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Abstract. We present an innovative workflow for the statis-
tical analysis of fracture data collected along scanlines, com-
posed of two major stages, each one with alternative options.
A prerequisite in our analysis is the assessment of stationarity
of the dataset, which is motivated by statistical and geolog-
ical considerations. Calculating statistics on non-stationary
data can be statistically meaningless, and moreover the nor-
malization and/or sub-setting approach that we discuss here
can greatly improve our understanding of geological defor-
mation processes. Our methodology is based on performing
non-parametric statistical tests, which allow detecting impor-
tant features of the spatial distribution of fractures, and on the
analysis of the cumulative spacing function (CSF) and cumu-
lative spacing derivative (CSD), which allows defining the
boundaries of stationary domains in an objective way. Once
stationarity has been analysed, other statistical methods al-
ready known in the literature can be applied. Here we dis-
cuss in detail methods aimed at understanding the degree of
saturation of fracture systems based on the type of spacing
distribution, and we evidence their limits in cases in which
they are not supported by a proper spatial statistical analy-
sis.

1 Introduction

The analysis of fracture systems is a traditional topic in struc-
tural geology and rock mechanics (e.g. Pollard and Aydin,
1988; Twiss and Moores, 2006), and it has been recognized
for a long time that the quantitative characterization of frac-
ture networks is necessary in both fundamental studies aimed
at understanding brittle deformation processes in different
geological environments (e.g. Jaeger et al., 2007; Scholz,
2019; Schultz, 2019) and in applications such as engineer-
ing rock mechanics (e.g. Hoek, 1980) and the characteriza-
tion and modelling of subsurface fluid flow (e.g. Gleeson and
Ingebritsen, 2012).

For “fractures” in this contribution we use the broad defi-
nition given e.g. by Twiss and Moores (2006), Davis et al.
(2012), and Schultz (2019), who include in the definition
of fractures or “cracks” all kinds of brittle discontinuities,
such as joints, veins, shear fractures, (micro-faults), and in
some cases even stylolites and other “anti-cracks”. Follow-
ing the same authors, a fracture set is defined as a cogenetic
set of fractures showing the same kinematics and orientation
(with some variability), while a fracture system or network
includes all fracture sets that are present in a volume of rocks.

For years, the common way of collecting quantitative frac-
ture data has been based on scanlines: drawing a line, or
laying a tape measure, on an outcrop and collecting all in-
tersections between this line and fractures (e.g. Terzaghi,
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1965; Hobbs, 1967; Priest and Hudson, 1981). Equivalent 1D
datasets are also obtained from boreholes from both direct
observation of cores and from geophysical imaging methods
(e.g. Prioul and Jocker, 2009). The main advantage of scan-
line surveys is that they can be easily carried out in relatively
short times and in a multitude of outcrops; hence, this tech-
nique has also become a standard in engineering applications
(ISRM, 1978).

The minimum goal of scanline surveys is the measurement
of fracture spacing – the distance between two neighbouring
fractures – and the analysis of derived parameters such as
fracture density (number of fractures per unit length) or in-
tercept (inverse of density; e.g. Priest and Hudson, 1981).

Other fundamental information that can be obtained from
scanlines is the 1D spatial distribution (e.g. Swan and Sandi-
lands, 1995; Laubach et al., 2018), i.e. whether fractures are
randomly distributed in space or they show some form of
spatial organization, defined as any form of departure from
complete randomness (Fig. 1a). We can consider two main
and opposite types of organization: (i) regular, uniform, peri-
odic arrangements (Fig. 1b) and (ii) arrangements with some
form of clustering (Fig. 1c) or repeating pattern (Fig. 1d)
(e.g. Swan and Sandilands, 1995; Bonnet et al., 2001; Mar-
rett et al., 2018).

The spatial organization of fractures can be interpreted in
the function of the processes responsible for their forma-
tion and evolution. Fractures nucleate at randomly distributed
weakness points in the host rock (e.g. Schultz, 2019) and then
propagate, increasing their length, initially without interact-
ing with each other (e.g. Spyropoulos et al., 2002). When the
number of fractures and their dimensions increase (e.g. frac-
ture density and intensity increase), fractures start interact-
ing, with two possibly opposite effects (e.g. Scholz, 2019). If
the material is effectively weakened by fractures (e.g. at frac-
ture tips where stress concentrations occur or due to diffuse
damage in the material), fractures tend to propagate towards
each other or to nucleate close to each other in an “attractive”
process (e.g. Crider and Pollard, 1998). When instead stress
shadows develop, fracture nucleation or propagation is inhib-
ited close to other fractures in a “repulsive” process (e.g. Spy-
ropoulos et al., 1999). Finally, Hooker and Kat (2015) show
how vein cementation partly restores rock continuity, hence
reducing repulsive effects related to stress shadows.

