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Abstract—Many automatic Web testing techniques generate test cases by analyzing the GUI of the Web applications under test, aiming
to exercise sequences of actions that are similar to the ones that testers could manually execute. However, the efficiency of the test
generation process is severely limited by the cost of analyzing the content of the GUI screens after executing each action.
In this paper, we introduce an inference component, SIBILLA, which accumulates knowledge about the behavior of the GUI after each
action. SIBILLA enables the test generators to reuse the results computed for GUI screens that recur multiple times during the test
generation process, thus improving the efficiency of Web testing techniques.
We experimented SIBILLA with Web testing techniques based on three different GUI exploration strategies (Random, Depth-first, and
Q-learning) and nine target systems, observing reductions from 22% to 96% of the test generation time.

Index Terms—Web testing, System testing, State inference.

✦

1 INTRODUCTION

W EB testing techniques generate test cases by interacting
with the GUI of the Applications Under Test (AUT) [1],

[2], [3], [4], [5], that is, performing actions on the graphical
interface (e.g., clicking buttons or entering text in textfields)
and checking the correctness of the responses (e.g., the
expected text in a page). The simplest approaches, such
as Monkey testing [6], randomly execute actions regardless
of the content of the GUI, for instance producing click events
at random screen coordinates. In this case, the test generator
is particularly efficient in generating many events per second,
but does not reason on the behavior of the application
under test, and this limits its capability to generate complex
sequences of interrelated events or capture failures that do
not manifest as crashes [7], [8].

Other Web testing techniques (a) analyze the GUI screen
of the AUT (GUI scan) after executing every action to extract
the current AUT state; (b) compute state-specific properties
(state analysis) relevant for their testing algorithms, e.g.,
whether the current state corresponds to a state already
visited in the past; and (c) progress by selecting and executing
an action that belongs to the current state (do action). The
analysis of the GUI enables Web testing techniques that
can reason on the generation of sophisticated sequences
of interrelated interactions [9]. However, it also introduces
a significant overhead in the test generation process. For
instance, Figure 1 shows the distribution of the time spent
for GUI scan, state analysis, and do action operations, for the
Web testing techniques considered in the experiments that
we report in this paper, when used to test the Dolibarr [10]
Web application. Selecting and executing actions took only
between 8% and 23% of the testing budget, while GUI scan
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ABT (Random), left plot, the tool ABT [11] equipped with random strategy: It
does not exploit any state analysis, simply executes random actions out of the
ones that belong to each GUI screen;
ABT (Q-learning), mid plot, the tool ABT [11] equipped with Q-learning: It
exploits state abstractions heuristically, to reward actions that are likely to explore
sequences of distinguishable GUI screens;
Crawljax (Depth-first), right plot, the tool Crawljax [3]: It compares states by
using precise distance metrics to identify recurring GUI states, to explore the
possible action sequences in depth-first fashion.

Fig. 1: Relative time for GUI scan, state analysis, and do
action operations, while testing the application Dolibarr [10].

and state analysis used most of the time (between 77% and
92%), with different relative contributions depending on the
technique.

This paper proposes a novel approach that increases the
efficiency of Web test generators by drastically reducing the
time allocated for GUI scan and state analysis operations. The
key idea is to identify and memoize the deterministic behaviors
of the software, in order to infer recurring GUI states, and thus
reuse the results of past GUI scan and state analysis computations
instead of executing them over and over again. In fact, Web
test generators frequently repeat many interactions multiple
times, while they incrementally unfold the execution space
of the applications under test. For instance, every new test
case starts from the same initial state and often re-executes
early actions already done in previous test cases. This type
of activity naturally leads to visit the same GUI states and
perform the same actions multiple times, thus generating
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opportunities for reuse.
Our approach, which we refer to as SIBILLA, can be

incorporated in many Web test generators to monitor,
memoize and reuse the results of the GUI scan and state
analysis operations, and can thus deliver significant efficiency
improvements for a wide range of Web testing techniques.
SIBILLA maintains a knowledge base that represents the
relation between the actions and the GUI states executed
throughout the test generation process, and exploits the
knowledge base to infer when the test generator is executing
an action that deterministically leads to a GUI state that
is already maintained in the knowledge base. For instance,
SIBILLA can infer that clicking on a menu entry always leads
to the same GUI state (e.g., a GUI page that lists the possible
operations related to the given menu entry). In these cases,
SIBILLA returns the GUI state and the information already
computed correspondingly, thus superseding the need of
both running the GUI scan operation and analyzing the
resulting state.

Moreover, SIBILLA is designed to tolerate weakly non-
deterministic behaviors, that is, behaviors that may lead
to multiple - but finitely enumerable - GUI states. For
instance, SIBILLA could infer that the output of a login
request could be either the user homepage or a login-rejected
page, and suitably memoize both these behaviors in its
knowledge base. The non-determinism tolerance capacity,
that is, the maximum number of alternative results that
SIBILLA may handle for non-deterministic behaviors, is
a configuration parameter. Upon detecting behaviors that
exceed its non-determinism tolerance capacity, SIBILLA falls
back to executing the usual GUI scan and state analysis
operations. SIBILLA can also be configured with abstraction
functions to optimize the space-efficiency of the knowledge
base at the cost of some loss of precision of its inferences.

We experimented with SIBILLA equipped with an initial
set of alternative abstraction functions, integrating it with
three Web test generation techniques: Crawljax [3], which
explores the action sequences of the application under test in
depth-first fashion,1 ABT [11], which derives test cases driven
with the Q-learning-based heuristic of rewarding actions that
likely explore sequences of distinguishable GUI screens, and
Random, which executes actions chosen at random among
the ones that belong to each GUI screen.

We tested nine Web applications with these three tech-
niques, comparing the original versions of their algorithms
with the corresponding versions integrated with SIBILLA, in
turn equipped with several possible abstraction functions.
The results show that SIBILLA is able to improve the efficiency
of the considered Web testing techniques (often halving
their execution time, and sometime reaching up to a 90%

1. Crawljax is more of a Web crawling infrastructure, rather than
a proper Web test generator, and some researchers reported issues in
turning the action sequences explored by Web crawling into reproducible
test suits [12], [13], [14]. Nonetheless, several researchers have used
Crawljax as the basis for Web testing techniques [15], [16]. In this paper
we are interested in how our approach can help optimize the exploration
strategies that Web test generators may exploit for supporting their test
generation strategies, and this makes Crawljax a very good candidate
for experimenting the effectiveness of our approach. In this respect, and
just for the sake of simplifying the presentation, we slightly abuse the
terminology Web test generator when referring to Crawljax in the context
of this paper.

reduction), although it can sometimes introduce a limited
degree of imprecision.

The paper is organized as follows. Section 2 introduces
SIBILLA and its core algorithms. Section 3 presents the empir-
ical evaluation of SIBILLA and discusses the obtained results.
Sections 4 and 5 report related work and our conclusions,
respectively.

2 THE SIBILLA APPROACH

2.1 Definitions
We first introduce some definitions that are useful to illustrate
SIBILLA.

Definition 1. GUI state. A GUI state s ∈ S is a set of widgets
(i.e., graphical objects) s ≡ {w1, w2, ...} that includes all the
widgets w1, w2, . . . visualized in a GUI screen. Each widget
w is defined by its set of properties w = {pi}, being each
property a key-value pair pi = ⟨ki, vi⟩, e.g., ⟨clickable, true⟩

Definition 2. Scan. SCAN is an operation SCAN : SCR → S,
that analyzes the GUI screen currently visualized (scr ∈
SCR) and returns the GUI state (s ∈ S) representing the set
of the widgets that are part of the screen.

For instance, a GUI screen of a Web application can be
a page with widgets that correspond to the Web forms, the
text fields, and the buttons within the page. Each widget
is characterized by several properties. For instance, button-
widgets are characterized by properties such as ⟨clickable,
true⟩ and ⟨value, ’submit’⟩. The SCAN operation returns the
widgets in the current GUI state in the form of programmatic
objects that the test generator can suitably inspect, store and
exploit.

In particular, to progress in exploring the possible GUI
states, the Web testing techniques select and execute actions
by interacting with the widgets. To this end, since the chosen
actions shall be then executed on the actual screen, the
testing tools must be able to dereference those programmatic
widgets with respect to the current screen. The technical
means to dereference a widget is referred to as a locator [17].

Definition 3. Locator. A locator l is a programmatic object
that uniquely identifies a widget in a given GUI state, and
that can be dereferenced with respect to a current GUI screen
to execute the actions of the widget.

Locators can take different forms, such as XPath descrip-
tors and sets of properties that uniquely identify the specific
widget [17].

Definition 4. Action. We define an action a ∈ A as a triple
a = ⟨lw, type, P ⟩, where lw is the locator of the widget w
targeted by the action, type is the type of the action (e.g.,
click), and P is a (possibly empty) list of parameter values.

Some techniques exploit also compound actions con-
sisting of sequences of interactions that must be executed
without interruption (e.g., enter data in every input field
present in a form and then submit the form).

2.2 Overview of SIBILLA

The SIBILLA approach that we propose in this paper draws
on the observation that GUI-based test generation techniques
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tend to visit the same GUI states many times over and over
again while exploring the GUI of the target application.
Thus, when landing in a GUI state that has been already
visited, a test generation technique could benefit of reusing
the result of the operations executed in the past for that same
state. Since executing the SCAN and state analysis operations
are often computationally expensive, achieving this type of
time-saving many times promises significant efficiency gains
for the test generation process.

To this end, SIBILLA populates and maintains a knowl-
edge base of the GUI states that a test generation technique
visits during a testing session, and exploits the knowledge
base at each new GUI interaction to try to infer the reached
state, superseding the need of both executing the SCAN operation
and performing the associated computations. In the following, we
introduce how SIBILLA works incrementally, starting from a
naive definition, which captures the essential idea of SIBILLA
of leveraging deterministically recurring interactions, up to
its final definition, which aims to address the spectrum of
challenges to foster efficient Web testing techniques.

