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Spatiotemporal Event Studies for
Environmental Data Under Cross-Sectional
Dependence: An Application to Air Quality

Assessment in Lombardy
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Wepropose a twofold adjustment for Event Studies considering spatiotemporal data in
a multivariate time series framework where the data are characterized by spatial and tem-
poral dependence. Thefirst adjustment consists ofmodeling the spatiotemporal dynamics
of the data by implementing several geostatisticalmodels capable of handling both spatial
and temporal components, as well as estimating the relationship between the response
variable and a set of exogenous factors. With the second adjustment, we propose to use
cross-sectional-adjusted test statistics directly accounting for spatial cross-correlation.
The proposed methods are applied to the case of NO2 concentrations observed in North-
ern Italy during the first wave of the COVID-19 pandemic. The key findings are as
follows. First, all the considered geostatistical models estimate larger reductions in the
major metropolitan and congested areas, while smaller reductions are estimated in rural
plains and in the mountains. Second, the models are nearly equivalent in terms of fitting
and are capable of identifying the true event window. Third, by using spatiotemporal
models we ensure the residuals are uncorrelated across space and time, thus allowing
Event Studies test statistics to provide reliable and realistic estimates. Fourth, as expected,
all test statistics show significant reductions in NO2 concentrations starting from the first
few days of lockdown.
Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

1.1. EVENT STUDIES: FUNDAMENTALS AND MODELING STRATEGY

Event Studies, hereafter ES, are statistical tools used to assess whether a particular event
of interest has induced relevant changes in the evolution of one or more time series. The
changes may concern either the mean level, i.e., testing for a level shift, (Campbell et al.
1998) or (less frequently) the variability of the phenomenon, i.e., testing for a variance shift
(Giaccotto and Sfiridis 1996).

ES are grounded on two main pillars. The first pillar is the interrupted time series
paradigm (McDowall et al. 2019), in which we assume that at a certain known date, an
event (e.g., treatment or intervention) occurred, dividing the time series into two parts:
before and after the event occurrence. The occurrence date is labeled as the event date and
is assumed to be known. The final goal of an ES is to state if the event of interest gener-
ated a statistically significant impact on the time series under consideration. The event can
be permanent or temporary, and it can be gradual or abrupt. Usually, ES focus on abrupt
changes. The second pillar is the offline hypothesis testing (Basseville and Nikiforov 1993),
in which a no-change scenario is compared to a with-change scenario. The two scenarios
are compared through a statistical hypothesis test. Considering ES for a level shift, under
the null hypothesis, we state that there are no abnormal variations at the time of the event,
whereas the alternative hypothesis assumes the existence of a level shift in correspondence
with the event of interest.

ES combine a regression-based approach for parameter estimation complemented with
a validation strategy based on ad hoc tests. The standard procedure for ES consists of
segmenting the timeline into two consecutive subsamples: The first part of the time series,
i.e., the estimation window, is used to estimate a regression model, while the second part,
called the event window, is used to test the statistical significance of the event. The regression
model takes as the response variable the time series on which to calculate the impact of the
event and typically employs a set of predictors able to explain themovements of the response.
Thus, the regression step is used to control for confounding variables whose effects should
be filtered out before testing for the presence of a shift. The estimated regression model is
then used to make predictions about future values of the time series of interest. Eventually,
the ES test statistics are computed using the prediction errors within the event window, i.e.,
using the observations not used in the model’s estimation at the event date. In this regard, the
ES approach is similar to modern statistical learning techniques for temporal data, in which
a portion of the time series is used for in-sample model training and parameter estimation,
whereas performance is evaluated over successive out-of-sample periods in cross-validation
(Bergmeir et al. 2018). The reader can refer to the figure on page 332 of Benninga (2014)
for an explicative graphical representation of the typical outline of an event study.

When studying the presence of an event-induced level shift, if the event truly generated a
significant effect, the observations following the event should diverge from the model-based
predictions, leading to prediction errors showing significant level changes. Conversely, if
the event did not induce any significant level shift within the event window, the predicted
and actual values should overlap, leading to forecast errors averaging zero.
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ES can focus both on univariate time series and multiple time series. In the latter, the
observations will be denoted by a pair of symbols, namely the index s for the cross-sectional
units and the index t for time. An ES with multiple time series is used when it is intended
to take advantage of the correlation existing between cross-sectional units, allowing the
construction of aggregate statistics for the entire system. In addition, ESs can involve single
events in time (typically single-day occurrences) or event windows composed of multiple
instants of time, called cumulated event windows.

1.2. OUR CONTRIBUTION

We contribute to the empirical literature on ES by proposing a twofold adjustment for
Event Studies considering spatiotemporal data. In particular, we are interested in ES applied
to multivariate time series characterized by the presence of spatial (i.e., cross-sectional) and
temporal dependence. Also, we focus on ES for multi-observation event windows by means
of cumulated ES test statistics. Since spatial and temporal correlation is typically found in
environmental data (recall the three Laws of Geography by, Tobler 1970; Zhu and Turner
2022), we are implicitly suggesting a research framework for addressing environmental
Event Studies. Also, extending ES to the spatiotemporal context is an improvement that
can provide great benefits to projects whose goal is to assess the impact of policies at the
territorial level (Fassó et al. 2023).