Mechanical and statistical simulations have shown that re-
pulsive processes result in regular, uniform, and/or periodic
spatial distributions for which the mean spacing might re-
flect the width of stress shadows (Rives et al., 1992; Bai and
Pollard, 2000; Tan et al., 2014). On the other hand, attrac-
tive processes result in clustering of fractures or in the de-
velopment or repeating patterns, which sometimes, but not
always, show fractal distributions (e.g. Gillespie et al., 1993;
Turcotte, 1997; Marrett et al., 2018). As also shown by Olson
(2004), subcritical crack growth can result in clustered frac-
ture distributions, which can be described as fracture corri-
dors (sensu Sanderson and Peacock, 2019).

A different type of spatial organization, depending on ex-
ternal tectonic and/or lithological controls, is represented by
large-scale trends in fracture density and spacing (Fig. 1e)
that can develop e.g. in fault damage zones, with fractures
that are more densely spaced close to the fault core and more
dispersed as the distance increases (e.g. Vermilye and Scholz,
1998; Faulkner et al., 2008; Bistacchi et al., 2010; Choi et al.,
2016) or when fracturing is controlled by folding (Tavani et
al., 2006; Cosgrove, 2015; Tavani et al., 2015).

Following the fundamental paper by Hobbs (1967), many
authors investigated the relationships between the spatial dis-
tribution of fractures and the statistical distribution of their
spacing (e.g. Rives et al., 1992; Gross, 1993; Tan et al.,
2014). These relationships are based on sound statistical
grounds. For instance, if we consider a Poisson distribution
in 1D (a perfectly random distribution of events along a line),
the spacing between neighbouring events will be character-
ized by a negative exponential distribution, with a numeri-
cally equal mean and standard deviation (Swan and Sandi-
lands, 1995). If we consider a regular spatial distribution, the
mean spacing will be sharply defined, the spacing of the stan-
dard deviation will be much smaller, and the statistical dis-
tribution of spacing will be close to a symmetrical normal
distribution (Rives et al., 1992). Intermediate situations will
show spacing distributions with intermediate skewness, such
as gamma or log-normal distributions (Rives et al., 1992).

These observations lead many authors using the distribu-
tion of spacing to characterize the spatial distribution as if the
above-mentioned relationships can be taken as biunivocal re-
lationships. For instance, Gillespie et al. (1999) proposed a
method to characterize spatial distribution based on the co-
efficient of variation Cv=SD /mean that is supposed to be
Cv> 1 for clustered systems, Cv= 1 for perfectly random
systems (since the SD equals the mean in a negative expo-
nential distribution), and Cv< 1 for systems with a regular
or uniform spatial distribution.

However, Wang et al. (2019), for instance, warned against
using this methodology that is not able to “capture mixtures
of highly clustered and more regularly spaced patterns”. We
will demonstrate in the following that the problem is more
general and lies in the fact that the relationship between spa-
tial distribution and the distribution of spacing is not always
biunivocal. A more robust approach to detect spatial organi-
zation was recently undertaken by Marrett et al. (2018), who
proposed the normalized correlation count (NCC) as a useful
tool to detect spatial organization that departs from complete
randomness (NCC= 1) as clustering (NCC> 1) or regular
spacing seen as anti-clustering (NCC< 1). One major ad-
vantage of this approach is that it is possible to detect how
spatial organization changes as a function of wavelength, for
instance in cases in which fractures are distributed in clus-
ters and clusters have a regular spacing, but the distribution
of fractures within a single cluster is fractal (as in e.g. Wang
et al., 2019).
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Figure 1. Schematic examples of different spatial distributions of fractures sampled along a scanline or borehole. In all examples the fracture
density is the same. For each example we show the following, where applicable: a barcode plot of all fracture intersections along the scanline;
a rank-order position vs. rank-order spacing plot; rank-order spacing at ith position vs. rank-order spacing at i+1th position; data cumulative
spacing function (CSF – blue) compared with reference CSF (red); data cumulative spacing derivative (CSD – blue) compared with reference
CSD (red) and CSD smoothed with a moving median filter (green); comparison of observed vs. expected frequencies for a Poisson random
distribution; best-fit spacing cumulative distribution function (CDF) compared with an empirical distribution function (EDF); best-fit spacing
probability density function (PDF) compared with a histogram.
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A simple yet promising approach for studying spatial or-
ganization is based on cumulative distributions. Gillespie et
al. (1999) plotted the cumulative vein thickness vs. vein posi-
tion along a scanline to characterize spatial distribution. Choi
et al. (2016) plotted the cumulative number of fractures along
scanlines and used marked changes in the slope of this curve
to reveal fault zone architecture features, such as the bound-
ary of the damage zone. However, neither developed quanti-
tative statistical criteria in their analysis.