SIBILLA naive: In its most naive form, the SIBILLA
knowledge base is a map that associates a GUI interaction
with the results of both executing SCAN and performing
state analysis at the reached GUI screen. More rigorously, the
naive knowledge base has the form

SIBILLAnaive : S ×A → S ×D

where S denotes GUI states, A denotes possible actions, and
D generically denotes the state data that the test generator
can compute with state analysis. SIBILLAnaive(s, a) = ⟨s′, d′⟩
means that s′ ∈ S is the GUI state reached by executing the
action a from state s, and d′ ∈ D is the result of state analysis
for s′. Note that the actual content of the data d′ depend on
the specific test generator being considered. For instance,
Crawljax, one of the tools that we used in our experiments,
computes the edit-distance [18] between states to identify
already visited states (i.e., the ones with zero-distance
from some previously visited state). This check becomes
increasingly expensive while the number of explored GUI
states increases over time. In this case, the data d′ can store
the result of the checks already done to avoid recomputing
them when a given state is reached again.

The knowledge base is populated incrementally while
actions are executed. In particular, when a testing technique
executes an action a from a state s, it can refer to SIBILLAnaive

to check whether that interaction is already part of the
knowledge base. If this is the case, SIBILLAnaive returns
the corresponding GUI state along with the associated data
from the knowledge base without executing neither SCAN
nor state analysis. Otherwise, if the interaction is not yet in
the knowledge base, SIBILLAnaive executes SCAN, analyzes
the resulting state, and adds the results in the knowledge
base for future reuse opportunities.

For instance, let us consider a Web application under test
in a state in which the application visualizes a login screen
as the one sketched in the left side of Figure 2. Let ŝ be the
GUI state that the SCAN operation returns for this screen,
that is, ŝ consists of a page with title "Login page", two label-
widgets named "username" and "password", respectively,
two textfield-widgets filled with the strings "alice" and

alice

n1c3P@55w0rd

username

password

submit

Login page

Lorem ipsum dolor sit
amet, consectetur

adipiscing elit, sed do 
eiusmod tempor

incididunt ut labore et 
dolore magna aliqua. 

Ut enim ad minim
veniam, quis nostrud
exercitation ullamco

laboris nisi ut aliquip…

Welcome, alice

logout

Home page

Fig. 2: A sample GUI interaction.

"n1c3P@55w0rd", respectively, and a button-widget to submit
the inquiry. SIBILLAnaive can observe that when the submit-
action is executed from that state, the application lands in a
new screen like the one in the right part of the figure, which
SCAN returns like the GUI state s̃, and the analysis of the
state generates the data d̃. Thus, SIBILLAnaive stores the entry
⟨ŝ, â⟩ → ⟨s̃, d̃⟩ in its knowledge base: if a testing technique
executes the same interaction once again, that is, if it submits
another login inquiry with the same name and password
as in the figure, SIBILLAnaive can return the state s̃ along
with the associated data d̃ without the need of scanning
the GUI screen and analyzing the resulting state. Similarly,
SIBILLAnaive could store the attempts with wrong username-
password pairs that keep the GUI state in the login page, and
reuse those results.

SIBILLA non-deterministic: SIBILLAnaive assumes that
the GUI interactions are strictly deterministic. However,
the determinism of the GUI interactions cannot be taken
for granted because the GUI state is generally a partial
representation of the execution state of the application under
test. For example, the interaction that we exemplified with
reference to Figure 2 holds only until the user "alice" does
not change her password. Conversely, after the password
gets changed, the same interaction that we denoted above as
⟨ŝ, â⟩ keeps the application in the login page, invalidating
the entry ⟨ŝ, â⟩ → ⟨s̃, d̃⟩ in the knowledge base.

SIBILLA acknowledges that some GUI interactions may
yield non-deterministic results, and includes support for
capturing the non-deterministic interactions to some degree.
On one hand, it allows for associating an interaction with
multiple distinct landing states, up to a bounded number,
thus capturing non-deterministic interactions. On the other
hand, it discriminates only those non-deterministic behaviors
with observable impact, thus absorbing the differences that
do not produce observable impacts on the GUI exploration
mechanism of the testing technique.

In detail, the knowledge base of SIBILLA is designed to
associate multiple states with each interaction, up to some
(configurable) maximum number of states, thus allowing
for tolerating some non-deterministic behaviors. Beyond the
tolerance capacity, that is, when an interaction results in
more distinct states than the maximum number, SIBILLA
safely falls back to the nominal case of executing SCAN and
state analysis. To this end, the SIBILLA knowledge base has
the form

SIBILLAn
nondet : S ×A → ⟨S ×D⟩i≤n ∪ n.d.

where, incrementally on SIBILLAnaive:
• n is a positive natural number that SIBILLAnondet takes as

configuration parameter,
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• ⟨. . . ⟩i≤n denotes a tuple of max n entries,
• a mapping like SIBILLAn

nondet(s, a) =
⟨⟨s1, d1⟩, ⟨s2, d2⟩, ..., ⟨si, di⟩⟩ means that, based on
the interactions observed so far, executing the interaction
⟨s, a⟩ led to a GUI state out of the set {s1, s2, ..., si}, with
d1, d2, ..., di being the corresponding state analysis data,
respectively, and

• a mapping like SIBILLAn
nondet(s, a) = n.d. means that the

interaction is marked as non-deterministic beyond the
tolerance capacity of SIBILLAn

nondet, since the interactions
observed so far revealed more than n distinct states.

When the testing technique executes a GUI interaction,
SIBILLAn

nondet checks whether that interaction is part of
the knowledge base. If the interaction is being executed
for the first time, i.e., it is not in the knowledge base yet,
SIBILLAn

nondet executes SCAN, analyzes the resulting state,
and adds the results in the knowledge base. Otherwise, if
the interaction is associated with a list of states (and is not
n.d.), then SIBILLAn

nondet returns the first entry from the cor-
responding tuple. SIBILLAn

nondet optimistically assumes that
the returned state conforms with the actual GUI state, but
double-checks this assumption when the testing technique
dereferences the widgets that belong to the state. Failing to
dereference a widget reveals a non-conforming state with
observable impact. In this case, SIBILLAn

nondet iterates and
returns the next entry in the associated list, letting the tool
re-try with the new state. SIBILLAn

nondet iterates this behavior
until it returns a conforming state, or there are no other states
in the list. When no conforming state is found, SIBILLAn

nondet

executes the SCAN operation, analyzes the state, and either
adds the results in the list, if it currently contains less then
n states, or replaces the current list with the special value
n.d., to record that it observed more than n alternative states
for the considered interaction and that both SCAN and state
analysis must be always executed, if the current interaction
is encountered again.

SIBILLA with abstractions: SIBILLAn
nondet does not con-

trol for the potentially unjustified proliferation of entries
in the knowledge base. In fact, although an action may
deterministically lead to a given GUI state, any small
difference in distinct instances of that action (e.g., a small
difference in the text entered in an input widget) can prevent
reuse. Similarly, any small difference in distinct instances of
the GUI states where the actions are executed can prevent
the reuse opportunities. To address this challenge, SIBILLA
relies on abstraction functions that can effectively collapse
multiple concrete interactions with equivalent behavior into
single abstract one. Abstraction functions can be exploited
both to abstract from irrelevant details about actions and
states, and to define approximated state matching heuristics.
With the abstraction functions, the SIBILLA knowledge base
further refines as:

SIBILLA
n,absS,absA
abstract : Sabs ×Aabs → ⟨S ×D⟩i≤n ∪ n.d.

where, incrementally on SIBILLAn
nondet:

• absS : S → Sabs is an abstraction function on the GUI
states,

• absA : A → Aabs is an abstraction function on the GUI
actions,

• a mapping like SIBILLA
n,absS,absA
abstract (sabs, aabs) =

⟨⟨s1, d1⟩, ⟨s2, d2⟩, ..., ⟨si, di⟩⟩ means that, based on
the interactions observed so far, executing any interaction
⟨s, a⟩ that corresponds to the abstract interaction
⟨sabs = absS(s), aabs = absA(a)⟩ led to a GUI state in the
set {s1, s2, ..., si} and to the corresponding state analysis
data.

Working with SIBILLAabstract, the SIBILLA knowledge
base stores interactions in abstract format. Thus multiple
concrete interactions may correspond to the same abstract
interaction, and SIBILLA records the GUI states associated
with the same abstract interaction as non-deterministic
alternatives for that interaction.

For instance, referring again to the login screen of Figure 2,
let us exemplify two abstraction functions, that is, the ab-
straction function absSpage that abstracts all GUI states that
correspond to the same Web page as the same abstract GUI
state, and the abstraction function absAlocator that abstracts
all actions with the same locators as the same abstract action.
With these abstraction functions, SIBILLA

n,absS,absA
abstract records

all submissions of login inquiries as the same abstract interac-
tion, independently from the actual username and password
values in the current screen. Yet, SIBILLA

n,absS,absA
abstract stores

all resulting GUI states (i.e., the screens that correspond to
either a successful or a failed login operation, respectively) in
the list with the abstract login interaction. This configuration
of the knowledge base is particularly convenient, in fact it
allows SIBILLA

n,absS,absA
abstract to infer the concrete state reached

after login in one or maximum two attempts, without the
need of running the SCAN operation.

Choosing appropriate abstraction functions can have
a great impact on the performances of SIBILLA, with the
optimal choice being context dependent in most cases,
as also noted in other papers that studied the impact of
state abstractions [3], [12], [19]. For this reason, our current
prototype of SIBILLA is equipped with multiple abstraction
functions, which can be selected as configuration parameters,
and is designed to be easily extensible to work with further
abstraction functions that could be defined in the future for
different use cases.