The first adjustment concerns the modeling step. Usually, ES literature assumes a linear
relationship between the response variable and the covariates (Borghesi et al. 2022). More-
over, the relationship is often estimated in a univariate framework (Neill and Chen 2022);
that is, for each cross-sectional unit s the observations are modeled as linear functions of the
set of predictors. This is generally suboptimal when concentrations observed at the stations
are not mutually independent. Also, in linear regression contexts, estimates of regression
coefficients could be biased due to not explicitly modeled spatial (Paciorek 2010) and tem-
poral (Lee and Lund 2008) dependence into the residuals. Since ES statistics are calculated
from the predicted residuals, the presence of confounding spatiotemporal correlation can
adversely affect the values of the statistics and their uncertainty. We aim at relaxing the
independence assumption by explicitly modeling the spatiotemporal dynamics of the data
by implementing several geostatistical models capable of handling both spatial and temporal
components, as well as estimating the relationship between the response variable and a set
of exogenous factors. In particular, we will consider models belonging to the class of linear
mixed models (LMMs) and generalized additive mixed models (GAMMs).

The second adjustment refers to the hypothesis testing step. Specifically, we aim at
addressing the problem of adjusting ES against cross-correlationwhen dealingwith spatially
distributed observations. When the observations are affected by (even by small amounts of)
positive cross-sectional dependence (CD), classical ES parametric test statistics reject the
null hypothesis too often (Pelagatti and Maranzano 2021b). The same considerations hold
when observations are affected by temporal autocorrelation (Lee and Lund 2004, 2008), or
when considering correlated paired samples (Dutilleul et al. 1993; Zimmerman 2012). Size-
distortion effects still holdwhen negligible levels of cross-correlation are observed (Pelagatti
and Maranzano 2021b). We adopt a strategy involving the use of CD-adjusted test statistics
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to directly account for spatial cross-sectional dependence by means of a cross-correlation
measure for multivariate time series.

In the following, we will treat spatial dependence and cross-sectional dependence as
interchangeable terms. Aware that these are two different statistical concepts, we can still
point out a close connection between the two. Indeed, the Global Moran’s I (Moran 1950)
can be interpreted as a generalization of Pearson’s correlation coefficient with geographical
weights (Chen 2013).Many of the ES test statistics used in the next sections are adjustedwith
respect to cross-sectional dependence by means of Pearson’s linear correlation coefficient.
While this is an approximate aspatial measure of autocorrelation, it can still provide a
straightforward indication of the direction of the relationship and its strength. In fact, the
bivariate-spatial correlation can be expressed as a fraction of Pearson’s linear correlation
coefficient, which acts as an upper-bound (Lee 2001).

Eventually, we provide an empirical application on the airborne pollutant concentrations
observed on geo-referenced monitoring networks located in Northern Italy. As with many
other environmental phenomena, air quality data are affected by positive spatial dependence
(Dale and Fortin 2009). Air quality data are a natural example of the three Laws of Geog-
raphy; that is, near things are more related than distant things (Tobler 1970), and the more
similar the geographic configurations of two points, the more similar the values (processes)
of the target variable at these two points (Zhu and Turner 2022). Indeed, by analyzing the
measurements recorded in monitoring networks belonging to specific regions and assum-
ing very similar environmental conditions, it is realistic to state that the concentrations of
airborne pollutants observed in monitoring stations located at close distances will be very
similar (Montero et al. 2021). Also, pollutant concentrations are strongly seasonal and per-
sistent phenomena, leading to strong temporal autocorrelation among observations. In this
context, the proposed adjustments seem ineluctable for obtaining credible estimates and
thus reasonable policy guidance.

The remainder of the paper is organized as follows. In Sect. 2, we provide a short literature
review on the use of ES in environmental and energy fields. In Sect. 3, we propose an
Event Studies taxonomy tailored to the case of air quality data and briefly introduce the
CD-adjusted test statistics implemented in the application section. In Sect. 4, we present the
HDGMand discuss its interpretation and themajor benefits of its implementation. In Sect. 5,
we present an ES concerning the effect of the COVID-19-related restrictions on air quality
in the Lombardy region (Italy) in 2020. Finally, Sect. 6 concludes the paper and proposes
future developments of ES in spatiotemporal frameworks.

2. EVENT STUDIES FOR ENVIRONMENT AND ENERGY: STATE
OF THE ART

Event Studies are only recently receiving attention in the environmental and energy fields.
Among others, oil and fuels commoditymarkets provide some examples.Demirer andKutan
(2010) use ES methodology to examine the behavior of crude oil spot and futures markets
around the OPEC conference, as well as the US strategic petroleum reserves announcements
between 1983 and 2008. Zhang et al. (2009) use ES to test the impact of extreme events,
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such as the Gulf War in 1991 and the Iraq War in 2003, on crude oil price volatility. Further,
in Zha et al. (2018) the authors aim at assessing the impact of refined oil price adjustments
to control air pollution in China between 2014 and 2015. In addition, ES methods have
recently received great attention in climate policy analysis. Looking at the macroeconomic
perspective, one can refer to the paper by Barnett (2019), in which the impacts of climate
policy risk exposure on observable market outcomes such as oil production, stock returns,
and oil prices are analyzed. In Diaz-Rainey et al. (2021), the authors examined the effect of
policy interventions associated with the Paris Agreement (agreement and ratification) and
the election of Donald Trump (election andwithdrawal from the agreement) on stock returns
of oil and gas companies. Other researchers focused on the effect of climate policies on stock
returns and investment portfolios. We recall, for example, Borghesi et al. (2022) examining
the behavior of green and brown portfolios around green policy-related announcements
launched by European governments in 2020 to alleviate the adverse effect of climate change;
Birindelli and Chiappini (2021), which examined investor reaction toward eight EU policy
announcements over the years 2013–2018 on a large sample of EUfirms; andHuynh andXia
(2020), which used ES to analyze the effect of climate change news on individual corporate
bond returns.

