphism is used for fractional elliptic equations, with a similar purpose, in [47]. The
effect of this transformation straightening the crack is the appearance of a variable coefficient
matrix in the divergence-form elliptic operator. As a consequence, an adaption of the defini-
tion of the energy D and the height H is needed, see (2.58) and (2.59). Chapter 2 is based
on the paper [76].

In Chapter 3 we develop a Sobolev-type regularity theory in some weighted Sobolev spaces
which, besides being of independent interest, is a key ingredient to prove a Pohozaev-type
identity and a monotonicity formula in a fractional setting, see Chapters 4 and 5. More
precisely, we deal with the following class of second order elliptic equations

—div(y' "> A(z,y) VU (2,y)) + y' > c(z,y) =0, zeRY, ye(0,400),  (1.3)
with the weight 3'~2% (being s € (0,1)) which belongs to the second Muckenhoupt class and
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is singular if s > 1/2 and degenerate if s < 1/2; we couple (1.3) with non-homogeneous
Neumann conditions

ylil%l+ y "2 Az, y)VU (z,y) - v = hU(2,0) + g(2) (1.4)
on the bottom of a half (N 4 1)-dimensional ball.

The interest in such a type of equations and related regularity issues has developed start-
ing from the pioneering paper [58], proving local Holder continuity results and Harnack’s
inequalities, and has grown significantly in recent years stimulated by the study of the frac-
tional Laplacian in its realization as a Dirichlet-to-Neumann map [35].

In this context, among recent regularity results for problems of type (1.3)—(1.4), we men-
tion [33] and [89] for Schauder and gradient estimates with A being the identity matrix and
¢ = 0. More general degenerate/singular equations of type (1.3), admitting a varying coeffi-
cient matrix A, are considered in [120, 121]. In [120], under suitable regularity assumptions
on A and ¢, Holder continuity and C'h®-regularity are established for solutions to (1.3)—(1.4)
in the case h = g = 0, which, up to a reflection through the hyperspace y = 0, corresponds
to the study of solutions to the equation — div(|y|*=2*AVU) + |y|*=2*c = 0 which are even
with respect to the y-variable; Holder continuity of solutions which are odd in y is instead
investigated in [121]. In addition, in [120] C%® and C1® bounds are derived for some inho-
mogeneous Neumann boundary problems (i.e. for g #Z 0) in the case ¢ = 0. We also mention
[51, 50] for regularity results in weighted Sobolev spaces and mixed-norm weighted Sobolev
spaces for a class of singular or degenerate parabolic and elliptic equations in the upper half
space.

Our goal in Chapter 3 is to derive Sobolev-type regularity results for solutions to (1.3)—
(1.4). Under suitable assumptions on ¢, h, g, the presence of the singular/degenerate homoge-
nous weight, involving only the (N + 1)-th variable y, makes the solutions to have derivates
with respect to the first N variables x,x,..., 2y belonging to a weighted H'-space (with
the same weight y!~2¢); concerning the regularity of the derivative with respect to g, we ob-
tain instead that the weighted derivative yl_QS%—g belongs to a H'-space with the dual weight
y*~1 confirming what has already been observed in [120, Lemma 7.1] for even solutions of
the reflected problem corresponding to (1.3)—(1.4) with h =g = 0.

Our motivation for studying this question lies in the search for the minimal regularity
needed to prove Pohozaev-type identities for solutions of the extended problem, resulting
from the Caffarelli-Silvestre extension for the fractional Laplacian; Pohozaev-type identities
can in turn be used to obtain Almgren-type monotonicity formulas in the spirit of [60]. Indeed,
the Sobolev-type regularity results obtained in Theorem 3.2.1 allow us to directly obtain a
Pohozaev-type identity (Proposition 3.2.3), without requiring C'-regularity for the potential
h as in [60] and without approximating potentials in Sobolev spaces with smooth ones as
done in [47]. Furthermore, the presence of the matrix A makes our results applicable even
to the problem modified by a diffeomorphic deformation of the domain, which straightens
a Cll-boundary and produces the appearance of a variable coefficient matrix A, satisfying
suitable regularity conditions (see (3.14), (3.15), and (3.16)); such a procedure is useful to
study the behaviour of solutions at the boundary, see e.g. [47].

For a precise statement of our regularity result and the Pohozaev-type identity see The-
orem 3.2.1 and Proposition 3.2.3. The proof of Theorem 3.2.1 is based on the classical
Nirenberg difference quotient method, see [107]. Chapter 3 is based on the paper [75].



In Chapter 4 we prove the strong unique continuation property and derive local asymp-
totics from a point xg € 02 for the solutions to the following equation

(=A)’u=hu on Q,

where s € (0,1), 2 € R¥ is a bounded Lipschitz domain whose boundary is C*! in a
neighbourhood of zg, N > 2s, h is a measurable function on 2 satisfying suitable summability
properties, see (4.8), and (—A)® is the so-called spectral fractional Laplacian.

Several results are available in the literature about the spectral fractional Laplacian and
its interpretations. See [9], [L02], and references therein for a detailed overview. We mention
that regularity properties for stationary equations are discussed in [82], while existence and
uniqueness results for evolution equations governed by the spectral fractional Laplacian are
established in [26]. More closely related to our topic of investigation are the results in [135],
where a strong unique continuation principle at nodal points is proved for fractional powers of
some divergence-type elliptic operators, including the case of the spectral fractional Laplacian.
The techniques used in [135] are inspired by those introduced in [60], which are based on a
combination of a monotonicity formula for an Almgren-type frequency function and a blow-up
analysis. This local approach is made possible by the extension results by [125, Theorem 1.1]
and [35, Theorem 2.5].

As already observed, since the point xg from which the unique continuation is sought after
lies on 912, the geometry of J€) can interfere with the monotonicity argument. In Chapter 4
we face this difficulty by straightening the boundary with a local diffeomorphism in the same
spirt of Chapter 2. This transformation transfers the information about the geometry of 0f2
into a coefficient matrix in the operator, which turns out to be a perturbation of the identity if
the boundary is regular enough, see Section 4.3. Secondly, we make use of the Pohozaev type
identity obtained in Proposition 3.2.3 to differentiate the frequency function and to develop
the monotonicity argument. Furthermore, a blow-up analysis provides a detailed description
of the asymptotic behaviour of solutions to (4.1) at xg, giving a complete classification of
the order of homogeneity of asymptotic profiles, see Theorem 4.1.2 below. For this purpose,
an important role is played by an eigenvalue problem on a half-sphere under a symmetry
condition, see (4.19).

The extension problem corresponding to (4.1) consists of a degenerate or singular equation
on the cylinder € x (0, +00); a homogeneous Dirichlet boundary condition is imposed on the
lateral surface 9 x (0,400) and a weighted Neumann-type derivative on the basis © x {0}
is equal to the right hand side of (4.1), see (4.17). Therefore, the formulation of the problem
in terms of the extension leads us to study what happens near a point of the edge, at which
a transition between boundary conditions of a different type takes place. We observe that
this situation is quite different from the one that occurs in [47], where unique continuation
from boundary points is studied for the restricted fractional Laplacian; indeed, the extension
problem corresponding to the case treated in [47] is a degenerate or singular problem with
mixed conditions that vary on a flat basis rather than on an edge. In fact, the analysis
carried out in Chapter 4 highlights different asymptotic behaviours at the boundary for the
two operators, unlike what happens at internal points, where the locally equivalent form of
the extended problems induces the same blow-up profiles. Chapter 4 is based on the paper
[46].

In Chapter 5 we deal with fractional powers of the operator

Loju:=—Au— %u
7 Edrs



on a connected bounded Lipschitz domain Q ¢ RY with N > 3 and 0 € €, where

= E ~ d |- —_—
|| i 1:131 an o ( oo,< 5 ) )

for any k € {3,...,N}. If k = N we simply write |z| for |z|y.

The operator L, is an elliptic operator which is singular on a N — k-dimensional set.
In view of Hardy-Maz’ja-type inequalities, see Section 5.1, the operator L, has a discrete
spectrum on H}(Q). Hence the fractional powers L3, of Lok with s € (0,1) can be defined
in a spectral sense, see for example [125]. In the particular case o = 0 the operator L? .
reduces to the spectral fractional Laplacian (—A)* consider in Chapter 4. 7

We give a more precise definition of L? ;, in Section 5.1. To the best of our knowledge,
the operator L7 ; has not been considered before in the literature with a # 0 in a bounded
domain. In the whole space RY the fractional powers of Lq,n have already been defined by
means of spectral theory, see [78]. In [78], generalised and reversed Hardy types inequalities
have been obtained for L 5, using semigroup theory and estimates on the corresponding
heat kernel. 7

We establish a unique continuation principle from the singular point 0 and classify the
asymptotic profiles for solutions of linear equations involving the operator L7 ,. More pre-
cisely, we are interested in the equation

Liyu=gu inQ

where the potential g is a measurable function satisfying some growth assumption near 0, see
(5.3). In particular, we prove that the asymptotic profile of v in 0 is a homogenous function.
We also characterize the possible orders of homogeneity of blow-up profiles, which have a
non-trivial dependence on the singular potential «|x|, 2.

For the restricted fractional Laplacian with a Hardy-type potential, under similar assump-
tions on the potential g and with a non-linear term, a complete classification of the possible
asymptotic profiles and a unique continuation property from 0 have been obtained in [60].
The asymptotic behaviour of the spectral fractional Laplacian with a Hardy-type potential is
identical since the equivalent problem obtained with a Caffarelli-Silvestre extension procedure
is locally the same. The restricted fractional Laplacian with a Hardy-type potential has been
intensively studied in the literature, see for example [59, 25, 10, 62, 69] and the references
within.

If £ = N, it is interesting to compare our results with [60], in particular as far as the
minimal order of homogeneity of the asymptotics profiles are concerned, see (5.23), Theorem
5.1.10 and [60, Proposition 2.3]. In our case, it is possible to compute it explicitly, while for
the restricted fractional Laplacian only a more implicit expression is available.

Similar results have been obtained in [68] in the classical case, that is s = 1, in the
much more general situation of multiple potentials, including cylindrical and multi-body ones,
and with the presence of a non-linear term. Furthermore, in [68] the authors also studied
regularity properties of the solutions by means of a Brezis-Kato argument and obtained
pointwise estimates.

Similarly to Chapter 4, in order to obtain an Almgren type monotonicity formula and
perform a blow-up analysis, we localize the problem with an extension result, see Theorem
5.1.7 and also [37, 35, 125]. We also need a Pohozaev type identity. The singularity of the



Hardy type potential oz\:c|,:2, the assumptions (5.3) on g and the singularity or degeneracy
of the Muckenhoupt weight 3'~2% in the hyperplane R™ x {0} cause an eventual lack of
regularity for solutions to the extended problem. We overcome this difficulty by means of an
approximation procedure based on the Implicit Function Theorem and the Pohozaev identity
proved in Proposition 3.2.3. Chapter 5 is based on the paper [118].

1.0.2 Part II: Unique continuation for parabolic problems

In the second part of the present dissertation we deal with fractional parabolic equations.
There exists a large literature dealing with strong continuation properties in the local parabolic
setting. Similarly to the elliptic case, both Carleman estimates and monotonicity methods,
have been widely used starting form the pioneristic paper [113]. We mention [100] for unique

continuation for parabolic operators with L time-independent coefficients and [115, 123]
for unique continuation on horizontal components, proved by Carleman weighted inequalities,
in the presence of time-dependent coefficients. The paper [39] contains not only a unique con-
tinuation result but also some local asymptotic analysis of solutions to parabolic inequalities
with bounded coefficients. We quote [53, 54, 55, 56, 77] for unique continuation results for
parabolic equations with time-dependent potentials by Carleman inequalities and monotonic-
ity methods. We also refer to [22] for unique continuation properties for the heat operator
with a Hardy potential established by Carleman estimates.
In Chapter 6 we deal with the following singular fractional evolution equation

1
(w — Aw)® = . <|;|LQSw + gw) . in RY x (tg — T\ to), (1.5)
where T' > 0, and, letting I" be the usual I'-function,
2 ([ N+2s
- F(l_s) - QSF ( 4 )
S € (0, 1), N > 28, 12 < KJSAN737 Rg i= m’ AN,S =2 W

The potential g is a measurable function satisfying some regularity and growth assumptions
see (6.4) and (6.37). We are interested in studying the asymptotic behaviour of solutions to
(1.5) at (x,t) = (0,t9) along the directions (Az,tq — A*t) as A — 07. Our main result is a
classification of possible limiting asymptotic rates and profiles in terms of the eigenfunctions
of a weighted Ornstein-Uhlenbeck operator. As a corollary, we obtain a strong space-like
unique continuation property from the point (0, tp).

In the literature one may find many definitions of the operator H*(w) := (w; — Aw)® in
(1.5), that is of the fractional power of the classical heat operator H(w) := w; — Aw. We
refer to [19] and [125] for a presentation of the several ways to define H® corresponding to
different functional settings. It is also worth mentioning that a pointwise formula for H*u is
derived in [125]. In Section 6.1 we give a precise definition of H* and of weak solutions to
(1.5) by the Fourier transform.

Our approach is based on an Almgren-Poon type monotonicity formula, see [113], com-
bined with a blow-up argument. We mention that monotonicity methods and blow-up analysis
are used in [72] to prove strong unique continuation and classification of blow-up profiles for
parabolic equations with a Hardy potential (corresponding to the case s = 1 in (1.5)); analo-
gous results are obtained in [73] for a class of parabolic equations with critical electromagnetic
potentials.



To deal with the fractional case we introduce an Almgren-Poon frequency function for
an equivalent localized problem, constructed by the extension procedure developed in [21,
24, 110, 125], in the spirit of the one introduced by Caffarelli and Silvestre in [35] for the
fractional powers of the Laplacian. This leads us to deal with equation (6.10), which is a
local degenerate or singular parabolic problem in a one more dimension, see Section 6.1 for
the details.

In a fractional parabolic setting, an Almgren-Poon frequency formula is first established
in [125] in the absence of potentials, i.e. for ¢ = 0 and p = 0. Subsequently, an Almgren-
Poon monotonicity approach is used in [21] to prove unique continuation properties for weak
solutions to (1.5) in the case u = 0, that is without the Hardy singularity, and under C! or
C? regularity assumptions on the potential g, depending on the value of s. In [21] a crucial
role is played by a Holder regularity theory for solutions to the extended problem, which
has, in addition to its independent interest, applications to the estimates needed to derive
an Almgren-Poon type monotonicity formula. We mention that a space-like strong unique
continuation property is established in [17] in the case u = 0 via a conditional elliptic type
doubling property and blow-up analysis. The case p = 0 is treated also in [19], where, under
similar regularity assumptions on the potential g, a fine analysis of the structure of the nodal
set and of possible blow-ups of solutions vanishing with a finite order is performed. The
approach of [19] is also based on an Almgren-Poon type monotonicity formula and makes use
of some uniform Holder bounds, improving the regularity estimates of [21] and providing an
independent proof of the Holder regularity of weak solutions.

Due to the presence of a Hardy-type potential, there is no hope to obtain similar regularity
results, since weak solutions to (1.5) may in general be not bounded, see Theorem 6.1.7.
In the spirit of [72], to overcome this difficulty we rely instead on the theory of abstract
parabolic equations, once a formulation of the extension problem in a suitable Gaussian
space is obtained. Furthermore we also obtain a classification of the asymptotic profiles of
weak solutions to (1.5) at (z,t) = (0,%p) along the directions (Ax,ty — A\%t) as A — 07, see
Theorem 6.1.7 and Theorem 6.1.6 in Section 6.1. Chapter 6 is based on the paper [74].

1.0.3 Part III: Spectral Stability for Aharonov-Bohm operators

In the third part of the present thesis we deal with quantitative spectral stability for Aharonov-
Bohm operators with many coalescing poles, half-integer circulation and homogeneous Dirich-
let boundary conditions on a simply connected open bounded domain Q C R2.

More precisely, in Chapter 7 we consider the case of any number k of poles moving along
straight lines towards a collision point P € {2, with distances from P vanishing with the same
order. Without loss of generality, we assume that P = 0 € 2, so that the moving poles can be
written as multiples of k fixed points {a’ }j=1,..k with the same multiplicative infinitesimal
parameter € > 0.

Since we are interested in the asymptotic behaviour of eigenvalues as ¢ — 07, it is not
restrictive to assume that there exists R < 1 such that

{a’};=1..x C Br(0) C Q,

where, for every » > 0 and = € R?, we denote B,.(z) := {y € R? : |z — y| < r}. Henceforth,
we denote B,(0) simply by B,.



We assume that, among the k poles, there are ki poles that stand alone on their own
straight line through the origin, while the remaining ones form ko pairs of poles staying on
the same straight line but on different sides with respect to the origin. Hence

k =k 4+ 2ky with ki, ks € N, (k‘l, ]{72) #* (0,0),
and, for every j = 1,..., k, there exist 7; > 0 and o/ € (—m, 7] such that o/ # ol if j # £ and
a’ = r;(cos(a?),sin(a?)), (1.6)

where o/l # o2 £ 7 if j; # jo and j1, 42 € {1,...,k1}, while o/ € (—7,0] and o/ *F2 = ad 41
for every j € {k1+1,...,k1 + ko}. For the sake of simplicity, we treat in detail configurations
of the type described above, see 1.1; in Section 7.7 we explain how our methods and results
can be extended to more general configurations of poles.

\ i
al Jaithe
Q
NS 2
-
N
7N
i /,/ N
al s o\ S
/ \ N
// ‘k N
/ a*l 4

Figure 1.1: Configuration of poles (k1 +1 < j < k1 + ko).

For every j =1,...,k and ¢ € (0, 1], we define
al =cead’.

For every b = (b1, bs) € R?, the Aharonov-Bohm vector potential with pole b and circulation
p € R is defined as

—(x2 — ba) r1 — by
(1131 — 51)2 + (1‘2 — 62)2’ (xl — b1)2 + ($2 — 52)2

AP (e, 23) = p < ) . (w1,m2) € R2\ {b.

In Chapter 7, we consider the case of half-integer circulations p € % + 7, which is of particular
interest from the mathematical point of view due to applications to the problem of spectral
minimal partitions, see [27, 109]. For p = % we denote

Ay = A2 (1.7)

We are interested in the multi-singular vector potential

k a1 k
L S CRE SCORRIVHY
j=1 j=1



having at each pole a/ half-integer circulation n; + % with n; € Z, and in the corresponding
eigenvalue problem

(1.8)

2
(iV + A§"1’”2""’”’€)) u=Au, in (),
u =0, on 01},

where the magnetic Schrodinger operator (iV + ./4l§nl’712"”’nk))2 acts as

2
(37 4 AL m2emi) )y s A 20 A2 ) g o [ A2 Py,

Since n; € Z, Alrnzane) s gauge equivalent to the vector potential

k
A= (1)) A ;.
j=1 )
Therefore the operators (iV +A£m’n2"“’n’“))2 and (iV +.A.)? are unitarily equivalent (see [96,
Theorem 1.2] and [97, Proposition 2.2]), and consequently the spectrum of (1.8) coincides
with that of

(1.9)

(iV+A)%u=Au, inQ,
u =0, on Of).

Hence, to study the behaviour as € — 07 of the spectrum of (1.8), it is not restrictive to
consider problem (1.9). We refer to (7.2) for the variational formulation of (1.9). From
classical spectral theory, problem (1.9) has a diverging sequence of real positive eigenval-
ues {Aen}nemfo); in the sequence {Acn}nen {0y We repeat each eigenvalue according to its
multiplicity. Moreover, the eigenspace associated to each eigenvalue has finite dimension.

As e — 07, the following limit eigenvalue problem comes into play:

: LH(—1F+ N2 :
(ZV + 5 Ao) u = Au, in , (1.10)
u =0, on 012,

with Ag defined as in (1.7) with b = 0. If k is odd, the operator in (1.10) is the Aharonov-
Bohm operator with one pole in 0 and circulation %; as above, the classical Spectral Theorem
applies and provides a diverging sequence of real positive eigenvalues {/\O,n}neN\{o} with finite
multiplicity. Furthermore, it is well-known that, in this case, eigenfunctions vanish in 0 with
order 7, for some odd m € N, and have exactly m nodal lines meeting at 0 and dividing the
whole 27-angle into m equal parts; see [66, Theorem 1.3, Section 7] and (7.55)—(7.56) for a
description of the asymptotic behaviour at 0 of eigenfunctions of (1.10).

If £ is even the nature of the limit eigenvalue problem undergoes a significant mutation.
Indeed, for k even, the operator in (1.10) is the classical Dirichlet Laplacian and the eigenvalue
problem (1.10) can be rewritten as

—Au = in
{ u = Au, in €, (1.11)

u =0, on 0f).

We conclude that, for every &k € N\ {0}, the spectrum of (1.10) is a diverging sequence
{ Ao }nem\ oy of positive real eigenvalues.
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We recall from [97, Theorem 1.2] that, whatever the number & of poles is,
the function €+ A., is continuous on [0, 1],

so that, in particular,
lim A, = Ao (1.12)

e—0t

for every n € N\ {0}. In Chapter 7 we aim to give a sharp asymptotic expansion for the
variation A, — Ao, of simple eigenvalues with respect to the moving configuration of poles.

In the case of one moving pole, [28] establishes a first relation between the rate of conver-
gence (1.12) and the number of the nodal lines of the corresponding eigenfunction. Sharper
asymptotic expansions for simple eigenvalues are obtained in [1], in the case of one pole mov-
ing along the tangent to a nodal line of the limit eigenfunction, and in [2], in the case of one
pole moving along any direction. The case of one pole approaching the boundary is treated
in [6] and [108]. The methods developed in [1], [6], and [108] are based on an Almgren type
frequency formula, which provides local energy bounds for eigenfunctions. These are used
to estimate the Rayleigh quotient, whose minimax levels characterize the eigenvalues, and to
prove the convergence of a family of blown-up eigenfunctions to some non trivial limit profile.
In particular, using the notation introduced above, in [1] it is proved that, for k = k; = 1 and
al = ea' = ery(cos(al),sin(al)) moving along the tangent to one of the m nodal lines of the
limit eigenfunction wy, if Ao, is a simple, then

)\g,n — )\O,n = 47{”(‘51’2 + ‘52’2) Me™ + o(em) as e — 0. (1'13)
In (1.13) (B1,B2) # (0,0) is such that

lim r_%uo(r cost,rsint) = Be’ 5 cos (%) + Baet 5 sin (%),

r—0+
see (7.55), and M < 0 is a negative constant depending only on m, which has the following
variational characterization:

1
Qﬁ:min{Q/ |Vu(z x——/ z? u(xy,0)dry :uED;’Q(Ri)}, (1.14)

where s := {(z1,22) € R? : 23 = Oand 21 > 1}, R2 = {(z1,22) € R? : 25 > 0)}, and
D!?(R2) is the completion of C°(IR3 \ s) with respect to the norm (fRi |Vu|? dz)'/2. For an
explicit formula for 9 we refer to [5, Theorem 2.3]. The quantity appearing in (1.14) can be
interpreted as a weighted torsional rigidity of the segment along which the pole is moving.
Concerning the classical notion of torsional rigidity of a set, the literature is vast; among
many others, we cite the classical books [112, 85] for the basic definitions and some possible
application in shape optimization and [131, 32, 30] for more recent investigations in the field.
We also point out [8], where a notion of thin torsional rigidity is exploited in the study of
spectral stability for some singularly perturbed problems.

In the case of one single pole, the study of Aharonov-Bohm eigenvalues benefits from
the known regularity of the eigenvalue as a function of the pole position. Indeed, in [97] it
is proved that, in the case of one moving pole, eigenvalues are analytic as functions of the
pole, so that the eigenvalue variation admits a Taylor expansion. The sharp asymptotics on
nodal lines (1.13) obtained in [1] is used in [2] to compute the leading term of such Taylor
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expansion, exploiting symmetry and periodicity properties of the Fourier coefficients of the
blow-up profile with respect to the moving direction. In the case of many poles, the analyticity
property is maintained as long as the poles are away from each other (see again [97]), but is
lost in the case of a collision; indeed in [4] (and in [3] for symmetric domains) it is proved that,
in the case of two poles colliding at a point outside the nodal set of the limit eigenfunction,
the eigenvalue variation is asymptotic to the logarithm of the distance.

From the above discussion it therefore emerges that the case of multiple colliding poles
presents additional significant difficulties. So far, up to our knowledge, in the literature only
the case of two coalescing poles has been addressed with the aim of deriving precise asymptotic
estimates in terms of the distance between the two poles. The paper [3] derives the asymptotic
behaviour of eigenvalues of Aharonov—Bohm operators with two colliding poles moving on an
axis of symmetry of the domain, which is assumed not to be tangent to any nodal line of the
limit eigenfunction. The argument used in [3] is based on isospectrality with the Dirichlet
Laplacian on the domain with a small segment removed, for which an asymptotic expansion
of the eigenvalue variation is obtained by a capacity argument, in the spirit of [42]. The
complementary case of two colliding poles, which move on an axis of symmetry coinciding
with a nodal line of the limit eigenfunction, is treated in [5], exploiting an isospectrality result
and a monotonicity formula in the spirit of [1]. The assumption of symmetry of the domain
is removed in [4], in the case of two poles collapsing at an interior point out of nodal lines of
the limit eigenfunction; this is possible thanks to an estimate of the diameter of the nodal set
of magnetic eigenfunctions close to the collision point.

In Chapter 7 we develop a new approach that provides asymptotic expansions of the
eigenvalue variation in the most general case of any number of poles moving towards a collision
point. We propose a method which combines the idea of torsional rigidity, naturally appearing
in [1] (see also [6, Theorem 2.2]) to variationally characterize the coefficient of the leading term
as in (1.14), with that of capacity, which [42] and [3] show to be the good small parameter in
a spectral perturbation theory in domains with small holes.

Let us assume that there exists ng € N\ {0} such that

Ao.n 1s a simple eigenvalue of (1.10). (1.15)

In view of (1.12), assumption (1.15) implies that also A; p, is simple as an eigenvalue of (1.9),
provided ¢ is sufficiently small. Simplicity of the spectrum is a generic property for many
differential operators. We refer e.g. to [129], where the author exhibits sufficient conditions for
genericity of simplicity of the spectrum for various families of differential operators (including
Aharonov-Bohm operators with a single pole). See also [7] for a focus on the particular case
of Aharonov-Bohm operators.

The first step in our approach is to perform some gauge transformation, making the mag-
netic eigenvalue problem (1.9), and its corresponding limit one (1.10), equivalent to eigenvalue
problems for the Laplacian in domains with straight cracks, laying along the moving direc-
tions of poles, see (7.10) and (7.14). Fixing a L?-normalized eigenfunction vy of the equivalent
limit eigenvalue problem (7.14) associated to the eigenvalue Ay, we prove in Theorem 7.1.1
the following asymptotic expansion:

Aemg = Moo = 2(E= = Le(vo)) + o([[VVz|Z2(q)) as e — 0%, (1.16)

where L. is the linear functional defined in (7.16), & is the minimum of an energy functional
associated with the configuration of poles and defined on a space of functions suitably jumping
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through the cracks, see (7.19), and V. is the potential attaining such a minimum. We observe
that & is a kind of intermediate quantity between torsional rigidity and capacity of the
set obtained as the union of the segments connecting the poles to the origin. Indeed, the
capacity of a set is defined by minimizing the L?-norm of the gradient among functions which
are prescribed on the set; the torsional rigidity, instead, is constructed by minimizing an
energy functional, which contains a linear term involving an integral on the set, without
prescribing any condition. In the definition of & given in (7.19), we minimize an energy
functional over a family of functions which are only partially prescribed on the cracks, in
the sense that we impose a jump condition on the functions across the segments, obtaining
a jump of the normal derivatives as a consequent natural condition. The development of
such an intermediate notion provides a unified approach, which does not require an a priori
relation between the configuration of poles and the orientation of the nodal set of the limit
eigenfunction. We mention that elliptic problems in cracked domains, with jumps of the
unknown function and its normal derivative prescribed on the cracks, are studied in [105].
For k odd, a blow-up analysis allows us to identify the exact asymptotic behaviour of
the quantities appearing in the right hand side of (1.16). In Theorem 7.1.2 we prove that
lim, o+ e7&, = &, where m is the vanishing order of vy at 0 and £ is the minimum of the
energy functional defined in (7.28) over a space of suitably jumping functions, see (7.31).
Thus we generalize (1.13) in the multipolar case, obtaining the following explicit expansion

e — Aong = 267 (€ — L(¥g)) + o(e™) (1.17)

as ¢ — 0T, where L is the linear functional defined in (7.27) and ¥y is the %-homogeneous
harmonic function introduced in (7.26). We note that the assumption that & is odd is crucial
in the blow-up analysis, since it guarantees the validity of the Hardy-type inequality proved
in Proposition 7.5.2, needed to characterize the functional space containing the limiting blow-
up profile. In the particular case of all poles moving either along the tangents to nodal
lines or along the bisectors between nodal lines of the limit eigenfunction, we can prove that
the quantity & — L(Wy), appearing as the coefficient of the leading term of the asymptotic
expansion (1.17), does not vanish, see Proposition 7.1.3; this shows that m is exactly the
vanishing order of the eigenvalue variation. On the other hand, the study of the continuity
properties of the coefficients appearing in (1.17), see Theorem 7.5.8, allows us to prove the
existence of configurations of poles for which & — L(¥y) = 0 and hence A.,, — Ao, is an
infinitesimal of higher order than m.

If k£ is even, a Hardy type inequality is no more available, and therefore the blow-up
analysis meets the technical difficulty of identifying the limiting profile in an appropriate
functional space. In spite of that, in the case of two poles colliding in a point of the nodal set
of the limit eigenfunction and moving either along the tangents to its nodal lines or along its
bisectors, in Theorems 7.1.6 and 7.1.7 we are able to derive the exact asymptotic behaviour of
E: — L:(vp), and consequently of A; ,, — Ao n, thanks to the use of elliptic coordinates; in this
way we generalize the results of [3] and [5], which require an axial symmetry of the domain
as a further hypothesis. Chapter 7 is based on the paper [70].

Finally, we mention that the case of arbitrary real circulations is the object of current
investigation, see [71].
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Part 1

Unique continuation for elliptic
problems
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Chapter 2

Unique continuation from a crack’s
tip under Neumann boundary
conditions

2.1 Statements of the main results

In this chapter we establish strong unique continuation properties and classify the asymptotic
behaviour of solutions, from the edge of a flat crack I', for the problem

—Au = fu, in Bp\ T,
oftu 0 u (2.1)
87 = 81/7_ = 0, on F,

where Bp is as in (1.1), T' is a closed subset of RN~1 x {0} with C"!-boundary, and the
potential f satisfies either assumption (2.6) or assumption (2.7) below. We recall that the

boundary operators E)ay—tr and 2— in (2.1) are defined as

AT RN R
vt Oy Yt & ov— " Oxn Yy )

where for all r > 0,

Bf .= {(2',on_1,2n) € B, :xnx >0}, B :={(2,2n_1,2n) € B, : 2y < 0},

T

being the total variable x € RN written as = (2/,zny_1,2n) € RYN "2 x R x R.
To state the main results of this chapter, we introduce now our assumptions on the crack
I" and the potential f. We suppose that I' is a closed set of the form

[:={(x1,0): 21 €[0,40)} i N=2 (2.2)
and
D={(2,2n_1,0) e RN : g(2/) <any_1} if N >3, (2.3)
where
g:RV2 5 R, ge CVYRNT?), (2.4)
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and
g(0) =0, Vg(0)=0. (2.5)

Assumption (2.5) is not restrictive, being a free consequence of an appropriate choice of the
Cartesian coordinate system. We are going to study the behaviour of solutions to (2.1) near
0, which belongs to the edge of the crack I' defined in (2.2)—(2.3).

Furthermore we assume that f : B — R is a measurable function for which there exists
€ € (0,1) such that either

fe WL (B \T), (2.6)

or
N >3 and |f(x)| <clz|727% for some ¢ > 0 and for all z € Bp. (2.7)

For every closed set K C RV~!x {0} and r > 0, we define the functional space H& o, (Br\K)
as the closure in H'(B, \ K) of the set

{ve HY(B,\ K) : v =0 in a neighbourhood of 8B, }.
A weak solution to (2.1) is a function u € H'(Bg \ T') such that

[ (vuVo-fus)dy=o,
Br\T'

for all ¢ € H(:)l,aBR(BR \T).
The following unique continuation principle for solutions to (2.1) is our main result.

Theorem 2.1.1. Let u be a weak solution to (2.1) with ' as in (2.2)—(2.3) and f satisfying
either (2.6) or (2.7). If u(z) = O(|z|*) as |z| — 0% for all k € N, then u =0 in Bpg.

In Theorem 2.4.8 we provide a classification of blow-up limits in terms of the eigenvalues
of the following problem

—Agn-1 = b, on SN=1\ ¥,
i N 2.8
a¢:a¢:Q on S, (2.8)
ovt  Ov~
on the unit (N — 1)-dimensional sphere S¥~! := {x € RY : |z| = 1} with a cut on the
half-equator

Y= {(.%'/,.Z'N_l,O) e sV-1. IN—1 > 0},

where, letting ex := (0,...,1),
Sﬁ‘l = {(x',xN_l,acN) eSN gy > 0}, sh-1.— {(x',xN_l,;rN) eSN L.y < O},

the boundary operators % are defined as
oy

oy .
8?.: —VS_‘]\_ffl 1/)|S£71 -ey and 8?.2 vSi\f—l 1/J|Szlr71 *€EN,

see Section 2.4.1 for the weak formulation of (2.8). In Section 2.4.1 we prove that the set of
the eigenvalues of (2.8) is {uy : k € N} where

k(k+2N —4)
-1
As a consequence of the classification of blow-up limits, we obtain the following unique con-
tinuation result from the edge with respect to crack points.

i = k e N.
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Theorem 2.1.2. Let u be a weak solution to (2.1) with I' as in (2.2)—(2.3) and f satisfying
either (2.6) or (2.7). Let us also assume that u vanishes at 0 at any order with respect to
crack points, namely that either Tri u(z) = O(|z|*) as |2| — 0%, 2 € T, for all k € N or
Trp w(z) = O(|2[*) as |z| = 0T, z € T, for all k € N, where Tr} u, respectively Trp u, denotes
the trace of U|B§’ respectively u’BE’ onT'. Then u=0 in Bpg.

If N > 3, we can combine the blow-up analysis with an expansion in Fourier series with
respect to a orthonormal basis made of eigenfunctions of (2.8). This allows us to classify the
possible asymptotic homogeneity degrees of solutions at 0.

Theorem 2.1.3. Let N >3 and let u € H'(Bg \T'), u # 0, be a non-trivial weak solution
to (2.1), with T defined in (2.2)—~(2.3) and f satisfying either assumption (2.6) or assumption
(2.7). Then there exist ko € N and an eigenfunction Y of problem (2.8), associated to the
eigenvalue puy,, such that, letting

o) i= 1 Y ().

we have that
k

AU 5@ and ATF (Vgpu) () = Vanp® in L(B))

as X\ — 0%, where

r:= {x = (/,2n_1,0) e RN sy > O} (2.9)
and Vg \r and VRN\f denote the distributional gradients in B \T and RN \ T respectively.

A more precise version of Theorem 2.1.3, relating ko to the limit of a frequency function
and characterizing the eigenfunction Y, will be proved in Section 2.5, see Theorem 2.5.3.

Chapter 2 is organized as follows. In Section 2.2.1 an equivalent problem in a domain
with a straightened crack is constructed. Sections 2.2.2 contains some trace and embedding
inequalities for the space H'(B, \ T). Section 2.2.3 is devoted to the construction of the
approximating problems. In Section 2.3 we develop the monotonicity argument, which is first
used to prove Theorem 2.1.1 and later, in Section 2.4.2, to perform a blow-up analysis and
prove Theorem 2.1.2, taking into account the structure of the spherical eigenvalue problem
(2.8) studied in Section 2.4.1. Finally Theorem 2.1.3 is proved in Section 2.5.

2.2 An equivalent problem with straightened crack and ap-
proximation procedure

In this section we first introduce an equivalent problem with a straightened crack; then we
develop an approximation procedure regularizing the domain, for which suitable trace and
embedding inequalities are needed.

2.2.1 An equivalent problem with straightened crack

In this section we straighten the boundary of the crack in a neighbourhood of 0. If N > 3
we use the local diffeomorphism F' defined in [47, Section 2|, see also [12]; for the sake of
clarity and completeness we summarize its properties in Propositions 2.2.1 and 2.2.2 below,
referring to [47, Section 2] for their proofs. If N = 2, the crack is a segment and we simply
take F' = Id, where Id is the identity function on R2.
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Proposition 2.2.1. [}7, Section 2] Let N > 3 and T be defined in (2.3) with g satisfying
(2.4) and (2.5). There exist F = (Fy,...,Fy) € CPY(RN RY) and r1 > 0 such that F

B, — F(B,,) is a diffeomorphism of class C11,

Bry

F(y',0,0) = (v, g(y),0) for anyy/ € RN"', and FT'NB,)=TnNF(B,),

with T as in (2.9). Furthermore, letting y = (v, yn—1,yn) € By, and Jp(y) be the Jacobian
matriz of F' at y

Aly) := | det Je()|(Jr)  (Jry) ™), (2.10)
the following properties hold:
i) Jr depends only on the variable y" = (y',yn—1) and
Tr(y) = Jr(y") =1dny + O(ly"]) as |y"| = 07,
where Idy denotes the identity N x N matriz and O(|y"|) denotes a matriz with all
entries being O(|y"|) as |y”| — 0F;

i) det Jp(y) = det Jr(y',yn—1) = 1+ O(ly/'*) + O(yn-1) as [y'| = 0% and yn—1 — 0;

iii) un :Tyfz}fzoforanyzzl,...,]\f—l anday—le;

iv) the matriz-valued function A can be written as

Aly) = Al yw 1) = ( D(y’,(@)/N—l) - JF(;’,,yN_l) ) , (2.11)
with
, _ [ 1dn—2+O(y']*) + Oyn—1) | O(yn-1)
P = Olv-1) o) B

where Idy_o denotes the identity (N — 2) x (N — 2) matriz and O(yn—1), respectively
O(|y/|?), denotes blocks of matrices with all entries being O(yn_1) as yn—1 — 0, respec-
tively O(|y'|?) as |y'| — 0.

v) A is symmetric with coefficients of class C%' and

1
§|z]2 < A(y)z-2 <2|z> forall z€ RN andy € B,,. (2.13)

We note that (2.13) implies that [[A(y)|| gy gry < 2 for all y € B,,. We also observe

A=1Idy if N=2. (2.14)
Moreover (2.11)— (2.12) easily imply that
A(y) = A@Y") =1dy +O(ly"]) as |y"| — 0*. (2.15)
Under the same assumptions and with the same notation of Proposition 2.2.1, we define
Aly)y -y A(y)y
p(y) = <|y)’2 and  fB(y) = pf(?;)) for any y € B,, \ {0}. (2.16)
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Proposition 2.2.2. [}7, Section 2] Under the same assumptions as Proposition 2.2.1, let p
and 3 be as in (2.16). Then, possibly choosing r1 smaller from the beginning,

% <uy) <2 foranyy € By, \ {0}, (2.17)
n(y) =1+0(yl) as |y| — 0%, (2.18)
Vu(y) =0(1) as |yl —0t. (2.19)

Moreover 3 is well-defined and

Bly) =y+O(lyl*) =O(yl) as |yl =07, (2.20)
Js(y) = A(y) + O(lyl) = Idx +O(lyl) as y| — 0T,
div(B)() = N +O(lyl) s |y| - 0*. (2.21)

We also define dA(y)zz, for every z = (z1,...,2x) € RY and y € B,,, as the vector of RY
with ¢-th component, for i =1,..., N, given by

N
(dA(y)zz)i = v 22k, (2.22)

where we have defined the matrix A = (axp)k p=1,. 5 in (2.10).
Remark 2.2.3. For any measurable function f : F(B,,) — R we set
f:B,, =R, f:=|detJp|(foF).

Then, in view of i) and ii) in Proposition 2.2.1, the function f satisfies assumptions (2.6) or
(2.7) on By, if and only if f satisfies assumptions (2.6) or (2.7) on F(B,,).

It is easy to see that, if u is a solution to (2.1), then the function U := u o F' belongs to

H'Y(B,, \T) and is a weak solution of the problem

(2.23)

—div(AVU) = fu, in B, \T,
AVTU vt =AVU-v~ =0, onl,

where
ViU =V (U{B+), VU=V <U]B>, and v~ = —vt =(0,...,1).
T1 T1
By saying that U is a weak solution to (2.23) we mean that U € H'(B,, \ T') and

/ (AVU -V — fU@)dy =0
Bo \[

for all ¢ € Hy yp, (B, \ ).
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2.2.2 Traces and embeddings results

In this section, we present some trace and embedding inequalities for the space H'(B,, \ T')
which will be used throughout this Chapter.
We define the even reflection operators

R ()Y ynv-1,y8) = v(y's yn—1, [yn]),
R_(U)(y,a nylny) = U(Z//#L“N—lv 7‘yN|)a
and observe that, for all » > 0, R* : H'(B, \T') - H'(B,) and R~ : H'(B, \T) — H'(B,).

We have that R*(v), R~ (v) € LP(B,) for some p € [1,00) if and only if v € LP(B,); in such
a case we have that

H7a+ ‘LP(B =200l iy RO s, = 2002, 5 - (2.24)
and
1ol = 5 (JRT @], + IR @l ) (2.29
Furthermore, for every v € H'(B, \ T),
/Br\f Vo2 dy = % (/B IVR™ (v)|* dy + /B \VR—(U)de) . (2.26)

Proposition 2.2.4. For any r > 0 there exists a linear continuous trace operator
HY(B,\T) — L*(0B,).
Furthermore ~, is compact.

Proof. Since B;" and B, are Lipschitz domains, there exist two linear, continuous and com-
pact trace operators ’y+ HY(B}Y) — L*(0B}f NdB,) and ~, : HY(B;) — L?*(0B; NOB,).
By setting

D e 4 ), ifyn >0,
) {%«_(U)(?J)a if yv <0,

we complete the proof. O

Letting v, be the trace operator introduced in Proposition 2.2.4, we observe that

L, wras =5 ([ @ e)Ras+ [ R @)Ras) e

for every v € HY(B, \ T'). With a slight abuse of notation we will often write v instead of
~r(v) on 0B,.

Proposition 2.2.5. If N > 3 and r > 0, then, for any v € H (B, \ f),

N — 22 2 N -2
() / Y da g/ ) \Vv]de—ki/ V2 dS. (2.28)
2 B, || B\ 2r  JoB,
Proof. By scaling, [132, Theorem 1.1] proves the claim for R*(v) and R~ (v). Then we
conclude by (2.25), (2.26), and (2.27). O
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Proposition 2.2.6. Let N > 2 and ¢ > 1 be such that ¢ < 2* = ]\2,—% if N >3 and g < oo if
N = 2. Then
HYB,\T) C LYB,) for everyr >0

and there exists Sy 4 > 0 (depending only on N and q) such that

9 N(2—qg)+2q 9 1 9
ol < Swgr 0 / L1 dx+;/aB v2ds ), (2.29)

for all™ >0 and v e H' (B, \T).

Proof. Since
1
(/ |Vo|? dz +/ v? dS) ’
By OB

is an equivalent norm on H'(B), from a scaling argument and Sobolev embedding Theorems
it follows that, for all ¢ € [1,2*] if N > 3 and ¢ € [1,00) if N = 2, there exists Sy, > 0 such
that, for all 7 > 0 and v € HY(B,),

N(2—q)+2 1
102, < Swgr b </B |Vv|2dx+;/aB v2dS).

Using (2.24), (2.25), (2.26) and (2.27) we complete the proof. O
Proposition 2.2.7. For anyr > 0, h € L%JFE(BT) with € > 0, and v € HY(B, \T), there
holds
1
/ B0 < i (r) (/ Vol da + f/ V2 dS> , (2.30)
B B\ r JoB,
where ON 44
_de €
nn(r) = SN g Hh”L%"‘E(BT) rN¥+t2e  and @ := N 212 (2.31)
Proof. For any v € H'(B, \ T
2/4e
[l dw < bl gy () o de)
B, L27(Br) \JB,
4e 1
< h N 2dx + - / 2d
< Swac Al e, 7 ( ARy s)
thanks to Holder’s inequality and (2.29). O

Remark 2.2.8. If f satisfies (2.7), then f € L%“(BR), so that Proposition 2.2.7 applies to
potentials satisfying either (2.6) or (2.7).

Remark 2.2.9. By (2.30), (2.17) and (2.13), for any r € (0,71), h € L%“(BT), and v €
H(B, \T), we have that

i

/ VP dy < 2/ (AVv - Vo — ho?) dy + 2n,(r) (/ Vo2 dy + 2/ v’ dS)
B\ B\ B\ r JoB,

and therefore, if n,(r) < 3,

2 Anp(r)
Voul? d <7/ AVov -V —h2d+—/ 2dS. (2.32
/BT\f\ WPy S g [ AVe Vot dy s g | eas. (232)
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2.2.3 Approximating problems

In this section we construct a sequence of problems in smooth sets approximating the straight-
ened cracked domain. We define, for any n € N\ {0},

g :R—= R, g,(t) :=nt*

and, for any r € (0,7],

Qnyr ={ yn-1,yn) € Br : yn—1 < gn(yn)}

and
Fn,r = {(ylny—lny) € B, YN—-1 = gn(yN)} = 6Qn,r N B,.

The domains €, , approximate B, \ [ in the following sense: for every y € Br\f, there exists
n € N\ {0} such that y € Q,, for all n > n. Moreover €, , N I =0 for any r € (0,71] and
n € N\ {0}. We also note that €, , is a Lipschitz domain and I'y, , is a C?-smooth portion of
its boundary.

Proposition 2.2.10. Let v(y) be the outward normal vector to 08, », iny. Then

y-v(y) <0 forally € Inyy, (2.33)
Ay -v(y) <0 forally € Tp,y. (2.34)

Proof. As a first step we notice that

1 4 1
gn(t) — gtg;(t) = ntt — gm&4 = —gm“1 <0, gn(t)—tg.(t) <0 (2.35)

and that ,
(07 17 _gn(yN)

V14 (g5 (yn))?

v(y) = forally e I'y, ).

Then, for all y € I',

(0,1, —g5,(yn) 9n(yn) — yng,(yn)

W)y = e W emm) ) == E e

due to (2.35). We have then proved (2.33) (and (2.34) in the case N = 2 in view of (2.14)).
If N > 3, possibly choosing r; smaller in Proposition 2.2.1, for all y € I', ,, we have that

<0

gn(yn) (1 + O(ly']) + Oyn-1)) — det Jp(y) yngn(yn)

1 3 1
9n(yn) = 5YNIn(Yn) = 5(9n(yn) = 3Yngn(yn)),
thanks to ii) in Proposition 2.2.1, (2.11) and (2.12). Then, by (2.35) we finally obtain (2.34)
also for N > 3. ]

L+ (gn,(yn))*A(y)y - v(y)

3
< =
-2
2

Let

Rf ={y =" yn—1,yn) €RY :yy > 0} and RY := {y = (v/, yn—_1,yn) € RY : yn < 0}.
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For any r € (0,71] and n € N\ {0} let
QF =, NBY, Q. =0, NB, Sy, :=00,N0B,. (2.36)
For all n € N\ {0} we also define
Kﬁm ={y = yn-1,un) € RY : cither yy_1 < gn(yn) or |y| > r1},
K, ={y= (" yn-1,yn) € RY :either yn_1 < gn(yn) or |y| > r1}.

Since €y, is a Lipschitz domain, for any r € (0,7] and n € N\ {0} there exists a trace
operator
Yot H Q) — L2001

)

We define
H&,Sn,r () ={ue Hl(Qny,ﬂ) “ Y (w) =0o0n Sy}

The following proposition provides an extension operator from H& s, (Qnyr) to H (B, \T)
with an operator norm bounded uniformly with respect to n.

Proposition 2.2.11. For any r € (0,71) and n € N\ {0} there exists an extension operator
gg,r : H&,SH,T (Qnr) — H' (Br, \f)
such that, for any ¢ € H&Sn (),
nr (Do, =6 Enr(®) =0 0n oy \ ur,  &0,(0) € Hopp, (B \T), (2.37)
and
1/2
2.0 <aoldlm, =l [ @+voR)a) . (239

where cg > 0 is independent of n, r, and ¢.

1 (By,\F)

Proof. Tt is well known that, since K, and K, are uniformly Lipschitz domains, there exist

continuous extension operators & : H' (K, ) — HYRY) and &, : HY(K,, ) = H'(RYN),
see [124], [36] and [99]. Furthermore, since the Lipschitz constants of the parameterization of

OK ',  and 0K . are bounded uniformly with respect to n, there exists a constant C' > 0,

n,r1 n,r1
which does not depend on n, such that
&80y = C Wl 2nd 6 @iy < Cllwlingg,,) (239

for all v € HY(K;F, ) and w € HY(K,,,.).

n,r1 n,r1 3
If ¢ € Hjg () then the trivial extension ¢ of (;S|Q+ to K,f,, belongs to H' (K.}, )
and the trivial extension ¢_ of ¢|, to K, belongs to H 1(Kn ). Then we define

é.:zr(%-i-)(y)v if Y€ Brla
§o(0-)(y), ifye By,

which belongs to H'(B,, \T') and satisfies (2.38) in view of (2.39). Furthermore (2.37) follows
directly from the definition of §g7r. O

Ena(0)(y) = {
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The next proposition establishes a Poincaré type inequality for H&} s, . (Qy,)-functions,
with a constant independent of n.

Proposition 2.2.12. For any r € (0,r1], n € N\ {0}, and ¢ € H&Sn ()

/ G2y <
Qn,r

2
6. (= ( / |v¢|zdy> (2.41)

is an equivalent norm on H&’Sm (7).

A IVo|? dy (2.40)

and

Jun

Proof. For any ¢ € C*°(Q,,,) such that ¢ = 0 in a neighbourhood of S, ,, we have that
div(¢%y) = 20V -y + N

so that

N/ ¢>2dy=—2/ ¢V¢-ydy+/ ¢2y-udss/ ¢>2dy+r2/ V|2 dy,
Qn,r Qn,r Fn,r Qn,'r Q

n,r

since y - v < 0 on I';, » by(2.33). Then we may conclude that

L sy [ vora,

for all ¢ € C*(Q,,) such that ¢ = 0 in a neighbourhood of S, ,. Since 2, is a Lipschitz
domain, (2.40) holds for any ¢ € H& s, . (Q2nr) by [23, Theorem 3.1]. The second claim is now
obvious. O

From now on we consider on Hj g (Qy,) the norm || - HH(% ; defined in (2.41).

Proposition 2.2.13. Let r € (0,71), n € N\ {0}, h € L%JFE(BT) with € > 0, and g. be as in
(2.31). Then, for any ¢ € H&’Sm(Qm«),

N—1+72 ey
2 < 2 1 N+2e / 2 . 242
Jo, W6y < &GS r T Iy [ VO (242

Proof. We have, for every ¢ € H&Sn (),

2

e
oy < [ IWIEL @) dy < ], . (/ |§2,r<¢>\qfdy>
/Qn,r B, L2745 \ /B,

_4de
< Sxar A gy [ IVEL () dy

1

_ 2
<02N 1+r

4e
N+2e 2
S T Al Sy

thanks to Holder’s inequality, (2.29), Proposition 2.2.11, and Proposition 2.2.12. O
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Hereafter we fix a potential f satisfying either (2.6) or (2.7) and define f:=|det Jp| (foF)
as in Remark 2.2.3. Thanks to Remark 2.2.3 we have that f satisfies either (2.6) or (2.7) as
well. If f (and consequently f) satisfies (2.7), we define

o i) >
fuy) =9 f(v), \f(y)\ <mn, (2.43)
-n, if f( )
so that 3
fn € L®(By,) and |f,| <|f|lae. in B, forallneN\{0} (2.44)
and .
fn — fae. in B,,. (2.45)
If f satisfies (2.6), we just let .
fn:=f foranyneN. (2.46)
We observe that . o
fon—f inL2%B,) asn— o (2.47)

as a consequence of (2.44), (2.45) and the Dominated Convergence Theorem if assumption
(2.7) holds and f, is defined in (2.43), in view of Remark 2.2.8; on the other hand (2.47) is
obvious if assumption (2.6) holds and f,, is defined in (2.46).

Since under both assumptions (2.6) and (2.7) we have that f € L%“(Brl) (see Remark
2.2.8), by the absolute continuity of the Lebesgue integral we can choose ¢ € (0, min{1,7;})
such that
9N

1 1+7? s
nir0) <5 and A s Ty

¥ (2.48)

1
) A
where g and 77 are defined in (2.31).

Let U = uo F, where u is a fixed weak solution to (2.1) and F' is the diffeomorphism
introduced in Section 2.2.1, so that U weakly solves (2.23). For any n € N\ {0}, we consider
the following sequence of approximating problems, with potentials f,, defined in (2.43)—(2.46):

CAV(AVU) = fuUn,  in Dy,
AVU, -v =0, on 'y, (2.49)
'}/n,m(Un) = Vn,ro(U)a on Sn,roa

with 7o as in (2.48). A weak solution to problem (2.49) is a function U,, € H' (2, ,,) such
that U, —U € Hj g, . () and

/Q (AVUn Vo — fnUn¢) dy =

for all ¢ € Hj g . (Qnro)- If Uy, weakly solves (2.49), then W, :== U — U, € H} (o)

7Sn,r0
and

| VW, Vo fWad)dy = [ (AU V6~ f,U)dy (2.50)

n,70

for any ¢ € H(%,Sn,ro (Qnrg)-
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For every n € N\ {0}, let us consider the bilinear form

Bu: Hys, (Qus) X His,, (Qure) =+ R, Bu(v,6) = / (AVo-Vé— fovd)dy, (2.51)

70

and the functional

Lot His, (Qup) SR La(@)i= [ (AVU-Vo- fU)dy.  (252)

n,ro

Proposition 2.2.14. The bilinear form B,, defined in (2.51) is continuous and coercive; more
precisely

1
Ba(6,0) 2 119l . (@, forall 6 € Hig,  (Qnr,). (2.53)

Furthermore the functional Ly, defined in (2.52) belongs to (H&Sn v (Qnr))* and there exists
a constant £ > 0 independent of n such that

L@ < Nl (@ forall & € His,  (Quro). (2.54)

Proof. The continuity of B,, and (2.53) easily follow from (2.13),(2.44), (2.42) and (2.48).
Thanks to Holder’s inequality, (2.44), (2.13), (2.30), (2.42) and (2.48)

flu? dx)é ( /.

1
1 2 1 2 :
< (2|yVU\|L2(Bm\F) + 5/1(ro) </Bro\f|VU| dx—l—ro/aBTO U dS) ) IOl g, (@)

thus implying (2.54). O

1
B 3
|Ln(@)] <2 HVUHLQ(Qn,TO) ||¢||H&Sn,r0 (Qnrg) T </Br |fle? da:)

0 0

Corollary 2.2.15. Let u be a weak solution to (2.1) and U = uo F'. Let either (2.6) hold and
{fn} be as in (2.46), or (2.7) hold and {f,} be as in (2.43). Let ro be as in (2.48) and ¢ be as
in Proposition 2.2.14. Then, for any n € N\ {0}, there exists a solution W,, € H&’SWO (o)
of (2.50) such that

Wiy, @ < 4 (2.55)

Proof. The existence of a solution W,, of (2.50) follows from the Lax-Milgram Theorem,
taking into account Proposition 2.2.14. Estimate (2.55) follows from (2.53) and (2.54) with
¢ =Wh. O

We are now in position to prove the main result of this section.

Theorem 2.2.16. Suppose that f satisfies either (2.6) or (2.7), u is a weak solution of (2.1),
and U = uo F with F as in Section 2.2.1. Let { fy}nen satisfies (2.46) under hypothesis (2.6)
or (2.43) under hypothesis (2.7). Letrg € (0,71) be as (2.48). Then there exists {Un }nem 0} C
HY(B,,\TI) such that U, weakly solves (2.49) for anyn € N\ {0} and U, — U in H (B, \T)
as n — co. Furthermore U, € H*(Qy,,) for any r € (0,79) and n € N\ {0}.
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Proof. Let rg € (0,71) be as in (2.48). For any n € N\ {0}, let W,, € H&,Sn . (Qn.ry) be
the solution to (2.50) given by Corollary 2.2.15. Then U — W,, weakly solves problem (2.49)

and we define U,, := U — 277"0 (W), with &9 o, being the extension operator introduced in

Proposition 2.2.11. We observe that U, € HY(B,, \T). To prove that U, converges to U in
HY(B,, \T') as n — oo, we notice that

o N —1+78

10 = Onlls o) < Gl <46 =57 [ (AT VW0 = W) s
nTO

by Proposition 2.2.11, (2.40), and (2.53). Therefore it is enough to prove that

lim (AVW,, - VW,, — fuW2)dy = 0. (2.56)
n o0 Qn,'ro

Let

Op = (Byy, \ D)\ Qur, (2.57)

for any n € N\ {0}. Since W,, € H(%’Sn TO(QW‘()) solves (2.50) and U is a solution to (2.23),
by Hoélder’s inequality, (2.13) and Proposition 2.2.11 we have that

/Q (AVWTL -VWy, — anr%) dy‘ = |/Q (AVU : V(gg,ro (Wn)) fnUgn T‘()( )) dy

| AVU -V, (W) = U, (W) dy

7'1\

- [ (AVU -V, (W)~ LU €, (W) ]

n

=| [ AT )~ U W+ [ (P U €, (W)
By \I

— [ (AVU 90, (W) = U €0, (W) dy

n

<| [ VU, W)~ £ Wy + | [ (F= FU €0, (W) dy

1

< 2[VUll 20, van ro )’ L2(B, \D) + ”f””L%“ HU”L‘“ (On) ’5" o )’ Lae (Byy)
+ ||f*fn||Lg+e(B N gac ) [V,
<aqpd 10 ﬁ (2||VUHL2 o )+\/8Nq5rN“€||f||Lg+é(O 11 z4e 0,

St TN = ful LF ey Wiy )

where ¢, is defined in (2.31) and we have used (2.44), (2.29), (2.38), (2.40), and (2.55) in the
last inequality. We observe that
lim |O,| =0,

n—o0
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where |O,,| is the N-dimensional Lebesgue measure of O,,. Then, since VU € L*(B,,\T), U €
L%(B,,) by Proposition 2.2.6, and fe L%‘FE(BH), (2.56) follows by the absolute continuity
of the integral and convergence (2.47).

We observe that f,U, € L? (Q2n,7)- Indeed, under assumption (2.6), by Remark 2.2.3 we
have that f € I/I/L%"'E(BT1 \T) and then, by Sobolev embeddings and Hélder’s inequality, we
casily obtain that f,U, = fU, € L?*(Qu.,). Under assumption (2.7), f, is defined in (2.43)
and f, € L*(B,,), hence f,U, € LQ(QW,O).

Since I'y, ,, is C°°-smooth and f,U,, € LZ(Qm«O), by classical elliptic regularity theory, see
e.g. [81, Theorem 2.2.2.5], we deduce that U, € H?(Q,,) for any r € (0,79). The proof is
thereby complete. O

2.3 The Almgren type frequency function

Let u € H'(Br\T) be a non-trivial weak solution to (2.1) and U = uo F' € H'(B,,\T') be the
corresponding solution to (2.23). Let 79 € (0, min{1,7;}) be as in (2.48). For any r € (0, rg],

we define 1

H(r) == —— U*ds 2.58
()= 5 |, w0*as (259
where (4 is the function introduced in (2.16), and
1 -
T AT

Proposition 2.3.1. If r € (0,7¢] then H(r) > 0.

Proof. We suppose by contradiction that there exists r € (0,7¢] such that H(r) = 0. By
(2.17), it follows that U weakly solves (2.23) with the extra condition U = 0 on dB,. Then
by (2.32) we obtain that U = 0 on B,. By classical unique continuation principles for elliptic
equations, see e.g. [79], we conclude that u = 0 on Bpg, which is a contradiction. ]

Proposition 2.3.2. We have that H € I/Vli)’cl((O,ro]) and

0= (2, 0y 85+ [, 079 a5)
H'(r) = N 2 . ulU ey as + . U*Vp-vdS
2 ou

= — = +
= N-I /BBT pU ey dS+ H(r)O(1) asr—0", (2.60)

in a distributional sense and for a.e. r € (0,79).

