KFinger: Capturing Overlaps between Long
Reads by Using Lyndon Fingerprints*

Paola Bonizzoni' @, Alessia Petescia'®, Yuri Pirola!®, Raffaella Rizzi'®, Rocco
Zaccagnino®®, and Rosalba Zizza?

! Dip. di Informatica, Sistemistica e Comunicazione, University of Milano-Bicocca,
viale Sarca 336, 20126 Milan, Italy
paola.bonizzoni@unimib.it, a.petescia@campus.unimib.it,
yuri.pirola@unimib.it, raffaella.rizziQunimib.it
2 Dip. di Informatica, University of Salerno,
via Giovanni Paolo II 132, 84084 Fisciano, Italy
{rzaccagnino, rzizza}@unisa.it

Abstract. Detecting common regions and overlaps between DNA se-
quences is crucial in many Bioinformatics tasks. One of them is genome
assembly based on the use of the overlap graph which is constructed by
detecting the overlap between genomic reads. When dealing with long
reads this task is further complicated by the length of the reads and the
high sequencing error rate. This paper proposes a novel alignment-free
method for detecting the overlaps in a set of long reads which exploits
a signature (called fingerprint) of reads built from a factorization of
the read based on the notion of Lyndon words. The method has been
implemented in the tool KFinger and tested over a simulated and a
real PacBio HiFi dataset of genomic reads; its results have been com-
pared with the well-known aligner Minimap2. KFinger is available at
https://github.com/AlgoLab/kfinger.

Keywords: Lyndon word - Factorization - Fingerprint - Overlap graph -
Long reads.

1 Introduction

Lyndon word is a concept of combinatorics on words and a well-known notion in
Bioinformatics [1,2], where it has been used to find short motifs [3] and more
recently in the notion of the extended BWTs [4]. Most notably, a recent work
suggests that Lyndon factorizations can be used to detect overlaps between
reads [5], which is the fundamental task to build the overlap graph in genome
assembly. Note that a factorization (as notion of combinatorics on words) expresses

* This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No
872539.

The final authenticated version is available online at https://doi.org/10.1007/978-3-
031-07802-6_37.

https://orcid.org/0000-0001-7289-4988
https://orcid.org/0000-0002-9000-3664
https://orcid.org/0000-0002-8479-7592
https://orcid.org/0000-0001-9730-7516
https://orcid.org/0000-0002-9089-5957
https://orcid.org/0000-0001-9144-3074
https://github.com/AlgoLab/kfinger
https://doi.org/10.1007/978-3-031-07802-6_37
https://doi.org/10.1007/978-3-031-07802-6_37

2 Bonizzoni et al.

a string as a concatenation of factors and factors in a Lyndon factorization
are Lyndon words. Lyndon factorization [1,6] is one of the most well-known
factorizations and has two main properties: (i) it is unique for a given string
and (ii) can be computed in linear time. Moreover, it satisfies the following
crucial property, which is the foundation of our proposed method: two strings
sharing a common overlap also share a set of consecutive common factors in their
factorizations [5].

Detecting the overlap between sequences is the fundamental step in de-novo
assembly based on the Overlap-Layout-Consensus (OLC) strategy [7], which is
the main approach used for assembling long reads [8,9]. Since unfortunately such
reads are long and error-prone, detecting overlaps is often a bottleneck from a
computational point of view, mainly when a pairwise comparison is adopted, due
to the fact that long reads have high sequencing errors and contain repetitive
regions. Several methods for discovering overlaps in long reads, which are based
on a representation of the input reads, are present in literature, achieving good
performance in terms of computation time and accuracy. For example, [10]
proposes an algorithm combining minimizers and MinHash algorithm [11] for
mapping long reads to a reference database; sourmash [12] and MHAP [8] use
MinHash algorithm (MHAP relies on k-mers); sourmash estimates sequence
similarity between very large data sets whereas MHAP is a tool for discovering
overlaps between long reads and is used by Canu assembler [13]. Minimap2 [14]
is an aligner of DNA or mRNA long reads against a large reference database and
uses minimizers.

We propose an alignment-free approach for discovering the overlaps in a set of
noisy long reads, exploiting a compact representation (or signature) given by the
sequence of lengths of the Lyndon factors (instead of the factors themselves) in
Lyndon factorizations. The sequence of factor lengths, called fingerprint, has been
first introduced in [15] as a mean to discover common regions between reads and
applied for classifying RNA-Seq reads by origin gene. Read fingerprints provide
a compact representation of the reads and unexpectedly they are effective in
preserving sequence similarities, thus being extremely useful in an alignment-free
approach for discovering similarities. The main idea is that a factorization of
a read is computed while reading the reads and the factorization splits the
reads based on their content in terms of Lyndon-words: we keep the sequence of
the distances between consecutive splitting positions (that is, the sequence of
the factor lengths) to use as read fingerprint (read signature). The k-mers of a
fingerprint (called k-fingers) are the sub-pieces able to to capture the similarity
regions between the reads in a more flexible way with respect to the k-mers of
a sequence: indeed the length k of a k-mer is fixed. Furthermore, fingerprints
(numerical sequences) are shorter than the represented nucleotide sequences
and we expect that they are also resilient to errors occurring in long reads and
common k-fingers can be discovered. In the paper we show that k-fingers provide
anchors for computing common regions between reads of an input set S and
present an algorithm performing factorization of the reads in S and (next) a
linear scanning of the read signatures (or fingerprints); by hashing the k-fingers,