In this contribution, we will first focus on a rigorous frame-
work to measure spatial and spacing distributions in scan-
lines, on the relationships between these distributions, and
particularly on the debated possibility to infer spatial distri-
bution from spacing distribution (is it a biunivocal relation-
ship?). An important point, not addressed by previous au-
thors, will be dedicated to defining the stationarity of a sta-
tistical sample within a given spatial sampling domain – a
prerequisite to detect any meaningful statistics of the sample
itself and to extrapolate it to the underlying population. We
will then propose non-parametric and parametric statistical
tests that can be used to characterize the distributions, and
we will propose a rigorous workflow that can be applied to
the practical analysis of scanline data.

2 Rationale

2.1 Fracture position and spacing in the scanline
reference frame

To completely characterize the spatial distribution of frac-
tures and their spacing, we need to define two stochastic
variables: position and spacing. Having collected N fracture
intersections along a scanline of length L, chosen perpen-
dicular to the fracture set’s mean plane (Priest and Hudson,
1981), we will call position XF

i the distance between the ori-
gin of the scanline reference frame and the ith fracture inter-
section (Fig. 2). Spacing is defined as the distance between
one fracture at position XF

i and the next fracture at position
XF
i+1, so it is a property of the position of both fractures. Un-

der a different point of view, spacing can also be seen as the
length of the block of intact rock between two fractures. For
this reason, we calculate the ith spacing Si at the ith “block”
position XB

i as follows (Fig. 2).

XB
i =

XF
i +X

F
i+1

2

Si =X
F
i+1−X

F
i

We will see in Sect. 2.4 that associating each spacing mea-
surement with its position is fundamental to study the spatial
distribution of fractures in terms of the spatial distribution of
their spacing.

If local outcrop or borehole conditions do not allow col-
lecting the scanline perpendicular to the mean plane of the

fracture set, we will apply the Terzaghi (1965) correction to
obtain the true position from the apparent one:

XTRUE =
XAPPARENT

cos(α)
,

where α is the angle of deviation between the actual scanline
and the optimal one (perpendicular to the fracture set mean
plane). Spacings will automatically be correct if calculated
from true positions. Fracture positions can be schematically
represented as “barcode plots” (Fig. 1), which are useful for
a visual inspection of the spatial distribution of fractures.

2.2 Stationarity as a prerequisite for statistical analysis

In statistics, a stationary process is a stochastic process
whose characteristic probability distributions do not change
when the domain of the analysis (e.g. in space or time) is
varied (e.g. shifted, shrunk, enlarged; e.g. Wasserman, 2004).
Stationarity is a prerequisite in many kinds of analyses per-
formed on time series, and it is also a fundamental concept
for spatially distributed variables. In geostatistical studies on
spatially distributed variables, a variable is said to be station-
ary if there is no significant drift or trend within a specified
spatial domain (distance, area, or volume), with drift or trend
defined as the component of a regionalized variable resulting
from large-scale processes that can be defined with determin-
istic analytical functions of the spatial variables (Swan and
Sandilands, 1995; Borradaile, 2003). An example of a trend
in fracture studies is the exponential decay in fracture den-
sity that can be found in some fault damage zones (e.g. Caine
and Forster, 1999; Mitchell and Faulkner, 2009). Within this
framework, residuals represent the completely random com-
ponent of the regionalized variable that, if a trend is present,
can be obtained by normalizing the regional variable with the
trend (Swan and Sandilands, 1995).

Even if this analysis is not routinely performed, under-
standing if our dataset is affected by a trend (Fig. 1e) is fun-
damental in every kind of statistical analysis on spatial vari-
ables since, if a trend is present, all statistics will be affected
by the choice of the sampling domain. If, for instance, we cal-
culate the sample mean of fracture spacing in a fault damage
zone showing an exponential trend, the mean will change de-
pending on the position and length of the scanline. Fracture
spacing is not stationary in this case and its mean is mean-
ingless. The same happens at a smaller scale (e.g. a small
segment of the scanline) if fractures are clustered (Fig. 1c) or
arranged in a pattern (Fig. 1d).

According to the general definition given above, a station-
ary process is a process whose statistics do not change when
the sample is changed, moved, shifted, or resized in space
(or time; Wasserman, 2004). With reference to Fig. 1, this
restrictive condition is met only in cases when fractures are
randomly distributed (Fig. 1a) or regularly spaced (Fig. 1b).
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Figure 2. Scanline reference frame with the definition of position
and spacing variables. L: scanline length; XF

i
: position of ith frac-

ture intersection; Si : spacing of ith “block” with mid-point position
XB
i

.

2.3 Non-parametric correlation

Non-parametric statistical methods discussed here are those
in which (Davis, 2002) (i) data are represented with ordi-
nal or rank-order scales instead of interval or ratio scales
and (ii) data are not required to fit parametric statistical
distributions (e.g. the normal or exponential distributions).
Since they are independent from any assumption or statistical
model, they are quite useful, particularly in the first phases of
analysis (Swan and Sandilands, 1995).

