
Conservation laws with regulated fluxes

Alberto Bressan∗, Graziano Guerra∗∗ and Wen Shen∗

(*) Department of Mathematics, Penn State University, University Park, PA 16802, U.S.A.

(**) Department of Mathematics and its Applications, University of Milano - Bicocca.

E-mails: axb62@psu.edu, graziano.guerra@unimib.it, wxs27@psu.edu

January 7, 2019

Abstract

Scalar conservation laws ∂tu + ∂xf (t, x, u) = 0 where the flux f is discontinuous
w.r.t. the time and space variables t, x arise in many applications, related to physical
models in rough media. Typical examples include traffic flow with variable road conditions
and polymer flooding in porous media. An extensive body of recent literature has dealt
with fluxes that are discontinuous along a finite number of curves in the t-x plane. Here we
are interested in the existence and uniqueness of solutions obtained via vanishing viscosity
approximations i.e. solutions to ∂tu+∂xf (t, x, u) = ε∂xxu when ε→ 0+, for more general
discontinuous fluxes.

We first give a definition of regulated functions in two variables. After recalling some
results about parabolic equations with discontinuous coefficients, we show how the knowl-
edge of the existence and uniqueness of the vanishing viscosity limit for fluxes with a
single discontinuity at x = 0 can be used as a building block to prove the existence and
uniqueness of the vanishing viscosity limit for regulated fluxes.

Keywords: Nonlinear semigroups of contractions. Conservation law with discontinuous
flux, regulated flux function, vanishing viscosity, Hamilton-Jacobi equation, existence and
uniqueness of solutions.
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1 Introduction

We consider the Cauchy problem for a scalar conservation law of the form{
ut + f(t, x, u)x = 0,

u(0, x) = ū(x) ∈ L1 (R) ,
(1.1)

where the flux function f is smooth w.r.t. the unknown u but can be discontinuous w.r.t. both
variables t and x. Our main concern is the convergence of the viscous approximations uε,
which solve {

ut + f(t, x, u)x = ε uxx,

u(0, x) = ū(x) ∈ L1 (R) ,
(1.2)

to a unique weak solution u to (1.1), as the viscosity parameter ε→ 0+.
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Starting with the works by N. Risebro and collaborators (see [2, 9, 10, 14] and references
therein) scalar conservation laws with discontinuous coefficients have now become the subject
of an extensive literature also including some multi-dimensional cases (see [1, 2, 7, 12, 13, 17]
and references therein).

Results on the uniqueness and stability of vanishing viscosity solutions have been obtained
mainly in the case where the flux f is piecewise smooth with discontinuities located on finitely
many smooth curves on the (t, x) plane. Aim of this note is to describe an alternative ap-
proach, introduced in [3, 11], based on comparison estimates for solutions to the corresponding
Hamilton–Jacobi equation. This yields the uniqueness of the vanishing viscosity limit under
the more general assumption that f(t, x, ω) = F (v(t, x), ω) where F is a smooth function and
v(t, x) is a regulated function of the two variables t and x, as in Definition 1.1 below.

We recall that a function of a single variable v : R 7→ R is regulated if it admits left and
right limits at every point. This is true if and only if, for every interval [x1, x2] and every
ε > 0, there exists a piecewise constant function χ such that ‖χ − v‖L∞([x1,x2]) ≤ ε . We
extend this concept to functions of two variables, as follows.

Definition 1.1. (see Fig. 1) We say that a bounded function v = v(t, x) is regulated if, for
every intervals [x1, x2] and [0, T ], and any ε > 0, the following holds.

There exist finitely many disjoint subintervals [ai, bi] ⊆ [0, T ], Lipschitz continuous curves
γi,1(t) < · · · < γi,Ni(t), t ∈ [ai, bi] , and constants αi,0, . . . , αi,Ni such that

(i) For every t ∈ [ai, bi], the step function

χi(t, x)
.
=


αi,0, if x < γi,1(t),

αi,k, if γi,k(t) < x < γi,k+1(t), k = 1, 2, . . . , Ni − 1,

αi,Ni , if γi,Ni(t) < x,

(1.3)

satisfies ‖χi(t, ·)− v(t, ·)‖L∞([x1,x2]) ≤ ε .