Capturing Overlaps by Using Lyndon Fingerprints 3

the common regions, shared by the currently processed read s and all the reads
previously considered, are computed in O(LN), where L is the read length
and N is the maximum number of occurrences of a unique (occurring once)
k-finger of s in the reads considered by the previous iterations. At the end of the
iterations, the algorithm has computed all the common regions between the input
reads. Observe that comparing reads in a reference-free approach often requires
a pairwise comparison and is computationally demanding (refer for example
to the problem of the identification of the relationships between metagenomic
reads [16]). We have implemented our method in the Python prototype KFinger
taking as input a set of reads and producing as output the pairs of reads in
overlap. We have tested it over an error-free dataset of long reads simulated from
a 2M-long region of the human chromosome 21 by using DeepSimulator [17]
and a real PacBio HiFi set. We have compared the results from KFinger and
Minimap2 [14].

Overall, Minimap2 produces more overlapping pairs than KFinger and the
percentage of overlaps with high error rate (error rate over 3.0%) is higher for
Minimap2 than KFinger. Observe that pair of reads, that share a short overlap,
are expected to be missed by our method, but, on the other end, with the
purpose of reconstructing an assembly, these pairs of reads may be discarded.
The obtained results suggest that KFinger is less sensitive than Minimap2 in the
face of a quite high specificity. To test this hypothesis, we also compared the
results (by KFinger and Minimap2) with the overlaps obtained by mapping the
input reads to the reference genome.

2 Preliminaries

Let s = ¢1---¢p be a string over a finite alphabet X. The length of s (that is,
the number p of its characters) will be denoted by |s|. A prefiz of s is a string
composed of its first ¢ characters (that is, ¢; - - - ¢;). Similarly, a suffiz is a string
composed of the last i characters of s (that is, ¢p—j41 - ¢n).

A prefix (or suffix) is proper if it does not cover the whole string s. In the
following, notation s < s’ (resp. s < s’) will specify that string s is lexicograph-
ically smaller than s’ (resp. or s = s’). Furthermore, s < s’ will specify that
s < s’ and additionally s is not a proper prefix of s'.

Now, we introduce the two main ingredients for capturing common regions
between two strings (or reads): the definitions of factorization and fingerprint.
Precisely, a factorization of a string s is a sequence F(s) = (f1, fa,..., fn) of
factors (strings over X), such that s = f1fa- - f,, and the fingerprint, with respect
to F(s), is the sequence L(s) = (| f1],]f2],---,|fn]) of the factor lengths.

Given a fingerprint £(s) = (I1,1a,...,1l,), a k-finger is a k-mer of L(s), that
is, any substring (I;,l;+1, ..., lirx—1) composed of k consecutive elements of L(s).
The sum l; +1;41+- - - +1;+,—1 will be referred as supporting length of the k-finger.
Moreover, the index i and the sum I; 4+ Iy + - -- 4+ [;_1 of the upstream elements
(lengths) of the fingerprint will be referred as index offset and length offset of
the k-finger with respect to the fingerprint.

4 Bonizzoni et al.

The substring f;fi+1 - fitx—1 will be the supporting string of the k-finger.

Ezample 1. Let F(s) = (aaaaa, ccce, aaaaaa, cccce, ttt, a) be the factorization
of s and let L(s) = (5,4,6, 5, 3,2,1) be the the fingerprint. The three bold
consecutive integers (6, 5, 3) are a 3-finger, whose supporting length is 14 and
supporting string is the concatenation of the three bold factors of the factorization.
The index offset of the 3-finger is 3, since its first element is the third in the whole
fingerprint, and the length offset is 9, which the sum of the upstream elements 5
and 4. The length offset gives the offset of the supporting string in s.

In order to obtain read fingerprints, in this work we will exploit special
kinds of factorizations, named Lyndon based factorizations in [15] since they are
defined starting from the well known Lyndon factorization of a string s [1]. We
firstly recall that each string s can be uniquely factorized into Lyndon words [1],
where a Lyndon word is a word which is strictly smaller than any of its non
empty proper suffixes. For example, it is easy to see that accgctct is a Lyndon
word, whereas cac is not a Lyndon word. Formally, given a string s, its Lyndon
factorization is denoted by CFL(s) = (f1, fa,..., fn), where f1 > fo > --- > f,
and each f; is a Lyndon word. For example, given s, = gcatcaccgctctacagaac, we
have that CFL(s1) = (g, ¢, atc, accgctet, acag, aac). In [18], the Canonical Inverse
Lyndon factorization |ICFL(s) = (f1, fa,..., fa) is a factorization of s such that
fi< fa< - < f, and each f; is an inverse Lyndon word [18], that is, each
non empty proper suffix of f; is strictly smaller than f;. For example, cac, tcaccge
are inverse Lyndon words. Let us consider again s; = gcatcaccgctctacagaac. We
have that ICFL(s1) = (gca, tcaccgce, tctacagaac). Such factorizations are unique
and can be computed in linear time and constant space [18].