The non-parametric Spearman’s rank correlation coeffi-
cient measures the correlation between two rank-order vari-
ables. These are variables obtained by sorting numerical data
(interval- or ratio-scale variables) from the smaller to the
larger value and then replacing each value with an integer
representing its position in the sequence. If we take a dataset
with N data pairs xi and yi , and the rank-order variables are
R(xi) and R(yi), the Spearman’s correlation coefficient RS
is given by

RS = 1−
6
∑N
i=1(R (xi)−R(yi))

2

N
(
N2− 1

) .

For instance, in the case of a perfect correlation between xi
and yi in terms of rank order, we will have, for every ith data
pair, R(yi)= R(yi) and hence RS = 1.

We can use the Spearman’s rank correlation coefficient to
test the null hypothesis of no correlation vs. the alternative
hypothesis of correlation, considering critical values of RS or
the associated p values (Wasserman, 2004), so, for instance,
we will reject the null hypothesis at 5 % significance if p
value< 0.05.

The advantage of the Spearman’s rank correlation coeffi-
cient with respect to its parametric counterpart – the Pear-
son’s correlation coefficient – is graphically explained in
Fig. 3, where we see that the non-parametric correlation is
more robust in the case of outliers and is also able to detect
non-linear correlation in addition to standard linear correla-
tion (Swan and Sandilands, 1995).

2.4 Cumulative spacing spatial distribution: CSF and
CSD

We have found that, to study the spatial distribution of spac-
ing, it is very useful to plot the cumulative function of spac-
ing normalized by scanline length and its first derivative

Figure 3. Comparison of the Spearman’s rank correlation coeffi-
cient with respect to the parametric Pearson’s correlation coeffi-
cient. The non-parametric Spearman’s correlation is more robust in
the case of outliers and is also able to detect non-linear correlation in
addition to standard linear correlation (Swan and Sandilands, 1995).

(Fig. 1). This approach can be seen as a development of those
proposed by Gillespie et al. (1999), Choi et al. (2016), and
Sanderson and Peacock (2019), with the important differ-
ence that we have developed a new quantitative and objective
method to detect segments of a scanline that show a station-
ary behaviour.

The cumulative spacing function (CSF) corresponds to a
plot of the relative proportion of scanline length associated
with each block limited by a pair of fractures. The refer-
ence CSF, associated with a perfectly uniform spatial dis-
tribution of fractures, corresponds to a constant-slope line
with slope= 1 / scanline length (Fig. 1b). Fracture clusters
or other scanline segments with higher-than-average fracture
density appear as segments with a slope higher than the ref-
erence CSF, and the opposite applies to segments with lower-
than-average fracture density (Fig. 1c–e). The CSF for a ran-
dom distribution shows just some noise symmetrically dis-
tributed on both sides of the reference CSF (Fig. 1a).

The first derivative of the CSF (i.e. the CSD, cumulative
spacing derivative) follows the same behaviour. The refer-
ence CSD for a perfectly uniform distribution plots as a hor-
izontal line with height= 1 / scanline length (Fig. 1b). Clus-
ters or high-fracture-density scanline segments plot above the
reference CSD and lower-fracture-density segments plot be-
low the reference CSD (Fig. 1c–e); hence, they can easily be
recognized and classified with an objective criterion.

By comparing the CSF and CSD, it is possible to define
stationary scanline segments that show a constant slope and
hence a constant fracture density. If more than one stationary
segment occurs in a scanline, the boundary between differ-
ent segments is found by comparing the data CSD with the
reference CSD. The only difficulty with this approach is that
the CSD of natural datasets can be very noisy, with many
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spikes (see the random distribution in Fig. 1a). This problem
is solved by smoothing the derivative with an nth-order mov-
ing median filter (where n is the kernel size). To avoid biases
due to subjective choices on the smoothing kernel size, we
propose retaining subset boundaries that are consistently de-
fined when changing the smoothing kernel size over a wide
range.

3 Our workflow for scanline analysis

Our workflow for the analysis of fracture data collected on
scanlines can be subdivided into two major stages. First, we
use non-parametric statistics to check whether the dataset is
stationary, and if it is not stationary, we create subsets and/or
we rescale or normalize the data in order to obtain stationary
sets or subsets. Then, we analyse the datasets and/or subsets
with parametric statistics, following well-established meth-
ods to characterize the type of spatial distribution and its pa-
rameters.

The MATLAB® App DomStudioFracStat1D (Bistacchi,
2020), with a user-friendly graphical user interface that we
developed to perform this analysis, is available for download
at https://github.com/bistek/DomStudioFracStat1D (last ac-
cess: 19 October 2020).