(ii) For every i, k, the time derivative γ̇i,k(t) = d
dtγi,k(t) coincides a.e. with a regulated

function.

(iii) The intervals [ai, bi] cover most of [0, T ], namely T −
∑

i(bi − ai) ≤ ε.

We remark that, if v = v(x) is independent of time, then it satisfies Definition 1.1 if and
only if it is a regulated function in the usual sense.

Let T > 0 be given and consider the open domain Ω
.
= ]0, T [ × R. For future use, we

collect here some assumptions that will be imposed on the flux function f : Ω × R 7→ R, at
various stages of the analysis.

(F1) The function f satisfies:

(i) For each fixed ω ∈ R, the map (t, x) 7→ f(t, x, ω) is in L∞(Ω).

(ii) The map ω 7→ f(t, x, ω) is twice continuously differentiable for any (t, x) ∈ Ω and
there exists a constant L ≥ 0 such that∣∣f(t, x, ω1)− f(t, x, ω2)

∣∣ ≤ L |ω1 − ω2| for all ω1, ω2 ∈ R, (t, x) ∈ Ω. (1.4)

(iii) There exists a constant L1 ≥ 0 such that,
∫
R
∣∣f(t, x, 0)

∣∣ dx ≤ L1, for all t ∈]0, T [.
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Figure 1: According to Definition 1.1, a regulated function of two variables v = v(t, x) can be
approximated by a piecewise constant function, with jumps along finitely many Lipschitz curves γi,k.
The time derivatives γ̇i,k are regulated functions.

(F2) For every (t, x) ∈ Ω, the function f satisfies f(t, x, 0) = 0 and f(t, x, 1) = h(t) for some
h ∈ L∞ (]0, T [ ,R).

(F3) The flux f has the form f(t, x, ω) = F
(
v(t, x), ω

)
, where F (α, ω) is Lipschitz contin-

uous w.r.t. α and twice continuously differentiable w.r.t. ω satisfying F (α, 0) = 0 and
F (α, 1) = h1 ∈ R for any α ∈ R, moreover v is a regulated function.

(F4) The flux f has the following form

f (x, ω) =

{
fl (ω) if x ≤ 0,

fr (ω) if x > 0,

where fl and fr are smooth functions satisfying fl(0) = fr(0) = 0 and fl(1) = fr(1).

2 Parabolic equations with discontinuous coefficients

If f is smooth, under mild hypotheses on the growth of the solution, the Cauchy problem (1.2)
is equivalent to the integral equation u = Pεu, where the transformation Pε is defined by

(Pεu) (t, x)
.
=

∫
R
Gε(t, x− y) ū(y) dy −

∫ t

0

∫
R
Gεx(t− s, x− y)f

(
s, y, u(s, y)

)
dy ds. (2.1)

For t > 0, the functions G(t, x)
.
= 1√

4πt
e−x

2/4t and Gε(t, x)
.
= 1√

4επt
e−x

2/4εt are the

standard Gauss kernels. Observe that the equation u = Pεu is meaningful even when f is
discontinuous. Following [16], we say that u = u(t, x) is a mild solution to the Cauchy
problem (1.2) if it is a fixed point for of the transformation Pε. The following facts about
mild solutions to (1.2) are proved in [3].

Theorem 2.1. Consider the Banach space YT
.
= C0([0, T ], L1(R)) endowed with the supre-

mum norm ‖u‖T
.
= supt∈[0,T ] ‖u(t)‖L1(R) . Let the flux function f satisfy (F1). Then there

exists a unique mild solution u ∈ YT to the Cauchy problem (1.2). If u and v are two mild
solutions of the parabolic equation in (1.2), with initial data ū, v̄ ∈ L1(R). Then the following
properties hold.
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(i) The total mass is conserved in time:
∫
R u(t, x) dx =

∫
R ū(x) dx, for all t ∈ [0, T ].

(ii) A comparison principle holds: ū ≤ v̄ =⇒ u(t, ·) ≤ v(t, ·), for all t ∈ [0, T ].