A property of CFL(s) = (f1, fa,..., fn), which is crucial in our framework, is
the following Conservation Property [19]. Suppose that CFL(s) = (f1, f2,- .., fn)
and let z = f] fiyq1--- ftftlﬂ be a non simple factor w.r.t. CFL(s) (i.e., it properly
contains at least one factor), for some indexes [,¢t with 1 <! <n, 1 <t <mn, and
fi=f'fl, fix1 = fi1fi1- A main consequence of the conservation property
proved in [18] is that given two strings s and s’ sharing a common overlap z, there
exist factors that are in common between CFL(w) and CFL(w’). Thus s and s’
they will have fingerprints sharing k-fingers for a suitable size k. For example, con-
sider again s; = gcatcaccgctctacagaac and let so = ccaccgcetctacagaageate. We
know that CFL(s1) = (g, ¢, ate, accgctct, acag, aac) and we have that CFL(s2) =
(¢, ¢, accgctet, acag, aageatce). Hence, we have L(s1) = (1,1,3,8,4,3) and L(s2) =
(1,1,8,4,7). The two common consecutive elements (8,4) are related to the same
factors in the strings (8 is realated to accgctet and 4 is related to acag) and
capture the common substring accgctctacag given by their concatenation.

Our method exploits the previous result and is based on the following assump-
tion: a k-finger occurring in different read fingerprints has the same supporting
string. This assumption is fundamental in order to capture common regions
between reads by using fingerprints and k-fingers while ignoring the string charac-
ters. We define CFL_ICFL the factorization obtained by applying first the Standard
Lyndon Factorization CFL, and then the Canonical Inverse Lyndon factorization
ICFL to factors (of CFL) longer than a given threshold. In other words, given

Capturing Overlaps by Using Lyndon Fingerprints 5

CFL(s) = (f1, f2,-- -, fn), we obtain CFL_ICFL(s) by replacing with ICFL(f;) each
fi longer than the threshold.

Observe that CFL_ICFL has the main advantage of producing many factors,
thus enriching the set of k-fingers to use for detecting the common regions between
reads. In [15], in order to deal with the double-stranded nature of sequencing
reads it is proposed a factorization algorithm F9(s) = (f1, fo, ..., f») such that
F(3) is equal to (f,,, f,,_1,---,f1), where f, is the reverse and complement of
fi- Recall that the reverse and complement of a string s over the DNA alphabet
{A,C,G,T} is the string 3, such that its i-th character is the complement of the
(|s| — i+ 1)-th character of s, where the complement is the operation transforming
the DNA symbol A into the DNA symbol T' (and vice versa) and the DNA symbol
C' into the DNA symbol G (and vice versa). This double-stranded factorization
relies on a basic algorithm F' such as CFL, ICFL or CFL_ICFL, and is obtained
by combining F(s) with F(3), with the result of reducing the length of the
factorization factors [15].

Observe that fingerprint of s will be equal to the reverse of fingerprint of s
and, as a consequence, the same genomic region on the two opposite strands will
be supporting two k-fingers, which are one the reverse of the other.

3 Detecting reads in overlap

In our framework, we consider in overlap two reads s and s’ between which,
one of the following relations occur: (i) a proper suffix of s has a match with a
proper prefix of s’ (or vice versa), (ii) s has a match with a substring of s’ (or
vice versa). In absence of sequencing errors, the suffix of s will be equal to the
prefix of s’ (or vice versa) in case (i) and s will be equal to the substring of s’ (or
vice versa) in case (ii). Clearly, when sequencing errors are present, the equality
relation must be transformed into a similarity relation . Observe that the above
relation (i) holds for two reads sequenced from the same genomic strand. When
the reads come from opposite strands, then relation (i) must be turned into the
following one: a proper suffix (resp. prefix) of s has a match with a proper suffix
(resp. prefix) of &’ (or vice versa). Obviously, the matching in both cases occurs
except for a reverse and complement operation of one of the two involved read
substrings. Our aim is to use fingerprints and k-fingers obtained from Lyndon-
based factorizations for capturing common regions between reads in an input set
and inferring pairs of reads in overlap. Given an input set of reads, our method
duplicates each input read. In other words, we expand the input set by adding
the reverse and complement version of each input read. Then, it computes for
each read (of the expanded set) a Lyndon-factorization from which to obtain
the fingerprint (read signature) and extract the k-fingers. Next, it exploits the
obtained k-fingers to detect common regions between reads and infer the pairs of
reads in overlap (or overlapping pairs) in the expanded input set. Observe that,
following the duplication approach to handle the double-stranded nature of reads,
we only have to deal with suffix-prefix overlaps as if the reads originated from the
same strand. Next, a post-processing step obtains the overlapping pairs of the

6 Bonizzoni et al.

o0V,

my ‘Tb

ovyp

Fig. 1. Suffix-prefix overlap between reads r, and 7, having common region (mq, ms).
A suffix of r, has a match with a prefix of rp.

original input set and (if needed) converts suffix-prefix overlaps into suffix-suffix
(or prefix-prefix) overlaps between reads from opposite strands.