3.1 Stationarity: non-parametric tests, rescaling, and
sub-setting

We apply the Spearman’s rank correlation coefficient to test
the correlation between two pairs of rank variables; the first is
designed to detect large-scale trends and the other one better
suited to detect distributions with clusters or patterns. Our us-
age was inspired by Swan and Sandilands (1995), with some
original variations and developments.

To test the data for large-scale trends (Fig. 1e), we test the
correlation between the position of each block bounded by
two fractures XB

i and the corresponding spacing Si . When
both variables are expressed as rank order, the position rank
order is simply R

(
XB
i

)
≡ i (i.e. the block closer to the origin

has rank 1, the second 2, etc.), so the correlation coefficient
can be written as (for N blocks)

RTREND
S = 1−

6
∑N
i=1(i−R(Si))

2

N
(
N2− 1

) ,

and we compare RTREND
S with tabulated critical values or use

the associated p value to test the null hypothesis of no trend
in spacing. We will obtain RTREND

S = 1 in the case that frac-
ture spacing keeps growing steadily and R(Si)= i for every
block. On the other hand, for a completely random distri-
bution we will obtain RTREND

S → 0. Plots of the large-scale
position–spacing correlation are shown in Fig. 1 for all spa-
tial distributions.

Even if large-scale trends are not detected, local small-
scale trends could reveal clustering (Fig. 1c) or repeating pat-

terns (Fig. 1d). We therefore compare spacing between pairs
of fractures taken in a sequence along the scanline using this
formulation for the correlation coefficient:

RLOCAL
S = 1−

6
∑N
i=1(R (Si)−R(Si+1))

2

N
(
N2− 1

) ,

and we compare RLOCAL
S with tabulated critical values or use

the associated p value to test the null hypothesis of no local
correlation in spacing. In this case RLOCAL

S → 1 if R(Si)≈
R(Si+1) for a large number of blocks, and RLOCAL

S → 0 oth-
erwise. Plots of the local spacing correlation are shown in
Fig. 1 for all spatial distributions.

The spacing–spacing correlation test used to detect lo-
cal clustering and/or patterns must be performed after the
position–spacing test used to detect large-scale trends be-
cause a large-scale trend is seen by the local test as a single
large-scale cluster; hence, the second test alone is not dis-
criminant for local vs. large-scale correlation in spacing.

If the null hypotheses of no large-scale trend and no local
clustering and pattern are retained, we can move on to the
parametric analysis stage (next section). However, if this is
not the case, the dataset can be rescaled, normalized, and/or
segmented into subsets to obtain stationary sets.

Rescaling and normalization are best suited when we de-
tect a smooth deterministic trend in spacing; i.e. the frac-
ture density varies continuously along the scanline. In this
case we must define the deterministic function of the trend
and normalize the data with this function; the residuals can
be considered a stationary set that can be analysed with the
methods presented in the next section. The methods to find
the deterministic trend function are various, and we feel that
they must also be guided by geological and tectonic observa-
tions, so we think that there is no “general method” to com-
plete this task. We will see an example in the first case study
(Sect. 4.1), in which we study the variable spacing of joints
in a laterally tapering layer of sandstone.

Sub-setting is very useful when we observe a stair-
stepping pattern, e.g. where we observe lower-fracture-
density domains intercalated by fracture corridors showing
markedly higher fracture intensity, or in some fault damage
zones (e.g. case study 2; Martinelli et al., 2020). These seg-
ments can be recognized and objectively classified by ob-
serving the CSF and CSD, particularly by comparing the data
curves to the reference ones. In our workflow, we (i) select
subset scanline segments (i.e. sub-scanlines) that are gener-
ally bounded by points of intersection of the data CSD with
the reference CSD, corresponding to changes in the slope of
the data CSF. (ii) We then test each subset once again for sta-
tionarity, and if the result is positive, (iii) we pass it to the
parametric analysis stage (next section).

We also conducted an alternative test for randomness by
comparing the spatial distribution of N fractures in terms of
position XF

i along a scanline of length L with a theoretical
Poisson distribution with the density parameter equal to the

Solid Earth, 11, 2535–2547, 2020 https://doi.org/10.5194/se-11-2535-2020
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fracture density µD =N/L. The discrete Poisson distribu-
tion expresses the probability Pr of having n discrete events
(fractures) distributed at random in sub-segments of length l
as (Swan and Sandilands, 1995)

Pr(nevents in segment l)=
(µDl)

ne−(µDl)

n!
.

The comparison of empirical and model distributions is per-
formed with a χ2 goodness-of-fit (GOF) test used to compare
the observedOj and expected Ej frequencies in segments of
the scanline, as in Fig. 1a–b. To have reliable results, the ex-
pected frequency in each class must be Ej ≥ 5; hence, seg-
ments are automatically pooled when they show lower values
(Swan and Sandilands, 1995). Unfortunately, this means that
this test is reliable only for very large datasets, and even in
this case, in our experience, it shows a limited sensibility in
detecting random vs. other arrangements.