Note that abstractions on states and actions act synergisti-
cally and simultaneously, since an interaction corresponds to
executing an (abstract) action when being in a given (abstract)
state. In fact, significantly abstracting GUI states but not
GUI actions might generate models with a proliferation of
concrete actions that reach the same very abstract states,
failing to distinguish the effect of the actions represented in
the model. Viceversa, significantly abstracting GUI actions
but not GUI states might lead to models with few actions
non-deterministically reaching many diverse states, resulting
in models where the state resulting from an action cannot
be predicted anymore. Our current prototype of SIBILLA
allows engineers to plug their own abstraction functions, to
specifically customize their test generation technique, but we
recommend to choose pairs of abstraction functions working
at similar abstraction levels.

In the rest of the paper, we use the short name SIBILLA to
refer to the full version SIBILLA

n,absS,absA
abstract of the approach.
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2.3 Reuse Opportunities with State Data
As discussed above, SIBILLA lets the test generation tech-
niques benefit of reuse opportunities relatively to the state
data that the test generator shall compute multiple times
for the recurring GUI states. When the testing tool executes
a GUI interaction that matches with an abstract interaction
recorded in the knowledge base, SIBILLA returns a candidate
GUI state, along with the associated state data.

For instance, in our experience with integrating SIBILLA
in the test generation tools ABT and Crawljax, we success-
fully exploited the data associated with states to save the
cost of the state-dependent computations that are performed
by these tools. Here we elaborate on the case of Crawljax to
give a concrete example.

Crawljax explores the action sequences of a Web appli-
cation in depth-first order. At each new GUI state, it checks
whether the current state corresponds to some previously
traversed GUI state, aiming to discriminate the actions of the
new state that loop to states already executed at previous
traversals, and thus limit the next exploration steps to non-
cyclic actions. To this end, Crawljax can be configured for
using an adapted version of the traditional edit-distance
algorithm [18], to identify the matching states as states with
very high similarity, i.e., edit-distance below a given (low)
threshold. Unfortunately, this check becomes increasingly
expensive while the number of already explored GUI states
increases over time.

We thus adapted Crawljax to store in the SIBILLA knowl-
edge base the edit-distance values computed at each GUI
state. Thus, when SIBILLA returns a GUI state from the
knowledge base, Crawljax can reuse the already computed
similarity results, and shall compute the edit-distance values
only with respect to the GUI states visited since the last time
it met that GUI state.

In general, the knowledge base can be used to store
information that is either always the same for each GUI state,
or varies monotonically at every new visit of a GUI state.
This latter (monotonic state data) is in fact the case of the
edit-distance values of Crawljax.

2.4 The SIBILLA Algorithm
In this section, we give the operational definition of the
steps of SIBILLA that we have informally introduced in
the previous section, and discuss how the GUI exploration
algorithm of a test generation technique can be adapted to
integrate with SIBILLA.

Algorithm 1 represents a (generic) GUI exploration
algorithm that exploits SIBILLA in pseudocode: the non-
shadowed pseudocode renders the nominal steps of the
algorithm (i.e., the steps through which the algorithm would
proceed even without SIBILLA), the shadowed steps depend
on SIBILLA, and those in box-frames are part of the nominal
algorithm but are not needed with SIBILLA. In particular,
the functions SIBILLAGET and SIBILLAADDDATA (called
at lines 11, 16, and 20) represent the execution of SIBILLA.
Below, we first describe the integration logic by discussing
Algorithm 1, and then formalize the definition of SIBILLA
with reference to Algorithm 2.

In Algorithm 1, the nominal algorithm is intentionally
generic in specifying how the considered technique accom-
plishes its test generation purposes. Essentially, the nominal

Algorithm 1 GUI exploration with SIBILLA.
1: function EXPLOREGUI
2: s← Initial GUI state
3: a← Initial action, selected in state s

4: KB ← ∅
5: do
6: Execute action a in state s

7: s′ ← SCAN

8: i← 0
9: do

10: i← i + 1

11: s′, d′ ← SIBILLAGET(KB, i, s, a)
12: a′ ← Next action, selected in state s′

13: while a′ is not valid in the current GUI screen

14: if d′ = nil then
15: d′ ← Compute data in s′

16: SIBILLAADDDATA(KB, s, a, s′, d′)
17: else
18: if Refinement needed for d′ then

19: d′ ← Refine d′ based on s′

20: SIBILLAADDDATA(KB, s, a, s′, d′)
21: end if
22: end if
23: Execute tool behavior against s′, d′

24: s← s′, a← a′

25: while Exploration not completed
26: end function

algorithm simply describes a traversal of GUI states that
starts from an initial GUI state and an initial action (lines 2–
3), and then executes actions iteratively (line 6) until meeting
some termination condition (e.g., reaching the maximum
number of actions to execute, line 25). After each action, the
algorithm relies on the SCAN operation to retrieve the GUI
state that corresponds to the current screen (line 7), selects
a new action to execute thereon (line 12), possibly extracts
data from the GUI state (line 15), executes some tool-specific
test generation behavior (line 23), and sets the current GUI
state and the new action as the ones to consider at the next
iteration (line 24).

The algorithm integrated with SIBILLA exploits the
SIBILLA knowledge base to try to superseed the need of
performing the SCAN and state-analysis operations. Algo-
rithm 1 renders this integration by defining an initially
empty knowledge base (line 4), and replacing the direct
invocation of SCAN in line 7 with the loop at lines 8–25
that iteratively queries the knowledge base for the candidate
GUI states associated with the last executed action. The
call to function SIBILLAGET (line 11) represents the query
to the knowledge base to retrieve the i-th candidate GUI
state associated with the pair ⟨s, a⟩, where s is the previous
GUI state and a is the last executed action. The algorithm
then validates the candidate state by checking whether the
next action, selected out of the candidate state (line 12), can
be correctly dereferenced against the current GUI screen
(line 13). Otherwise, it iterates with the next candidate state.
If the current knowledge base does not suffice to infer any
valid candidate state for (s, a), SIBILLAGET falls back to
executing SCAN and returns the resulting state (s′, nil) to
enrich the knowledge base. For instance, if the knowledge
base includes 3 candidate states for a pair (s, a) and all of
them are not valid for the current GUI screen, when invoking
SIBILLAGET with i = 3, the functions falls back to using the
SCAN operation to return a valid state.
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When integrated with SIBILLA, the exploration algorithm
can exploit the knowledge base also to retrieve state data
that were already returned with the current GUI state (result
d′ at line 11). When this is the case, SIBILLA limits the
computation of the data related to the current GUI state
(nominal algorithm, line 15) only to the first time that a GUI
state was added to the knowledge data (in this case the
result d′ at line 11 would be nil, thus enabling the check
at line 14). The steps at line 18 and line 19 serve for those
Web testing algorithms that must monotonically refine the
previously computed state data when re-traversing a GUI
state, as we exemplified in the previous section in the case of
Crawljax. In these cases, the exploration algorithm replaces
line 15 of the nominal algorithm with the less expensive
step that refines the data retrieved from the knowledge base
(line 19). Upon either computing or refining the state data,
the exploration algorithm calls function SIBILLAADDDATA
to update the content of the knowledge base to memoize the
new or refined data (line 16 and line 20, respectively).

Algorithm 2 describes the functions SIBILLAGET, SIBIL-
LAADDSTATE amd SIBILLAADDDATA that formalize the
definition of SIBILLA in operational style.

SIBILLAGET takes as input the current knowledge base
(parameter KB), the information on the last executed action,
which includes both the action itself (parameter a) and the
GUI state in which it has been executed (parameter s), and
the index (parameter i) to access a specific candidate GUI
state out of the list of candidate states that the knowledge
base is able to match with the executed action. It returns
the candidate GUI state retrieved from the knowledge base
(output s′), along with the associated data available in the
knowledge base (output d′).

SIBILLAGET depends on the SCAN operation (line 6)
and the abstraction functions for states and actions (lines
7 and 8). SIBILLA may fall back to executing SCAN when
the knowledge base does not suffice to infer valid candidate
states (line 27). SIBILLA uses the abstraction functions to
mitigate the proliferation of entries and quickly accumulate
knowledge about the behavior of the application. In fact,
SIBILLAGET works with abstract states (sabs at line 10) and
actions (aabs at line 11).

SIBILLAGET retrieves the candidate state from the knowl-
edge base provided that the pair ⟨sabs, aabs⟩ refers to a
knowledge base entry that both (a) was not previously
marked as non-deterministic (line 12) and (b) matches with at
least i candidate states, meaning that it indeed has an i-th
candidate (lines 13–14). If this is the case, SIBILLAGET returns
the i-th GUI state associated with ⟨sabs, aabs⟩ (lines 15–16).

Otherwise, SIBILLAGET falls back to executing SCAN,
either in case of non-deterministic entries (i.e., when the
check at line 12 fails, and it then calls SCAN at line 22) or
in absence of matching candidates (i.e., when the check at
line 14 fails, and it then hands the control to the subroutine
SIBILLAADDSTATE that calls SCAN at line 27). In both these
cases, being it the first time that the considered GUI state
occurs, SIBILLAGET returns the newly scanned GUI state
(line 23 and line 19, respectively), but does not return any
associated data (it returns the special value nil), leaving for
the testing tool the task of computing the data to associate
with the new state.