Regarding air quality, most of the contributions using ES focus on city-level data with
daily or hourly frequencies. However, to the best of our knowledge, none of them correct
the statistics for CD or employ spatiotemporal models to filter the spatial and temporal
dependence. Also, most of them focus on Asian-located case studies, whereas no examples
are available for Europe or other regions. For instance, Li et al. (2019) investigate the effect
of mega events on local air quality (daily PM2.5) using a comparative ES involving CD-
independent time series from a treatment location and a placebo location. Similarly to our
goals, Xiao et al. (2022) investigate the benefits deriving from lockdown measures on air
quality (PM2.5) in 31 cities across China. The authors implement a univariate time series
model using a 40-day-long event window but do not control for correlation among locations.
Other papers use ES as a robustness check for causal inference tools, such as the difference-
in-differences (see, for instance, Li et al. 2022; Djoundourian et al. 2022; Weng et al. 2022),
or provide a combination of the two (see, for example, Naqvi 2021; Lin and Zhu 2019; Xu
et al. 2022).

3. EVENT STUDIES FOR AIR QUALITY ASSESSMENT:
TAXONOMY AND STATISTICS

Let s = 1, . . . , S identify the cross-sectional units (spatial locations), and let t be the
time index t = 1, . . . , T . ES rely on a validation strategy performed by splitting the whole
temporal sequence into two disjoint subsamples, namely the estimation window and the
event window. The observations in the estimation window are used to estimate the model
parameters, while those in the event window are used to assess the event’s effect.

Formally, the estimation window is the set of time indexes �0 containing the first T0
time points 1, . . . , T0, while the event window is the set of time points �1 containing
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T0 + 1, . . . , T and whose cardinality is T1 = T − T0. For completeness, we define also the
full set � = �0 ∪ �1 with cardinality T = T0 + T1.

Let Cst be the observed airborne pollutant concentrations observed at time t and mon-
itoring station s. Moreover, let Xst be a vector of conditioning covariates collected at the
same time t and station s. Notice that the set Xst can include station-specific information
(e.g., local weather measurements, traffic data, land cover) and information common to all
the sensors (e.g., calendar effects) or further variables measured at an aggregate geograph-
ical level. Assuming the existence of a statistical relationship between the concentrations
and conditioning information, for each spatial sampling point s and time t , the normal
concentration (NCst ) can be defined as the conditional expectation of Cst given Xst , i.e.,

NCst = E[Cst |Xst ].

It follows that the abnormal concentration (ACst or εst ) is defined as the difference between
the observed concentrations at time t and expected concentration at time t for station s:

ACst = εst = Cst − E[Cst |Xst ] = Cst − NCst .

The abnormal concentrations in the event window �1 can be interpreted as the abnormal
values of C not explained by the conditioning information Xst , and potentially generated
by the event of interest.

Finally, by the term cumulated abnormal concentration we mean the cumulative sum
of abnormal concentrations in a given time window. We are particularly interested in the
cumulated abnormal concentration in the event window, hereafter CACs�1 . The cumulated
abnormal concentration for station s over the event window �1 is defined by

CACs�1 =
∑

t∈�1

ACst . (1)

Note that, to connect this notation to the previously existing literature, in Table S1 of
Supplementary materials, we provide a synthetic conversion table mapping the air quality
assessment taxonomy here proposed to the main statistical and financial notation.

In the following application, we apply and compare a subset of ES test statistics presented
and discussed in Pelagatti and Maranzano (2021b). In particular, we will use the statistics
directly accounting for cross-sectional dependence, thus being CD-adjusted. The proposed
statistics test the null hypothesis of the absence of a level shift in the cumulated abnormal
concentrations (CAC). We list the implemented test statistics in Table 1. The list includes
both parametric and nonparametric specifications, in particular those belonging to the family
of rank-based statistics (Kolari and Pynnönen 2011; Luoma 2011; Hagnäs and Pynnonen
2014). The main difference among the statistics lies in how they account for cross-sectional
dependence. For instance, while the Patell and the BMP statistics make use of the linear
correlation on the abnormal concentrations, the P1 and P2 statistics compute the correlation
on the ranks of the abnormal concentrations. An extended discussion on the statistical
properties, as well as simulated and empirical results about the performance of each statistic,
is available in the same article.
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Table 1. Test statistics for H0: E[CAC�1 ] = 0

Specification Description Statistic Reference

Param. Patell’s Z Z_patell_adj Kolari and Pynnönen (2011)
Param. Boehmer–Musumeci–Poulsen Z_BMP_adj Kolari and Pynnönen (2011)
Nonpar. Generalized rank T T_grank Kolari and Pynnönen (2011)
Nonpar. Generalized rank Z adjusted Z_grank_adj Kolari and Pynnönen (2011)
Nonpar. Campbell–Wasley CumRank Corrado (1989)
Nonpar. Cumulated rank modified CumRank_mod Corrado and Zivney (1992)
Nonpar. Cumulated rank T CumRank_T Corrado and Zivney (1992)
Nonpar. Cumulated rank Z adjusted CumRank_Z_adj Hagnäs and Pynnonen (2014)
Nonpar. Normalized rank P1 Pelagatti and Maranzano (2021b)
Nonpar. van der Waerden rank P2 Pelagatti and Maranzano (2021b)
Nonpar. Corrado–Tukey adjusted CT_adj Pelagatti and Maranzano (2021b)