3.2 Evaluation of a parametric distribution of spacing

Once we have segments of scanline that show a stationary
behaviour, we can use standard parametric methods to define
the type of spacing distribution (e.g. normal vs. exponential)
and fit its parameters (e.g. population mean and standard de-
viation) to the sample fracture spacing data. Then, following
a rich literature (e.g. Rives et al., 1992; Tan et al., 2014),
various parameters that correlate with the evolution of a frac-
ture system with increasing deformation can be discussed.
In this contribution, we test the spacing distribution for nor-
mal (Gaussian), log-normal, and negative exponential distri-
butions.

The maximum likelihood estimate (MLE) of the parame-
ters of these distributions can be obtained directly in closed
form from sample statistics. For instance, the mean spac-
ing µS and standard deviation σS of a normal distribution
are directly given by the sample mean and standard devia-
tion. However, MLE just provides an optimal estimate of the
distribution parameters, under the assumption that we have
chosen the right distribution, but does not allow comparing
which distribution (i.e. which statistical model) better con-
forms to the data.

The Kolmogorov–Smirnov (K-S) test is a non-parametric
test that was developed to check if two samples come from
the same distribution, either empirical or theoretical, and it
can be used as a goodness-of-fit (GOF) test for the null hy-
pothesis that the empirical distribution function (EDF) is not
different from the model cumulative distribution function
(CFD). This test is used by many authors, but it is biased if
the parameters of the theoretical distribution are not fixed but
estimated from the data themselves (Wasserman, 2004). For
this reason we apply the Lilliefors test instead of K-S when
possible (Lilliefors, 1967, 1969), which is not subject to this
bias, but unfortunately the Lilliefors test is not available for
log-normal distributions. In both cases the results can be ex-
pressed as p values, and the null hypothesis of no difference

with a given distribution is rejected at 5 % significance if p
value< 0.05.

In our workflow, if only one type of distribution passes the
test, we retain this as the best-fit one. If more than one distri-
bution is retained and the p values are similar, we generally
discuss the possibility that the data are equally well fitted by
both distributions and that they represent some sort of transi-
tional regime.

4 Case studies

4.1 Bed-confined joints in turbiditic sandstones

The scanline studied in this case comes from a single tur-
biditic sandstone bed in the Langhian to Tortonian Marnoso-
Arenacea Formation (Val Santerno, northern Apennines of
Italy; Ogata et al., 2017). The scanline was collected on a
photogrammetric digital outcrop model (e.g. Bistacchi et al.,
2015) with a 5 mm pixel resolution. The sandstone bed has
a variable thickness decreasing from ca. 32 cm to ca. 16 cm
over a distance of ca. 95 m. Fractures are bed-confined ten-
sional joints and the hypothesis that we are testing is whether
the bed thickness controls joint spacing (as predicted by
e.g. Bai and Pollard, 2000). In Fig. 4a the barcode plot
shows the position XF

i of every joint (482 joints in total),
with the Terzaghi correction already applied. Here we al-
ready see – qualitatively – that fracture density increases
from left to right. The trend test based on the Spearman’s
correlation coefficient yields RTREND

S =−0.335 and a very
small p value≈ 10−14; hence, the null hypothesis of no trend
is strongly rejected at a significance level nearing 100 %. A
further graphical confirmation of this behaviour comes from
the CSF (Fig. 4a) that shows a continuous curvature indicat-
ing that spacing is larger than mean spacing (lower slope) to
the left and smaller to the right (higher slope). The same is
confirmed by the CSD (Fig. 4a), for which we notice that the
data CSD is lower than the reference CSD in the 0–46 m seg-
ment, very close to the reference between 46 and 56 m and
then higher than the reference up to the end.

Based on these results, we cannot calculate any meaning-
ful statistics on this scanline, since, for instance, the average
fracture spacing is not stationary. The option to subset the
scanline to obtain stationary subsets is not feasible, since the
trend appears very continuous in the CSD. If we go back to
the geological model to be tested – fracturing is controlled
by bed thickness – it is natural to try and normalize the data
with bed height.

Bed height H F
i measured at every fracture is shown in

Fig. 4b. This measurement is affected by some noise (orange
line), so we take a smoothed version of this variable, obtained
by fitting a polynomial to H F

i (purple line), as representative
of the real bed thicknessH F-S

i . The normalized fracture posi-
tion is then calculated asXNORM

i =Xi/H
F-S
i . In this way the

total length of the scanline is altered, but this is not a real is-
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Figure 4. Analysis for the case study on bed-confined joints in turbiditic sandstones. See the discussion in the main text.
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sue since we can always switch back to the original reference
by using the sequence of fractures along the scanline. Differ-
ent polynomials of degree between 1st and 10th were tested,
and the 2nd degree was chosen as the one that is more suc-
cessful (i.e. yielding the smaller residuals) in removing the
trend. After normalization, the trend test based on the Spear-
man’s correlation coefficient yields RTREND

S = 0.011 and p
value= 0.806; hence, the null hypothesis of no trend for the
normalized dataset is retained at a significance level higher
than 80 %. We see the normalized barcode plot, CSF, and
CSF in Fig. 4c.