Remark 2.3.3. To explain in what sense the term %—g in (2.60) is meant, we observe that, if

VU is the distributional gradient of U in By, \T, then VU € L*(B,,,R") and %—(l{ = V(ﬂi| €

ly
L?(B,,). By the Coarea Formula it follows that VU € L?*(0B,,R") and %—g € L?*(0B,) for
a.e. r € (0,r1).
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Proof. For any ¢ € C§°(0,79) we define v(y) := ¢(|y|). Then we have

/ H(r dy_/merl(/aBruUQdS> & (r) dr

= /Bfo |JNM(Z/)UQ(Z/)W(y) -ydy+/BrU |y1|NM(@/)Uz(y)W(y)-ydy

-~ /B T U GTU ) -y + o) U)Ta) 1) dy

’I"

( . uUf d5> o(r)dr — /OTO er—l< - UV - VdS)gb(r) dr,

which proves (2.60) thanks to (2.19). Since »~V*! is bounded in any compact subset of
(0,70], then, by (2.17), (2.19) and the Coarea Formula, H and H' are locally integrable so
that H € W21 ((0, 7). O

Now we turn our attention to D. Henceforth we let {f,} be as in (2.46), if f satisfies
(2.6), or as in (2.43), if f satisfies (2.7), and we consider the sequence {U,} converging to U
in H'(B,, \T') provided by Theorem 2.2.16.

Remark 2.3.4. By Proposition 2.2.6 and (2.31), U, — U in L%(B,,). Then, since f,, — f
in L%JFE(BTO) by (2.47), from Holder’s inequality it easily follows that

lim |fU? - f,, U2 dy = 0. (2.61)

n—o0 B'rO
Moreover, if f satisfies (2.6), Vf € L%“‘E(BTO,RN) and hence

lim (Vf-B)(U*—~U?2)|dx =0, (2.62)

n—oo BT‘Q\F
since the vector field 5 defined in (2.16) is bounded in view of (2.20).

Lemma 2.3.5. If F,, — F in LY(B,,), then there exists a subsequence {F,, }ren such that,
for a.e. m € (0,79),

lim |F — F,,|dS=0 and lim F,, dS = Fds,
k—o0 OB, k—o0 Snk,'r OB,

where the notation Sy, has been introduced in (2.36).

Proof. Let hy(r) := [5p |Fn — F|dS. Since, by assumption and the Coarea Formula,
0
nh_)ngo - |F — F,|dy = nh—>Holo/0 b (r)dr = 0,

we have that h, — 0 in L'(0,7). Hence there exists a subsequence {h, }ren converging to
0 a.e. in (0,79). Therefore F,, — F in L'(0B,) for a.e. r € (0,79). It follows that, for a.e.
re (Oa 7"0)7

/ F,, dS — / Fds = / X5+ (Fap — F)dS +/ (xs, —1)FdS =0
Snpor 4B, B, M 8B, .
as k — oo, thus yielding the conclusion. O
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Proposition 2.3.6. We have that D € VV;’CI((O,TO]),

1

D(r) = SN2

UAVU -vdS = gH'(r) +7rH(r)O(1) asr— 0" (2.63)
0By

and

D(r) = (2= N)—— /B (AVU-VU - fU?) dy+

AVU -VU — fU*)dS (2.64
w1 e L, fu?ds .60

PN-2

in the sense of distributions and for a.e. r € (0,79).

Proof. The fact that D € Wli’cl((O, 10]) and (2.64) follow from the Coarea Formula and (2.30).
To prove (2.63) we consider the sequence {U,} introduced in Theorem 2.2.16. For every
r € (0,79) and n € N\ {0},

1 ) 1
3 [, (AVU. VU, = fuU3)dy = — [ U,AVU, -vas

since U, solve (2.49) and U,, € H?*(Qy,,) by Theorem 2.2.16. Thanks to Remark 2.3.4,the
Dominated Convergence Theorem, and Lemma 2.3.5, we can pass to the limit, up to a sub-
sequence, as n — oo in the above identity for a.e. r € (0,r), thus proving the first equality
in (2.63). To prove the second equality in (2.63) we define

C(y) = wy)Bly) —y) _ Ay _ Aly)y - v,
' vl [yl > 7

Then, since ((y) -y =0and ¢-(0,...,0,1) =0 on I, we have that

1
/ vavv-vis— [ was=L [ c.vw?as
8B, oB,  Ov 2 Jom,

_ L[ avou2as = N HE)OO)
2 JoB,

as r — 0, where we have used in the last equality the estimate

div(O)(y) = (Vf‘y(ﬁ) - “‘;ﬁiy) Bly) —v) + ’ﬁ(diva) ~N)=0()

which follows from Proposition 2.2.2. Then we conclude by (2.60). O

The approximation procedure developed above also allows us to derive the following inte-
gration by parts formula.

Proposition 2.3.7. There exists a set M C [0, 79| having null 1-dimensional Lebesgue mea-
sure such that, for all v € (0,79] \ M, AVU -v € L?(0B,) and

~AVU-V(/)d:c:/ quﬁder/aB (AVU - )¢ dS

B\

for every ¢ € H*(By, \I), where AVU -v on OB, is meant in the sense of Remark 2.3.3.
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Proof. Since U,, — U in H'(B,, \T') in view of Theorem 2.2.16, by Lemma 2.3.5 there exist
a subsequence {Up, } and a set M C [0, rp] having null 1-dimensional Lebesgue measure such
that AVU - v € L?(0B,) and AVU,, -v — AVU - v in L*(9B,) for all r € (0,79] \ M. Since
U, € H*(Qy,) for any r € (0,70) and n € N\ {0} by Theorem 2.2.16, from (2.49) it follows
that

/ (AVU, -V — folnd) dy = / HAVU,, - v dS.
Qn,r Sn,r

Arguing as in the proof of Proposition 2.3.6, we can pass to the limit along n = ny as k — oo
in the above identity for all r € (0, rg] \ M, thus obtaining the conclusion. O

Theorem 2.3.8. (Pohozaev type inequality) Under either assumption (2.6) or assumption
(2.7), for any r € (0,7r9] we have that

. 2
IAVUVE (s [ (avU -vU) div(8) dy

r/ AVU - VU dS > 2r
0B, 0B, I B,\F

AVU - ~
o AUYipaui [ (@avOvy) .- gdy—2 [ Js(AVD) - VU dy, (2.65)
B,\I' 1% B,\I' B, \I'

which can be rewritten as

i AV - o2
7"/ (AVU-VU - Fu2yas > o [ 1AYTVE g
9B OB H

+ (AVU - VU) div(B) dy + (fdiv(B)+Vf-B)Udy
BT\F BT\F

+ [ (dAVUVU)-Bdy—2 | _J3(AVU)-VUdy (2.66)
B\’ Br\I'

if [ satisfies (2.6).

Proof. By Theorem 2.2.16 we have that U,, € H%(Q,,) for any r € (0,79) and n € N\ {0}.
Then, since A is symmetric by Proposition 2.2.1, we may write the following Rellich-Necas
identity in a distributional sense in €2y, ,:

div((AVU, - VU,)B — 2(8 - VUL)AVU,) = (AVU, - VU,) div(B)
—2(8 - VU,) div(AVU,) + (dAVU,VU,) - 8 — 2J5(AVU,) - VU,. (2.67)

Since U, € H%(Qy,,») and the components of A and 3 are Lipschitz continuous by Propositions
2.2.1 and 2.2.2, then (AVU,VU,)B — 2(8 - VU,)AVU,) € Wt1(Q,,). Therefore we can
integrate both sides of (2.67) on the Lipschitz domain €, , and apply the Divergence Theorem
to obtain, in view of (2.16) and (2.49),

T/ <AVUn VU, -2
Sn,r

_ / (AVU, - VU,) div(8) dy + 2 /
Qn,r

Ay-udS

S+ [ (AVU,-VU,)
Fn,r

AVU, -y

|AVU,, - v|?
w

fnUn dy

n,r

+ / (dAVU,VU,) - Bdy — 2 / J5(AVU,) - VU, dy. (2.68)
Qny»,- Qn,r
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From Proposition 2.2.10, (2.13), and (2.17) it follows that, for all n € N\ {0} and r € (0,7),
Ay v
,u

/ (AVU, - VU)LY 45 < 0. (2.69)
Fn,'r

From Theorem 2.2.16, we recall that U, — U strongly in H'(B,, \ I'), while Propositions
2.2.1 and 2.2.2 imply that

p€ L®(Byy,R), B € L®B,,RY), divse L®(B,,,R), (2.70)
A€ L®(B,, RV, {8‘“} € L®(B,,,R™).
Oyn, i,5,h=1,..,N

Furthermore, under assumption (2.6), we have that, by Sobolev embeddings (see Proposition
2.2.6), if N > 3, then f, = f € LN(B,,) and U, — U strongly in L*>"(B,,), whereas, if
N =2, then f, = f € L20+9)/0=9(B, ) and U, — U strongly in L(*<)/¢(B, ); then, since
VU, — VU in L?(B,,), Holder’s inequality ensures that

fuUnAVU, -y — fUAVU -y in LY(B,,). (2.71)

Under assumption (2.7), we have that Hardy’s inequality (see Proposition 2.2.5), Proposition
2.2.4 and (2.44) yield that

/ \fny(Un—U)]2 dygconstrak/ \y|_2]Un—U\2dy—>0 as n — 0o

BT‘O 70
which, thanks to Proposition 2.2.5 again and the Dominated Convergence Theorem, easily
implies that ~
FayUn = fyU  in L*(By,),

thus proving (2.71) also under assumption (2.7).

Then, thanks to the Dominated Convergence Theorem, (2.22), (2.71) and Lemma 2.3.5,
we can pass to the limit in (2.68) as n — oo, up to a subsequence, and, taking into account
(2.69), we obtain inequality (2.65).

If assumption (2.6) holds then by (2.16), (2.46) and Proposition 2.2.2 we have that

A - N
2 | ?iynw@=2/<ﬂvmﬁm@
Qn,r

n,r

= —/ (fdiv(B) + Vf-B) Uﬁdy—kr/ fU2dS + fU2B-vdS. (2.72)
Qn,r Shn,r Tn,r

We define

O}, =0,NB, 0,,:=0,nB,,
. =Tn,NBF, T, =T, NB.,

where O,, is defined in (2.57). Taking into account that 8 -v = % v =0o0n 90}, N ORY
since v = —(0,...,1) and (2.11) holds, the Divergence Theorem yields that

/ fU,QLB'VdS:—r/ FU2B.vds
R 05 .NdB,

+ /O+ (U2 divB+UR V- B +2fU, VU, - B) dy. (2.73)

32



By (2.61), (2.70), and Lemma 2.3.5 there exists a subsequence {f Uﬁkﬁ - V}keN converging in
L'(0B,) and hence equi-integrable in OB, for a.e. r € (0,7¢), hence

lim fUZkﬁ -vdS =0 fora.e. re(0,r).

k=0 Joof, 0B,

. . . 6 r3 N+2¢
Since VU,, — VU in L*(B} ,RY), U, — U in L%(B}}) and f € LNT2¢(B}) by (2.6) and

T0?

classical Sobolev embeddings, from (2.70) and Hoélder’s inequality we deduce that
fU VU, -B— fUVU -3 in LY(B}),

so that {fU, VU, - B}nen is equi-integrable in Bt . Therefore

n—o0

lim /+ fU, VU, -Bdy =0 forallre (0,r).
On,'r

Moreover, also {div/3 fU,% + U2 V- Blnen is equi-integrable thanks to (2.61) and (2.62). It
follows that
lim (divg fU2 +Vf-BU?)dy =0 forall r € (0,rg).

n—o00 O+
n,r

Then from (2.73) we conclude that

lim fU2 B-vdS =0.

k—oo F:erm

In a similar way we obtain that limy_, [— foLkﬁ -vdS = 0 so that
ng,T

lim fU2 B-vdS =0.

k—o0 rnk’r

Therefore (2.66) follows by passing to the limit in (2.68) and (2.72) as n — oo along a
subsequence, taking into account Proposition 2.2.10, the Dominated Convergence Theorem,
(2.22), Remark 2.3.4 and Lemma 2.3.5. O

Proposition 2.3.9. For a.e. r € (0,79)
2
D'(r) > 22N / AVU - g 1o / (div(B) + 2 — N)AVU - VU dy
0B H BT
—i—rl_N/ . (f(div(B) + N —2) + Vf-B) U dy
—i—rl_N/ (dAVUVU) - Bdy — 27"1_N/ J5(AVU)-VUdy,  (2.74)
BT BT

if (2.6) holds, and

AVU - vl2 _ _
CEEEN . [AVU - Vz " gs 2N [ furas+ -2t [ futay

A Y~
+rlN / (AVa- VU)(div(B) + 2~ N)dy +2rtN / AVUY 517 4
BT BT w
+rN [ (dAVUVU) - Bdy — 20N [ J5(AVU) - VU dy (2.75)
\I B\ g

if (2.7) holds.

33



Proof. Estimates (2.74)—(2.75) are direct consequences of (2.64), (2.65), and (2.66).
We now introduce the Almgren frequency function, defined as

D(r)

N :(0,m9] > R, N(r):= )

The above definition of N is well posed thanks to Proposition 2.3.1.

O

(2.76)

Proposition 2.3.10. If either assumptions (2.6) or (2.7) hold, then N € VVI})’Cl((O,ro]) and,

for any r € (0,79],

Furthermore, for a.e. v € (0,7¢),

N'(r) > V(r) + W(r)
where
2r (( Jo, YT 4S) ( fop, nUdS) — ( fyp, UAVU - dS)z)
V(r) = (f[«)Br s ds>2 >0
and

W(r)=0 (riHﬁ) (1+N(r) asr—0T.

(2.77)

(2.78)

(2.79)

(2.80)

Proof. Since 1/H,D € VVli)’cl((O,ro}), then N € VVli’Cl((O,ro]). Furthermore (2.32) directly

implies (2.77).
By(2.63), for a.e. r € (0,79)

D'(r)H(r) = D(r)H'(r) _ D'(r)H(r) = 2D*(r)  D(r)O(1)
H2(r) H2(r) H(r)
D'(rH(r) — 2/72N( [, UAVU -vdS)°

= w0 + O(DN(r)

N (r) =

as r — 07. By Proposition 2.2.1, Proposition 2.2.2, (2.31) and (2.32)

/B . ((AVU - VU)(div(8) + 2~ N) — 2J5(AVU) - VU + (dAVUVU) - §) dy

<o [, L IvUldy

SO(T)/ \f(AVU'VU—fU2)dy+O(rN$26) /BB pU?dS asr— 0%,

By (2.30), (2.32), and (2.17)

/B FU2dy <0 (rw‘i)/B

e VU dy— FU? £ 2
<O(rv®) [ (AVU-VUdy - fU?) + O (r3e) | pU?dS
B\l 0Br

|VU2dy + O (r%) U2 ds
AVy dB,
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as 7 — 0% and, by (2.21), the same holds for [ (divs — N + 2)fU%dy. In the same way
from (2.20) it follows that, if (2.6) holds,

(AVU - VU dy — fU?) + O (r%) uU? ds
OB,

vf'-ﬁU?dygo(rﬁ)/

B, B\I'

asr — 0T,
Under assumption (2.7), by Remark 2.2.3, (2.18), (2.13), (2.31) (2.30), (2.32) and Hoélder’s
inequality,

/BT\f medy: O(r)/B

1
~ ~ 2
; Iy < 06 IOl ( 17102 )

i

[

e - 2 2
<0 (rfﬂvi%) / (AVU - VU — fU?) dy + r/ pU?ds | x
BT ng(r) Jos,

~ 2
><</ ~(AVU-VU—fU2)dy+f/ MU2dS>
B\I' T JOB,

<0 (ﬁﬁ)/ (AVU -VU - fU*) dy + O (fHﬁﬁ)/ pU? dSs.
B\ OB,

T

Under assumptions (2.7), thanks to Remark 2.2.3 and (2.17),

fUuzds =0 (7”25_2) uU? ds.

OBy 0By

Collecting the above estimates, we conclude that (2.78), (2.79) and (2.80) follow from (2.74)or
(2.75) under hypotheses (2.6) or (2.7) respectively. From the Cauchy-Schwarz inequality we
also deduce that ¥V > 0 a.e. in (0,rg). O]

We now prove that A is bounded.

Proposition 2.3.11. There exists a constant C' > 0 such that, for every r € (0,71¢],
N(r)<C. (2.81)
Proof. By Proposition 2.3.10 there exists a constant £ > 0 such that, for a.e. r € (0,79),
W +1)(r) 2 W(r) > —ar 5= (W (r) + 1),
Since N 4+ 1 > 0 by (2.77) and the choice of ry in (2.48), it follows that
(log(N + 1)) > S =7

An integration over (r,rp) yields

N + 2¢ 2
) W) + 1)

N(r) < —1+exp (/1

and the proof is thereby complete. ]
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Proposition 2.3.12. There exists the limit

v = lim N(r). (2.82)

r—0+

Furthermore v is finite and v > 0.
Proof. From Proposition 2.3.10 and (2.81) there exists a constant x > 0 such that
N'(r) >W(r) > g Ve N(r)+1) > —k(C+ 1)7’_1+Ni€2€ for a.e. r € (0,rp).

Then

d Kk(C 4+ 1)(N + 2e¢) e
dr </\/(7’) * 4e e > ="

for a.e. 7 € (0,79). We conclude that lim,_,o+ N(r) exists; moreover such a limit is finite
thanks to (2.81) and (2.77). Furthermore from (2.31) and (2.77) we deduce that v > 0. [

The proofs of Propositions 2.3.13 and 2.3.14 are standard and we omit them, see for
example [47, Lemma 3.7, Lemma 4.6], [65, Lemma 5.6, Lemma 6.4}, [65, Lemma 5.9, Lemma
6.6] or Propositions 4.4.9 and 4.4.10 in Chapter 4.

Proposition 2.3.13. There exists a constant o > 0 such that, for every r € (0,19],

H(r) < ar?. (2.83)

Furthermore for every o > 0 there exist ay > 0 and r, € (0,7¢) such that, for everyr € (0,74],
H(r) > a,r*7T. (2.84)

Proof. For the proof in a similar situation we refer to [65, Lemma 5.6] and Proposition 4.4.9
in Chapter 4. O

Proposition 2.3.14. The limit lim,_,+ 7~ 2YH(r) exists and is finite.

Proof. For the proof in a similar situation we refer to [65, Lemma 6.4] and Proposition 4.4.10
in Chapter 4. ]

From the properties of the height function H derived above, in particular from estimate
(2.84), we deduce the unique continuation property stated in Theorem 2.1.1.

Proof of Theorem 2.1.1. Let u be a weak solution to (2.1) such that u(z) = O(|z|¥) as |z| —
0" for all £ € N. To prove that u = 0 in B, we argue by contradiction and assume that
u # 0. Then we can define a frequency function for U = wo F as in (2.58), (2.59) and (2.76).
Choosing k € N such that k > v + , we would obtain that H(r) = O(r*) = o(r*’*7) as
r — 0, contradicting estimate (2.84). O

2.4 The blow-up analysis

In this section we perform a blow-up analysis for scaled solutions to (2.23). To this aim we
first study the spectrum of (2.8), which plays a crucial role in the classification of blow-up
profiles.
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2.4.1 Neumann eigenvalues on cracked sphere

In this section we study the spectrum of (2.8). We recall that u € R is an eigenvalue of (2.8)
if there exists ¢ € H'(SV~1\ )\ {0} such that

/ Von-n\gth - Von-1,56dS = / bédS forany 6 € H(SV I\ %), (2.85)
SN_l\Z SN_l\Z

A Rellich-Kondrakov type theorem is needed to apply the classical Spectral Theorem to
problem (2.8).

Proposition 2.4.1. The embedding H (SN~ \ ¥) «— L2(SN=1) is compact.

Proof. Let {¢n}nen be a bounded sequence in H'(SV~1\ ¥). We observe that S¥~* and
SN1 are smooth compact manifolds with boundary and that the sequences of restrictions

{(b”‘S]j*l Fnen and {(ﬁn’Sy—l }nen are bounded in Y (SY ) and H'(SY 1) respectively. Then
we can extract a subsequence {¢y, }ren such that {¢”|Sf‘1 }nEN converges in LQ(S_]X_I) by the
classical Rellich-Kondrakov Theorem on compact manifolds with boundary, see [18]. Proceed-

ing in the same way for {¢p, |SN71}n€N in H' (S]_V_l), we conclude that there exists a subse-

quence {¢n,, }ren which converges both in L2(SY " Yandin L? (S_]X*l), hence in L2(SV-1). O

Proposition 2.4.2.

(i) The point spectrum of (2.8) is a diverging and increasing sequence of non-negative eigen-
values {ux}tken of finite multiplicity and the eigenvalue py = 0 is simple. Letting Ny
be the multiplicity of ux and Vi be the eigenspace associated to ., there exists an or-
thonormal basis of LQ(SN_I) consisting of eigenfunctions {Yj ;}reni=1,.. N, such that
{Yi,iti=1,..n, is a basis of Vi, for any k € N.

(ii) For any k € N

k(k+ 2N —4)

1 .

Moreover any eigenfunction of (2.8) belongs to L>°(SN—1).

[k = (2.86)

Proof. The proof of (i) follows from the classical Spectral Theorem for compact self-adjoint
operators, taking into account Proposition 2.4.1. We prove now (ii). If x is an eigenvalue of

2
(2.8) and ¥ an associated eigenfunction, let o := — -2 4/ (%) + p and

W(r@) :=r°¥(0), foranyr € [0,00),0 € g1 \ 3.

Since W is an eigenfunction of (2.8) then W is harmonic on By \T' and %ﬂf = 867‘1‘/ =0onT.
12 v

k k(k+2N—4)

1 .

Therefore we deduce from [41] that there exists k € N such that ¢ = § and so =

Moreover from [41] it also follows that W € L°°(B;) hence ¥ € L>(SN1),
Viceversa, if we let k € N and define W in cylindrical coordinates as

k

kt
W (', rcos(t),rsin(t)) := r2 cos <2> for any 2’ € RN72, r € [0,00), and t € [0, 2n],
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then Wis harmonic on B, \f and %:ELV = %_TKV =0onI. Since W is homogeneous of degree
k/2, then
W(re) = r%\II(Q), for any r € [0,00), and # € SV 1\ ¥,

where ¥ =W, . Then from
S

P (M) + M Du0) + ag90)) =0, refoo), 058\ R,

we deduce that ¥ solves (2.8) with pu = w. O

Remark 2.4.3. The traces of eigenfunctions of problem (2.8) on both sides of ¥ (i.e. the
traces of restrictions to Sf 1 and Sﬁ ~1) cannot vanish identically.

Indeed, if an eigenfunction ¥ associated to the eigenvalue py is such that the trace of
‘Il’S-’]\_]—l on ¥ vanishes, then the function W (z) := |z|*/?¥(x/|x|) would be a harmonic function

in RV \ I satisfying both Dirichlet and Neumann homogeneous boundary conditions on the
upper side of the crack, thus violating classic unique continuation principles.

2.4.2 The blow-up analysis

Throughout this section we let w € H(Bg \ T') be a non-trivial weak solution to (2.1) with
f satisfying either (2.6) or (2.7), U = uo F € H'(B,, \ T') be the corresponding solution to
(2.23), ro be as in (2.48) and r; be as in Proposition 2.2.1. For all A € (0,79), let

WH(y) == Y for any y € By-1,, \ T (2.87)

For any A € (0,79) it is easy to verify that W* € H'(By-1,, \T) and W* satisfies

/\717‘1

[ AW o)dy [ o me)dy =0
)\717‘1
for any ¢ € H} 9B, 1 (By-1,, \T). In other words W* is a weak solution of
OBy-1,,

—div(A\)VIV) = A2f ()W, in By-1,, \ T,
ANV vt = AN)V- WA~ =0, onT,

for any A € (0,70). Since By C By-1,, for all A € (0,79), it follows that, for any A € (0,70),
[ AV Vo dy -3 [ FowWr e dy =0, (289)
Bl\F Bl
for any ¢ € H(%,@Bl (B; \ I). Furthermore by a change of variables, (2.87) and (2.58),
/N ) p(A0)|WA()|?dS =1 for every A € (0,7). (2.89)
SN

Proposition 2.4.4. Let W* be as in (2.87). Then {W>},¢(0,r) is bounded in H'(By \ I).
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Proof. We have

A2-N 2 dng(N)
VW2 dy = VU P dy < ——— N\ 4+ —1
/Bl\f| 2dy Hm/&\f' WPy < =g N0+ =

by (2.32). Then thanks to (2.81), (2.31), (2.48), (2.29), (2.17), and (2.89) we conclude. [

The following proposition is a doubling type result.
Proposition 2.4.5. There exists a constant Cy > 0 such that for any X € (0,%2) and T € [1,2]

1

G H(TN) <HQ) < CLH(TN), (2.90)
1
[ WPy < 2o [ )P ay, (291)
BT Bl
and
[ v gPay <282y [ W) ay. (292
Br\T Bi\l'

Proof. From (2.81), (2.77), (2.63), and (2.48) we deduce that there exist two constants x; > 0
and kg > 0 such that, for any r € (0, ro),
2N (r) + K1 kKo

< < —=.
r r T H(r) r ~r

2 _ 2n4(r) _ H'(r)

Then (2.90) follows from an integration in (A, T'A) of the above inequality. Furthermore from
(2.90) we obtain that, for any A € (0,%) and T € [1,2],

AN C12V
L W@y = s [ 0Py < gy [ 00P

=2 [ WPy
1

In the same way (2.92) follows from (2.90). O

Proposition 2.4.6. Let M be as in Proposition 2.5.7 and W* be defined in (2.87). Then
there exist M > 0 and \g > 0 such that for any X € (0, \g) there exists T\ € [1,2] such that
AT\ € M and
VWA dS < M/ (VW £ W) dy. (2.93)
dBr, Br, \I

Proof. Since {W/\}AE(O,roﬂ) is bounded in H'(By\T') by Proposition 2.4.4, (2.91) and (2.92),
then
limsup/ (VWA + [WA?) dy < +o0. (2.94)
B\l

A—0t

By the Coarea formula, for any A € (0, %) the function

)= [ (VIR 4 AR dy
B\
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is absolutely continuous in [1, 2] with weak derivative
() :/ (VWA 4+ WP 2)dS  for ae. r € [1,2],
0By

where the integral [;p |IVIW|2dS is meant in the sense of Remark 2.3.3. To prove the
statement we argue by contradiction. If the conclusion does not hold, for any M > 0 there
exists a sequence {\, }nen C (0,79/2) such that lim, o Ay, = 0 and

/ (VW2 4 [ 2) dS > M/ (VW2 4 W) dy
OB B\

for any n € Nand r € [1,2] \ ﬁM, and hence for a.e. r € [1,2]. Hence
gy, (r) > Mgy, (r) for any n € Nand ae. r € [1,2].
An integration in [1, 2] yields

limsup gy, (1) < e M limsup gy, (2)

n—oo n—oo

hence
lim inf gy (1) < e limsup g, (2).
A—0+t A—0+

In view of (2.94), letting M — oo we conclude that

liminf [ ([VW*? +|WA?)dy = 0.
A—=0T JB\T

Then there exists a sequence {p, }ren such that We» — 0 strongly in H'(B; \T') as n — oc.
Due to the continuity of the trace operator v; defined in Proposition 2.2.4 and (2.18), this is
in contradiction with (2.89). O

Proposition 2.4.7. There exists M > 0 such that
/ IVWAA2dS <M for all X € (O,min {7’0’ )\0}) )
SN-1 2

Proof. Since

N3N H(\)
VIPATA 245 = 204 / VU (O)|? dS = TN / VIVAR S,
[, ITWT s = G V0O YN EOTT o, T

then, by (2.90), (2.91), (2.92), (2.93), and since 1 < T) < 2, for any A € (0, min {2, Xg}) we
have that

Lo oW s <2000 [ (VR W) dy
SN-1 BT)\\F
< 2N+1012M/ ~(|VWT>‘>\|2 + |WT)‘)\|2) dy.
B\l
Therefore we conclude thanks to Proposition 2.4.4. O
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Thanks to the estimates established above, we can now prove a first blow-up result.

Proposition 2.4.8. Let u € HY(Bg \T), u £ 0, be a non-trivial weak solution to (2.1),
with T' defined in (2.2)~(2.3) and f satisfying either (2.6) or (2.7), and let U = uwo F' be the
corresponding solution to (2.23). Let v be as in (2.82). Then

k
there exists kg € N such that v = 50. (2.95)

For any sequence {\p}nen with lim, o Ay, = 0 there exists a subsequence {\p, }ren and an
eigenfunction W of problem (2.8) associated to the eigenvalue puy, such that [V 2gv-1y) =1
and i
UOwy) — |y|"v (y) strongly in H*(B; \ T).
H(\n,) [yl

Proof. Let W* be as in (2.87) for any A € (0, min {2, \o}) and let us consider a sequence
{An}nen such that limy,_,o0 A, = 0. From Proposition 2.4.4 {WATx : X € (0, min {22, A\o})} is
bounded in H'(B; \ I'). Therefore there exists a subsequence {W)‘”kT*"k bren € HY(B\T)
and a function W € H'(B; \ T') such that WD W weakly in HY(B; \T). By
compactness of the trace operator 7, (see Proposition 2.2.4), (2.18), and (2.89), it follows
that

W?ds =1 (2.96)

0B1
and so W # 0 on By \ T.
By Holder’s inequality and (2.30) we have that, for every ¢ € H'(By \ T'),

2 [ FOuWA)o(0) dy| < Nz (1)

1
2 2
x</ ~|VW’\\2dy+/ yW*|2dS> </ ~|v¢12dy+/ ¢2d5> . (2.97)
Bi\I' 0By Bi\I' 8B1

By (2.31) and a change of variables we have that

-

2
~ N, N+2e
Ry (1) = Sxa ([ 1F0w)IF < dy)

1

- SN@EA&HJFHL%“(BA) —0 asA—0". (2.98)

From (2.97), (2.98), the boundedness of {W*} in H*(B;\I') (established in Proposition 2.4.4)
and of the traces (following from Proposition 2.2.4), we deduce that

lim A3 ; FOu Do, )Wk (1) (y) dy = 0, (2.99)
k—oo “kTAng g k= Ang

for every ¢ € HY (B, \f);
Let ¢ € HolﬁBl(Bl \I'). We can test (2.88) with ¢ to obtain

[ AT, ) VW (y) - Voly) dy
B\l

= ()\nkT)\nk>2 ~/B f(AnkT)\nk y)W/\nkT/\nk (y)qb(y) dy, (2.100)
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for any k € N. Since W™ s I weakly in HY(B; \T), by (2.15) we have that

lim A, T, ) VWD () Ve (y) dy = VW - Vody. (2.101)
k—o0 JB\T k Bi\T'

Therefore, for any ¢ € H&ﬁ& (B

1\ T') we can pass to the limit as k — oo in (2.100) thus
obtaining, in view of (2.101) and (2.

99),
/ VW - Vdy =0,
B\l

i.e. W is a weak solution of

—AW =0, on By \T,
oW _ow (2.102)
ovt — ov— '

We note that, by classical elliptic regularity theory, W is smooth in B; \f‘
In view of (2.87) and Propositions 2.4.6 and 2.3.7, by scaling we have that, for every
6 H'(B\ D),

[ AT, )T () - To(y) dy
B\’
O, [ F O T )W P ()6 () dy
1

= |, (AT, ) VW0 (y) - v) o(y) dS. - (2.103)

Thanks to Proposition 2.4.7 and (2.13) there exists a function h € L?(9B;) such that
(A, T, y) VW= Do (y) <) = b weakly in L*(9By), (2.104)

up to a subsequence. By the weak convergence W™ — ¥ in HY(B\T), (2.15), (2.99),
and (2.104), passing to the limit as £k — oo in (2.103), we obtain that

VIV - Védy :/ he dS (2.105)
Bl\F 8B1

for any ¢ € H'(B; \T). From the compactness of the trace operator 4, (see Proposition
2.2.4) and (2.104) it follows that

Hm [ (A T, ) VWD () ) WD () dS = [ hW dS.
k—oo JoB, k 9B

Therefore, recalling estimates (2.97), (2.98), and the boundedness of {W*} in H'(B; \ T),
choosing ¢ = WwAm Dy iy (2.103) and passing to the limit as k — oo, we obtain that

Im [ AN, T, o) VWD gD gy = [ v ds. (2.106)
k—oo /B \T k 0B,
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From (2.105) and (2.106) it follows that

lm [ A, T, y) VWD gD gy = / VW dy
k—00 JBI\I k B\l

and so, thanks to (2.15),

WD 5 W strongly in HY(By\T). (2.107)

For any k € N and r € (0,1) let us define
D) i= 72 [ (AT, ) VDo o
A\

s An, T
- (AnkTAnk)2f(AnkT)\nky)’W k Ank ’2) dy7

. . 1-N Ay o, 12 _ Dy(r)
Hy(r) =r 8BTM(/\nkTAnky)’W RO 2dS, and Ny(r) == ADH
By a change of variables it is easy to verify that, for any r € (0, 1),
D D(\, T)\n r
Ni(r) = A A L ) :N(/\nkT,\nkr). (2.108)

Hy(r) — H(An,Tx,,7)

For any r € (0,1), we also define

Hy (r) := rl_N/

0B

Dyy(r)
Hy (r)

The definition of Ny is well posed. Indeed, if Hy (r) = 0 for some r € (0,1), then we may
test the equation (2.102) on B, with W and conclude that W = 0 in B,.. Thanks to classical
unique continuation principles for harmonic functions, this would imply that W = 0 in By,
thus contradicting (2.96).

Thanks to (2.107), (2.97)-(2.98) together with the boundedness of {W*} in H'(B; \ I),
(2.15), (2.18), and Proposition 2.3.12, passing to the limit as k¥ — oo in (2.108) we obtain
that

W2dS, D (r) ::rQ—N/ VW dy and A (r) =

-\

Ny (r) = klin;ONk(r) = JEEON(/\%TMJ) =~ forany r € (0,1). (2.109)

Then Ny is constant in (0,1). Following the proof of Proposition 2.3.10 in the case f = 0
and g = 0 (where g is the function defined in (2.4)—(2.5)), so that A = Idy and p = 1, we
obtain that

2
o
2r ((faBr ’ o

dS> (faBT W2dS> - (faBr W dS)2>

(Jo, W2 as)”

0=Ny(r)> >0

for a.e. € (0,1). It follows that (faB,« %—VX

2 2

ds) (S, W2dS) = (fop, W5e dS) for ac.
r € (0,1), i.e. equality holds in the Cauchy-Schwartz inequality for the vectors W and %—VX in
L?(0B,) for a.e. 7 € (0,1). Tt follows that there exists a function ((r) such that

ow

ey (r) = ((r)W(r) for any § € S¥1\ ¥ and a.e. 7 € (0,1]. (2.110)
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Multiplying by W (rf) and integrating on S™~! we obtain
ow 9
/S G W0y ds =) [ wEor)ds,

so that ((r) = % = 1 by Proposition 2.3.2 and (2.109). Integrating (2.110) between

€ (0,1) and 1 we obtain that
W(r0) =r"W(10) = r"¥(0) for any # € SV 71\ ¥ and any r € (0, 1],

where ¥ = Wignv-1\5. Then ¥ € H(SN=1\¥); furthermore, substituting W (r) = r7¥(6) in
(2.102) we find out that ¥ is an eigenfunction of (2.8) with (y+ N —2)v as an associated eigen-
value. Hence by Proposition 2.4.2 there exists kg € N such that (y + N —2)y = w.
Recalling from Proposition 2.3.12 that v > 0, we then obtain (2.95).

To conclude the proof it is enough to show that W — W strongly in H (B \T)
(possibly along a subsequence). Since {WA"k }ren is bounded in H'(B; \ T') by Proposition
2.4.4, there exists a function W € H'(B; \T) and T € [1,2] such that WA — W weakly in
HY(B; \T) and Ty, — T, up to a subsequence.

Moreover, since {W)‘"kT*"k treen and {|VW)‘"’€TA’% |} ren converge strongly in L?(Bj) by
(2.107), they are dominated by a measurable L?(B;)-function, up to a subsequence. Similarly,
thanks to (2.90), we can suppose that, up to a subsequence, the limit

()\nkT)\ )
= 1li "k
C= o)

exists and it is finite and strictly positive. Then for any ¢ € C2°(B;) we have that

lim [ WA @)oy)dy = Jim T, [ WD, )6, 0) dy

k—oo J By

Tgnlk
H(\ TA
= lim T} = "k WA (y)g(Ty,, y) dy
k—oo Tk k

Ank

:TN\/E/B, W (y)p(Ty) dy—\// (y/T)o(y) dy,

thanks to the Dominated Convergence Theorem. By density the same holds for any ¢ €
L?(By). Tt follows that Wf"k — /W (-/T) weakly in L?(B;). Hence, by uniqueness of the
weak limit, we have that W(-) = /(W (-/T) and W — /(W (-/T) weakly in H'(B; \ T).

Furthermore

lim VWA ()P dy = lim T / VWA (Ty, )| dy
k—o0 Bi\I' k—oo Tk 1 \F
A"Ic
H(Ap, Ty,,) Ty A
= lim TV~ 27"'“/ VW An e (4)2d
k—>oo An H(Ank) - \F’ (y)| y

>\7Lk

=TV WPy = [ VOOV dy
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Then we can conclude that WA — W = /CW (-/T) strongly in H'(B; \ T'). Moreover, by
compactness of the trace operator ; (see Proposition 2.2.4), (2.18), and (2.89), we deduce

that [, W?2dS = 1. Then, since W (rf) = 7'%0111(0), we deduce that

ko

W (r6) = VCW (70 = (Ti> () = (Ti> W(r6)

and ¢ ¢
1 = 172 = — 2 = —
o, w=dS 5 Jop, w=dS Tho'
thanks to (2.96). Therefore W = W and the proof is complete. O

We are now in position of prove Theorem 2.1.2.

Proof of Theorem 2.1.2. Let us assume that Trjt u(z) = O(|z|*) as 2] — 0T, 2 € T, for
all k € N (a similar argument works under the assumption Trp u(z) = O(|z[F)). Letting
U = uoF, by the properties of the diffeomorphism F' described in Proposition 2.2.1, we have
that Trif U(z) = O(|z|*) as |z| — 0%, so that, for all k € N,

IATF Tt U g2y — 0 as A —= 07 (2.111)

On the other hand, if, by contradiction, u # 0, by Proposition 2.4.8 and classical trace
theorems there exist kg € N, a sequence A\, — 0T, and an eigenfunction ¥ of problem (2.8)
such that I N ol
Tr3 U )\n 2 2
. i L2(BinD) T -
ti OB _ e 0 (3], #0102

where the above limit is nonzero thanks to Remark 2.4.3. Combining (2.111) and (2.112) we

obtain that
lim 7‘]{()\71) =0 forallkeN,

n=c0 k
n

thus contradicting estimate (2.84). O

L2(B;nT)

2.5 Asymptotics of the height function

In dimension N > 3, we can further specify the behaviour of U(\-) as A\ — 07, deriving
the asymptotics of the function H()\) appearing as a normalization factor in the blowed-up
family (2.87). Let {Yj;}reni=1,..n, be the basis of L?(SN~1) given by Proposition 2.4.2. Let
N >3, u € HY(Br \T) be a weak solution to (2.1), with T' defined in (2.2)-(2.3) and f
satisfying either (2.6) or (2.7), and let U = uo F' be the corresponding solution to (2.23). For
any A € (0,79), k€ Nand i =1,..., Ny we define

Pri(A) == /SN*1 U(A0)Yyi(0) dS (2.113)
and
N — _ Vv Yi(y/lyl)
Thi(\) = /B A-1a0ve - dy
+/B f(y)U(y)Yk,i(y/!yl)der/aB (A—IdN)VU-é—‘Yk7,~(y/|y|)d5. (2.114)
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Proposition 2.5.1. Let ko be as in Proposition 2.4.8. Then, for any i = 1,..., Ny, and
r € (0,79],

ko / ko 2N +ko—4 [T _nij_ko
Pho,i(A) = A2 (7“ 2 SOko,i(T)‘i‘z(N_i_ko_Q)//\ sV i(s) ds

444444447/W3%“1Tki@)mg+qu?) as A - 0. (2.115)
2(N + ko — 2) Jo 0

koT_N+2_k0

_|_

Proof. For any k € Nand any ¢ = 1,..., N, we consider the distribution ¢ ; on (0,79) defined
as

20 G0y = [ 9O ([ FOOUOO) (0 dSy) i
[ A=1a0)V0 5 (g Vel Yk (/o) d.
Bro\I

for any w € D(0,19).
Since Yk ; € Li.(0,70) by (2.114), we may consider its derivative in the sense of distribu-
tions. A direct calculation shows that

k(A = AV TG () (2.116)
in the sense of distributions on (0,79). From the definition of (j;, (2.23), and the fact that
Y}, is a solution of (2.85) we deduce that

N-1
i) = T i) + S50k = G

in the sense of distribution in (0,7¢); the above equation can be rewritten as
_ _k 14k
—(ANTIE AT 20,(N)) = ARG (),

thanks to (2.86). Integrating the right-hand side of the equation above by parts, since (2.116)
holds, we obtain that, for every r € (0,79), k € N and i = 1,..., Nj there exists a constant
ck,i(r) such that

k

()‘_gSOk,i()‘)), = _)\_N+1_§Tk,i(>‘) —3

A\~ N+1-k <Ck,i(7“)+/ s34 4(s) dS)
A

in the sense of distribution on (0,79). Then ¢ ;(\) € VVI%)C1 (0,79) and a further integration
yields

Ori(A) = % <T_S<Pk7i(r) +/ S_N’Ll_ng,z‘(S) ds)

g)\g </ S_N+1_k <Ck,l(r) +/ tg_lT;w(t) dt) dS
A s

2N +k—4 [T _nii_k )
; = Tri(s)d
@k, (T)‘l_ 2(N+k;2)‘/)\ $ 2 k, (S) $

p—N+2-k E\-N+2-4
TONTE-_2)

+

Il
>
[SIES
N
ﬁ\
INIES

& ke i(r)
2(N +k—2)

— (ek,i(r)+/;t§—1“rk,i(t)dt). (2.117)
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Now we claim that, if kg is as in Proposition 2.4.8, then

k
the function s — S_N+1_70Tk072-(3) belongs to L*(0,70). (2.118)

To this end we will estimate each terms in (2.114). Thanks to (2.15), Holder’s inequality, a
change of variables and Proposition 2.4.4, we have that

Y Y,
/ (A —T1dy)VU - Vign-1Yy, (y/\y!)dy §const/ ~|yHVU!‘vSN Yio,i(y/1yDI
BT | BT Yl

1

2 2

Sconst</ ~|VU|2dy> (/ ~|vSN-1Yko,xy/wn|2dy)
B.\I' B,\I'

_ 2
< consts T s2 H(s) (/ VW E(y) 2 dy) < const sV 1/ H(s).
B\l

From Hoélder’s inequality, (2.30), (2.17), and Proposition 2.4.4 it follows that

[, dowoetsima s ([, o) ([, 15 oms)

1
2
< const s¥i% ( /B \F\VUPdwsN‘?H(s)) ( /B \frVYkO,i(y/ryDPdwsN—?)

< const sV +N+2E\/ (s).

Furthermore, in view of (2.15), for a.e. s € (0,79) we have that

[ (410390 Lyl as| < consts [ 90 aly/ls))] s
9B, [yl 9B

[NIES

and an integration by parts and Holder’s inequality yield, for any r € (0, ro],

T k, k
[ ([, IF0iato/ bl ) ds =742 [ 901Nt/
; o5, B\

T

+(N—2+k0> / smNHI- ( / ~|VU|\Yko,z-<y/|y|>|dS) ds
2 0 B\TI'
k?o T kO
< const (12 \/H(r —|—/ s 24/ H(s ds>,
< const (=% [H() + [*5 /0

reasoning as above. In conclusion, combining the above estimates with (2.95) and (2.83), we
obtain that, for any r € (0, ro],

r k 4e
“NH= |y ds < t( =2 H / —2 4w JH(s)d ) 2.119
ko s < const|r r)+ S s)ds .
| R ) Vim+ [ VH(s)ds ) (2.119)
T 2N 4e
< const (r + / §N+2e ds) < const r N+2e
0
which in particular implies (2.118). By (2.118), it follows that, for every r € (0, 7],

ko [ _ko 2N + kg — 4 _N 1_7 kocy, i(r)r_N+2_k0
A , _ = - + T ds — 05
2 (’r 290k0,z(7”)+2(N+k0_2)/ S koz( ) S 2(N—|—k;0—2)

-0 (W) —0 (AN“’Z“) as A — 0F (2.120)
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k,
and s — 570*1’{,%1»(3) belongs to L'(0,79).
Next we show that for every r € (0,ro)

Ck:o i —|—/ Tko, t)dt = 0. (2.121)

We argue by contradiction assuming that there exists r € (0,79) such that (2.121) does not
hold. Then by (2.117) and (2.120)

ko
ko)\—N+2—7

o i(V) ~ | (ckm(r) v A £ () dt> as A s 0F) (2.122)

2(N + ko — 2

From Holder’s inequality, a change of variables, and (2.28)

T0 0 2
/ MV 30k i(VP dX < / AN=3 (/ W(A@)PdS) d\ = / U ‘2 dy < 400
0 0 SN-1 B’I‘O ’y‘

thus contradicting (2.122). Hence (2.121) is proved.
Furthermore from (2.119) and (2.121)

/tz_Tka()dt (2.123)
0

‘A—NH—’? (cko,i(r) +/ 31 (1) dt>‘ — AN+
A

Nio_Ro [N N oin
S)\—+—7/t—+o
0

k A
sﬁ/
0

Then the conclusion follows form (2.117), (2.121), and (2.123). O

k,
t—N+1—20Tk07i(t)‘ dt

k

t—N+1—konko,i(t)‘ dt =0 ()\1&+20> as A — 0.

Proposition 2.5.2. Let vy be as in (2.82). Then

lim »—27H(r) > 0.

r—0t

Proof. For any A € (0,79) the function U(\-) belongs to L2(SN¥~1). Then we can expand it
in Fourier series respect to the basis {Yj ;}ren i=1,.. n, introduced in Proposition 2.4.2:

oo N

=33 ori(\)Ys,; in L2 (SN,

k=01i=1

where we have defined ¢y ;(A) in (2.113) for any £ € N and any ¢ = 1,..., Nj. From (2.18),
a change of variables and the Parseval identity

oo Ng
H(A) = (1+0(})) /SM1 U(A0)dS = (1+0N\) D> iV (2.124)
k=01i=1

We argue by contradiction assuming that lim,_,o+ 727 H(r) = 0. Then by (2.124), letting kg
be as in (2.95),

lim A~ 2cpkoz()\):0 foranyi=1,..., Ny

A—0t 0
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From (2.115) it follows that

_ko 2N + ko —1 LA kg
ro 2 (Pko,i(r) + 2(]\74‘]’60—2)/0 s N+1-3 Tko,i(s) ds
kOT_N+2_k0 r ko
Yo i(s)ds = 2.12
+2(N+k:0—2)/082 ko.i(8) ds =0 (2.125)

for any r € (0,79) and any i = 1,..., N,.
In view of (2.87), (2.113), (2.119), and (2.123), (2.125) implies that

€ k
VEO) [ Wi 5dS = g1 i(0) = O(AF 77 ) as A 07 (2.126)
o

k e
foralli=1,..., Ng,. From (2.84) with o = N‘ff% we have that /H(\) > aﬁ)\%ﬂﬁﬂe

in a neighbourhood of 0, so that (2.126) implies that

/N WY idS = O(ATHE) = o(1) as A — 0F
.

forall i =1,..., Ng,.

On the other hand, by Proposition 2.4.8 and continuity of the trace map 7, (see Proposi-
tion 2.2.4), for every sequence A, — 07, there exist a subsequence {\,, } and ¥ € span{Yy, ; :
m =1,..., Nk, } such that

|9l p2@nv-1y =1 and W — @ in LA(SNh).

From (2.5) and (2.5) it follows that

0= lim WA W dS = ||‘I’||%2(SN—1) =1,

k—oo JSN-1

thus reaching a contradiction. O

We are now ready to prove he following result, which is a more complete version of
Theorem 2.1.3.

Theorem 2.5.3. Let N > 3 and let u € H'(Br \T) be a non-trivial weak solution to (2.1),
with T' defined in (2.2)—(2.3) and f satisfying either assumption (2.6) or assumption (2.7).
Then there exists kg € N such that, letting N be as in Section 2.3,

lim N (r) = @.

r—0+ 2

(2.127)

Moreover if Ny, is the multiplicity of the eigenvalue py, of problem (2.8) and {Yko,i}i=1,.--,Nko
is a L*(SNV~1)-orthonormal basis of the eigenspace associated to ko, then

ko

N Fu) 2@ and ATF (Vgpu) (V) = Vewp® i L3(B1) s A 07, (2.128)

Y
¢ = Z aiYko,i (|y|)



(a1,...,an, ) #(0,...,0) and, for alli € {1,2,..., Nk},
a; = r—ko/2 / W(F(r0)) Y, 4(6) dS
SNfl

kg
1 rf2-N-f gyt
* 2—N — ko /0 ( sN+k70—1 9N -2+ko Tko’i(s) ds (2.129)

for any v € (0,rg) for some ro > 0, where we have defined Yy, ; in (2.114) and F is the
diffeomorphism introduced in Proposition 2.2.1.

Proof. (2.127) directly comes from (2.95). Let U = uo F and {\,},en be a sequence such
that lim,,_,oo A, = 0. By Proposition 2.4.8 and Proposition 2.5.2 there exist a subsequence
{Any tren and constants az, ..., an, such that (ai,...,an, ) # (0,...,0) and

k

A2 Uney) — 9% Z Y, in H'(B,\T) as k —
Nk nky Y [e7R 8N} | ’ m ( 1\ ) as Q.

Now we show that the coeflicients aq, ..., « N, do not depend on {\, }nen nor on its subse-
quence {Ay, }ren. Thanks to the continuity of the trace operator v; introduced in Proposition
224

N

_ko 9
A2 Up) = Y iV in 2SN as b — oo

=1

and therefore, letting ¢y, ; be as in (2.113) for any i =1,..., N,

Ny,
Jim A~ 29%”()\ ) = lim A KO 2U (X 0) Yy i(0) dS = Za]/ Vi Yeoi S = ;.

N-1
k—oo JS =

On the other hand by (2.115)

_ko 2N + kg —4 _ko
hm)\ 230k07()\ ):’l" 290,6071'(7")4-2(]\]_1_]{0_2)/ s —N+1 2Tk07()d

k; _N+2_k0 T k.
+ OT— / STO?lTko Z(S) d87
2 ) 0 ’

forall i =1,..., Ny, and r € (0,79}, where we have defined Ty, ; in (2.114). We deduce that

ko ON 4 ho—4 [T oy ko
i =772 ppy i(r) + 2(N +k2—2)/0 STV g a(s) ds
k,OrfNJrQ ko r ko4
or T Tui(s)ds (2130
+2(N+k‘0—2)/052 koi(s) ds (2:130)

and so «; does not depend on {\, }nen nor on its subsequence {\,, }ren thus implying that
A~ U)\y —>|y[ Zal o, <‘ ’> in HY(B; \T) as A — 0. (2.131)
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To prove (2.128) we note that
A Fuda) = A FUNGN(), Y (A—?u(m)> —v (A"ZOU (Ax>) (G(@))Ja, (@),

where G)(z) = $F~!(Az) and F is the diffeomorphism introduced in Proposition 2.2.1. We
also have by Proposition 2.2.1 that

Gia(z) =2+ 0(\) and Jg(x)=1Idy+O())

as A — 07 uniformly respect to 2 € By. Then from (2.131) we deduce (2.128) and (2.129)
follows from (2.130) and (2.113). O
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Chapter 3

A regularity result for some
singular or degenerate elliptic
equations

3.1 Weighted Sobolev Spaces

In this section we recall some results about weighted Sobolev Spaces and fix some notations
that we will use in Chapters 3, 4, 5, and 6.
Let s € (0,1), N €N, N >2s and z = (z,y) € RV x [0,00). Let

RYT = RN x (0, 00),
and, for any r > 0,
Bf i={zeRYT 2| <7}, B.={zecR:z]<r}
SFi={zeRYt 2| =7}, S.:={zeRY:|z|=r}.

For any p € [1,00) and any open set E C Rf“, let
LP(E,y' 2% = {V : E — R measurable : / Yy TBVIPdr < —i—oo} .
E

For any Lipschitz open set £ C RN*1 and ¢ € C*(E) we define

6l gp-en = ( [, 976 + Vo) dz) (3.1

T

and H'(E,y'~2%) as the completion of C*°(E) with respect to the norm defined in (3.1).
Thanks to [93, Theorem 11.11, Theorem 11.2, 11.12 Remarks (iii)], for any r > 0, the space
HY(E,y'~2%) can be explicitly characterized as

HY(E,y'™%) = {w € I/Vlijcl(E) : /+ y B (w? + |[Vw|?) dz < —1—00} :
B;

Finally, for any r > 0 we define the space

il"‘Hl(B;f"yl—2s)

Hy o (BFy' ) = {6 € C=(B}): ¢ = 0 on S}
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We observe that H'(B;},y'=2%) ¢ WHY(BY), hence, denoting as Tr the classical trace
operator from WH(BF) to LY(B.), we may consider its restriction to H'(B,", y*~2%); fur-
thermore, for any r > 0, such a restriction (still denoted as Tr) turns out to be a linear,
continuous trace operator

Tr: HY(B,y' %) — H*(B.) (3.3)
which is onto, see [29, 101], [89, Proposition 2.1], and [106, Theorem 2.8], where H*(B))
denotes the usual fractional Sobolev space.

Furthermore, denoting as Tr; the classical trace operator from WH1(BF) to LY(S;F), we
can consider its restriction to H'(B;F,t1729), still denoted as Try; from [111, Theorem 19.7]
and the Divergence Theorem one can easily deduce the following proposition.

Proposition 3.1.1. For any r > 0 there exists a linear, continuous, compact trace operator
Try : HY(B,y'72%) — LA(S)F, y*=%). (3.4)
For the sake of simplicity we will always denote Try(w) with w for any w € H'(B;F, y'=2%).

Proposition 3.1.2. [60, Lemma 2.6] There exists a constant Sy, > 0 such that, for any
r>0 and w € HY (B}, y'=2),

2

o\ = N-—2
</B’ |w|% dw) < Sns (/B+ y 72| Vw|? dz + o i /S+ y! T25? dS) , (3.5)

T

where 2% = N%N%
We recall the following Hardy-type inequality with boundary terms from [60, Lemma 2.4].

Proposition 3.1.3. For any r > 0 and any w € H' (B}, y'=2%)

(N—23>2/ yl_zslw(z)P &
2 B |2]2
2 N —2s
< 1-2s Z) ( )/ 1-2s, 2 i )
_/Bjy (Vw 2 dz + o Sjy w”dS. (3.6)

The following Poincaré-type inequality directly follows from (3.6): for all » > 0 and
we HY(B,y'™%)

4
(N — 2s)?

yl—stZ dz <
Bt

N -2
(7" yl_QS\VwP dz + i / Y252 dS) ) (3.7)
B 2 S

Remark 3.1.4. As a consequence of (3.7) and by continuity of the trace operator (3.4), for

every r >0
1/2
(/ y =22 ds +/ yl_zs]Vw\z dz)
St B}

is an equivalent norm on H'(B;,y!=2%).
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Foranyi=1,...,N+1,let e; = (0;;)j=1,. .N+1 € RN be the vector with i-th component
equal to 1 and all the remaining components equal to 0.

It is well known that, if w € WP (Q) with Q C RV*! open and p € [1, 00), then, for any
t=1,...,N+1land k € R,

/ lu(z + ke;) — u(x)|P </ ou
Qg ‘k|p ~Jalo

P
dr < 400,

Zi

where Q; = {z € Q : x4+ 7ke; € Q for any 7 € [0, 1]}, see e.g. [98, Theorem 10.55]. We
prove below an analogous result for the weighted space H'(B;F,y!=2%).

Lemma 3.1.5. For anyr >0, w € HY(B},y*"%),i=1,...,N, and k € R

1—9s|w(z + key) — w(2)]? / 1-2s
<
fyo v e iy e

2

w4, (3.8)

al'i

r,k,i
where By .= {z € Bl : 2+ 7ke; € B} for any T € [0,1]}.

Proof. For a.e. z € B;r 1i» by the absolute continuity of Sobolev functions on lines,

0

L ow
<
o |0z

i

1
(= + kei) — w(z)] = ’/ (= + Thed)dr (2 + rkes)| [K| dr.
0 T

Multiplying by y'~2* and integrating on B: . We obtain, by Cauchy-Schwarz’s inequality and

Fubini-Tonelli’s Theorem,

1_os lw(z + key) —w(z)]?
/B+ Y e dz

< / L2 (/1 ow
B:M 0

r,k,1
2

ow &

8332-

(z + Tke;)

2
1-2s
oz, dT) dz < /B " Y
which proves (3.8). O
We refer to [60] for the following result, which can be deduced from [111, Theorem 19.7].

Lemma 3.1.6. Let Tr be the trace operator introduced in (3.3). Then
(i) For anyr >0, f € 00’1(37{«") and w € HY(B;F,y'=%),
Te(fw) = (- 0) Tr(uw) (3.9)

(ii) For anyr >0, u € HY B}, y'7?%) and v € HY(B;},y**71), we have that uwv € W1(B}))
and
Tr(uv) = Tr(u) Tr(v). (3.10)

Proof. Let us first prove (i). If w € C*° (Biﬁ) then (3.9) is trivial; if w belongs to H(B;}, y'=2%)
there exists {¢n, }nen C C®(B;) such that ¢,, — win H' (B, y'72%) as n — oo. Furthermore,
for any f € COY(B), it is easy to see that ¢,f — wf in HY(B},y'72%) as n — oo . Then
(3.9) follows from the continuity of the operator Tr.
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We now prove (ii). If u € HY(B},y'=%%) and v € HY(B;,y*~1), the fact that uv €
WHL(B}) follows easily from Holder’s inequality. Moreover there exist {u, fnen C C(B)
such that u, — w in HY(B;,y'72%) and a sequence {v,}nen C C®(B;7) such that v, — v
in HY(B},4?*~1). One can easily verify that u,v, — uv in WH(B}F), so that Tr(u,v,) —
Tr(uv) in L*(BL). On the other hand, since by continuity of the operator (3.3) Tr(uy,) — Tr(u)
and Tr(v,) — Tr(v) in L?(B.), we have also that Tr(u,v,) = Tr(u,) Tr(v,) — Tr(u) Tr(v) in
LY(B.), so that necessarily Tr(uv) = Tr(u) Tr(v). O

For any r > 0, let

o)
H'Ys(B.) := {w € HY(B.) : aw € H¥(B.) for any i = 1,.. .,N} ,
Z;

see [48] for details on this class of fractional Sobolev spaces. We also consider the space

0
HX(Bf, %) = {w € HY(B,y'7%): % € HY(B},y'™%) for any i = 1,... ,N}.
(2

Proposition 3.1.7. Let Tr be the trace operator introduced in (3.3). For any r >0

Te(HZ(B,y' ™)) C H'"*(B)). (3.11)
Furthermore, for any w € H2(B,",y'=%),
Tr(Vyw) = V Tr(w), (3.12)
where V, = (%, %, cee %) denotes the gradient with respect to the first N variables.

Proof. Let w € H2(B;,y'=2%). Let us fix ¢ € C°(B.); then there exists a function ¢ €
C>®(B;} U B.) such that ¢(z,0) = ¢(z) for all z € B.. Let n € C°(B,) be a smooth cut-off
function such that 7 = 1 on supp . Then, denoting as @ the even reflection of w through
the hyperplane t = 0, @ = n € H'(RNT [¢t]172%) and g—i € H'(RN*L |t|'=2%) for all
i € {1,...,N}. Then, letting {p,} be a sequence of mollifiers and w,, = p, * w, from [91,
Lemma 1.5] it follows that w, € C®°(R¥*!) and, for all i € {1,..., N},

Qun _ - 00 00
8952- = Pn 8% 8%2

wy, — W and in HY(RNTL J¢[129).