Algorithm 2 Inferring GUI states with SIBILLA.
Input:
1: KB: the SIBILLA knowledge base
2: s: the GUI state before executing the last action
3: a: the last executed action
4: i: the index to access the list of candidate GUI states

Output:
5: s′, d′: the inferred GUI state s′ with associated data d′

Dependencies:
6: function SCAN ▷ Extern
7: function ABSS(s) ▷ Extern
8: function ABSA(a) ▷ Extern

9: function SIBILLAGET(KB, i, s, a)
10: sabs ← ABSS(s)
11: aabs ← ABSA(a)
12: if KB(sabs, aabs) ̸= n.d. then
13: Cndts← KB(sabs, aabs)
14: if i ≤ |Cndts| then
15: s′, d′ ← Cndts[i]
16: return s′, d′

17: else
18: s′ ← SIBILLAADDSTATE(KB, sabs, aabs, Cndts)
19: return s′, nil
20: end if
21: else
22: s′ ← SCAN
23: return s′, nil
24: end if
25: end function

26: function SIBILLAADDSTATE(KB, sabs, aabs, Cndts)
27: s′ ← SCAN
28: KB ← KB − ⟨sabs, aabs, Cndts⟩
29: if |Cndts| = MAXSIZE then
30: KB ← KB ∪ ⟨sabs, aabs, n.d.⟩
31: else
32: Cndts′ ← append(Cndts, ⟨s′, nil⟩)
33: KB ← KB ∪ ⟨sabs, aabs, Cndts′⟩
34: end if
35: return s′

36: end function

37: function SIBILLAADDDATA(KB, s, a, s′, d′)
38: sabs ← ABSS(s)
39: aabs ← ABSA(a)
40: Cndts← KB(sabs, aabs)
41: for i = 1 . . . |Cndts| do
42: ŝ, d̂← Cndts[i]
43: if ŝ = s′ then
44: Cndts′[i]← s′, d′

45: else
46: Cndts′[i]← ŝ, d̂
47: end if
48: end for
49: KB ← KB − ⟨sabs, aabs, Cndts⟩
50: KB ← KB ∪ ⟨sabs, aabs, Cndts′⟩
51: end function

The subroutine SIBILLAADDSTATE (line 26) formalizes
the behavior of adding the newly scanned GUI state to the
knowledge base. SIBILLAADDSTATE executes SCAN (line 27),
removes the current candidates from the knowledge base
(line 28) and replaces them with either the non-deterministic
marker, if the new state overflows the maximum number
of candidates that the knowledge base allows for each
entry (lines 29–30), or a list of candidates enriched with
the newly scanned state (line 31–33). As explained above,
setting the non-deterministic marker settles SIBILLAGET to
always execute SCAN thereon for any subsequent query that
refers to the given abstract ⟨state, action⟩ pair: for those
interactions the testing technique will behave exactly as the
original testing tool without SIBILLA.

SIBILLAADDDATA (line 37) updates the data associated
with a GUI state. It simply refers to the abstract counterpart
of the interaction represented by the GUI state s and the
action a (lines 38–39), retrieves the corresponding knowledge
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base entry (line 40), loops through the candidate states in the
entry to associate the GUI state s′ with the new state data
d′ (lines 41–48), and set the updated candidates back in the
knowledge base (lines 49–50).

2.5 Possible Sources of Imprecision
SIBILLA can occasionally result in imprecise inferences return-
ing a guessed GUI state that does not perfectly correspond
to the GUI state in the current screen. Such imprecisions
are due to the best-effort approach of SIBILLA in validating
the candidate states for interactions with non-deterministic
outcome. After Algorithm 1, while SIBILLA enumerates the
candidate GUI states that may correspond to the outcome
of the last interaction according to the information in the
knowledge base (Algorithm 1, line 11), it accepts the first
candidate for which the testing algorithm can successfully
identify a next action (Algorithm 1, line 12) that can be
correctly dereferenced in the current GUI screen (Algorithm 1,
line 13). This deduction is insufficient to guarantee with
certainty that the inferred GUI state truly corresponds to the
GUI state in the current screen, since the two states could
both include the selected next action although being in fact
different GUI states.

We remark that these imprecisions do not impact on the
validity of the test cases that the test generator computes,
since the approach of Algorithm 1 suffices to guarantee the
validity of all actions executed during the testing generation
process. Moreover, SIBILLA never alters the policy used
by the test generator to decide the next action to execute.
However, the imprecision of SIBILLA can sometime mislead
the exploration. We quantify the actual imprecisions in our
experiments reported in Section 3.

2.6 Abstraction Functions
As we already explained earlier in this section, SIBILLA
is parametric with respect to the abstraction functions on
GUI states (abstraction function absS) and GUI actions
(absA) that are used. Our current prototype of SIBILLA
allows engineers to plug their own abstraction functions, to
specifically customize their test generation technique. It also
includes three pre-defined ways of abstracting interactions,
defined based on common abstractions already experienced
in Web testing techniques, which differ on the degree of
abstraction that they introduce:

(i) Types is the configuration that introduces the strongest
abstraction. In particular, absS abstracts GUI states as the
URL and title of their GUI page, and absA abstracts GUI
actions as the counting of the involved widgets grouped by
type (e.g., two actions that click any button are considered
equal, because they both depend on a single widget of
type Button). This configuration suits well with many Web
applications in which distinct interactions depend on well
distinguishable pages and actions.

(ii) Actions is a configuration that partially abstracts the
interaction using the enabledeness abstraction, which focuses
on the actions executable from each state. In particular, absS
abstracts GUI states as the set of enabled actions that belong
to each state, and absA abstracts GUI actions as the locator
of each action. This kind of abstraction has been exploited
by several Web testing techniques [20], [21], [22], [23].

(iii) Widgets is the configuration that introduces the least
abstraction, incorporating many elements of the GUI in the
representation. absS represents each widget in the GUI state
with a subset of its properties (e.g., identifier, textual content,
list of associated input fields, etc.) and absA represents each
action with its locator, type (e.g., enter text, click, etc.), and
parameter values. This kind of abstraction has been exploited
also by several Web testing techniques [3], [11], [24], [25],
[26].

We use these three configurations to empirically study
the tradeoffs between efficiency and precision that SIBILLA
incurs when configured with different abstraction functions.
We refer the reader to online material at https://gitlab.com/
Sibilla/sibilla#sibilla-configurations for more details about
the above abstractions.

We also considered the possibility of integrating SIBILLA
with the metrics for detecting near duplicates, which were
recently proposed for improving the effectiveness of the
model inference algorithms in web testing tools [12], [27], [28].
Near duplicates are GUI states that differ from each other
only by small changes that do not impact functionality, and
that can thus be regarded as replicas of the same functional
page. For example, a possible metric is to measure if the
tree edit distance between web-page DOMs is below a given
threshold. However, we found that those metrics, though
well suited for model inference tasks, are not well suited
for SIBILLA due to the high efficiency penalties that they
incur. In Section 3.5 we provide empirical evidence of this
phenomenon, and we further discuss the relation between
SIBILLA and near-duplicate detection in Section 4.

We remark that SIBILLA uses the abstractions to match
the interactions being executed with the ones in the key-
set of the knowledge base, but not to validate if the states
predicted as inferences from the knowledge base (i.e., for the
matching interactions) correspond to the current ones. For
the matching interactions, SIBILLA optimistically accepts the
returned states as valid predictions, as long as they do not
produce observable failures at the next testing step. Thus,
SIBILLA can implicitly predict many near-duplicate states
as the same state, if those near-duplicates are the result of
the same (abstractly-matched) interaction, and are enough
functionally-equivalent that they do not produce observable
failures at the next testing step. Unmatched interactions lead
SIBILLA to add new entries to the knowledge base. Inferences
of observably-different states lead SIBILLA to record further
states as non-deterministic alternatives (up to the configured
n threshold).

3 EMPIRICAL EVALUATION

We studied SIBILLA in the context of Web testing techniques
that use three different GUI exploration strategies, namely,
the strategies Random and Q-learning as implemented in
ABT [9] and the strategy Depth-first as implemented in
Crawljax [3]. For each technique, we evaluated the impact
of 6 possible configurations of SIBILLA, that is, SIBILLA
equipped with any of the 3 abstraction functions introduced
in Section 2.6, each combined with 2 possible values (1 and 5,
respectively) of the parameter n (the non-determinism tolerance
capacity), which defines how many GUI states and related
state-dependent data SIBILLA can at most associate with
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TABLE 1: Considered SIBILLA configurations.

Identifier State abstraction Action abstraction Capacity
absS absA n

Types-1 page title and URL # widgets by type 1
Types-5 page title and URL # widgets by type 5
Actions-1 enabled actions action locator 1
Actions-5 enabled actions action locator 5
Widgets-1 widgets properties action properties 1
Widgets-5 widgets properties action properties 5

each observed interaction before falling back to handle an
interaction as non-deterministic. Table 1 summarizes the
six configurations. Each configuration (column Identifier)
corresponds to SIBILLA configured with a different combina-
tion of abstraction functions for states and actions (columns
absS and absA, respectively) and non-determinism tolerance
capacity of the knowledge base (column n).

In our evaluation, the 3 Web testing techniques have
been used either without SIBILLA (i.e., their original version
that uses SCAN and state analysis for each GUI state,
hereon the BASELINE) or with each of the 6 aforementioned
configurations of SIBILLA, on 9 Web applications, repeating
each experiment 10 times. In total, we executed 1,890 (3 tech-
niques ×7 configurations ×9 applications ×10 repetitions)
experiment sessions in which the techniques were configured
to perform 1,500 actions each. Each experiment session took
between 1 hour and 77 hours, depending on the efficiency
of the considered configurations, for about 10,000 hours of
experimentation in total.

Below, we introduce the Web testing techniques and the
subject applications, outline the research questions that drove
our experiments, describe the experimental setting, report
the results, and discuss the findings and the threats to their
validity.

3.1 Web Testing Techniques
We integrated SIBILLA within the test generators Crawljax2

and ABT, to evaluate its impact with three Web testing
techniques: Depth-first exploited in Crawljax (hereon, DFS),
Q-learning exploited in ABT (hereon, QLEARN), and Random
that we obtained with an ad-hoc configuration of ABT
(hereon, RND). The strategies behind these techniques (i.e.,
Depth-first, Q-learning and Random) are representative of
many automatic test generators at the state of the art [3], [9],
[11], [29], [30], [31]. In detail:
• DFS explores the GUI states in depth-first order, starting

at the home page of the Web application under test,
and backtracking at states for which all possible state
transitions were already executed. To this end, the ex-
ploration algorithm maintains an internal cache of the
already visited state transitions, not to be confused with
the knowledge base of SIBILLA. In fact, other than being
two different components, the cache of the depth-fist
exploration algorithm and the knowledge base of SIBILLA
differ. In all our experiments, the depth-fist exploration
algorithm of Crawljax reasons with concrete states, while
SIBILLA woks with abstracted state-action entries. DFS
discriminates actions based on locators and states based
on the edit-distance between their stringified DOM [3].