4. GEOSTATISTICAL MODELS FOR AIR QUALITY

We propose four alternative spatiotemporal models to model air quality as a function
of several predictors and to obtain abnormal concentrations to be employed by the Event
Studies test statistics. Airborne pollutant concentrations are usually characterized by strong
right skewness due to unexpectedly high concentrations (Mudelsee and Alkio 2007). To
address this issue, we considered a log transformation for the original data which led to
a Gaussian-like distribution of observations (Maranzano et al. 2020). Notice that since
we considered rank-based nonparametric test statistics, their results are not affected by
monotonic transformations, such as the logarithm. Thus, all the ES test statistics presented
below are computed on the log-scaled abnormal concentrations.

All the considered models assume that log concentrations of NO2 are generated by a
spatiotemporal process {Yst ∈ R : s ∈ D, t = 1, . . . , T }, where D is the spatial domain
composed of S locations and t represents a discrete point of time. Also, we assume that
the concentrations are influenced by a set of p site-specific exogenous covariates, including
weather conditions, land use, and calendar effects.

We propose four geostatisticalmodels taking into account the spatial and temporal depen-
dence of the data: (1) hidden dynamics geostatistical model (HDGM); (2) a generalized
additive model (GAM) with a nonlinear smooth trend; (3) a generalized additive mixed
model (GAMM) with a nonlinear smooth trend and site-specific random effects; and (4)
a generalized additive mixed model with a nonlinear smooth trend, site-specific random
effects, and temporal AR(1) structure for the site-specific errors (GAMM-ar1).

There are several differences between HDGM and the three models from the GAMM
family. On the one hand, HDGM allows only purely linear relationships between regressors
and the response variable, whereas GAMMs allow nonlinear smooth functions via spline
basis expansions. On the other hand, while HDGM is a mixed model with a small-scale
random spatiotemporal component based on autoregressive temporal processes and spatial
Gaussianprocesses,GAMMscanonly includeonebetween temporal and spatial dependence
in the small-scale component and allowflexible relationships in the fixed-effects component.



P. Maranzano, M. Pelagatti

Numerous examples of environmental applications involving both classes of models can
be found in the literature. For instance, the HDGM has been extensively used in air quality
policy assessment (Fassó et al. 2021; Maranzano et al. 2023), bike-sharing system com-
prehension (Piter et al. 2022), off-shore coastal profile measurements for beach monitoring
(Otto et al. 2021), and spatiotemporal interpolation of missing observations in land-use
regression (Taghavi-Shahri et al. 2019). On the other side, GAMMs have been widely used
in the epidemiological (Cabrera and Taylor 2019; Feng 2022), environmental (Padilla et al.
2014), and socioeconomic (Hu et al. 2022) fields due to their impressive flexibility.

4.1. HDGM

TheHDGM(Calculli et al. 2015) belongs to the class of linearmixedmodels (LMMs) and
entails a random-effect term wst (i.e., the small-scale component) modeling the spatial and
temporal dependence, a fixed-effect term vst (i.e., the large-scale component) accounting
for all exogenous regressive effects and a measurement error term εst . The model can be
specified by the following system of equations:

Yst = vst + wst + εst (2)

with εst ∼ N (0, σ 2
ε ) being the measurement error vector that is assumed to be independent

and identically distributed (i.i.d.) across space and time. Note that, recalling the taxonomy
of ES introduced in Sect. 3, the response variable Yst is the equivalent of the observed
concentrations Cst , while the measurement error term εst is equivalent to the abnormal
concentrations ACst .

The fixed-effects mean term can be specified as follows:

vst = x�
stβ, (3)

where xst is a vector with p covariates observed at location s and time t , and β is a vector
of p coefficients. The random effects term wst assumes a separable space-time covariance
for the random process Yst , as the spatiotemporal dynamics is described by Markovian
autoregressive temporal processes plus spatially correlated random effects ωst

wst = φHDGMwst−1 + ωst , (4)

where |φHDGM | < 1 represents the common first-order temporal autocorrelation parameter.
The innovation ωst is assumed to be a realization of a Gaussian process independent in time
and with the spatial exponential covariance function with the range parameter θHDGM > 0.

HDGM can be represented through a state-space representation, and the maximum like-
lihood estimates of the parameters involved are computed using a spatiotemporal Kalman
filter (Ferreira et al. 2022; Jurek and Katzfuss 2022, 2023) and the EM algorithm. Parameter
estimation, as well as computation of the variance–covariance matrix, is implemented in the
D-STEM package (Wang et al. 2021) for MATLAB.
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4.2. GENERALIZED ADDITIVE MIXED MODELS

Generalized additive models (GAMs) (Pinheiro and Bates 2006) are linear additive mod-
els allowing for either linear or nonlinear relationships between the predictors and the
response variable. Nonlinear relationships are included by means of smooth functions, typ-
ically represented by basis function expansions. A straightforward extension of GAMs is
given by generalized additive mixed model (GAMMs) (Wood 2017), which keeps the same
semi-parametric structure of GAMs but allows including an additive random effect. Such a
random effects can be used to describe the spatiotemporal dependence of the data.