Then, for any i =1,..., N,
o

Tr(w) 0 dx = Tr(w) 99 dr = lim wp(z, 0)8

Bl ZT; B! ZT; n—oo . /pr ZT;

= — lim 8wn(x,0)gb(a:,())dx:—/3, Tr(aw>¢d:c:—/B/Tr<aw>¢d$a

n—oo Jpr 0x; &%z 8.%'1

(z,0) dx

so that the distributional derivative in B]. of Tr(w) with respect to x; is Tr (g—;i) which belongs
to H*(B\.). Therefore we have proved (3.12), which directly implies (3.11) in view of (3.3). 0
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3.2 A regularity result and a Pohozaev-type identity

Let R > 0 and let v be the outer normal unit vector to Bj, on B}, that is v(z) = (0,...,0,—1)
for any x € Bj. We are interested in proving Sobolev-type regularity results for a weak
solution U € H (B}, y' =) of the problem

{ div(y'=2AVU) + y'=25c = 0, on Bf, (3.13)

lim, o+ y' "2 AVU - v =hTr(U) +g, on B,

under suitable regularity hypotheses on the matrix-valued function A and the functions ¢, h, g.
More precisely we make the following assumptions:

[ B(»)| 0 oF

A(z) = ( 0 a2 ) for any z € B}, (3.14)

Be WLOO(BE,RNXN) is symmetric, « € WLOO(BE,R), (3.15)

there exist A, Ao > 0 s.t. M|y]? < A(2)y -y < \aly|? (3.16)

for all z € FE and y € RN+

L2 LA
gEW ’N+2S(BR)’ hEW ’25(_81%)7 (317)
c € L*(Bf,y' ). (3.18)
Under this conditions, a weak solution of (3.13) is a function U € H' (B}, y*~2*) such that
/ S AV Vo de +/ P — / g+ h Te(U)] Te(¢) da, (3.19)
B Bf, Bp

for any ¢ € HS S+(BE,y1_25) see (3.2).
PR

The above definition is well posed since each term in (3.19) is finite, thanks to (3.5).
Our main result is the following theorem.

Theorem 3.2.1. Let U be a weak solution of (3.13) in the sense of (3.19). If assumptions
(3.14), (3.15), (3.16), (3.17), (3.18) are satisfied, then

ou
V.U e HY(B,y'™*%) and yl_Qsa—y € HY(Bf, y*™h) (3.20)

for allr € (0, R). Furthermore
1—288£

Ay HHl(Bﬁy?Sl)

< C (10 pr-e) + el g s + I8l o g ) 320

N2 (BY,)

Y

2 p—

for a positive constant C > 0 independent of U. More precisely, C depends only on N, s, r,

R7 Hhle,%(Bé); /\17 HAHWLO@(BER“’*DQ)'

As an application of Theorem 3.2.1 we prove a Pohozaev-type identity for weak solutions of

(3.13). To this aim we require that the matrix-valued function A satisfies, besides assumptions
(3.14), (3.15), and (3.16), also the condition

A(0) = Idy 41 (3.22)
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where Idyy; is the identity (N + 1) x (N + 1) matrix.
We first introduce some notation. Let
A(z)z - z A(z)z
u(z):=——=— and pf(z):=
B)= e B =6
B'(z) := B(z,0) for any = € By \ {0}.

We also define dA(2)&€, for every € = (£1,...,&n11) € RV and 2 € Bij%', as the vector of
RN*! with i-th component given by

for any z € Bi;g\ {0}, (3.23)

N+1

(dA(2)€€)i =

k=1

dagp,
8Zi

(2)énék, i=1,...,N+1, (3.24)

where we have defined the matrix A = (agp)p =1, N+1 in (3.14).
Remark 3.2.2. From (3.15), (3.16), and (3.22) it easily follows that

- 1 - -
pe C¥Y(BY), B € C™(BY), BeC"(BL RN, (3.25)

Jp € LO(Bf, RV div(8) € L= (B}),
B e L=(BR,RY), div(8') € L™(By),
where Jg is the Jacobian matrix of j.

Proposition 3.2.3. Under assumptions (3.14), (3.15), (3.16), (3.17), (3.18), and (3.22), let
U be a solution of (3.19). Then for a.e. r € (0, R)

T 172S|AVUV|2 dS

1-2s
Q/Sjy AVU-VUdS—T/Sjy

41 (divy(8)h + B’ - VA)| Te(U) 2 dz — - / | Te(U)|* dS’
2 /B, 2 /s,

+ / (divy(8)g+ B - Vg) Tr(U) dw — r/ gTr(U)dS’
B! Sy

1

=3 /B LY TEAVU - VU div(B) dz — /B LY VU - B)dz

1
_ / Y T (AVU) - VU dz + - / Y2 (dAVUVT) - B dz
B 2JBf
1—2s
2

where v is the outer normal vector to B;" on S}, that is v(z) = EE

Y B LAV VU dz, (3.26)
A

Remark 3.2.4. The two integrals in the first line of (3.26) must be understood for a.e.
r € (0, R) as explained in Remark 3.4.2.

The integrals over S/ in (3.26) can be instead understood in the classical trace sense.
Indeed, h € Wl’%(B;) by (3.17) and (Tr(U))? € W (By.) thanks to (3.20) and (3.11);
then h has a trace on S, belonging to L%(S;) and (Tr(U))? has a trace on S’ belonging
to Lﬁ(&’n), so that h(Tr(U))? has a trace on S’ belonging to L!(S’) for all r € (0, R).

Moreover g € W (B]) by (3.17) and Tr(U) € Whn (B).) thanks to (3.20) and (3.11);
then, on S/, g has a trace in LN (S7) and Tr(U) has a trace in L= (S1), so that g Tr(U)
has a trace on S’ belonging to L'(S%) for all r € (0, R).
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3.3 Regularity of weak solutions: proof of Theorem 3.2.1
For any r > 0 and ¢ € (0,7), we define
B:fé = {(z,t) € B : y > §}, S;; = {(z,t) € S} 1y > 6} (3.27)
We are now ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. For any r > 0 we denote
C,:= Bl x (0,7).

Let us fix 0 < r3 < 79 < r; < R with r9 small enough so that érz C B,‘fl U Bqﬁl. We will show
that U € H? (B,J,g, y'72%), eventually choosing a smaller 7.

We start by defining a suitable cut-off function n € C2°(B;, x [0,72)). We choose a cut-off
function p € C2°(B).,) such that 0 < p(z) < 1 for any z € RY and p(z) =1 on B], and a
function o € C2°(]0,72)) such that 0 < o(y) < 1 for any ¢t € R and o(t) = 1 if t € [0, r3].
Then we define

n(z) = n(z,y) = p(x)o(y). (3.28)

Then 1 € C(B], x [0,72)) and 0 < n < 1. For any ¢ € H*(B;.,y' %) we can test (3.19)
with n¢ obtaining

/ N [y 72nAVU - Vo + y 725 AVU - Vn ¢ dz + / N y " eng dz
B

1 1

= [ IWTHU) +glp Tr(0) o, (3:20)

thanks to (3.9) and (3.28). We would like to rewrite (3.29) as an equation for U; := nU. To
this end we observe that

div(y'=2U¢ AVn) = U¢ div(y* 2 AVp)
+ y1725¢ Avn VU + y1*25U Avn Vo € Ll(BrJ,rl) (330)

Letting B:rl s be as in (3.27), the Divergence Theorem yields

/ div(y'=2Us AV dz = -2 [ Uz, 8)6(z, 0w, 8) L (. 6) da,
B:—1;5 Bry 8y

where « has been defined in (3.14). Since g—Z(x,é) = 0 for any (z,9) € RN x [0,r3], passing
to the limit as § — 07 we conclude that

/ N div(y' =*U¢ AVn)dz = 0, (3.31)
B,

thanks to the Dominated Convergence Theorem and the fact that

div(y'~*U¢ AVn) € LY(B}")
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by (3.30). Furthermore

div(y' "2 AVn) = y' 7 |div(AVn) + (1y28)agz , (3.32)
and so, thanks to (3.28) and (3.18),
f:=Udiv(AVn) + U(1_2S)agz +2AVU -V +nc € L*(B;,y' ). (3.33)
In conclusion, combining (3.30), (3.31), and (3.32) we can rewrite (3.29) as
/B . YAV, -V dz + /B . Y2 fhdz = /B ) [h Te(Uy) + pg] Te(¢) dar (3.34)

for any ¢ € H'(B;},y'~%), in view of (3.9) and (3.33).

If we show that V,U; € H'(C,,,y'~2*) and yl_QS%—[g € HY(C,,,y**71), then we obtain
that V.U € H'(B;},,y' %) and y1*25%—g € HY(B}t,y**71), since n = 1 on Cy,. To this end
we use Nirenberg’s tangential difference quotient method [107], proving that the family of the
second incremental ratios is L2-bounded; see also [81] for the difference quotient method for
classical elliptic equations.

For any i = 1,...,N and k € R\ {0} and for any measurable function w on RY ™, we
define

(Ti,kw)(IE? y) - U)(.'L‘, y)

(ripw)(z,y) = w(r + kes,y) and  (Grw)(z,y) = ? :

If w = (wy,...,wyn41) is a vector of measurable functions we set

Ti,k(@) = (Ti’kwl, .. 7Ti,kwN+1)-

We can define 7;;, similarly for a matrix of measurable functions.
It is easy to see that 7,5 : L2 (RY ™ y'=2%) — L2(RY ™ 4'72%) is a well-defined, continu-

ous, linear operator, and the adjoint operator of 7; ;, with respect to the L? (Rf +1 y'=2%)-scalar
product is 7; .

Furthermore 7;j : Hl(Rf‘H,yl*zs) — Hl(RfH,yl*Qs) is a well-defined, continuous,

linear operator and, for any i = 1,..., N and any w € H' (B}, y'=2),
07 (W) (811))
— o = Tik ;
8.1:1' ’ axz

that is, the operator commutes with tangential derivatives. With a slight abuse of notation,
for any i = 1,...,N and k € R\ {0} we denote as 7, ;, respectively ¢, x, also the operator
7, k0(z) = v(x + ke;), respectively ¢ pv = %(Ti,kv — v), acting on measurable functions v :
RY — R and observe that 7; x, G  : WIP(RY) — WLP(RY) are linear and continuous for any
p € [1,00); furthermore, the adjoint operator of 7; i, is 7; .

It is easy to see that, for all measurable functions v, w,

Gix(vw) = Gk (v)Ti pw + v k(W) (3.35)

and (z + kei,y) — 2w(@,t) + w(z — kei, y)
wlx €Y wl{;’ AT L :(Ci,kOCi,fk)(w)(xvy)‘
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We note that the trivial extension of U; to Rf“ belongs to Hl(RfH,yl_zs) since U3 = 0
on B} \ C,,,; with a slight abuse of notation we will still indicate this extension with Uj.

i Let k| < \/r? —r3 —ry (we note that \/rf — 73 —ry > 0 since C,, C B;}). The function
¢ := (GikoGi,—k)(Ur) belongs to Hé e (B, y'2%) thanks to (3.28) and so its trivial extension,
’ Tl

still denoted as ¢, belongs to Hl(RfH,yl_Qs). Moreover by (3.2) we have that, for any
i=1,....N,

Tr (i (i —k(9))) = Gk (Tr(Gi k(D)) = Cie(Gir(Tr())). (3.36)
Therefore testing (3.34) with ¢ we obtain

/+y1_2s<i,—k(AVU1) - V(Gi—k(U1)) dz + / YUTEF (G o Gr) (Uh) dz

1 1

= [ Gonlo) TGV o+ [ G (B TH(U0) Tr(G o (U2) d, - (3.37)
thanks to (3.36). From (3.37) it follows that, for any i =1,..., N,
[ AT GorlU0) - TGk (U))

< [ Gk DV EklU) - V(GmsU)] d

1

4—/+ y | f (Ci,kOCi,—k)(U1)|dz+/ |G~k (pg) Tr((s,—1(Ur))| dz
B By,

1

16 Tr(ri e (U) TG (U) da
+ [ BTG (0) e (3.35)

thanks to (3.35) and (3.36). Now we estimate each term of the right hand side of (3.38). We
start by noticing that, thanks to (3.15), there exists a constant A > 0 (depending only on the
Lipschitz constants of the entries of A) such that

HCi,fk(sz)"g(RN+17RN+1) <A foralli=1,...,N, z € B/

719

and k € <T2 — \/'r% —r3, \/r% — 73— 7"2) , (3.39)

where \|C,;’_/1€(A)(z)HE(]RNJrl gy+1y is the norm of Ci—k(A)(2) as a linear operator from RN +1
to RN*1. Then by (3.39), Holder’s inequality and Cauchy-Schwarz’s inequality in RV+1,

L 9V (- (UD) - V(Goa(O)]
T1
< AV -k U gt 120 [V Gk O g ey - (3:40)
By Hélder’s inequality and (3.8),

- y N Gk o Giek) (U] d2 < fll g groe) IV Gk g2 yrsy - (3:41)
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Furthermore by (3.5) and Hoélder’s inequality

1
/341 G~ (pg) Tr(Gi - (U))l dx < K Mlpgll oz ) IV Gk U L2 (7, 120y » (3:42)
[ 16 Te(ri - (00) Tr(G (U)o
71
< SN Wl gy IV Tk OD 21, 20y IV (GO 2 12y, (3:43)
and

/B, [l T (Giy—k (D)) dov < S Il 5 IV (G h Oy, oy (3:44)

1

Putting together (3.38), (3.40), (3.41), (3.42), (3.43), (3.44) and (3.16) we obtain that

o

w2 o) ) IV GO g s

1
<A ”V(Ti,—k(Ul))HLQ(Bﬁrl,yl—QS) + HfHL2(B:r1,y1—zs) + S]%f,s ||ngW1 N2i\r
+ S0 bl ) IV kO g2 12

:(Af¥SN§HhmVL%(BhQHVNA“L%BEWLﬂﬂ

1
18 st g2 + S5Collall . (345)

12N
N+2s(By))
for some positive constant C, > 0 depending only on ||V pl| e B where we have used the
fact that ||V (7, _k(Ul))HLQ(B:rl’yl_gs) = ||VU1HL2(B:,17y1,25) since supp7; _(U1) C B U B,
for all |k| < /77 — 13 — ra.
Eventually choosing 1 smaller form the beginning, we may suppose that

M= S Wl > 0

by the absolute continuity of the integral. We conclude that for any ¢ = 1,..., N and any
j=1,....,N+1

{(@az()) k| < m_m} is bounded in LQ(Brt7 2.

J

It follows that, for any ¢ = 1,...,N and j = ,N + 1, there exist a function ¢;; €
L*(B}},y' %) and a sequence k, — 0 such that M — 1 j weakly in L?(B}},y'~%)

as n — oo. Furthermore, by (3.8), the family of functions {(Gi,—k, (U1)) : n € N} is bounded
in L2(B;},y'~?%) and so there exists a function ¢; € L*(B,}, y' %) such that {; _x, (U1) = ¢;
weakly in LQ(Bm,y1 25) for any i = 1,..., N, up to a subsequence. For any test function
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¢ € C(B;), thanks to the Dominated Converge Theorem,

oU,
B 0z

. _ 0 . _
= — lim /Bil UiGik, (¢) dz = /Bil Ula—Zidz— Pdz

n—oQ

and hence ¢; = %» ie. g, (U) = % weakly in LQ(B,TI,yl_QS), up to a subsequence.
Furthermore, for any ¢ € C°(B;t),i=1,...,N,and j =1,...,N + 1, we have that

(G, —k, (U1))

+ bijpdz = lim " D2, pdz
. 0¢ U1 0¢
— e (U2 gy = — 99 g,
nl—rgo Bj-l C’ kn( 1>62’j & /B;"1 0% 62]- &

that is, v; ; = a%j%' Therefore the distributional derivative of %—Z respect to the variable

zj belongs to L?(B;},y* %) forany j=1,...,N+1,and i =1,...,N, ie.

V.U € HY(B, y'~%). (3.46)

1—23)

Furthermore, estimate (3.45) and weak lower semi-continuity of the L2 (B, y -norm imply

that

HVxU1||H1(BT+1,y172s) <C <||VU1||L2(B;F1,y125) + ||f||L2(B;F1,ylf2s) + ||9||W1, 2N ;1)> (3-47)

N+2s (B

for a positive constant C'= C(N, s, ||A]] AL A, HVpHLoo(BJr )) > 0.
T1

WS (By,)
This also implies that Vx(yl_%aa—(‘{j) € L*(B;},y**~!) with norm estimated as above. To
conclude, it remains to show that %(yl_%a@—%) € L2(B},y*1).
To this aim we observe that, for any ¢ € C°(B), (3.34), the Divergence Theorem,
(3.14), and (3.16) imply that

yl—Qs 8U1 3(]5 dz = yl—QSaaUl g ? dz + yl—QSaﬁ%? dz
B, B Bl

ot ot Ot Ot \« Oy 0y «
_ _ 9,00 0U; ¢
_ 125 By 17, - x<¢>d_/ 1-2s ?d / 1-2s900U1
/ley V.U -V 5 z ;rly fa z+ ley 3y Gtaz
1 0o OU
- _ 1-2s = [ 3 zB - _1> .
/B;ﬁy @( divy(BV,U1) + f 2y Oy pdz

Thanks to (3.15), (3.16), (3.18), (3.33), (3.46), and Hoélder’s inequality, we then conclude that

0 oU 1 Oa OU
25—1 1-2s 1 : V.U 1 [2 + ,,1-2s
- - = — —d V B T + — = € B 5

which implies that %(yl_%%) € L*(B/,y** ') and hence



with H'(B;},y?~1)-norm estimated as in (3.47).
Since n =1 on Bﬁg we have thereby proved that

95 OU

1 1-2s 1-
v.,UeH (BT3,y ) and vy 8y

Hl (B"r

7’3’

25— 1)

and, in view of (3.33),

1—2587[]

V.U 2 +‘ H
Ve H}L]l(Bﬁ:,),y1 2|1 oy HY(B/f, y?s—1)

< € (10 gpr-se) + Nell g nsey + 911 (B%)) (3.48)

for a constant C' > 0 depending only on N, s, ri, r3, ||hHW1’%(B;%)7 AL, HAHWLOO(B;R(NH)Q).
Reasoning in a similar way we can show that, for any r € (0,R) and any = € B,
there exists 7, > 0 such that B; (z) C Bf, V,U € HYB} (2),y'"%), and y'"#9 €

Jy
HY(B; (z),y*!), where
Bl (z):={¢€ RYTL: |(2,0) — €] < 7y}

Then we can cover Bl with a finite family of open sets {B;" (;)}icr such that

V,U € HY(B} (z;),y" %) and y' 2 gU € HY (B (2;),y**™') forallicTI
' Y

T'g;l

and an estimate of type (3.48) is satisfied. Furthermore, letting B}, 5 be as in (3.27), it is easy

to verify that y'=2°A4 € C’O’l(BJr ) and y'=%c € L2(BE5) for any ¢ € (0, R), since the weight

y'=2% is Lipschitz continuous on BR s+ Then we may conclude that U € H 2(B;,F 5.yl %) for

any r € (0,R) and 0 € (0,R) by classical elliptic regularity theory (see e.g. [8() Theorem
8.8]).
Combining the above information we obtain (3.20) and (3.21). O

Remark 3.3.1. The regularity result of Theorem 3.2.1 applies also to problems of the form

—div(y' " AVU) + y' 720U + y*=%¢ =0, on B},
lim, o+ y' "2 AVU -v = hTx(U) + g, on Bh,

with ¢, h, g as in assumptions (3.17) and (3.18), and a potential b € LI (B, y'=2%), where
N +2 -2, ifsE(O,%),
W= AN 4, ifse (1),

Indeed if b € LqMS(BE,kaS) and U € Hl(BE,ylf%’), then bU € LQ(BE,kaS) in view of
Holder’s inequality and the following Sobolev-type embedding result.

Lemma 3.3.2. For any r > 0, HY(B},y'=%) C L% (B}, y'2%), where

—_— min{2N+2—25 2N+1}_ {QNJ%?S, ifse(0.1),
s -

N-2s "N-1 QN+l ifse(31).
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Furthermore, there exists a constant Ky, > 0 such that, for any r > 0 and any w €
HI(BTJZyles)’

2
- i 1 _ -
(/+y1—2s’w‘25 dz)2 < Ky, (2/ 1282 dz+/ Y12 V2 dz),
B} r< JB} Bt

_ {KN,Sa if s € (O, %) ,

Kno(2s — 1)rve,  ifse [L1).

where

Proof. The claim follows from a scaling argument, [64, Appendix A.1] and [111, Theorem
19.20], see also [120, Theorem 2.4]. O

3.4 Proof of Proposition 3.2.3

We start with a useful formula.

Proposition 3.4.1. Let U be a solution of (3.19). For a.e. r € (0,R) and for all ¢ €
(B4 ~)

/ Y2 [AVU -V + cdldz = 1/ y' "PAVU z¢dS+ [ [WTe(U) + g] Tr(¢) da. (3.49)
B T JSt By

Remark 3.4.2. By Coarea Formula

/ ‘yl_QSAVU-Zgb‘dz:/R (/ [y ave -2 g| dS> dr
B} E 0 \Jsf r '

It follows that the function f(r) := [g+ y' "2 AVU - 24 dS is well-defined as an element of
L'(0, R) and hence a.e. r € (0, R) is a Lebesgue point of f.

Proof. By density it is enough to prove (3.49) for any ¢ € C*°(B,). Let us consider the
following sequence of radial cut-off functions

1, if 0<|z|<r—1
mn(l2l) s= qnlr =), if r—5 <<
0, it |z| >

Testing (3.19) with ¢n, and passing to the limit as n — oo we obtain (3.49) thanks to the
Dominated Convergence Theorem, (3.9) and Remark 3.4.2. O

Proof of Proposition 3.2.3. The following Rellich-Necas type identity

div (yl_QS(AVU - VU)B — 2y 25(VU - ﬁ)AVU) = "2 AV - VU div(B)
28 VU div (y' 2 AVU ) + (d(y' "= A)VUVU) - B - 2J5(y' " AVU) - VU
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holds in a distributional sense in Bj,. In view of (3.14) and (3.13) the above equation can be
rewritten as

div (y' = (AVU - VU)B — 2¢' (VU - 8)AVU)
=y "2 AVU - VU div(B) — 2y' = %¢(8 - VU) 4+ y* = 2dAVUVU - 3
+(1- 2s)y1_28%AVU VU = 2J5(y "2 AVU) - VU (3.50)

with dA as in (3.24).
Let r € (0,R). By Theorem 3.2.1 an Remark 3.2.2, letting 5 = (f1,...,0n,a/n) (see
(3.14) and (3.23)), we have that

VU B = Vol (i ) + oyl € HY(BLy' ), (3.51)
In particular, to prove that 8%(th) € L*(B;,y'72%9), it is useful to observe that

0 9 1o
@(yUy) = @/QSéTy(y1 *Uy) + 25U,

and recall that 8% (yl_Qs%—(y]) € L3(B,5,y*1) by (3.20).
We observe that yU, = y**(y'=2°U,), with

y* € HY(BSy'™) and y'">U, € H(BS,y*™)

by (3.20); hence (3.10) implies that Tr(tU;) = Tr(t?*) Tr(y'=2U,) = 0, so that from (3.51),
(3.9), and (3.12) we deduce that

Te(VU - B) = Te(VoU - By, ..., BN)) + Tr (%yUy) — V, Te(U) - B (3.52)
From (3.13), (3.18), and (3.51) it follows that
div(y' "% (VU - B)AVU) = y' " %¢(VU - B) + y'"2*AVU - V(VU - B) € L'(B})  (3.53)
so that, in view of (3.50), (3.25), (3.18), and (3.51) we obtain also that
div (y' "2 (AVU - VU)B) € L'(B]). (3.54)

Applying the Divergence Theorem on the set B: 5 defined in (3.27) (and recalling from The-
orem 3.2.1 or classical elliptic regularity theory that U € H? (B;F 5)), we have that

/ | div(y" (AU - VU)B) dz = 7 / Y RAVU VU dS
B S’r,6

7,0
_ 52—28 /
/

Vr2_§2

with S5 as in (3.27). We claim that there exists a sequence &, — 07 such that

(2,9)
(. 0)

Q

(AVU - VU)(z,8)dz  (3.55)

_ on)
1- 2 25/ O[(l‘, n A . n = . .
im 0; - e 5n)( VU -VU)(x,d,)dx =0 (3.56)

n—oo

7‘27(5%
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To prove (3.56) we argue by contradiction. If the claim does not hold, then there exist a
constant C' > 0 and 7 € (0,7) such that

_os a(z,0)
512 /B; oy (AVU VU, 0) dr >

We may suppose that B. x (0,7) C B;" and integrating (3.57) in (0,7) we obtain

> Q

for any ¢ € (0,7). (3.57)

e T 9 a(z,y)
/B;yl QMAVU-VUdzzfo y' 2 (/ e )(AVU VU)(z, y)dx) dt

1
ZC/ —dt = 400,
0y

which is a contradiction since ZAVU - VU € LY(Bf,y' %) thanks to (3.25) and Hélder’s
inequality. Therefore passing to the limit as n — oo and § = d,, in (3.55) and taking into
account (3.54) we conclude that

/B vy " (AVU - VU)B) dz = r /S Y TRAVU VU dS (3.58)

for a.e. r € (0, R). From (3.53) and (3.49) it follows that
/ Y7 (VU - B)AVU) d=
/ =25y dz+/ yBAVU V(YU - B) dz
_ 1
,

LY
/ I=25(AVU - 2)(VU - 8 d5+/ [RTr(U) + g] Te(VU - B) dx

_9s|AVU - v|? /
_T/S,T =2 Mds+/B£[hTr(U)+g](vxTr(U).mdx’ (3.59)

thanks to (3.15), (3.23), and (3.52). We observe that §'h € Wl’%(B;,,]RN) in view of (3.17)
N

and (3.25) and (Tr(U))2 € WH~-2 (B) thanks to (3.20) and (3.11); then an integration by

parts on B yields

[ WOV T ) e = / 2. (') dz

_f r 2 r - iv . . 9 . .
—Q/S;,h’T(U)' ds 2/B;(d (B + B VR)| Te(U) 2 d (3.60)

Moreover (g € W (B!,RN) by (3.17) and Tr(U) € W (Bl) by (3.20) and (3.11),
hence, integrating by parts, we obtain that

V. Te(U) - (Bg) de = r [S g Te(U)dS' - /B (diva(8)g + F - Vo) Te(U) de. (3.61)

T

B!

Putting together (3.50), (3.58), (3.59), (3.60), and (3.61), we obtain (3.26). O
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Chapter 4

Unique continuation from the
boundary for the spectral fractional
Laplacian

4.1 Statement of the main results

In this Chapter we establish a unique continuation principle and derive local asymptotics
from a point zg € 9€ for the solutions to the following equation

(=A)*u=hu on 9, (4.1)

where s € (0,1), Q C RY is a bounded Lipschitz domain whose boundary is C*! in a
neighbourhood of g, N > 2s, h is a measurable function on 2 satisfying suitable summability
properties, (see (4.8)), and (—A)?® is the fractional Laplacian.

In order to introduce a suitable functional setting and give a weak formulation of (4.1),
we recall the definition of the spectral fractional Laplacian, which can be given in terms of
the Dirichlet eigenvalues of the Laplacian, see e.g. [37], [102] and [9]. From classical spectral
theory, the Dirichlet eigenvalue problem

—Ap = pp, inf,
p =0, on 0,

admits an increasing and diverging sequence {i}ren foy of positive eigenvalues (repeated
according to their multiplicity). Furthermore, there exists an orthonormal basis of L?(Q)
made of the corresponding eigenfunctions {¢g }ren 0} Every v € L?(2) can be expanded
with respect to the basis {¢ }rem 0} as

o0

v="> (v, o) 2Pk in L*(),
=1

where (v, op)2() is the L-scalar product, i.e. (vi,v2)r2(q) = [ v1ve da.
We introduce the functional space

H*(Q) := {v c L) : Zui(v,gok)%z(m < —I—oo}
k=1
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which is a Hilbert space with respect to the scalar product

(vi,v2)ms() = Y, (v, k) 12 (V2 0k) 120, V1,02 € HY(Q). (4.2)
k=0

A more explicit characterization of the space H?®(2) is provided by the interpolation theory,
see [26, Section 3.1.3], and [101] or Proposition 5.1.2:

H§(Q), if s € (0,1)\ {3},

HY(©) = [H(), LA = {HW o) e
00 , I &=

1

5

Here, denoting as H*({2) the usual fractional Sobolev space W*2(Q), H§(f2) is the closure of
C*(92) in H*(Q2), and

L u?(x
H(%Q(Q) = {u € HZ(Q): /Q de < —i—oo} , (4.3)

where d(z,09) = inf{|lz — y| : y € 9Q}. We recall that H5(Q) = H(Q) if s € (0, 3],
see [101]. Moreover, if s # %, the trivial extension by 0 outside 2} defines a linear and

continuous operator from H§(€2) into H*(RY), see [31, Remark 2.5 and Proposition B.1]. On

the other hand, the trivial extension defines a linear and continuous operator from HoléQ(Q)
into H'/2(RN), as one can easily deduce from estimate (B.2) in [31]. Then

v HE(Q) — H5(RY), (4.4)
- v, in €,
ViU =
{0, in RV \ Q,

is a linear and continuous operator.

It is easy to verify that, if v € H*(Q), then the series > % pi (v, o) 2()¢k converges in
the dual space (H?(€2))" to some F € (H*(Q2))" such that (. gy« (£, 0k)ms ) = 15(v; Pr) 12(0)-
Hence, for every v € H*(Q2), we can define its spectral fractional Laplacian as

(—A)v =Y uip(v, o) r2er € (H(Q)" (4.5)
k=1

Actually, the spectral fractional Laplacian is the Riesz isomorphism between H?*(Q2) endowed
with the scalar product (4.2) and its dual (H*(€2))*, i.e.

s () (=) 01, v2) e ) = (v1,v2)ms(q)  for all vy, v € HY(Q). (4.6)

The spectral fractional Laplacian defined in (4.5) is a different operator from the usual frac-
tional Laplacian defined by the Fourier transform as

F((=A)*0)(€) = [€[*0(€) (4.7)

for any v € S(RY). Indeed, the spectral fractional Laplacian depends on the domain (2
and it is a global operator in €2, while the fractional Laplacian is a global operator on the
whole RY. Moreover, the eigenfunctions of the spectral fractional Laplacian coincide with
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the eigenfunctions of the Dirichlet Laplacian, hence they are smooth up to the boundary if
Q is sufficiently regular; on the other hand, the eigenfunctions of the restricted fractional
Laplacian, defined by restricting the operator in (4.7) to act only on functions vanishing
outside 2, are only Hélder continuous, see [117].

Within the functional setting introduced above, we can give the notion of weak solution
o (4.1). To this purpose, we assume that

h e Whate(Q) (4.8)

for some € € (0,1). We note that it is not restrictive to assume ¢ small. In view of (4.6), we
say that a function u € H*(Q2) is a weak solution to (4.1) if

(u, ®)ms () = /Qh(x)u(x)qﬁ(x) dxr  for any ¢ € C°(Q). (4.9)

The right hand side in (4.9) is finite in view of (4.8), the Holder’s inequality, and the following
fractional Sobolev inequality

[0l 25 ) < Knvs 0]l sy for any v € H5(9),
where
ot . 2N
7 N —2s’
and s > 0 is a positive constant depending only on N and s, see e.g. [48, Theorem 6.5]
and [31, Remark 2.5 and Proposition B.1].
In order to establish a unique continuation property at a fixed point zg € 952, we need to

assume some regularity on the boundary of € near xg; more precisely, we assume that there
exist a radius R > 0 and a function g such that

g e CH(RYL R) (4.10)
and, up to rigid motions, letting z = (2/, zy) € RV~ x R,

00N By(zo) = {(2',zn) € Bi(xo) : zn = g(2')}, (4.11)
QN By(zo) = {(2/,2n) € Br(xo) : zn < g(2)}, (4.12)

where, for any r > 0 and z € RV,
Bl(z):={yeRN : |y —z| <r}. (4.13)

The spectral fractional Laplacian defined in (4.5) turns out to be a nonlocal operator on €.
As we intend to use an approach based on local doubling inequalities, which are deduced from
an Almgren-type monotonicity formula in the spirit of [79], it is quite natural to deal with
the local realization of the spectral fractional Laplacian. This is obtained by the extension
procedure described in [35] (see also [125] and [37]) which transforms (4.1) into a singular or
degenerate problem on a cylinder contained in a N + 1-dimensional space.
We define
Ca:=0Qx (0,400), 9rCq := 00 x [0,400), (4.14)

and -
H(:]L,L(CQ, y1—25) e CCOO(CQ U Q)H'”Hl(cﬂ,yl—Qs),
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ie. H&L(Cg,yl_zs) is the closure in H'(Cq,y'™2%) of C°(Co U ), see also Section 3.1 in
Chapter 3. Furthermore there exists a linear and continuous trace operator

Trq : Hy (Ca,y' %) — H¥(Q) (4.15)

which is also onto (see [37, Proposition 2.1]). Moreover, in [37] it is observed that, for every
v € H¥(), the minimization problem

min { y' 72|\ Vw(x, t) | de dt}
weH 1 (Cay' %) L/Cq
Tro(w)=v

has a unique minimizer H(v) =V € H& 1 (Ca,y'=2%) which solves

div(y'=2*VV) = 0, in Cq,
Trq(V) =, on  x {0}, (4.16)
V=0, on 99 x [0, +00),

—lim,,_, o+ kas%—‘; = ks N(—A)%v, on Q x {0},

where ks v > 0 is a positive constant depending only on N and s. Equation (4.16) has to be
interpreted in a weak sense, that is

g y' TEVV Vo dz = ks n (v, Tra(9))ms o) for all ¢ € Hy 1 (Ca,y' ™),
Q

in view of (4.6). Hence, if v € H*(Q2) solves (4.1), then its extension U € H&L(Cg,yl_%)
weakly solves

div(y'=2VU) = 0, in Cq,
Trq(U) = Q 0},
rq(U) = u, on Q x {0} (4.17)
U=0, on 99 x [0, +00),
—lim,,_o+ yl—Qs%—g = ks nhu, on Q x {0},
according to (4.16), namely
/ y!73VU - Vo dz = H&N/ huTro (@) dx  for all ¢ € HE (Ca,y'™2*). (4.18)
Cao Q ’

The asymptotic behavior at g € 992 of any solution U of (4.17), and consequently of any
solution u of (4.1), turns out to be related to the eigenvalues of the following problem

—divg(Oy 5 VsY) = p0y %Y, onS*
limg, . o+ Q}V_ff VsY -v=0, on¥, (4.19)
Y € Hyyq(ST, 0073,

where

S:={0=(0,0n,0n11) € RNTL |02+ 0% + 6%, = 1},
Sti={0=(¢,0Nn,0n11) €S: Ony1 > 0},
S/ = 8S+ = {9 = (9,,91\7,(9]\[4_1) €S: 9N+1 = 0},
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and v is the outer normal vector to St on §/, that is v = —(0,...,0,1). We consider the
weighted space

LA(ST,0N%) = {qf : St — R measurable : / ON U2 dS < —l—oo} :
S+
where dS denotes the volume element on N-dimensional spheres. In order to introduce the

space H. (ST, Q}V_ff) where problem (4.19) is formulated, we first denote by H'! (S+,9]1V_ff)
the completion of C°°(S+) with respect to the norm

1-2 2 2 1/2
190151+ g1y = < | N6 + 199 )dS> .
Then we define
Hlga(ST,052%) == {0 € H'(ST,05.%) : W(0,0n,0n11) = —W(0), —On,0n41) ). (4.20)

It is easy to verify that Hl;,(ST, G}ijf ) is a closed subspace of H'(S¥, H}V*ff ).
A function Y € H}y,(S*,04.%) is an eigenfunction of (4.19) if ¥ # 0 and

1-2s 1-2s
/S+ 0172 Ve - Vel dS = “/S+ 0L ZY U dS (4.21)

for all ¥ € Hl (St 0572

By classical spectral theory, the set of the eigenvalues of problem (4.19) is an increasing
and diverging sequence of positive real numbers {im }men fo}- In Section 4.7 we explicitly
determine the sequence {iim }men 0}, obtaining that, for all m € N'\ {0},

m? +m(N — 2s), if N >1,
o = (N = 23) | (4.22)
(2m —1)°+ (2m —1)(N —2s), if N=1.
Let, for future reference,
Vi be the eigenspace of problem (4.19) associated to the eigenvalue jin,, (4.23)
M,,, be the dimension of V;,, (4.24)

(Vi :m € N\ {0} and k € {1,..., M, }}L* (ST, 05°%)
be an orthonormal basis of such that {Y,,:k=1,...,M,,} is a basis of V,,. (4.25)

Remark 4.1.1. Let Y be an eigenfunction of (4.19) associated to the eigenvalue m? +m(N —
2s). Then Y can not vanish identically on §'.

Indeed, if Y = 0 on §', the function V(rf) := ™Y (#) would solve div(y'=2VV) = 0
on RY™! satisfying both Neumann and Dirichlet boundary condition on RY x {0}. This
would contradict the unique continuation principle for elliptic equations with weights in the
Muckenhoupt As class, see [79], [126], and [114, Proposition 2.2].

The main result of this Chapter is a complete classification of asymptotic blow-up profiles
at a point z¢g € 9 for solutions of (4.16) and, in turn, for the corresponding solutions of
(4.1).
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Theorem 4.1.2. Let N > 2s and Q C RN be a bounded Lipschitz domain. Let xo € O and
assume that there exist R > 0 and a function g satisfying (4.10), (4.11), and (4.12). Let u be
a non trivial solution of (4.1) in the sense of (4.9), with h satisfying (4.8). Then there exists
mo € N\ {0} (which is odd in the case N = 1) and an eigenfunction Y of (4.19) associated
to the eigenvalue m3 + mo(N — 2s), such that

AUz + 20) — |@|™0Y (|$|,O> as A — 0" in H*(B}),
x

where By := B} (0) has been defined in (4.13), u is trivially extended to zero outside Q as in

(4.4), and

Y(HI,GN,HNJFI), if(gN <0,

: (4.26)
07 Zf HN > 0.

Y (0,05, 0n41) = {
Unlike the analogous result for the restricted fractional Laplacian established in [47], the
order of homogeneity of limit profiles does not depend on s and it is always an integer. This
is a consequence of the regularity of the eigenfunctions of (4.19), see Section 4.7 for further
details. In particular, the eigenfunctions of (4.19), after an even reflection through the equator
On+1 = 0, turn out to be smooth thanks to [120, Theorem 1.1]; therefore, they are much more
regular than the solutions of the corresponding problem on the half-sphere appearing in [47]
and presenting mixed boundary conditions, which are responsible for a lower regularity.

Theorem 4.1.2 is proved by passing to the trace in the following blow-up result for solutions
of the extended problem (4.17).

Theorem 4.1.3. Let N > 2s and Q C RY be a bounded Lipschitz domain. Let xy € 90Q and
assume that there exist R > 0 and a function g satisfying (4.10), (4.11), and (4.12). Let U
be a non trivial solution to (4.17) in the sense of (4.18), with h satisfying (4.8). Then there
exist mo € N\ {0} (which is odd in the case N = 1) and eigenfunction Y of (4.19), associated
to the eigenvalue m3 4+ mo(N — 2s), such that, letting 2o = (o, 0),

z

AU Az 4 20) — |2[™0Y ( ) as A — 0% in HY (B, y'™2), (4.27)

2|
where Bf = {z = (x,y) € RY x (0,400) : |2| < 1} and U is trivially extended to zero outside
Ca.

In Theorem 4.6.1 a more precise characterization of the function Y appearing in (4.26)
and (4.27) is given, by writing it as a linear combination of the eigenfunctions Y, , with
coefficients computed in (4.134).

From Remark 4.1.1, Theorem 4.1.2 and Theorem 4.1.3 we deduce the following unique
continuation principles.

Corollary 4.1.4. Let N > 25 and Q C RY be a bounded Lipschitz domain. Let xo € 02 and
assume that there exist R > 0 and a function g satisfying (4.10), (4.11), and (4.12). Let u be
a solution to (4.1) in the sense of (4.9) and U be a solution to (4.17) in the sense of (4.18),
with h satisfying (4.8).

(i) If u(xz) = O (\:c — xo\k) as x — xqo for any k € N, then u =0 in Q.
(i) If U(z) = O (]z - (x0,0)|k) as z — (x0,0) for any k € N, then U =0 on Cq.

72



This Chapter is organized as follows. In Section 4.2 we recall some preliminary results
concerning functional inequalities and trace operators. In Section 4.3 we apply the local
diffeomorphism introduced in [12], see also [47, Section 2], to write an equivalent formulation
of problem (4.17) on a domain with a straightened lateral boundary in a neighbourhood of
xo, see (4.35). In Section 4.4 we study the Almgren-type frequency function associated to the
auxiliary problem (4.35) and prove its boundedness, which is used in Section 4.5 to develop
a blow-up analysis. Finally in Section 4.6 we prove our main results and in Section 4.7 we
compute the eigenvalues of problem (4.19).

4.2 Preliminaries

In this section prove some preliminary results concerning functional inequalities and trace
operators.

Remark 4.2.1. Since B;" C B x(0,+00), the trivial extension to 0 is a linear and continuous
operator from Hé S+(B,T, y'=2) to H&L(CB;‘,yl_zs) (see (3.2)).

Proposition 4.2.2. For every r > 0 the restriction to Hé S+(B;",y1_2s), (see (3.2)) of the
trace operator o

Tr: HY(B,y'™*) — H*(B,),
defined in Section 3.1, coincides with the restriction of Trp: to HS oF (B}, y'=2%). In partic-

ular, for every r > 0,

Tr(H] o (BF ,y'~>)) C H(B)).

Proof. By Remark 4.2.1, the operator Trp/, see (4.15), is well defined on H1 ( ,y'72%) and
TTB;(Hé o+ (B, y'=2%)) C H*(B.). Furthermore for every u € C°(B; UB’) we have Tr(u) =
»Wwr 1 2

= Trp: (u). By density we conclude that Tr and Trp, are equal on H, é st (Bf,y

*)-
O

u‘BLx{O}
The following inequality will be used to obtain estimates on the Almgren frequency func-
tion.

Proposition 4.2.3. Let wy be the N-dimensional Lebesque measure of the unit ball in RN
N
For anyr >0, ve HYB},y'72%) and f € L2s(B.) with e > 0, we have

_9s N —2s s
/Bl I Te(0)? de < n(r) (/B+ YV de + S /S+ Y2 2ds> (4.28)
where
(;4\75_;'_;?6) 45725
77f(7") = S sUJN ||f||L2 +E(B’) r N+2se | (429)

Proof. By the Holder inequality
9 9 4326 525
N(N+2se
/B/ SITr(v)[" dz < HTT(U)HB;(B;) HfHL%”(B;) WN< I e,
Then (4.28) follows from (3.5). O
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4.3 Straightening the boundary

Let 29 € 09, R > 0 and ¢ satisfy (4.10), (4.11), and (4.12). Up to a suitable choice of the
coordinate system, it is not restrictive to assume that

rg=0, ¢(0)=0, Vg(0)=0.

Proceeding in the same way of 2.2.1, we use the local diffeomorphism F' constructed in [47,
Section 2] (see also [12] ) to straighten the boundary of Cq in a neighbourhood of 0; for the sake
of clarity and completeness we summarize its properties in Propositions 4.3.1 and 4.3.2 below,
referring to [47, Section 2] for their proofs. We consider the variable z = (z,y) € RY x [0, o0)

with x = (2/,;2n) = (21, -+ ,xn). For future reference we define
Idy—1] 0 |0
My = 0 |—-1]0 |, Mjy:= < Id]g‘l _01 ) , (4.30)
0 0|1

where Idy_; is the identity (N — 1) x (N — 1) matrix.

Proposition 4.3.1. [/7, Section 2] There exist F = (I}, ..., Fyi11) € CHHRNTL RN+ gnd
ro > 0 such that F|B : By, — F(By,) is a diffeomorphism of class C*:!,
T0

F(2',0,0) = (2/,9(2'),0) for ally € RN71,

Ex(2,zn,y) =yn +g(@)  for all (', zn,y) € RV xR x R,
Fnii(y,t) =t, forall (x,y) € RY x R,

a(z,y) :=det Jp(z,y) >0 in By,

and

F({(z',zn,y) € B/, : an =0}) = 0.Co N F(B;), (4.31)
F({(z',an,y) € B/ :an <0}) =Ca N F(BY), (4.32)

where 0r,Cq is defined in (4.14) and Jp(z,y) is the Jacobian matriz of F. Furthermore the
following properties hold:

i) Jp depends only on the variable y and
Jp(@ xn) = Jr(y) = Idys1 + O(|z|)  as || — 07,

where Idn 41 denotes the identity (N 4+ 1) x (N + 1) matriz and O(|y|) denotes a matrix
with all entries being O(|z|) as |z| — 0F;

ii) a(y) =det Jp(z) =1+ O(]2']?) + O(zn) as |y'| — 0" and yy — 0;

o OF  OFn4i . OFyni1
iii) o —#—Oforcmyz—l,...,]\f and%-l.

For every r > 0, let
Q, = {(x/,xN,y) € B;L rxy < 0}, (4.33)
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so that F(Qy,) = Co N F(B}) in view of (4.32). If U € H&L(Cg,yl_zs) solves (4.17), then
the function

W=UoFeHYQ,,,y'"*) (4.34)
is a weak solution to
div(y' =2 AVW) = 0, i ,
A Sy (4.35)
—lim, o+ y Saa—y = ks, NhW, on Q, ,

where Q! = {(2/,zn) € B : zxy < 0} for all » > 0, A = A(x) is the (N +1) x (N + 1)
matrix-valued function given by

A(z) := (Jp(x)) " (Jp(@) ") |detJp(z)],

and B
h(x) = a(y)h(F(z,0)). (4.36)
As observed in [47, Section 2], A has C%! entries (al])iv;:l and can be written as
B , [ D@, zn) ‘ 0
A(w) = A(w al'N) = ( 0 ‘ Oé(IL",ZL‘N) ) (4'37)
with ) ‘
Idy—1 +O(|2']%) + Oyn) Ozn)
D(z' = 4.38
(@, zw) ( O(rn) TroP oy ) )

where Idy_1 is the identity (N — 1) x (N — 1) matrix, O(zy) and O(|2|?) denote blocks of
matrices with all elements being O(zy) as xx — 0 and O(|2']?) as |2/| — 0 respectively. In
particular, in view of (4.37)-(4.38) we have

an;(2',0) = ajn(2,0) =0 forallj=1,...,N —1. (4.39)

Having in mind to reflect our problem through the hyperplane yn = 0, we define

~ A if <0

A a) = | A 2N); BN = (4.40)
MNA(x', —a:N)MN, if zy >0,

~ D(x' if <0

D(, an) = (,x ’xN,)’ SN (4.41)
MyD(2', —xn) My, if xy >0,

with My, M} as in (4.30), and

G ) = al@ zyn), ifay <0, (4.42)
’ alr',—xy), ifzy >0,

where a(z) = det Jr(z). We observe that the Lipschitz continuity of A and (4.39) imply that
the entries of A are of class C%!. Furthermore, A is symmetric and, possibly choosing rg
smaller from the beginning,

~ 1 . o
||A($)H£(RN+17RN+1) <2 and §|Z’2 < A(x)z-2z < 2|Z|2 for all z € RNJrl? y €D

0’

(4.43)
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where |[-[| zga1 ga1y denotes the operator norm on the space of bounded linear operators
from RV *! into itself. We also observe that (4.37)-(4.38) imply the expansion

A(z) = Idyy1 +O(|z])  as |z| — 0F. (4.44)
Letting A and D be as in (4.40)-(4.41), we define
A(z)z - A —
wu(z) == L,zz and f(z) = (z)z for every z = (x,t) € B \ {0}, (4.45)
2| ((z)
and _
D S
B(z) = #(‘(f’);) for every y € By, . (4.46)
For every z = (21,...,2nv41) € RV and © € B, dA(x)zz is defined as the vector of RV+1

with ¢-th component given by

N+1

(dA(z)z2); = Y

k=1

8akh
8Zi

(¥)zpzg, i=1,--- ,N+1, (4.47)

where (axp)n 2, are the entries of the matrix A in (4.40).

Proposition 4.3.2. Let p, 8, and ' be as in (4.45)-(4.46). Then, possibly choosing r
smaller from the beginning, we have

S<u(z)<2 forany e B\ {0}, (4.43)
wz) =1+0(z]), Vuz)=0(1) as|z| =0 . (4.49)

Moreover 3 and ' are well-defined and
B(=) = 2+ O(2?) = O(zl) as |+ = 0*, (4,50)
Js(z) = A(x) + O(|2]) = Tdn11 +O(|2]), div(8)(z) = N + 1+ O(|z|) as |z] — 07 ,(4.51)
B(x) =z 4+ O(|z|?) = O(|z]), div(8)(z) =N +O0(|z|) as|z| =0T, (4.52)

Proof. (4.48) easily follows from (4.43). We refer to [47, Lemma 2.1] for the proof of (4.49).
As a direct consequence, § and /3’ are well-defined. From (4.50) and (4.51), whose proof is
contained in [47, Lemma 2.2], we derive (4.52), after noting that 3’ coincides with the first
N-components of the vector 3. O

Remark 4.3.3. From the Lipschitz continuity of A observed above and Proposition 4.3.2 we
have

TO? TO?

Ae CONBL RNV e ¢OY(B}), ; e C®\(B}Y), pe (B}, RN (4.53)

Jg € L®(BE , RVHDY) div(B) € L®(B;:), B € L®(B.,,RY), div(8) € L®(B.,).

T0? TO?
Remark 4.3.4. If v € H&’L(Cg,yl_zs), then (UOF)|Qr0 € HY(Q,,,y' %) by Proposition
4.3.1, and
(voF)(z) =0 forany z € {(z/,zn,y) € B/, : ay =0} (4.54)
in view of (4.31). Equality (4.54) is meant in the sense of the classical theory of traces for

Sobolev spaces; this is possible thanks to the fact that HY(E,y'=2*) ¢ WLY(E) for any
bounded open set £ C RY x (0, c0).
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If W is a solution to (4.35), let W be defined as follows

P {W(x,7$N7y)7 if (xla xN,y) € Q’rm (455)

W' zn,y) =
( " y) _W(xlv —.’EN,y>, if (xlvaay) € Br+0 and YN > 0.

For the sake of convenience we will still denote W with W. Letting h be defined in (4.36),
we also consider the following function

T B I: ) if I: € , )
Wz ) = W', on) ' (@, 2n) € O, (4.56)
h(z',—zn), if (2',zn) € B}, and 25 > 0.
It is easy to verify that W € H? (B;B, y'~2%) thanks to Remark 4.3.4 and
heWhate(B. ) (4.57)
thanks to (4.8), (4.36) and Proposition 4.3.1. Furthermore W weakly solves
div(y' =2 AVIWV) = 0, on B, (4.58)
— lim,,_,¢+ yl_Qs&%—V;’ = ks A Tr(W), on By, .

with & defined in (4.42), h in (4.56) and A in (4.40), namely

i

0

YAV -V dz = Ry n / RTr(W) Tr(@)dy for all ¢ € H ., (Bf:,y~2). (4.59)
By, *ro

Thanks to Proposition 4.2.2, (4.57) and the Holder inequality, the second member of (4.59)
is well-defined.

Remark 4.3.5. In [75, Theorem 2.1] it is proved that, if W € H'(B},y' %) is a weak
solution to (4.59) with A and h satisfying (4.37), (4.40), (4.53), (4.48), (4.57), then

V.W e H'(B},y'7*) and y”saaw c HY(BS,y*™1) (4.60)
Yy

for all r € (0,7¢). Furthermore

1—2887W

< C|W s

IV W g1 1) + \ y

for a positive constant ' > 0 independent of W. More precisely, C' depends only on N, s, r,
1 Hh”wl’%(Bi-o)’ Al ivvy:

Remark 4.3.6. If W € H' (B}, y'~2*) is a weak solution to (4.59), the regularity result (4.60)
and (3.4) ensure that, for all ¢ € H' (B}, y' %) and r € (0,7¢), y* =2 Tri (DV, W -2) Tr1 ¢ €
L'(S;}); moreover the function

r s /+ YDV - 2)édS
Sy
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is continuous in (0,79). Furthermore, since yl—QS%% € HY(B}, 4?71 for all r € (0,70) by
(4.60), for all ¢ € Hl(B;B,ylds) and r € (0,79) we also have ylfQS&%—V;y¢ c WhY(B}), so
that Trl(y1*255z%—vgy¢) € LY(S;F); moreover the function

ow
1-2s~
is continuous in (0, rg). We conclude that, for all ¢ € H' (B;g, y172%), the function

ow
1—28&7

YAV -2)6 =y T (DVLW - 2)g +y A

to
has a trace on S, for all r € (0,79) and the function
T /+ Yy TB(AVW - 2)¢dS
Sy

is continuous in (0, rg).

The following result provides an integration by parts formula which will be useful in
Section 4.5.

Proposition 4.3.7. Let W be a weak solution to (4.58). For all r € (0,79) and ¢ €
Hl (BT—J(—)’ y1—25)

~ 1 ~ ~
/+y1_23AVW-V¢dz = 7/ Y TEAVW - z)¢d5+ns,zv/ hTe(W) Tr(¢) dz.  (4.61)
B} rJsr B

r

Proof. By density it is enough to prove (4.61) for ¢ € C®°(B;). Let r € (0,79). For every
n €N, let

1, if 0<|z|<r—2,
M(2) = {n(r—z)), if r—3 <[z <
0, if |z >

Testing (4.59) with ¢n, and passing to the limit as n — oo, we obtain (4.61) thanks to the
integral mean value theorem and Remark 4.3.6. O

Remark 4.3.8. For all 7 € (0,70] and any v € H'(B;}, y'=2%), thanks to (4.28), (4.43) and
(4.48),

/ Y72V dz < 2/ y' "B AVY - Vudz — 2/1N5/ h| Tr(v)|? da:
B B A

N — 2s
+ 26N,5m;,(7) ( / y' | Vol dz + / Y =28 po? dS) .
B r S+

T

T

Therefore, if n;,(r) < ﬁ’

2 _ -
1-25),.12 1-2s 2
dz < —m4M8M ——— AVv - dz — s h| T d
/Bjy |Vo|*dz < T 2o () (/Bjy Vou-Vvdz — ky, /B; | Tr(v)| x)

2<N—23)"¢Ns77ﬁ(7“)/ 1-2s 2
: Suv*dS. (4.62
(1 2ryemp(r)r Jsr ¥V ! (462
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4.4 The Monotonicity Formula

Let W be a non trivial weak solution of (4.58). For any r € (0,79] we define the height
function and the energy function as

1 _
1 ~ ~
D(r) i= ——- y'THEAVW VW dz — kns | B TrW|*dx |, (4.64)
TN 2s B;L B!

respectively. Eventually choosing rg smaller from the beginning, we may assume that

1
n;,(r) < Tons for all € (0, 7], (4.65)

so that (4.62) holds for every r € (0, rg].

Proposition 4.4.1. Let H and D be as in (4.63) and (4.64). Then H € V[/'l(lj’cl((O,ro]) and

2 ow
! _ 1-2 +
in the sense of distributions and almost everywhere, where v is the outer normal vector to
Bt on S, ie v(z):= é Moreover, almost everywhere we have
2 ~
/ . 1-2 +
H'(r) =~ /S;F YIS (AVIV )W dS + H)O(1)  asr— 0 (4.67)
and 5
H'(r)==D(r)+ H(r)O(1) asr—0". (4.68)
r
Proof. The proof is similar to that of [47, Lemma 3.1] thus we omit it. O

Proposition 4.4.2. We have H(r) > 0 for every r € (0,79].

Proof. Let us assume by contradiction that there exists r € (0, 7] such that H(r) = 0. Then,
from (4.63) and (4.48) we deduce that W = 0 on S;F. Thus we can test (4.59) with W,
obtaining that

o=/
B+

r

—9s T ~ 1
YIS AW YW dz — Ky /B R TE(W)? de > <2 - /QN7S77,~1(7")> AL
thanks to (4.62). Then, by (4.65) we can conclude that W = 0 on B;; this implies that
W =0 on B;g by classical unique continuation principles for second order elliptic operators
with Lipschitz coefficients (see e.g. [79]), giving rise to a contradiction. O

The following proposition contains a Pohozaev-type identity for problem (4.58). For its
proof we refer to [75, Proposition 2.3], where a more general version is established exploiting
some Sobolev-type regularity results.
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Proposition 4.4.3. [75, Proposition 2.3] Let W be a weak solution to equation (4.58). Then,
for a.e. r € (0,79),

/S+ y1—2sAva VW dS — kN s /s' E| Tr(W)|2 ds’

N ) }
125|AV‘2’ vF g i / (divy(8")h + B’ - VA)| Te(W)|? dy
BT

+ - / =25 AV - Vde(B)dz—f/ 1228 1 (AVW) - VWV dz

:2 S+y

+;/+y1’25(dAVWVW)-5dz+ 28/ % S%AVW-VWdz, (4.69)
B}

where p and B are defined in (4.45), & in (4.42), B' in (4.46), v is the outer normal vector
to B on St ie v(z)= iy and dS’ denotes the volume element on (N — 1)-dimensional
spheres.

Remark 4.4.4. As in Remark 4.3.6, by the Coarea Formula we have
- 7o ~
| bmnEde = [ [ Rt ds') d.
B, 0 s,

hence p — [o h| Te(W)|2 dS’ is a well-defined L!(0, ro)-function, as a consequence of (4.57),
P
(3.5) and the Holder inequality.

Proposition 4.4.5. Let D be as in (4.64). Then D € I/Vli)’cl((O,ro]) and

D'(r) = or2s—N /+ Y
Sy

as r — 07, in the sense of distributions and almost everywhere.

Proof. By the Coarea Formula D € I/Vlicl((O, T0]) and

N — 2s

1-2s ’AVW i V’2
1

dsS+0 (N*w“iis) [D(r) + H (r)] (4.70)

D'(r) = (25 — N)r?s=N-1 ( / LY TRAVI VW dz — ki / h| Te(W)[? dw)
B} By

25— N
+r (/Ser

L2 AVW - VW dS — ki / h| Tr(W)|2dS’> (4.71)
St

T

a.e. and in the sense of distributions in (0, 7). Using (4.69) to estimate the second term on
the right hand side of (4.71), for a.e. r € (0,79) we have

D'(r) = (25 — N)r2s—N-1 (/ Ly AV VW dz — /-eN,s/ h| Te(W)[? dw)
B,

25 N(z /S e %VNW WP gy s / (divyw’)ﬁw.vﬁ>|Tr<W>|2dy)
By

r

-N / Y AVW - VW div(8) dz — = / Y2 5 (AVIW) - VWdz>

1
T JBt
1 1-2

/ Yy B (dAVWVW) - Bdz + ° / y' SAVW-VWdz>. (4.72)
rJBf roJBf H

G
M<

80



Furthermore, thanks to point ii) of Proposition 4.3.1, (4.42), (4.43), (4.48), (4.49), (4.50),
(4.51), and (4.62), we deduce that

p2e N[ g2 (25— N 4 div(B) + (1 - 25)S ) AVW - VW = 2J5(AVIW) - VIV dz
B

4 rQS—N—l yl—QS(dAVVW VW) X de — O(,r) TQS—N—l y1—28|vw|2 dz
B} Bf
N —2s

=0(1) [D(r) + H(r)} asr — 0%, (4.73)
where we used also the fact that dA VW VIV = O(1)|VW|? as 7 — 07 by (4.47) and (4.53).