3.1 The method

Let S = {s1,82,...,8-} be the set of the input reads (strings over the DNA
alphabet) and let 5; be the reverse and complement of s;. The set S is first
expanded into the set S. = {s1,51,52,52,...,5,3-}. Then (first step), each
read in S, is split into segments of a given length X (observe that the last
segment may be smaller) and each segment is factorized by using a factorization
algorithm (among the ones described in the previous section). The fingerprint
of a read will be the concatenation of the fingerprints of its segments. The
read segmentation has the advantage of producing richer fingerprints in terms
of number of elements and therefore in terms of k-fingers to use to capture
similarities. Next (second step), the read fingerprints are exploited to obtain the
pairs of reads (of the expanded set S.) sharing a common region. Observe that
we are not interested in overlapping pairs (s;,s;) composed of a read and its
reverse and complement. This step considers pairs (14,) such that r, is s; or §;
and rp is in {$;4+1,8i41, .-, Sr, 5r} (the vice versa is indeed redundant). This step
basically finds two common unique k-fingers (occurring uniquely in the two reads)
to use as anchors of the common region between r, and r,. For each computed
common region (third step), the suffix-prefix overlap is obtained by extending
the common region to the left endpoint of a read and to the right endpoint of
the other read (as depicted in Figure 1. When the common region does not cover
a certain percentage P of the putative overlap, then the pair (r,,7,) is not an
overlapping pair and will not be produced as output.

Finally (fourth step), after computing all the suffix-prefix overlaps of the
expanded set Se, a post-processing step computes the overlapping pairs of the
original input set S. Precisely, let s;, s; and 3;, 5; be two input reads and their
reverse and complement versions. Assuming i < j, then the overlapping pairs
(si,85), (8:.35), (Si,8;) and (3;,5;) may be coexist in the output of the third step.
Hence, a trivial strategy is applied to only retain just one among those pairs,
which consists in selecting the first pair produced by the algorithm. Observe that
sophisticated strategies have been tested (using some criteria based on the read

Capturing Overlaps by Using Lyndon Fingerprints 7

strand) but we did not obtain a significant improvement in the results. Observe
that when the selected pair is (s;.5;) or (3;,s;) (that is, it involves reads from
opposite strands), then the suffix-prefix overlap is converted into a suffix-suffix or
prefix-prefix overlap. When the selected pair is (3;,3;), the suffix-prefix overlap
is reported onto the original reads s; and s;.

The following paragraphs are devoted to detail the second step which is the
core of our method and works in two sub-steps: first, the candidate pairs are
computed (see Algorithm 1) and then the common regions are obtained. Basically,
Algorithm 1 performs a linear scanning of the reads of S, and, for each read
fingerprint, the k-fingers are considered from the leftmost to the rightmost. The
goal is to compute a hash table C storing the pairs (r4,75) sharing at least U
unique k-fingers (that is, occurring only once in both reads), which are referred
as candidate pairs. The leftmost (unique) k-finger shared by 7, and ry is stored
in C for each candidate pair (r4,7p) together with its length offsets and index
offsets in the fingerprints of two reads. The returned hash table C gives for a
key (rq,7p) (candidate pair) the tuple (f;,w!, 4!, wh il), where f; is the common
leftmost k-finger, w! and w[l) are the length offsets for r, and r;, (respectively)
and i!, and i} are the index offsets for 7, and 7}, (see Example 1). The algorithm
uses a support hash table H storing the k-fingers and their localization in the
reads (length offset and index offset): for each k-finger f, the value H(f) is a list
of tuples (r,w,), where each tuple gives the localization of f in the fingerprint
of a read r. For each considered read r, (see the main foreach cycle at line 3)
and for each k-finger f, its localization in r, is stored in the hash table H (see
foreach cycle at line 5). Then, H is updated such that it contains only the
localizations of the unique k-fingers of 7, (see foreach cycle at line 9) and at
the same time such unique k-fingers are stored in the list unique_list. The if
condition at line 10 checks whether the k-finger f is unique in r. In fact, if f
is not unique, then the n > 1 trailing tuples of list H(f) will be related to ry.
At each iteration of the main foreach cycle, the support hash table H contains,
for each read already processed before 1y, only the localizations of its unique
k-fingers. The last foreach cycle at line 15 considers each unique k-finger of
and finds its localizations in the other reads (processed before r},) in order to
compute all the candidate pairs involving r, as second read. Observe that the
k-fingers are always considered from left to right in the read fingerprints and
the two foreach cycles at lines 9 and 15 guarantee that the k-finger f, stored
in C for a candidate pair (r4,7p), is the leftmost unique k-finger shared by the
two reads. Algorithm 1 performs a linear scanning of the read fingerprints and
the three foreach cycles at lines 5, 9 and 15 perform a linear scanning of the
read k-finger whose number is asymptotically equal to the read length. Finally,
observe that the foreach cycle at line 16 only checks the tuples in the list H(f)
(of the support hash table H) whose size is the number of reads (among the ones
already processed) containing a unique occurrence of the k-finger f. Even though
it is not specified by the algorithm, only k-fingers whose supporting length, i.e. the
sum of the lengths in the k-finger, is at least a given threshold 7 are considered.
The parameter 7 is the threshold we use to consider a k-finger reliable and avoid