While in GAMMs the evolution of NO2 concentrations can be expressed as in Equation
(2), the measurement equation for GAMs is simply given by the sum of the large-scale
component vst and the measurement error εst , i.e.,

Yst = vst + εst . (5)

In both cases, the large-scale component vst can include a set of p linear andm nonlinear
terms, that is:

vst = x�
L ,stβL +

m∑

j=1

α( j)xNL, j , (6)

where xL ,st is the vector of purely linear covariates observed at location s and time t , and
α( j)xNL, j is an additive term (basis expansion) with nonlinear influence function α( j) of the
j-th covariate for the m nonlinear covariates. To achieve the highest comparability possible
among different models, we considered the same set of p purely linear covariates across the
specifications. The spatiotemporal dependence is modeled both in the large- and small-scale
components. Indeed, the nonlinear termof (6) is used tomodel the spatial dependence among
observations through a single smooth function, i.e., m = 1. In particular, we considered a
smooth surface of the sites’ coordinates (i.e., longitude and latitude) following a Gaussian
process with an exponential covariance function with range parameter θ . In the following,
we will refer to the GAM model following Equations (5) and (6) as the GAM with range
parameter θGAM .

We then considered two alternative specifications for the small-scale component of
GAMMs. The first one includes the spatial dependence as a sequence of site-specific time-
independent Gaussian-distributed random effects, i.e.,

wst = ws ∼ N (0, σGAMM ), (7)

with σGAMM being the variance of the random effects. In the following, we will refer to this
model as GAMM being characterized by a range parameter θGAMM .

The second specification of the small-scale component includes either time dependence
or spatial dependence effects. Indeed, the spatial dependence is embedded (as in the pre-
vious specification) by a sequence of site-specific time-independent Gaussian-distributed
random effects. In contrast, the time dependence is modeled via a site-specific first-order
autoregressivemodel on the residuals calculated at each site (within-group residuals), that is,
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wst = φ(Yst−1 − vst−1 − ws) , (8)

with φ being the autoregressive parameter representing the temporal dependence, vst−1 fol-
lowing Equation (6), and ws following Equation (7). In the following, we will refer to this
model as GAMMar1 and is characterized by a range parameter θGAMMar1.

The model estimation is performed via restricted maximum likelihood, which is imple-
mented within the package mgcv available in R. The range parameters are estimated as
proposed by Kammann and Wand (2003), thus by taking the maximum Euclidean distance
computed on the sites’ coordinates. Notice that, using the same monitoring network for the
three specifications, this returns the estimated value for θ .

5. ASSESSING THE IMPACT OF COVID-19 LOCKDOWN
MEASURES ON AIR QUALITY IN LOMBARDY

To fight the spreading of COVID-19 across the country, the Italian government imposed
a total lockdown (Presidenza del Consiglio dei Ministri Italia 2020) from March 9 to May
18, 2020, for a total of 71 days. This period, also denoted as first-wave COVID-19 lockdown,
was characterized by the closure of all non-essential activities and enterprises, and by the
minimization of individual mobility and social distancing (Pelagatti andMaranzano 2021a).
As a direct consequence of the limitations, a generalized reduction of car traffic and personal
travel took place in the entire country (Finazzi and Fassò 2020).

Numerous studies have shown how general lockdowns imposed by governments have
generated strong reductions in pollutant concentrations worldwide Higham et al. (2020);
Zangari et al. (2020); Nakada and Urban (2020); Xin et al. (2021), particularly in large
urban centers (Baldasano 2020; Rossi et al. 2020). The Lombardy (Northern Italy) case
study received remarkable scientific interest. In particular, the studies by Collivignarelli
et al. (2020); Cameletti (2020); Fassó et al. (2021); Maranzano and Fassó (2021); Granella
et al. (2021) showed that, due to the restrictions on mobility, oxide concentrations registered
statistically significant reductions (up to 50%) throughout the region. On the contrary, the
particulate matter remained stable or slightly reduced over the entire period. This indicates
that the major emission sources of particulate matter in the region are other than vehicular
traffic and industrial production. Consider, for example, the role of agriculture and live-
stock farming, which, through the production of ammonia, generates significant amounts of
secondary particulate matter (Lovarelli et al. 2020, 2021).

5.1. EVENT STUDY STRATEGY: RECURSIVE WINDOW

We are interested in analyzing the effect of the lockdown restrictions on NO2 concen-
trations registered in Lombardy. The null hypothesis we are testing is that restrictions did
not have any effect on the cumulative abnormal NO2 concentrations during the lockdown
period (i.e., CACs�1 have null mean value). The alternative hypothesis is that the cumu-
lated abnormal concentrations registered a significant reduction during the event window
(i.e., CACi�1 have negative mean value). Therefore, the hypothesis test is one-sided on the
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Figure 1. Spatiotemporal characteristics of observed NO2 concentrations in Lombardy between January 1, 2018,
and January 31, 2020. Left panel: boxplot of pairwise Pearson’s linear correlation index by the station. Central
panel: Linear correlation against geodetic distance among monitoring sites. Right panel: boxplot of ACF up to lag
30 days .

left tail. In other words, we are testing the presence of a negative level shift in the average
NO2 concentrations due to the lockdown. Previously existing literature confirmed signifi-
cant reductions in NO2 levels in Lombardy. Thus, a statistically significant negative sign of
the statistics is expected.