In addition, recalling that h € Wl’%ﬁ(B;,l), from (4.28), (4.29), (4.53) and (4.62) it
follows that

e / (25 — N + divy(8))h + 8- VA]| Tr(W)|* da
B

/
T

~0 (r1+zv4i22ia> [D(r) N 5 250y (a70)

as 7 — 0%, Combining (4.72), (4.73) and (4.74), we obtain (4.70). O

For every r € (0,79] we define the frequency function

D(r)
= . 4.75
N =03 (1.75)
Definition (4.75) is well-posed thanks to Proposition 4.4.2.
Proposition 4.4.6. We have N € W, ((0,70]) and
N -2
N(r)>— i for every r € (0,79]. (4.76)
Furthermore, if v(z) := ﬁ is the outer normal vector to B;f on S;t and

(Jor v 2uW2d8) (fgr =2 AL 45) — ([0 y'=2WAVI - vas)”

(fs;* Y1251, T2 dS)2

V(r) = 2r

)

then
V(r) >0 forae. re(0,r) (4.77)

and, for a.e. v € (0,79),

N — 2s

25
N'(r) = V(r) = O <r—1+zv4+2sa> [N(r) + } as v — OF. (4.78)
Proof. Since D € VVI})’Cl((O,To]) and & € M/lig((o,ro]) by Proposition 4.4.1 and Proposition
4.4.2, then N € I/V&)’Cl(((),ro]). Furthermore we recall that (4.62) holds for every r € (0,7],
thus
N(r) > —kns(N — 2s)n; (1), (4.79)
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for every r € (0,79] and, in virtue of this, (4.76) directly follows from (4.65). Moreover (4.77)
is a consequence of the Cauchy-Schwarz inequality in L2(S;", y'72¢). From (4.67), (4.68) and
(4.70) we deduce that

D'(r)H(r) — D(r)H'(r) _ D'(r)H(r) — 5(H'(r))* + O(r)H (r)H'(r)

NO="""G@mr - (H(r)?
—V(r) + O(r) + O(r~ 7527 [N(r) X 5 2
n O(L(J:Qs) /S YAV )W dS (4.80)

as r — 0. In order to deal with the last term in (4.80), we observe that, for a.e. r € (0, rg),
/+ y T2 (AVW - )W dS = V72 D(r) + H(r) OV T2 asr — 07,
Sy

in virtue of (4.67) and (4.68). Thus, substituting into (4.80), we conclude that

N — 2s

N'(r) = V(r) + 00355 W) + 2

asr — 0T,

where we have used that 1\;15225 < 1 since € € (0,1) and N > 2s. Estimate (4.78) is thereby

proved. ]
Proposition 4.4.7. There exists a constant C > 0 such that, for every r € (0, rg],

N(r)<C. (4.81)
Proof. From (4.77) and (4.78) we deduce that there exists a constant ¢ > 0 such that

N — 2s

N - 28)’ 452

(N(r) +— > —cr N2 (N(r) + ) for a.e. 7 € (0,71), (4.82)

for some r; € (0,79) sufficiently small. Hence, thanks to (4.76), we are allowed to divide each

member of (4.82) by N (r) + £52, obtaining that

4325

N -2 !
(log (N(T) + S)) > —cr TNRe forae. e (0,1).

2

Then, integrating over (r,r1) with r < r1, we have

N -2 N + 25 Ls2e N-—2
N(r)< - 5 5 + exp (c;_z;grfv““> (./\/(7’1)—}— 5 S) for every r € (0,71),

which proves (4.81), taking into account the continuity of N in (0, ro]. O

Proposition 4.4.8. There exists the limit

v := lim N(r). (4.83)

r—0+

Moreover v is finite and v > 0.
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Proof. Combining (4.81) and (4.82), we infer that

N—2s)’

5 (4.84)

525 —_—
<N(r) + > _eptNiEE <C’+ N 28)

2
for a.e. r € (0,71), hence

<N—2s
2

N —2s N + 2se  _as%c
+N(r)+c< + >

/
1 rN+2se) >0 forae. rc (0,7‘1)-

From this, it follows in particular that the limit v in (4.83) exists. Moreover, by (4.76) and
(4.81) ~y is finite, whereas (4.79) implies that v > 0. O

Proposition 4.4.9. There exist cy,¢ > 0 and 7 € (0,r9) such that
H(r) <cor®?  for all v € (0,70] (4.85)

and
H(Rr) < R°H(r) forallR>1andr € (0,%]. (4.86)

Furthermore, for any o > 0 there exists a constant c, > 0 such that
H(r) > ¢, for all r € (0,70). (4.87)
Proof. By (4.83) we have N (r) =~ + [y N'(t) dt; hence from (4.68) it follows that

H'(r)
H(r)

= %N(r) +0(1) = i/OTN’(t) dt + 277 +O(1). (4.88)

From (4.84) and up to choosing 71 smaller, it follows that, for a.e. r € (0,77),

! 2
H'(r) > o e n 2y

H(r) — r

for some positive constant £ > 0. Then an integration over (r,r1) yields
H(rl)) N + 2se 452 4s2e r\ 2"
lo > —k——— | r{'T? —rNt2se lo ()
& ( H(r)) — 4s%¢ L Tlog T

H N +2 452
H(r) < (r1) exp </<c+ 857’]\”2“) r2

and thus

r%y 4528 1

for all » € (0,71], thus implying (4.85) thanks to the continuity of H in (0, 7).
To prove (4.86), we observe that (4.88) and (4.81) imply that, for some 7 € (0,ry) and
&> 0,

<& forallre (0,7),
,

whose integration over (r,rR) directly gives (4.86).
In view of Proposition 4.4.8, for any o > 0 there exists r, € (0, 7] such that

H 2 2
H((:)) = ;N(T‘) +0(1) < 7:_ 7 forallre (0,74].
Integrating over (r,r,) and recalling that H is continuous in (0, o], we deduce (4.87). O
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Proposition 4.4.10. There exists the limit lim,_,o+ 7~2YH(r) and it is finite.
Proof. By (4.85) it is sufficient to show that the limit does exist. In view of (4.68) we have

™\ r2H'(r) — 2yr2 " H(r
(F) = =2 0 (D) - 1) + 2 0WH()
=272 H (1) (N (1) — v + 1O(1))

= 2r 7 H(r) (/0[ "(t) = V(1] dt+/0TV(t) dt+r0(1))

as r — 07, Integrating over (r,7) with 7 € (0, rg) small, we obtain that

ig) - %Z) = / T2 () ( /0 Vi) dt) dp

+/ [ 20~ H (5O + 20~ 1H(p) (/0’” V(1) — V(D)) dtﬂ dp. (4.89)

Letting
p
f(p) :=2p"*"H(p)O(1) +2p~*""'H(p) </O (NV'(t) = V(1)) dt) :
from (4.78), (4.81) and (4.85) it follows that f € L'(0,7) and hence there exists the limit

im [ o) do= [ 7)o <+

r—0t r

On the other hand, in view of (4.77), there exists the limit

lim / 20727 H (p) (/ V(t dt)
r—0t

Therefore we can conclude thanks to (4.89). O

4.5 The blow-up analysis

In the present section, we aim to classify the possible vanishing orders of solutions to (4.58).
To this purpose, let W be a non trivial weak solution to (4.58) and H be defined in (4.63).
For any A € (0, ], we consider the function

VA(2) = : (4.90)

It is easy to verify that V* weakly solves

div(y' =2 A(\)VV?) = 0, on BT N1
—lim, oyt BEN) B = ko N AZPR(A) Te(VY),  on B,

where we have defined & in (4.42). It follows that, for any A € (0, ro],

N Y TEAN)VV - Vhdz — kg nAZ /B R(A) Tr(V) Tr(¢) dy = 0 (4.91)
1
for every ¢ € HS o+ (B, y'72%), (see (3.2)). Furthermore by (4.63) and (4.90)
W1
/ 0L 2 ()| VA(O)[2dS =1 for any A € (0, 70, (4.92)

84



Proposition 4.5.1. For every R > 1, the family of functions {V* : X € (0, Z1} is bounded
in H'(Bjy,y'~%).

Proof. By (4.62) and (4.86), for all A € (0, %] with 7 as in Lemma 4.4.9, we have

2s—N 25—NRE

A
1-2s 2 1-2s 2
y VIV dz < 7/ y VI dz
/B+ H(AR) JBt,
N —2s)REN =25k oni (AR)
1 —2kNsm7 (AR) ’

A
1-2s A2

Vi dz =
L+ y | | H()\) te

2RE+N—25
<
- 11— 2/€N,s77]}(>\R)

R

N(AR) + 2

which, together with (4.65) and (4.81), allows us to deduce that {VV* : X € (0, %]} is
uniformly bounded in L?(B#,y'~2). On the other hand, (4.48), a scaling argument, and
(4.86) imply that

AN —It2s H(R)) :

1-2s A2 1-2s 2 N+1-2s N+1-2s+c
as=2 = ds <2 U

/s+y VAdS = =505 /5+ y WS < 2R oy =2 ’

R RA

so that the claim follows from (3.7). O

Proposition 4.5.2. Let W be a non trivial weak solution to (4.58). Let ~ be as in Proposition
4.4.8. There exists mo € N\ {0} (which is odd in the case N = 1) such that

v = mo. (4.93)

Furthermore, for any sequence {\,} such that X\, — 07 as n — oo, there exist a subsequence

{An.} and an eigenfunction ¥ of problem (4.19) associated with the eigenvalue fim, = mg +
mo(N — 2s) such that ||\I’||L2(S+’9]1fo) =1 and

W (An,2)

H(An,)

z

— 2|7 ( > as k — 400 strongly in H (B, y'%). (4.94)

||

Proof. Let W be a non trivial weak solution to (4.58) and {A,} be a sequence such that
An — 07 as n = +o0o. Thanks to Proposition 4.5.1, there exist a subsequence {\,, } and
V € HY(B{,y'~%%) such that

VA =V weakly in HY(B]",y' %) as k — +o0. (4.95)
For sufficiently large k we have \,, € (0,70) and thus B C B;B/)\nk’ hence from (4.91) we
deduce that
/ LY A )YV Ve dz = Rr N A / B(Any ) Te(VAm) Tr(¢) dy (4.96)
B By

for every ¢ € HS o+ (Bi,y'72%) (see (3.2)). In order to study what happens as k — 400, we
w1

notice that the term on the left hand side of (4.96) can be rewritten as follows
/ Y2 AN, )V VA% - Vg dz
By

= /B N Yy 2 (AN, ) — TdN 1) VV A% - Vo dz + /B LYUEVVAN - Veda  (4.97)
1 1
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Therefore, in view of (4.44), Proposition 4.5.1 and (4.95), we conclude that

lim YA, )VV A% - Ve dz = / y!TBVV - Ve dz. (4.98)
k—+oo Bfr B1+

As for the right hand side in (4.96), we have

ok ﬁ(Ank-)Tr(VA“k)Tr(eﬁ)dy‘<A2k"h( )1
1

(1

D=

1

1
—2s : —2s N —2s —2s
y' V<z>|2dy> ( /. YTV de L %fllv%w?dé?) (4.99)

thanks to Holder’s inequality and (4.28). By (4.29) and the change of variable z — X, z, we
obtain that

2

4s5%¢
2s — N(N+2se) 2
)\ knh( )(1) == SN,sw]]\\; N+2 )\ s ||h( Nk )HL2 +5 B/)
4328 4325
N(N+2se) N+2se
= SNs W || ||L2 +E(BAnk)>mk . (4100)

Putting together (4.99) and (4.100), thanks to Proposition 4.5.1, (4.92), and (4.48) we infer

that
lim )\25/ R(An,-) Te(V%) Tr(¢) dy = 0. (4.101)

k——+o0

Passing to the limit as & — +oo in (4.96) we conclude that V' weakly solves the following
problem:

div(y!=2VV) = 0 in By
{ lv(y ) ? m 1> (4102)

lim,, o+ yl—zs%—‘; =0, on Bj.

In particular V is smooth on B; and V # 0 since, by (4.49), (4.95) and the compactness of
the trace operator in (3.4), (4.92) leads to

/S ONEVEas = 1. (4.103)
Now we aim to show that, along a further subsequence,
VA — V' strongly in HY(Bf,y'~%) as k — +oo0. (4.104)
To this purpose, we first notice that a change of variables in (4.61) yields
/ N Y ANy ) VYV - Ve dz — / . 0N AN, ) VVA - 2 ¢dS
B s
— ko NAZ / iy ) Te (V) Tre(@) dy  (4.105)

for any ¢ € HY(B{",y'2%) and k sufficiently large.
From Proposition 4.5.1 and the regularity result contained in [75, Theorem 2.1] and re-

called in Remark 4.3.5, it follows that {V,V*"} and {y'~2° %} are uniformly bounded
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in k in the spaces H'(B{,y'7%%) and H' (B ,4?*~!) respectively. Then, by the continuity
of the trace operator Try from H'(Bi,y'~2%) to L2(S+,9]1V_ff) and from H'(Bj, 3?7 1) to
L2(S*,0%71), we have that {Tr; (V,V*")} is bounded in (L*(ST, H}fo))N and {y1*25%}
is bounded in L*(ST,6%7;]). Therefore

2

An
oV "k S

1=25 |1 Ang 2 G — 1-25 |5 17ng |2 25—1 | g1—2s
/S+0N+1‘VV k| dS—/S+0N+1‘v$V d d5+/8+91v+1 N~

is bounded uniformly with respect to k. Taking into account (4.44), it follows that there
exists f € L?(ST, H}fo ) such that, up to a further subsequence,

A(Mp, )VV % .z —~ f weakly in L3(ST, G}V_ff) as k — +o0. (4.106)

Thus by (4.98) and after proving (4.101) when ¢ € H*(Bj,y!72%) with the same argument
(i.e. combining (4.28) with (4.100)), passing to the limit as & — +o0 in (4.105) we obtain
that

1-2s _ 1—2s
/ny VYV - Védz = /S+ 0L-% 6 dS (4.107)
for any ¢ € H' (B, y'~2%). Furthermore, by (4.106), combined with (4.95) and compactness
of the trace operator in (3.4), we have

lim YL AN, )YV 2 VA% dS = [ 41725V dS. (4.108)
k—+oco Js+ S+
Hence, testing (4.105) with VA itself, taking into account (4.108), using (4.101) with ¢ =
VA and passing to the limit as k — 400, we deduce that

im [y 2 AN )YV VA dz = / Y2 FV S,

k—4o0 BIF S+

which, by (4.107) tested with V/, implies that

lim Yl AN, ) VV A% - TV dy = / LY TEIVV P (4.109)
B

+
k—+o00 B ]

Writing the left hand side in (4.109) as in (4.97), by (4.44) and Proposition 4.5.1 we infer
that
lim y' VAP dz = / y' | VV|2dz.
k—4o00 Bi* BI"
This convergence and (4.95), allows us to conclude that VVA% — VV in L*(Bf,y'~2%). In
conclusion, combining this with the compactness of the trace operator given in (3.4), (4.104)
easily follows from Remark 3.1.4.
For any r € (0,1] and k € N we define

1 —4S
Hy(r) = e [, v OV P

r

1 - ~
Di(r) = o (/Bﬂl_zsA(,\nk.)vwnk VVAdz — kg NAE /B/h()\nk-)| Te (V)2 dy> :
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and
1

1
o ,_ 1-2s7,2 __ 1-2s 2
v(r) = FN+1-2s /S;f y VEdS, Dy(r) = N—2s /Bi y TIVV[Tda.

By Proposition 4.4.2 in the case h = 0, A = Idy4; and g = 1, it is clear that Hy (r) > 0 for
any r € (0,1]. Thus the frequency function

>

Nv(T') = HZE:;

r € (0,1]

is well defined. Furthermore by (4.83), (4.104), a change of variables, and a combination of
(4.28) and (4.100), we have

: _ Dy(r)
= = = 4.11
0% kglfooN(”\”kr) kgrfm H(r) Ny (r)  for any r € (0,1] (4.110)

and hence N, (r) = 0 for a.e. r € (0,1]. Arguing as in Proposition 4.4.6 in the case h =0,
A =1Idyy1 and = 1, we can prove that

Jr ' 2V2dS) (fsr =2V -w2dS) — (fgr v 2V(VV -0)dS)

(fs;r yl—2572 dS>2

N (r) =2r (

Therefore we conclude that

2
(/S+ Tl e dS) (/S+ yl_Qs\VV-u]2d5> = (/S+ y' BV (VV ) dS) a.e. 7€ (0,1)

where v = é, i.e. equality holds in the Cauchy-Schwartz inequality for the vectors V and

VV -vin L2(S;F,y'=2%) for a.e. r € (0,1). It follows that in polar coordinates

66—‘:(7"9) = p(r)V(rf) for a.e. r € (0,1) and for any 6 € ST, (4.111)

for some function 7 — p(r). By (4.111) we have
/ yBV(VV - 0)dS = p(r) / Y12V 48, (4.112)
S St

In the case h = 0, A = Idyy1 and g = 1, (4.66) boils down to Hf, = W% Jo+ y1_25V%—‘; ds,
since the perturbative term involves Vy, which now trivially equals 0. From this and (4.112)

we deduce that p(r) = 21;[[‘/;((2). At this point, we exploit (4.68) which, in the case h =0,

A =1Idy41 and g = 1, becomes Hj,(r) = 2Dy (r) and thus implies
1 gl
or) = 2 = 1,

where we used also (4.110). Then an integration over (r,1) of (4.111) for any fixed § € ST
yields
V(rd) =r"V(0) = r"¥(9) for any (r,0) € (0,1] x ST, (4.113)
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where ¥ := Vgy. In view of [60, Lemma 2.1], (4.102) becomes
V(N =25+ )r 1P EW(0) + 712 dives (0 5 Ve U(0) = 0

for any (r,0) € (0,1] xS*, together with the boundary condition limg, o+ G}V_ff Vs¥-v=0
on §'. Since V* is odd with respect to yy for any A € (0,70] by (4.90) and (4.55), then also
V' is odd with respect to yn, so that ¥ € Hédd(S“L,G]lV_ff). By (4.113) and (4.103) we have
||\IIHL2(S+7011V7+21$) = 1, so that ¥ # 0 is an eigenfunction of problem (4.19) associated to the

eigenvalue y(y + N — 2s). From (4.22) it follows that there exists mg € N\ {0} (which is
odd in the case N = 1) such that y(y+ N — 2s) = mo(mo + N — 2s). Therefore, since 7 > 0
by Proposition 4.4.8, we conclude that v = mg thus proving (4.93). Moreover (4.94) follows
from (4.104) and (4.113). O

In Proposition 4.4.10 we have shown that there exists the limit limy_,o+ A™27H()) and it
is non-negative. Now we prove that lim,_,q+ A™27H(A) > 0.
To this end we define, for every A € (0,79], m € N\ {0}, k € {1,..., M},

iV i= [ O EW(00)Yin(6) S, (4.114)
S+
i.e. {¢@mk(A)}mk are the Fourier coefficients of W (A-) with respect to the orthonormal basis

{Yok }m i introduced in (4.25). For every A € (0,ro], m € N\ {0}, k € {1,..., M,,}, we also
define

~ 1
Tkl == [y A= Ty VI - VsVoua(f) d
5t ]
9, T z .
+ . VA VW - () dS
e [ BTV T (Yo () dy, (4.115)
A

where Idyy; is the identity (N + 1) x (N + 1) matrix.

Proposition 4.5.3. Let v be as in (4.83) and let mo € N\ {0} be such that v = mq according
to Proposition 4.5.2. For every k € {1,..., My} and r € (0, o]

T—ng—N—i—Qs

7mo 2mg+ N — 2s
m0+N—23
2mg+ N — 2s

mo. k(T m T mo—
Py () = AT (*” ok(r) | mo [ Wmo,k(p)dp)

T 5‘25
+ A0 / P_mO_N_1+2sTm0,k(,0) dp + 9] <>\m0+1\f+258> (4.116)
A

as A — 0t.

Proof. Letk € {1,..., Mp,} and ¢ € D(0,70). Testing (4.59) with [2| =N =1256(|2]) Yoo & (),

|2
since Y, 1 solves (4.21), we obtain that ¢, » satisfies

N+1-2s "
~Pmok ~ T Pmok + 3 Pmok = Gmok (4.117)
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in the sense of distributions in (0, (), where

o p( A ~
D’ (0,r0) <Cm07/€’ ¢>D(0,r0) ‘= KN 0 )\2(—2)3 < . h()‘el) ﬂ(W(A'))(el)Ymo,k(el’o) dsl) d\

- /Om </S+ Y2 (A — Ty ) VWV - V(2N 2012 Yo () dS) dA.

Furthermore, it is easy to verify that Y,, x € L(0,70) and
oA = A2 ()
in the sense of distributions in (0,79). Then equation (4.117) can be rewritten as follows

(BN g L)) = AT () (4128)

in the sense of distributions in (0, 7). Integrating (4.118) over (A, r) for any r € (0, ro], we
obtain that there exists a constant ¢, () € R which depends only on myg, k,r, such that

(AT () = =AM N2 ()

— mpA 2o NI (cmo,k(r) + /A PO Y g k() dp>

in the sense of distributions in (0, 7). In particular we deduce that @, » € VV&;((O, ro]) and
a further integration over (\,r) gives

0 —\"0 (9077107 mMoCmy, k( ) )
m07

(2mg + N — 2s)r2mo+N—2s

mo+ N —2s /T —mo—N—1+2s
_— T d
omg TN 25y ” mo,k(p) dp

—mo—N+2s r .
<Cm0,k(7“)—|— /A T () dp) (4.119)

+ Ao

’ITL())\
2mg+ N — 2s

for every A\, r € (0,70]. Now we claim that
70
[ o T ) dp < o (4.120)

By the Holder inequality, a change of variables, (4.44), (4.90), Proposition 4.5.1, and (4.85)
we have

1
)\—mo—N—l—i-Qs 7VSYm0,k(é) dz

||
3 1-2 3
2 —28
—mo—N—1+42s 1-2s1/ % 2 Yy z|?
< AT (/Bry (A = Tdyn 1) VIV d2> </Bi2‘2 Vs Yono ()| dz)

/ Yy (A - Idy ) VIV -
By

< const A™"%/ H(\) < const, (4.121)
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where we used the fact that

1-2s
/B+ y’z‘Q VS mo,k Z dZ_/ pN 1-2s (/ G}V—Ef‘vgymmk(g)‘QdS) Clp

mZ + mo(N — 2s)
N —2s ’

Dealing with the second term of (4.115), from an integration by parts, the Hélder inequality,
(4.44) (4.90), Proposition 4.5.1, and (4.85) it follows that, for every r € (0, ro],

/)\moN1+25
I\

Sconst/ Ao N2 (/S+ y' VW ‘Ymok(ﬁ)‘ dS) d\
A

[9+y1 QS(A—IdN+1)VW mok(| )d5|d>\

—const( —mo= N+23/ VA ‘Ymok |)‘ dz

+ (mg + N — 25) / Ao N= 1+25(/ y'- 28|VW\‘YmOk

< const <r_m°+1\/H(T) + / A0V H(N) dA) < const 7,
0

taking into account that

1-2s
LY
B)\

By the Holder inequality the third term in (4.115) can be estimated as

)\fmofolJrZs

[ ) T ) T (Yoo () dy

< AT </B lﬁ(y)llTr(W)lgd?’)Q </B A [T (Yoo (i

A

N — 2s
—mo—N—142s,_ _
S AT M7 (A) </ st

B+
(/ yl 2s

< AT ()Y H () (/

Bf
()\2/ 2
45 =5

< const )\*mofln'm()\) H()\) < const \™ 1Jrzv+2g5

y "B\ dz +

N —2s 1—-2s
2\ St

vymok(ﬁ)\ dz +
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Ymo,k(

)

2z
E

1

9 2
an)

1
2
T dS) X

)| dS)

. N —2s s
vymok(‘l)\ dz+ = /Se}vflwmo,k(e)ﬁds)

NI

M=

2l dz) dA)

(4.122)

1

2
Y725 IVVAPdz 4 (N — 28)/ ONZ (A [V dS) X
S+

(4.123)



in view of (4.28), (4.29), (4.48), (4.85), (4.90), (4.92) and Proposition 4.5.1. Collecting esti-
mates (4.121), (4.122) and (4.123) we deduce that, for every r € (0, ro],

r ST € 525
—mo—N—142s)yp dp < const | r + Hl‘?ﬁss dp | < Const7“N4+258 4.124
N ok(P)] dp ; "o p
thus proving (4.120). Moreover we have

)
L T k(p) dp < +ox. (1125)

as a consequence of (4.120), since in a neighbourhood of 0, p™o~1 < p=mo—N-142s,

Now we claim that, for every r € (0, r¢],

Cmo k(T +/0 P g k() dp = 0 (4.126)

To prove (4.126) we argue by contradiction. If there exists r € (0, rg] such that (4.126) does
not hold true, then by (4.119), (4.120) and (4.125)

mo)\_mO_N+28

mo + N — 25 <Cm0,k(7“) +/0 PO g 1 (p) dp) as A — 0",

‘pmo,k()‘) ~
From this, it follows that
o
/ ANZIZ28 6 (V)N = oo, (4.127)
0

since N — 2s + 2mg > 0. On the other hand, from (4.114), the Parseval identity and (3.6) we
deduce the following estimate

/ AN=I=25) )2 d/\</ AN-1-2s (/ 0125 (A) |2dS>d)\

_/ A 2 / 1— 2S\W|2d5 d\ = / yl 2$|W( )| dz < 400
B, |22

0

which contradicts (4.127). Hence (4.126) is proved. From (4.126) and (4.124) it follows that,
for every r € (0, 9],

A
)\—mo—N-i—Qs /0 pmo_leo,k(P) dp

r
Cmo,k(r) +/ pmo_leo,k(p) dp‘ = )‘_mO_N+28
A

>\ 325
< \"Mmo—N+2s <)\2m°+N_2S/ p_mO_N_HzS]TmO’k(p)\ dp) < const )\m0+ﬁ. (4.128)
0

We finally deduce (4.116) combining (4.119), (4.126) and (4.128). O

Proposition 4.5.4. Let vy be as in (4.83). Then

lim A" H(\) > 0. (4.129)

A—0t
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Proof. By (4.49), the Parseval identity and (4.114) we have

oo Mpm

/ O 2 uOO)WAD)2dS = (1+00N) 33 lema(V[ (4.130)
m=1k=1

Let mg € N\ {0} be such that v = mg according to Proposition 4.5.2. We argue by contra-
diction and assume that 0 = limy_,o+ A"V H(A\) = limy_,g+ A"2™ H()). In view of (4.130)
this would imply that

Alirgl+ A0 k(A) =0 for every ke {1,..., Mp,}.

Therefore, from (4.116) it follows that, for all k € {1,..., My, } and r € (0, ro],

(Pmo,k(r) moT_QmO_N+25

7m0 2mgy + N — 2s

/0 P g i (p) dp

mo+ N — 2s /T —mo—N—14+2s
2mo+ N — 2s Op mok(p) dp =0,

so that, substituting into (4.116), we obtain that

mo+ N — 2s

o) = = T N~ 2s

A .5‘25
"o / prmoT NI Y k(p) dp+ O (Amoﬂv“wss)
0

as A — 07. Hence, from (4.124) we infer that

825
Omo.k(A) = O ()\m°+1\?+286) as A — 0" forallke {1,..., My} (4.131)
Moreover, estimate (4.87) with o = N2-18-2225 implies that
1 _ _ 2525
———=0 ()\ o N+255> as A — 0. (4.132)
H(A)
Since
Omonl / 01 ZVN0) Yy 1(0) dS for all k € {1,..., My, }
by (4.114) and (4.90), from (4.131) and (4.132) we deduce that
252e
ONZZVA0)T(0)dS = O </\N+2sa> as A — 0T, (4.133)
S+

for every W € Span{Y,,,, 1 : k € {1,... Mp,}}. By (4.24), (4.25), (3.4) and Proposition 4.5.2,
for any sequence A, — 0T, there exist a subsequence \,, — 07 and ¥ € Span{Y,, : k €
{1,... M }} such that ||| 2 pl-2e) = 1 and

YN+

. 1-2sy/\n o 1-2s 2 _
Jim [ OBV 0)w(6)ds = /S+ 0L 2w ds = 1,

thus contradicting (4.133). O
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Theorem 4.5.5. Let W be a non trivial weak solution to (4.58). Let vy be as in (4.83) and
mo € N\ {0} be such that v = mg, according to Proposition /.5.2. Let {Ymo,k}ke{l,...,MmO} be
as in (4.25), with Vi, and My, defined as in (4.23) and (4.24) respectively. Then
Mmo 5
AW (Az) — |z|™0 Z BrYmo k (H) as A\ — 0% strongly in H' (B, y' ™),
z
k=1

where (B, ... ,ﬁMmO) #(0,...,0) and, for every k € {1,..., Mp,},

B = Omok(r) | mor2mo—N+2s

7m0 (2mo + N — 2s)

/0 PO Y gk (p) dp

mo+ N —2s /T —mo—N—1+2s
_ T d 4.134
g TN 25 Jo " mok(p) dp, (4.134)

for all r € (0,7¢], where @y, k is defined in (4.114) and Yy, 1 in (4.115) .
Proof. From Proposition 4.5.2, (4.25), and (4.129) it follows that, for any sequence {\,} such

that A, — 07 as n — oo, there exist a subsequence {),, } and real numbers 3, ..., /BMmO
such that (B1,...,8m,,) # (0,...,0) and
M,

AW (A 2) — |20 Z BkYmo k (’;) as h — +oo strongly in H'(B},y'~%). (4.135)
k=1

We claim that the numbers fBi,... S, depend neither on the sequence {A,} nor on its
subsequence {\,, }. Letting ¢, 1 be as (4.114), for every k € {1,..., My}

Hm A @mg k(An,) = lim ONZIALTOW (A 0) Y 1 (0) dS = By, (4.136)

h—+o00 h—4o00 JS+

thanks to (4.135) and the compactness of the trace operator in (3.4). Combining (4.136) and
(4.116) we obtain that, for every r € (0,70, B, = limp s 00 A0 Pimg,k(An,) s equal to the
right hand side in (4.134), thus proving the claim. By Urysohn’s subsequence principle we
conclude that the convergence in (4.135) holds as A — 0T, hence the proof is complete. [

4.6 Proofs of the main results

The proof of Theorem 4.1.3 is obtained as a consequence of the following result.

Theorem 4.6.1. Let N > 2s and Q C RY be a bounded Lipschitz domain such that 0 € 9
and (4.10)—(4.12) are satisfied with xo = 0 for some function g and R > 0. Let U be a non
trivial solution to (4.17) in the sense of (4.18), with h satisfying (4.8), and let

0z = {U(z), if 2 € CoN F(B}),

0, if 2 € F(B})\ Ca, (4.137)

with F' and o being as in Proposition 4.5.1. Then there exist mg € N\ {0} (which is odd in
the case N = 1) such that

Mg
A_mOU(Az) — |z|™0 Z /Bk?mo,k <|z|> as A — 07 strongly in H* (B, y'™%), (4.138)
k=1
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where My, is as in (4.24),

Ymo,k(0/76N70N+1)7 Zf 0N < 07

: (4.139)
07 Zf HN 2 07

Yoo (6,08, 0N 1) = {

with {Ymo,k}ke{l,...,MmO} being as in (4.25), and the coefficients By, satisfy (4.134).

Proof. 1f U is a non trivial solution of (4.17), then the function W defined in (4.34) and (4.55)
belongs to H (B}, y'~2%) and is a non trivial weak solution to (4.58). Letting

— W(z), if z € Q,,,
0,  ifze B\ O,

where Q,, is defined in (4.33), by Remark 4.3.4 we have W e HY (B}, y'~%). Moreover
Theorem 4.5.5 implies that

AW (Az) — () strongly in HYBf,y™%) asA— 0T,

where
~ Mmo ~ z
B(2) = 2™ S BiPmo <||>
k=1 <

with Sy as in (4.134). Hence, by homogeneity,
AT™0W (A\z) — ®(z) strongly in HY B, y'7%) as A — 0" forall > 1. (4.140)

We note that

A0 (A\z) = AW (AGA(2)) and ¥V (if?) =Y (”;W) (Gr(2))Ja, () (4.141)

where 1 1
Gi(z) = XFfl(/\z) for any A € (0,1] and z € XF(BT(T)

From Proposition 4.3.1 we deduce that
Ga(z) =2+ 0(\) and Jg,(2) =Idys1 +O(N) as A — 0

uniformly respect to z € Bi". It follows that, if f\ — f in L?(B;},y*~2%) as A — 07 for some
r > 1, then f\ oGy — fin L?(Bf",y'72%) as A — 0%. Then we conclude in view of (4.140)
and (4.141). O

Proof of Theorem 4.1.3 . It follows directly from Theorem 4.6.1 up to a translation. O
Passing to traces in (4.138) we obtain the following blow-up result for solutions to (4.1).

Theorem 4.6.2. Let N > 2s and Q C RN be a bounded Lipschitz domain such that 0 € 0
and (4.10)~(4.12) are satisfied with zo = 0 for some function g and R > 0. Let u € H*(Q) be
a non trivial solution of (4.1) in the sense of (4.9), with h satisfying (4.8), and let u(x) = ¢(u)
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with v defined in (4.4). Then there exists mo € N\ {0} (which is odd in the case N = 1) such
that

Mg
AT"U(Az) — |x|™0 Z 5ki}m0,kz <|x|,0> as A — 07 strongly in H°(B}),
x
k=1

where My, is as in (4.24), {?mO,k}ke{l,..‘,MmO} are defined in (4.139) and the coefficients By
satisfy (4.134).

Proof. As observed in [37], if u € H*(Q) is a non trivial solution of (4.1), then its extension
H(u) = U is non trivial solution to (4.17). Hence the corresponding function U defined in

~

(4.137) satisfies (4.138) by Theorem 4.6.1. Since u = Tr(U), the conclusion follows from
Proposition 4.2.2. O

Proof of Theorem 4.1.2. It follows directly from Theorem 4.6.2 up to a translation. O

4.7 Neumann eigenvalues on the half-sphere under a symme-
try condition
In order to determine the eigenvalues of (4.19), we first need the following preliminary lemma.

Lemma 4.7.1. Let m, N € N\ {0} and let u € C™(RY) be a positively homogeneous function
of degree m, i.e.

u(Ax) = A™u(z)  for every X > 0 and x € RY. (4.142)
Then u is a homogeneous polynomial of degree m.
Proof. Let a = (ay,...,ay) € NV be a multindex, |a| := >N, a;, and 2@ = 2" ... 23 for
any x = (21,...,xy5) € RY. By Taylor’s Theorem with Lagrange remainder centered at 0,

for any = € RV there exists ¢ € [0, 1] such that

olely olely
U/($) = Z Caw(o)xa + Z Caﬁ(tl')ﬂfa,
|a|<m |a|=m
where ¢, > 0 are positive constants depending on o and %;‘a“ stands for %. By
1 N
4.142), one can easily prove that ‘9‘QL“ is a positively homogeneous function of degree m — |«
oz
for all a with |a| < m. Thus, combining this fact with the continuity of %ZL“, it is clear that

%‘;‘&“(0) = 0 for every a € N¥ with |a|] < m. On the other hand, for every a € NV with

la] = m, % is constant and exactly equal to %‘:L“(O), being a homogeneous function of
degree 0. It follows that
dlaly,
u(z) = Z caW(O)xo‘ for every z € RY,
|a)l=m r
hence proving the claim. d

Proposition 4.7.2. All the eigenvalues of problem (4.19) are characterized by formula (4.22).
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Proof. We start by proving that if y is an eigenvalue of (4.19), then yu = m? 4+ m(N — 2s) for
some m € N\ {0}. If u is an eigenvalue, then there exists a non trivial solution Y of (4.19).
A direct computation shows that Y is a weak solution to (4.19) if and only if the function

U(z) = |z|W( |) e RVH,

with

N —2s N — 252
V= —1—\/( 5 )—l—u, (4.143)

(Ri\f-ﬁ-l 1—23)

belongs to HlloC , is odd with respect to yy and weakly solves

Y

{ﬁwy»%VU)_o, in RYH, (4.144)

lim,,_,o+ yl_QS%—g =0, onRY.

Hence, if p is an eigenvalue of (4.19), there exists a solution U of (4.144) which is odd
with respect to yy and positively homogeneous of degree v. The regularity result in [120,
Theorem 1.1] ensures that U € C*°(B{"). Then there exists m € N\ {0} such that v = m
and so p = m? 4+ m(N — 2s) thanks to (4.143). We notice that the case m = 0 is excluded
since in that case g = 0 and 0 is not an eigenvalue. Indeed, if by contradiction 0 is an
eigenvalue, letting Y be an eigenfunction of (4.19) with associated eigenvalue 0 and choosing
in (4.21) ¥ =Y, we would have Y constant and Y # 0, hence Y ¢ HZ, (ST, H}V_ff) which is
a contradiction (see (4.20)).

Viceversa, in order to prove that the numbers given in (4.22) are eigenvalues of (4.19), we
need to show that, for any fixed m € N\ {0}, there actually exist an eigenfunction associated
to m? +m(N —2s) if N > 1 and an eigenfunction associated to (2m — 1)+ (2m —1)(N — 2s)
if N = 1. Equivalently, for any fixed m € N\ {0} we have to find a non trivial solution to
(4.144) which is odd with respect to x and positively homogeneous with degree m if N > 1
and 2m — 1 if N = 1. To this end, we observe that equation div(y'=2*VU) = 0 can be
rewritten as

AU+ 1228

U, = 0. (4.145)

We first consider the case N = 1. If n = 2m — 1 with m € N'\ {0}, we consider the following
homogeneous polynomial of degree 2m — 1, odd with respect to x1,

Ulm x1’ Z ag x?k—i—l 2m—2k— 2, (4146)

with ag,...,am—1 € R. A direct computation shows that Uy ,, is a solution of (4.144), and
equivalently of (4.145), if and only if

—2[(m — k)* — s(m — k)]
k(2k + 1)

ay = akp—1 forall ke {l,...,m—1}.
Thus, for example choosing ag := 1, we have constructed a non trivial solution to (4.144)
which is odd with respect to y; and positively homogeneous of degree 2m — 1.

To complete the proof of (4.22) in the case N = 1, it remains to show that, if n = 2m
with m € N\ {0}, then n? + n(NN — 2s) is not an eigenvalue of (4.19). To this aim, we argue
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by contradiction and assume that (2m)? + 2m(N — 2s) is an eigenvalue of (4.19) associated
to an eigenfunction W. Then the function defined as

U(z) = \zw(‘ |) 2= (@1,y) €RZ,

with

N -2 N — 252
Y= s+\/( 5 S) + (2m)? + 2m(N — 2s) = 2m

is a non trivial solution to (4.144), odd with respect to z;. Hence, if we consider the even
reflection of U with respect to y, namely the function ﬁ(xl, y) == Ul(x1,|y|), U is a solution
of div(|y['=25VU) = 0 in R2. Then, by [120, Theorem 1.1] we deduce that U € C*(R2).
Moreover, U is positively homogeneous of degree v = 2m, therefore from Lemma 4.7.1 it
follows that U is a homogeneous polynomial of degree 2m, namely

xl, Zax%nkk

where a; = 0 if k is odd since U is even with respect to y. In this way U turns out to be
even also with respect to x; and this contradicts the fact that U is non trivial and odd with
respect to x7.

If N =2and m € N\ {0} is odd, then we consider Us(z1,x2,y) := Ui n(x2,y), where
Ui, is defined in (4.146) and n € N\ {0} is such that m = 2n — 1. Such U, is a positively
homogeneous solution of (4.144) of degree m, odd with respect to xo. If m € N\ {0} is even,
i.e. m = 2n with n € N\ {0}, then we define

2k+1_ 2n—2k—1
Us(x1, 22,y Zakﬂf g2t

with ag,...,a,—1 € R. A direct computation shows that Us is a solution of (4.144), and
equivalently of (4.145), if and only if

—[2(n — k)% — 3n + 3k + 1]
(2k? + 5k + 3)

apy1 = ap forall k € {0,...,n—2}.

Then, choosing for example again ap = 1, we obtain that Us is a solution of (4.144) which is
positively homogeneous of degree m and odd with respect to yo, as desired.

If N > 2, for any m € N\{0} there exists a harmonic homogeneous polynomial P # 0 in the
variables yi,...,xn_1, of degree m — 1. Then Uy(x1,...,xN_1,2N,t) := P(x1,...,2N-1) TN
is a non trivial solution to (4.144) which is odd with respect to z and positively homogeneous

of degree m.
O
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Chapter 5

Unique continuation for the
fractional power of a
Schrodinger-type operator

5.1 Statement of the main results

In this Chapter we establish a strong unique continuation principle and classify the asymptotic
profiles in the singular point 0 for solutions of the linear equation

Liyu=gu inQ (5.1)
where Q@ ¢ RN with N > 3 is a connected bounded Lipschitz domain such that 0 € Q and

Loju:=—Au— %u
with

2 . 2 k—2)\?
_ 2 d —oco. [ —= 5.2
|| ;:1 x; an a € ( , ( 5 ) ) (5.2)

for any k € {3,..., N}. The fractional powers Lg, i of the operator L, j, are rigorously defined
n (5.9). The potential g satisfies

1,
lg(z)] + |z - Vg(x)] < Cylz|~25F¢,  for ae. z € Q,
for some positive constant Cy > 0 and € € (0, 1).
Since we deal with singular potentials of the form a\x|lz2, Hardy-type inequalities with

optimal constants are fundamental to study the positivity of L, on H{(2). In the case
k = N it is well known that

¢2 ( 2 >2/ 2 oo (mN
P < -
/N ]2 dx N2 N |IVo|“dr  for any ¢ € C°(RY),

99



2
is the optimal constant. A similar result also holds for cylindrical poten-

2
d that
and tha <N

tial, more precisely for any k € {3,..., N}

/R ﬁdw < (2>2 /RN IV@?|de  for any ¢ € C°(RY), (5.4)

Vi ©E \E2

2
see [104, Subsection 2.1.6, Corollary 3] or [20]. Furthermore (ﬁ) is the optimal constant

as conjectured in [20] and proved in [116].
Let us consider the eigenvalue problem

Lo ju = pu, in (5.5)
u =0, on 0.
We say that p is an eigenvalue of (5.5) if there exists Y € H}(2) \ {0} such that
/ VY -Vudr — / P —zYvdr = / Yvdz, forany v € H(Q). (5.6)
Q Q k

Thanks to (5.2) and (5.4), for any k € {3,---, N} the energy functional

/|Vu|2dx / P —u’dx
k

is coercive on H}(Q) and so by the Spectral Theorem the set of the eigenvalues of (5.5)
is a non-decreasing, positive, diverging sequence {Ma,k,n}neN\{o} (we repeat each eigenvalue
according to its multiplicity). Furthermore there exists an orthonormal basis {Y, xn }nen {0}
of L?(Q) made of corresponding eigenfunctions. Since the first eigenfunction does not change
sign, it is not restrictive to suppose that Y, 1 1 is positive.

For any Hilbert space X let (v1,v2)x be the scalar product on X. Furthermore let

vp = (v, Yakn)r2) foranywve L*(Q). (5.7)

Remark 5.1.1. In view of (5.4), ||v|]ak, = (Jar(v ))% is a norm on H}(Q) equivalent to the

usual norm ||UHH1 @ = (o |Vo|? dac) The scalar product associated to |-, is given by

(V, W) = / Vou-Vw —
Q

2vwdm

By (5.6), {Ya,k,n/\/Bakn fnen\{o} is an orthonormal basis of HE () with respect to the norm
[/l and for any v,w € H} ()

[e.9]

(’U, w)a,k = Z Mo,k ,nUnWn,

n=1

where v, and w,, are as in (5.7).
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Let us consider the functional space

ok (82) = {U € L*(Q): Y i pnvn < +OO}
n=1

which is a Hilbert space with respect to the scalar product

e}

(v, w)ity (@) = 3 Wopntntin,  for amy v, w € HE 4(9). (5.8)

n=1

We can precode as in Chapter 4 to define the fractional powers of the operator L, - Indeed

for any j € N\ {0}, and v € L?(f) it is clear that Zizl Hoem¥nYokn € L?(Q) and that it
can be identified with the element of the dual space (Hj, (€2))* acting on u € H, ,(2) as

n=1 n=1

J J J
<Z Nikmvnya,k,na u> = (Z Na,kmvnya,k,na U) = #ik,nvnun'
(15 ()" HE L (0) ) L

It is easy to see that, if v € Hz’k(Q), then the series > > ; I ke VnYa k,n converges in the dual
space (Hp, ,(€2))" to some F' € (H, ,(£2))" such that

(& k(ﬂ))*<F’ Ya,k,n)]ng (@ = HoknVn  for any n € N\ {0}.

It follows that, for every v € Hgk(Q), we can define the fractional s-power of the operator
Loy as

oo
L5 30 :=> ok nnYakm € (HS ()" (5.9)

n=1

More precisely, the operator L7, ; is the Rietz isomorphism between Hp, () endowed with
the scalar product (5.8) and its dual space (H, ,(£2))", that is

*<Lz,k?}1, ?)2> = (1)1, v2)HZ,k(Q) for all U1, 02 € H;k(Q).

(2, () HS, ()

We would like to characterize the space ]H[zk(Q) more explicitly. To this end, let us define

HZ(Q), ifse(0,1)\ {3},
H(®) = {HE(EQ()Q), ifs:(;. e

as in Section 4.1 of Chapter 4. In Section 5.7 we will prove the following Proposition by
means of Interpolation Theory.

Proposition 5.1.2. For any k € {3,...,N}, s € (0,1) and a as in (5.2)
o () = (L*(Q), Hy (2))s,2 = H*(Q),

with equivalent norms.
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Let for any measurable function v : 2 — R,

. v(z), ifxeq,
o(z) = ' N
0, if x € R\ Q.

Then from [31, Proposition B.1] in the case s # % and from the proof of [31, Proposition B.1]
and (4.3) if s = 1 we deduce the following result.

Proposition 5.1.3. There exists a constant Cn s such that
HQN)HHS(IR{") < COns@ ”UHHs(Q) (5.10)
for any v € H*(Q2).

Proposition 5.1.4. There exists a constant Ky sq such that for any v € H*(§)

v ()
/Q BES dr < Kns.0 ”UHIZHIs(Q) : (5.11)

Proof. The following Hardy-type inequality due to Herbst [80]

z?srz (45) / D) o / €% a(g)|de,
R RN

2 (NZQS) N ‘;1;'|25

where 4 is the Fourier transform of u, holds for any v € H*(RY). Then (5.11) follows from
(5.10). 0

By Proposition 5.1.2, we can define a weak solution to (5.1) as a function u € H*(2) such
that

s _ 00
(Hi,k(ﬂ))*<La’ku’ gb> = /qugb dzx, for any ¢ € C°(Q). (5.12)
Thanks to (5.3), (5.11) and the Holder inequality, the right hand side of (5.12) is well defined,
that is it belongs to (H*(£2))* as a linear functional of ¢.
Given the local nature of the Almgren monotonicity formula we need to localize the
problem by means of an extension procedure in the spirt of [37] or [35], see also [125, Section
3.1]. Let

B k()

C:=Qx(0,400), 9CL:=00 x (0,+00).

Proposition 5.1.5. For any ¢ € C°(RY x [0,4+00)) and any k € {3,...,N}

2 2
1-2s ¢ 2 1-2s 2
e < (5) Lo IVaoP d, (5.13)
/Rﬁﬂ ‘xﬁ k—2 RN+
where V, is the gradient respect to the first N variables.

Proof. Let ¢ € C°(Q2x[0,+00)) and k € {3,...,N}. Then ¢(-,y) € C°(R) for any y € [0, 00)
and so multiplying by y'~2% and integrating over (0,00) we deduce (5.13) from (5.4). O
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Let
Ho(Coy' ™) = {V € HY(C,y'™):V =0on 8C’L} .
The condition V = 0 on OC[, is meant in a classical trace sense. Indeed the weight 3'=2 is
smooth, bounded and strictly positive on € X [y1,y2] for any 0 < y1 < y2 < 400, and so we
can use classical trace theory for the space H'(Q x (y1,y2)) for any 0 < y; < y2 < +o0.
From [37, Proposition 2.1] and [34, Proposition 2.1, Lemma 2.6] we deduce the following
result.

Proposition 5.1.6. There exists a linear and continuous trace operator
To: HY,(Cry' ™) — B ()
which is also surjective.
See Section 5.2 for a proof of the following next extension theorem,.

Theorem 5.1.7. Let v € H(Q), k € {3,...,N} and « as in (5.2). Then there exists a

unique function V € H&L(C, y'=2%) such that V weakly solves the problem
—div(y'=2VV) = yl_QSﬁV, in C,
k
Te(V) = v, on 9, (5.14)
—lim,_,+ y1*25%—‘; = cNs Ly o0, on €,

where cys > 0 is a constant depending only on N and s, in the sense that

1-2s 1-2s @ s
VV . Véd —/ 2 Védr = cns LS 0, 6(:,0 5.15
L bz |y IEVOd = eve o (a0l 0) o (519)
for any ¢ € C(Q2 x [0,+00)). Furthermore
1-2 2 1-2s 4 1,2 2
$IVV (x, dz—/ f—=Vdz = cns ||v|ms 5.16
Ly vy Rrr N ol (@) (5.16)

and V is the only solution to the minimization problem

inf {/ yl=2s <]VW\2 - |052w2> dz: W e H} (C,y'7™2%) and Te(W) = v} . (5.17)
C T ’

From Theorem 5.1.7 we deduce the following corollary.

Corollary 5.1.8. Let v € H*(Q2) be a solution of (5.12). Then there exists a unique U €
H&L(C,yl*%’) such that

—div(y!72VU) = y1*2sﬁU, in C,
Tr(U) = u, on Q, (5.18)
—limy_,o+ yl_QS%—Z = CN,sgU, on €1,
where cn,s > 0 is the constant depending only on N and s defined in Theorem 5.1.7, in the
sense that

/ y'BVU -V dz - / Y B S Udz = e, / gue(-,0) dz (5.19)
C C ‘x|k Q

for any ¢ € C(Q2 x [0,+00)). Furthermore

1-2s 2 1-2s @ ;.2 2 2
VU (x, dz—/ —U“dz = cn s ||ul|7s =cnN / u” dx.
L= vu@yla— [y B olully @ =evs [ g
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Let 6 = % for any z € RN+ and 0" = (61,...,0N).
The asymptotic profile of a solution U of (5.19) in 0 will turn out to be related to the
following eigenvalue problem

—divg(0y 5 VsZ) — Oy 5 22 Z =0y 32, in ST,

N R (5.20)
— lim G}foVSZ v=0, on Y, '
9N+1_>0+
where v is the outer normal vector to St on §/, that is v = —(0,...,0,1) and

S:={0 e RN . |9 =1},
S+ = {0 = (0/,9N+1) €S: 9N+1 > O}a
"= {0=(0,0n+1) €S: x4 =0},

We refer to Subsection 5.2.1 for a variational formulation of (5.20). By classical spectral the-
ory, see Subsection 5.2.1 for further details, the eigenvalues of (5.20) are a non-decreasing and
diverging sequence {’Ya,k,n}neN\{o} (we repeat each eigenvalue according to its multiplicity).
We have the following estimate on v, 1:

N—2s>2

Yo, k1 > = < 9

for any k € {3,...,N} and « as in (5.2), see Proposition 5.2.3. We can actually compute
Ya,k,1 in terms of the first eigenvalue 7, 1 1 of the problem

«

—AS/\I’ ~ T2 U= T]\I/ in S/ (521)
16713
as
N —2\? N -2
Yask,1 = 2(1 = s) [\/(2> + okt = 5 |+t (5.22)
see Section 5.6. In particular, if K = N then 71, %1 = —a and so

Ya,N,1 = 2(1 —5) [ <N22>2 —a— 2] —o. (5.23)

If k = N, we are able to obtain an explicit expression of v, n,1 for any a € (—oo, % . For
the restricted fractional Laplacian with a Hardy-type potential it is also possible to obtain a
formula for the first eigenvalue of the corresponding problem on a hemisphere although with
a more implicit expression, see [60, Proposition 2.3].

Theorem 5.1.9. Let U be a non-trivial solution of (5.19) and suppose that g satisfies (5.3).
Then there exist an eigenvalue Yo i of (5.20) and a correspondent eigenfunction Z such that

N—2s_ (%)ZM%M N—2s

_N-2s N—2s)2
A Us) = |2 2 TVET) akn gy gs x5 ot

strongly in H*(By,y'~2%).

104



From Section 3.1 in Chapter 3 and the previous theorem we obtain the following.

Theorem 5.1.10. Let u be a non-trivial solution solution of (5.12) and suppose that g satisfies
(5.3). Then there exist an eigenvalue Yo kn of (5.20) and a correspondent eigenfunction Z
such that

N-—2s N—-2s N—-2s

N2 J(520) o — NSz (M52 gy
A2 2 CPMu(Ax) — |z 2 2 T ZGC/ D)) (x)  as A — 0

strongly in H*(BY).

We will also prove a more precise and complete version of Theorem 5.1.9 and Theorem
5.1.10 in Section 5.5, computing the coordinates of the eigenfunction Z respect to a basis of the
eigenspace corresponding to 7, k. Furthermore we can deduce the following strong unique
continuation properties as corollaries of Theorem 5.1.9 and Theorem 5.1.10 respectively.

Corollary 5.1.11. Let U be a solution of (5.19) and suppose that g satisfies (5.3). If
U(z) = o(|z|") = o(|(z,y)|") as x — 0, y — 0T for anyn € N (5.24)
then U =0 on Q x (0,00).

Corollary 5.1.12. Let u be a solution of (5.12) and suppose that g satisfies (5.3). If
u(z) = o(|z|") asx — 0, for anyn € N
then u =0 on €.

Remark 5.1.13. We have considered equation (5.1) with assumption (5.3) on the potential
g for the sake of simplicity. With simple modifications to our arguments it is also possible to
obtain the same results for a potential g € W%H(Q) for some ¢ € (0, 1), see [75, Proposition
2.3] for the corresponding Pohozaev identity. Furthermore we can obtain analogous results
for the more general equation \

fall = Wu + gu,

F2 N+2s
with A € (—oo, 228F2§Nf2$§) with the same approach, where I' is the usual I'-function.
4

This Chapter is organized as follows. In Section 5.2 we prove the extension Theorem 5.1.7,
study an eigenvalue problem on a hemisphere, which will turn out to be correlated to the
asymptotic profiles of weak solutions of (5.1), and discuss some useful inequalities. In Section
5.3 we prove a Pohozaev type identity. In Section 5.4 we develop a monotonicity formula for
the extend problem while in Section 5.5 we carry out the blow-up argument and prove our
main results. Finally in Section 5.6 we compute the first eigenvalue of the problem studied in
5.2 while in Section 5.7 we provide some further details on the functional setting for equation
(5.1) which will be introduced in Section 5.1.

105



5.2 Preliminaries

We start this section by proving Theorem 5.1.7.

Proof of Theorem 5.1.7. We follow the proof of [37, Proposition 2.1]. Let v € H*(2) and
consider

)= S 0 Yakn(@)hn(y), where v, = / WY p da (5.25)
n=1 Q
and hy, : (0,400) — R is a solution to the problem

hll + %h% — taknhn =1, on (0,+00),
hn,(0) =1, (5.26)
limy o0 hn(y) = 0.

From the proof of [37, Proposition 2.1], (5.26) admits a unique solution h,, for any n € N\ {0}
and

= Jim g L () = en st (5.27)

for some positive constant cy s > 0 depending only on N and s. Furthermore for any y €
[0+, 00) by (5.25) and Remark 5.1.1

J

% 2

a9 - (2,y)

daz+/|V V(z,y)|* de — / f V3(z,y)dz
k
= 3 RO + okt (529
Proceeding exactly as in [37, Proposmon 2.1] we can show that (5.16) holds. Hence, in view
of (5.13), V.€ HYC,y'72%) and 3! _; vnYakn(x)hn(y) — V in HY(C,y*=%) as j — oc.
In conclusion V € HO,L(C,y1 25) since Zn: Un Yo kn(x)hn(y) € H&L(C,yl_%) for any j €
N,j>1
In contrast to [37, Proposition 2.1], V' might not be smooth for y > 0 since the functions

Yo kn might not be smooth on Q. Then we prove that V satisfies (5.14) in the weak sense
given by (5.15). Let ¢ € C°(2 x [0,400)). Then

Z¢n akn ) Wh@f@(ﬁn /¢$y akn )d

and similarly to (5.28)

Lo e = [ 6wy de = S0+ pesate) (529)
n=1
Then by (5.25) and Remark 5.1.1
/VV:Uy) Vo(x,y)d /|| (x,y)p(x,y) dx
k

i Y) + faknVnhn(y)on(y).  (5.30)

106



Furthermore, for any j € N, by Holder’s inequality

/0 e (Z onhi (1) (y) + ua,k,nvnhn(y)cbn(y)) d

T e
< 5/0 y' 2 (Z vi(h;(y))Q+ua,k,nvihn(y)2) dy
n=j

2/+Oo ( (¢n( ))? +Ma,k,n¢n(y)2) dy.

By (5.28), (5.29) and the Monotone Convergence Theorem we conclude that

J]—00

lim (Z vnhin (y ) + HaknVn n(y)¢n(y)) dy = 0.
Hence we may change the order of summation and integration in (5.30) obtaining

/yl_%(vvw W) iz = Zvn/ Y (R ) () + Haenlin(1)6n (1)) dy
c ER

An integration by parts, in view of (5.26) and (5.27), yields

/<J+OO Y 2 (W ()00 () + Hagnlin(¥)dn(y) dy = eN 88, 100 (0).

It follows that

o
—4S8 —4z8 «Q S
/ Yy T3V - Vo dz —/ yt=? T Vodz=cn; Z Ho JenVn®n (0)
C C |z k n=1

and so we have proved (5.15). If V; and Vs solve (5.14) then by (5.2), (5.15) and (5.13) we
deduce that

Y2V = Vo) 2dz =0, and Tr(V; —V,) =
C

thus V; = Va. Finally V solves the minimizing problem (5.17) in view of (5.15) and a density
argument. ]

Remark 5.2.1. For any 7 > 0 and any V, W € H'(B;, y'~2%), thanks to the Coarea Formula,
yliQSVU . iW

dz:/r /
/B,T 2| 0 (s;y

hence the function f(p) := fS+ ’yl BYU - ZW‘ dS is a well-defined element of L'(0,7). In
particular a.e. p € (0, 7") is a Lebesgue point of f.

=257 . ZW‘ dS) dp
p

Reasoning as in [60, Lemma 3.1] or [75, Proposition 3.7] we can prove the following.
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Proposition 5.2.2. Let U be a solution of (5.19). For a.e. r > 0 such that B. C Q and any
W e HY(B},y'%)

/ T <VU-VW UW> dz
B |z ’k

1
_ ;/S+ YU 2 WS + ey /B g Te(U) Tr(W) dz.  (5.31)

5.2.1 An Eigenvalue Problem on a hemisphere

In this section we provide a variational formulation of problem (5.20). To this end we consider
the space

L2(S*, 042 .= {¥ : §* — R measurable: / 017202 dS < +oo},
S+
and the space H'(S*, 0 ff ) defined as the completion of C*°(S+) with respect to the norm
1-2s( 42 2 12
6l s opzn = ([, N+ Vapfyas)

where Vg is the Riemannian gradient respect to the standard metric on S.

Proposition 5.2.3. For any k € {3,...,N}
E—2\2 . N —2s\2 iy iy
<2> /S 911V+21md5< ( 5 ) /S+ ¢9J1V4_21|\11|2ds+/s+ ON | VPP dS  (5.32)

for any ¥ € HY(ST, 9]1V7_~_2f) .

Proof. Let ¢ € C®(ST), f € C°((0,+00)) with f # 0, and V(2) := V(r8) = #(6) f(r). From
(5.13) we obtain, passing in polar coordinates,

(S5 ([ ssorm) (| o)
< ([Trsippar) ([ onzeas)
+ (/OOO pN =128 £2(p) dr) (/§ e}vff|vs¢l2ds>

and so, thanks to the optimality of the classical Hardy constant, see [83, Theorem 330],

(552) ([ v )

A G (/ ON -t 2d5>+ IO RE
feooo((o o). 0 f PN—1— QSf(T) dr N+1 s+ N+1

N —2s s
_( . )/Se}vf1|¢12ds+/ 052 |Vsgl ds.