8 Bonizzoni et al.

Algorithm 1: Compute the candidate pairs

Input : Fingerprints of the reads of the expanded set S.
Output: C, hash table of the candidate pairs

1 H < empty hash table;

2 C < empty hash table;

3 foreach fingerprint L do

4 ry — read whose fingerprint is L;

5 foreach k-finger f € L do // From the leftmost to the rightmost
6 (w,7) < length offset and index offset of f;

7 Add (rp,w,) to the list H(f);

8 unique_list < empty list;

9 foreach k-finger f € L do

10 if the last n > 1 tuples of H(f) are related to m», then

11 ‘ Remove from H(f) the last n tuples;

12 else // f is unique in 7y

13 ‘ Append f to unique_list;

14 already_processed <— empty set;

15 foreach f € unique_list do

16 foreach (r,,w!,i.) € H(f) do

17 if 7o #1 and rq ¢ already_processed and (rq,75) ¢ C' then
18 if r, and ry, share at least U unique k-fingers then

19 (wh,it) + length offset and index offset of f in L;
20 C(ra,rp) + (f,wh, ik, wh,dl);

21 else

22 ‘ Add 7, to already_processed;

23 return C

collisions (that is, the same k-finger which is supported by different strings in
different reads).

For each candidate pair (r4,7p) in the hash table C, the algorithm uses the
tuple (fi,w?, i, wl,il) returned by C to localize the two longest subsequences
(consecutive elements) of fingerprints L(r,) and L£(rp) of r, which satisfy the
following three conditions: (1) both subsequences have k-finger f; as prefix, (2)
they share at least the last &’ elements (where k' is an input parameter) and
the &’-finger corresponding to such elements uniquely occurs in the two reads
and has a minimum supporting length (to avoid collisions), and (3) the sum of
the elements (integer values) of the first subsequence differs from the sum of
the elements of the second subsequence by an upper threshold, we call length
tolerance. The algorithm further extends as much as possible on the right the
two subsequences while maintaining the equality of the corresponding elements.

Ezample 2. Let L(r,) = (5,4,3,10, 6, 5, 3, 2, 7, 3,4) be the fingerprint of
rq and let L(ry) = (2,2,10, 6, 3, 2, 2, 2, 7, 3,3,9) be the fingeprints of ry,.
Assuming k = 2, k' = 2, a length tolerance set to 3 and a minimum supporting
length set to 10 for k-fingers, then the bold subsequences satisfy the above
conditions. Indeed, both ones start with the 2-finger (10,6) which is the leftmost

Capturing Overlaps by Using Lyndon Fingerprints 9

common k-finger (occurring just once in the reads) having a supporting length at
least 10. Moreover, they share the last &'-finger (the last &k’ elements) (7, 3) having
a supporting length at least 10 (assuming that 10 is also the minimum supporting
length for the k’-finger terminating such subsequences. Finally, the sum of the
bold subsequence of r, is equal to 36, while the sum of the bold subsequence
of r is equal to 35 and their difference satisfies the assumed length tolerance.
Hence, the common region between r, and r, (computed by our method) will
be composed of the 36-long substring starting at position 54+4+3+1 =13
of r, and the 35-long substring starting at position 24+ 2+ 1 = 5 of r,. At
this point, the common region between the reads is obtained by finding the
two read substrings, referred in the following as common region, supporting
the two computed fingerprint subsequences. The length tolerance admitted in
condition (3) takes into account possible sequencing errors of the reads and is
the maximum difference between the length of the two detected common read
substrings. Observe that the two fingerprint subsequences may share only a
prefix (the leftmost k-finger f;) and a suffix and the equality of the corresponding
integers may be interrupted because of sequencing errors or read segmentation
(see the first step). Our method also allows to perform a re-factorization of one of
the two reads r, and r, before computing the core common region, motivated by
the fact that the read segmentation (see step one) may lead to a misalignment in
the segment fingerprints, thus inducing to lose common factors in the overlapping
regions between two reads.

During re-factorization, the read (between r, and ry), where the common
leftmost k-finger f; has the smallest length offset, is selected; the suffix w to
re-factorize is computed as described by Figure 2. Note that w is aligned with a
factorization segment of the other read and therefore the fingerprint of w will be
compared with the suffix of the fingerprint of the other read starting from such
segment. The common region between r, and r, will be computed, as described
before, starting from the a common leftmost k-finger shared by the two new
fingerprints. In case of re-factorization, the common region between the two reads
will be the longest between the ones computed before and after re-factorization.