We consider the average daily concentrations of NO2 collected in S = 84 ground sta-
tions belonging to the ARPA Lombardia monitoring network. (The considered stations are
represented in Figure S1 in Supplementary Materials, while for an extended description of
the ARPA network we refer to the reader toMaranzano 2022.) Air quality measurements are
collected using the ARPALData package (release 1.3.1 available on CRAN) of the statistical
softwareR (RCore Team 2020). For eachmonitoring site, we collected daily observations of
NO2 concentrations from January 1, 2018, toMay 31, 2020, totaling T = 881 days. Figure1
shows the main spatiotemporal features of NO2 concentrations from 2018 to right before the
pandemic started. The stations are generally characterized by high temporal persistence both
at short and long lags and by strong positive linear correlation (with a median value around
75%). The latter is able to heavily bias classical ES statistics that do not consider cross-
sectional dependence adjustments. The correlation tends to decrease as the distance among
monitoring sites increases, while remaining sustained even for high distances, proving that
linear correlation can be used as a proxy of spatial correlation.

We know that the official start date of the lockdown period isMarch 8, 2020. The classical
approach to ES sets the event window in advance, and usually, its length does not exceed 30
days (citations). If we used the entire 71-day-long lockdown window, the expectation would
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naturally be for a robust significant rejection of the null hypothesis and thus for a reduction
in the average level of the concentrations. This expectation is confirmed by Figure S3 in
Supplementary Material, which shows that during the lockdown period in 2020, all stations
have concentrations well below those observed during the same period in previous years.
Notice that given the historical magnitude of the event, although the event window is very
long, we could reasonably assume that there were no other overlapping events capable of
masking the impact of the restrictive measures during the period.

Therefore, in our exercise, it is more interesting to identify the minimum time window
that each model needs to detect a significant effect on the average level of concentrations.
We then propose a recursive testing approach that makes use of an increasing event window
to estimate ES test statistics. Conversely, the estimation window is constant for all models
and all sequential tests. The estimation window is composed of all the measurements lying
between January 1, 2018, and January 31, 2020, i.e., T0 = 761 days. The recursive algorithm
starts on the February 1, 2020, and ends on the May 31, 2020, i.e., the maximum event
window length is T1 = 120 days. The recursive algorithm estimates the ES test statistics
adding one day per iteration up to the last time stamp in the event window. That is, at
the generic iteration τ = 1, . . . , 120, the event window set �1τ includes all the estimated
abnormal concentrations ranging from 1 to τ , and the corresponding ES test statistics are
computed using �1τ .

5.2. COVARIATES AND CONTROLS

The geostatistical models presented in Sect. 4 allow including a large set of time- and
site-specific predictors to model the airborne pollutant concentrations. As stated above, our
aim is to achieve the maximum comparability possible between models; thus, both HDGM
and GAMMs will include the same linear predictors, whereas the spatiotemporal dynamics
are left model-specific. In particular, our model will consider (1) local weather variables, (2)
calendar effects, and (3) land-cover variables. Weather and land-cover covariates included
in the large-scale component of the models have been chosen among those available from
the Copernicus ERA-5 reanalysis database (Sabater 2019). ERA-5 provides observations
with a 0.1◦ × 0.1◦ grid spatial resolution. For each air quality station, we associated the
meteorological measurement observed in the cell where the station is located. To explain
the airborne pollutant concentrations, we considered a set of nine meteorological and land-
cover variables: average daily temperature (◦C), daily cumulative precipitation (mm), rel-
ative humidity (%), atmospheric pressure (Pa), daily average eastward and the northward
component of the wind (m/s), daily maximum eastward and northward wind speed (m/s),
geopotential height (m2/s2) as a proxy of altitude, and high and low vegetation covering
(measured as one-half of the total green leaf area per unit horizontal ground surface area, cf.,
Sabater 2019). While the geopotential height and land cover are time-invariant, the weather
covariates are all time-varying.

Pollutant concentrations are strongly seasonal phenomena. In particular, they consistently
follow the cyclical pattern of climatic seasons. Statistically speaking, they are characterized
by annual seasonality and intra-weekly seasonality. Usually, the temperature is used as
a proxy for the climatic season and thus serves as a driver of the infra-annual cycle of
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pollutants. However, linearity might not be enough. Thus, we adopt two further corrections.
First, we allow for a flexible relationship between daily temperature andNO2 concentrations
including the covariate as a cubic B-spline expansion with kTemp = 3 basis. Second, we
add as a proxy of the annual cycle a periodic Fourier spline with two harmonics, thus having
kFourier = 4 basis (Ramsay and Silverman 2005). Similarly, we allow a flexible relationship
among average wind speed and concentrations by including both eastward and northward
components as cubic regression splines with kWind = 3 basis. This choice allows the model
to detect possible anomalies (mainly storms or high wind days) in the wind movements,
reducing the presence of outlier concentrations in the residuals.

Due to the strong seasonality, airborne pollutant concentrations are also characterized
by strong autocorrelation, even for high temporal distances. In the case of NO2, the use of
temperature might be not sufficient to suitably capture the temporal correlation. To resolve
this issue, we included short- and long-term lags of the remaining time-varying covariates.
In detail, we included the 1-day, 2-day, and 365-day lagged values of rainfall, pressure, daily
maximum wind speed, and relative humidity among the regressors. Altogether, excluding
the intercept, the total number of linear covariates is 44.