In conclusion (5.32) follows by density. O
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For any k € {3,..., N} and «a as in (5.2), we say that 7 is an eigenvalue of (5.20) if there
exists a function Z € H (ST, H}fo) \ {0} such that

/+ 9}V’fstZ'Vs\I'dS—/ a}vff’m ZUdS = 7/ ON 2V dS, (5.33)
S s+ %

for any ¥ € H!(S, G}fo) By (5.2), (5.32), the Spectral Theorem, and the compactness of
the embedding H(S*, 0\ %) — L*(S*,0.%) (see [111, Theorem 19.7]) the eigenvalues of
(5.20) are a non-decreasing and diverging sequence {va kn Jnen\ {0} (We repeat each eigenvalue
according to its multiplicity). Let, for future reference,

Va.k,n be the eigenspace of problem (5.20) associated to the eigenvalue vq kn, (5.34)
M, 1 n be the dimension of Vi, k., (5.35)
{Zagmizie{l,....,.Myrn}} bea L*(ST, G}V_ff) orthonormal basis of V,, ., (5.36)

of eigenfunctions of problem (5.20).

Finally {Zokn}nemoy = Unei{Zakni + @ € {1,..., Makn,}} is an orthonormal basis of
LA(ST,057%).

Remark 5.2.4. It is worth noticing that Z, j, cannot vanish identically on S'. We argue
by contradiction. In view of [60, Lemma 2.1], we can show with a direct computation that

V( )_| |_N;2S+ (%)24"7‘1»’%”2 ( /| |) 1 di ( 172svv)_ 1725iv_0 RN+1
z) = |z akn(2/|2|) solves div(y Yy RzV = on R

and satisfies both zero Dirichlet and zero Neumann condition on RY x {0}. Let
Y o= {z € RV |z, = 0}. (5.37)

Note that ¥; has Lebesgue measure 0 and that V is a solution to an elliptic equitation
with a Muckenhoupt weight and bounded coefficients away from Y. Then by the unique
continuation principles proved in [127], we conclude that V' = 0. Hence Z, 1 ,, = 0 which is a
contradiction.

5.2.2 Inequalities in a weighted Sobolev space

In this subsection we prove some useful inequalities.

Proposition 5.2.5. For anyr >0, any k € {0,...,N}, and any V € H (B}, y'=%9)

k—2\?2 1_9s V2 N —2s
S A/ 122517712 dz / 1=2sy72 4. 5.38
(2)/BT+y o < /y Vs == s (539)

Proof. By density it is enough to prove (5.38) for any ¢ € C*°(B;"). Passing in polar coordi-
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nates, by (5.32) and [60, Lemma 2.4], we have that

(

V2 k—2 V2(p0)
dz = <> / pN 128 (/ dsS | dp
|1"k S+ |‘9‘i

N — 2s
<[ N(( = /S NEIVOPdS+ [ e}vffrvswpe)r?ds) dp

N—2s N—1-2s 1-2s 2
:< 2 ) /B+ z|2 dz+/ P </ On 7 IVsV (p0)] d5> dp

N —2s
<
2
) dS) dp

= /S+ Y22 48
[oviass [ yieevEa
S B

r 1 oV
+/ N+1-2s /91 2 [ L vy 92+’ 0
0 14 o N+ p2| sV (p9)| ap (p0)
N —2s
2
hence we have proved (5.38). O

Proposition 5.2.6. Let r > 0 and suppose that h : B]. :— R is a measurable function such
that

|h(z)| < Cplz| 25T for a.e. x € B, (5.39)

for some positive constant Cj, and some € € (0,1). Then for any k € {3,..., N}, any « as in
(5.2) and any V € HY(B;},y'=2%)

/ | Te(V)? da

N —2s
< kst / 1=2s VVde—/ 2 Ly 4 / TEVEdz ), (540
= RN,s,h (B;*'y ‘ ‘ B;fy B |k o S:ry ( )

where kn s 1, is a positive constant depending only on N, s,C},.

Proof. The claim follows from (5.39), [60, Lemma 2.5], and (5.38). O
In view of (5.2) there exists ro > 0 such that
N ) 2
B, cC and « (H) + ensknsgry < 1, (5.41)

where ky s 4 is as in Proposition 5.2.6, cy s as in Theorem 5.1.7 and ¢ as in (5.3).

Proposition 5.2.7. Let k € {3,...,N}, o as (5.2), g as in (5.3), cN,s as in Theorem 5.1.7
and ro as in (5.41). Then for any V € HY (B, y'=2%) and any r € (0, 1]

N -2
/B+ <|VW\2 — HW2> dz —cng /B g Tr(W)? de + 5 i /S+ y' 72 W2dS
r k r r

9 2
> (1 -« (H) + CN,skN,s,gT8>

N—2
X ( / y |\ VWP dz + ® / yl_ZSWQdS). (5.42)
B st

2r
Proof. The claim follows from Proposition 5.2.6, (5.3) and (5.38). O
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5.3 Approximated problems and a Pohozaev-type Identity

In order to obtain a Pohozaev type identity for a weak solution of (5.18), we approximate it
with a family of solutions to more regular problems. Then we obtain a Pohozaev-type identity
for such solutions and pass to the limit.

Remark 5.3.1. Let ro be as in (5.41). By (5.42) and (3.7), for any r € (0,7),

1
2
Wy k0= (/B+ yl=2s <\VW]2 "B |2W2> dz —cns /B’ g Tr(W)? dx)

defines a norm on H! . (B, y'72%) (see (3.2)) equivalent to (3.1). Furthermore

0,5;"

1
2
" 5’ |z ’k: "B St

[

defines a norm on H'(B;",y'72%) equivalent to (3.1).

Theorem 5.3.2. Let U be a weak solutions of (5.18), and ro as in (5.41). Then there exists
A > 0 such that for any A € (0, \) the problem

—div(y'=%#VV) = yl_zsmiﬁ‘/, in B,
V=U, on S,
—lim,_,o+ yl—2s BV =cn,s9 Tr(V), on B, ,

1— 25)

where cns > 0 is as in Theorem 5.1.7, admits a weak solution Uy € HI(BTO, Y , t.e.

/B+ SV, VW dz — /B+ i U\W dz = CNS/ gTe(V) Te (W) dz (5.43)
0 70

||2+A2

Jor any W e H! . (Bt ,y'=%%) (see (3.2)), and Uy = U on S\ . Furthermore

os+
Uy — U strongly in Hl(B,ﬂO,y1 25 as A — 0T,

Proof. Let us consider the map ® : R x H(%,S;*(Bj’ y'=2%) — (H!

0. S+(Bj,y1*25))* defined as

. 1-2s . o 1-2s
S\, V(W) ._/+ Y2V YW dz /+ v |2+>\2VWdz

70 70

o
—CNS/ gTI' TI' dx—i—/ y <|.Z‘|12€—|—)\2_| |2>UWdZ

for any W € H; L (B,,O,y1 25). It is clear that ® is well defined and that ® is continuous

in (0,0) in view of Holder’s inequality, Proposition 5.2.6, (5.3), and (5.38). Furthermore
®(0,0) = 0.

Let us prove that ®,(0,0) € E(H1 (BTU, yt=2s), (Hé st

where @y is the partial derivative With respect to V of ®. For any Wy, Wy € H 1 (Bro, y'=2%)

(B;f,y'~2%)*) is an isomorphism,

(H? s+ (Bro yl=2s))* <(I)V(0 0)(Wl) W2>H1 S+ (B yl—2s) = (Wl’WQ)g,a,k,O‘
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Hence, by Remark 5.3.1, ®y/(0,0) is the Rietz isomorphism associated to the norm |||, , 1 o-
We are now in position to apply the Implicit Function Theorem to @ in the point (0,0)
and conclude that there exist A > 0, p > 0 and a function

£ (=X X) = B,(0), (5.44)
continuous in 0, such that ®(\, V) = 0 if and only if V = f(\) for any A € (=X, )
and V € B,(0). The set B,(0) in (5.4 ) is defined as B,(0) = {V € H1 (BTO,y1 2s5) .

HVHHl(Bj{],yl—“zs) < p}.
It follows that Uy := U — f()\) solves (5.43) for any A € (0,)) since U is a solution of

(5.31). Furthermore Uy — U strongly in H*(B;f,y' %) as A — 0% since f is continuous in 0
and f(0) = 0. O

Remark 5.3.3. Let Uy be a solution of (5.43). Then, reasoning in the same way of Propo-
sition 5.2.2, we can prove that for a.e. 7 € (0,70), a.e. p € (0,7) and any W € HY(B;\
Bt y1—2s)

p I’

/B+\B+ yl=2s <VUA.VW HUAW> dz = - / Y3V, - 2 W dS
T P k
I 7 T / gTe(Uy) Tr(W) dw.  (5.45)
pJsg B/\B,

=

Let v be the outer normal vector to B," on S;7, that is v(z) = ER

Proposition 5.3.4. For any X € (0,)), let Uy be a solution of (5.43). Then for a.e. r € (0,70)

f/ y1’28|VUA\2dS—r/ yI=2 VU, - v dS
2 Jsf SF

+CNT’S (Ng+z-Vg)| Tr(Uy)|? dz — %/ g| Te(Uy)|? dS
Bj. /
N -2
= S/ yHSIVUA!?der/ y' =2 7UAVUA zdz (5.46)
2 Bf B ||} +

for a.e. r € (0,79).

Proof. We proceed in the spirit of Proposition 3.2.3, since (|z[3+A?)"1U\ € L*(B,F,y'72%) and
g€ I/Vloc (2\ {0}). Then by Theorem 3.2.1, Proposition 3.1.7 and the proof of Proposition
3.2.3, for any r € (0,79) and p € (0,7),

95 OU
Oy
Tr(Uy) € H'*(B/\ B)), and Tr(V,U,) =V Tr(Uy), (5.48)
VUy-z€ H(BF\Bf,y"™), and Tx(VUy-z)=Te(VU)) x

V.Ux € H'(Bf\ Bf,y"*), and e H'(BF\ Bf,y*™"), (547

where H'*5(B, \ B,) := {w € H'(B,\ B) : §£ € W*(B}.\ B}) forany i = 1,...,N}. We
also have, in view of (5.43), the following 1dent1ty

div(y' =2 |VU, |22 — 2y~ 2VU, - 2VUy) = (N — 2s)|VUA\2+27

o + UyVU, -z (5.49)
k
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in a distributional sense in B, \ B . Furthermore, thanks to (5.47),

diV(ylf%VU)\ -2VUy)

= —:L/1*25|33|2%UNUA 2 +y' T*VUL-V(VUy - 2) € LN(BF\ Bf) (5.50)
k

and so by (5.49)
div(y'~>*|VU\|*2) € L'(B\ B)).

Let, for any ¢ € (0,r),
B:(s ={(z,y) €B}:y>6} and 5:5 = {(z,y) €S :y>d}. (5.51)
Integrating by part on B, \ B we obtain, for any ¢ € (0, p),

c (128 2 _
/B:a\Bj,é div(y ~“*|VU\|"2) dz = T’/S+

8

yEIVUNRAS —p [y VU s
S
.0

— 52 . " VUL (x,6) dz.  (5.52)
VI

We claim that there exists a sequence §,, — 07 such that

p2—52

lim 8228 / / VU (x, 6) dz = 0 (5.53)

n—oo \Bl
\/72—5% p2—5%
arguing by contradiction. If the claim does not hold than there exist a constant C' > 0 and
do € (0, p) such that B;. x (0,d9) C B;} and

o / |VU\|?(z, 6) da >
B a2 \B e

Then integrating (5.54) over (0, dp) we obtain

50 60 C
/ 51—28/ VU (2, 6)dz | d6 z/ © 45 = too,
0 Bl o 0

which is a contradiction in view of the Fubini-Tonelli Theorem. Then we can pass to the limit
as 0 = 0, in (5.52) and conclude that, thanks to the Dominate Convergence Theorem and
the Monotone Convergence Theorem,

/+ N div(y' 2 |VU,|?2) dz = r/+ y' 72| VU, > dS — p/+ y' 72| VUL 2dS  (5.55)
B\Bj Sy Sp

% for any 6 € (0, dp). (5.54)

for a.e r € (0,7r9) and a.e. p € (0,r). Testing (5.45) with VU - z we obtain, in view of (5.50)
and Remark 5.3.3,

/ div(y'=*VU, - 2VU,)dz = / Y2V, - V(VUy - 2) dz
B\By BB

1-2s__ @ _ 1 1-2s 2
_/B;F\B;y WUAVU)\.ZCZZ_T/S;F:U VU, - 2| dS

1
— f/ Y72 VU, - 2|? dS + CN’S/ gTr(Uy) V, Tr(Uy) - xdx. (5.56)
pJsyt BI\B!

r\Pp
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We note that g Tr(Uy )%z € Whi(B. \ B, RM) by (5.3) and (5.48) hence integrating by part
we obtain

1
/ g Te (U, Te(Uy) - 2 dz = —f/ (Ng +z - Vg) Tr(U)? da
BI\B! 2 JB\B,

T / g Te(Uy)2dS" — £ / gl Te(Uy)[2dS". (5.57)
2 s 2 s

Arguing as in the proof of (5.53), we see that there exists a sequence p, — 0% such that

2
—92s . _9s z
g;%pné+ y'? ‘VUA|2dSZnh_>HgOPn/S+ y' 2 VUA'M ds
rn Pn
= lim pn/ g| Tr(Uy)|?dS" = 0.
n—o0 S’

Pn

Then by the Dominated Convergence Theorem, we can pass to the limit as p = p, and n — oo
n (5.55), (5.56), (5.57) and conclude that (5.46) holds in view of (5.49). O

Proposition 5.3.5. Let U be a solution of (5.19). Then for a.e. r € (0,rp)

r 1-2s 2 @ .09 _ 1—2s 2
2/5;‘” (\VU| ||2U>dS T/Sjy VU v dS

5 <Ng+x.vg>|Tr<U>\2dx—cN7% /S gl T (U)[? ds’
B! v

N -2
_ S/ s(ivup - 20 ae. (5.58)
2 Bi s

Proof. Let r € (0,79) and Bré, St 5 be as in (5.51) for any 6 € (0,7). Then, by (5.2),

«
di 1-2s U2
W(‘y @ A2 A7
ofzl;

_ ,1-2s - @ 2 2

and y1_25| [EE U/\z ewh 1(BJr RN*1), Integrating (5.59) by part in BM we obtain

T/S+ y1—23| ’2+)\2U/\ ds — 52—25/3
8 \/Ti

_ 1-2s
_/B+ y 27‘ ‘2+/\2U>\VU,\ 2dz
7,0

alm!i

1-2s 2
7,0

We claim that there exists a sequence §,, — 07 as n — oo such that

lim 822 /B WUA(:U 8,)dx =0 (5.61)

n—00

r2_5
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arguing by contradiction. If (5.61) does not hold, then there exists a constant C' > 0 and
do € (0,7) such that (0,dp) x By C B;\ and

51_28/ %U)\(l’ 5)d %
e |z} + A
for any ¢ € (0,0¢). Integrating over (0,dp) we obtain

oo 1% (500
1—2s > —
—|—oo>/0 5 (/Bl|z|2+)\2U(x5)dx>d5_ "5

a contradiction in view of the Fubini-Tonelli Theorem. Passing to the limit for § = §,, as
n — oo in (5.60) we conclude that

1-2s @ r 1-2s
———=U\\VU)y - zdz == U dS
/B,fy af + a2z MY AR Q/Sjy mk A

1

2
-3 y <(N+2—2S)O‘U2—2 ol ) Uf) dz. (5.62)

2_o9 Ok
e} + A2 (Jlf +A%)?

Now we pass to the limit as A — 0T, eventually along a suitable sequence A\, — 0T, in
each term of (5.46) taking into account (5.62). We recall that, by Theorem 5.3.2, Uy — U
strongly in H'(B;,y'=2%) for any r € (0,7¢]. It is clear that for any r € (0,70)

lim Yy TBIVUNP dz = / N Yy T2IVU R dz.
T B'I"

A—0t JBt+

Furthermore there exists a sequence A, — 0 asn — oo and G € L*(B;, y'~ 25|2|,-%) such that

alx!i 2 & 2 +
(N+2_2 )WU)\" WUA7L_>(N_2S)@U forae ZGBTQ’
(&%
WU ’ |kU -0 for a.e. 2 S B;,t), (563)
n

[U»,| < |G| forae. z € B} and any n € N.

Then by the Dominated Convergence Theorem we conclude that for any r € (0, r)

lim Yy =2 (N +2— 25)LU2 - ZLQU’]%U2 dz
L Joy E A T E I

- N—2s/ 1-2s S 12 gy
( ) ny ||}
and
lim 2| ® 2 @l 5.64
e [ RSP AC R (564
By (5.3), (5.40), (5.38) and Proposition 3.4
lim |Ng+Vg x| | Tr(Uy) — Tr(U)|* dz = 0 (5.65)

A—0t

115



hence, for any r € (0,7),

lim (Ng+x-Vg)|Tr(U,\)\2d:n:/ (Ng+ Vg - 2)| Te(U)? d.
A—0t JB! /

T

By Fatou’s Lemma and the Coarea Formula,

T0
/ (lim inf [ y'7%|VU, — VU|? dS) dr <liminf [ y'=%|VU, — VU|?dS =0,
0 A—0t

A—0t Jgt B;LO
and so

lim inf yl’QSIVUAFdS:/ y' 2| VU|? dS
S S,

A—0t

for a.e. r € (0,79). Similarly, for a.e. r € (0,r9)

lim inf yl_QSIVUA-uFdS:/ yImBIVU - |2 dS,
St St

A—0t

and, by (5.65) and Fatou’s Lemma,

lim inf g|Tr(U>\)\2d’S:/ g| Tre(U) > dS’.
st st

A—0t

Furthermore passing to the limit for A = A, as n — oo and A, is as in (5.63), we obtain

« «
lim =2s___— U2 dS = / 1=2s_— 1248
nooo Jor Y R Az stV e

T

for a.e. r € (0,79), thanks to Fatou’s Lemma and (5.64). In conclusion (5.58) holds. O

5.4 The Monotonicity Formula

Let U be a non-trivial solution of (5.19), let ro be as in (5.41). For any r € (0,79] we define
the height and energy functions respectively as

1 1-2s772
1 «
D(r) = ——— / 1225 (|\VU|? = —U? | dz—c / Te(U)>dx ). (5.67
)= e ( v (\ P~ n wo [, 91T (567

The proof of the next Proposition is very similar to [47, Lemma 3.1] and we omit it. We

also recall that v is the outer normal vector to B, on S, that is v(z) = ﬁ

Proposition 5.4.1. We have that H € VVli’g((O,TO]) and

2 12907 56 %D(r), (5.68)

/ —
H'(r) = PNH=2s [o Yy o

in a distributional sense and for a.e. v € (0,rg).

Proposition 5.4.2. Let H be as in (5.66). Then H(r) > 0 for any r € (0, o).
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Proof. Assume by contradiction that there exists r € (0, 7] such that H(r) = 0. From (5.31)
and Remark 5.3.1 we deduce that U = 0 on B;". Let X be as in (5.37). The function U is a
solution of an elliptic equation with bounded coefficients away from ¥; and RY x {0}. Then
the claim follows from classical unique continuation principles, see for example [134]. ]

Proposition 5.4.3. The function D defined in (5.67) belongs to I/Vllo’cl((O,ro]) and

2 o 1
D'(r) = w713 (r/s+ Yy VU v dS — ey /B <sg+ 2x-Vg) |Tr(U)\2da:> (5.69)

in a distributional sense and for a.e. r € (0,79).

Proof. By the Coarea Formula

D'(r) = (25 — N)r N+2s1 (/B+ yl =2 (\VUF - O‘U2> dz — cn s /B g| Te(U)[? dw)

Bl

e ([ (o - S0 ds - en [ gl (U as’
st i St

r

and so (5.69) follows from (5.58). Furthermore D € VVli’cl((O,To]) by (5.69), (5.67) and the
Coarea Formula. O

Let us define, for any r € (0, 7], the frequency function N as

D(r)
= . 5.70
NG = g (5.70)
In view of Proposition 5.4.2 the definition of N is well-posed.
Proposition 5.4.4. We have that N € W/llo’cl((O,ro]) and for any r € (0,7¢]
N -2
N(r) > == ) (5.71)
Furthermore
N'(r) = v1(r) + va(r) (5.72)
in a distributional sense and for a.e. v € (0,rg), where
2 2
2 (( Js+ y 22U dS) ( Jor v |2U ds) ~ (Jsry2USZ dS) )
U1 (7’) = 2 s
(fs;f Y1252 dS)
" [ (259 + 2 V) | TH(U)d
/(259 +x- Vg T
B
= —CNs— 5.73
va(7) CN, fSi yI-2502 4S ( )
Finally
vi(r) >0  for any r € (0,10 (5.74)
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Proof. Since 1/H, D € W2((0,ro]) it follows that A" € W1 ((0,7]). We can deduce (5.71)

loc loc
directly from (5.42) and (5.70). Furthermore by (5.68)
i/\f'(r) _ D'(r)H(r) = D(r)H'(r) _ D'(r)H(r) — 5(H'(r))
dr N H2(r) N H?(r)
and so (5.72) follows from (5.66), (5.67) and (5.69). Finally (5.74) is a consequence of the
Cauchy-Schwartz inequality in L?(S;",y'~2%) between the vectors U and %—g. O

Proposition 5.4.5. There exists a constant C > 0 such that
N —2s
2

Proof. The claim follows from (5.3), (5.40), (5.42) and (5.73). O

lug(r)| < Cr—1te (./\/(r) + ) for any r € (0,70]. (5.75)

Proposition 5.4.6. There exists a constant C; > 0 such that
N(r)<Cy for anyr € (0,70]. (5.76)

Proof. Thanks to Proposition 5.4.4, for a.e. r € (0,7¢)

(N+ N ; 28>, (r) > va(r) > —Cr~ ¢ <N(T‘) + N ; 28)
Hence an integration over (r,r) yields
N < =252 (o) + 52 ) 5
for any r € (0,79). O
Proposition 5.4.7. The limit
v = lim N(r) (5.77)

r—0t

exists and it is finite.

Proof. Since N € W’llo’cl(((),ro]) by Proposition 5.4.4, for any r € (0, ro)
N(r)=N(ro) — /TO N'(r)dr = N(ro) — /TO vi(r)dr — /TO va(r) dr. (5.78)

Since v; > 0 by (5.74) and vy € L'(0,79) by (5.75) and (5.76), we can pass to the limit
as r — 0T in (5.78) and conclude that the limit (5.77) exists. From (5.71) and (5.76) it is
finite. O

The proofs of Propositions 5.4.8 and 5.4.9 are standard and we omit them, see for example
[47, Lemma 3.7, Lemma 4.6], [65, Lemma 5.6, Lemma 6.4], [65, Lemma 5.9, Lemma 6.6] or
Propositions 4.4.9, and 4.4.10 in Chapter 4.

Proposition 5.4.8. Let vy be as in (5.77). Then there exists a constant K > 0 such that
H(r) < Kr?"  for any r € (0,7). (5.79)
Furthermore for any o > 0 there exist a constant K, such that

H(r) > K2 for any r € (0,79). (5.80)
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Proposition 5.4.9. Let vy be as in (5.77). Then there exists the limit

lim »~2H(r) (5.81)

r—0t

and it is finite.

5.5 The Blow-Up Analysis

Let U be a non-trivial solution of (5.19) and let ry be as in (5.41). For any A € (0, 7] let

U(X
VA(2) = (A2) . (5.82)
H(X)

By a change of variables, it is clear that V* weakly solves

—div(y! 2VVA) =y A in B,

k
. —2s A S

— limy_, o+ yl=2 %Ly = CN,s)\2 g(\) Te(VH), on B:”o/)\’

in the sense that
/ R vATE N va 1 i / Y2 VAW dz = cNS)\QS/ g(A) Te(VY) Te(W) da
B LA [ A

for any W € HSS* (Bt

ro/ A y'72%) (see (3.2)). Furthermore by (5.66) and a change of vari-
g/

ables
/ G}Vfﬂv)‘ 0)]?dS =1 for any A € (0, 7). (5.83)

Since the frequency function N is bounded on [0, r¢] (see (5.71) and (5.76)) we can prove the
following proposition.

Proposition 5.5.1. The family of functions {V)\})\e(o,m] is bounded in H' (B, y'72%).

Proof. For any A € (0,rp), thanks to (5.42), (5.82) and a change of variables,

)\QS—N
N = T (/B+ (!VU|2 — MU2> dz — s /B; g!Tr(U)I2dx>

2 \? A2s—N N —2s
> (11— - 1-2s 20 _

2 2 £ 1-2s A2 N —2s
= <l—a (H) +CN,SICN7S’9T0> (/ny IVVA*dz | — 5

Hence the claim follows from (5.76), (5.83) and (5.38). O

Now we establish the following doubling property.
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Proposition 5.5.2. There exists a constant Cs > 0 such that

1

o HQ) < H(RA) < GH(N), (5.84)
3

/ B2 4y < 032N+2—25/ Y2 [VRAR 1 (5.85)
B} B

[ R <o [ eri, (5.86)
B} By

for any A € (0,79) and any R € [1,2].
Proof. By (5.68), (5.71), and (5.76)

N -2 H 2N (r 2C
— SSH((:)): T()g rl for a.e. r € (0,79).

An integration over (A, RA\) with R € (1, 2] yields

_~ _ H(R))
2s—N < < 2C'1
R < 7H(/\) <R

thus (5.84) holds for R € (1,2] while if R =1 it is obvious.
Furthermore for any A € (0,79), by (5.84) and a change of variables,

19 12 )\—N—2+25 19 9 )\—N—2+25 19 9
1Y dz = ———— Sl dz < O3~ Sl dz
/B+ Y | | H ()\) / +A Y | ’ F=be H ()\R) /B 4 ‘ |

_ Oy RN+2-2s /B+ Y2 VAR g < 02N 22 /B+ VAR g,
1 1

+
R R\

for any R € [1,2]. Hence we have proved (5.85) and (5.86) follows from (5.84) in the same
way. [

In view of the Coarea Formula, there exists a subset M C (0,7) of Lebesgue measure 0
such that |VU| € L?(S;}, y'=2%) and (5.31) holds for any r € (0,79) \ M.

Proposition 5.5.3. There exist M > 0 and Ao > 0 such that for any A € (0, \g) there exists
Ry € [1,2] such that Ry\A ¢ M and

/+ BIVVAR dS < M/+ YB(TVAR + |VA2) de. (5.87)
Bf;,

R
Proof. By Proposition 5.5.1 {V)‘},\e(o o) is bounded in H'(B;,y'~2%). Hence
72
limsup/ YIB(VVAR £ VAR) dz < oo, (5.89)
A—=0+ B;’

Let, for any X € (0, %),

SA(R) == /B+ PB4+ VA1) de.

R
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The function f is absolutely continuous on [1,2] and, thanks to the Coarea Formula, its
distributional derivative is given by

FL(R) :/+y1_28(\VV)‘\2+\V>‘\2)dS for ae. R € [1,2].
SR

We argue by contradiction supposing that for any M > 0 there exists A, — 0 such that

/SJr y1—23(|vv)\n‘2 + |V)\n‘2) ds > ]\4/BJr yl—QS(‘vv)\n‘Z + ‘V)\n‘2) dz
R

R

for any n € N and any R € [1,2] \ i/\/l, hence for a.e. R € [1,2]. Therefore
I\ (R) > Mfy, (R) forae. Rell,2] and any n € N.
An integration over [1,2] yields fy, (2) > eM fy (1) for any n € N. Hence
lim inf f, (1) < lmsup f, (1) < e~ limsup f3,(2)
and so

liminf fy(1) < e limsup f,(2)
A—0t A—0+

for any M > 0. It follows that liminfy_,o+ fx(1) = 0 by (5.88). We conclude that there exists
a sequence A, — 07 as n — co and V € HY(B{,y'~%%) such that

lim [y 2 VVMPR V) dz =0

n—o0 BI&-

and V), — V weakly in H 1(Bf ,y1729), taking into account Proposition 5.5.1. By Proposition
3.4, (5.83) and the lower semicontinuity of norms, we obtain

1-2s 2 2 1—-2s7/,2
= = 1
/Bry (IVV]2+|V[2)dz=0 and /S+ 0L V2 ds

which is a contradiction. ]

Proposition 5.5.4. Let Ry be as in Proposition 5.5.3. Then there exists a constant M > 0
such that

/ H}V_ff]VVR*)‘\QdS <M forany € (O,min {)\0, 7;)}) . (5.89)
S+
Proof. By a change of variables, the fact that Ry € [1,2] and (5.82)

H)

1-25 g RAMN2 7 — p—N+142s
/S+9N+1|vv 2dS = R; H)

/ y1—25|vv>\|2ds
sgA
< QCgM/ y1—2s(|vv)\|2 + |V>\|2) dz
ng
< 2N+3—23032M/ X y1_25(|VVR>‘>\|2 + |VR>\)‘|2) dz < M < 400,
B/

for some M > 0, in view of Proposition 5.5.1, (5.84), (5.85), (5.86), and (5.87). O
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Proposition 5.5.5. Let U be a non-trivial solution of (5.19) and 7 be as in (5.77). Then

(i) there exists n € N\ {0} such that

N -2 N —25\?
Y= 2 S+\/( 9 S) +’Yoz,k,nv (590)

where Yo i 5 an eigenvalue of problem (5.20),

(ii) for any sequence A\, — 07 as p — oo there exists a subsequence Ap, = 0" as ¢ — o
and a eigenfunction Z of problem (5.20), corresponding to the eigenvalue Yo jn, such
th/at ||Z||L2(S+ 01—23) — ]. and

YN+

U\
Uy,2) —|2|7Z (Z> strongly in H (B ,y' ™) as ¢ — 0.
H(\p,) 2]

Proof. Let V* be as in (5.82) and R as in Proposition 5.5.3. Then {VRA’\})\G(O min{ 20,70 }) is
b b 2
bounded in H!(Bj,y'~%*), thanks to Proposition 5.5.1. Let Ap — 07 as p — oo. Then there

exists a subsequence X\, — 07 as ¢ — oo and V € HY(Bf,y'72%) such that Ve red Ly
weakly in H'(B;",y'72%) as ¢ — co. By Proposition 3.4 the trace operator Trg+ is compact
1

and so
ONZIVIPdS =1 5.91
[, oxEmEas =1, (5.91)
in view of (5.83). Hence V is non-trivial. We claim that
Vwetre <y strongly in HY (B, y' %) as ¢ — 0. (5.92)
. + + . . .
For ¢ sufficiently large B;” C B /(Bagy Avg) and since Ry, Ap, ¢ M, where M is as in Propo-

sition 5.5.3, we have that

Ry, A QO Ry A OV awq Arg
/ y1—2$ VV e LW — 72‘/ Mg PATY | dz = / 9]1\;&97 Wds
B;r ’x‘k st v

+ v (Bay, dpy) 2 /B 9(Ro,, Ap,) Te (V0 ™0) Te(W) de (5.93)

1

for any W € HY(Bj",y'~2%), thanks to (5.31) and a change of variables. We will pass to the
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limit as ¢ — oo in (5.93). To this end we observe that, for any W € H'(B;", y'=2%),

)\25—N
w2 [ 9O T T W) da| = | G [ 9(0) TH(O) @) T W) )
B, A
1
N\2ste—N N —2s 2
< hwog g | [y TEIVUR A - [y SR de 4 12|23
Y VU] 5 Y \|k| | s U]

1

N —2s
2 St

y' W) dS

1*QSyVW(A.)|2dz—/ g2 WA dz +
B Edrs

1
2

N — 2s
2

|V’\| dz +
k

i ; EH

— kN,s,g)\a ’/B+ y1—25|vv>\|2 dz — /B+ yl

I

-2
x/ y1*28|vvv|2dz—/ o g, N 5/ 9}fo|wy2ds
+ B+

By 1 ‘ |k

by a change of variables, the Holder inequality, (5.3), (5.40), (5.82) and (5.83). We conclude
that

=0, (5.94)

lim
A—01

et / g (V) TH(W) de

by Proposition 5.5.1 and (5.38). Thanks to (5.89), there exists a function f € L%(S¥, G}fo)

such that
AV Prra s

5, — [ weaklyin L*(ST,052) as ¢ — oo, (5.95)
up to a subsequence. Hence
AV v tra
. 1-2s 1-2s
lm [ ONEE W as /S+ 0% 2 FW dS

for any W € H'(B;",y'~2%). Furthermore

lim (VVR% Arg T — —VR*M Ara W> dz

q—o0 B+ | ’k
_ / Y12 (v YW — vw) dz
B |z}

by Remark 5.3.1. It follows that

i (vv-vw : |kvw> dz_/ 0172 FW ds

+
Bl

for any W € HY(B{",y'72%), that is V is a weak solution of the problem

div(y'=2VV) = %V, in B,
{ W )= ki ! (5.96)

—lim,_,o+ yl_%% =0, on Bj.
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Furthermore testing (5.93) with Vg

Pq
)

tim [y (gt Gy ) g
R A
151 Zke T B Y
— lim [0tz T R e gg / 0125 117 dS
g—oo Jgr NHI ov s+ Nt ’

thanks to (5.95) and the compactness of the trace operator Trg+, see Proposition 3.4. Hence
1
from Remark 5.3.1 and (5.83) we deduce (5.92). Let for any r € (0, 1]

1 - Ry, A QO Ry A
Dq(r) = M(/B_,r yl 2s <’vv Apg Pq’?_Ti‘V Apg Pq’2> dz

|z

— ene (B A, 12 [ 9(0a A, ) TV 00 70) 2 o)

r

and
1

Hy(r) = ~Ni=ss

/+ y1—25|VR/\pq )‘Pq ‘2 dS
S;

For any r € (0,1] we also define

1 2 o
Dy(r) = m/3+ y' 2 <!VV!2 - |V\2> dz

; [

and
1

Hy(r) = o /S+ y' 72| V|2 dS. (5.97)

r

Thanks to a scaling argument it is easy to see that

Dy(r) _ Dy, Ap,7)

Hy(r) ~ H(Rx, Ap,7)

Ny(r) == =N(Ry, Ap,r) for any r € (0,1].

By (5.92), (5.94) and Remark 5.3.1, it follows that
Hy(r) = Hy(r) and Dg(r) = Dy(r), asq— oo, for any r € (0,1].

Furthermore Hy (r) > 0 for any r € (0, 1] by Proposition 5.4.2 in the case g = 0 and 2 = B5.
In particular the function

_ Dy(r)
© Hy(r)

N:(0,1] >R, Ni(r):

is well defined and Ny € W/l})’cl(((), 1]) by Proposition 5.4.4 in the case ¢ =0 and Q = B). In
view of (5.97), (5.77)

Ny (r) = qlLIgON(Rqu Ap,r) =~ forany r € (0,1]. (5.98)
Hence Ny (r) is constant in [0, 1] and so
N (r) =0 for any r € (0,1].
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By Proposition 5.4.4 it follows that

(/S+ Y BV dS> (/S+ Y2 dS) = </S+ vy 9L dS> ~0

for a.e. r € (0,1), that is, equality holds in the Cauchy-Schwartz inequality for the vectors
V and %—‘If in L2(S;F,y'=2°) for a.e. 7 € (0,1). Therefore there exists a function n(r) defined
a.e. in (0,1) such that

LoV |?

ZV (r0) = n(r)V(rf) fora.e. r € (0,1) and a.e. § € ST.
Multiplying by V (rf) and integrating over S*,
Sav S
[ OES OV (r0)dS = n(r / 02V (r0)2dS  forac. 1 € (0,1)

and so n(r) = 2}12(;(8) = T for a.e. 7 € (0,1) by (5.68), (5.68) and (5.98). Since V' is smooth

away from X by classical elliptic regularity theory (see (5.37)), an integration over (r,1)
yields
V(rf) =r"V(10) =r"Z(0) foranyr € (0,1] and a.e. € ST, (5.99)
where Z = Vig+ and || Z]| 2g+ g1-2sy = 1 by (5.91) . In view of [60, Lemma 1.1], (5.99) and
YN
(5.96) the function Z is an eigenfunction of problem (5.20) and the correspondent eigenvalue
Ya,kn Satisfies the relationship v(N — 25 +7) = vo,k.n, that is

N — 2s N —2s\? N —2s N —25\2
Y= 2 + 9 +7a,k,n or v =-— 2 - 2 +'7a,k,n

Since 17 Z(0) € HY(B{",y'72%) by (5.99) then r27=222(0) € LY (B} ,y'~%) by (5.38) and so
we conclude that (5.90) must hold.

Consider now the sequence {V Pq }qu Up to a further subsequence Ve Y weakly in
HY(Bf,y'%%) as ¢ — oo, for some V € Hl(Bfr y'=2%) and Ry,, — R, for some R € [1,2] as

q — o0. The strong convergence of {V/ Fxpg Mg }gen to V in Hl(Bfr, y'~2%) implies that, up to
e and |VV %4 | are dominated a.e. by a L2(Bj,y'2%)
function, uniformly with respect to ¢ € N. Up to a further subsequence, we may also assume

that the limit
_ H(R/\p )\pq)
(= lim —2%—~
g—=o0  H(Ap,)

exists, it is finite and strictly positive, taking into account (5.84). Then from the Dominated
Convergence Theorem and a change of variables we deduce that

a further subsequence, both Vtang

) y' TV (Ry, 2)d(Ry,, ) dz
oW

R)\
N+2—2s Pq pq Ry, Mp
qhﬁnolo R/\Pq /B+ 1/R>\p (Z)V o (Z)qb(R’\Pq Z) dz

— RN+2- 28\// Y BV (2)¢(Rz) dz = \/E/B+ Yy BV (2/R)p(2) dz

lim Y=V e (2)p(2) dz = hm Ri\ur? 25/

q—00 BIL
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as ¢ — oo. Since Ve Y weakly in HY(Bf,y'7%%) as ¢ — oo we conclude that V/
VAV (-/R) and so V*a — \/{V(-/R) weakly in H'(B{",y'~2*) as ¢ — co. Furthermore

for any ¢ € C° (B71+) By density we conclude that Vv — /¢V (-/R) weakly in L?(B;", y'~%%)

lim y 72| WV e (2)2dz = lim RY 272 /B N y' "IV (R, 2)[ dz

q—o© B+ q—00 )‘Pq
1 /Ry,

H(Ry, Ay,)
1 N—2s pq " Pq 1-2s Rxp, Apq 2
lim Ry HO0) /B+y XB;L/R q(z)]VV PP (2)|* dz

q—00 q

= RN" 255/ y' TEIVV Pz = /B+ y EIVIVV (/R dz,

1

by the Dominated Convergence Theorem and a change of variables. Hence V¢ — ¢V (-/R)
strongly in H*(Bj,y'72%) as ¢ — oo.

Thanks to (5.99), V' is a homogeneous function of degree v and so V = VIR™V. More-
over, since Vs — V strongly in L?(ST, 0]1\[ ff ) as ¢ — oo by Proposition 3.4,

- / 0125\ (9)[2dS = ViR~ / 0L 25|V (0)[2dS = VIR
in view of (5.83) and (5.91). We conclude that V = V' thus completing the proof. O

Now we show that the limit (5.81) is strictly positive, by means of a Fourier analysis with
respect to the L2(ST, 0}, ff )-orthonormal basis {Z k. nen fo) Of eigenfunctions of problem
(5.20), see Subsection 5.2.1. To this end let us define for any k € {3,..., N}, a as in (5.2),
and n € N\ {0}

oni(N) i= / 082U (M) Zagns(0) S, for any A € (0,70], i € 1,..., Mo, (5.100)
S+

see (5.35) for the definition of My, and

Thi(A) == cns /B gTr(U) Tx (Za,km ()) dz, . (5.101)

| |-

for any A € (0,79}, i € 1,..., Mg . Thanks to Proposition 5.4.7 and Proposition 5.5.5 there
exists ng € N\ {0} such that

N —2s N —2s\?
Y= lm M) = -2 J (F57) + ke (5.102)
For any i € {1,..., My k.n,} We need to compute the asymptotics of pp, i(A) as A — 0.
Proposition 5.5.6. Let ng be as in (5.102). Then for any i € {1,...,Mykn,} and any
r € (0,70]
Prgl(r) | arNVEETH /” ~1+
(\) = \7 : PY  (p)d
Png.i(A) ( F vy i) M no,i(P)dp
N —2s + " —N—-1+42s5—v
— Thoi(p) d O(\** A—0". (5.103
el noilp) dp) +O(NTH) as (5.103)
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Proof. Let n € Nand i € {1,..., My n}. Let f € C(0,rp). Then testing (5.19) with the
function |2|N*1725 f(|2]) Zakni(2/|2]) and passing in polar coordinates, by (5.33), we obtain

N+1-2s ,
_f%w‘

in a distributional sense, where the distribution (,; € D'(0,79) is define as

D(0,0) i F)D(0,10) = Om {Z(AQ)S ( /S L 9A) Tr(U)(A) Tr (Za,k,n,z‘ <\|>) dS’> dX, (5.104)
1

for any f € Cg°(0,79). In particular ¢, ; belongs to L;,.((0,79]) by the Coarea Formula and
a change of variables. If T, ; is as in (5.101), a direct computation shows that

—@hi(N)

n,i

(V) + 15520050 = Gua()  in (0,70)

17,50 = AVFIT2EG(N) in D0, 7o)

hence ,
o ()\N+1—25+20n ()\_Un@n,i()\))/) _ AO-RT;’L7i(>\) in D/(O,’I"o), (5105)

N -2 N —25\2
Op = — 5 S+\/< 9 S> + Yo k. (5106)

where

From (5.105) and (5.104) we deduce that the function A — \NVt1-2s+20x ()F"”(p;m()\)) be-

longs to VVlzcl((O, r0]) hence an integration over (\,r) yields
()\ﬂmﬁﬂn,i()\))l _ _A*N*l‘i’QS*Un’I‘nJ()\)
— AN 2o (C’(r) + / P ni(p) dp> (5.107)
A

for any r € (0,7¢], for some real number C(r) depending on r, o, k,n and i. Since in view of
(5.107) A = A7y i(A) belongs to W,};j((o, 10]), a further integration yields

Pni(A) = AT (T”"son,i(r) + /A p NTHEmony () dp

+ on / pNolt2s=2on <C’(r)+ / I, 4 (0) dt) dp>
A p

O'nC(T‘)T_N+25_2J"
—N + 25 — 20,

|
(it [ A

C )\7N+25720'n )\7N+25720'n r
B On (7') _ On / t”"_lTnyi(t) dt
A

—N + 2s — 20, —N + 2s — 20,
n On /7“ p_N—1+25—UnT (,0) dp
—N +2s — 20, Jx m
_ yon [ Pnilr) _ onCl)r V272 N 25 + o, / TNy () dp
ron N — 25+ 20, N — 25+ 20, Ja ’

O.n)\—N—I—Qs—Jn

-+ " O'nfl’r . ) 1
. (C(r)—i— A T, () dt ) (5.108)
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for any A € (0, 7).
Let ng be as in (5.102) and ¢ € {1,..., Mg k.n,}- By (5.102) and (5.106), v = oy, and

AN, (V)] < CN,s)\_N_H%_W/ 9l Tr(U) ‘Tr (Za’k’n’i (H))‘ o
B, '
1

1
2 ) ? :
< )\_N_1+25—'y (/ ’gH TI“(U)’Qd'%) (/ |g| Tr (ka,n,i ()) dl‘)
; " ]

S k.N’S’gA—N—l—FQS—"/-f—E

1
N —2s 2
x 1_2SVU2dz—/ =2 O U2 dz BU dz
(/B;y VOPdz = fo v e o st

+
A A

| [ AV Zani Dz~ [y oz B 1) dz

N — 2s _ ?
y' QS\Za,k,n,i(Z/\Z\)2d2>

2\ st

1
—1—y+e 1-2s |2 1— A2 N —2s)?
= knsg\ H\) / ATy dz—/ Y172 L VA2 dz 4
Bf Bf \

1
5 N —2s)\2
(/ VI LD bz = [0 i D e+ = )

)\—1+8

< const

for any A € (0,7¢], by Holder inequality, a change of variables, (5.3), (5.40), (5.79), (5.82),
(5.83), (5.101). Hence

1T 10.i(A)| < const ANT25F7F€ for any X\ € (0, 7). (5.109)
Now we show that for any r € (0, 7]

r) +/ AT, (V) dA = 0. (5.110)
0

From (5.109) it is clear that [3° A1, ;(A)dA < +o0o. We argue by contradiction. Since
Ono =7 > —2525 by (5.102) and (5.106), then from (5.108) we deduce that

A~ N+25—y v .
Prg,i(A) ~ N o212 ( (r) +A Y, i) dt) as A — 0
and so by (5.102)
/Or0 ANTI=251 600 (V)P dA = +oo. (5.111)

On the other hand by Hoélder inequality, a change of variables, (5.100) and [60, Lemma 2.4]

/ AN=L=25 ) |2d)\</ AN-1-2s (/ 0L-25|U (A) |2dS) d
2
1—2s

U

= y ¥ ——dz < o0,
2
B |2
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which contradicts (5.111). It follows that

r A
A o) + [ A—Hmo,z-(A)dA] — v | A‘””Tno,i(A)dA‘
A 0
=0\, (5.112)
in view of (5.109). In conclusion (5.103) follows from (5.108), (5.110), and (5.112). O

Proposition 5.5.7. Let U be a non-trivial solution of (5.19) and v be as in (5.77). Then

lim r~ 2 H(r) > 0.

r—0t

Proof. From (5.100), since {Za kn}nen fo} is @ orthonormal basis of L2(S+,¢9]1Vf15)a see Sub-
section 5.2.1, we have that

o0 Ma,k,n

HO) = [ OVHIU00RS =3 3 feniV)P (5.113)

n=1 i=1

by (5.66) and a change of variables. We argue by contradiction supposing that
lim, A H(N) = 0.
Let ng be as in (5.102). By (5.113) for any i € {1,..., My kng }s
Jim AT on (M) = 0.
By (5.103), for any ¢ € {1,..., Mgk n,} and any r € (0, o]
—N+42s—2y

Pn,ilr) | ar /T —14p
’ T, i(p)d
ey + N —2s5+27 Jo p no,i(p)dp

N—=2s+7 [T _N_1425—+
_ Y,i(p)dp=0. (5.114
N — 25+ 27 Jo n.i(p) dp (5.114)

Hence by (5.103), (5.109) and (5.114)

N —2s5+7
(N = )\« 7
#ni(N) N —2s+ 2y

as A — 0T for any ¢ € {1,..., My ny}- In view of (5.66) and (5.82), it follows that

,/H(A)/ ONZEVAZdS = O(NF)  as A — 0T,
S+

for any Z € V,,,, see (5.34). Then, in view of (5.80) with o = §,

A
/0 p_N_1+2S_,YTn’i(p) d,o + O(A'Y-"-E) = O()\7+s)

/+ ONZVAZdS =0(\3) asA—0F (5.115)
S

for any Z € V,,,. On the other hand by Proposition 5.5.5 and Proposition 3.4, there exist
Zy € Vy, with HZOHLQ(S+ pi-2:y = 1 and a sequence A\g — 0" as ¢ — oo such that
YNt

V2 — Zy  strongly in L*(S¥, 9}{5{”) as ¢ — 0o. (5.116)

Since Zy € Vp,, from the Parseval identity, (5.115), and (5.116) we deduce that Zy = 0 which
contradicts the fact that HZ0||L2(S+ pi-2s) = 1. O
N1
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We are now in position to state and prove our main results which are a more precise
version of Theorem 5.1.9 and Theorem 5.1.10 respectively.

Theorem 5.5.8. Let U be a solution of (5.19) and suppose that g satisfies (5.3). Then there
exists n € N\ {0} such that

_ 9N 2
v = lim N(r) = N2 + \/<N 28) + Ya,kn- (5.117)

r—0t 2 2

Furthermore let My gn and {Zokniticqi,.... Majn} b€ as in (5.35) and (5.36) respectively.
Then for any i € {0,....Myrn} there evists B; € R such that (B1,...,Bm,,.,.) # (0,...,0)
and

ak:n
U( ?) — |z]7 Z BiZakni(2/|2])  strongly in HY (B, y'%) as A — 0T, (5.118)
where
©Oni(r) pm N2 =2y / —1+p
= Y,.i(p)dp
Bi Y + N — 25+ 2v p il

N —2s+ _N_ _
Ws—l—;y 0 N=l2s "Yni(p)dp  for any r € (0,r¢], (5.119)

with ¢y i and Y, ; given by (5.100) and (5.101) respectively.

Proof. In view of (5.77) and Proposition 5.5.5 we know that (5.117) holds for some n € N\{0}.
Furthermore for any sequence of strictly positive numbers A\, — 0% as p — oo there exist a
subsequence Ap, — 0T as ¢ — oo and real numbers S3i,...,[ Me i Such that

U A cxkn
0D pap S Aasnie/le) strongly i (B 5/~ as g = oo

(5.120)

taking into account Proposition 5.5.5 and (5.36). We claim that for any ¢ € {1,..., My rn}
the number 3; does not depend neither on the sequence A\, — 07 nor on its subsequence
Ap, = 0. In view of (5.36), (5.100), (5.120) and Proposition 3.4

lim A, 7o, i(Ap,) = Tm [ O Z A U (Np,0) Zo g 5(0) dS

q—oo  Pa q—o0 Jg+
Ma k,n

Z /Bz/ ejlvffzaknz akn,]ds /8j7

for any j € {1,..., My n}. On the other hand for any r € (0, ro]

—N+23 2y

Pn, () ~l+py
Jim 2 Ton i (Ap,) = 0 + _28+27/ p n,j(p)dp

N—=2s+7 [T _N_1426—~
_ Y,.ilp)d
N*28+2’y 0 n?](p) 4
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by (5.103). Hence

. —N+25—27v r
R SDN,](T) or / —1+pfr . d
Bj R vy i) A n,j(p)dp

N—=2s+7 [T _N_1426—~
—_ T,.i(p)d 5.121
N_—2s+2v /o " nj(p)dp  ( )

for any j € {1,..., My kn} and in particular §; does not depend neither on the sequence

Ap = 0T nor on its subsequence A, — 07. Then by (5.121) and the Urysohn Subsequence

Principle we conclude that (5.118) holds, thus completing the proof. ]

From Theorem 5.5.8, Proposition 5.1.6 and Section 3.1 in Chapter 3 we can easily deduce
the following theorem.

Theorem 5.5.9. Let u be a solution of (5.12) and suppose that g satisfies (5.3). Let 7,
n € N\ {0}, Mo kn and {Zao kniticf1,..M, ..} b as in Theorem 5.5.8. Then

Moc k,n
A Ky
“(Af) — 12" S B Te(Zagems((-/|-)(x)  strongly in H*(B}) as A — 0%,
=1

where B is as in (5.119) for any i € {1, -+ , My n}-

Proof of Corollary 5.1.11 and Corollary 5.1.12. We start by proving Corollary 5.1.11.
Let U be a solution of (5.19) such that (5.24) holds and assume by contradiction that U # 0
on Q2 x (0,00). Let v be as in Theorem 5.5.8. Then there exists a sequence \; — 07 such that

qli_{)(r)lo A TU(Agz) =0 forae z € Bf.

On the other hand by Theorem 5.1.9 there exists an eigenfunction Z of (5.20) such that

lim A\, YU(M\2) = |2|7Z(2/]2]) for ae. z € B,

g—oo 4

up to a further subsequence, which is a contradiction. Arguing in the same way, we can
deduce Corollary 5.1.12 from Theorem 5.1.10, taking into account Remark 5.2.4. O

5.6 Computation of the first eigenvalue on a hemisphere

Proposition 5.6.1. Equation (5.22) holds for any k € {3,...,N}. If k = N then (5.23)
holds.

Proof. Let Y, 1 be the first eigenfunction of (5.5) defined in Section 5.1. In particular
Yo k1 is positive. By [64, Theorem 1.1] there exists an eigenfunction ¥ of problem (5.21),
corresponding to the first eigenvalue 74 1.1, such that

N-2_ [(N-2)2 _N-2, [(N-2)2
A 2 ( 2 )+na’k71Ya7k71(A1’)_>‘$‘ 5+ ( 2 )+77a,k,1\1/(’i|) (5.122)

strongly in H(Bj) as A — 07, since Y, k1 is positive. Furthermore for any ¢ € C°()

Li,kYa,k,1,¢> = (Ya,k,b(ﬁ)Hi’k(Q) = g k1 /Q Yor19dr,

<Hg,k<m>*< H ()
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in view of (5.8), that is Y, ;1 is weak solution of LZ,kYa,k,l = Ho k1 Yak1 D the sense given
by (5.12). Let U be the extension of Y, ;1 provided by Theorem 5.1.7. Since Y, 11 is positive
then |U| is the only solution to the minimization problem (5.17) and so we conclude that U
is positive. Then, in view of by Theorem 5.5.8 and Theorem 5.5.9,

N—2s N—25)2
( 2 ) +’Yoc,k,1ya7k71()\l')

_ N-2s
ndCi

WEP) S erig ez (D)@ (5.123)

strongly in H*(B}) as A — 07. Putting together (5.122) and (5.123) we obtain

N-2s (N—25>2+ __N-2 <N—2)2+
9 ) Va,k,l - 2 2 na,k,l

thus (5.22) follows from a direct computation. Finally, if & = N, problem (5.21) reduces to

~AgV —a¥ =n¥ in§

which admits —« as first eigenvalue, hence we have proved (5.23) in view of (5.22). O

5.7 A proof of Proposition 5.1.2

In this section we provide, for the sake of completeness, a detailed proof of Proposition 5.1.2
starting with a preliminary lemma. Let us consider, for any positive sequence {gy, }nen, the
weighted ¢?(N)-space defined as

EQ(Na {an}) == {{an}nEN : i Qnai < "’OO}

n=0

endowed with the norm )
00 3
H{an}”ﬁ(N,{qn}) = <Zoqﬂai> :
Lemma 5.7.1. Let (*(N,{g,}) and (N, {p,}) be weighted ¢*>(N)-spaces. Then

(EZ(Nﬂ {Qn})7 62 (N7 {pn}))s,Q = £2(N, {qufspfl}). (5.124)

with equivalent norms.

Proof. We follow the proof of [128, Lemma 23.1]. Let us consider a variant of the standard
K function defined as

1
K2(t7 a) = b—&i-Iclia { (HbH?Q(N,{qn}) + t? HCHEQ(N,{pn})) fibe Z2(N7 {Qn})> S Ez(Na {pn})} )
for any t > 0 and any sequence a € ((N,{g,}) + *(N,{p,}). If K(t,a) is the standard
K-function it is clear that Ky(t,a) < K(t,a) < v2Ks(t,a) for any ¢ > 0 and any se-
quence a € F2(N, {q,}) + *(N,{p,}). It follows that we can use Ks to define a norm on

(2(N, {qn}), *(N,{pn}))sz2 equivalent to the standard one.
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We can compute Ks(a,t) explicitly. Indeed, fixed a € £2(N, {g,}) + £*(N, {p,}) and t > 0,
we can, for any n € N, minimize the value of b2 g, +t(a,, — b, )*p, as a function of b,, choosing

t*pn,
= ————qay.
" qn + t2pn "
With this optimal choice it follows that
Cn = ap — by, = qina
A
and so we obtain
> tQPnQn 2
Ks(t,a)? = —a’.
(t,a) ;::qut?pn n

Then by the Monotone Convergence Theorem and the change of variables ¢t = 7 g—"

/Kg(tat125dt Z / Y P gy /OO
0 Gn + 12pn, 0

Since for any s € (0, 1)

F1-2s >§: 5 1
dr azq, °pl.
2 nin n-
1+71 =

00 7_1—25
[
o 1472

we conclude that (5.124) holds. O

Proof of Proposition 5.1.2. Let us start by proving that for any k € {3,..., N} and « as
n (5.2)

He () = {v e L*(): ) paknvy < +oo} = Hy(Q), (5.125)

n=1

with equivalent norms. If u € H}(Q) then, in view of Remark 5.1.1,

_ Z a kon Ya,k,n
ne1 \/,uoz kn \/Hoz,k,n

and so by the Parseval’s identity, (5.6), (5.7) and Remark 5.1.1

oo
+oo > [ulZ = paknui (5.126)

n=1

On the other hand if u € Hék(Q) let, in view of (5.6),

J
a,k,n akn
U k
g( \/Makn) Mok HZ:l nYo "

For any j € N\ {0} it is clear that u() € H}(Q) and if j > i

Hu(j) _

2 J 9
L= D Mokl (5.127)
n=i
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It follows that {u(j)}jeN\{O} converges to u in Hg(Q) by Remark 5.1.1, and (5.127). In
conclusion u € HE (). From Remark 5.1.1 and (5.126) we deduce that the norms on H3(Q)
and Hik(Q) are equivalent.

For any s € (0,1], since L?(£2) and H? , () are isomorphic to ¢*(N) and ¢*(N, e knt)

)

respectively, from Lemma 5.7.1 and (5.125) it follows that

H5(Q), if s €(0,1)\ {3},

5.4(9) = (F3(9), HL ()52 = (L(Q), HY ()2 = {H%z(m, ool

with equivalent norms. The last equality is a classical interpolation result, see for example
[101]. O
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Part 11

Unique continuation for parabolic
problems
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Chapter 6

Unique continuation for the
fractional power of the heat
operator

6.1 Statement of the main results

In this Chapter we deal with the singular fractional evolution equation

1
(1, — Ay = <|x‘|‘28w + gw) iR x (fg — T to), (6.1)

where T' > 0, and

2 ( N+2s
(T NN G v
S € (0, ].), N > 287 n < KJSAN,Sa Rg = m, AN,S =2 W (62)

We are interested in studying the asymptotic behaviour of solutions to (6.1) at (z,t) = (0,tp)
along the directions (A\z,ty — A*t) as A — 0F. On the perturbing potential g we assume the
following hypotheses:

N N
9.9 € L"((to — T o), L= (RY)), g € Lig,((to — T, t0), L3 (RY)), (6.3)
lg(x, )] + [Vg(x,t) - 2| < Cy(1 + |x|725¢) for all t € (tg — T, tp) and a.e. € RY, (6.4)

for some constant Cy; > 0, € € (0,2s) and r > 1.

To formally introduce the fractional heat operator, let us first set some notations. For
any real Hilbert space X we denote with X* its dual space and with y.(:,-)y the duality
between X* and X; (-,-)y denotes the scalar product in X.

The operator H® can be defined by means of the Fourier transform as follows: for any
function w € S(RVF1),

Ho(w)(€,0) := (8 + |¢[2)* 8 (. 0),
where the Fourier transform of w is defined as
. 1 il
Fw)(£,0) = D(E,0) = ﬁ/w“ e~ EEH0) 4y 1) i d.

(2m)
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Furthermore, we can extend H® to its natural domain; more precisely, we can define H® on
Dom(H?) := {w e LX(RN*) . / 30 + |€)2|°|@(€, 0)|* dE db < +oo} ,
RN+1

endowed with the norm

1
. S|~ 2
llpongery = ([, w0 dedis [ jio-+1ePplaeo)Pdeas)

as the map from Dom(H?®) into its dual space (Dom(H?))*, defined as

(Dom(H*®))* <Hs(w)7 U>D0m(HS) = / (ZH + |£|2)S{D(£’ 0)@\(57 Q)dfdﬁa (65)

RN+1
for any w,v € Dom(H?).
It is worth noticing that, since |£]?* < |if + |£|2|* for any (0, &) € RV+L,
10l 2 myws2@vy) < 10l pom ()
for any v € Dom(H?). Hence the natural embedding
Dom(H?®) < L*(R, W*?(R")) (6.6)

is linear and continuous. In this Chapter we will denote with W*2(R¥) the usual fractional
Sobolev space H*(R™) to avoid any confusions with the fractional power of the heat operator
H. Furthermore, since we are dealing with a Hardy-type potential, the weighted L?-space

2

LARN, |z|72%) = {v RV 5 R measurable:/ dx < —I—oo}
R

N |:L,|25

will play a role in our analysis, together with the following Hardy-type inequality due to
Herbst [86]:
| 618P de = Ay [ Jal 267 do (67)
RN RN

for all ¢ € C3°(RY), where Ay s > 0, defined in (6.2), is optimal and not attained.
In view of (6.5), we define a weak solution of (6.1) as a function w € Dom(H?) such that

Domireny C(0), Bhpomire) = — /toT( /RN< s gwqb) d:r) i (68)

Ks Jto— |

for any ¢ € C°(RN x (tg — T, tp)). In view of (6.4), (6.6), (6.7), and the Holder inequality,
the above definition of weak solution is well-posed, that is the right hand side, as a function
of ¢, belongs to (Dom(H?*))*.

In order to develop an Almgren-Poon type monotonicity formula, we apply the extension
procedure of [24] (see also [21, 110, 125]) to localize the problem.