The second stage of analysis shows that normalized spac-
ing is log-normal distributed (Fig. 4c), with a p value= 0.185
obtained from the K-S test (the Lilliefors test cannot be per-
formed for this distribution). Exponential and normal distri-
butions are rejected by both the K-S and Lilliefors tests with
a very low p value< 10−3 (Fig. 4c). To confirm the rejec-
tion of a random spatial distribution, the χ2 test performed
on the Poisson distribution resulted in a rejection with p
value≈ 10−6 (Fig. 4c).

From these statistics we conclude that fracture spacing in
this turbiditic sandstone layer is controlled by bed thickness
and that the joint system is tending towards joint saturation
(see discussion in Bai and Pollard, 2000.

4.2 Fault-related fracturing in platform carbonates

The scanline discussed in Fig. 5 was collected in the south-
eastern part of the island of Pag (Croatia). In this region, Cre-
taceous carbonate platform successions are folded and imbri-
cated by NW–SE-trending thrusts of the External Dinarides
(Korbar, 2009; Mittempergher et al., 2019). The scanline was
collected along a mudstone–wackestone bed in a high-angle
anticline forelimb between two minor dextral E–W-trending
strike-slip faults with horizontal offsets of 10.3 and 0.5 m, re-
spectively. Closely spaced subvertical extensional fractures
and veins, striking nearly parallel to the faults, cross-cut
folded bedding planes and are therefore associated with the
last stages of fold tightening or postdate folding. Extensional
fractures, which are generally longer than veins, bear patches
of blocky calcite having the same appearance as that cement-
ing the veins. This evidence suggests the hypothesis that frac-
tures and veins were cogenetic and both associated with the
activity of strike-slip faults. To test the relations between
faults, veins, and fractures, here we considered extensional
fractures and veins to be a unique fracture set.

The barcode plot (Fig. 5a) highlights that, as expected,
fracture spacing increases with distance from the fault with
the highest offset, i.e. left to right. The Spearman’s correla-
tion coefficient test for large-scale trends yields RTREND

S =

0.438 and a very small p value≈ 10−16 (Fig. 5a); thus, the
null hypothesis of no trend is strongly rejected at a signifi-
cance level nearing 100 %. The Spearman’s correlation co-
efficient test for local spacing correlation yields RLOCAL

S =

0.328 and a p value≈ 10−9 (Fig. 5a); hence, the null hypoth-

esis of no pattern or clustering is also strongly rejected at a
significance level nearing 100 %. The sample CSF and CSD
for the whole scanline (Fig. 5a) depart significantly from the
reference CSF and CSD, with the first part of the function
(1.0–5.0 m) having a slope higher than average, the central
part (5.0–12.8 m) having a slope close to average, and the
final part having a slope lower than average (12.8–19.7 m).

As in the previous example, fracturing is not stationary
along this scanline and calculating parameters such as aver-
age spacing or fracture density over the entire scanline would
have been meaningless. We therefore test the hypothesis that
the fault damage zone can be subdivided into internally ho-
mogeneous sectors. These should have relatively constant
slopes in the CSF, and we selected their boundaries by rec-
ognizing plateaus in the CSD, separated by sharp transitions
at 5.0 and 12.8 m (Fig. 5a).

When segmented, the three sectors do not show trends or
patterns (non-parametric tests for large-scale and local spac-
ing correlation; Fig. 5b) and instead have a CSF and CSD
compatible with a random or uniform distribution (Fig. 5b).
We conclude that fractures behave as stationary in the three
sectors; hence, we can calculate sample statistics such as
mean spacing and its inverse – fracture density (Fig. 5d). This
suggests that, moving away from the largest fault, fracturing
does not decrease continuously but stepwise.

Within each stationary sector, a parametric distribution
can be fitted to the data. According to the Lilliefors test, no
sector has an empiric EDF compatible with an exponential
CDF (with significance nearing 100 %). Sector 1 is consis-
tent with a log-normal distribution, sector 2 is compatible
with a normal distribution, and sector 3 is compatible with
both log-normal and normal distributions. Log-normal and
normal distributions indicate a certain degree of organiza-
tion and fracture saturation, i.e. an evolution towards regu-
larly spaced fractures and the effect of some repulsive pro-
cess as discussed in the Introduction. In this case, in which
fractures cross-cut several mechanical layers and are geneti-
cally related to faults, the factors controlling fracture spatial
distribution are likely related to inhomogeneous strain distri-
bution (e.g. Spyropoulos et al., 1999).