2. Release 4.1, https://github.com/crawljax/

When integrated with SIBILLA, the exploration algorithm
stores the incrementally computed edit-distance values
as state data information associated with the GUI states
maintained in the knowledge base.

• QLEARN derives test cases by alternating between explo-
ration (i.e., executing random actions), and exploitation
(i.e., executing best actions). Best actions are identified
according to a Q-learning model that rewards actions based
on the observable screen changes: the more the changes, the
higher the reward [9], [11]. When integrated with SIBILLA,
the reward values are stored in the knowledge base as state
data information.

• RND selects random actions among the ones that can be
executed at each GUI state. This exploration strategy does
not exploit any state analysis, and thus only the GUI states
are maintained in the knowledge base.

As shown in Figure 1, Crawljax is not strongly affected
by the cost of GUI scans, as it saves the content of already
visited states in memory for backtracking purposes. Rather,
its efficiency is strongly dependent on other state analysis
operations, such as the computation of the Edit Distance
between DOMs to detect clones and near-duplicates while
performing model inference. Other tools instead rely on sys-
tematic GUI scan operations (e.g., executed after each action),
in order to capture the widgets present in the newly reached
state, so to avoid runtime errors due to stale elements no
longer present in the GUI. This is particularly relevant in ABT,
which uses Selenium [32], a Web framework to automatically
execute cross-browser tests. SIBILLA contributes to saving
the time allocated to both scan and state analysis, since it
saves and predicts both states and state data.

3.2 Subject Applications
We used DFS, QLEARN and RND for testing the nine subject
Web applications listed in Table 2. These applications cover
different domains and all have been intensively involved in
several studies on Web testing (e.g., [5], [33], [34], [35], [36],
[37], [38], [39]).

In our experiments, these subjects are representative of
distinct types of designs that are typical for Web applications,
hence challenging SIBILLA in different ways: for instance,
Tricentis comes in the form of a Javascript Single-Page Ap-
plication (SPA), which thus requires SIBILLA to discriminate
different GUI states that correspond to the same page of
the application, while Mantis Bug Tracker is a large Web
app where distinct functionalities correspond to distinct Web
pages, which requires SIBILLA to deal with a large corpus of
states originated by different pages and functionalities. Since
single Web page applications are particularly challenging
for the abstractions that cannot use the current page to
discriminate states, we included in our set of subjects all
the single-page Web applications considered in the work of
Biagiola et al. [39], with the exception of Phoenix-Trello,
which is not actively maintained anymore and it was
impossible to configure correctly.

The version information was not available for the Tricen-
tis Vehicle Insurance demo since it is not an open-source
project

3.3 Research Questions
Our experiments address four main research questions:
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TABLE 2: Subject Web applications.

Web App Description Version

DimeShift [40] Expenses Tracking System 0.1.42

Dolibarr [10] Enterprise Resource Planning 10.0.0

Mantis Bug Tracker [41] Issue Tracking System 2.21.0

MRBS [42] Event Booking System 1.9.4

Pagekit [43] Content Management System 1.0.18

PetClinic [44] Clinic Management Web App 11.2.11

Retrospected [45] Projects Management System 5.1.2

SplittyPie [46] Expenses Tracking System 1.0.0

Tricentis [47] Vehicle Insurance Demo -

RQ0-Near Duplicate Are near-duplicate state abstraction
techniques viable abstraction techniques for SIBILLA?

RQ1-Efficiency What is the efficiency improvement that
SIBILLA can deliver to a Web testing technique?

RQ2-Deviations To what extent can the interactions exe-
cuted by a Web testing technique be altered by impreci-
sions introduced by SIBILLA?

RQ3-Determinism How many interactions are indeed deter-
ministic (and thus foster reuse opportunities for SIBILLA)
in the context of a Web testing technique?

We answer RQ0 by using the edit distance integrated
in Crawljax to compare states and achieve abstraction,
comparing its execution time against the execution time
of the BASELINE (i.e., normal non-optimized executions) on
every Web application.

We answer RQ1 by quantifying and comparing the total
execution time of each experiment session (1,890 in total,
given 3 Web testing techniques, 7 configurations, 9 Web
applications, and 10 experiment repetitions).

We answer RQ2 by quantifying and comparing, for each
experiment, (i) the number of analogous steps at which a
Web testing technique executes different actions when used
with and without SIBILLA, respectively, (ii) the number of
distinct Web form submissions that the Web testing technique
exercises when used with and without SIBILLA, respectively,
and (iii) the structural data about server-side code coverage
of the PHP-based subjects (i.e., Dolibarr, Mantis Bug Tracker,
and MRBS), representing traditional and challenging big Web
applications, that can be achieved with and without SIBILLA.

We answer RQ3 by quantifying how many interactions
SIBILLA classifies as either deterministic or non-deterministic
in each experiment. Given that, we also measured the
percentages of GUI scan and state analysis operations that
are saved by using SIBILLA with respect to the BASELINE in
which GUI scan and state analysis operations are regularly
executed.

3.4 Experiment Setup

All our experiments shared the same setup, consisting in
running a Web testing technique until executing 1,500 actions
on the GUI of the application under test. In this way, we can
fairly compare execution time, explored actions, form sub-
missions and deterministic interactions across experiments
that execute the same number of actions.

In the case of QLEARN and RND, we achieved this by
configuring ABT to generate 30 test cases, each consisting
of 50 actions, while for DFS we simply stopped Crawljax
after 1,500 actions, since the number of test cases cannot be
directly controlled (rather it depends on how many times the
technique backtracks to a previous state).

We experiment each Web testing technique (DFS, QLEARN
and RND) in both its original version (i.e., BASELINE), which
scans and analyzes the GUI states after executing each action,
and in the version integrated with any of the 6 configurations
of SIBILLA listed in Table 1. The considered abstraction func-
tions correspond to the three pairs of abstraction functions
that we introduced in Section 2.6.

As capacity values, we considered n = 1, which corre-
sponds to the case in which SIBILLA handles only fully deter-
ministic interactions, and n = 5, which lets SIBILLA tolerate a
reasonable amount of non-deterministic interactions (i.e., the
interactions that may result in up to 5 different GUI states).
The choice of the specific value, n = 5, is admittedly arbitrary,
but preliminary experiments indicated that this configuration
sufficed for SIBILLA to handle the large majority of the
non-deterministic interactions, and was thus well suited
to represent the behavior of SIBILLA with handling for non-
determinism. Indeed our experiments eventually confirmed
that the number of interactions that exceeded the n = 5 non-
determinism capacity of SIBILLA with n = 5 was at most
8%.3

We controlled for the impact of the random choices
implemented in Crawljax and ABT in two ways. On one
hand, to observe the different configurations of SIBILLA in the
context of the same testing sessions, we kept the same random
seed for each 7-experiment pass that encompasses executing
BASELINE and all 6 SIBILLA configurations, for a given
Web testing technique against a given subject application.
Running all configurations with a same seed allows us to
compare the behavior of the techniques with and without
SIBILLA at the level of the individual actions that are executed
at each step of the testing process. On the other hand, to
avoid the bias of specific random choices, we repeated every
experiment 10 times and used different seeds for each 7-
experiment pass. Furthermore, the initial state of each Web
application under test was reset to the same default state
before each run.

We quantified the deviations that may be due to imprecise
state inference of SIBILLA with respect to (i) the specific
sequences of actions that the Web testing techniques generate
when using BASELINE and each configuration of SIBILLA,
respectively, (ii) the number of distinct Web form submissions
that they can exercise in either case, and (iii) the code
coverage of the PHP-based subjects (i.e., Dolibarr, Mantis
Bug Tracker, and MRBS), that BASELINE and SIBILLA can
achieve.

With respect to the sequences of GUI actions, we quan-
tified the deviations as follows. Given a subject application
and a random seed, if a technique generates the sequence

3. Considering other possible configurations (n=2, n=3, n=10, ...)
could be worth, but we had to compromise in not selecting too many
configurations, to avoid the combinatorial explosion in the number
of experiments to be executed to explore a too large set of possible
options. With options considered in this paper, our experiments already
amounted to over 10,000 hours of execution time.
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a1, a2, . . . , a1500 when using BASELINE, and the sequence
a′1, a

′
2, . . . , a

′
1500 when using a configuration of SIBILLA, we

measure the deviation due to SIBILLA as the percentage of
actions a′i ̸= ai,∀i. This notion of deviation is particularly
strict, as it captures any deviation independently of how
relevant it is for the testing activity. For instance, if the third
action generated with BASELINE is generated as fourth action
with SIBILLA, this is counted as a deviation.

To also measure deviations in the general testing activity,
regardless of the action-to-action comparison of the test
sequences, we compared the number of distinct Web form
submissions exercised with BASELINE and each SIBILLA
configuration across all experiments.

To consolidate our findings, we finally collected the
structural data about server-side code coverage of the PHP-
based Web applications (i.e., Dolibarr, Mantis Bug Tracker,
and MRBS), that generally represent challenging testing sub-
jects; for this purpose, we relied on xdebug PHP extension4

and php-code-coverage library5, comparing the coverage
achieved by BASELINE with respect to the one achieved by
SIBILLA.

In general, in our experiments the execution of the BASE-
LINE tools represented the ground truth in terms of execution
time of the testing tools, sequences of GUI interactions
explored by the testing tools, submitted Web forms and
accomplished coverage. We then compare how these metrics
change when using SIBILLA with the different configurations,
to measure efficiency gains and amounts of deviation.