4 Experimental Results

The method has been implemented in the Python prototype KFinger and it is
available at https://github.com/AlgoLab/kfinger along with all the scripts needed
to replicate the experiments. The tests have been performed on an Ubuntu 20.04
laptop with a single Intel®) Core™ i5-8250U CPU and 16GB of RAM over the
following datasets: (1) a dataset of 10K error-free long reads simulated from the
region of the human chromosome 21 between positions 32 000 000 and 34 000 000
(2000 000bp), by using DeepSimulator [17] and (2) a dataset of 6141 real PacBio
HIFT reads extracted from PacBio Sequel II HiFi sequencing of sample HG00731
of a Puerto Rican Trio. Precisely, the reads were mapped against the human
genome GRCh38 (GCA_000001405.15, no ALT contigs) using Minimap2 (version
2.17) with preset asm20 (as suggested in its documentation for aligning PacBio

https://github.com/AlgoLab/kfinger

10 Bonizzoni et al.

"o -

suffix w to re-factorize

T'p

\

!
)

Fig. 2. Re-factorization scheme. The two reads r, and 7, are depicted as horizontal bars
aligned according to the the common leftmost k-finger f; whose supporting strings are
depicted as black boxes. w!, and w! are the length offsets of f; and the vertical bars on 74
(which has the largest length offset for f;) are the edges between consecutive factorization
segments (only edges in the portion aligned with r, are shown). The leftmost edge falling
in 7, determines the starting point of the suffix w of r, to re-factorize (highlighted in
tiled grey), whose fingerprint will be compared with the fingerprint of r corresponding
to the portion highlighted in solid grey.

HiFi/CCS genomic reads). Only primary alignments were retained. We then
extracted in FASTA format reads overlapping region 32M-34M of chromosome
21. The final dataset was composed by 6141 reads with average length 11124bp
(min 2349bp, max 23263bp, median 10417bp) for a total of 68316199 bases.
The error rate inferred from the alignment was 6.22 x 103, Original sequence
files are available at http://ftp.1000genomes.ebi.ac.uk/voll /ftp/data_collections/
HGSVC2/working /20190925 PUR_PacBio_HiFi/

(run IDs: r54329U_190528 — r54329U_190906).

The first dataset will be referred as error-free-ds while the second one as
hifi-ds. Recall that each input read to KFinger is accompanied by its reverse
and complement, so that the size of the two datasets is 20000 for error-free-ds
and 12282 for hifi-ds. We have used a double-stranded factorization algorithm
built over the basic CFL_ICFL factorization algorithm with threshold parameter
30 (that is, factors of CFL factorization longer that 30 are submitted to ICFL
factorization), by splitting each read into segments of length X = 300bp in order
to limit the factor lengths. The common regions between reads were computed for
both datasets before and after re-factorization; then, the overlaps from common
regions covering at least a percentage P = 80% (coverage percentage of the
putative overlap), were obtained. For finding the candidate pairs, we used a
k-finger size set to 7 (k = 7) and a minimum supporting length set to 40; 6 is
the minimum number of unique shared k-fingers required for a candidate pair.
Moreover, before re-factorization, we required k' = 3 and a length tolerance set to
0 for error-free-ds and k¥’ = 2 and length tolerance set to 15 for hifi-ds. After
re-factorization, we used k = 5 and a minimum supporting length set to 10. We
maintained the above values for parameter k' for the two datasets and the length
tolerance set to 0 for error-free-ds, while setting to 20 the length tolerance for

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/

Capturing Overlaps by Using Lyndon Fingerprints 11

hifi-ds. We have compared, in terms of accuracy, KFinger with Minimap2 [14]
by retaining only the common regions produced by Minimap2 having a minimum
coverage percentage P = 80% with respect to the putative overlap and computing
the overlaps on such common regions. Observe that records involving the same
read have been discarded both for KFinger and Minimap2. For each common
region and each overlap obtained with Minimap2 and KFinger, we computed
an error rate as the ratio of the edit distance, between the two read substrings
involved in a common region or an overlap, and the smaller substring length.
Tables 1 and 2 report the results for datasets error-free-ds and hifi-ds,
respectively. Both tables report the results on common regions and overlaps
produced by KFinger before (rows K) and after re-factorization (rows KR)
and on common regions and overlaps obtained from Minimap2 (rows M). In
the following, we refer to a common region or an overlap with the generic term
record. The first three columns “#0”, “#< 3.0” and “#> 3.0” give the number of
records having an error rate equal to 0, greater than 0 but at most 3.0% and
over 3.0%, respectively. The last three columns MinL, MaxL and AvgL report the
minimum, maximum and average length of the read substrings involved in the
record. Overall, Minimap2 finds more records than KFinger. Over error-free-ds
Minimap2 outputs a total of 1286932 common regions, 179757 out of them are
alternative overlaps between reads, against the 533584 produced by KFinger.
Observe that a given pair of reads may be involved in more than one record;
only Minimap?2 produces alternatives, whereas KFinger gives (by choice) just one
common region/overlap for two given reads. Them, over hifi-ds, Minimap?2 finds
a total of 530529 common regions (108655 out of them are alternatives) against
the 211230 produced by KFinger. Moreover, Minimap2 finds a total of 502377
overlaps (4455 out of them are alternatives) over error-free-ds and a total
of 132160 overlaps (461 out of them are alternatives) over hifi-ds. KFinger
produces 433947 overlaps over error-free-ds and 147029 overlaps over hifi-ds
before re-factorization, whereas it produces 465121 overlaps over error-free-ds
and 173057 overlaps over hifi-ds after re-factorization.