If we consider the χ2 goodness-of-fit (GOF) test, we see
that fractures in each sector show a spatial distribution ap-
parently compatible with a random Poisson distribution (p
values= 0.50÷ 0.83; Fig. 5c). This should have implied an
exponential spacing distribution that is strongly excluded by
the Lilliefors test. We conclude that the χ2 GOF test for the
Poisson distribution is not reliable in this case, and we con-
firm the regular spatial distributions implied by normal and
log-normal spacing distributions.
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Figure 5. Analysis for the case study on fault-related fracturing in platform carbonates. See the discussion in the main text.
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5 Discussion and conclusion

We have introduced an innovative workflow for the statisti-
cal analysis of fracture data collected along scanlines. The
workflow is composed of two major stages, each one with
alternative options for the analysis of data showing different
behaviour and spatial arrangement. Navigating across differ-
ent options is based on geological hypotheses on the data
that can be validated or falsified by quantitative statistical
tests; hence, the workflow is both adherent to the geologi-
cal goals of the analysis and objective under the statistical
point of view.

A prerequisite in our analysis is the assessment of the sta-
tionarity of the dataset. From the statistical point of view,
this is motivated by the fact that calculating statistics on non-
stationary samples can be meaningless, particularly if the
goal is to estimate parameters of the underlying population.
From the geological point of view, the normalization and
sub-setting required to obtain stationary segments of scan-
line improve our understanding of the deformation processes
very much.

For instance, in the first case study normalizing the frac-
ture spacing distribution by bed thickness and observing that
the residuals show an almost-saturated log-normal distribu-
tion yield an extremely strong demonstration of the effect
of layering on jointing (sensu Bai and Pollard, 2000), even
stronger than in many other published examples for which
bed thickness is constant.

In the second case study, sub-setting the scanline to obtain
stationary and homogeneous domains improved the under-
standing of fracturing in a damage zone, quite like in Choi
et al. (2016) and in Martinelli et al. (2020). Our methodol-
ogy based on the analysis of CSF and CSD allows setting the
boundaries of stationary domains in an objective way, and
repeating the non-parametric tests for large-scale and local
spacing correlation on the sub-scanlines allows for confirma-
tion that the subsets are really stationary. If applied routinely,
this will help shed new light on the internal structure of fault
zones (i.e. fault zone architecture studies) and probably in
situations in which there is a lithological control on brittle
deformation.

Once the stationarity requirement has been demonstrated
for the dataset or subset, many statistical methods already
known in the literature can be applied. In this contribution we
mainly discussed methods aimed at understanding the degree
of saturation of fracturing based on the type of spacing distri-
bution (i.e. exponential, log-normal, or normal; e.g. Rives et
al., 1992; Tan et al., 2014). This is a simple achievement,
but we would like to recall that it is only possible to use
this approach once stationarity has been established; other-
wise, errors cannot be avoided since the relationship between
spatial distribution and spacing distribution is not biunivocal.
For instance, it is possible to observe an exponential spacing
distribution in the case of spacing distributions with a trend
(Fig. 1e) or repeating pattern (Fig. 1d); hence, observing an

exponential distribution of spacing is not a valid proof of a
random spatial distribution. This also impedes using simpli-
fied approaches, such as that of the correlation coefficient by
Gillespie et al. (1999), without double-checking the spatial
distribution with other approaches.

On the other hand, advanced analyses such as the normal-
ized correlation count (NCC) by Marrett et al. (2018) can be
performed on stationary datasets defined as proposed here
and will improve the understanding of fracturing in many
interesting case studies. If using NCC, whether the non-
parametric test for local spacing correlation is really neces-
sary must be evaluated, but we feel that demonstrating large-
scale stationarity is still fundamental, at least to be able to
use sample distributions to model the underlying population
distributions.

Finally, we have also conducted a goodness-of-fit test
aimed at directly detecting the random Poisson spatial distri-
bution. This seemed a logical choice since the discrete Pois-
son distribution is the model of every random distribution of
discrete events in 1D, 2D, and 3D, and Poisson processes
are used to distribute fractures in discrete fracture network
(DFN) simulations (e.g. Dershowitz et al., 2003; Elmo and
Stead, 2010; Bonneau et al., 2016). Unfortunately, the χ2

GOF test seems to return a lot of false negatives in the sense
that it fails to reject distributions that are not random but are,
for instance, log-normal (see second case study). For this rea-
son, we prefer to follow the approach presented above instead
of using the χ2 GOF test.

Code availability. The MATLAB® App DomStudioFracStat1D
(Bistacchi, 2020), with a user-friendly graphical user interface that
we developed to perform this analysis, is available for down-
load at https://github.com/bistek/DomStudioFracStat1D (last ac-
cess: 19 October 2020).
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