3.5 Results for RQ0: Near Duplicate

We launched the DFS test generation strategies for runs of 150
actions to explore the viability of exploiting near-duplicate
abstractions to detect the similar states. We collected data
about the cost of running the test generation process as
is, without SIBILLA in place, and with SIBILLA configured
to abstract states according to the edit distance between
states. If near-duplicate state comparison runs faster than
the BASELINE, it is a viable option for SIBILLA. Otherwise, if
it is slower, it cannot be used to optimize the efficiency of
the test generation process, regardless of the accuracy of the
abstraction.

Figure 3 shows the results obtained with a sample set
of four Web applications (i.e., Dolibarr, Mantis Bug Tracker,
MRBS, and Tricentis), all presenting a similar pattern. The
cost of performing many state comparisons to determine
if a state is similar to an already discovered state reveals
to be higher even than the BASELINE, which always runs
the state-base analysis. In contrast, the goal of SIBILLA is
improving the efficiency of the test generation process by
quickly retrieving the right abstract state, and the associated
information, from the knowledge base rather than retrieving
the current state from the GUI. In a nutshell, near-duplicate
strategies can be exploited to drive the test generation
process, but cannot be feasibly used to optimize the extraction
of a representation of the current GUI in SIBILLA.

4. https://xdebug.org/
5. https://github.com/sebastianbergmann/php-code-coverage
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Fig. 3: A comparison of SIBILLA configured with near-
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3.6 Results for RQ1: Efficiency
We compared the mutual efficiency of the considered con-
figurations of SIBILLA by measuring the time spent to
complete the execution of the Web testing techniques in
each experiment.

The boxplots in Figure 4 summarize the distribution of
the execution time (in hours) of the 10 experiments with each
subject application (as indicated at the top of each group
of plots), Web testing technique (as indicated at the right of
each group of plots) and configuration of SIBILLA compared
with BASELINE (as indicated at the x-axis of the plot).

We observed the highest gains for Tricentis with DFS,
where SIBILLA reduced the execution time of an order of
magnitude with respect to BASELINE, from a median of
about 47 hours to less than 2 hours in all configurations
(96% of reduction). There were minimal differences between
SIBILLA configurations in PetClinic, SplittyPie and Tricentis.
When DFS is used, Types-5 presented optimal or nearly
optimal time reduction, up to 90% (e.g., in Mantis Bug
Tracker, Dolibarr, Retrospected), with the only exception
of DimeShift, where the abstraction was severely challenged
by some dynamics elements in the pages. Pagekit and
Retrospected were the apps with the highest variance in
the results. We experienced significant execution time with
the lowest abstractions (i.e., Widgets-1 and Widgets-5) for
Pagekit, still obtaining a median reduction of 30% with
respect to BASELINE. Retrospected was the only case where
SIBILLA reached an execution time higher than BASELINE for
a few runs with the Actions-1 configuration. After some
investigation, we found out that Crawljax struggled at
exploring some of the Retrospected pages, when large sets
of emojis and pop up features were present, generating
incidental loops that temporarily blocked the advancement
in the exploration. The same results were not observed in
any run involving ABT. All SIBILLA configurations using
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Fig. 4: Execution times (hours) of SIBILLA configurations and BASELINE.

5 capacity values have been more efficient than using 1 as
capacity value, with Widgets-5 achieving the best reduction
with respect to BASELINE: from about 34 hours to 4 hours
(88% of reduction). These high gains confirm the benefit of
using the SIBILLA knowledge base not only for GUI scanning
but also for saving and reusing the result of state analysis,
which is predominant in DFS (as already shown in Figure 1).

As for DFS, in RND the best SIBILLA configurations
mostly used 5 as capacity value. Actions-5 resulted the best
configuration for the majority of Web applications: Tricentis
(with a reduction of 57% with respect to BASELINE, in the
median case), Dolibarr (60% reduction), MRBS (78% reduc-
tion), PetClinic (79% reduction), DimeShift (88% reduction),
and SplittyPie (53% reduction). In Mantis Bug Tracker, RND
performed best with the Types-5 configuration, reducing
the test time from 7.5 hours to 3.2 hours (57% reduction).
Surprisingly, Types-1 resulted the best configuration in
Pagekit (80% reduction). Types-1 performed the overall worst
reduction in MRBS, still achieving a 22% reduction. Finally,
Retrospected showed Actions-1 as the best configuration
(60% of median reduction).

Also in the case of QLEARN, in most experiments the best
SIBILLA configuration was one of those that used 5 as capac-
ity value, often it was the Actions-5 configuration. Types-5
resulted the best configuration in both Tricentis (reduction of
63% w.r.t. BASELINE, from 5.4 to 2 hours in the median case)
and MRBS (73%, reduction from 11.4 hours to 3.1 hours).
Actions-1 and Actions-5 reached almost same time reduction
in both Dolibarr (58% reduction), SplittyPie (53% reduction),
and PetClinic (78% reduction). Actions-5 outperformed the
other configurations in both DimeShift (81% reduction) and
Retrospected (63% reduction). In contrast, for Mantis Bug
Tracker and Pagekit the best configuration was Types-1,

reducing execution time with respect to BASELINE by 53%
and 81%, respectively. Pagekit in particular followed the
same trend of RND and DFS about Widgets-1 and Widgets-5
being the most expensive configurations.

Answer to RQ1: The results indicate that SIBILLA can sig-
nificantly improve the efficiency of a Web testing technique,
reducing the execution time by a factor ranging between
22% and 96%, at least halving execution time in most cases.
The only exception is the Retrospected application where the
Actions-1 configuration experienced some slowdowns due
to weaknesses in the underlying Crawljax tool that badly
handles some specific Web features (e.g., pop ups). In general,
for all the considered Web testing techniques and applica-
tions, all 6 SIBILLA configurations outperformed BASELINE,
with the configurations using the strongest abstractions and
non-determinism tolerance capacity equals to 5 performing
better than the others, thanks to their capability to reuse the
data in the knowledge base more often.

3.7 Results for RQ2: Deviations

The boxplots in Figure 5 summarize the distribution of
the deviations of each configuration of SIBILLA, across
the 10 experiments with each technique and each subject
application. All plots report the deviations in percentage
with respect to executing BASELINE for same techniques and
subject applications, and this is why there are not specific
plots for BASELINE in the figure. Figure 5 also indicates,
with diamond symbols, the percentage of distinct Web form
submissions that were not exercised with SIBILLA with
respect to the ones exercised with BASELINE.

The results of SIBILLA configurations were consistent in
all applications and techniques.
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Fig. 5: Deviations (%) of SIBILLA configurations with respect to BASELINE.

In DFS, Tricentis presented the overall best outcome
(percentages of deviations close to 1% in all configura-
tions), followed by PetClinic (about 10% of deviations in
all configurations but Types-1 and Types-5) and Retrospected
(between 9% and 18% except for Types-1 and Types-5), since
these applications are single-page and rarely affected by
unexpected GUI changes that may interfere with the DFS
backtracking activity. It is notable, however, how three other
single-page applications (i.e., DimeShift, Pagekit, SplittyPie)
behave differently, reaching between 47% and 86% median
deviations in the best cases. The problem with these apps
depended mostly on how Crawljax interacts with pop up
menus and alerts that inhibit the interactions with the
background elements, causing actions to fail silently without
triggering SIBILLA. Furthermore, SplittyPie presented subtle
changes in the GUI once any action occurred (e.g., by adding
<div> tags to encapsulate newly entered items), so any
deviations produced a potential avalanche effect, as the tool
mostly relies on retrieving Web elements via XPaths.

Excluding Tricentis, where all configurations performed
similarly, the configurations with the strongest abstractions
performed the worst. Types-1 generated a median of 56%
of deviations in Mantis Bug Tracker, 81% in Retrospected,
and 92% in SplittyPie. Types-5 generated a median of 22% of
deviations in PetClinic, 37% in Dolibarr, 42% in MRBS, 88%
in DimeShift, and 91% in Pagekit. Actions-5 and Widgets-5
were in general the best configurations for DFS: 9% of median
deviations in Retrospected (Widgets-5), 12% in Dolibarr
and PetClinic (Actions-5), 22% in MRBS (Actions-5), 34%
in Mantis Bug Tracker (Actions-5), 47% in Pagekit (Widgets-
5), 62% in DimeShift (both Actions-5 and Widgets-5), and
86% in SplittyPie (Widgets-5).

RND and QLEARN have shown a higher variance in the

results compared to DFS. This for instance is evident in
Dolibarr, because of its dynamic and rich GUI. Again, for
both RND and QLEARN, the worst configuration was Types-5
in all cases with the exception of Retrospected. Instead, the
best performing configurations for RND and QLEARN were
those implementing the least abstractions, with Widgets-1
on top (0% deviations in Retrospected with both RND and
QLEARN, 1% deviations in PetClinic with both RND and
QLEARN, 4% deviations in Pagekit with RND, 6% deviations
in MRBS with RND, 7% deviations in Dolibarr with QLEARN,
7-8% deviations in DimeShift with both RND and QLEARN,
9% deviations in Mantis Bug Tracker and Tricentis with
RND, 20% deviations in MRBS with QLEARN), followed by
Widgets-5 (0% deviations in Retrospected with both RND
and QLEARN and 1% deviations in PetClinic with RND,
pairing Widgets-1, 3% deviations in Pagekit with QLEARN,
and 21-24% deviations in SplittyPie with RND and QLEARN,
respectively). Interestingly, in RND and QLEARN the issues
experienced with DFS in DimeShift, Pagekit, and SplittyPie
were not present. Also, Retrospected presented consistent
high deviations for the stronger abstractions, as Types-1 and
Types-5 were not capable of capturing the whole complexity
of the GUI of the application, that is characterized by multiple
actionable emojis.