(iii) The L1 distance between the two solutions is non-increasing in time:∫
R
|u(t, x)− v(t, x)| dx ≤

∫
R
|ū(x)− v̄(x)| dx for all t ≥ 0. (2.2)

We now consider a second Cauchy problem with different flux and initial data:{
ut + f ](t, x, u)x = εuxx ,

u(0, x) = ū](x) ∈ L1 (R) .
(2.3)

The following theorem is based on comparison estimates for solutions to the related Hamilton–
Jacobi equation. It provides a comparison between two solutions corresponding to not only
different initial data, but also possibly different fluxes.

Theorem 2.2. [3, Theorem 2.3] Let u and u] be solutions to (1.2) and (2.3), respectively.
Assume that both fluxes f and f ] satisfy (F1). Let U and U ] be the integrated functions:

U(t, x) =

∫ x

−∞
u (t, ξ) dξ, U ](t, x) =

∫ x

−∞
u] (t, ξ) dξ. (2.4)

Then the following comparison property holds.

Let I be an interval containing the range of u](t, x) and assume that, for some η ∈
L∞
(
[0, T ]

)
and some constant η̄ ≥ 0, one has{
f ](t, x, ω) ≤ f(t, x, ω) + η(t) for all (t, x, ω) ∈ ]0, T [×R× I,
U(0, x) ≤ U ](0, x) + η̄ for all x ∈ R.

(2.5)

Then, for all t ∈ [0, T ] and x ∈ R, one has

U(t, x) ≤ U ](t, x) + η̄ +

∫ t

0
η(s) ds . (2.6)

3 The unique weak vanishing viscosity limit

Without further hypotheses on the flux f , the solution to (1.2) could blow up as ε → 0+.
Indeed consider the following linear example,{

uεt + [Θ(x)]x = εuεxx,

u (0, ·) = 0,
where Θ(x) =

{
0 for x ≤ 0,

1 for x > 0.

Its mild solution is given by

uε(t, x) = −t 1√
εt
Φ

(
x√
εt

)
, where Φ (y) = 2G (1, y)− |y|

∫ +∞

|y|
G (1, ξ) dξ.

Since uε
∗
⇀ −tδ0(x) as ε→ 0+, it does not converge to any function even in a weak sense.
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This motivates the introduction of Hypothesis (F2) that allows us to apply the maximum
principle (namely, (ii) in Theorem 2.1) to the mild solutions to the parabolic equation (1.2).
Indeed, let f = f(t, x, ω) be a flux function satisfying (F1), (F2), and consider the domain

D .
=
{
u ∈ L1(R) ; u(x) ∈ [0, 1] for all x

}
. (3.1)

Let an initial data ū ∈ D be given. Since the constant functions u∗(t, x) = 1 and u∗(t, x) = 0
are solutions to the parabolic equation in (1.2) for any ε > 0, by a standard comparison
argument the solution uε(t, x) to (1.2) satisfies u(t, ·) ∈ D for all t ∈ [0, T ].

The bound in L∞ gives weak∗ compactness of the sequence of functions, but the uniqueness
of the limit as ε→ 0+ requires additional analysis. Our main goal is to find a general class F
of flux functions for which the vanishing viscosity limits are unique, for any fixed initial data in
D. As a starting point, by Theorem 2.2 we know that this class contains all fluxes f = f(x, u)
having one single discontinuity at x = 0. Next, we prove that this class is closed under
certain elementary operations and suitable limits. By repeatedly applying these operations
and taking limits, we conclude that all flux functions of the form f(t, x, u) = F (v(t, x), u),
with F Lipschitz and v regulated, as in (F3), lie in this class. Hence, for these fluxes the
weak solutions obtained as vanishing viscosity limits are unique.

Definition 3.1. We denote by F[a,b] the family of all fluxes f = f(t, x, u) that satisfy (F1),
(F2) for t ∈ [a, b] (instead of [0, T ]), and for which the following property holds. For any
initial data ū ∈ D, calling uε the solutions to the viscous Cauchy problem{

ut + f(t, x, u)x = ε uxx,

u(a, x) = ū(x) ∈ L1 (R) ,
(3.2)

as ε→ 0+ the integrated functions

U ε(t, x) =

∫ x

−∞
uε (t, y) dy

converge uniformly in [a, b]× R to a unique limit.