Column “#> 3.0” reports in parentheses the percentage of records (having an
error rate over 3.0%) with respect to the total number of obtained records. We
consider this value as a proxy of the false positive rate of the prediction. Observe
that this percentage is rather low for KFinger both for common regions and
overlaps, whereas for Minimap?2 it is low only for the overlaps since the parameter
P = 80% contributes to filter out the common regions produced by Minimap?2
not leading to a good read overlap. Moreover, the re-factorization has mainly
determined an improvement in terms of detected overlaps, since for dataset
error-free-ds 31079 extra overlaps (with an error rate < 3.0) were detected
after the re-factorization with respect to the experiment before re-factorization.
Similarly, the re-factorization has produced 25486 extra overlaps for dataset
hifi-ds. These results suggest that KFinger does not compete with Minimap2
in terms of sensitivity but it is likely to be more specific in terms of common
regions. Indeed, Minimap2 is more tolerant with respect to the sequencing errors
and therefore finds more common regions than KFinger. On the other hand,

12 Bonizzoni et al.

Table 1. Experimental results for error-free-ds. The rows tagged as K and KR refer
to the common regions/overlaps produced by KFinger before and after re-factorization,
whereas the row tagged as M refers to common regions/overlaps obtained from
Minimap2.

Common regions
#0 #<3.0 #>3.0 MinL MaxL AvgL
K 473053 7643 52888 (10%) 40 37383 4339

KR 474107 7103 52374 (10%) 39 37414 4550
M 498479 29577 T758876(59%) 100 37441 2246

Overlaps (P = 80%)
#0 #<3.0 #>3.0 MinL MaxL AvgL

K 4338384 8 55 (0.1%) 95 37441 5622
KR 464958 13 150 (0.1%) 95 37441 5364
M 496289 2142 3946(1%) 100 37441 5055

KFinger gives fewer common regions and seems to be more precise. To test this
hypothesis, and, in particular, to evaluate sensitivity, we compared the predicted
common regions with the overlaps computed by mapping reads to the reference
genome. We mapped the two datasets to region 32M-34M of human chromosome
21 using Minimap2 and we kept only reads aligning for at least 95% of their
length. From these alignments we devised the set of overlaps such that the length
of the overlap was at least 80% of the length of the genomic region spanned by
the two reads. We define this set as the set of “alignment-based” overlaps. Please
notice that we do not expect that the set of alignment-based overlaps coincides
with the set of predicted overlaps since () some overlaps were discarded because
of their length and since (i7) there exists common regions between reads that
do not actually overlap on the genomic. For each alignment-based overlap, we
checked if there exists a predicted common region that intersects the overlap
for at least 50% of their span. If it exists, we considered the alignment-based
overlap as found. The dataset error-free-ds contains 9273 alignment-based
overlaps. As expected, Minimap2 found all of them, while KFinger missed 5 of
them before re-factorization and 3 of them after re-factorization. The dataset
hifi-ds contains 16207 alignment-based overlaps. Minimap2 was not able to
find 2 of them, while KFinger missed 1743 of them before re-factorization and
753 of them after re-factorization. These results support the hypothesis that
Minimap2 is more sensitive and more tolerant than KFinger, but, on the other
hand, it is also less specific, since Minimap2 reports twice as much common
regions as KFinger. In terms of time efficiency, we measured the whole time
for computing the candidate pairs and the common regions. These two steps
are indeed the intensive part of the method. Moreover, the time is given before
re-factorization, since the current implementation of the read factorization is
not optimal. On a single thread, KFinger took 12 minutes and 5 seconds for

Capturing Overlaps by Using Lyndon Fingerprints 13

Table 2. Experimental results for hifi-ds. The rows tagged as K and KR refer to the
common regions/overlaps produced by KFinger before and after re-factorization, whereas
the row tagged as M refers to common regions/overlaps obtained from Minimap2.

Common regions
#0 #<3.0 #>3.0 MinL MaxL AvgL
K 10309 184461 16460 (8%) 40 17853 4392

KR 6976 187396 16858 (8%) 39 18063 4933
M 9449 217870 303210(57%) 100 18811 2531

Overlaps (P = 80%)
40 #<30 #>30 MinL MaxL AvgL

K 2583 143916 530 (0.3%) 97 18169 6036
KR 3275 168710 1072 (0.1%) 97 18169 5880
M 2646 109115 20399(15%) 103 19664 6623

dataset error-free-ds and 4 minutes and 2 seconds for dataset hifi-ds. Despite
being highly optimized, Minimap2 took 4 minutes and 42 seconds for dataset
error-free-ds and 2 minutes and 16 seconds for dataset hifi-ds.