The diamonds in Figure 5 show how there were no
significant deviations in the number of distinct Web form
submissions exercised by any SIBILLA configuration with
respect to BASELINE, with the exception of those using strong
abstractions. For DFS, in 7 cases out of 9, Widgets-5 was able
to exercise the same forms of BASELINE with no deviations,
and with very low deviations (≤5%) in the other two cases
(i.e., Mantis Bug Tracker, Dolibarr); Widgets-1, Actions-1, and
Actions-5 behave the same as BASELINE in 6 cases out of 9,
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showing limited deviations in most other cases. Conversely,
Types-5 was the worst configuration, deviating 50% or more
times in 4 cases out of 9 (i.e., PetClinic, Dolibarr, DimeShift,
Tricentis). Concerning RND, Widgets-1 and Actions-1 missed
0% of form submissions with respect to BASELINE in 8 cases
out of 9 (excluding Mantis Bug Tracker and PetClinic, where
they missed 5% and 11%, respectively), whereas Widgets-
5 and Actions-5 reached the same results of BASELINE in
7 cases out of 9, with limited (≤11%) deviations in the
remaining two cases (i.e., Dolibarr and PetClinic). In QLEARN,
all configurations excluding the strongest abstractions (i.e.,
Types-1 and Types-5) observed 0% forms missed in 8 cases
out of 9, and less than 10% in the remaining case (i.e.,
Mantis Bug Tracker). Types-5 and Types-1 were confirmed as
the worst configurations, still marking over than 25% form
submissions in only 3 cases in total for Types-5 (i.e., PetClinic
with RND, Tricentis and Dolibarr with QLEARN).

Figure 6 shows the boxplots of the coverages (%) regard-
ing Actions-5, Widgets-5, and BASELINE with DFS, QLEARN,
and RND techniques. After some trial executions, we ob-
served that tracking the code coverage resulted prohibitive
for longer runs, sometimes negatively affecting the cost
of a run by even more than 200% (see Figure 7 of some
sample runs on MRBS Web application using DFS, with and
without a coverage logging tool employed, respectively), so
we decided to limit these experiments to 150 actions instead
of 1,500 each, and to 5 iterations instead of 10. In Figure 6,
only Actions-5 and Widgets-5 are shown, as they resulted
(see Figures 4-5) the most viable SIBILLA configurations both
in terms of execution time and deviations.

The boxplots show limited variations, excluding MRBS.
More in details, Table 3 summarizes the differences in
statement coverage observed from the runs with Actions-5
and Widgets-5 of SIBILLA configurations against BASELINE.
All cases except for two showed coverage differences below
5%, and half of these were below 2%. The highest differences
occurred in MRBS using Widgets-5 with RND (-5.09% with
respect to BASELINE, about 200 statements missing by ABT),
followed by Actions-5 with DFS (-5.00%, about 400 state-
ments missing by Crawljax). By inspecting more in details
the results, we found that almost half of the differences
regarded HTML tags that included some PHP code spread
across multiple rows, that the coverage tool captured as
different statements. Given that, SIBILLA sometimes missed
statements and sometimes reached new ones, only slightly
affecting the testing effectiveness for the considered cases.

Answer to RQ2: The results indicate that the configu-
rations using the strongest abstractions (i.e., Types-1 and
Types-5) result in a high number of deviations that question
their viability. These configurations may indeed affect the
behavior of a Web testing technique due to their imprecisions,
as too high deviations may alter the exploration strategy
of the testing technique, generating test cases that differ
from the desired ones. Conversely, the configurations based
on Actions and Widgets present low number of deviations,
as well as few differences in statement coverage for the
considered experiments, and negligible differences when
considering how forms are exercised. These findings suggest
that the least abstractions of SIBILLA can preserve the
tool’s exploration strategy by achieving a better execution
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efficiency.

3.8 Results for RQ3: Determinism
We quantified the amount of exploitable determinism by
measuring the number of interactions that SIBILLA suc-
cessfully associated with a finite list of GUI states in each
experiment. Table 4 reports the results grouped by subject
application (column Web app) and SIBILLA configuration
(column SIBILLA config.), in percentage with respect to the
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TABLE 3: Statements Coverage differences (%) of Actions-5 and Widgets-5 configurations against BASELINE.

Baseline

Dolibarr Mantis Bug Tracker MRBS

DFS QLEARN RND DFS QLEARN RND DFS QLEARN RND

Actions-5 -0.48% +1.67% 0.00% -3.30% -0.29% +4.41% -5.00% -0.38% -0.10%

Widgets-5 -0.72% +2.57% 0.00% -4.36% +0.97% +2.58% -2.28% -3.83% -5.09%

TABLE 4: Deterministic and non-deterministic interactions.

Web App SIBILLA config.
Per-interaction state set cardinality
1 2 3 4 5 non-det.

DimeShift

Types-1 54% - - - - 46%
Actions-1 86% - - - - 14%
Widgets-1 96% - - - - 4%

Types-5 54% 19% 9% 8% 2% 8%
Actions-5 84% 13% 1% <1% <1% 2%
Widgets-5 94% 5% 1% <1% <1% <1%

Dolibarr

Types-1 70% - - - - 30%
Actions-1 95% - - - - 5%
Widgets-1 96% - - - - 4%

Types-5 59% 21% 8% 6% 3% 3%
Actions-5 96% 4% <1% <1% <1% <1%
Widgets-5 97% 3% <1% <1% <1% <1%

Mantis BT

Types-1 71% - - - - 29%
Actions-1 94% - - - - 6%
Widgets-1 96% - - - - 4%

Types-5 68% 19% 6% 3% 2% 2%
Actions-5 97% 3% <1% <1% 0% 0%
Widgets-5 96% 4% <1% <1% <1% <1%

MRBS

Types-1 59% - - - - 41%
Actions-1 94% - - - - 6%
Widgets-1 93% - - - - 7%

Types-5 53% 23% 11% 5% 4% 4%
Actions-5 94% 5% 1% <1% <1% <1%
Widgets-5 94% 6% <1% <1% <1% <1%

Pagekit

Types-1 75% - - - - 25%
Actions-1 98% - - - - 2%
Widgets-1 99% - - - - 1%

Types-5 70% 13% 3% 2% 9% 3%
Actions-5 98% 2% 0% 0% 0% <1%
Widgets-5 99% 1% 0% 0% 0% 0%

PetClinic

Types-1 82% - - - - 18%
Actions-1 97% - - - - 3%
Widgets-1 98% - - - - 2%

Types-5 68% 16% 10% 4% 1% 1%
Actions-5 97% 3% <1% 0% 0% 0%
Widgets-5 98% 2% 0% 0% 0% <1%

Retrospected

Types-1 60% - - - - 40%
Actions-1 99% - - - - 1%
Widgets-1 99% - - - - 1%

Types-5 58% 38% 3% <1% <1% 1%
Actions-5 99% 1% 0% 0% 0% <1%
Widgets-5 100% <1% 0% 0% 0% 0%

SplittyPie

Types-1 65% - - - - 35%
Actions-1 87% - - - - 13%
Widgets-1 92% - - - - 8%

Types-5 65% 21% 6% 2% 1% 5%
Actions-5 88% 11% <1% <1% 0% 1%
Widgets-5 94% 5% <1% <1% <1% 1%

Tricentis

Types-1 76% - - - - 24%
Actions-1 96% - - - - 4%
Widgets-1 92% - - - - 8%

Types-5 78% 12% 8% 2% <1% 0%
Actions-5 94% 5% 1% <1% 0% 0%
Widgets-5 92% 8% <1% <1% 0% 0%

45,000 (1,500 × 10 × 3) interactions executed in the 10
experiments with the 3 Web testing techniques, for the
interactions that SIBILLA associated with exactly 1, 2, 3, 4
or 5 GUI states, or classified as non-deterministic (columns
Per-interaction state set cardinality).

Interestingly, when the SIBILLA knowledge base allowed
a non-determinism tolerance capacity up to 5 (configurations
Types-5, Actions-5 and Widgets-5), SIBILLA was able to

associate almost the full spectrum of observed interactions
with a finite list of GUI states, assigning the classification non-
deterministic to either no interaction (e.g., in all experiments
with Tricentis) or only to negligible sets of interactions (1-8%
with Types-5). Instead, when the knowledge base limited a
non-determinism tolerance capacity to 1, in the worst case
of Types-1 the interactions classified as non-deterministic
were between 18% for PetClinic to 46% for DimeShift, with
percentages below 15% in all other cases.

SIBILLA rarely observed non-determinism when the
tolerance capacity was set to 5, suggesting that reuse op-
portunities was not limited to the strongest abstraction (i.e.,
Types-5). Table 5 shows the median percentages of GUI scan
and state analysis operations that were saved by SIBILLA in
the considered configurations and subject applications, with
respect to the BASELINE in which GUI scan and state analysis
were regularly executed. SIBILLA helped saving between 18%
(Widgets-1, Widgets-5) and 88% (Types-5) of GUI scan and
state analysis operations.

TABLE 5: GUI scan and state analysis operations avoided by
SIBILLA (%).

Configuration DFS QLEARN RND
Types-1 81% 46% 42%
Types-5 88% 76% 71%

Actions-1 50% 58% 48%
Actions-5 49% 62% 49%
Widgets-1 48% 23% 18%
Widgets-5 47% 24% 18%

Answer to RQ3: The results indicate that SIBILLA suc-
cessfully classified most interactions as deterministic in each
configuration, application, and technique, especially when
the non-determinism tolerance capacity was set to 5. SIBILLA
also successfully saved many GUI scan and state analysis
operations, even with the least abstracting configuration. This
result confirms the possibility to suitable capture the behavior
of an application under test with the SIBILLA knowledge base,
fostering SIBILLA reuse opportunities.

3.9 Discussion

Our results indicate some clear findings about SIBILLA. First,
the strong abstractions, such as Type-1 and Type-5, may
introduce too many deviations, with the risk of affecting
the effectiveness of the Web testing technique, and cannot
be thus advised for practical use. Instead, the abstractions
based on Actions and Widgets result in acceptably low
deviations, in particular when applied for testing single-
page Web applications, as well as exhibiting little differences
in statements coverage even when large Web applications
are tested, promisingly improve the efficiency of Web testing,
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halving the execution time in most cases, up to improving
the efficiency of Crawljax of an order of magnitude.