We use the symbols V and div to denote the gradient, respectively the divergence, with
respect to the space variable z = (z,y).

We also note that by [101] there exists a linear and continuous trace operator

Tr: HYRYT 4172 — W2s(RY), (6.9)

see also Section 3.1 in Chapter 3.
The following theorem is a particular case of a very general extension result proved in
[24]. See also [110, Theorem |, [125, Theorem 1.7] and [21, Section 3, Section 4].
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Theorem 6.1.1. [2/, Theorem 4.1, Remark 4.3] If w € Dom(H?), then there exists a function
W e L*(R, H! (Rf“, y'=2%)) that weakly solves

Yy W, — div(y'"2VIW) =0, in RYT xR,

Tr(W(-,t)) = w(-,t), on RN, for a.e. t € R,
1 1-2s0W _ s N
yli%l+ Yy gy = fsH*(w), on RY x R,

in the sense that

1-2s
A{(/Rfﬂy qutdz)dt

— 1-2s s
= /]R (/MH y VW -Vo dz) dt — ks (Dom(Hs))*<H (w), ¢(, 0, .)>D0m(H5)

for any ¢ € CX(RYT! x R).
The following corollary is an easy consequence of Theorem 6.1.1 and (6.8).

Corollary 6.1.2. If w € Dom(H?) is a solution of (6.8), then there exists a function W €
L*(R, H! (Rf“, y'=2%)) that weakly solves

Yy TBW, — div(y'"EVIW) =0,  in RYT x (tg — T, to),

TI‘(W(vt)) = w('>t)7 on RNa fOT a.e te (tO - T, tO)v (610)
- yli}lr(r)gr yl_%%—vg = #w +gw, onRYN x (tg — T, tg),

in the sense that

fo 1-2s
T“Wordz | dt
/toT /Rf“y on

to to
1-2s 1%
= VW -Ve¢dz dt—/ (/ ( weo + gw ) dx) dt, (6.11
- (/MH?J ¢ ) o\ U ¢+ gwo (6.11)

for any ¢ € CSO(RJJ\:H X (to —T,to)).

The asymptotic behavior at (0, ty) of a solution W of (6.10), and consequently of a solution
w of (6.8), will turn out to be related to the following eigenvalue problem for a weighted
Ornstein-Uhlenbeck operator:

(6.12)

—div(y!"=VY) 4y 722 . VY = 9!y, in RYT
_ T 1-2s0Y _ _p N
ylif(I)lJr y oy~ TaE Tr(Y), on R™,
with p < ksAp s, see (6.2) for the definition of ks and Ay 5. To introduce a suitable functional
setting for problem (6.12), we define

—2s _ |z
- -5 for any (z,t) € Rf“ x (0, 00).

Gol(z,t) =t
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It is easy to verify that G5 € C*° (]R_]X 1 % (0,00)) solves the problem

s
t

lim y'~259Gs — on RY x (0, 00),

Y1298 _ div(y'=2VG,) =0, in RYT x (0, 00),
dy

y—0t

in a classical sense. Furthermore

VG(z,t) = —%Gs(z,t) for any (z,t) € RY™ x (0, 00). (6.13)
Letting
2 2
G(z) = Gs(z,1) = e_%, for any z € RV*1
we define

L= {V : Rf“ — R measurable : /
RN+1

+

yIBVIGdz < +oo}

and H as the completion of C2°(RY 1) with respect to the norm

[éll3 == (/IRN+1 y' (9 + | Vo|P)G dz)
+

It is clear that both £ and H are Hilbert spaces with respect to the natural scalar product
associated to the || - || -norm and the || - [|,,-norm respectively. We observe that

Wiy < |’W”H1(Rf+1,y1*2s) for any W' € HI(RﬁHWkQS)a
hence the embedding
Hl (Rf-i-l, y1_25) s H

is linear and continuous. Furthermore, we consider the weighted L?-spaces

L*(RY,G(x,0)) := {v : RN — R measurable : / v?(2)G(x,0) dr < +oo}
R

N

and

v (@)

N ‘.%"25

LARYN | |z| %G (x,0)) := {v : RY — R measurable : / G(z,0)dx < +oo} .
R

The trace operator Tr introduced in (6.9) can be extended to a continuous linear trace op-
erator, still denoted as Tr, from H to L?(R™,G(z,0)), see Proposition 6.2.3 in Section 6.2.
Furthermore Tr takes values in L?(RY, |z|~2*G(z,0)) and

Tr:H — L2RY, |2|">G(x,0)),

is linear and continuous, see Proposition 6.2.5 in Section 6.2.
We say that 7 is an eigenvalue of problem (6.12) if there exists an eigenfunction Y € H\{0}
weakly satisfying (6.12), i.e.

1-2s ) _ H ) _ 1-2s
/Rfﬂy VYWV Gdi- [ o O (V) G0, ) de 'y/Rny YV Gdz (6.14)
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for any V € H. Proposition 6.2.5 in Section 6.2 ensures that the above definition of weak
solution is well posed.

In order to compute the eigenvalues of (6.12) we separate the variable z in radial and
angular parts. Henceforward we denote

SVti={zeRY:|z|=1}, SY:={z¢ Rerl szl = 13,
identifying SY with SV~1. Writing as 6 = (61,...,0n41) the coordinates on SV, we define
LZ(Sf,H}fo) = {v : SY — R measurable : /S H}Vfﬂv\QdZ < —i—oo}
+
and H'(SY, Hzlv_ff ) as the completion of CZ° (@) with respect to the norm
1-2s () 4|2 2 :
||¢HH1 sN e}vff = (/ 9N+1S |¢| + |VSN¢| )dS) )

where Vgy and dS denote the Riemannian gradient and the volume element, respectively,
with respect to the standard metric on the unit N-dimensional sphere SV.
We refer to [60] for the following proposition.

Proposition 6.1.3. [60, Lemma 2.2] There exists a linear and continuous trace operator
T HY(SY,00%) — L*(SN 1) = L*(osT).

Furthermore, letting ks and Ay s be as in (6.2),

N —25\?2 s _os
RSAN,S/SN_l |T(V)[2dS" < ( 5 > /S G}Vf1|V\2dS+/SN ON Vs VIPdS  (6.15)
+ +

for any v € HY(SV, G}fo), where dS' denotes the volume element on SN~1.

Let us consider the following eigenvalue problem

_ diVSN(9N+1 Vsnip) = VH}fo¢7 in Sf,
—  lim e}vffvsw eny1 = pT (), onSNTH (6.16)
On+1—0t

where eyi1 := (0,...,1) € R¥*! and pu < ksAns as in (6.2). We say that v € R is an
eigenvalue of (6.16) if there exists ¢ € H'(SY, 0, ff )\ {0}, called eigenfunction, such that

/ 0N HVonih - VonVdS —p [ T@)T(V)dS' =v / o8 2V ds

for any V € H(SY, O}fo) Since the natural embedding H*(S¥, H}V_ff) — L2(SY, H}V_ff) is
compact, see [58] and [111], by classical spectral theory the eigenvalues of (6.16) are a non-
decreasing and diverging sequence {vj (1) }rem fo}- In the sequence {v(p1)}ren j0} We repeat
each eigenvalue as many times as the dimension of the associated eigenspace. Inequality
(6.15) implies the following estimate on the first eigenvalue:

n(p) > — (N;23>2

Furthermore there exists an orthonormal basis {}rem (o3 of L2(SY, 911\/_+2f ) such that, for
any k € N\ {0}, the function v is an eigenfunction of problem (6.16) associated to v (u).

(6.17)
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Remark 6.1.4. If ;4 = 0, then a combination of the regularity result of [120, Theorem 1.1]
with the blow-up analysis done in [60] for the Caffarelli-Silvestre extended problem implies
that the set of eigenvalues of (6.16) is {k? + k(N — 2s) : k € N},

Let, for any n € N and j € N\ {0},

o El z
Yn,j(Z) = |2| iPjn e Vj g (6.18)
where
N —2s N —2s\?2
0= \/( ) o) (6.19)
Pin(t) =" (=n) <. with {(S) Tjmols+J) (6.20)
= (W _ O‘j)i ! (s)o = 1.
Let us also consider the £-normalized functions
< Yn i .
Y, = v, J|| for any (n,j7) € Nx N\ {0}. (6.21)
3L

The following result is proved in Section 6.4 and provides a complete description of the
spectrum of problem (6.12).

Proposition 6.1.5. The set of eigenvalues of problem (6.12) is
{’Ym,k ::m—O;k:k:EN\{O},mEN}, (6.22)

where {vi (1) frem\{oy are the eigenvalues of problem (6.16) and oy is defined in (6.19). The
multiplicity of each eigenvalue yp, 1 is finite and equal to

#{jeN\{o}:vm,HO;j eN}.
Furthermore, for any (m,k) € N x N\ {0},

Epp = {f/n’j . (n,j) € Nx N\ {0} and vy =n — O;J}

is an L-orthonormal basis of the eigenspace associated to the eigenvalue 7, 1, where ffw' has
been defined in (6.21). Finally

U Bk (6.23)
(m,k)eNxN\{0}

s a orthonormal basis of L.

The main result of this Chapter is the following classification of the asymptotic behaviour
near (0,tg) of any solution W of (6.10), based on the limit as ¢t — t; of the following Almgren-
Poon type frequency function

(to — 1) fRﬁH y B VW RGs(2,t0 — t) dz

t) =
N( ) fRN+1 y1*23W2Gs(-, to — t) dz
+

(to —t) Jgn (ﬁuﬂ + gw2) Gs(z,0,t9 — t) dx 624
B fRf'H yl_stst(',tQ — t) dz ' ( ' )
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Theorem 6.1.6. Let W # 0 be a weak solution to (6.10). Then there exist my € N and
ko € N\ {0} such that
lim N (t) = Yimg, ko> (6.25)

t—ty

where N has been defined in (6.24) and Y, k, ©n (6.22). Furthermore, letting

Jo = {(m,k:)eNxN\{O}:vmmkU:m—O;k}, (6.26)

for any T € (0,1)

2
1 ~
Anm+ APk W (A2t tg — A*) — tTmoko N~ B kY i(2)| dt =0
=0T Jr (m.k)EJo 2
and
2
lim sup [[A"2moko W (A2v/t, tg — A2t) — t7morko Z Bk Yo (2)|| =0
A=0T tefr1] o
) (m,k)€Jo L

where Yy, 1, has been defined in (6.21),

Bk = A~ 2¥mo ko / y1_2SW(Az, to — A2)§7m7k(z)G(z) dz + 2

N+1
R

~ _l=l?

A
X / 7287 1=2%mq ko </N g(Tx, ty — 72) Te(W) (T, to — 72) Tr(Yp, i) (x)e” 2 dm) dr, (6.27)
0 R

for any A € (0,Ag) and for some Ay € (0,v/T), and Tr has been defined in (6.9). Finally
Bk 7# 0 for some (m, k) € Jy.

From Theorem 6.1.6 and the relationship between problems (6.8) and (6.10) given by
Corollary 6.1.2 we can easily deduce a similar result for solutions to (6.8).

Theorem 6.1.7. Let w # 0 be a solution to (6.8). Then there exist my € N and ko € N\ {0}
such that, for any T € (0,1),

1
lim
A—=0t T

dt =0,
L2(RN7G('7O))

)\_QWMO»kOw()\$\/7E, to — )\Qt) — t7morko Z /Bm,k Tr(?m,k)($)
(m,k‘)EJo

where ?m,k, Bm.k, and Tr are defined in (6.21), (6.27), and (6.9), respectively.

Thanks to Theorem 6.1.6 and Theorem 6.1.7, we can prove that a strong unique continu-
ation principle holds for solutions of equations (6.8) and (6.11).

Corollary 6.1.8. Let W be a weak solution of problem (6.10) such that
W(z,t) =0 ((]z\g + (to — t))k) as z— 0 andt —t; for all k € N. (6.28)

Then W =0 on RJIH X (to — T\, to).
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Corollary 6.1.9. Let w be a solution of (6.8) such that
w(z,t) :O((|az|2—|—(t0—t))k) asx — 0 andt —ty; forallk € N.

Then w =0 in RN x (tg — T tp).

The next theorem is a backward uniqueness result for the Cauchy problem associated with
(6.10). Its proof relies exclusively on the monotonicity argument developed in Section 6.5 and
does not require the blow-up argument which is instead needed to obtain the above space-like
unique continuation properties.

Theorem 6.1.10. If W is a solution of (6.10) and there exists t1 € (to — T, to) such that
W (z,t1) =0 fora.e. z € RV

then W =0 in RY T x (tg — T, o).

This Chapter is organized as follows. In Section 6.2 we prove some functional inequalities
and trace results in Gaussian spaces. In Section 6.3 we give an alternative weak formulation
of the extended problem in Gaussian spaces and prove a regularity result. In Section 6.4
we describe the eigenvalues of a weighted Ornstein-Uhlenbeck operator which turn out to be
related to the classification of the asymptotic behaviour of weak solutions to (6.1) at (0, ). In
Section 6.5 we derive an Almgren-Poon type monotonicity formula for the extended problem,
which is combined with a blow-up analysis in Section 6.6 to obtain our main results, i.e. the
asymptotic of solutions and the strong space-like unique continuation property.

6.2 Inequalities and Traces in Gaussian spaces

In this section we prove some inequalities and trace results for Gaussian spaces. We start
with a Hardy-type inequality.

Proposition 6.2.1. For any V € H

V2 1
1—2s 1—2s 2772
——Gd 7/ V2Gd
/y RN AT
4 N +2—2s

< 1—2s 2 d
= (N —2s)2 /Rfﬂy IVVI"Gdz + (N — 2s)?

1-257,2
/Rf“ y VG dz. (6.29)

Proof. By density, it is enough to prove (6.29) for any ¢ € C° (Rf‘*‘l). Thanks to [60, Lemma
2.4]

/ y1—2s¢72G ds < 4 / L2
REYT! |2|2 ~ (N —25)2 Jgy

4 2|2

“No2s2 /RNH y' T <|V¢!2 - iV (¢2) z 4 116!z!2¢2) e~ 1 dz. (6.30)

Let, for any ¢ > 0,
RV = {(z,y) e RNy > 6. (6.31)
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Since on ]R_]X+1

2
2]

9=y 2608V () 2 g+ (V4 )e] e

El
diV(yliQs(ﬁQ@i 1

then

2
1-2s 2 - _ 1-2s
/Rf;’“y V(¢).ze 4dz—/Rév+1y [(—N—2+23)¢+ |z|¢} dz

& +52

il *(z,0)e” dx.
RN
Since (2 — 2s) > 0, we can pass to the limit as 6 — 07 and conclude that
YtV ((;52) . ‘4|2 dz = Yyl 72 (=N — 2+ 25)¢° + 1\z|2¢>2 e_ﬁdz
RN+1 RN+1 2 '
+ +
Then from (6.30) we deduce that
/ Yyt~ 2S¢—2G dz
RYH |2
< gt fonn 0 (V08 + laP 4 JV 2 2906 - LaP ) e s
= (N —25)2 Jryn )
which proves (6.29). O

Proposition 6.2.2. Let V € H. Then Vv/G € H (RY ™ y'=2%) and

[v(vva)l,

L2 RN-H 1-2s)
N+2-2
< HS)/ yl_QsVQGdz—l—él/ yEVV Gz, (6.32)
2 RYH RN+
Proof. If V'€ H then, in view of (6.13),
2
1
IV(VVG)? ‘VV\F+ VG- VG‘ < 2|VV|?G + gV2|z|2G

and so by Proposition 6.2.1 it is a clear that Vv/G € Hl(RfH,yl_Qs) and (6.32) holds. [

Proposition 6.2.3. The trace operator Tr introduced in (6.9) can be extended to a linear and
continuous trace operator, still denoted as Tr,

Tr: H — L*(RY,G(z,0)).

In particular there exists a constant Ky s > 0, which depends only on N and s, such that, for
any V € H,

/RN | Te(V)|2G(-,0) dx < K (/Rw Yy T2BIVVAG dz + /Rw y =2 V2@ dz> . (6.33)
+ +
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Proof. There exists a constant Cy s > 0, which depends only on N and s, such that, for any
¢ € CRIT,

/R o, 0)dr < Cyg ( /RNH y' PV dz + /Rw y' e dz) , (6.34)
+ +

see for example [101]. Testing (6.34) with ¢v/G € C®(RY™), by Proposition 6.2.2 we

obtain (6.33) for any ¢ € CEO(RAYH). Then the operator Tr is densely defined on H and
it is continuous. Hence it can be extended to a continuous trace operator on H satisfying
(6.33). O]

Proposition 6.2.4. Letting ks and Ay s be as in (6.2), for any function V € H

Tr(V)|? 1
/@SAMS/N MG( 0)dr + — y 7212 2V3G dz
R

|| 16 Jry+

N +2—

2
g/ Yy TBIVVEG dz + S/ y "B V2G dz. (6.35)
Rf+1 4 Rf+1

Proof. Tt is enough to prove (6.35) for any ¢ € Cgo(RfH). Thanks to [60, Lemma 2.5], for
any ¢ € C(RY™)

¢(-,0) —1p—1 yi2 ?
Gdr <k, A s pe” . dz.
2 = vg N,
RN || ° Rﬁ“ ( )
Then we can follow the proof of Proposition 6.2.1 to conclude that (6.35) holds. O

Proposition 6.2.4 directly implies the following trace result.
Proposition 6.2.5. Let Tr be the trace operator introduced in (6.9). Then
Tr(H) € L*(RY, |2|72*G(x,0))
and Tr : H — L*(RY | |z|72°G(x,0)) is a well defined, linear and continuous operator.

Proposition 6.2.6. For p being as in (6.2), let us consider the quadratic form

| Te(V)[?

‘.@’25 G(,O) de,

. 1-2s 2 _
B(V) = /Rf“y IVVI|*G dz M/RN

for any V€ H. Then
B(V) + 8572 fyy y! " 2V2G dz

inf > 0.
Ver\{o0} Jp 72|V PG dz + N+2 2 [0 vyl VG dz

Proof. We argue by contradiction assuming that, for any € € (0, 1), there exists V; € H such
that

Tir( N+2-2
/ TR AVATAT Gdz—,u/ “2)|de++5/ Yy TBVAG dz
Rf+l |:c\ s 4 Rf+1
N+2-2
<e / Y2 VPG dz + g/ yEVEG Az ) (6.36)
Rfﬂ 4 Rf+l
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i.e.

Tr(Ve)|? N+2-2
— H ‘ I'(V)’ Gdr < _/ yl—QS‘VVYE|2Gdz_ + S/ yl_stEQGdz.
1—eJry |zf? RYH 4 R+
Hence by (6.35)
T
(e 2) [ D0 G
T 1—¢) Jry o |z?s

By (6.2), we conclude that, choosing € < 1 small enough, Tr(V:) = 0 thus contradicting
(6.36). O

Proposition 6.2.7. Let K > 0. Then there exist a constant CNsu >0 depending only on
N, s, pandT € (0,min{7T,1}), depending only on N, s, K, p, such that, for every T € (0,7
and any measurable function f: RN x (0,T) — R satisfying

Flat) <K (1+|2172%%)  forae t€(0,T) and a.e. z € R, (6.37)

the following inequality

Jovey 2 wvPas = [ (I DOR 450 TR G0y de

N+2-2
y/ B V2G dz
4 RY+!

> CNsp ( /R v y' |\ VVAG dz + /R - y = VEAG dz) (6.38)

is satisfied for a.e. t € (O,T) and for any V € H. Furthgrmore, there exists a constant
Cfv,s > 0, depending only on N, s, such that, for a.e. t € (0,T) and any V € H,

/RN 5 f (Viz, t)|| Te(V)[2G (-, 0) da

! s < 1-2s 2 1—2s7/,2
<K Cy(t +t2)</RN+1y IVV] Gdz—i—/Rny Vv Gdz). (6.39)

+

Proof. Thanks to (6.37), for any V € C®(RY ™) and a.e. t € (0,T),

’/R F(Vr, D)o (@, 0)[2G(, 0) da

< K/ o(x,0)]>G(x,0) do + Kt—5F2 /N |lz| 25| (2, 0) |2 G, 0) dx
<K/ (2, 0)[2G(x,0) de + Kt~ 5+2/ 6(x,0)2C(e, 0) da

{lz|>1}
2
rxeert [ BEORG
{el<1y 7]

<Ko rnt) [0t 0PcE 0 a g [ PEOF

o [ G(z,0) dz.

Then, in view of (6.33), (6.35), a density argument implies (6.39). From Proposition 6.2.6
and (6.39), choosing 7" small enough, we deduce (6.38). O
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Proposition 6.2.8. There exists a constant C’X,,s > 0, depending only on N and s, such that,
for any p € L%(RN) and V € H,

2 . " 2
LI T0)PGE0) dn < Gl g o VI (6.40)
Proof. By Proposition 6.2.2 and (6.9), V)vVG e We? RN ). Hence, thanks to the

Fractional Sobolev Embedding Theorem, Tr WG(-,0) € L¥= (RY) and there exists a
constant Sy s > 0, which depends only on N and s, such that

Tr(V)y/G(-,0 < Sns || Tr(
[ OO s g, = e[
Furthermore, by the Holdér inequality,
) 2
/ Pl Te(V)FG(-0) da < lpl| & o [ Te(V)Y G0N oy
RN s (RN) LN-325 (RN)
and so (6.40) follows from (6.9) and (6.32). O

6.3 An alternative formulation in Gaussian spaces

In this section we present an alternative formulation of (6.11) and a regularity result. Hence-
forth, for the sake of simplicity, we will assume that ¢y = 0; this is not restrictive up to a
translation. We deal with the backward version of (6.10) which is completely equivalent to
(6.10). Let

h(x,t) := g(x,—t) for any t € (0,T) and a.e. z € R, (6.41)
U(z,t) := W(z,—t) for a.e.t € (0,T) and z € Rf“, (6.42)
u = Tr(U). (6.43)

Then U € L*(R, HY(RY*!, y'=2%)) and U weakly solves

Yy B0 + div(y!=2VU) =0,  in RYT % (0,7),

Te(U(+t)) = ul(-,t), on RV, for a.e. t € (0,7), (6.44)
- lur(l)a+ Yyl 23% = |x"‘25u+ hu  on RY x (0,7),
Yy—>

in the sense that

/OT </Rf“ Yy 25U, d,z> dt
_ /OT (/RN+1 aiviig v¢dz> dt + /OT (/RN <| ‘28u¢+ hud)) dm) dt, (6.45)

for any ¢ € C°(RY ™ x (0,7)), if and only if W is a weak solution to problem (6.10).
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Definition 6.3.1. Let X be a Hilbert space and [T7, T3] C R. A function U € L?((T1,13), X)
has a weak derivative ¥ € L?((T1,T3), X) if, for any ¢ € C°((T1,T»), X),

T2 TQ
[ wengai=- [ @0 a
Tl T1

Furthermore we define
HY((T1,T»),X) := {U € L*((T1,T»), X) : U has a weak derivative ¥ € L*((T1,T»), X)}.

Let (X, L, X*) be a Hilbert triplet. Thanks to the Riesz isomorphism, the property that
U € L*((Ty, T), X*) has a weak derivative ¥ € L?((T1,Tz), X*) can be rephrased equivalently
as

[ st =— [ w0, 60)x i

Ty T

for any ¢ € C’OO((Tl,Tg) X). Then the property that a function U € L?((T1,7%),X) has a
weak derivative U € L2((Ty,Ty), X*) is equivalent to the fact that

T2 T2
Lt == [ we), 00 dt (6.46)
T1 Tl
for any ¢ € C°((T1,T»), X).
For any U € L*(R, H'(RY 1!, y172%)) satisfying (6.45), let us consider the function

V(z,t) = Utz t). (6.47)

By a density argument, we can easily verify that
’U(',t) = TI‘(U(\/Z:,7t)) = U(\/E,t)

In Proposition 6.3.2 below, we derive the weak formulation of the problem solved by V.

Proposition 6.3.2. Let U € L*(R, Hl(RfH,yl_Qs)) be a solution of (6.45). Then, letting
V' be as in (6.47),

Ve L*(r,T),H), VieL*((r,T),H*) foranyTe (0,T), (6.48)
and
1 —2s
e (Vis @)y = t/M“ Y'YV VG d:

_ 1/RN (“u(g;,t)¢(a;,0)+t5 (Vix, tyo(z, t)b(a, 0)> G(z,0)dz, (6.49)

t |:C|25
for any ¢ € CXRYTY) and for a.e. t € (0,7T).
Proof. Let ¢ € CEO(RJJXH x (0,T)). Testing (6.45) with ¢G5 we obtain

T B N+2-2s |2 B
1-2s 1-2s
/0 (/Mﬂy Up |-~ | Gds dt+/ /+1 UGy d | dt
—/T / =259 . 2 6G.d dt—/T / =25 . Vo Godz | dt
— A Rﬁ_‘_ly ot sz 0 RT_IZ/ sz

+ /0 ' ( /R ) <'uu(x)¢(a:,0,t) + h(:r:,t)u(x)¢(a:,0,t)> Go(,0,1) dx) dt.

|$’25
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Let ¢(z,t) := ¢(v/tz,t). Then the change of variables z = /12’ yields

- N+2-2s \z|2

T
1—-2s T wil *
—I—/O (/Rf“y V{qﬁt Vo 2JGdz>dt
T z ~ T -
=/ / y' "BV - 2o Gdz dt—/ - / y'mBVV Vo Gdz | dt
0 Rf*l 2t o t Rf+1

+ OTi (/RN <| 00 0.8) + £°h (ﬁm,t)ug{s(x,o,t)> de> dt (6.50)

for any ¢ € C(RY ™ x (0,T)), where V is defined in (6.47).
Let Rév *1 be as in (6.31) for any 0 > 0. Then, by the Dominated Convergence Theorem,

/RN“ y' TPV (Vé - 2)Gdz = lim Y72V (V- 2)G dz.
3

6—0+ JRY T

Furthermore, since

div (ylf%v(;c;z) =yl B (N+2-25)Vh+ (VV 2)d+V(Vd-2) -V

an integration by parts on Rév *1 yields

1-2s 7 _ 1-2sy7, 71
/Rf;v“y V(V¢-2)Gdz=—(N+2 — 2s) /szly VoG dz

5
1—2s 7 1-2s7/ 7 |Z|2
_/R?Hy (VV-z)chdz—i—/RéVHy Vé-Gd

— 5272 NV(:C,(S,t)d;(x 9,t)G(x,0)dx. (6.51)
R
We claim that
liminf 072 | V(x,6,t)¢(z,8,t)G(x,8) dx = 0. (6.52)

0—0T RN
To prove (6.52) we argue by contradiction. If (6.52) does not hold, then there exists a constant
C >0 and 6 € (0,+00) such that
1-2s 7 ¢
0 V(z,0,t)p(x,d,t)G(xd) de > —
RN o

for any § € (0,6). Integrating on (0,6), we obtain, thanks to the Fubini-Tonelli Theorem,

. 5 _ 51
+ oo > / JEVIGd: > / (/ y1_25V¢de> dy > c/ Lay = too.
R+ 0 \JRN 0y
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which is a contradiction. Hence there exists a sequence d, — 07 such that, passing to the
limit as § = J,, and n — oo in (6.51), we obtain that, for a.e. ¢t € (0,T),

v YTEVeG dz
]R+

/N Yy "BV(Ve-2)Gdz = —(N +2 — 25)/
REY*!

1-2s 7 1—2s ~|Z’2
_ /Rfﬂ Yy (VY - 2)eG dz + /Rf“ y Vd)TG dz. (6.53)

Putting together (6.50) and (6.53), we conclude that

T - T (1 ~
1-2s _ - 1-2s X
/0 (/MHy ngtdz> dt = /O (t /Mﬂy vV ngGdz) dt

+/0T (1 /RN( P v(:c,t)é(m,o,t)+tsh(\/ia:,t)v(x,t)q}(x,o,t)> G(x,0) dx) dt.

‘.T}PS

The integrand at the right hand side of the above equation belongs to * as a function of ¢
for a.e. t € (7,T) in view of (6.4), (6.33), (6.35), (6.41) and the Holder inequality. Hence, in
view of (6.46), we conclude that (6.48) and (6.49) are satisfied. O

Remark 6.3.3. From the theory of abstract parabolic equations, see for example [99, The-
orem 8.60] and [44, Theorem 1, p. 473, Theorem 2, p. 477], if V satisfies (6.48), then

V e C%[r,T),L), for any 7 € (0,T),
t— ||V (, t)Hi is absolutely continuous on [r,T] for any 7 € (0,7,

1d 1d o
2 (VD). V(g = 5 IVE DI = 5&/%1 y' VG dz
+

in a distributional sense and for a.e. ¢t € (0,7"). More in general, if V, W satisfies (6.48), then
t— (V(-,t),W(,t)), is absolutely continuous on [r,T] for any 7 € (0,T),

’H*<Vt('7 t)v W('? t)>?—[ +’H*<Wt('ﬂ t)7 V('? t))?—[ = % (V<7 t)v W('? t))[:

in a distributional sense and for a.e. t € (0,T).
Proposition 6.3.4. Let (TrU)(-,t) := Te(U(-,t)) for any U € H((0,T),H). Then
Tr: HY((0,7),H) — H'((0,T), L*(RY, |z|~#G))
is a linear and continuous trace operator such that
(Tr(U))i(-,t) = Tre(Us(-,t)), for any U € H'((0,T),H) and a.e. t € (0,T).

Proof. Tn view of (6.35) we have that Tr(U) € L2((0,T), L* (RN, |z|"2G(x,0))). Further-
more, there exists a sequence {Up}neny C C*°(]0,T],H) such that U, — U as n — oo in
H'((0,T),H) thanks to [87, Lemma 2.5.6.].

Let us prove that Tr(U,) € C1([0,T], L2(RY, |z|~2°G(x,0))) and that

(Tr(Un))i(-,t) = Tr(Un)i(-1#))  for any ¢ € (0,7).
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We start by showing that the incremental ratio of Tr(U,,)(-, ) tends to Tr((Uy,):(-,t)) strongly
in L2(RY, |z|~2G(x,0)) for any t € (0,T). Let t € (0,T7) and h € R be such that |h| <

min{¢, T — t}. Then, by definition of Tr and linearity,

G(I‘, O) Tr(Un)(, t+ h) — Tr(Un)(7 t) - 2
/RN || ’( h >_Tr((Un)t(',t)) dx
[ G@O) |y (Valot D) = Unt) o NP
Iy ] ‘ ( h <Un)t(7t)> d
. _ . 2
< cons |0 @ 0

as h — 0%, in view of (6.35). B
In the same way we can show that (Tr(Uy,)); € C°([0,T], L>(RY, |z|~25G(z,0))). It follows
that, taking the limit of the incremental ratio,

d ~
% (Tr(Un)7 ¢) LQ(RNJI‘—QSG(x,O))

= (Te((Un)e): ) 2 ooy T (TrUn) 80) o svro)

for any function ¢ € C°((0,T), L2(RY, |z|72*G(z,0))).
Then, for any test function ¢ € C°((0,T), L>(RYN, |2|~2%)G(x,0))),

T Tr(U) e T Tr(U,)
A (/RN ‘1"25 gth(CUaO)dl‘) dt—q}LI& 0 </RN ’.%"28 ¢tG(l',0)d$> dt

= — lim OT (/]RN TWgZ)G(J;,O) da:) dt = /OT (/]RN T‘l;(gf)cz)G(x,O) da:) dt.

n—oo

We conclude that there exists the weak derivative with respect to ¢ of ’T‘r(U) and that
(Tr(U))i(-,t) = Te(Us(-, 1)) for ae. t € (0,T).
The continuity of the operator follows from (6.35). O

Remark 6.3.5. The natural embedding

I:L—H I(V)(W) ::/N Yy TBVWGE dz
RY*!

is linear, continuous and injective. With a slight abuse of notation, we will identify £ and

I(L).

Proposition 6.3.6. For K >0, let T € (0,min{T, 1}) depending on K be as in Proposition
6.2.7. Let T € (0,T) and f € L} (RN x (0,T)) be such that

loc
If(z,t)| + |V f(z,t) - x| < K1+ |z|727¢) for a.e. t € (0,T) and a.e. x € RY, (6.54)
Jo € L ((0,1), L% (BY)).

Ifr € (0,T),V e L*(r,T),H), Vi € L2((1,T),H*), V(-,T) € H, and V is a solution of
(6.49) with h = f, then V; € L2((1,T), L) in the sense of Remark 6.3.5.

151



Proof. For all t € (0, T ), let us consider the linear map
At TH— H*,
7 A(V), d)gy = /R e ¥ TEVV Vo Gde
+

_ /RN ( P To(V) Tr(e) + £ f(Vix, t) Te(V) Tr(¢)) Gdx  forany ¢,V € H.

’x‘Zs

In view of (6.54), the Holder inequality, (6.33) and (6.35), A; is well defined and continuous.
From standard techniques in the theory of parabolic equations, see for example [57], the
Faedo-Galerkin method provides a sequence of functions {V}, },en such that:

V,, € L*((7,T),H) for any n € N,
y

Vi, = V weakly in L*((r,T),H) as n — oo, (6.55)
(Vi)e € L*((7,T),H) for any n € N,

(Vi)¢ = Vi weakly in L?((r,T), H*) as n — oo, (6.56)
V-, T) = V(-,T) strongly in H as n — o,

{Vi}nen is bounded in C([r,T), £). (6.57)

For any n € N, the function V;, belongs to H*'((r, T), W,,) and solves, for a.e. t € (0,7),
1-2s o 1—2¢
t/ﬂ{erly (Vn)t¢GdZ_Af+ly VV, -VoGdz

- /RN( ’ TY(vn)Tr(aﬁ)+t5f(ﬁx,t)Tr(Vn)T&~(¢)) G(x,0)dz, (6.58)

‘$|25

for any ¢ € W,, C ‘H, where W, is a suitable finite dimensional subspace of H. Testing (6.58)
with (V)¢ and integrating with respects to t on (7,7), we obtain that

/ft </Rf“ y”S\(Vn)tFGdz) dt = /TT e (A Vi), (Vi)
= 5 { ATV VD)), =5 3 A V) () V)

_|_;/TT~ </RN {sts_lf(\[t:v,t) + %ts_%Vf(\/ix,t) cr U fi (Vi )| | Te(Va) 2 G(-,O)dw) dt

thanks to Proposition 6.3.4. For a.e. t € (1,1,

o

in view of (6.33), (6.35), and (6.54).
By (6.38), (6.40), (6.55), (6.57), and (6.59), and we conclude that {(V;)t}nen is bounded
in L?((7,T),L). Then, up to a subsequence, there exists W € L?((r,T), £) such that

1
st (Vix, t) + Et#%Vf(\/fx, t) x| | Tr(V;,)|* G(-,0)dz < const ||Vn||’2;-[ (6.59)

(Vi)¢ — W weakly in L*((1,T), L).

By (6.56) we conclude that W = V;, hence V; € L2((,T), £). O
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6.4 Spectrum of a weighted Ornstein-Uhlenbeck operator

In this section we prove Proposition 6.1.5. The following compactness result ensures that the
point spectrum of (6.12) is discrete.

Proposition 6.4.1. The embedding i: H — L, i(V) =V, is compact.

Proof. Let {V,} be a sequence converging to some V € H weakly in H as n — oo. Then by
[111, Theorem 19.7], for any R > 0

lim Y72V~ V,|°Gdz = 0. (6.60)

n—00 B+
R

Moreover, for any n € N and R > 0, by (6.29),

1
1—2s 2 1-2s| .12 2
V —V,|?°Gdz < — V —V,|°Gd
/ yong VTV Vel < Losin ¥V VPG
16 4N +2-2
< / Yyl =2BIV(V - V) PGdz + AN +2-25) / Y72V~ V,|°Gdz. (6.61)
RN+ L

-~ R2 R2

Since {V,, }nen is bounded in ‘H we conclude by (6.61) that

const

Y72V - V,|2PGdz < =3

/ for any R > 0 and for any n € N. (6.62)
N+1\ pt
RYT\Bg

Putting together (6.60) and (6.62) we obtain that V,, — V strongly in £ as n — +oo, thus
completing the proof. ]

Proposition 6.4.2. The eigenvalues of (6.12) form a non-decreasing, diverging sequence
{7k tken\(oy- Furthermore there exists an orthonormal basis of L of eigenfunctions of (6.12)
whose elements belong to H.

Proof. Let L : H — H* be defined as

LV)(6) = /]R L YTEVU VoG dz

N+2-2s
4

_ /R P (1) Te(¢) G dar +

N ‘l‘|25

1-2s
/R yn ¥ VOGE:

for any V, ¢ € H. In view of (6.38) in the case f = 0, the operator L is coercive. It follows
that the operator T : £ — £ defined as T := L~! is well-defined. Since T is also compact in
view of Proposition 6.4.1, the conclusion follows from by the Spectral Theorem. O

Remark 6.4.3. For any r > 0, there exists a linear, continuous and compact trace operator
Trgr : H — L2(S;F,y' 2.

Indeed H — H'(B;",y'72%) since G > const > 0 on B;; moreover, in view of [111, Theo-
rem 19.7] and the Divergence Theorem, one can easily verify that the trace operator from

HY (B}, y'72%) to L2(S;F,y*~2%) is compact.
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Proof of Proposition 6.1.5. Let v be an eigenvalue of problem (6.12) and Y an associ-

ated eigenfunction. Let {4 }rem oy be the orthonormal basis of L2(sf NS +215 ) introduced

in Section 6.1. By Remark 6.4.3, for any r > 0 the function Y admits a trace Try+(Y) €
L2(S;F,y*=%%). By a change of variables Trgn, (Y(r)) € L2(SY, G}fo) hence

Trgn ( Zsok ¥k, with o (r) 12/8 On 3 Trge, (Y (r0)) ¢ (6) dS
+

Since, by classical elliptical regularity theory, Y € C’%‘;(Rf“), so writing z = rf where
r=|z| and 0 = [z7» we have that Y(2) =Y(r0) = Trgn, (Y(r))|o = 3521 r(r)x(0) for any
z =70 € RYT. Then thanks to [60, Lemma 2.1], (6.12), and (6.16), a direct computation
shows that

A+ (CEEE D0+ (- %)@ =0, m 040 (663

for any k € N\ {0}. Since Y € H
+ 00 > y' R 91 2Y2(r0)dS | dr
Ry 22 0 A

oo 2 2
:/ pN=1=25— 7 (Z cp%(r)) dr 2/ erl*QSe*Tgoi(r) dr, (6.64)
0 = 0

for any k € N\ {0}, thanks to Plancherel’s identity and (6.29). Analogously

22 00 2
+o0 > /RN+1 TR e i P >/0 rpNTI=250 =7 L2 (1) dr, (6.65)
+

for any k € N\ {0}. Furthermore, letting

wi(t) = (4t)07kgpk(2\/f) for any t € (0, 00),
(6.63) and a direct computation imply that wy, solves
N+2-2

twy (t) + (+25 —ay — t) wi,(t) + (O;k + ’y) wi(t) in (0, 00). (6.66)

Equation (6.66) is the well-known Kummer Confluent Hypergeometric Equation,
twy (t) + (b — t) wy(t) — cwg(t) in (0, 00), (6.67)

with parameters b = (W — ak) > 1, by (6.17) and (6.19), and ¢ = — (= + 7), see [11]
or [103]. Then the solution wy, can be written as

o N +2—2s

wk(t) =AM (_2 -7 f — Ok, > + BT <

with Ag, B € R, where M(c,b,t) denotes the Kummer function and T'(c,b,t) denotes the
Tricomi function; M (e, b,t) and T'(c, b, t) are linearly independent solutions of (6.67) (see [11]
or [103]). Furthermore from [11]

T( o N+2-—2s

ap  N+2-2s t)
N¥2-25
2 ,y’ 2 k?

Sk MR a5t o 0t (6.68)

— ., t) ~ constt'™
2 9 ks )
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where the constant in (6.68) depends only on s, oy, N,v and is different from 0. We recall
the following expression for the Kummer function:
— ()n t"

M(e,b,t) = Z ®)nl

n=0
where (-),, is the Pochhammer’s symbol defined in (6.20). It is clear that M (c, b,t) has a finite

limit as ¢ — 0, while its asymptotic behaviour at +oco depends on the parameter c. Then,
for any k € N\ {0}, if By #0

_ N+2-2s
wy,(t) ~ const Byt'™ 2z T ast— 07T,
for some const # 0, and so
@p(r) ~ Byconst r~ N 25Tk a0 5 0F,

From (6.64) we deduce that necessarily By, = 0 for any k£ € N\ {0}. Hence

N+2-2
wn(t) = A (=5 =9, TS o) (6.69)
Moreover, if (% + ) ¢ N, then
N+2-2 o,

for some const # 0, see [11]. From (6.69) and (6.70) it follows that

—2y—N—-2+42s

7‘2
o(r) ~ Agconste 7 r as r — +00

and hence necessarily Ay = 0 for any £ € N\ {0} in view of (6.65). In conclusion, if 7 is an
eigenvalue of (6.12), then there exists & € N\ {0} such that (5 +v) € N.

On the other hand, for any m € N and k£ € N\ {0}, letting Y, » be as in (6.18), a direct
computation shows that Y, ; is a solution of (6.12) with 7 := m — 5, by [60, Lemma 2.1],
and (6.16). Hence (m — %) is an eigenvalue of (6.12).

From the well-known correspondence between Kummer functions and the generalized
Laguerre polynomials L%, we have that P;,(t) = (”Zaj)_lLij (t), where a; = ((%)2 +
Z/j(u))l/z. Then, recalling that {1y }ren 0} is an orthonormal basis of Lz(Sf,H}V_ff) and
using the orthogonality relation for Laguerre polynomials, it is easy to verify that Y, j, is
orthogonal to Y, j, in £ whenever (mq,j1) # (ma,j2). Then we conclude that (6.23) is an

orthonormal basis of L. O

Proposition 6.4.4. Let Y be a solution of (6.12) in the sense of (6.14) such that Tr(Y) = 0.
ThenY =0 on Rf“.

Proof. If Tr(Y) = 0, by (6.12) we have that (— lim yl_zs%) = 0 on RY. Hence the function

y—0t

z,y) =
Y 0, if y <0,

belongs to H} (RNT1 |y[1=2%) and weakly solves
—div(|y|""BGVY) = 4ly|'"BGY  in RV
The unique continuation principle for elliptic equations with Muckenhoupt weights proved in

127] then implies that ¥ = 0 in RV*!, so that Y =0 on RY L. O
+
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6.5 An Almgren-Poon type monotonicity formula

In this section we develop an Almgren-Poon type monotonicity formula for solutions of (6.49).
Let T be as in Proposition 6.2.7 with K = Cy and C, as in (6.4), and

. T
T (T/T) + 1)

where |-] denotes the floor function, i.e. |x] = max{j € Z:j < x}. It follows that

-

(O> T) = (aiv bl)

=1

where -
E=2(T/T|+1) -1, a=(G(—-1)a, and b =(+1)a

It is clear that 2a € (0,7) and (a;, bi) N (ait1,bit1) # 0. For every i € {1,...,k} we define
Vi(z,t) = U(Vtz,t +a;), z€ Rf“, t € (0,2a),
vi(z,t) = u(Viz, t +a;), ze€RY, te(0,2a),

see (6.42) and (6.43). Then Tr(V;(-,t)) = v;(+,t) for every i = 1,...,k and a.e. t € (0,2a).

Remark 6.5.1. Reasoning as in Section 6.3, it is easy to see that, for any ¢ = 1...,k, the
function V; solves

1 —2s
g {(Vi)e, @)y = ;/RNH y' EVV; - Ve Gdz
+
1

-+ L <|;r28vi(m,t)¢(m,0) RVt + )i, 00(2,0) ) Gla,0) da, (6.71)

for any ¢ € CX(RN*1) and a.e. t € (0,2a). Furthermore, by Proposition 6.3.2 V; €
L3((1,2a),H) and (V;); € L*((,2a),H*) for any 7 € (0,20).

For any i =14,...,k and t € (0,2a), let

o 1-2s7,2
Hi(t) == /Rf“y VG dz

1 —4S 1 ILL S
D;(t) := - /RNH y' 72|\ Vi’ G dz — E/RN <‘x’25v1~2 + t5h(Vix, t + ai)vi2> G(x,0)dz. (6.72)
+

Proposition 6.5.2. For anyi=1,...,k, we have that H; € I/Vi)cl(O, 2a) and

HI() = 244, (V)1 V), = 2Di(0) (6.73)
in a distributional sense and a.e. in (0,2a).
Proof. The claim follows from Remark 6.3.3 and (6.72). O
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Proposition 6.5.3. Let Cn s, be as in Proposition 6.2.7 with K := Cy and Cy as in (6.4).
Then the function

R

Hi(t)
is non-decreasing in (0, 2q).

Proof. In view of (6.38) and (6.73)

1 N—-242
Hi)> <2CN,W - 2*‘9) Hi(t) for ae. t e (0,20),
hence d
7 (t_2CNS A Hz(t)) >0 fora.e. te(0,2aq).
We conclude that ¢ — ¢~ 20Neut =5 H;(t) is non-decreasing in (0, 2cv). O

Corollary 6.5.4. If 1 <i < k and H;(t) = 0 for some t € (0,2a), then H;(t) = 0 for any
€ (0,1).

Proof. Since t — 20N st & H;(t) is non-decreasing in (0, 2«r) by Proposition 6.5.3 and it
is non-negative, from the assumption H(t) = 0 it follows that H;(¢t) = 0 for any ¢t € (0,¢). [

—242s
2

The regularity of the function ¢D;(t) is discussed in the following proposition.
Proposition 6.5.5. If 1 <i <k and T; € (0,2«) is such that V;(-,T;) € H then
(i) (Vihe € TA(7.T3), £) for any 7 € (0,T5),
(ii) the function t — tD;(t) belongs to I/Vli’cl((),ﬂ) and its weak derivative is as follows:

i(tDi(t)) = 2t/ Y72 |(Vi)e)? Gdz — / st h(Vix,t + ai)vi (z, t)G(z,0) dz
dt Rﬁ\:-’-l RN

_ / (ts—éw(\/&c,t ta) - Lt h (it + ai)> (@, )G, 0) dz.  (6.74)
RN 2

Proof. Let 1 <1i < k. Then (i) follows from Proposition 6.3.6 and Remark 6.5.1.
With an approximating procedure similar to Proposition 6.3.6, formally testing (6.71)
with (V;); yields, for a.e. 7 € (0,T;),

/RJI“ V2|V, 7) PG dz — /RN (m”gsvf(.,ﬂ b (VT4 ai)vz(.,ﬂ) G(x,0) da
= /RN+1 Y Vi, T)PG dz

—/ (,;28 V(T + TEh( Ty, T + ai)o: (,n)) G(x,0) dz

—2/ (/]RN+1 - 25(%)?Gdz) dt

+/ (/ Sts Yh(Vitw,t + a;) + thy(Via, t—i—az)) v (x,1)G(z,0) dx) dt

+/T (/]RN tS*%Vh(\/Zx,t—l—ai) : gviz(x,t)G(a:,O) dw) dt,
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hence, thanks to (6.3), (6.4) and (6.41), the function

s [ TRV DPG s = [ () b e () ) Gle,0) de
R+ |z[**
is absolute continuous on [T4, T»] for any [T1,T32] C (0,T;) and, for a.e. 7 € (0,T;),

d 1-2s , 2
dT(/MHy VVi(-,7)2G dz

_/ (|.’L’723 12(7 )+78h(\/>x T+al) ( 77_)> G(.CU,O) dl‘)
_ 27/ (V)2 (2, 7)G(2) dz—/ TIVR(Ta T+ @) - Lol (r,2)G(x,0) dx
Rﬁ+1 RN 2
- /N (STsilh(\E$, T+ a;) + m°he(VTE, T + ai)> v (1, 2)G(x,0) dz.
R
The proof is thereby complete. O

For any i = 1...k, let us define the Almgren-Poon frequency function

_ tDi(t)
N;:(0,2a) = RU{—00,+o0}, N(t):= Hit)
Proposition 6.5.6. If there exists p;,T; € (0,2c) such that
Bi <T;, Hi(t) >0 forallt e (8;,T;), and Vi(-,T;) € H, (6.75)

then N; € Wb 1(,Bi,Ti) and the weak derivative of N; can be written as

loc

N/ (t) =v1i(t) + 124(t)  for a.e. t € (8, T;) (6.76)
where
st = s | L2002 G0z ([ v
2
( T )VGdz) 1 (6.77)
RY Y
and
vailt) = ‘H:u) : </RN (st RVt 4 00) £V i)

+ t5hy(Vtx, t + aﬁ)vf(x, t)G(x,0) d:v) . (6.78)

Furthermore vy ;(t) > 0 for a.e. t € (8;,T;) and

N +2—2s

Ni(t) > ———

for any t € (8;,T). (6.79)
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Proof. Since H;(t) > 0 for any t € (8;,T;), then 1/H;,tD; € I/Vlloc1 (B:, T;) by Proposition 6.5.2
and Proposition 6.5.5. Hence N; € Wlicl (Bi, T;). Furthermore

(tD;)H; — tD;H]
H?2

(1) =

and so, thanks to (6.73) and (6.74), we conclude that (6.76) holds with v1; and v5; as in
(6.77) and (6.78) respectively. By the Cauchy-Schwarz inequality in £ we have vy ;(t) > 0
for a.e. t € (5;,T;). Finally, (6.79) follows directly from (6.38) with the function f(x,t) :=
h(z,t+ a;). O

The remainder term 15 ; can be estimated in terms of the frequency function as follows.
Proposition 6.5.7. Let v5; be as in (6.78). Then there exists a constant Cy > 0 such that,
ifi € {i,...,k} and B;,T; € (0,2a) are as in (6.75), then

N+2_28) (6.80)

()] < Ci <t—1+; bt 4 ai)||L2Ns(RN)> (M(t) ke

fora.e. t € (5, T;).

Proof. Estimate (6.80) follows from (6.38), (6.39), and (6.40), taking into account that, by a
change of variables,

t'h(Vt, t + a;)

ey = [he(-,t + a;)

HLTNS(RN)

for any i € {i,...,k}. O
Proposition 6.5.8. There exists a constant Cy > 0 such that, if i € {i,...,k} and 8;,T; €
(0,2c0) are as in (6.75), then

N~(t)<—N+2_2S

< ; (6.81)

_|_C2 (M(Tz) + W)

for any t € (8, Ty).

Proof. Since vq,; > 0 by Proposition 6.5.6, from (6.80) it follows that, a.e. in (8;,T3),

N/ (t) > -4 <t1+§ + [[he (-t + ai)HLéV (]RN)> (M(t) +

s

N+223>
1 .

By integration we obtain the estimate

M(t) < _w + (/V’Z(Tl) + ]\H_Z_QS) e(@T:/%"CI”ht(‘vt""ai)||L1((072a>YLN/(25)(RN)))
> 1 1

for any t € (5;,T;), which implies (6.81) in view of (6.3) and (6.41). O
Proposition 6.5.9. For any i € {i,..., k}, if H;i(t) Z 0 then

Hi(t) >0 forallte (0,2a). (6.82)
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Proof. Since H;(t) # 0 and H; is continuous by Remark 6.3.3, there exists T; € (0, 2«) such
that
Hi(T;) >0 and V;(-,T;) € H. (6.83)

By Proposition 6.5.3 it follows that H;(t) > 0 for any ¢ € [T}, 2«). If we define
t; :=inf{r € (0,T;) : H;(t) > 0 for all t € (7,2a)},
then either
t;=0 and H;(t) >0 for all ¢t € (0,2«)

or
H;(t) =0, for any t € (0,t;],

(6.84)
H;(t) >0, for any t € (t;,2a).

0<t;<T; and {
Now we prove that the second case can not occur arguing by contradiction. If (6.84) holds,
then, thanks to Proposition 6.5.8 and (6.73),

g0 < (222 0 (wmy + 222 ) g

for a.e. t € (t;,T;). Integrating the above inequality we obtain

tz(_W-ng(M(TiHW))

H;(t) >
z( ) = T?(_W—FCZ(M(TD—FW))

(2

H;(T3)

for all t € [t;,T;). Since H,(t;) = 0, we have reached a contradiction in view of (6.83). In
conclusion, (6.82) must hold. O

Proposition 6.5.10. For anyi € {1,...,k —1}
H;(t) =0 in (0,2a) if and only if Hi+1(t) =0 in (0, 2c).

Proof. We start by proving that if H;(¢) = 0in (0,2a) then H;y1(t) = 0in (0,2«). By
contradiction, if there exists ¢ € (0,2a) such that H;41(f) > 0, then H;11(¢t) > 0 for all
t € (0,2a) by Proposition 6.5.9. It follows that Viy1(-,¢) # 0 for all £ € (0,2«) and V(-,2) 0
for all ¢t € (ia, (i + 1)a). Therefore V;(-,t) #Z 0 for some t € (0, 2«), which is a contradiction.

Now let us prove that, if H;y;(¢) = 0in (0,2«), then H;(t) = 0 in (0, 2«). By contradic-
tion, let us assume that H;(t) # 0. Then H;(t) > 0 for any ¢ € (0,2«) by Proposition 6.5.9.
It follows that V;(-,¢) # 0 for all ¢t € (0,2a) and so Vjii(-,t) # 0 for all t € (0,«), hence
H;1(t) #0 for all t € (0, ), which is a contradiction. O

Proposition 6.5.11. If U is a weak solution of (6.44) such that U # 0 in Rf“ x (0,7,
then
H;(t) >0 foranyte (0,2a) andic {1,...,k}.

Proof. Tf U # 0 in RY*! x (0,T), then there exists some ig € {1,...,k} such that V; Z 0 in
(0,2c). Then H;,(t) # 0 in (0,2«). Thanks to Proposition 6.5.10, H;(t) # 0 in (0, 2«) for
any ¢ € {1,...,k}. In view of Proposition 6.5.9, we can therefore conclude that H;(t) > 0 for
any t € (0,2a) and 7 € {1,...,k}. O
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Proof of Theorem 6.1.10. 1t is not restrictive to assume that tg = 0. Let W be a solution
of (6.11). Let t € (0,T) be such that W(z,—f) = 0 in RY™ so that, letting U be as in
(6.42), U(z,t) = 0 in RY™. Then t € (a;,b;) for some i € {1,...,k} and H;(f — a;) = 0. By
Proposition 6.5.11 it follows that U = 0 in Rf“ x (0,T) and hence, by (6.42), W =0 in
RY* % (=T,0). O

From now on, we assume that U # 0 in Rf“ x (0,T) and, defining V' as in (6.47), we
denote, for all ¢ € (0, 2a),

H(t) = Hi(t) = / YV (2, 0G(2) dz,

N+1
R

D(t) :== D1(t) = 1</RN+1 yITBIVVEG dz — /RN < B2y tsh(ﬁx,t)02> G(z,0) dx).

t ‘$‘|2S
Since we are assuming that U # 0 in ]Rf 1% (0, T), thanks to Proposition 6.5.11 the Almgren-
Poon type frequency function

N:(0,20) 5 R, N(t) = ’ﬁ((tt)).

is well-defined. Furthermore, in view of Proposition 6.5.6 N € VVllOC1 (0,2«a) and
N'(t) =v1(t) +1a(t)  for ae. t € (0,2a),

where we have defined
ni(t) ==va(t), va(t) = r2a(t), (6.85)
according to notation (6.77)—(6.78). Since V (-, t) € H for a.e. t € (0,T"), there exists

To € (0,2)  such that  V(-,Tp) € H. (6.86)
Proposition 6.5.12. The limit
v = lim N(¢) (6.87)
t—0t+

exists and it is finite.

Proof. From Propositions 6.5.6 and 6.5.8 it follows that N is bounded. Hence the limit (6.87),
if it exists, is finite. Furthermore, from Proposition 6.5.6 we have that v; > 0 a.e. in (0, 2«),
whereas 1o € L'(0,Tp) by Proposition 6.5.7, Proposition 6.5.8, (6.41), and (6.3), where Ty is
as in (6.86). Then, from

To To To
N =N(Tp) — | N'(7)dr = N(Tp) — /t vi(7) dr — /t vo(7) dr,

t

we conclude that the limit (6.87) exists. O

Proposition 6.5.13. Let Ty be as in (6.86) and 7y as in (6.87). Then there exists a constant
K1 > 0 such that
H(t) < K1t? for all t € (0,Tp). (6.88)

Moreover, for any o > 0, there exists a constant Ko(o) > 0 such that

H(t) > Ky (o)t?r  for all t € (0,Tp). (6.89)
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Proof. Thanks to the Holder inequality, (6.41), (6.3), Proposition 6.5.6, Proposition 6.5.7,
and Proposition 6.5.8, for any t € (0,7) we have that

N(t)—~= /Ot(yl(T) + vo(1))dr > /Ot vo(T)dr

N + 2 —2s t _ €
> 10y (N}(Ti) + 4> /0 <T 145 4 ||ht(.,r)||L§S(RN)> dr > ~Cyt,

for some constant C3 > 0, where § := min {%, 1-— %} It follows that, taking into account
(6.73),

2 2
= SN 2 77 — 205t for ae. t € (0,Tp).

An integration over (t,T}) yields

e

Th) 20378
( O)e T2 forall t € (0,T0),

H(t) <

so that (6.88) is proved.

Furthermore, since 7 := lim;_,q+ N (t), for any o > 0 there exists T, € (0,7p) such that
N(t) <~y+0/2 for any t € (0,T,), and hence

H(t)

H{(t)

2v+4+o0
t

2
= fN(t) < for any ¢t € (0,7,).

An integration of the above estimate over (t,7,), together with continuity and positivity of
H in [T, Ty), yields (6.89) for some constant Ks(o). O

6.6 The Blow-up Analysis

If V' is a solution of (6.49), then it is easy to see that, for any A > 0, the function

Va(z,t) := V(z,\*) (6.90)
belongs to L2((7,T/)\2?),H) for all 0 < 7 < T/A? and solves
1 1-2s
7—L*<(V>\)t7 (b)?{ - ; /Rf"'l Yy VV,\ . V¢Gdz

_ % /R i (pc’gsw(x,t)gz)(m) RO, )\2t)v,\(x,t)¢>(x,0)> G(x,0)dz, (6.91)

for a.e. t € (0,7/A?) and any ¢ € C°(RY ™), where
or(z,t) == v(z, A%t) = Tr(Vi(-, 1)) (2).

We can also define the height and energy functions associated to the scaled equation (6.91)
as

Ha(t) = /R LY TEVRG s,
+

‘x|23

Da(t) = - /N lyl_ZSIVVA\QGdz—/ ( s v§+A25tSh<A\ft:c,A2t)v§) G, 0) da
R++ RN
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and the Almgren-Poon frequency function as

tD)(?)
t) == . 6.92
For any A > 0, we have the following scaling properties:
NtD (Nt
Dy(t) = A2D(X%t), Hy(t)=H\*) and Ny\(t) = H(/\(Qt)) = N(\?%), (6.93)
on (0,2a/A?). Let, for any A € (0,+/Tp) and for any t € (0,7/Tp),
V(z, \2%t)
Wi(z,t) = —2 2 6.94
et = e (6.94)
In particular we note that 1 € (0,7/Tp). Similarly, we define
v(z, A%t)
1) = ——==
wy(z,t) o)

for any t € (0,T/Tp). From (6.90) and (6.94) we deduce that W) belongs to L?((7,T/)\?), H)
for all 0 < 7 < T/A? and solves (6.91).