In addition to weather parameters, we included two dummy variables controlling for cal-
endar effects. In particular, we included a dummy for the weekend effect, which allows us to
control for typical reductions observed during the weekend, and a dummy accounting for the
main Italian holidays across the year. Also, as suggested in Fassó et al. (2021), we included
two sets of dummy variables controlling for local conditions near the monitoring site (i.e.,
station type) and for large-scale geographical conditions surrounding the air quality station
(i.e., type of surrounding area). The station-type variables classified the monitoring sites
as traffic, rural, industrial, and background (reference category), whereas the surrounding
conditions classify the stations as metropolitan areas, mountains, urbanized plain, and rural
plain (reference category).

5.3. GEOSTATISTICAL MODELING AND DIAGNOSTICS

In this section, we comment on the main results referring to the performance and diag-
nostics of the models in the estimation window. Extended results are available in Section
S3 of Supplementary Materials. In particular, we provide estimates of the spatiotemporal
parameters and further performance metrics.

In Figs. 2 and 3, we show the abnormal concentrations estimated using the four geosta-
tistical models around the event window. Specifically, Fig. 2 shows the ACs by station type
(i.e., local-scale conditions around the site), whereas Fig. 2 shows the ACs by surround-
ing area (i.e., large-scale conditions). We plot the ACs in the last part of the estimation
window (blue-shaded areas) and during the lockdown period (red-shaded areas). Abnormal
concentrations are computed by back-transforming the log-scaled concentrations toμg/m3.

The insights provided by the charts are manifold. First, both classifications are mutually
consistent and show that urbanized areas (traffic sites in Fig. 2 and metropolitan areas in
Fig. 3) experienced the greatest reductions in NO2, reaching average values of -20μg/m3 at
the height of the lockdown (April 2020). This finding is consistent with the restrictions of
the movement of transport vehicles, the primary source of nitrogen dioxide. In contrast, sites
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Figure 2. Estimated abnormal concentrations (back-transformed to μg/m3) aggregated (average) by station type
and model: GAM (upper left panel), GAMM (upper right panel), GAMMwith AR(1) dynamics (lower left panel),
andHDGM(lower right panel). Solid-colored curves are the smooth estimates of the trends (splines) by station type.
The blue-shaded area identifies the last part of the training window; the red-shaded area identifies the lockdown
period; and the green-shaded areas identify three extreme weather events occurring within the event window .

with less human presence (rural, mountain, and rural lowlands) registered more moderate
falls (−10µg/m3 to −12µg/m3); moreover, average levels returned in line with predic-
tions (null ACs) before the end of the lockdown (mid-May 2020). Overall, the estimated
reductions are consistent with those provided in other studies for Lombardy, such as Lonati
and Riva (2021) and Bontempi et al. (2022). Second, the values estimated by the respective
models do not show substantial differences in their trend or shape. In particular, ACs from
GAM, GAMM, and HDGM show strong overlaps. The GAMM-ar1 model, on the other
hand, estimates reductions consistent with the classifications, but significantly smaller. One
potential explanation lies in the fact that GAMM-ar1 includes the autoregressive term in the
site-specific residuals; thus, it is capable of rapidly adapting to level shifts while absorbing
the event-generated effect. Third, all models show some notable reductions prior to the
establishment of the lockdown. These reductions, highlighted in the green areas, coincide
with three extreme weather events recorded in Lombardy in February 2020. These events
relate to sudden and large increases in atmospheric boundary layer height (Fassó et al. 2023),
which increased local wind speeds and increased air recycling removing concentrations. In
Figure S2 in Supplementary Materials, we show estimates of BHL at some sites monitored
by the ARPA Lombardy Agency showing the peaks at the NO2 fall. Finally, we note that the
variability of the HDGM estimation-window residuals is very low when compared to that of
the event-window residuals. This fact suggests that the HDGMmay suffer from overfitting.
However, the out-of-sample behavior of its residuals is similar to those of the GAM and
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Figure 3. Estimated abnormal concentrations (back-transformed toμg/m3) aggregated (average) by surrounding
conditions and model: GAM (upper left panel), GAMM (upper right panel), GAMMwith AR(1) dynamics (lower
left panel), and HDGM (lower right panel). Solid-colored curves are the smooth estimates of the trends (splines)
by the surrounding area. The blue-shaded area identifies the last part of the training window; red-shaded area
identifies the lockdown period; and the green-shaded areas identify three extreme weather events occurring within
the event window.

GAMMmodels and the ES tests come to the same conclusions. Future developments should
take into account this issue by implementing regularizations in the estimation process of the
HDGM, as proposed in Maranzano et al. (2023).

In Fig. 4, we report spatiotemporal diagnostics useful to understand how to propose
geostatistical models fit the observed concentrations and in particular, if they are able to
handle the spatial and temporal dependences. On the left, we show the boxplots of ACF
patterns from lag 1 day to 30 days, while on the right we depict the site-specific distribution
of the pairwise linear correlation. Regarding the temporal dimension, the plots highlight
that, with the only exception of the GAM, the models adequately capture the temporal
correlation as it is on average very close to zero with little dispersion. However, the ACs
from GAM are still strongly characterized by temporal persistence, especially in the short
run. Regarding spatial dependence, the only model which is able to decrease it toward zero
is the HDGM. In fact, all the stations have a distribution surrounding the null value, while
the GAMMs results in strongly linearly correlated ACs.