The results also show that for the techniques with an
intrinsic degree of randomness (QLEARN and RND), SIBILLA
provides stable results across the Web applications. On
the contrary, deterministic techniques like DFS may show
quite drastic differences in terms of efficiency and more
relevant deviations. For instance, SIBILLA introduced almost
no deviation and an order of magnitude improvement with
DFS applied to Tricentis, while it introduced a smaller
improvement and significantly more deviations for the other
Web applications. This suggests that SIBILLA should be
integrated with systematic techniques preferably when the
subject application is likely to exhibit a mostly deterministic
behavior.

It has to be noted that DFS performance was affected
by pop up menus and alerts, when present in the sub-
ject applications (e.g., DimeShift, Pagekit). DFS was also
affected by frequent variations in the GUI, such as those
implemented by SplittyPie any time a new entry is added,
as underlying Crawljax tool relies on XPath localization
strategies to retrieve widgets within the GUI, that can be
sometimes fragile [17], making actions to fail in high number
and producing an avalanche effect in deviations from the
BASELINE. These drawbacks were not observed with ABT, in
the case of neither RND nor QLEARN techniques.

Finally, the results advice the use of SIBILLA with non-
determinism tolerance capacity larger than 1. In our exper-
iments, using a tolerance capacity set to 5 worked better
than a list of size 1 in most cases, reducing the number of
interactions classified as non-deterministic and positively
impacting the efficiency of the Web testing techniques,
avoiding between 18% and 88% of the GUI scan and state
analysis operations.

3.10 Threats to Validity

The main threat to the validity of our conclusions is that
SIBILLA may deliver its efficiency improvements, at the cost
of sacrificing the effectiveness of the test cases computed
by the Web testing techniques. We mitigated this threat
by quantifying the deviations of SIBILLA with respect to
using BASELINE, in terms of action-to-action comparisons,
unexercised Web forms, and code coverage. Our results
indicated a limited number of deviations for the abstractions
based on Actions and Widgets, suggesting that the test
artifacts produced with SIBILLA are in line with the ones
produced with BASELINE.

Internal validity threats can derive from possible mistakes
in our implementation of SIBILLA, in our integration of
SIBILLA in Crawljax and ABT, or in the profiling functionali-
ties that we added to collect the data that we used to answer
the research questions. To avoid mistakes, we carefully
inspected and extensively tested our implementations. We
also made our artifacts publicly available for inspection.

The external validity threats concern the generality of our
findings. We selected three different Web testing techniques
(based on Depth-first, Random and Q-learning) and nine non-
trivial subject applications representative of distinct types of
Web GUI designs (e.g., small single-page and large traditional
multi-page Web applications) involved in several past studies

about Web testing. Although these cases do not cover the
full spectrum of cases, they cover a number of combinations
sufficient to deliver evidence of the effectiveness of SIBILLA.
In fact, we remark the good consistency of our findings
across our experiments (which amount to over 10,000 hours
of execution time), which suggest that some configuration
of SIBILLA may improve the efficiency of the Web testing
techniques without affecting their effectiveness.

4 RELATED WORK

The GUI testing process is intrinsically expensive. On one
hand, test generators need to explore the application un-
der test by executing many actions before they can cover
meaningful scenarios [3], [4], [11], [25], [48], [49]. Since every
action that is processed generates executions that traverse
many, potentially all, software layers in the application under
test, actions are inevitably slow to execute compared for
instance to API calls in unit test cases. On the other hand,
since test generators run as independent processes, they
have to actively wait for the GUI to be fully rendered before
they can scan and analyze it, and finally perform an action.
Repeatedly waiting for the GUI and executing scan and
analysis operations further slows down the testing process,
as reported in this paper.

To reduce the cost of the GUI testing process, researchers
and practitioners considered different techniques and per-
spectives. For instance, headless browsers testing [50], [51]
exploits headless browsers [52], [53], that is browsers that
do not render the GUI to run tests. Headless browsers can
be used to eliminate the cost of GUI rendering, speeding up
interactions.

Dong et al. studied how to improve GUI exploration
with the capability to save and restore application states
dynamically [54]. This capability can be used to conveniently
move from one state to another during exploration, without
having to reset the application and replaying the actions
necessary to reach a state of interest. Wen et al. [55] and
Tramontana et al. [56] studied how to run GUI tests in
parallel to improve the efficiency of the testing process
by exploiting additional computational resources. Biagiola
et al. exploited GUI models to improve the efficiency of
search-based test generation for web applications [39]. Their
technique measures diversity between test cases, and requires
in-browser execution only for the test cases that explore
diverse behaviours.

In the mobile domain, Baek and Bae [57] propose a set
of multi-level GUI comparison criteria to generate accurate
GUI models and improve testing effectiveness via abstraction
levels. Su et al. [58] present a stochastic model-based testing
approach for Android apps. Gu et al. [59] propose a gradual
refinement of the GUI model abstraction that is incrementally
generated at runtime.

While these techniques can improve the efficiency of
GUI testing, they cannot save the cost due to the repeated
execution of the scan and state analysis operations, which
can be significant as reported in our experiments. SIBILLA
represents a complemental solution that can be combined
with other techniques to ultimately increase the efficiency of
the GUI testing process.
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In a recent work [60], Feng et al. recognize the problem of
GUI rendering cost in the context of Mobile test automation.
They propose AdaT, an image-based approach to dynami-
cally adapt GUI rendering to test generation via real-time
streaming, so as to send events until the GUI is fully rendered.
The approach aims at balancing between testing effectiveness,
negatively affected by short waits that may miss relevant
events due to partially rendered GUIs, and testing efficiency,
when long waiting times are generally imposed.

SIBILLA relies on abstractions on GUI states and GUI
actions to efficiently handle the key-set of its associative
knowledge base and the access to the knowledge base
thereby. Other GUI testing approaches investigated abstrac-
tions, generally to improve the efficiency of inferring a
suitable model of the GUI parts already visited during the
executions. This problem is commonly referred to as model
inference. GUI testing tools can benefit of model inference for
several goals, including visualizing the GUI behaviors that
were explored, discriminate covered and uncovered states,
or implementing smart action-selection strategies, e.g., the
strategies based on Q-learning of ABT [11] and Testar [26],
[29]. In turn, achieving good model inference requires well
tuned abstractions on the GUI states and the GUI actions
represented in the models: Too fine abstractions may lead to
state explosion, whereas too coarse abstractions may lead to
useless models.

For example, the Testar tool has been recently extended
to support parametric abstractions, allowing users to se-
lect which subset of widget properties Testar shall use to
abstractly represent GUI states and actions during model
inference [26], [61]. Other authors further addressed model in-
ference by studying techniques for identifying near-duplicate
GUI states, i.e., the GUI states that differ from each other
only by small changes that do not impact functionality, and
that can thus be regarded as replicas of the same functional
page [12], [27], [28]. Effectively identifying near-duplicates
allows GUI testing tools to infer models that are minimal
in that they represent only the set of states that are indeed
distinct. The study from the seminal paper of Yandrapally
et al. pinpointed the tree edit distance between web-page
DOMs as a good similarity metric to identify near duplicates
in the context of web testing techniques [12]. Other authors
investigated further similarity metrics for web-page DOMs
based on applying tree-kernel functions, and establishing the
equivalence after building a mapping between the fragments
of the DOMs [27], [28].

Model inference and the SIBILLA’s key-based access
to the knowledge base can or cannot exploit the same
abstractions, depending on the computation-time efficiency
of those abstractions for the tasks of matching abstract states
and actions. On one hand, since SIBILLA aims to directly
impact the time efficiency of the testing strategy, SIBILLA can
rely only on abstractions that foster very efficient matchings:
ideally (modulo the possibility of deviations, as we discussed
in Section 3.7) SIBILLA aims to foster a testing strategy that
visits exactly the same sequences of states and actions that
would be visited without SIBILLA, but significantly faster
than without SIBILLA. In fact, SIBILLA cannot benefit of the
state-of-the-art algorithms for identifying near duplicates,
since these algorithms generally incur too high penalties
for matching abstract states and actions. In Section 3.5, we

provided evidence that accomplishing state matching by
using the tree edit distance between web-page DOMs down-
graded the performance of SIBILLA to large extent, ultimately
making SIBILLA penalize (rather than improve) the efficiency
of the testing tool. On the other hand, model inference can
often relax the efficiency requirements, provided that the cost
of the model inference algorithm, including the cost incurred
for matching abstract states and actions, pays off in the ability
of the inferred models to foster effective guidance during
testing. Near duplicate detection has indeed demonstrated
very effective for model inference tasks [12], [27], [28].

We also remark that, while in this paper we study SIBILLA
with respect to a set of abstractions, we do not claim the
novelty of those abstractions per se. In the future, we aim to
investigate SIBILLA with further types of abstractions, e.g.,
the ones proposed in Testar. Moreover, SIBILLA and model
inference contribute with distinct, arguably orthogonal, and
possibly complementary types of improvement to the GUI
testing tools, without imposing any constraint on using the
same abstractions for both mechanisms. In future work,
we also aim to investigate if Testar can be improved by
integrating it with SIBILLA.

5 CONCLUSIONS

The efficiency of automatic Web testing is severely affected
by the cost of executing GUI scan and analyzing GUI states,
operations that must be repeatedly executed to iteratively
extract GUI states and compute state-specific properties.
To address this challenge, this paper presents SIBILLA, an
approach that can effectively infer interactions that reach
recurring, already analyzed GUI states. SIBILLA saves the
costs of executing GUI scan and state analysis operations
multiple times for those states. We reported results obtained
with three Web testing techniques and nine subject Web
applications that confirm that SIBILLA can deliver significant
efficiency improvements: testing time is often reduced by
50%, with best cases reaching over 90% reduction, with lim-
ited deviations (using the Actions and Widgets abstractions)
from the original testing algorithms.

Replication Package

The tools, results and scripts to replicate our experiments are
publicly available in the following repository:
https://gitlab.com/Sibilla/sibilla.
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