Proposition 6.6.1. Let Ty be as in (6.86). Then

{Witreo,vm) is bounded in L=((7,1),H)  for any T € (0,1), (6.95)
and
{(W)t}re,y) i bounded in L=((7,1),H")  for any 7 € (0,1). (6.96)
Moreover
{Wikre(o,vmm) is relatively compact in C%[r,1],L£)  for any T € (0,1). (6.97)
Proof. From Proposition 6.5.3, for any ¢ € (0,1),
/Rfﬂ Y EWE(2,1) G(2) dz = ?{((A;t)) e (6.98)

Furthermore, by (6.38), (6.81), and (6.93)

N +2—2s
4

1 — 48
4 Cvag) Ha(t) + vy [ 0" P IVVA PG d,

N+1
+

1 N+2-2
t<_+48+02 (N(TO)+
1 (_N+2—23

=t 4

)) Hy(t) > A2D(\?t)

for all A € (0,4/Tp) and a.e. ¢t € (0,1). It follows that, taking into account (6.98),

1-2s 2
/Rerly ‘VV)\(Z,t)‘ G(Z) dz

—1 N + 2—2s 1—951 2
< Cnsp (Cz (N (To) + =) = O /R v Y2V (2, )G (2) dz
N+2-2 —2+42s
< Onlan (CQ (N (To) + +48> - CN,s,u) PO SR () (6.99)
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for a.e. t € (0,1). Hence we have proved (6.95) in view of (6.98) and (6.99).
To prove (6.96), we note that, from (6.94),
)\2
(W) = th(z, M2t).
To estimate ||(Wy)¢(-, )[4+, we observe that, for any ¢ € H,

)\QSt—1+S

/R BOWiz Xty (x,1) Tr 6(2) G, 0) da
< O AT 1ts /]RN |wa(z,t)|| Tr ¢(x)|G(x,0) dz

Lot / a7 s ()] T §(2) G, 0) d
R
< CyKn APt WA )l 18]l

FONI [ el s )| Tr ()G, 0)

Lot /

w2, )| Tr ¢()|G (2, 0) dz
{le|>1}

C )\6 S—¢€ S§—¢€
= tlzs/gKN,St /2)‘2 HW)\(at)H’H ”¢H’H
CoX /4. _ o
7 (rs Ayl max {1, 85520 Ko ) WA G 1)l [l (6.100)

for any X\ € (0,4/1p) and a.e. t € (0,1), thanks to (6.4), (6.33), (6.35), (6.41) and the Holder
inequality. Then, by (6.35) and (6.100),

|H*<(W>\)t('7t)v ¢>’H‘ < (1 + Mﬂs_lA;\/,ls max {1’ W}

2s—e W . t
+ C’ng/2 <KN,sTo 2+ nglAz_\/,ls max {1, 7N+3728} + KN,s> ) [WAC )t”H H¢HH.
Hence ;
cons
IVN)e ()l < —— WA D)l

so that (6.96) follows from (6.95).
Finally, in view of (6.95) and (6.96), we can apply [119, Corollary 8] to obtain (6.97). O

Proposition 6.6.2. Let V' be a solution to (6.49) such that V' Z# 0 in Rf“ x (0,T) and let
v be as in (6.87). Then v is an eigenvalue of problem (6.12). Furthermore, for any sequence
An — 0T, there exist a subsequence \n, — 07 and an eigenfunction Y of problem (6.12)
associated to vy such that |Y||, =1 and, for any T € (0,1),

LIV (z, A2 ¢
lim Viz b Y (2)|| dt =0,
k—o0 Jr H()\%k) N
Vi(z, A2 t
lim sup M —t'Y (z)|| =0.
k=00 telr 1) H()\%k) .
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Proof. Let A\, — 0%. By Proposition 6.6.1, there exists a subsequence \,, — 0% and W e
ﬁ7'6(0,1) (CO([Ta 1]a E) N L2((T7 1)7 H)) such that Wt € m’rE(O,l)LQ((T7 1)7 H*)v

W, — W weakly in L*((7,1),H), (W, )i — W; weakly in L*((7,1),H*),  (6.101)

"k

and
Wy, — W strongly in C%([r,1], £), (6.102)

as k — +oo, for any 7 € (0,1). Since, by (6.94),

"k

0], =

L
from (6.102) we obtain that
HW(', 1)H£ =1, (6.103)
hence W % 0. Now we claim that
Wi, = W strongly in L>((7,1),%) for any 7 € (0,1). (6.104)

Thanks to (6.100) and (6.101), we can pass to the limit in (6.91) thus obtaining, for any
¢ € Hand a.e. t € (0,1),

AW 1),0), = ! /R VBV (2, 0) - Vo(2) G(2) dz

H t

_1/ ! @(x,t) Tr ()G, 0) de, (6.105)
R

t N |$|23

where @ (-, t) := Tr(W(-,t)). Testing the difference between (6.91) and (6.105) with W, —

W), integrating between 7 and 1, and taking into account Remark 6.3.3, we obtain that

1 —
/ (/ 1BV - VI, \QGdz> dt
T Rf"’_l k

- (L gl = s, 0P 0 ) a
=5 [0 -, (- S e W, o

1 ! 1-2s|7117 2
_§/T </Rﬁ+1y W — Wy, [PGdz | dt

iyt / 1 ( /R EROWE N, (@) W, (5, 8) — (2, )Gz, 0) d:n) dt.

Then by (6.100), (6.101) and (6.102) we conclude that

1 . |
i 1-2s 9 )
e (/T </RN+13/ <|VW = VW, [P+ 5[ =Wy, | ) Gdz> dt
+
1 L N ,
- [ (L, o0 - w, (@060 dr) dt> _
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Thanks to Proposition 6.2.7 with f = 0 and (6.102), we conclude that (6.104) holds. There-

fore, for any 7 € (0,1),

1
lim
k—o0 Jr

(W (1) - W(-,t)Hi dt = 0

and, by (6.102),
— 2
Jim s [, (.6) = W0 de =0

Let us define, for any ¢ € (0, 1),

,_ 1-257772
Hg(t) == /Rf“ y WG dz,

1 1-25 7717 |2 Ko -
Dy (t) = n (/Rf“ y P|IVWICGdz — /RN ——w"(z,t)G(z,0)dzx | .

‘$|28
Since Hyz (1) = [|[W(-,1)|% = 1 by (6.103), then

Hg (t) > 0 for any t € (0,1)

as we can prove arguing as in Proposition 6.5.9. Hence the function

. oy P
N+ (0,1) = R, Nz(t) == (1)

is well defined. Furthermore, from (6.92) and (6.94) , it follows that

Ni(t)

(6.106)

Sy TEIVWARG dz — fon (e wd (2, 1) + X2hOW i, Nt (w,1)) G(w, 0) da

Jarver yt 72 Wi(2,t)G dz
+
Then, from (6.35), (6.100), and (6.106) we deduce that

klggoN’\"k (t) =Nj(t) forae te(0,1).

On the other hand, Ny, (t) = N(X;,t) for any ¢ € (0,1) by (6.93) and hence

Ny

(t) = lim Ny, (t) = lim N(A\2 t) =~ forany t € (0,1),
k—oo Tk k—oo k

with v as in (6.87). It follows that /\/'I%/(t) =01in (0,1). In view of Proposition 6.5.6 in the

case h = 0, we deduce that

2
1-2s11/2 1-2s17172 _ 1—-28117 1A/
(/MHy WtGdz> </M“y W Gdz) _ (/Mﬂy WtWGdz>

for a.e. t € (0,1). In particular, for the vectors Wt(-, t) and W(, t) in L, equality holds in the
Cauchy-Schwarz inequality for a.e. t € (0,1). Hence there exists a function 5 : (0,1) — R

such that

Wiz, t) = B()W (2,t) for ae. z € Rf“ and a.e. t € (0,1).
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Thanks to (6.73) and Remark 6.3.5,

and so
B(t) = % for a.e. t € (0,1). (6.108)

Combining (6.105), (6.107) and (6.108), we conclude that W satisfies

v ylﬂsv“[?(badzz/ y1*2SVVA[7-V¢Gdz—/ B¢ G(e,0)dz,  (6.109)
Rf+l RN

Rerl ‘x|28

for all ¢ € H and a.e. t € (0,1). - N
Furthermore from (6.107) it follows that, letting W7(z,t) := W (z,n?t) for any n > 0,

dW" 2y
T(z,t) = lW”(z,t) in a distributional sense and a.e. in ]R_]X+1 x (0,1).
n n

An integration yields
W"(z,t) = 772'71//17(2,75) for all n > 0 and a.e. in Rf“ x (0,1).

Let Y(z) := W(z,1). Then |Y]|, =1 and

W(z,t) = Wt (2,1) =t"Y (2) for ae. z € Rf“ and a.e. t € (0,1). (6.110)
Moreover, from (6.109) and (6.110), Y € H and Y satisfies

1

i Tr(Y) Tr(¢)G(x, 0) dx

~y Y BY pGdz = /

JIBVY Ve Gz —/

RY+ Ry RN
for any ¢ € C’go(Rgﬂ), i.e. v is an eigenvalue of problem (6.12) and Y is an associated
eigenfunction. The proof is then complete. O

Now we study the asymptotic behavior of H(t) as t — 0.

Proposition 6.6.3. Let v be as in (6.87). Then the limit lim,_,q+ t~2YH(t) ewists and it is
finite.

Proof. Thanks to (6.88), we only need to show that the limit exists. By (6.73), Proposition
6.5.6, and (6.87),

%(t*QVH(t)) = 2yt T H () P H (1) = 2672 (tD(t) — yH (1))

= 215—27—1H(t)/O (vi(7) +vo(r)) dr

for a.e. t € (0,7), where v; and vs have been defined in (6.85). An integration over (¢,Tp)
yields

HT(?) - ilz(j) = /tTO 20" H(p) (/Op Vl(T)dT) dp + /tTO 20" H(p) (/Op VQ(T)dT> dp.
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Since by Proposition 6.5.6 it follows that v; > 0, then the function

t— /tTO 20" H(p) (/Op I/l(T)dT) dp

is non-increasing on (0,7p) and it has a limit as t — 07. From (6.3), (6.41), Proposition 6.5.7
and Proposition 6.5.8 we deduce that

/Op vo(T)dT

where 6 := min{%,1 — 1}. Then by (6.88)

< const p§,

p
’2p271H(p) (/0 I/2(T)d7'> dp‘ < const p~1+?

hence the function

p
p—2p 2" H(p) </ I/Q(’T)dT) dr
0
belongs to L'(0,Ty). We conclude that limit lim,_,o+ =27 H(t) exists. O

Proposition 6.6.4. Let v be as in (6.87). Then lim,_,+ t 27 H(t) > 0.
Proof. We argue by contradiction assuming that lim,_,o+ t =27 H(t) = 0.
Since Vi(z,1) = V(2,A%) € H and h(Az, \?) Tr(V))(z,1) € H* for a.e. A € (0,/Tp), by
Proposition 6.1.5 we can expand them in £ and H* respectively as
Va(z, 1) = > ViAWY (2)  in L,
(n,7)ENx (N\{0})
h(Az, %) Tr(Vy)(z, 1) = > Enj(MNYnj(z)  in H,
(n,3)ENx(N\{0})

where
Vi (2) == /R VTV, DY (2)G(2) d, (6.111)
+

End(N) 1=, (O X TR (1), Vo),
— RNh()\x, Ao (z, 1) Tr(Y,,;)G(x,0) d, (6.112)

for a.e. X € (0,4/Tp). By Parseval’s identity

H(\?) = S (VW) > (Va(V)?
(m,i)eNx (N\{0})

for any A € (0,Tp) and (n,j) € N x (N\ {0}). Hence, from lim,_,o+ t 27 H(t) = 0 we deduce
that
lim A%V, ;(\) =0 for any (n,j) € N x (N\ {0}). (6.113)

A—0t

By (6.90), Remarks 6.3.3, 6.3.5, and Proposition 6.3.6, it is easy to see that, for any (n,j) €
N x (N'\ {0}), V,,; is absolute continuous on any closed sub-interval of (0, /1) and

d d ~ d ~ -
—Vni(\) = —W(1), Y0 ) = (W1, Y, ) =20 (Vi(-,02), Y,
TV = (G T = (610 Ta) =20 (W),
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a.e. and in a distributional sense in (0,+/7p). Furthermore, for any (n,j) € N x (N\ {0}),
since Y, ; is an eigenfunction of problem (6.12) we have that

~ 2 v
2\ y V(= )\Q)YnJ(z)G(z) dz = — (/N+1 y BV (LN - VY, Gdz
R

N+1
RY A

_ [RN ( H v(z, )\2) Tl"(f/n,j) + )\2Sh()\IL‘, )\Q)U(SL', /\2) Tr(?n,j)) G(x,0) d;n)

|x‘23
2

= X’Yn,j ‘/]RIJA yl—ZSVv(-7 )\2)Yn7]’G dz

- 2
—2) %! /N h(Az, N)v(z, A?) Tr(Y,,;)G(z, 0) dz = Vi (A = 2271, (M),
R
for a.e. A € (0,/Tp), by (6.49), (6.111) and (6.112). In conclusion we have proved that, for

any (n,j) € Nx (N\ {0}),

d 2 .
Vi) = TV (A) = 2257 160,5(0)

for a.e. A € (0,4/Tp) and in a distributional sense. An integration yields
_ _ ) A
Voi(A) = AP (A—Z%,fvn,j(A) +2 /A TG, (T) dT) (6.114)

for any \, A € (0,/Tp).

Thanks to Proposition 6.6.2, there exists an eigenvalue ¥, r, of (6.12) such that v =
Ymo.ko- Then, for any (n,j) € Jy (see (6.26)), we can estimate &, ; as follows. From the
Holder inequality, the fact that ?n,j € H, (6.38), and (6.39) it follows that

X216, (V)] = A (6.115)

/R B XY, X2) Te(Y,, ) (2)G (. 0) da

2s 2 2412 > 2s 2 o2 >
< ([ 20 )G, ARG, 0da) ([ (e, X T (Vo PG, 0)da
R R
< const \*T2Y

for any A\ € (0,1/1p), where Proposition 6.5.8 and (6.88) have been used.
It follows that 7 — r2571=27¢, (1) belongs to L1(0,/Tp) for any (n,j) € Jy. Passing to
the limit as A — 07 in (6.114), from (6.113) we deduce that

A
Vai(A) = —2)\27/0 252, J(r)dr for any (n,j) € Jo. (6.116)

Combining (6.115) and (6.116) we obtain that
[Vij(A)] < const A*T27 for any A € (0,/Tp) and some const > 0 independent of \.
Fixing some o € (0,¢), by (6.89) there exists a constant K (o) > 0 such that, for any \ €
(0, Vo),
H(\?) > K(0)\227+9),
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We conclude that Vo ()
n,J — O )\a—a

On the other hand, for any sequence \; — 0T, Proposition 6.6.2 provides a subsequence
Ai, — 07 and an eigenfunction Y of (6.12) associated to the eigenvalue v such that

VAik('7 1)
H(AF)

=o(1) asA—0". (6.117)

—Y strongly in £ as k — oo.

In particular, for any (n,j) € Jo,

iy V. (1 -
VajQi) _ (Y01 5 Yol — (Y Y, 7]) as k — o0. (6.118)
JEOZ) ¢H (2) ‘
: L
From (6.117) and (6.118) we deduce that (Y,Y,;)z = 0 for any (n,j) € Jo. We conclude that
Y =0, a contradiction. O

Proof of Theorems 6.1.6 and 6.1.7. In view of Proposition 6.6.2, there exists an eigen-
value Yy, k, of problem (6.12) such that (6.25) holds. Let Jy be as in (6.26) and \; — 0T
as ¢ — +o0o. Thanks to Proposition 6.6.2 and Proposition 6.6.4 there exists a subsequence
{Ai }ren and real numbers {8, : (n,j) € Jo} such that 3 5 # 0 for some (71, 7) € Jo and,
for any 7 € (0,1),

2
1
. —2Ymy, m % =
Jim. ] Ay OOV (2, A7 t) — tmoko Z BniYni(2)| dt=0 (6.119)
(n,])eJo H
and
2
lim sup )\i_kz’ymo’k“‘/( ,)\sz ) — t¥mo-ko Z BniYni(z)]| =0. (6.120)
k=00 4e[r1] (ng)eo .
It follows that
/\%27’“0 MV (2, )‘1219 Z ﬂnj n,j(2)  strongly in £ as k — oo. (6.121)

Let us prove that {#,; : (n,j) € Jo} depends neither on the sequence {\;};cn nor on its
subsequence {\;, }ren. Let A € (0,4/Tp) and let V,, ;, &, ; be as in (6.111) and (6.112)
respectively. From (6.121) we obtain that, for any (n,7) € Jo,

—2%Ymg,k
)\’ik o OVn,j()\ik) — Bn,j as k — oo.

By (6.114), for any (n,j) € Jo and A € (0,A),

A
Vi j(A) = A2mosko (A—%mo,kovn,j(/\) +2 / 7251 modo g, (1) d7> )
A
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Furthermore, proceeding as in Proposition 6.6.4, we can prove that 7 — 725 1=2¥mo.jo &, (7)
belongs to L'(0,+/Tp). Hence

A
By = Aok Vs (0) +2 [ 721 2mong, () dr

Ao /R o VTV (2 AN)Y, 5 (2)G(z) dz

+

N ~
4 2/ T2s—1—2’)/m0,k0 < N h(7-1;’ 7'2)1)(1,‘, 7'2) Tr(Yn,j)(JU)G($, 0) dCC) d'Tu
0 R

so that 3, ; depends neither on the sequence {\;};en nor on its subsequence {\;, }ren for any
(n,j7) € Jo. Then, by the Urysohn subsequence principle, we conclude that the convergences
in (6.119) and (6.120) actually hold as A — 0T, thus proving Theorem 6.1.6. Theorem
6.1.7 follows from Theorem 6.1.6 and the continuity of the trace operator Tr from H into
L*(RY,G(x,0)), see Proposition 6.2.3. O

The strong unique continuation principles stated in Corollaries 6.1.8 and 6.1.9 easily follow
from Theorem 6.1.6 and Theorem 6.1.7.

Proof of Corollaries 6.1.8 and 6.1.9. We start by proving Corollary 6.1.8. Let us as-
sume by contradiction that W # 0 on Rf“ x (=T,0) and let vy, k, be as in Theorem 6.1.6.
In view of (6.28) we have that

/\11%1+ A" 2mokot~Vmoko W (A2v/t, —A%t) = 0 for a.e. (2,t) € Rf“ x (0,1).
_>

On the other hand, by Theorem 6.1.6 there exists Y € H\ {0} such that Y is an eigenfunction
of problem (6.12) and, for a.e. z € RY™ and t € (0,1),

lim Ay 2770k 4= mo ko W (Anz /7, —A2t) = Y (2),

n—o0

along a sequence \, — 0. We conclude that Y = 0, thus reaching a contradiction. In the
same way, we can deduce Corollary 6.1.9 from Theorem 6.1.7, in view of Proposition 6.4.4. [

171



Part 111

Spectral Stability for
Aharonov-Bohm operators
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Chapter 7

Quantitative spectral stability for
Aharonov-Bohm operators with
many coalescing poles

7.1 Statement of the main results

To give a variational formulation of problem (1.9), we introduce the space H'¢(, C), defined
as the completion of

{¢p € HY(Q,C)NC>®(Q,C) : ¢ =0 in a neighbourhood of af for all j =1,...,k}

with respect to the norm

9 1/2
. 1
Nz, <C>> (T-1)

We observe that H¢(,C) = {u € HY(Q,C) : |~ 3] (Q,C) for all j =1,. k}

In [95] (see also [15] and [66, Lemma 3.1, Remark 3.2]), the following local magnetic
Hardy-type inequality

[wl] g1.e Q,0) ||wHL2 @) T ||Vw||L2 ac2) t Z
( |

, L 2 |w(z)[?
Vw + APwl? de > - / dz
/Br(b) Ve pwl”de <Ignel£1 J p|> By (b) |z — b|?

is proved for every b € R? and w € C(B,(b) \ {b},C). It follows that the norm (7.1) is
equivalent to the norm

) 1/2
(16Y + A ulF2 0,000 + NllFaia0)) -

To deal with homogeneous Dirichlet boundary conditions, we introduce the space H “(Q,C)
defined as the closure of C®(Q\ {al,...,a’}) in HlE(Q C). The space Ho “(Q, C) can be
explicitly characterized as

Hy*(Q,C) = {w € H}(Q,C) : (Q,C) for all j =1, .. .,k} )

w -
|-—az]
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(a) The set T'.. (b) The set I'g. () The sets SZ.

Figure 7.1: The sets I'c, Tg, S (1 < j < k1 + ko).

We say that A € R is an eigenvalue of (1.9) if there exists u € Hy*(Q,C) \ {0} (called
eigenfunction) such that

/Q (Y + A)u- iV + A) wde = A/Qumx for all w € H(Q,C). (7.2)

We recall from the introduction that the eigenvalue problem (1.9) (and hence (7.2)) admits
a diverging sequence of real positive eigenvalues

)\5,1 < >\e,2 < >\a,3 < )

repeated in the enumeration according to their multiplicity.

In a similar way, the variational formulation of (1.10) in the case k odd (corresponding
to a problem of type (1.9) with only one pole located at 0) can be be given in the functional
space {w € H}(Q,C) : ﬁ € L?(©,C)}. In the case k even, instead, (1.10) takes the form of
the classical eigenvalue problem for the Dirichlet Laplacian, whose variational formulation is
well known. In both cases, (1.10) admits a diverging sequence of real positive eigenvalues

20,1 < Ao2 <Az <-e-

repeated according to their multiplicity.

A suitable gauge transformation allows us to obtain equivalent formulations of (1.9) and
(1.10) as eigenvalue problems for the Laplacian in domains with straight cracks. For every
e € [0,1] we define

Y= {ta? :t € R} forall j=1,... k5 + ko,
I .= {ta/ :t € (~o0,e]}, S:={ta’ :t€[0,¢]} forallj=1,... ki,
Sii={tad + (e —t)a? ™2 .t € [0,e]} forall j =k +1,... %k + ko,

~(Ur)e( %)

j=k1+1

r

(L}

see 7.1. We note that, for every j = 1,...,kq, F% =T\ S/ is the straight half-line starting
at 0 with slope o + 7. For every € € [0, 1], we consider the functional space H. defined as
the closure of

{we H'(Q\T.) = H{(Q\T.,R) : w = 0 on a neighbourhood of 992}
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in H'(Q\ T:) endowed with the norm lwll g ar.y = Vwllz@r.) + [lwllzz). From the
Poincaré type inequality stated in Proposition 7.2.2, it follows that

1/2
= Vw|*d
”wHHE <~/Q\Fg Vel x)

is a norm on H. equivalent to [[wl| g1 (\r,). The corresponding scalar product is denoted as
('7 '),Ha : . . .

For every j =1,..., k1 + ko, with the notation 1/ := (—sin(a’), cos(e’)) we consider the
half-planes

wi::{meRQ:x-uj>0} and 7/ = {zeR?: z 17 <0}

We observe that 17 is the unit outer normal vector to 7 on d7’. In view of classical
trace results and embedding theorems for fractional Sobolev spaces in dimension 1, for every
j=1,...,k1+ ko and p € [2,4+00) there exist continuous trace operators

v HY#\Ty) = LP(%7) and A2 : H'(x? \Ty) — LP(3). (7.3)
We also define the trace operators

77 HY(R*\T) — LP(X), T (w):= 'yi(w|ﬂi) + L (wl), (7.4)
for every j =1,...,k1+ k2 and p € [2,+00). For every e € [0, 1], the restrictions to H. of the
operators Wi, v’ and T7 are linear and continuous, since any element of H. can be trivially
extended by 0 to an element of H!(R?\I'1); furthermore, due to the boundedness of €2, such
restrictions are continuous and compact from H. into LP(%7 N Q) for all p € [1, +00).

For every € € (0,1], we define the space

~ weH:: TIHw)=0onTL forall j=1,..., ki,
He = : : . , (7.5)
T/ (w)=0o0n SL forall j =k +1,..., k1 + ke
and, for € =0,
Ho:={weHo:T"(w)=0onT) forall j=1,... k}. (7.6)
In Section 7.2.3 we construct a function
O.:R*\{al:j=1,....,k} =R (7.7)
such that
O: € C®(R?\I,) (78)
VO:. can be extended to be in C®°(R?\ {al :j =1,...,k}) with VO, = A, .
see (7.46) for the definition of ©,. The phase multiplication
u(z) — v(z) = e P @y(z), zeQ\T., (7.9)
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transforms any solution u to problem (1.9) into a solution v to

—Av = Av, in Q\ T,
v =0, on 01,
TI(v) = Iiforall j=1,....k
(v) 0,' on I'] for a j yeooy k1, (7.10)
TI(Vu-17) =0, onTYforall j=1,... ki,
Tj(U)ZO, Onsgforallj:k1+1,...,k1+k2,
TH(Vv-1v9) =0, on SIforall j==Fk +1,... .k + ko,
In (7.48) we also define a function
O :R?\ {0} = R (7.11)
satisfying
By € C®(R?\ I'y)
. 2 . 14-(—1)k+1 (7-12)
VO can be extended to be in C°°(R*\ {0}) with VO = ————— A,.
The gauge transformation
u(z) — v(z) = e @y (), zeQ\ Ty, (7.13)
shows that the limit eigenvalue problem (1.10) is equivalent to
—Av = v, in Q\ Iy,
= Q
ch 0, on a , (7.14)
T7(v) =0, on I forall j =1,... ki,

T (Vv -17) =0, onfg forall j =1,..., ki,

in the sense that the two problems have the same eigenvalues and their eigenfunctions match
each other via the phase multiplication (7.13), see Section 7.2.3 for details. Therefore, under
assumption (1.15), Ao, is also a simple eigenvalue of (7.14). Let

vg be an eigenfunction of (7.14) associated to Aon, such that [jvol[ 2y = 1; (7.15)

it is not restrictive to assume that vy is real-valued, see Remark 7.2.5. Once vy is fixed as
above, for every € € (0,1] we define

L. :Hiy — R, L.(w):=2 Z /]_ Vg - Vjvi_(w) ds (7.16)
- S
Jj=1 7=
and )
Jo:He = R, Jo(w):= f/ |Vw|? dx + Le(w). (7.17)
2 Jo\r.
As proved in Proposition 7.3.2, for every ¢ € (0, 1] there exists a unique V. € H. such that

Ve —vg€He and J.(V.) = min {Js(w) cw € He and w — g € 7—75} (7.18)

Our first main result is the following expansion of the eigenvalue variation A ., — Ao, in
terms of

&= J(V,) (7.19)
and L. (vp).
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Theorem 7.1.1. Under assumption (1.15), let vy be as in (7.15). Then
)‘6,710 - )‘Omo = 2(55 - Lz—:(UO)) + 0(”‘/6”’2}-15) as € — O+, (7'20)

where E and V; are defined in (7.19) and (7.18), respectively.

7.1.1 The case k odd

For k odd, the asymptotic behaviour of £ as e — 07 can be quantified in terms of the
vanishing order of vg at the collision point 0. Indeed, as detailed in Proposition 7.2.6, if k is
odd, there exists 3 € R\ {0} such that, as ¢ — 07,

e 2ug(ecost,esint) — B f(t) sin (% (t — o)) (7.21)

in C17([0,27] \ {ad + W}?lzl,R) for all 7 € (0,1), where m € N is odd and corresponds to
the number of nodal lines of vy meeting at 0 (which equals the number of nodal lines of
eigenfunctions of (1.10) associated to Ao, ), ao € [0, 2%) is the minimal slope of such nodal

lines, and
k1

Fo02n] = {=1,1},  f(t) = [[(~1) i tm2n (@) (7.22)

Jj=1

where ‘
0, ifte|0,ad +m),

, ‘ (7.23)
1, ifte[a? +m,2m).

X[ozj+7r727r) (t) = {

From (7.21) we realize that the m nodal lines of vy which meet at 0 are tangent to the m
straight half-lines

R; = {(cos (o +522),sin (oo + j2Z))r 7 > O}, j=0,1,...,m—1,

which divide the whole 2m-angle into m equal sectors. We define the functional space

- we LL (R?): we HY (B, \T) for all 7 > 0, (7.24)
B Vw € L*(R?\ I't,R?), Tj(w):OOHF%forjzl,...,kl T
and consider its closed subspace
H:={weX:T/(w)=0on S forany j =1,..., k1 + ko}. (7.25)
Letting
Wo(x) = Wo(rcost,rsint) = Br2 f(t) sin (2 (t — ag)) (7.26)

with f, m, 8, and «ap as in (7.21), we observe that the nodal set of ¥y is given by U?:_Ol R;.

We define
k1+k2

L:X >R, Lw)=2)Y /j VU - 7~ (w) dS (7.27)
j=1 75
and

1

J: X =R, J(w) =3 .
1

|Vw|? dz + L(w). (7.28)
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We observe that L(w) is well-defined also for any function w € H*(Dy \ Ty).
Let n € C>°(R?) be a radial cut-off function such that

0 < n(z) <1 for all z € R?,
n(z) =1ifx € Dy, n(x)=0if x € R?\ Dy, (7.29)
‘VT]| < 2 in DQ \ Dl.

As proved in Proposition 7.5.4, there exists a unique V € X such that
V-n¥eH and J(V)= min{J(w) cwe X and w— Uy € ?—N[} . (7.30)
Theorem 7.1.2. Let k be odd. Under assumption (1.15), let vg be as in (7.15). Then
(i) lim,_,g+ e7™E = &, where m is the vanishing order of vo at 0 as in (7.21) and

E=J(V)= min_J,; (7.31)
nWo+H

(i) Aejng — Aone = 2™(E — L(¥o)) + 0(e™) as e — 0.

The expansion proved in Theorem 7.1.2-(ii) identifies the sharp asymptotic behaviour of
the eigenvalue variation Ac,, — Ao, if € — L(Wg) # 0; if instead £ — L(¥) = 0, Theorem
7.1.2-(ii) only provides the information that A.,, — Ao, is an infinitesimal of higher order
than m. It is therefore natural to ask whether there are configurations of poles {a’} for which
the quantity & — L(¥g) does or does not vanish. The following proposition gives an answer
in this sense, also providing precise information on the sign of the eigenvalue variation in two
remarkable cases: the case in which each pole moves along the tangent to a nodal line of the
limit eigenfunction and the case in which each pole moves along the bisector between two
nodal lines.

Proposition 7.1.3. Let k = k1 < m be odd and ko = 0. Under assumption (1.15), let vy be
as in (7.15) and ag as in (7.21). For every j € {1,...,k1} let o/ be as in (1.6).

(i) Ifod €{ag+0E :£=0,1,2,...,m—1} for all j € {1,... ki }, then
E<0 and L(¥y) =0;
furthermore, Az ny < Aon, provided that € > 0 is sufficiently small.
(i) If &/ € {ag+ (1420 Z : £ =0,1,2,...,m—1} for all j € {1,... k1 }, then
E>0 and L(¥y) = 0;
furthermore, Az ny > Aon, provided that € > 0 is sufficiently small.

(iii) There exists a choice of {a? : j =1,...,k} such that € — L(¥) = 0 and Acny — Aoy =
o(e™) ase — 0T,
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The proof of claim (iii) in Proposition 7.1.3 is based on a continuity argument. Indeed,
the function & — L(¥) varies continuously under rotations of the configuration of poles, see
Theorem 7.5.8. Hence (i) and (ii), together with Bolzano’s Theorem, guarantee the existence
of intermediate configurations for which & — L(¥) vanishes. The proof of claims (i) and (ii)
highlights the fact that, analogously to &, also £ represents an intermediate notion between
the capacity and the torsional rigidity of the set U;‘?l:lS{. Indeed, in case (i) it occurs that

1
E‘:mig{/ Vw|2dx—|—L(w)} <0,
2 JR2\I,

wEH

see (7.146), i.e. &€ is the minimum of a functional containing a (quadratic) energy term and
a linear one, over a linear space: this makes it somehow behaving like a torsional rigidity of
the set U?lzlS{. On the other hand, in case (ii) we have the characterization

1 .
5:min{/ ]Vw|2d:c:w—n\110€7-l}>0,
2 JR2\T,

see (7.147), which yields a notion resembling that of ¥y-capacity of the set U?;lS{.

The proof of Theorem 7.1.2 is based on a blow-up analysis, which also provides the follow-
ing result on the behavior of eigenfunctions, characterizing their blow-up profile and quanti-
fying the convergence speed of the eigenfunctions of problem (1.9) towards the corresponding
eigenfunction of the limit problem (1.10).

Theorem 7.1.4. Let k be odd and ng € N\ {0} be such that (1.15) is satisfied. Let ug be an
eigenfunction of (1.10) associated to Non, such that [q|ug|*dx = 1. For every e € (0,1], let
Us € Hé’E(Q, C) be the eigenfunction of (1.9) associated to the eigenvalue A, . such that

/ luc|*dr =1 and / e~ UO=00)y g dx is a positive real number, (7.32)
Q Q

where O, and Oy are as in (7.7)~(7.8) and (7.11)—~(7.12), respectively. Then
e 2u(e) = €1 (Wg— V) ase—0F (7.33)

in HYY(Bg,C) for all R > 0, where V and Wy are as in (7.30) and (7.26), respectively.
Moreover,

lim ¢™™ /
e—0t R2\I';

We observe that condition (7.32) allows us to identify, among all the eigenfunctions of
(1.9) associated to the eigenvalue A, . (that are multiples of a given one due to the simplicity
of Apy.e), the one that converges to ug as e — 0.

—i(©:—00) (. - Z T2
e (iV + Ac)ue — (iV + Ao)ug‘ v = ||VV|32@ap,).  (7.34)

7.1.2 The case of two opposite poles (k; =0, ky = 1)

In the case of two opposite poles ag, ag = —a; colliding to 0 from the two sides of the same

straight line, we can rewrite the terms appearing in (7.20) in elliptic coordinates in the spirit
of [3, Subsection 2.2], thus determining the dominant term in the asymptotic expansion. This
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allows us to generalize [5, Theorem 2.6, Theorem 2.8], see also [3, Theorem 1.16], removing
any symmetry assumption on the domain ). Let us assume that

the no-th eigenvalue A\, of the Dirichlet Laplacian in €2 is simple.

We recall that, since k is even in this case, A\, = Ao n, coincides with the ng-th eigenvalue of
the limit problem (1.10). Let

ug be an eigenfunction of (1.11) associated to Ap, = Ao n, such that /ng dr=1. (7.35)

If up(0) # 0, then, for any bounded simply connected domain €2, a sharp expansion of the
variation A n, — Ao.n has already been obtained in [4, Theorem 1.2], see Remark 7.6.7. Hence
we assume that up(0) = 0. Up to a suitable choice of the coordinate system, according to the
notation introduced in (1.6), it is not restrictive to consider the case a' = 0, a? = 7, so that,
for some 7 € (0, R), the configuration of the two opposite poles is given by

=7r1(5,0) and a2 =r(—¢,0), (7.36)

and

S, := S} = [~rie,re] x {0}, (7.37)
see 7.2. Furthermore, since up(0) = 0, it is well known that there exists m € N\ {0},

Figure 7.2: Two opposite poles colliding at 0 (k1 =0, ky = 1).

B e R\ {0} and ag € [0, ) such that
Mg (r cost, rsint) — Bsin(m(t —ag)) in CH7([0,27],C) asr — 0T, (7.38)

for any 7 € (0,1). In particular, the 2m half-lines with slopes a9+ 57, j = 0,...,2m —1, are
tangent to the nodal lines of uy meeting at 0.

Remark 7.1.5. By standard regularity theory, ug is analytic in 2. Let T}, be the Taylor
polynomial of ug centered at 0 of order m, with m € N\ {0} being as in (7.38). Then, in view
of (7.38),

(0) 27, (7.39)

m
0y
m (71, 72)
JZO m — ) oz o

For every t € [0, 27], we have

Tn(cost,sint) = Bsin(m(t — «g)),
(VT,,)(cost,sint) - (—sint, cost) = mfB cos(m(t — ap)).
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Hence

1 9™ug _ . 1 0™ ug
i Oz (0) = —Bsin(magy) and (m— 1)1 027 102}

(0) = mp cos(may),

so that, in particular,

(_1)j 0™ ug . jm )
B="— 5 1001 (0) ifag ==~ forsome j €{0,1,...,2m — 1}, (7.40)
and
—1 j+1 om .
B = (Wzl 837?‘0 (0) if g = % + % for some j € {0,1,...,2m — 1}. (7.41)
If the segment S, is tangent to a nodal line of ug, i.e. if ag = % for some j € {0,1,...,2m—

1}, we have the following result which generalizes [5, Theorem 2.8] dropping any symmetry
assumption on 2.

Theorem 7.1.6. Let Ay, be a simple eigenvalue of (1.11) and let ug be as in (7.35). Assume
that ug(0) = 0 and let m € N\ {0} and ag be as in (7.38). Let k1 = 0 and kz = 1 with the
configuration of poles as in assumption (7.36). If ag = 1= for some j € {0,1,...,2m — 1},
then

2

maB2rim (m—1

Aeng = Ang = —T_ll (\_m_lj> e 4 o(e®™) ase — 0T,
2

with B as in (7.40).

On the other hand, if S lays on the bisector of the angle between the tangents to nodal
lines, ie. if ag = 5~ 4+ 2% for some j € {0,1,...,2m — 1}, then we prove the following
expansion.

Theorem 7.1.7. Let A, be a simple eigenvalue of (1.11) and let ug be as in (7.35). Assume
that ug(0) = 0 and let m € N\ {0} and ag be as in (7.38). Let k1 = 0 and ko = 1 with the
configuration of poles as in assumption (7.36). If g = ﬁ—i—% for some j € {0,1,...,2m—1},
then

mm 32r2m

)\E,no - )\n() = 4m71

2

-1

(ﬂznl ) 2™ L o(e®™) ase— 0T,
[#5=)

with 5 as in (7.41).

We observe that Theorem 7.1.7 is a generalization of [5, Theorem 2.6] and [3, Theorem
1.16).

The rest of Chapter 7 is organized as follows. In Section 7.2 we collect some basic facts,
such as the gauge invariance property of the problem, useful features of the functional spaces
involved, and some known results that will be used in the rest of the chapter. In Section 7.3
we provide some preliminary estimates on the quantities & and L. that appear in formula
(7.20); such estimates are used in Section 7.4, where the proof of Theorem 7.1.1 is completed.
In Section 7.5 we perform a blow-up analysis of the potential V. appearing in (7.18), in the
case k odd; this is the key ingredient in the proof of Theorems 7.1.2 and 7.1.4. In the same
section we also complete the proof of 7.1.3. Finally, in Section 7.6 we consider the case of
two poles colliding to 0 from opposite sides of the same straight line, thus proving Theorems
7.1.6 and 7.1.7.
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7.2 Preliminaries

7.2.1 Scalar potential functions for A, outside half-lines

The construction of the gauge transformation, which makes problems (1.9) and (1.10) equiva-
lent to eigenvalue problems for the Laplacian in domains with straight cracks, is based on the
remark that, since Aharonov-Bohm vector fields are irrotational, they are gradients of some
scalar potential functions in simply connected domains, such as the complement of straight
half-lines starting at the pole.

For every b = (by,by) € R?, let 6, : R?\ {b} — [0,27) be defined as

b .
arctan (%), if x1 > b1, x2 > bo,
%, if x1 = by, w2 > by,
Op(x1,22) := { T + arctan (ifijgf), if x1 < by,
%7‘(‘, ifl‘lzbl, IL‘2<b2,
b .
21 4 arctan (%), if x1 > b1, z2 < bo,

i.e.,

0y (b + r(cost,sint)) =t forall t € [0,27) and r > 0.
We observe that 6, € C°®°(R?\ {(x1,b2) : 1 > b1}) and V6, can be extended to be in
C>®(R2\ {b}), with V(%b) = Ay in R?\ {b}. For every b € R?, a € R, and z = (1, 12) € R?
we define

Ry o(x) := [Zj + M, [2 : Zj , (7.42)
with .
M, = [C?)SO[ —sma] ’ (7.43)
sina  cosa
i.e., Ry is a rotation about b by an angle . Let
Op.o := 0y 0 Rp o (7.44)

so that 0y o (b + r(cost,sint)) = a +t for every » > 0 and t € [, —a + 2m). We observe
that 6, is smooth in R? \ {b+ r(cosa, —sina) : r > 0} and V6, , can be extended to be in

C(R2\ {b}), with V(%2) = 4, see 7.3.

Figure 7.3: 0}, is smooth in R? \ {b + r(cosa, —sina) : 7 > 0}.
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7.2.2 Some remarks on functional spaces

In this subsection we describe some properties of the functional spaces H. introduced in
Section 7.1.

Remark 7.2.1. The natural embedding I : H. — L?*(Q) is compact. Indeed, we can cut {2
along the lines ¥/ for j = 1..., k; + k2, where ¥/ are defined in Section 7.1. Then we can use

classical compact embedding results for each resulting subset, see for example [99, Theorem
12.30].

Arguing as in 7.2.1, from the Poincaré inequality for functions vanishing on a portion of
the boundary we can deduce the following Poincaré inequality in H1, and hence in H. for any
e €[0,1].

Proposition 7.2.2. There exists a constant Cp > 0 such that, for every e € [0,1] and
w € He,

/ w?dr < C’p/ |Vwl|? dz.
Q 192V

Since Q\T1 € Q\ T, € Q\T,,, we have He, C H,, € Hy for all 0 < g9 < g7 < 1.
Proposition 7.2.3 below establishes a Mosco-type convergence result for the spaces H. as
e— 0T,

Proposition 7.2.3. Let {,} C (0,1) be such that lim, oo, = 0. If {v,}n C H1 and
v € Hy are such that v, € H, for alln € N and v, = v in H1 as n — oo, then v € Hy.

Proof. For every € € (0, 1], there exists n(e) € N such that v, € H, for all n > n(e). The weak
convergence v, — v in H; then implies that v € H, for all ¢ € (0,1]. It follows that there
exists f € L?(Q,RY) such that Vv = f in D'(Q\ T¢) for all € € (0,1]. Actually, Vo = f in
D' (Q\Ty), since, for every ¢ € C(Q\Ty), supp ¢ C Q\TI'; for € sufficiently small. Therefore,
v € HY(Q\Ty). From the fact that v € Hy; N H(Q\ I'y) it follows that v € Hy. O

Since the singleton {0} has null capacity in €2, functions in Hg, respectively in 7—~£0, can be
approximated by functions vanishing in a neighbourhood of 0, as stated in Lemma 7.2.4.

Lemma 7.2.4.
(i) The set Ho :={v € Ho : v =0 in a neighbourhood of 0} is dense in Hy.
(i) The set Hoo = {v € Ho : v = 0 in a neighbourhood of 0} is dense in H.
Proof. To prove (i) we first notice that, if v € Hg, then, defining v,, as
v(x), if |v(z)] <mn,

vp(r) =9 —n, ifov(z) < —n,
n, if v(z) >n
vp € Ho N L®(Q) for all n € N and v, — v in Hg. Therefore it is enough to prove that

Hoo N L®(Q) is dense in Ho N L>®(). To this aim, let us fix some v € Ho N L>®(2). For
every € € (0,1) we consider the cut-off function w. € W (R?) defined as

1, ifx € Dy,
we(w) = ¢ Zslrlloss g g e D 2\ D, (7.45)
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(a) 65 for j < ki + k2. (b) 65 for j > k1 + k2 + 1.

Figure 7.4: The angles 65 for 1 < j < ky + 2k3. The half-lines represent the singular set of
the function 65.

One may directly verify that (1 —w.)v € Ho,o N L>®(Q) for all e € (0,1) and (1 —w:)v = v
in Ho as € — 0. The proof of (i) is thereby complete. We can proceed in a similar way to
obtain (ii). O

7.2.3 An equivalent eigenvalue problem by gauge transformation
For every ¢ € (0, 1], using the notation introduced in (7.44), we define

¢ =

3

eag’ﬂ__aj, ifj=1,...,k1 + ko,
Hag ifj=Fki+ko+1,...,k + 2ko,

—ad?
with o/ as in (1.6), see 7.4, and
. 1k o
O :R*\{al:j=1,... .k} >R, ©O.:=-> (-1)"6. (7.46)

2 &~

We observe that O, verifies (7.8).
For any ¢ € (0,1], let A € R be an eigenvalue of problem (1.9) associated to the eigen-
function u € Hy*(Q,C) \ {0}. Then the function

v(z) = e ®@y(z), zeQ\TI,,

belongs to H. and weakly solves (7.10), in the sense that v € H. and

Vv - Vwdr = )\/ vwdz  for all w € H., (7.47)
O\T. Q

where H, is defined in (7.5). On the other hand, if v € H. solves (7.47), then u = €'©=v solves
(1.9). Therefore the eigenvalue problems (1.9) and (7.10) have the same eigenvalues and their
eigenfunctions match each other via the phase e <.
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A similar gauge transformation can be made for solutions to (1.10). For every j =
1,...,k1, let o/ be as in (1.6) and

J .
60 = 90 o Ro’ﬂ.,aj.

We define i
O0: B\ {0} = R, Ooe) = 3 3 (-1 63(x). (7.48)
=1

If k1 = 0 we just take ©¢g = 0. We observe that Oy satisfies (7.12). Furthermore, if ¢t € [0, 27),

t—al +7, ifte|0,al +m),

: . - (7.49)
t—aod —m, iftead +m, 2m),

Qg(cos t,sint) = {
=—a) +t+n(l- 2X[aitm,2m);

where X is defined in (7.23). We have that v is an eigenfunction of problem (1.10), associated
to the eigenvalue J, if and only if the function

v(z) == e @y (z), zeQ\Ty, (7.50)

is a non-zero weak solution of (7.14) in the sense that v € Hy and

Vv -Vwdr = )\/ vwdz  for all w € Ho, (7.51)
O\l Q

where H is defined in (7.6). We recall that, if k; is even, then, letting v as in (7.50), the
function ve’® = u is an eigenfunction of the Dirichlet Laplacian in €2, hence it is smooth in
Q.

Remark 7.2.5. We may treat eigenfunctions of problems (7.10) and (7.14) as real-valued
functions (thus justifying the choice to consider H. as a space of real functions). Indeed, since
all the coefficients in (7.10) and (7.14) are real, both the real and the imaginary part of any
eigenfunction are eigenfunctions, if not trivial. Hence, any eigenspace of (7.10) and (7.14)
admits a basis made of reals eigenfunctions. See also [1, Subsection 2.3].

7.2.4 Asymptotics of solutions to the limit eigenvalue problem

Let {ozj}?lzl and X{qi4r2r) be as in (1.6) and (7.23), respectively. Let f be the function
defined in (7.22).

Proposition 7.2.6. Let ki be odd. If v is a non-trivial solution to (7.14), in the sense that
v € Ho satisfies (7.51), then there exist an odd number m € N, 8 € R\ {0}, and ag € [0, 2r)
such that

e~ % (s cost,esint) — B f(t) sin (2(t — ag)) (7.52)

in CL7 ([0, 27] \{ozj+7r}§1:1,R) ase — 0, for all T € (0,1). Moreover, there exists a constant
C > 0 such that

lw(z)| < Clz|Z  and |Vo(z)| < Clz|Z™" for all z € Q\ T. (7.53)
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Furthermore, letting
W(zx) = U(rcost,rsint) = Br2 f(t) sin (Bt — ),
with m, 3, and ag as in (7.52) and f as in (7.22), we have that, as e — 0T,
e 2v(e) > U in HY(D,\Ty) for all p > 0. (7.54)

Proof. As observed above, the function u := ¢*®%v is an eigenfunction of (1.10) with k odd,
ie.
(iV 4+ Ag)*u= M, inQ,
u =0, on 0f2,
with Ay defined in (1.7). From [66, Theorem 1.3, Section 7] it follows that there exist an odd
m € N and 31, 32 € C such that (31, 32) # (0,0) and, as € — 07,
e 2 u(ecost,esint) — e2 (61 cos (2t) + Bosin (%))  in CH7([0,27],C) (7.55)

and

e!=% Vu(ecost,esint) — et (B1 cos (%Bt) + Basin (%)) 6(
%

m

2
+ £ ( (81 cos (%) + B2 sin (%t))) T(t) in C%7([0,27],C) (7.56)
for all 7 € (0,1), where 0(t) = (cost,sint) and 7(t) = (—sint, cost). Furthermore, by (7.49),
for all ¢ € [0, 27] we have

k1

. kl - . kl -
Z(—1)7+106(5 cost,esint) =t + Z(—l)JaJ +7—2m Z(—l)JHX[a”m%) (t). (7.57)
j=1 j=1 j=1

From (7.55), the definition of u, and (7.57) it follows that

m

e 2v(ecost,esint) — f(t)e ( iy UaJ) (ﬁl cos (Bt) 4 B2 sin (% t))

in CH7(]0,27] \ {o —|—7T}J 1,C)ase — 0", for all 7 € (0,1). Then, since v is real-valued (see
Remark 7.2.5), we have proved that there exist ¢, ca € R such that (¢1,c2) # (0,0) and

e 2 v(ecost,esint) — f(t) (01 cos (Bt) + cpsin (%) ) (7.58)
Letting

0, if ¢, =0,

we can rewrite (7.58) as (7.52). Estimate (7.53) is a consequence of (7.55) and (7.56).
Finally, to prove (7.54), we define

2 _c i
ag — {marccot( Cl)7 if 1 #0,

Ge(z) :== e Zu(ex), ®(z) = ®(rcost,rsint) = r%est (81 cos (%Bt) + Bosin ().

We observe that (7.55), (7.56), and the Dominated Convergence Theorem imply that

i >
Vi, - V® and % — il in L*(D,) for all p > 0,
x x

which easily provides (7.54). O

186



In the case k even, solutions to (7.14) are more regular.

Proposition 7.2.7. Let ki be even. If v is a non-trivial solution to (7.14), then there exist
meN, g€ R\ {0}, and ag € [0, Z) such that

e My(ecost,esint) — Bf(t)sin(m(t — agp)) (7.59)

in C17([0, 27T]\{7T+Oéj}§1:1,R) ase — 0", for all T € (0,1). Moreover, there exists a constant
C > 0 such that

Clz|™ Y ifm>1,

) (7.60)
C, ifm=0,

lv(x)| < Clz|™ and |Vo(x)| < {

for all x € Q\ T'y.

Proof. The function u := ¢®°v is an eigenfunction of (1.10) with k even, i.e. u is an eigen-
function of the Dirichlet Laplacian. From (7.49) we deduce the analogue of (7.57) in the even
case:

kl . kl . . kl .
Z(—l)jH%(E cost,esint) = Z(—l)Ja] — 27 Z(—l)JHX[a”mQﬂ) (t) (7.61)
j=1

J=1 J=1

forallt € [0,2n]. Claims (7.59) and (7.60) follow from the fact that u is analytic, the definition
of u and (7.61), observing that, since k; is even, |Vu| = |Vv|. O

Remark 7.2.8. For the sake of simplicity, for any w € Hy we simply write w instead of
Yy (w) on SZ, since v (w) = 7’ (w) on S? for any j = 1,..., ki + ka. We also simply write v,
Vo and Vg - 7 when considering their traces on S7.

7.3 Definition and properties of &

For some ng € N\ {0}, let up be an eigenfunction of (1.10) associated to the eigenvalue
Ao = Ao,n and vg be as in (7.50), so that vy is a non-zero weak solution of (7.14) with A = Ao.
By Remark 7.2.5 it is not restrictive to assume that vg is real-valued and |luo|z2@c) =
l[voll 2y = 1-

Let L. be the functional introduced in (7.16). We observe that L. is well-defined; indeed,
for every j = 1,...,ki + ko, we have Vug € LP(S?) for all p € [1,2) in view of (7.53) and
(7.60), whereas v}, (w) € L4(52) for all w € H; and g € [2,+00) by (7.3). We provide below
an estimate of the norm of L. in HJ, where H7 is the dual space of H;.

Proposition 7.3.1. Let m € N be as in Proposition 7.2.6 for v = vy, if k is odd, or as in
Proposition 7.2.7, if k is even. For every ¢ € (0,1], the map L. defined in (7.16) belongs to
Hi and, ase — 07T,

O 7%, ifk is odd,
||La||7{§ = O(E%), if k is even and m = 0, (7.62)

1
O(sm_H—?), if k is even and m > 0,
for every p € (1,2). In particular, L. — 0 in H} ase — 0.
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Proof. If k is odd, for every p € (1,2) and w € Hj, from the Holder inequality, (7.3) and

(7.53) it follows that, letting p' = pfl,
k1+k2 ) m_qy1
L) €2 Y (900l o) I @) sy < Ce %75 [l
j=1

for some constant C' > 0 independent of e. If k is even, the proof is similar due to (7.60). [

For every ¢ € (0, 1], we now consider the functional J. defined in (7.17) and, recalling the
definition of H. in (7.5), the minimization problem

inf {Js(w) cw € He and w —vg € 7—~[5} . (7.63)
Note that, since vy € 7-[0, the condition w — vy € 7—~l€ is equivalent to

0, onf%foralljzl,...,kl,

‘ , (7.64)
2ug, on S forall j=1,... k1 + ko.

T (w) :{

Proposition 7.3.2. The infimum in (7.63) is achieved by a unique V. € H.. Furthermore,
V: weakly solves the problem

—AV. =0, in Q\ T,
Ve=0, on 09,
T/ (Ve —vg) =0, onTL forallj=1,... ki, (7.65)
TH(VVe -3 —Vug-17) =0, onTL forallj=1,... ki, '
TV — ) =0, on SI forallj ="k +1,... ki + ks,
THVV. v =V -v7) =0, onSI forallj=k +1,...,k + ko,
in the sense thatVee’He,Vg—erﬁg, and
VV. - Vwdz = —L.(w) for all w € H.. (7.66)

O\I'.

Proof. In view of (7.17), the continuity of the linear operator L., and Proposition 7.2.2, we can
easily verify that J. is continuous and coercive on the set vg + 7?[5 ={weH: :w—up € 7?[5},
which is closed and convex. Moreover, J. is convex. Therefore, the infimum in (7.63) is
achieved by some V., which weakly solves (7.65) in the sense of (7.66). If V. 1,V 2 € vo + H.
are weak solutions of (7.65), then V.1 — V.2 € H. and

/ (VVeq —VV.s)-Vwdr =0 forall w € He. (7.67)
O\I'.

Testing (7.67) with w = V, 1=V 2 we obtain V(V 1 —V. 2) = 0 and hence, by Proposition 7.2.2,
we conclude that V. 1 = Ve o. ]

For every ¢ € (0,1], let J. and V. be as (7.17) and Proposition 7.3.2, respectively. We
consider the quantity & := J-(V:) as in (7.19). & plays a significant role in the asymptotic
expansion of the eigenvalue variation . ,, — Ao.n,, as the poles al move towards the collision
at 0.
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To derive a first upper and lower bound for &., we consider, for every r > 0, the radial
cut-off function 7, € C2°(R?) defined as

nr(z) =1 (x> (7.68)

”
with 7 as in (7.29).

Proposition 7.3.3. Let m € N be as in Proposition 7.2.6 for v = vy, if k is odd, or as
in Proposition 7.2.7, if k is even. Then there exists a constant Cy > 0 such that, for all
e € (0,1],
Cre™, if k is odd,
E < @, if k is even and m = 0, (7.69)
Cpe?™, if k is even and m > 0.

Moreover, for every p € (1,2) there exists Co = Ca(p) > 0 such that

Oy ™ ifk s odd,
&> q—C 6%, if k is even and m = 0, (7.70)

2m—2+2 . .
—Cye™™ +P, if k is even and m > 0.

In particular, & — 0 as € — 0.

Proof. If k is odd, let n. € C°(R?) be a cut-off function as in (7.68) with r = . From (7.16),
(7.17), (7.63), (7.19), and (7.53) it follows that

k1+k2
1
V) S L) < 5 [ IVmao)Pds+2 Y [ Vel ool S
O\I'e j=1 S?
k1+k2
< / |V |? da —|—/ |V |?vd dx + 2 Z / |Vuol |vo| dS < Cre™
(N D2e (0))\T'< QN D2 (0) =1 78

for some constant C'; > 0 independent of €. If k is even and m € N\ {0}, (7.69) can be proved
arguing in a similar way and using (7.60) instead of (7.53).

If k is even and m = 0, for every ¢ € (0, 1] we consider the cut-off function w. € W1 (R?)
defined in (7.45). We have 0 < w, < 1 and, thanks to (7.16), (7.17), (7.63), (7.19), and (7.60)
with m =0,

k1+k2

1
(V) < Twan) < 5 [ V@eo)Pdr+2 Y- [ 19wl fuol dS
Q\T'e =1 752
k1+ko 1
g/ |Vv0|2dx+/ Veel2dds+2 3 / Voo| [vo| dS < C) ——
(QND_=(0)\T- QnD_.(0) = s | log €|

for some constant C; > 0 independent of e. Estimate (7.69) is thereby proved.
To prove (7.70), we observe that

IVal3,, = IVEll7,, = 26 — 2Le(Vz) < 2E- + 2| L (V)

1
2 2
< 260+ 2| Lellagg 1Vellg, < 262 +2 | Lellfs + 5 IVell
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and hence )
E+ |1 Lellgy: > 1 IVeli3, >0, (7.71)

which, together with (7.62), implies (7.70). O
Proposition 7.3.4. We have V. — 0 as ¢ — 0 strongly in H.

Proof. From Proposition 7.3.3 we have lim,_,g+ & = 0, whereas Proposition 7.3.1 implies that
lim, g+ || Le| s = 0. The conclusion then follows from (7.71). O

Proposition 7.3.5. We have . = o <||V5HHS) ase— 0T,

Proof. Proceeding similarly to the previous proof, we have

IV,
&| < — T [ Lellgg: Vel

and we can conclude thanks to (7.62) and Proposition 7.3.4. O

Proposition 7.3.6. We have
/ VZidr =o(|Vz]3,.) ase— 0%
Q £

Proof. Let us assume by contradiction that there exist a positive constant C' > 0 and a
sequence {ey fnen C (0, 1) such that lim, o €, = 0 and

/ V2 dx > c/ |VV.,|>dx  for all n € N. (7.72)
Q ) O\le,,

Ven
- HVSnHL2(Q)
{Wh}nen is bounded in H; thanks to (7.72). It follows that there exists W € H; such that
W, — W weakly in H; as n — oo, up to a subsequence. Since W,, € H., for every n, from
Proposition 7.2.3 we deduce that W € Hy, while Remark 7.2.1 ensures that

For every n € N, we define W), : . Then [[Wh||2(q) = 1 for every n € N and

[WllL2@@) = 1. (7.73)

Since W,, — HVgnHZQl(Q)vo € H.,, we have T/ (W,,) =0 on T forall j = 1,..., ki, see (7.64). By

continuity of the trace operator (7.4), we deduce that 77 (W) = 0 on Fé forall j =1,..., k1,
hence W € 7—~[0.

Let w € ?-l070, where 7:20,0 is defined in Lemma 7.2.4. For n sufficiently large, w € ’ﬁan and
L., (w) = 0, hence we can test (7.66) with w, thus obtaining

VW, - Vwdx = / VW, -Vwdzr = — L, (w) = 0.

O\I'1 O\Te,,

Letting n — oo in the above identity, we obtain fQ\Fo VW -Vwdx =0 for all w € 7‘~l0,0 and
hence, by the density of 7710,0 in H, established in Lemma 7.2.4,

VW -Vwdz =0 for all w € Ho. (7.74)
Q\Io

Choosing w = W in (7.74), we conclude that W = 0, thus contradicting (7.73). O
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7.4 Asymptotic expansion of the eigenvalue variation

For every ¢ € [0, 1], we consider the bilinear form ¢ : H. x H. — R defined as

qe (w1, we) = Vuw; - Vws dx, (7.75)
O\T':

where H. is as in (7.5). To simplify notation, we denote by g. both the bilinear form defined
above and the associated quadratic form

g (w) :/ Vwl2de = |lwl?,, we .
O\T'.

The following preliminary result can be obtained in a standard way from the compactness
properties pointed out in Remark 7.2.1 and abstract spectral theory, see for example [84,
Theorems 6.16 and 6.21, Proposition 8.20].

Proposition 7.4.1. Let ¢ € [0,1] and F : H. — He be the linear operator defined as
q=(Fe(w), w2) = (w17w2)L2(Q) . (7.76)
Then

(i) F- is symmetric, non-negative and compact; in particular O belongs to its spectrum

o(Fe)-
(i1) o(Fe) \ {0} = {Nn,a}nEN\{O}: where fine = 1/Acn for every n € N\ {0}.