Since uniform convergence of the integrated function U ε corresponds to weak convergence
of uε (see [3, Lemma 3.1]), if f ∈ F[0,T ], then as ε→ 0+ the solutions uε(t, ·) to (1.2) converge
weakly to a unique limit u(t, ·) in the weak topology of L1 (R) for any fixed t ∈ [0, T ]. Our
eventual goal is to show that F[0,T ] contains all the flux functions satisfying (F3). The
following result, proved in [3] with the help of Theorem 2.2, describes the uniform limit under
which F[a,b] is closed.

Theorem 3.2. Consider a flux f = f(t, x, ω) defined in [0, T ]×R× [0, 1], satisfying (F1) and
(F2). Assume that, for any δ > 0, there exists times 0 < a1 < b1 < · · · < aN < bN < T
and flux functions fi ∈ F[ai,bi] such that T −

∑N
i=1(bi − ai) < δ ,

|f (t, x, ω)− fi (t, x, ω)| < δ, for all (t, x, ω) ∈ [ai, bi]× R× [0, 1] , i = 1, . . . , N. (3.3)

Then f ∈ F[0,T ].

The classical result by Kruzhkov [15] implies that the vanishing viscosity limit exists and
is unique for conservation law with smooth flux. Consequently, smooth fluxes belong to F[0,T ].
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An extensive body of more recent literature has dealt with fluxes satisfying hypothesis (F4).
In this case, one can again conclude that f ∈ F[0,T ], for every T > 0.

A detailed proof, based on the theory of nonlinear semigroups [4, 5, 6], can be found
in [11]. Our approach avoids the technicalities in previous literature such as traces, Riemann
problems, interface conditions, compensated compactness and entropy inequalities etc. , which
generally require some additional hypotheses. Consequently the results in [11] holds under
the general assumption (F4). Theorems 3.4 and 5.2 in [11] can be restated in the following
form.

Theorem 3.3. Under hypothesis (F4), the parabolic equation in (1.2) generates a unique
continuous semigroup of contractions Sεt : D → D whose trajectories Sεt ū are the unique
mild solutions to (1.2). Moreover, as ε→ 0+, for any ū ∈ D, Sεt ū converges in L1 (R) to Stū
uniformly on bounded t intervals, where St : D → D is a continuous semigroup of contractions
whose trajectories are weak solutions to the Cauchy problem (1.1). Consequently if the flux f
satisfies hypotheses (F4), then f ∈ F[0,T ].

By a change of variables it can be proved that the existence and uniqueness of the weak
limit also holds when the interface between the two fluxes varies in time, under mild regularity
assumptions.

Lemma 3.4. ([3, Lemma 3.5]) Let f satisfy (F4). Let γ : [0, T ] 7→ R be a Lipschitz function
whose derivative γ̇ coincides a.e. with a regulated function. Then the flux function f̃ defined
by f̃(t, x) = f̃ (x− γ(t)) belongs to F[0,T ].

Thanks to the finite speed of propagation, the functions in F[0,T ] can be patched together
horizontally, provided that they coincide on an intermediate domain.

Lemma 3.5. ([3, Lemma 3.6]) Consider two flux functions f1, f2, both satisfying (F1) and
(F2). Assume that f1, f2 ∈ F[0,T ] and that there exists α < β such that f1(t, x, ω) = f2(t, x, ω)
for all t ∈ [0, T ], x ∈]α, β[ , and ω ∈ [0, 1]. Then the flux f defined by

f (t, x, ω)
.
=

{
f1 (t, x, ω) if x < β

f2 (t, x, ω) if x > α
(3.4)

belongs to F[0,T ].

Lemma 3.6. ([3, Lemma 3.8]) Let f = f(t, x, ω) be a flux function satisfying (F1), (F2).
Assume that, for every bounded interval [x1, x2] the function

f̂(t, x, ω) =


f(t, x1, ω) if x < x1 ,

f(t, x, ω) if x ∈ [x1, x2] ,

f(t, x2, ω) if x > x2 ,

(3.5)

lies in F[0,T ]. Then f ∈ F[0,T ] as well.