5.4. RECURSIVE TEST STATISTICS FOR NO2 CONCENTRATIONS

Here, we present and discuss the results obtained from the recursive ES experiment in
which the event window is iteratively expanded. The findings are summarized in Fig. 5.
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Figure 4. Autocorrelation and cross-sectional dependence diagnostics for abnormal concentrations (ACs) within
the estimation window. Left panel: boxplots (computed across the 84 stations) of the ACF up to lag 30 days. Right
panel: boxplot (computed across the 84 stations) of the pairwise Pearson’s linear correlation index by station ID.

Figure 5. ES statistics using a recursive window from February 1 to May 31, 2020, by model. Red-shaded area
identifies the lockdown period; green-shaded areas identify three extreme weather events occurring within the
event window .
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In February, many of the test statistics tend to fluctuate between significant and non-
significant values. Indeed, at the real beginning of the recursive window, the recursive
sample is still small and sensitive to single extreme cases. All test statistics are able to
identify BLH-related extreme events as abnormal changes, which are immediately absorbed
by the rebounds of the following days.

The permanent change takes place only at the beginning of March. In fact, one can notice
that all the ES statistics start drifting betweenMarch 6 and 10, 2020, in correspondence with
the actual enforcement of the lockdown restriction. Also, as the recursive window becomes
large, the estimated values of the test statistics tend to stabilize. In this specific case, this
occurs toward the beginning ofApril 2020, a timewhen the lockdownhas already been active
for weeks and the concentrations settle down at values strongly below the predictions. From
the ES standpoint, this means that in the mid-stage of the lockdown, the change becomes
persistent, and all test statistics confidently identify the presence of a level shift and not a
sudden outlier event. Finally, as the reopening phase begins in mid-May 2020, they begin a
slight upward phase that in the long run will lead to the absorption of the shock.

Finally, we notice that all four statistical models are fully equivalent in determining a
statistically significant negative shock. Nevertheless, some of the statistics (e.g., Patell-Z,
CumRank, and CumRank modified) computed on the HDGM prediction errors identify
the onset of the shock well in advance. Also, we observe how the P1, P2, and Corrado–
Tukey statistics are very robust tools for both the identification of isolated structural breaks
(e.g., weather events) and structural changes in the level, while others (see, for instance, the
BMP-adjusted or GRank-Z statistics) struggle in identifying abnormal events.

6. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper, we contributed to the empirical literature on ES by proposing a twofold
adjustment for Event Studies considering spatiotemporal data. In particular, we analyzed
the case of ES applied to multivariate time series characterized by the presence of spatial
(i.e., cross-sectional) and temporal dependence.

The first adjustment concerns the modeling step. Previously existing literature showed
that the presence of confounding spatiotemporal correlation in the regression residuals can
adversely affect the values of the statistics and their uncertainty. Thus, we proposed tomodel
explicitly the spatiotemporal dynamics of the data by implementing several geostatistical
models capable of handling both spatial and temporal components, as well as estimating the
relationship between the response variable and a set of exogenous factors. In particular, we
considered LMMs and GAMMs with spatial and temporal components. The second adjust-
ment refers to the Event Studies hypothesis testing step. From the literature, we know that
when the observations are affected by positive spatial dependence (even by small amounts),
classical ES parametric test statistics are unreliable.We then proposed to use cross-sectional-
adjusted test statistics directly accounting for spatial cross-sectional dependence by means
of a cross-correlation measure for multivariate time series.

The proposed adjustments were applied to the case study of NO2 concentrations in
Lombardy, Northern Italy. In particular, we considered as the event of interest the lockdown
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restrictions imposed on citizenship during the first wave of the COVID-19 pandemic. The
main interest was to state if the lockdown generated significant reductions in the average
concentrations of NO2, i.e., we tested for a level shift after the event date.

The key findings can be summarized as follows. First, the reductions in the level of NO2

concentrations provided by the geostatistical models are consistent with the characteristics
of the Lombardy region. In particular, the largest reductions are estimated in the major
metropolitan and congested areas, while smaller reductions are estimated in rural plains and
in the mountains. Second, the proposed models are nearly equivalent both in terms of fitting
and identifying the true event window (recursive experiment). Third, the adoption of models
with spatial and temporal components ensures residuals that are cleaned from spatiotemporal
correlation, thus allowing ES test statistics to provide reliable and realistic estimates. Fourth,
as expected, all test statistics show significant reductions inNO2 concentrations starting from
the first few days of lockdown.

Overall, the very positive performance of the geostatistical models and the consistency
of the test statistics demonstrate the adequacy of the proposed tools and point out the need
to adopt corrections for spatial and temporal dependence in an Event Studies framework
with spatiotemporal data.

We focused on modeling NO2 concentrations using univariate spatiotemporal mod-
els. However, multivariate models could be implemented to take advantage of the cross-
correlation among mutually correlated response variables to further improve predictions in
the event window (Fassó et al. 2021; Ferreira et al. 2022). Furthermore, the ES test statistics
could be explicitly adjusted for spatial cross-correlation (Chen 2015) and spatiotemporal
cross-correlation (Ma et al. 2006; Gao et al. 2019) measures. Eventually, future works in ES,
being strictly related to forecasting, should address the possible issues of models overfitting
across time and space.
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