(iii) For every p € R and w € He,

Fofw) - pw)

(dist(u, o(F2)))* < ’ ge(w)

Letting ng € N\ {0}, vg and A\g = Ao, be as in Section 7.3, to prove an asymptotic
expansion of the eigenvalue variation we further assume that

Ao is simple as an eigenvalue of (1.10), (7.77)

and, consequently, as an eigenvalue of (7.14). Therefore, the continuity result of [97, Theorem
1.2], see (1.12), implies that also A.,, is simple for e sufficiently small. From now on, we

denote
Ae = Aeng-

For ¢ small, let v, € H. be the unique eigenfunction of (7.10) associated to the eigenvalue
Ae = e no satisfying

/Qvg dr =1 and /stvo dzx > 0. (7.78)
We denote as Il the projection onto the one-dimensional space spanned by v, i.e.
I : L*(Q) — H., (7.79)
w — (w, 'UE)LQ(Q) Ve.
Theorem 7.1.1 is contained in the following result, the proof of which is inspired by [3,

Appendix A].
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Theorem 7.4.2. Under assumption (7.77), the following asymptotic expansion holds:

Ae — Ao = 2E — 2L (vo) + o(Le(v0)) + o(||V[3,.) ase— 0T, (7.80)
where V. is as Proposition 7.5.2. Furthermore,
lvo — Ve = Te(vo — Ve)llaw. = o (IIVelle.)  ase — 0, (7.81)
o — He(wo — Vo)llzqay = o (IVellpe,) s = — 07, (7.82)
e (vo — Vo)l 72gy = 1+ o ([Vellse)  as e — 07, (7.83)

Proof. Let 1. := vo—V.. We recall that we are assuming that vy is real-valued and ||vg| 2(Q) =
1. From (7.65) and (7.14) it follows that 1. € H. is a weak solution of the problem

— At = Agug, in Q\ I,

e =0, on 09,

T (1) =0, onTd forall j=1,... ki,

T/ (Vipe -17) =0, onTiforall j=1,... k,

77 () = 0, on S forall j =ky +1,...,k + ko,
Ti(Vip - 19) =0, on S forall j =k +1,....k + ko,

in the sense that, letting ¢. be as in (7.75),
qe (Y=, w) = Ao (vo, w)Lg(Q) for all w € H.. (7.84)

Let v. be an eigenfunction of (7.10) associated to A. chosen as in (7.78). Let II. be the
projection operator onto the one-dimensional space spanned by v, defined in (7.79). Moreover,
we define

. IL (v )

Ve i = —— . (7.85)
: ||Hs(w€)HL2(Q)
From (7.84) we deduce that
qE(%, w) - Xo (7/167 w)LQ(Q) =X (‘/g, UJ)LQ(Q) for all w € 7‘75. (786)
Choosing w = ¥, in (7.86), by (7.47) and (7.85) we obtain
(Ae = A0) (Vs 0e) p2(0) = Ao (Ves v0) p2(q) + Ao (Ve, De = v0) 2y - (7.87)
We claim that
Xo / Vovp de = 26 — 2L (v). (7.88)
Q
Indeed, an integration by parts yields
Vg - VVodx — Ao / vo Ve dx (7.89)
Q\I'. Q
k]‘ . . . . . .
=3 [, (= 0LV ) 47 (Vo (T 4)) diS
7j=1 0
k1+ko ) ] ) )
> /sj (— vy (Ve) Voo - 7 + 4 (V) Vg - VJ) ds
j=1 /8¢
k1+ko k1+k2

= -2 2:1 /Sj fyi(Vg)Vvo 7 dS +2 z:l /Sj voVug - 7 dS,
j= £ j= £
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thanks to (7.65). Testing (7.84) with V. — vy we obtain
[ 90 =) = =20 [ (Ve = vo)ds
O\I'e Q

and hence, in view of (7.51),

1
V‘/;-Vvod:v:§/

A
\V%]de—l——o/ Vs da. (7.90)
Q\I'- 2 Ja

O\l'.
Combining (7.16), (7.17), (7.19), (7.89) and (7.90), we derive (7.88).
From (7.87) and (7.88) we deduce that, for all € € (0, 1),
()\5 - )\0) (/lzz)E) @E)LQ(Q) - 285 - 2L5(’UO) + AO (‘/5, /05 - UO)LQ(Q) . (7.91)

Now we study the asymptotics, as € — 07, of each term in (7.91). For the sake of clarity, we
divide the rest of the proof into several steps.

Step 1. We claim that
e = dol =0 (|IVllp,,) ase— 0. (7.92)

Letting pg := )\al and pe := A\Z 1, since )\g is simple and A. — Ag by (1.12), we have

. g ‘FE e) € 1/2
e — Aol = Adole — po| < 202 dist (o, o(F2)) < 202 <q ( (;i(ng)uw )) . (7.93)

where the last inequality is justified by Proposition 7.4.1. Since ||vo|| r2() = 1, Proposition
7.3.4 and the Cauchy-Schwarz inequality imply that

g () = Ao +/ YV de — 2/ VV. - Vo dae = Ao + o(1). (7.94)
O\I'e O\Te

Furthermore, in view of (7.76) and (7.84) tested with F. () — pote,

QE(-FE(QJZ)E) - ,LLOMJS) = - (Vtc‘a]:a(d)s) - H0¢5)L2(Q) + (UOa]:s(T/)e) - M(ﬂﬁs)p(g)
- qg(ﬂowaafa(wa) - H0¢a) = - (Vaafa(wa) - H0¢8)L2(Q) .

Hence, by Proposition 7.2.2, Proposition 7.3.6 and the Cauchy-Schwarz inequality we conclude
that

(a:(Fe(te) = pov)) * = 0 (IVelly,, ) as € — 0%, (7.95)

Claim (7.92) is proved by combining (7.93), (7.94), and (7.95).
Step 2. We claim that

Ge (Ve — TLtp) = o ||Vell3,) ase— 0. (7.96)

Let
Xe := @ba — Hé‘wé‘ and f;._- = fg(Xa‘) — HeXe- (797)

By definition we have N
Xe € No :={w € He: (w,ve)Lg(Q) =0}
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and, since v is an eigenfunction of (7.10), from (7.76) it follows that F.(w) € N, for all
w € N.. Hence the operator

F.:=F-

: N — N:
is well-defined. Furthermore, it is easy to verify that F. satisfies properties (i (i)-(iii) of Propo-
sition 7.4.1 and o(F;) = o(F:) \ {pe}. In partlcular there exists a constant K > 0, which
does not depends on &, such that (dist(sc, o (F- ))) > K. Then, by (7.97),

Qz-:(we - He¢e) = Q(Xs) < = ! (dlSt(Ms> (-f ))) Q€(X6)

e (Fe(Xe) — peXe)

= %%(fa)- (7'98)

1
K

To estimate g-(&;) we use (7.86) and (7.47) tested with &, thus obtaining

%(stfe) — A (Xsaga)L2(Q) = Ao (V—:vfe)L?(Q) + ()‘0 - >‘6) (1/16758)[/2(9) . (7‘99)

From (7.76) and (7.99) we deduce that

Qa(fa) = QE( (Xs)aé&) MEQE(XEafa) = _ME[QE(X»S,SE) - )\aqg(fa(x.s),fa)]
Ao (Ao —Ae)

/\ (Vsafe)LQ - (wsa&:)LZ
From the Cauchy-Schwarz inequality, Proposition 7.2.2, and (1.12) it follows that

(g (&) < € (IVell g2y + 1A = Mol 14l 20 (7.100)

for some constant C' > 0 which does not depend on . Furthermore, (7.86) tested with .,
(7.94), Proposition 7.2.2, and Proposition 7.3.4 yield

H%H%z’(g) —1=—(Ve,¥e) o) +0(1) = 0(1) ase— 0.

Then (7.96) follows from Proposition 7.3.6, (7.92), (7.98), and (7.100). Estimate (7.81) is
thereby proved.

Step 3. We claim that
lvo = el oy = 0 (IVella,) — as e — 0% (7.101)
By (7.85)

ye 1
||Hs¢s||L2(Q) HHH/}&”B(Q)

Furthermore, from the definition of 1., Proposition 7.3.6, Proposition 7.2.2 and (7.96) it
follows that

(( MIetbe [ 120y — 1)vo +vo — Hawe) . (7.102)

Vo — Vg = Vg —

00 = Tetell 20y < llvo = ell oy + 10e = Metrell ooy = 0 ([IVelly,) @ € = 0%, (7.103)
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thus proving (7.82). Since [[vol|;2(q) = 1, (7.103) and the Cauchy-Schwarz inequality imply
that

HstsH%Q(Q) = [lvo — HawaH%Q(Q) + HUUH%2(Q) — 2 (vo — Hete, UO)LQ(Q)
=1+0([Velly,) (7:104)

as € — 07, thus proving estimate (7.83). Combining (7.102), (7.103) and (7.104) we obtain
(7.101).

Step 4. We claim that
(v, 0) 2oy = 1+ 0 ([Velly, ) as e — 0% (7.105)
Indeed, by (7.85) we have

(e = Metpe, Tethe) 12 () + ||H€¢€H%2(Q)
IMete [l 120 '
Hence claim (7.105) follows from (7.96) and (7.104).
Putting together Proposition 7.3.6, (7.88), (7.91), (7.101), and (7.105), we finally obtain

A= Ro = (1+ 0 (IVelln.)) (26 = 2Le(wo) + (VeI
=2& —2L.(vo) + o(||V:|l3,.) ase— 0T,

(¢sa @s)p(g) =

thus proving (7.80). O

7.5 Blow-up Analysis for k£ odd

In this section we assume that k, and consequently ki, are odd and we perform a blow-up
analysis for the solution V. of problem (7.65). In order to characterize the functional space
containing the limit profile, we first need a Hardy-type inequality, for the validity of which
the assumption that k is odd is crucial.

7.5.1 A Hardy type inequality for functions jumping on an odd number of
lines.

Let X and # be the functional spaces defined in (7.24) and (7.25), respectively. To prove
a Hardy-type inequality in R? \ D for functions in X, we first need the following Hardy
inequality on annuli for functions jumping on an odd number of lines. For every r > 0, we

define
X, :={w e HY((D2r \ B;)\To) : T/ (w) =0 on T} for all j =1,..., k1 }.

Lemma 7.5.1. Let k and ki be odd. There exists a constant Cy > 0 such that, for every
r>0and w € &,

r_2/ w? da < CH/ |Vwl|? de. (7.106)
D27'\Br (D27“\Br)\r0
and
w2
/ — dx < CH/ \Vw|? d. (7.107)
D2 \B || (D2r\Br)\I'o
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Proof. Inequality (7.107) is a direct consequence of (7.106).
Let us first prove (7.106) for r = 1. We argue by contradiction and assume that there
exists a sequence {wy, nen C X7 such that, for all n € N,

1
/ w?dr =1 and |Vw,|*dz < —. (7.108)
Dy\Dy (D2\D1)\I'o) n

Hence {wn}neN is bounded in X1 and, up to a subsequence, w, — w weakly in X1 for some
w € X;. From (7.108) and weak lower semi-continuity of the L?-norm, we have Vw = 0
in (D2 \ Di) \ T'yp; furthermore, reasoning as in Remark 7.2.1, the natural embedding of
H'((Dy\ D1)\Ty)) into L?(D3\ D7) is compact, hence Wl £2(po\py) = 1. It follows that w is
constant on each connected component of (D2 \ D1) \T'g and w # 0. Since (D2 \ D1) \ I'g has
k1 connected components and k1 is odd, a contradiction arises from the condition 7 J(w) = 0,
which is satisfied on T} for all j = 1,..., k.

For every » > 0 and w € ??r, it is enough to write the proved inequality for the scaled
function w(rx) to obtain (7.106). O

We draw attention to the fact that the constant C'ry in Lemma 7.5.1 does not depend on
r. Hence, summing over annuli that fill R? \ D1, we obtain the following result.

Proposition 7.5.2. Let k and ky be odd. Let Cy > 0 be as in Lemma 7.5.1. Then, for every

w e X,
w?
/ — dx < CH/ Vw|? d. (7.109)
R2\D; || (R2\D1)\I'y
Furthermore, there exists a constant C'y; > 0 such that, for all w € 2?,

w? dr < C}I/ \Vwl|? d. (7.110)
R2\T,

Proof. If w € X, then w € X, for all 7 > 1. Hence, by (7.107),

/R?\Dl |$|2 Z/2h+1\D2h |‘/E|2
< CHZ/

Dy

|Vw|2dx:CH/ |Vwl|? d,

Dyp+1\Dyn)\lo (R2\D1)\T'1

thus proving (7.109).

By integrating the identity div(u?z) = 2uVu -z + 2u? on each subset of D; obtained by
cutting along the lines %7, j = 1..., k1 + ko, and using the Divergence Theorem, we can prove
that, for all w € /i’v,

w? de < w? dS + Vwl|? d.
Dy 0Dq Dl\Fl

Then, by continuity of the trace operator from H'((Dy\ D1)\T'g) into L?(0D1) and (7.109),
there exists a positive constant C' > 0 such that

/ wldz < C </ w? d + Vw|2dx> +/ V|2 dz
Dy D2\D; (D2\D1)\I'1 Di\I'1

2
<4C Y dz+ (C + 1)/ Vw|? de < (4CCH + C + 1)/ Vl? de,
Do\D; |Z | ‘ R2\I'y R2\TI'y

this proving (7.110). O
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From Proposition 7.5.2 it follows that

1/2
= Vuwl?d 7.111
[[wl| & </RQ\F1| w x) ( )

is a norm on X and X is a Hilbert space with respect to the corresponding scalar product.
Proposition 7.5.2 also ensures that the restriction operator

X — HY (D, \Ty) (7.112)

is continuous with respect to the norm defined in (7.111) for every p > 0. Hence, for every
p € [1,400), the trace operators

v X = LP(S]) and AL : X — LP(S)) (7.113)
are well-defined and continuous with respect to the norm || - || 7. In particular, since HC X,

[oERCT]
Lr(S) .
sup ————5—— < +oo forevery p € [1,4+00) and j = 1,..., k1 + ko. (7.114)

weH\{0} ||w||jg
Using (7.109), we prove now that functions in H can be approximated with functions with
compact support. To this aim, we define

H.:={w € H : there exists r > 0 such that w = 0 on R?\ B, }.
Proposition 7.5.3. H, is dense in H.

Proof. For every r > 1, let 1, be a cut-off function as in (7.68). If w € H, it is clear that

{nrw}y>1 C H¢; moreover, by (7.109) we have ﬁ € L*(R?\ D;) and hence

2

/ IV, |*w? dz < 16 w—zd:n—>0+ as r — oo.
Rz\Fl D2\ By ’x‘
This implies that V(n,w) — Vw in L2(R2 \ I';) and hence 7w — w in H. O

7.5.2 Limit profile for blown-up potentials

In this subsection, we introduce and characterize the function V appearing as limit profile in
a blow-up analysis for the potentials V..

Proposition 7.5.4. There exists a unique solution V € X to the minimization problem
(7.30). Furthermore, V satisfies

‘7_77\1]0671

. kitko o . (7.115)
/ VV - Vwdr = -2 Z /,V\IIO-VJ'yi(w)dS for all w € H.
R2\I'; = s
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Proof. Since V¥ € LP(S{) for all p € [1,2), by continuity of the trace operators in (7.113)
we have that the linear functional L defined in (7.27) is well-defined and continuous. Then
the convex functional J defined in (7.28) is continuous and coercive on the closed and convex
set nWo+H = {w € X : w—n¥, € H}. Therefore (7.30) admits a solution V, which satisfies
(7.115).

If V; and V, are solutions of (7.115), then we may take the difference between (7.115) for
Vi and (7.115) for Va, both tested with Vi — Vo € H, and conclude that V; = V5, thanks to

(7.109). Hence V is the unique solution to (7.115). O

7.5.3 An equivalent characterization of the energy functional

In this subsection, we obtain an equivalent characterization of the energy &. introduced in
(7.19), which will be used to improve (7.70) and obtain an optimal estimate for || in the
case k odd.

Proposition 7.5.5. Let 1. € C°(R?) be a cut-off function as in (7.68) with r = €. Then,
for every e € (0,1],

2
1 Joar. Vw - V(nevo) + Le(w) 1
E.=—= sup ( O\l € 3 € ) + 7/ |V(775@0)|2d$ + L.(vp). (7.116)
weH:\{0} Joyr. [Vw]? dz 2 Jor,

Proof. Since & is the infimum in (7.63) and ¢ — vy € 7-ng if and only if ¢ —n.vg € 7—~[€, we have

E = inf J.(w+nvp) = inf ( inf Jg(tw—i—nsvo)). (7.117)
weH. weH\{0} \ t€[0,400)

Moreover, by (7.17)

t2
To(tw + nevo) = = / Val? de + t (/ Y - V(nevo) do + La(w)>
2 Jo\r. O\l

1
+ 5 ’V(T]gvo)|2 d:L’—i-LE(’UQ).
O\TIo

Hence, for every w € H. \ {0},

1 (fQ\FE Vw - V(n-vo) do + Ls(w))2 1

inf J.(t =— - v 2 dx+Le(vo),
et s(twtnevo) = =3 T, V0P da +3 o |V (n-v0)|? da—+ L (vo)
which implies (7.116) in view of (7.117). O

Proposition 7.5.6. Let k and k1 be odd and m € N be as in Proposition 7.2.6 for v = vg.
Then
E=0(") ase—0T.

Proof. From Proposition 7.5.5 and the Cauchy-Schwarz inequality it follows that

2
1 Jo I. Vw - V(nevo) + Le(w) 1
(&l =5 sup ( ! STRER ) +3 IV (nev0)|? dz + | Le (vo)]
weHA\{0} Jovr, [Vw]? d O\l
L 2 3
< sup % + 7/ |V (nevo) | daz + | Le (vo)|. (7.118)
weH\{0} Jovr, [Vwl*dz 2 Jor,
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From (7.53) and (7.16) it follows that
/ IV (newvo) 2 da: < 2/ Ve [202 do + 2/ Vo2 dz = O(e™) ase— 07 (7.119)
Q\FO Dac DZE\FU

and
|Le(vo)| = O(e™) ase— 0T, (7.120)

By (7.16), the Holder inequality, and (7.53), for every p € (1,2) and p’ = p%l we have

: S (fog Vool (w) dS)
L. () . 5 Vool (w
sup Vol da < 4(ky + ko) sup Vol d (7.121)
weti o Jor. [Vl? weH:\{0} Jenr, [Vwl* dz
e 2/ I )17, s
et k) 32 ([ IVeoas) s
weH\{0} Jonr. [Vw]? da
2
= O(Em_2+%) kgﬁ” sup —H%F(M)HLP (55)
; ~ Jorr. [Vw|2dx”
j=1 weH\{0} JOT=
A change of variables and (7.114) yield
I ()l , I @)1 /
sup —LP(Z] <2 sup —5,,(53) = 0"y ase —0F,
weri\{oy Jonr. [Vul* do veti\{0} vl %
hence from (7.121) we deduce that
Lo(w)|?
sup % =0(E™) ase— 07, (7.122)
weH\{0} Jorr, [Vw]? dz
The conclusion follows by combining estimates (7.118), (7.119), (7.120), and (7.122). O

7.5.4 Blow-up analysis

Let k and k1 be odd and m € N be as in Proposition 7.2.6 for v = vy. For every € € (0, 1],
letting V. be as Proposition 7.3.2, we define

Vo(z):=e 2 Vi(ex) and Voo(x):=e 2vp(ex). (7.123)

Extending trivially ‘75 and 17075 in R2 \ Q, we have 175, ‘70,5 € X. Moreover

V.- Vor€H (7.124)
and, by (7.66) and Proposition 7.5.3,
k1+k2
/2 V.- Vwde = —2 Z / VW - 97 (w)dS  for all w e H. (7.125)
R2\T';

Let ¥ be as in (7.26). From (7.52) it follows that, for every j =1,..., k1 + ko,

VVore(z) -1V — V(x) -7 (7.126)

199



as € — 0T for every z € S{, with

VU(z) -1’ (7.127)
B2l 7! f(ad) cos (F(a? — ap)) if j=1,... ki,
=< B2z 2 7L f(al) cos (B(ad — ap)), ifxe (S, j=k +1,...,k + ko,

/
—B22|2 7 f(of 4+ 7) cos (B(ad + 7 —ap)), ifze(S]), j=k+1,... .k + ko,
where, for every j € k1,..., k1 + ko,
(1) :={ta? : t €[0,1]}, (S9)":= {ta’™ :t 0,1]}.
On the other hand, (7.53) implies that
VVoe(z)] < Clz|Z2™" in R?\ Iy. (7.128)
From (7.126) and (7.128) we deduce that, for every j =1,..., k1 + ko and p € [1,2),
V-7 € LP(S)) and VYV, -1/ = VU -1/ in LP(S7) ase — 0F. (7.129)
Furthermore, by (7.54) we know that
Voo — ¥o in HY(D,\ T) for all p > 0. (7.130)

Proposition 7.5.7. Let k and k1 be odd and m € N be as in Proposition 7.2.6 for v = vg.
For every e € (0,1], let V2 be as Proposition 7.3.2 and V. as in (7.123). Then

V. 5V strongly in X ase — 07, (7.131)

where V € X is the unique solution to the minimization problem (7.30) (and then to (7.115),
see Proposition 7.5.4).

Proof. Taking into account (7.53), (7.19), and (7.123), a change of variables, (7.114), the
Hoélder inequality, and Proposition 7.5.6 imply that

Y W —-m 2 —m
Ve = [, VPP de = 7 Vel = &7 (08 ~2L(12))

k1+ko ) k1+ko . o
<o +4e 3 [Vl (v)lds = 0()+0() 3 [ Jal# 1 (Vo) as
j=1 7" j=1 7*1

=0(1) +O()||V] 3, as e = 0%, (7.132)

Hence {175}56(071] is bounded in X. It follows that, for any sequence {e,}, such that &, — 0
as n — 0o, there exist a subsequence, still denoted by {e,},, and V € X such that \N/En -~V
weakly in X as n — oo. Therefore, from (7.125), (7.114), and (7.129) we deduce that V
solves the variational equation in (7.115). Furthermore, by (7.124) we have V. — nVp. € H,
hence (7.130) ensures that V satisfies the condition V —n¥y € H. By the uniqueness part of
Proposition 7.5.4 we conclude that V = V.

Since V — n¥g € H, we may test (7.115) with V — ¥, thus obtaining

k1+k2
vf/?dx:/ VV -V, dr — 2 /v\p N (V= nWg)dS.  (7.133
/Im\rl‘ | R2\T; (o) ; s 0 7+( n¥o) ( )
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On the other hand, testing (7.125) with ‘Zn — 171707571 € H we obtain

Joag, VVerP = [ VT V008, ) da
1 1

ki+ko N o ~
-2 Zl /S ; VWoen V7L (Ve = Vo, ) dS. (7.134)
iz

In view of the weak convergence V., — V in X, (7.130), (7.129), and the continuity of the
trace operators (7.113), the limit of the right hand side of (7.134) as n — oo is equal to the
right hand side of (7.133), thus proving that 17};“ — V strongly in X as n — oo by. Since V is
the unique solution of (7.115), (7.131) follows from the Urysohn Subsequence Principle. [

In view of the blow-up analysis performed above, we are in position to prove Theorem
7.1.2.

Proof of Theorem 7.1.2. From (7.17), (7.19), (7.123), and a change of variables it follows that

k1+k
1 1+k2

e‘mé}:—/ VV.[2dz + 2 /_V‘N/E-uj I (V) dS. 7.135
5 Rz\r1| \ ]; FAAC v (Ve) ( )

The convergences (7.131) and (7.129), together with the continuity of the trace operators in
(7.113), allow us to pass to the limit in the right hand side of (7.135), thus yielding

k1+ko
1 _ o ~
lim e "¢, — 7/2 YV Pdr+2 3 /J_ VU iyl (V)dS = J(V) =€ (7.136)
\I' j=1 751

e—0+ 2 Jr

and proving claim (i). Furthermore, by (7.123), a change of variable, (7.129), and (7.130), we
have

k1+ko o
e Le(vg) =2 ) /S ) VVore - V9, (Vo) dS (7.137)
7j=1 1

k1+k2 ‘
=2 Z /j V¥ - vy (Uo) dS + o(1) = L(¥p) +o(1) ase— 0.
7j=1 5

Claim (ii) follows from (7.20), (7.136), (7.137), and estimate (7.132), which in particular
ensures that HV;H?_[E =0(Em)ase — 0", O

7.5.5 Continuity of £ — L(¥,) with respect to rotations of poles

In this subsection we prove the continuity of & — L(W¥g) with respect to rotations of the
configuration of poles. We fix a configuration of poles {a’} as in (1.6). Then, for every

¢ € [-m,m), we define \If(()O, L(O(\Il((f))‘and £© as in (7.26), (7.27), and (7.31), respectively,
for a rotated configuration of poles {aé}, where a‘é are defined as in (1.6) with angles o/ + ¢
instead of o/, i.e.
aé = Re¢(d?),
being R¢ := Ry ¢ with Ry as in (7.42), see 7.5.
In the next theorem we prove that the function ¢ +— £() — L(O(\IJ(()O) is continuous.
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Figure 7.5: The rotated configuration {aé}.

Theorem 7.5.8. The function G : [—m,7) = R, G(¢) := £©) — L(O(\I/E)O) is continuous.

Proof. Through a rotation, the problem of continuity at any ¢ € [—m, 7) can be reduced to the
problem of continuity at ¢ = 0. Hence, it is enough to prove that lim¢_,0 G({) = £ — L(¥o).
We have
\I/((JO (rcost,rsint) = f(t — ()¢o(r cost,rsint),

where f is defined in (7.22) and
do(rcost,rsint) ;== Br2 sin (Bt — o)) -

With a slight abuse of notation, henceforth we denote by f also the function (r cost,rsint) —
f(t) defined on R?\ {0}.
A change of variables yields

£ — min{fg(w) cw € X and w — nf(dooRe¢) € 7—7},

where € C2°(R?) is a radial cut-off function as in (7.29) and

k1+k2
_ 1 2 G
Ie(w) = 2/Rzm Val? de + 2 ; /S{f(VqﬁgoRC)MC-y 7 (w) dS,

being M the matrix defined in (7.43). Moreover

k1+k2
LOwy =2 3" /Sj(quooRC)Mc-yj(qﬁooRg)dS.
j=1 81

Since, in a neighbourhood of 0,
[Vo(Re(x))| < Cla? ™ and  |¢o(Re())] < Cla| (7.138)
for some C' > 0 independent of {, from the Dominated Convergence Theorem we deduce that

lim L (T{%) = L(Wy). (7.139)
¢—0
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By Proposition 7.5.4, for every ( there exists a unique \7§ € X such that VC —nf(pooRe¢) € H
and £(©) = I;(V;); furthermore, V; satisfies

k1+k2 . ~
/R2\F VVe - Vwdr = -2 Z /Sj f(VoooRe)M¢ - viv (w)dS forallwe H. (7.140)
1 j=1 1

Choosing w = XN/C —nf(¢o o R¢) in (7.140) we obtain

Lo IVViPdo= [ VV-Vf(ooRo) do
R2\T'y R2\T'y

k1+k2 o
—2 Y} /Sj F(V o 0 ROMe - v (V) dS
j=1 1

k1+k2 o
22 /Sj F(Voo o R)Mc - V4% (f(go o Re))dS.  (7.141)
7=1 1

Using Young’s inequality, estimate (7.138), and the continuity of the trace operators (7.113),
from the above identity we deduce that

IVllz <C

for some C' > 0 independent of ¢. It follows that every sequence ¢, — 0 admits a subsequence
{Cn, e such that Ve, — W weakly in X' as ¢ — oo, for some W € X. On account of (7.138)
and (7.113), the Dominated Convergence Theorem yields

/Sj f(VéooRe,, )M, -Vj'yi(w) ds — /Sj Voo - ijyi(w) ds = /Sj V¥ - ijyi(w) ds
1 1 1

as £ — oo, for every j =1,...k; + ko and w € H. By choosing ¢ = Cn, in (7.140) and letting
¢ — oo we obtain that

k1+k2 ) ~
VW -Vwdr = -2 Z V-, (w)dS  for all w € H. (7.142)
R2\T, o s

Furthermore, since ‘74 —nf(dooR¢) € H, H is a closed subspace of X, and nf(pooR¢) = n¥q
as ( — 0 in X by the Dominated Convergence Theorem, we have

W —n¥, € H. (7.143)

From (7.142)-(7.143) and the uniqueness part of Proposition 7.5.4 we deduce that W = V.
Having uniquely identified the weak limit independently of the subsequence, by the Urysohn
subsequence principle we conclude that

Ve — V weakly in X as ¢ — 0. (7.144)

The weak convergence (7.144) allows us to pass to the limit as ¢ — 0 on the right hand side
of (7.141), thus proving that
k1+k2

lim vf/?dx:/ YV -V(nU)dr — 2 / VU, - i~y (V — Wy) dS
=0 R2\F1‘ d R2\Ty (n%o) ]z_:l s 0 'Y+( 0)

_ / VP da, (7.145)
R2\I'y
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the last equality being a consequence of (7.115) tested with w = V- nWo. From (7.145) it
follows that lim¢ 0 £©) = lim¢_o Io(V;) = J(V) = &, which, together with (7.139), yields
the conclusion. O

When ko = 0 and the poles {aj}j:L,_J€1 are on the tangents to nodal lines of vy (i.e. on
the nodal set of ¥g), we have ¥y = 0 on 5’{ for all j = 1,...,k1; on the other hand, if the
poles are on the bisectors between nodal lines, then VW - 2/ = 0 on S{ forall j=1,... k.
This leads to Proposition 7.1.3, which determines, in these particular cases, the sign of the
dominant term in the asymptotic expansion obtained in Theorem 7.1.2, and, consequently,
exploits the continuity result established in Theorem 7.5.8 to find configurations of poles for
which the eigenvalue variation is an infinitesimal of higher order.

Proof of Proposition 7.1.5. (i) If o/ € {ag + E%’r 0 =0,1,2,...,m — 1} for all j €
{1,...,k}, then Wo = 0on S’ for all j € {1,...,k1}, so that L(¥g) = 0 and nWo+H =
H. Tt follows that
E—L(Yy) =& =minJ. (7.146)
H
Furthermore, V¥, - 7 # 0 on S{ for all j € {1,...,k1}, see (7.127), hence L # 0 in
H. Fixing some w € H such that L(w) # 0, we have then .J(tw) = % Jrvry |Vw|? dx +
tL(w) < 0 for some small ¢, thus implying that & = minﬁJ < 0. Once we have
established that £ — L(V¥() = £ < 0, from the asymptotic expansion of Theorem 7.1.2-
(ii) we deduce that A; p, < Ao p, for sufficiently small € > 0.

(i) Ifad € {ao+(1+20) 7 : £=0,1,2,...,m—1} forall j € {1,...,k1}, then V¥4 =0on
S{ for all j € {1,...,k1}, see (7.127). It follows that L = 0, and hence J(w) = %HwH}

Since, in this case, ¥o # 0 on S{ for all j € {1,...,k1}, we have w # 0 for every
w € NPy + H. Therefore

1
£—-L(W)=&= min_J =5 min _[w|%>0. (7.147)
nVo+H wenPo+H

From the asymptotic expansion of Theorem 7.1.2-(ii) we finally deduce that Ac », > Ao,
for sufficiently small € > 0.

(iii) Let us fix a configuration {aj};?zl with k = k1 < m odd and of € {ap+ 22 : 0 < ( <
m — 1} for all j € {1,...,k1} as in (i). Then the rotated configuration {afr/m} is as in
(ii). By (i)-(ii) we have G(0) < 0 and G(;) > 0. Since G is continuous by Theorem
7.5.8, Bolzano’s Theorem ensures the existence of some (o € (0, 7-) such that G(¢o) = 0,
so that the angles {a/ + (p:j = 1,...,k} are as we are looking for. O

Remark 7.5.9. 7.6 and 7.7 provide an example that helps to better visualize the result in
7.1.3. In 7.6 we zoom in near a point (the origin) where the limit eigenfunction vy vanishes of
order 3/2, namely (7.21) holds with m = 3. We consider the case ap = 0. The function ¥, as
in (7.26) is the 3/2-homogeneous limit profile describing the local behavior of vg. In the image
on the left, the black lines are the nodal lines of vy, which are tangent to the nodal lines of ¥
(in green). The dotted lines denote the bisectors of the nodal lines of ¥y. In the image on the
right, we fix an admissible configuration of poles {a?};=1 23 with k = 3 and a; = 27(j — 1)/3
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Figure 7.6: Nodal set of ¥y and sign of &€ — L(¥q) (m =k = 3, ag = 0).
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Figure 7.7: A visualization of Proposition 2.3.

for j = 1,2,3. From 7.1.3 we know that, if all the poles lie on the nodal set of ¥y, then the
coefficient £ — L(Wy) of the leading term in the asymptotic expansion stated in 7.1.2 is strictly
negative. On the other hand, if all the poles lie on the bisectors of the nodal lines, then the
coefficient & — L(Wy) is strictly positive. In 7.7 on the left, in the first picture (red arrows) we
have our initial fixed configuration, which then provides a negative coefficient. In the second
picture (blue arrows) we consider a rotation about the origin by an angle 7/m = 7/3: the
rotated configuration ends up with all the poles lying on the bisectors, thus giving a positive
coefficient £ — L(¥y). Furthermore, the continuity result in 7.5.8 ensures the existence of
some (y € (0,7/3) such that, if we rotate the initial configuration by an angle (p, we find a
configuration of poles for which & — L(¥) = 0: this is represented in the third picture on the
left (yellow arrows). Finally, the right picture in 7.7 presents the behavior of the perturbed
eigenvalue in the three cases previously described. We point out that, when & — L(¥() = 0
(yellow graph), it is currently not known what is the vanishing order of A; », — Ao -
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7.5.6 Blow-up and convergence rate for eigenfunctions

From the blow-up analysis for the potential V; performed in Subsection 7.5.4 and the energy
estimate given in (7.81), we derive the following blow-up result for scaled eigenfunctions,
together with a sharp estimate for their rate of convergence in the H-norm.

Proposition 7.5.10. Under assumption (7.77), let k be odd and vy be an eigenfunction of
(7.14) associated to the eigenvalue Ao = Ao, with |[voll2(q) = 1. For e > 0 small, let
Ae = Aeny and v be an eigenfunction of (7.10) associated to \. and chosen as in (7.78). Let
m € N be given in Proposition 7.2.6 for v =vy. Then

e 2 v(ex) = Uo—V ase— 0 in HY(D,\Ty) for all p > 0, (7.148)
where W is defined in (7.26) and V is the unique solution to (7.115). Furthermore,

Tim &% o — volla, = V|- (7.149)

Proof. Using the same notation as in the proof of Theorem 7.4.2, let ¢, = vg — V., where V.
is defined as in Proposition 7.3.2. From (7.81) it follows that

ITee =3y, = o (IVel3,) ase— 0.

Therefore, defining

We(z) == e 2 (Itpe — ) (ez), =z € 1Q,
and extending trivially W in R?\ %Q, we have W, € H and, in view of Proposition 7.5.7,
Wl = eI — w3y, = =0 (IV2l3,) = V]IS 0(1) = 0(1)
as € — 07. By continuity of the restriction operator in (7.112) we deduce that
W.—=0 ase— 0" in H'(D,\T}) for all p > 0. (7.150)

Let us define
Us(2) =2 (Iype) (ex), x € LQ, (7.151)

and extend trivially Uz in R?\ Q. We have
U = %,s(x) - ‘75 + We,

where Vj - and V. are defined in (7.123). Combining (7.130), (7.131), and (7.150), we conclude
that
U.— U~V ase— 0" in H(D,\Ty) for all p > 0. (7.152)

From (7.82) it follows that
/ volletpe dr = 140 (||Vell3.) ase— 0T,
Q

and hence, for € > 0 small enough,

19,
—  vodxz > 0.
/Q ”Hawa”LQ(Q)
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Since v, is the unique eigenfunction of (7.10) associated to A. satisfying (7.78), we conclude

that necessarily
o t)e

ve= Ve (7.153)
[ TRTRF
The convergence stated in (7.148) follows from (7.153), (7.151), (7.152), and (7.83).
Moreover, (7.83) implies that
11— el r20)
e = el = o =2 et (7.154)

”Hawa”LQ(Q)
= |1 = |[TLetle | 2oy |lvellae. = o([IVellr.)  as e — 07,

whereas (7.81) yields that
ITetpe —voldy, = IVell3s, +IMetbe — e 3, —2(Ve, Hetpe —oe)ae. = [IVeld, +o(lIV2ll3,.) (7.155)
as ¢ — 07. Combining (7.154) and (7.155) we deduce that
lve —vollFy, = IVellF, +o(lIVel3,.) ase— 0% (7.156)
Letting V. be as in (7.123), from (7.156) and (7.131) we deduce that
e ve = wolly, = IVa1%(1 4 0(1)) = [V[%(1 +0(1)) as e — 07,
thus proving (7.149). O

Going back to the eigenfunctions of the original magnetic problem via the inverse of
transformation (7.9), we deduce Theorem 7.1.4 from Proposition 7.5.10.

Proof of Theorem 7.1.4. If ug is an eigenfunction of (1.10) associated to the eigenvalue g p,
such that [q |ug|*dz = 1, and wu. is the eigenfunction of (1.9) associated to A, . satisfying
(7.32), then v, := e""©=x, is an eigenfunction of (7.10) associated to Ang,e and vg := e~ oy,
is an eigenfunction of (7.14) associated to Ay, o such that condition (7.78) is satisfied. From
Proposition 7.5.10 it follows that v, satisfies (7.148) and (7.149), in which we replace v,
with e *®=u, and vg with e *®0ug to get exactly (7.33) and (7.34), taking into account that
O:(ez) =0y (z) forall z e R2\ {a/ : j =1,...,k}. O

7.6 The case of two poles

The purpose of this section is to prove Theorems 7.1.6 and 7.1.7. We consider the case k; = 0
and ko = 1, with the configuration of poles as in assumption (7.36), being r; € (0, R) and
e € (0,1]. For the sake of simplicity, let us denote

T:=T", 'y+::*y_1i_, y_ =~ and v:=v!'=(0,1),

see (7.4). We first consider a linear functional L. j o more general than the one introduced
in (7.16), defined for a generic domain A and with the limit eigenfunction vy replaced by
a generic function h; the corresponding minimal energy & j o thus generalizes the energy
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&. defined in (7.19). For every simply connected open bounded domain A C R? such that
Br C A and every h € H(A) N C*®(A), let

oh
Loppn:Hin =R, Lopa(w):=2 e Y (w) dS
5. Oz

and

1
Jenp: Hen = R, Jopa(w) = 3 Jas [Vw?da + L.y a(w),

where, for all € € (0, 1], S: is defined in (7.37) and the functional space H, 5 is the closure of
{w € HY(A\ S.) : w = 0 on a neighbourhood of 8/\}

with respect to the norm [|w|| g1\ g.)- Then the minimization problem
inf {Je,th(w) cw € Hepand w—h e ﬁa,l\} (7.157)

with 7?[57A = {w € H.p : T(w) =0on S.}, is uniquely achieved, as stated in the following
proposition. We omit the proof, being similar to the one of Proposition 7.3.2.

Proposition 7.6.1. The infimum in (7.157) is achieved by a unique V_ p n € He p. Further-
more, V., A weakly solves the problem

_A‘/s,h,/\ = 0, mn A \ SE,
V. =0, on OA,
&hA (7.158)
T(Vopa —h) =0, on Sg,
T (ng}};/\ - %) =0, onS.,
in the sense that V., A € Hep, Vepn —h € 7?[57,\, and
/ VVena - Vwdr = _Ls,h,A(w) for all w € 7?[5,/\' (7.159)
A\S:

For every A, h as above and ¢ € (0, 1], let

Eenh = JenA(Venn)- (7.160)
For every L > 0 and € > 0, let E.(L) be the ellipse defined as

1’2 (L‘2
E.(L) := o) eR? — 4+ 2 1%,
=(L) {(xl 2) L2 1 r2e2 Tz

We are going to compute & p,. g (1), where Py, is a homogeneous polynomial of degree m > 1.
We shall later apply such estimate with P, being the Taylor polynomial of ug centered at 0
of order m, with ug and m as in 7.1.2.

Proposition 7.6.2. Let m € N, m > 1, and let P, be a homogeneous polynomial of degree
m, i.e.

m
Pr(w1,m9) =Y L"), (7.161)
=0
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for some £y, 01, ..., € R. Then, for every L > 0, we have

m m d. 2
Lo WVenn e = wler)? (@Yl + &3 ) 4 oem)
EE(L)\SE j:1 j:1 -7
as € — 07, where

1 2w

cj = —/ (cosn)™ cos(jn)dn  for every j € N,
™ Jo
1 2

dj = —/ (cosn)™ Lsinnsin(jn)dy for every j € N\ {0}.
T™.Jo

Proof. We consider elliptic coordinates (£, 7) defined as

>0,n€|0,2m),
x9 = ery sinh(&) sin(n), §€20,n€0,2m)

{xl = ery cosh(§) cos(n),
see e.g. [3, Section 2.2]|. In this coordinates S; is described by the conditions
§=0, ne [0a277)a
whereas E. (L) is described by
§€ [0756)7 776 [0727T)7

where & is such that riesinh(§.) = L, that is

L L L2
¢. = arcsinh (r) = log ( +4/1+ 22) :
1€ T1€ T1€

In particular OF. (L) is described by the conditions

§=&, nel02m).

The map
F.:[0,&) x [0,27) — E-(L), F.(&n) = (x1,x2),

defined by (7.165), has a Jacobian matrix of the form

Jr(&,n) = erl\/coshzf— cos?n O(&,n)

(7.162)

(7.163)

(7.164)

(7.165)

(7.166)

for some orthogonal matrix O(¢,n), and det Jx, (€,1) = e2r?(cosh? £ —cos? 7). In particular F.
is a conform mapping and Jg_ (&, 7n) is an invertible matrix if (£,n) # (0,0) and (&, n) # (0, 7).

Let 17€7pm,L == V. pE.(L) © Fey where V. p g (1) is the solution of (7.158) in the case
A = E.(L) and h = P,,. We observe that, since F.(¢,n) € R if n € (0,7) and F.(§,n) € R2

if n € (m,2m),

Y+ (Ve,p, o (1)) (€71 CO8 7, 0),  if 1 € (0,7),

Ve b, (0,7) = { .
: Y- (Ve p.p.()) (€71 cO81,0), if n € (7, 2m).
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Furthermore,

IV,
~ er1(sinn) v4 <E’P"“ES(L)) (ericosn,0), if ne (0,7),
OVe, P L (0,1) = o2
o€ ’ Ve P, E.(L)

0
ery(sinn) y— <85L‘2) (ericosn,0), if ne (m,2m).

We also note that, for every n € [0, 27),
oP,,

Pn(Fe(0,m)) = (er1)™lo(cosn)™  and T@(Fs(om)) = li(er)™ H(cos )™
Therefore, ‘75 P, L SOlves the problem

—mz oL =0, in (0,&.) x (0,27),

gpm r(&,m) =0, for all n € [0, 27),

8 ,Pm,L (5 O) 5 Pm, (5’ 27T)7 for all 5 € (O>§£))
V. Pnn(0,m) + V. Po,1(0,2m —n) = 20o(er1)™(cosn)™, for all n € (0,7), (7.167)
OV..p Vep, 1L

m, 0 _ balic2) 0.2m —
o€ (0,7) D€ (0,2m —n)

= 201 (er1)™(cos )™ L siny, for all n € (0, 7).

Let us consider the Fourier expansion of (srl)_mffe, P, With respect to the variable 7

(Wll) Ve P L(§:1) aOE +Z(aga cos(jn) + bj=(&) sin(j) ),
where

aje(§) = (874173/ Ve,p,,.L(€,m) cos(jn) dn  for all j € N,

b1c(€) 1= U [T e msimGn dn orall j € N\ {0}

Since cos(2m — n) = cosn for any n € (0,7), from (7.167) it follows that
ape(0) +2 Z a;j<(0)cos(jn) = 20p(cosn)™  for all n € (0,27),

hence {a;.(0)};jen are the Fourier coefficients of £y(cosn)™ with respect to the orthonormal
basis {\/12*’ \lf cos(jm), \Fsm(]n)}jeN\{o} of L?(0,2m), i.e

(Lj,g((]) = E()Cj for all j € N,
with ¢; as in (7.163). In particular

a;j(0) =Lloc; =0 if j > m. (7.168)

210



On the other hand, the last condition in (7.167) reads as
Z Ysin(jn) = £1(cosn)™ Lsing for all 5 € (0,2m).

It follows that b’ (0) are independent of & and
b (0) = £1d; for all j € N\ {0},
with d; as in (7.164); hence

From the equation in (7.167) it follows that

1 .

ERCATIEE

= D) S ((a09) = P60 coslim) + (Hl€) = 52,(6)) sin(in).
j=1
hence
ao 5(0) 6000
aos(§) = : — ¢+ ap(0) = — : £+ Lloco for all € € (0,&.), (7.170)
oJé ot .
aj<(§) = loc;j (1 — e + T e—2j§e> for all £ € (0,&) and j € N\ {0},
lrd J€ -3¢
b],&‘(g) - 1j ’ (1 +€€2jfa - 1 —}—66—2]'{5) for all € S (0755) andj S N\ {0}7

with & as in (7.166). Then, by (7.168) and (7.169), a;. = bj . = 0 for all j > m, so that

1 CLOE

W er, (57

(67“1

Ly Z (a5(€) cos(jn) + by (¢) sin(jn) )
By a change of variables and the Parseval identity,

2 Rl 2

Lo WVanmwlde= [T [TV, uf? dn g (7471)
E-(L)\Se 0
(er 2m2 / (€)? d¢
IENEEDS /0 (1€, () + Pl () + 18, ()P + lase(©)]?) de.
j=1

Let us compute each integral in the above formula. In view of (7.170) and (7.166), it is clear

that c 2,2 2.2
S 2 00 0€0 1 +
dn = = _ )
| taoetodn = & |10g6|+0(10g€|2) as € 0

211



Furthermore, for every j € N\ {0},

&e &e 635 e—j§ ?
) ) 2 _ p2 32 —
j /0 ()] dE = £1d5 /0 (1 e 1reme) &

0242 & . 22d? & . 2022
= %/ et de + 71_; 5 / e 2 de — _21. i 57
(]_—|—e]£s) 0 (1—|—@ ]fe) 0 24 ¢ ]58-’-6]55
2 72 2 72
2] (1 + 62]fs>2 (1 + 6_2]55)2 2+ 6_2J§e + €2J§5
3d?
:1—.](14—0(1)) ase — 0"

25

and similarly

& & j€ —j€ 2 0242
V(&) de = 1242 “ 4 dé = (14 0(1)) ase — 0F.
0 e 1% 0

1+ €2j§5 1+ 672.765

Finally, for every j € N\ {0},

e 0o [E 3 i€ \? ) 9j
/0 ‘aj,a(g)’ df =J eocj/o 1— 62j§s - 1 — e—25& df = €06j5(1 + 0(1)>7

5 [E ) 0o (& e e 6 \? .

J /0 laje(&)|"d§ = j focj/o 1 oot + ey d¢ = EOCJE(I +0(1)),
as € = 07, as shown in the proof of [3, Lemma 2.3]. Replacing the above estimates in (7.171)
we obtain (7.162). O

Proposition 7.6.3. Let m € N\ {0}. For every j € N\ {0}, let ¢; and d; be as in (7.163)
and (7.164), respectively. Then

2
ks m [(m—1
jlel? = —— ( e ) , (7.172)
21l = g o
m g 1 (m-1\
, _
Zg\dﬂ _m4m1<Lm2_1J> ) (7.173)
=

Proof. For the proof of (7.172) we refer to [4, Proposition A.3]. To prove (7.173), we observe
that, in view of (7.163),

€o

5 + > cjcos(jn) for all n € [0, 2n].

j=1

(cosn)™ =

Deriving the previous identity with respect to 1, we obtain

m

1 m
m—1 .. . . .
cos 1 sinn = — E jeisin(gn) = E d;sin(jn) for all n € [0, 2],
( ) m & jsin(jn) = J

in view of (7.164). It follows that d; = %cj for all j = 1,...,m, hence (7.173) follows from
(7.172). O
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Remark 7.6.4. Let m € N, m > 1, and let P,, be a homogeneous polynomial of degree m
as in (7.161). Let A C R? be a simply connected open bounded domain such that B C A.

(i) If the coefficient £y in (7.161) is zero, then P, = 0 on S; for all ¢ € (0,1]. Hence
VepnA € Hen and, in view of (7.159), fA\Se IVV.p,al?de = —Lc p, A(Vep,, A), SO
that

Ee P A = IVVe p,al* dz.

2 A\S.

(ii) If the coefficient ¢; in (7.161) is zero, then %% = 0 on S: for all ¢ € (0,1]. Hence
L. p, »=0and

1
55,Pm,A = 2/{\\5 ’V‘/vs’pm71\|2dl'.

Proposition 7.6.5. Let Q C R? be a simply connected open bounded domain with 0 € Br C
Q. For every e € (0,1), let Sz be defined in (7.37). Let P,, be a homogeneous polynomial
of degree m as in (7.161) and & p,, o be defined in (7.160) with A = Q and h = P,,. Then,
letting £y and ¢1 be as in (7.161), we have

(i) if o =0, then

2

T 1 m—1

Ee,Pp.) = —Er%mﬁsmm (Lm_1J> +0(e?™) ase—0F;
7

(ii) iof 6 =0, then

2

s m m—1

Ee,Pp2 = §T%m£(2)52m g1 <Lm_1J> +0(e¥™) ase— 0T,
2

Proof. The set 2 is open and 0 € €2, hence there exist L, Ly > 0 such that, for every ¢ € (0, 1],
S. C E.(L1) C Q C E.(Ls) (e.g. we can choose any 0 < L1 < /R2 —r? and Ly = diam()).
From (7.157), (7.160), and the space inclusions H. g (1,) C Heo C He B (Lo)> ﬁe,EE(Ll) -
Heq C He p.(1,) Obtained by trivial extension, we deduce that, for every € € (0,1],

Ee P Be(L2) < Ee.Pn < Ecp B (Ly)- (7.174)
If 4y = 0, from Remark 7.6.4, (7.162), and (7.173) it follows that, for i = 1,2,
1
& N == VYV, NEX
P B T TG fo g IVVe P (L)
m 2
_ T 2m p2 dj|2> 2my _ T om )2 _2m 1 m—1 2m
— 2(5r1) El(; r +o(e”™) = o (e AT\ | m=1 | +o(e”™)

as € — 07, thus proving (i) in view of (7.174).
On the other hand, if ¢; = 0, then Remark 7.6.4, (7.162), and (7.172) imply that, for
i=1,2,
1 2
Ee P Bo(L) = 5 /EE(Li)\SE YV by (L) d

2
s L 71' m m—1
= 2(5r1)2m€g<23|cj]2) + O(EQm) = Erfm€3£2m4m_l (Lm21J> + 0(62’")
j=1
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as € — 07, thus proving (ii) in view of (7.174). O

Let ug be as in (7.35) with uo(0) = 0 and m, 3, ap be as in (7.38). Let T, be the Taylor
polynomial of ug centered at 0 of order m written in (7.39). In particular T, is of the form
(7.161) with

1 0™y
G = i aigg -

If g = % for some j € {0,1,...,2m — 1}, then, by Remark 7.1.5,

lo = Tpn(1,0) =0

and
0 = C{;Z’”(LO) = VTn(1,0) - (0,1) = mBcos(jm) = (=1)'mp.
2

Hence, by Proposition 7.6.5, in this case we have

2 — 1\
& = _ I pamg2m mf <m ) +o0(e®™) ase— 0T (7.175)

On the other hand, if ag = 5~ + % for some j € {0,1,...,2m — 1}, then, by Remark 7.1.5,

lo = Tpn(1,0) = —Bsin ( + jm) = (—1)7+13

and T
0= a—x;n(l,O) =mfcos (5 + jm) = 0.
In this case, Proposition 7.6.5 then provides the expansion
T mp% (m—1 2
Ee T 0 = 57"%’"52”‘47”_1 (WTJ) +0(e®™) ase— 0T, (7.176)

Let g := ug — T),. Since ug is smooth and T}, is its Taylor polynomial at 0 of order m, then
g(x) = O(|z|™") and |Vg(z)| = O(|z|™) asz — 0. (7.177)

Proposition 7.6.6. Let m and o be as in (7.38). For everye € (0,1], let Vo1, 0 and E: 1, 0
be as in (7.157) and (7.160), with A = Q and h =T, and let Vo = Vo0 and E = E. 4.0
be as in (7.18) and (7.19), respectively. Then

Ve — ‘é’Tm’QH?HE = O0(e*™ ) = 0(e*™)  ase— 0T (7.178)

and, if either ag = % or ag = 5~ + % for some j € {0,1,...,2m — 1},
Vel = O(e™) ase— 0T, (7.179)
E—Emn0= 0(£2m) ase — 0. (7.180)
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Proof. Let W, := V. — V.1, 0. Then W, satisfies (7.159) with h := g. Let 1. be as in (7.68).
Testing (7.159) with w = W, — n.g, by Young’s Inequality and (7.3) we obtain

a a
W7, = nVW.Vgdot | gVWe Vi do—2 99+ ds+2 [ 99 4ds
He a\S.

ds) -

for some positive constant C' > 0. Hence (7.178) follows from (7.68) and (7.177).
We have

39

1
< 2\|Ws|3{5+0</ 77?|V9|2dx+/92|vﬁs|2dx+
Q Q s

g
—1lg|dS
%Jm ,

2 2
(VI3 = Vemalls, )

Jug T,
" 2/55 (axﬂ*(VE) - 3332%(%,%9)) ds. (7.181)

N

55 - 56,Tm,Q =

By Remark 7.6.4 and Proposition 7.6.5 we have that, if either ag = % or ag = 5 + % for

some j € {0,1,...,2m — 1}, then V.1, ollu. = /2|&1..0] = O(e™) as e — 0F. Then,
(7.179) follows from (7.178). Using again (7.178) we conclude that

IVl = IVernali, = (Ve = Vo0 Ve + Ve, o)n, = o(e¥™)  ase— 0.  (7.182)

Furthermore, fixing some p > 2 and letting p’ =
continuity of the trace operators (7.3) imply that

OUO 8Tm
/Ss <8x2’Y+(Va) - ax2’7+(‘/§-:,Tm,Q)> dS‘

/Ss <3657+(V) + aaT(’H(V) “Y+(Vz-:,Tm,Q))> dS‘
e
et oo ()

< const (&7 F Vil + <" Wl )

]%, Holder’s inequality, (7.177), and the

(Ve)

‘IW+W@)IdS

= O<€2m+i) + O(EQm_%jLﬁ) =o0(e*™) ase— 0T, (7.183)

where we used estimates (7.179) and (7.178). Combining (7.181), (7.182), and (7.183) we
finally obtain (7.180). O

Proof of Theorems 7.1.6 and 7.1.77. Since we are considering only two opposite poles on

the same line, we have vo = e 0y = ug. Let m € N \ {0} and ag € [0, 7-) be as in (7.38).
If g = ] or ap = 5 + ” for some j € {0,1,. — 1}, then, by (7.38) (see Remark

7.1.5), up(z ) =Tn(z )—|— O(|$|m+1) and gzg (x) = 867;’; (w) + O(|z|™) as x — 0, so that

T,

LE(UO):2 5. Oz

— T, dS + 0¥ = 0(e?™) ase — 0 (7.184)
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since, in this case, either T}, | s =0or %2”; 0

From Theorem 7.1.1, (7.184), (7.179), and (7.180), it follows that
Aesno—Ao,no = 26:—2Lc(ug)+0(Le(uo))+o(|| Ve ll3,.) = 2E-1,,.0+0(e*™) ase— 0F. (7.185)

Theorem 7.1.6 follows from (7.185) and (7.175), while Theorem 7.1.7 is a consequence of
(7.185) and (7.176). O

Remark 7.6.7. The case m = 0 has been omitted in the present section as, for ug(0) # 0
the sharp expansion is already contained in [5] even without symmetry assumptions on the
domain; however, the above argument could also apply in such a case, providing an alternative
proof of the result of [5].

7.7 Dealing with more general configurations of poles

In this section, we give a hint on how our approach could be extended to treat other possible
configurations of poles, which are not covered in detail for the sake of simplicity of exposition.
By 7.1.1, the quantity that sharply measures the eigenvalue variation is & — L.(vg), where &
is as in (7.19), L. as in (7.16) and vg is the limit eigenfunction after a gauge transformation,
thus solving (7.14). As explained in the introduction, &, is essentially an intermediate quantity
between a capacity and a torsional rigidity, measuring the set U;?S]” SJ. For the success of
our method it is important that the limit eigenfunction vg is regular on the sets S?, while
the perturbed eigenfunction v. jumps on them, together with Vv, - /. Our approach can be
applied to all configurations of poles for which, after a gauge transformation as in 7.2.3, the
origin belongs to the half-lines on which the perturbed eigenfunction v, jumps.

We provide below some examples. Since the gauge transformation for a configuration of
poles is the composition of the gauge transformations of the families of poles lying on the same
straight line, we now focus on a single set of k collinear poles. Hence, for sake of simplicity,
we assume

{aj}jzlﬁwk C Br(0)N{(z1,0): z; e R} C Q.

More precisely, we assume that k = ni+neo, where ni, no € N denote, respectively, the number
of poles which lie on the left and on the right side with respect to the origin (either nj or no
might be zero). Namely,

j (*(5]',0), forjzl,...,nl,
a’ =
(65,0), forj=n1+1,...,n1 + no,

where ¢; > 0 are such that
01 < =02 <+ < =0p; <O<Opy41 <+ < Opytny-
For the above configuration, we consider problem (1.9). One of the following cases occurs:
(i) m1 and ng are both even;
(ii) m1 and ng are both odd;

(iii) m; is odd and ng is even (or vice versa).
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The procedure developed to prove our main result 7.1.1 can be reproduced in cases (i) and
(ii), as well as in case (iii) if nge = 0.

Let us now briefly describe, in these cases, how problem (1.9) becomes after a tailored
gauge transformation. Hereafter, we denote by ¥ := R x {0} the x; axis, by T: H(R?\X) —
LP(X) the jump trace operator defined as in (7.4) with ¥ instead of ¥/, and by v := (0, 1).

Case (i): even number of poles evenly distributed, i.e. n; = 2N and ny = 2M for some
N,M € N (see 7.8a). In this case, reasoning as in 7.2.3, it is possible to find a gauge
transformation such that problem (1.9) is equivalent to

—Av =\, in Q\ UNAM s7,
v =0, on 052,
T(v)=T(Vv-v)=0, on U;V:JEM S

where

S =

€

[—ed2j-1,—edy;] x {0}, ifj=1,...,N,
[56%;1,8(52]‘] X{O}, ifj=N+1,...,N+ M.

Case (ii): even number of poles oddly distributed, i.e. n; = 2N + 1 and ng = 2M + 1
for some N, M € N (see 7.8b). Once again, reasoning as in (7.2.3), one can find a gauge
transformation such that problem (1.9) is equivalent to

—Av = ), in Q\ Ué-v:JEM—H SZ,
v=0, on 0f),
T(v) =T(Vv-v)=0, on UNHM*'s7,

where
[—852j_1, —552]'] X {0}, for j = 1, . ,N,
57 := S [~edan+1,€02n42] X {0}, for j =N +1,
[g(SQj_l,E(SQj] X{O}, forj=N+4+2,... N+ M+ 1.

(iii): odd number of poles all on the same side, i.e. n; = 2N + 1 and ny = 0 (see 7.8c). In
this case, problem (1.9) is equivalent to

—Av =\, in Q\ [FO U (Uj;ll Sg')] ,
v =0, on 012,
T(v)=T(Vv-v)=0, only,
T(v)=T(Vv-v)=0, on U;V:Jil SI,

where

SJ = [—ed2j-1, —€d2;] x {0}, for j=1,...,N,
j [—edan41,0] x {0}, for j = N +1.

To conclude, the only case left open is case (iii) with ne # 0. This requires non-trivial
technical adaptations and will be the object of future investigation.
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a; a?N*l 0 a§N+2 a?N+2M
-—————o - ------- —o0---@--OU—0---------~ o——o -
2 2N 2N+1 2N+2M—1
aE aE aE aE
(a) Case (i)
a; azN—l aEN-‘,-l O a§N+3 agN+2M+1
- OO~~~ — — -—-=- ®—o ----o——0------ O=—0 — — —
2 2N 2N+2 2N+4 . .. 2N+2M+2
aE a’E aE aE a’E
(b) Case (ii)
a? a2V 0
- — - - - - - — o— - - - - 0—@ -
1 2N—-1 2N+1
aE aE aE

(c) Case (iii) with no =0

Figure 7.8: The jumping set after gauge transformation in cases (i), (ii), and (iii).
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