Combining the previous results, the main theorem can be proved.

Theorem 3.7. Let f = f(t, x, ω) be a flux function satisfying (F3). Then f ∈ F[0,T ].
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Proof. By the assumption (F3), the flux function f satisfies (F1) and (F2).
Fix an interval [x1, x2]. Let δ > 0 be given. Since v is regulated we can find disjoint

intervals [ai, bi], Lipschitz continuous curves γi,k and constants αi,k such that all conditions
(i)–(iii) in Definition 1.1 hold.

For each i, let the piecewise constant function χi(t, x) be as in (1.3). Applying Lemma 3.5
and Lemma 3.4, by induction we show that the flux function

fi(t, x, ω)
.
= F (χi(t, x), ω) = F (αi,0, ω)χ{x<γi,1(t)}

+

Ni−1∑
k=1

F (αi,k, ω)χ{γi,k(t)<x<γk+1,1(t)}

+ F (αi,Ni , ω)χ{x>γi,Ni
(t)}

lies in F[ai,bi]. In turn, an application of Theorem 3.2 shows that the function f̂ in (3.5) lies
in F[0,T ]. Since the interval [x1, x2] is arbitrary, by Lemma 3.6, the flux function f lies in
F[0,T ] as well.

4 The strong vanishing viscosity limit

In this section, we assume (F3). Moreover we consider the following additional hypotheses.

(V1) v(t, x) is a bounded measurable function whose total variation w.r.t. x is integrable.
More precisely, for every rectangular domain of the form [0, T ]× [x1, x2] one has∫ T

0
(Tot.Var. {v (t, ·) ; [x1, x2]}) dt < +∞. (4.1)

(V2) For each α ∈ R the partial derivative ω 7→ Fω (α, ω) is not constant on any open
interval.

Under (V1), the unique weak limit found in the previous section is a solution to the conser-
vation law

ut + f (t, x, u)x = 0. (4.2)

Moreover, if we assume (V2) as well, the convergence of uε is in L1 ([0, T ]× R). These results
can be obtained using a well established compensated compactness argument [8, 18].

Theorem 4.1. ([3, Theorem 4.2]) Let the flux f satisfy (F1), (F2), (F3) and (V1), and
choose an initial data ū ∈ D. Let uε be the solution to the Cauchy problem (1.2). Then
the unique weak viscosity limit u(t, ·) = limε→0 u

ε (t, ·) is a weak solution to the conservation
law (4.2).

Moreover if the flux satisfies (V2) as well, then the convergence uε → u is in L1 (Ω)
endowed with its strong topology.
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[4] H. Brézis and A. Pazy. Convergence and approximation of semigroups of nonlinear operators in
Banach spaces. J. Functional Analysis, 9:63–74, 1972.

[5] M. G. Crandall. The semigroup approach to first order quasilinear equations in several space
variables. Israel J. Math., 12:108–132, 1972.

[6] M. G. Crandall and T. M. Liggett. Generation of semi-groups of nonlinear transformations on
general Banach spaces. Amer. J. Math., 93:265–298, 1971.

[7] G. Crasta, V. De Cicco, and G. De Philippis. Kinetic formulation and uniqueness for scalar
conservation laws with discontinuous flux. Comm. Partial Differential Equations, 40(4):694–726,
2015.

[8] C. M. Dafermos. Hyperbolic conservation laws in continuum physics, volume 325 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, third edition, 2010.

[9] T. Gimse and N. H. Risebro. Riemann problems with a discontinuous flux function. In Third
International Conference on Hyperbolic Problems, Vol. I, II (Uppsala, 1990), pages 488–502.
Studentlitteratur, Lund, 1991.

[10] T. Gimse and N. H. Risebro. Solution of the Cauchy problem for a conservation law with a
discontinuous flux function. SIAM J. Math. Anal., 23(3):635–648, 1992.

[11] G. Guerra and W. Shen. Backward euler approximations for conservation laws with discontinuous
flux. Preprint: https://arxiv.org/abs/1803.00493, 2018.
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