5 Conclusions and Future Developments

We have proposed a method for detecting overlaps in a set of long reads by using
a compact numerical representation (fingerprint) based on Lyndon factorization.
The method has been implemented in the Python prototype KFinger which
has been tested over a set of error-free simulated reads and a PacBio HIFI
dataset. The experimental results encourage to think that KFinger may be a
suitable and specific method for finding shared regions between pairs of reads,
taking advantage of the compact numeric representation of the reads. In the
immediate we plan to improve KFinger in terms of time efficiency by improving
the implementation of (1) the factorization algorithms used for producing the
input fingerprints and (2) of the steps two and three producing the common
regions, improvement needed in terms of a more efficient programming language
such as C++ and the use of more efficient data structures. In terms of accuracy
we plan to investigate the impact of the different factorization algorithms in order
to face the typical issues related to long reads: sequencing errors and repetitive
regions.

References

1. Lyndon, R. C.: On Burnside’s problem. Transactions of the American Mathematical
Society 77(2), 202-215 (1954)

2. Berstel, J., Perrin, D.: The origins of combinatorics on words. European Journal of
Combinatorics 28(3), 996-1022 (2007)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bonizzoni et al.

Delgrange, O., Rivals, E.: Star: an algorithm to search for tandem approximate
repeats. Bioinformatics 20(16), 2812-2820 (2004)

Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows—
Wheeler transform. Theoretical Computer Science 387(3), 298-312 (2007)
Bonizzoni, P., De Felice, C., Zaccagnino, R., Zizza, R.: Lyndon words versus inverse
Lyndon words: Queries on suffixes and bordered words. In: LATA 2020, LNCS, vol.
12038, pp. 385-396. Springer (2020). https://doi.org/10.1007/978-3-030-40608-0_27
Chen, K. T., Fox, R. H., Lyndon, R. C.: Free Differential Calculus, IV. the quotient
groups of the lower central series. Annals of Mathematics 68(1), 81-95 (1958)
Pevzner, P. A., Tang, H., Waterman, M. S.: An Eulerian path approach to DNA
fragment assembly. In: Proceedings of the National Academy of Sciences, pp. 9748—
9753. National Academy of Sciences, 98(17) (2001)

Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., Phillippy, A. M.:
Assembling large genomes with single-molecule sequencing and locality-sensitive
hashing. Nature biotechnology 33(6), 623-630 (2015)

Loman, N. J., Quick, J., Simpson, J. T.; A complete bacterial genome assembled de
novo using only nanopore sequencing data. Nature Methods 12(8), 733—-735 (2015)
Jain, C., Dilthey, A., Koren, S., Aluru, S., Phillippy, A. M.: A fast approximate algo-
rithm for mapping long reads to large reference databases. Journal of Computational
Biology 25(7), 766-779 (2018)

Broder, A.: On the resemblance and containment of documents. In: Proceedings.
Compression and Complexity of SEQUENCES, pp. 21-29. IEEE Comput. Soc
(1997)

Pierce, N. T., Irber, L., Reiter, T., Brooks, P., Brown, C. T.: Large-scale sequence
comparisons with sourmash. F1000Research 8, 1006 (2019)

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., Phillippy, A. M.:
Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and
repeat separation. Genome Research 27(5), 722-736 (2017)

Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34(18), 3094-3100 (2018)

Bonizzoni, P., De Felice, C., Petescia, A., Pirola, Y., Rizzi, R., Stoye, J., Zaccagnino,
R., Zizza, R.: Can we replace reads by numeric signatures? Lyndon fingerprints as
representations of sequencing reads for machine learning. In: A1CoB 2021. LNCS, vol.
12715, pp. 16-28. Springer (2021). https://doi.org/10.1007/978-3-030-74432-8_2
Girotto, S., Pizzi, C., Comin, M.: MetaProb: accurate metagenomic reads binning
based on probabilistic sequence signatures. Bioinformatics 32(17), i567-1575 (2016)
Li, Y., Han, R., Bi, C., Li, M., Wang, S., Gao, X.: DeepSimulator: a deep simulator
for Nanopore sequencing. Bioinformatics 34(17), 2899-2908 (2018)

Bonizzoni, P., De Felice, C., Zaccagnino, R., Zizza, R.: Inverse Lyndon words and
inverse Lyndon factorizations of words. Advances in Applied Mathematics 101,
281-319 (2018)

Bonizzoni, P., De Felice, C., Zaccagnino, R., Zizza, R.: On the longest common
prefix of suffixes in an inverse lyndon factorization and other properties. Theoretical
Computer Science 862, 24-41 (2021)

https://doi.org/10.1007/978-3-030-40608-0_27
https://doi.org/10.1007/978-3-030-40608-0_27
https://doi.org/10.1007/978-3-030-74432-8_2
https://doi.org/10.1007/978-3-030-74432-8_2

	KFinger: Capturing Overlaps between Long Reads by Using Lyndon Fingerprints

