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Abstract

In this paper we initiate the study of form factors for the massless scattering of integrable AdS2

superstrings, where the difference-form of the S-matrix can be exploited to implement the relativistic
form-factor bootstrap. The non-standard nature of the S-matrix implies that traditional methods do
not apply. We use the fact that the massless AdS2 S-matrix is a limit of a better-behaved S-matrix
found by Fendley. We show that the previously conjectured massless AdS2 dressing factor coincides
with the limit of the De Martino - Moriconi improved dressing factor for the Fendley S-matrix. We
then solve the form factor constraints in the two-particle case. Along the way we find a method to
construct integral representations of relativistic dressing factors satisfying specific assumptions, and
use it to obtain analytic proofs of crossing and unitarity relations.
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1 Introduction

1.1 AdS2 integrable scattering

Let us briefly describe some work that has recently taken place as regards to the AdS2 × S2 × T 6

string theory background [1] for what concerns its integrability description. The duality is in this
case particularly mysterious, and it should involve a certain superconformal quantum mechanics or a
particular chiral 2D CFT [2, 3, 4]. The coset action is based on PSU(1,1|2)

SO(1,1)×SO(2) [5, 3]. This has been
shown to have classical integrability [6] up to a second order expansion in the fermionic fields [7, 8].

The integrable S-matrix for this theory was constructed in [9] by postulating a centrally-extended
psu(1|1)2 symmetry as the symmetry remaining after the choice of a BMN vacuum [10, 11], and adapting
to it the familiar integrable AdS/CFT Hopf-algebraic construction [12]. The massive S-matrix was shown
to satisfy the properties of crossing and unitarity, however fixing the appropriate dressing factor for
massive particles is still an open problem. In the massive sector there is agreement with the perturbative
calculations available in the literature [11]. The massive particle representations are of long type, as
opposed to what happens in higher-dimensional AdSs.

In AdS2 only the massless particle representations are short. The massless S-matrix can be derived
via a limiting procedure from the massive S-matrix [13], and it displays the typical right- and left-mover
(chirality) splitting. An analysis of the Yangian symmetry, with a primary focus on the massive repre-
sentations, is presented in [9, 14]. The massless sector is less amenable to a matching with perturbation
theory [11, 15]. It is important to point out that massless scattering is rather different from its mas-
sive counterpart [16], and in relativistic models it is traditionally associated with the RG flow between



two-dimensional conformal field theories [13].
The BMN limit is trivial for massive particles and also for massless particle of opposite chirality [17, 18].

The BMN limit is non-trivial between right-right and left-left movers [18] and it describes a conformal
field theory, where left and right movers are decoupled, with N = 1 supersymmetry. However, the
S-matrix, for which a dressing factor has been conjectured [18] and whose validity extends to the whole
massless sector, is not the standard one of N = 1 theories [20, 21, 22], although it is of eight-vertex type
[23]. As a consequence of this fact (lack of U(1) symmetry), there is no reference state (pseudovacuum)
to setup the algebraic Bethe ansatz [24]. The Bethe equations have been conjectured from string theory
[7]. There is a vast literature on the problem of Bethe ansaetze without U(1) symmetry [25]. In [18]
the free-fermion condition [22, 26] and the technique of inversion relations [27] were exploited to obtain
a set of auxiliary Bethe equations, which were then compared with the ones from string theory. In [28]
more evidence was found by brute-force diagonalising the transfer matrix for a maximum of 5 particles,
and Yangian symmetry was also discussed for this superconformal scattering theory. The free-fermion
condition was then used again in [29] to recast the problem in a different form, using a suitable Bogoliubov
transformation. In this form a state was found for the two-particle transfer matrix, effectively playing
the role of the pseudovacuum (this state was dubbed pseudo-pseudovacuum in [29]). In [19] a change of
variable was found which recasts the massless scattering problem in difference form. This applies both
to AdS3, where the new variable has been further exploited in [44], and AdS2. In [19] further properties
of the massless AdS2 dressing factor have been determined.

In recent literature [30], which connects to a series of works [31], a very interesting S-matrix and
symmetries have been found which interpolate∗ between AdS2 and AdS3.

1.2 This paper

In this paper we initiate the study of form factors [32, 33, 34, 35, 36, 37, 38] associated with the AdS2

integrable scattering problem. No attempt at this has been made so far to our knowledge, either in the
domain of the hexagon approach [39, 40, 41], or using the more traditional approach (cf. [42]), which in
the relativistic case is based on Smirnov’s axioms (to be reviewed in the next section). We shall focus
on the latter, and restrict ourselves to the massless sector, where difference form is restored. Moreover,
we focus on the left-left and right-right scattering, which describes a conformal field theory in the BMN
limit. By exploiting the difference form we can make progress on the explicit analytic computation of
form factors based primarily on the criterion of meromorphicity, and verify the axioms.

The S-matrix being of eigth-vertex type means that the task of finding solutions to the relations,
which the form factors have to satisfy, is rather complicated. In particular, the off-shell Bethe ansatz
method which was developed in [35, 36] is here not available, due to the absence of a pseudo-vacuum.
Supersymmetry complicates the task even further. In the literature similar models have been attacked
before, and in particular the two-particle form factors have been the focus of attention [26, 46]. Our
model does not fall in the class that has been studied before. We exploit the fact, observed in [18], that
our S-matrices are limits of the Fendley S-matrix [20], for which the form factors are also not known.
We construct the necessary minimal two-particle form factors explicitly in this paper, and show that
they satisfy the appropriate axioms. Nevertheless, we can still employ a method which has been refined
by Mussardo [46], and apply it to our situation. In order to solve our specific problem we also construct
a method for finding implicit, and, in some simple cases, also explicit, integral expressions of relativistic

∗We thank Ben Hoare for discussions on the interpolation procedure.
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dressing factors. This method turns out to be applicable in a quite ample array of cases - provided
that certain hypotheses are satisfied. With a combination of the Mussardo method and the integral
representations which we construct, we obtain the minimal two-particle form-factors for the Fendley
S-matrix with the De Martino - Moriconi improved dressing factor [45].

We then show numerically for the first time that the dressing factors postulated in [19] coincide with
the limits of the Fendley dressing factors, in the improved version by De Martino and Moriconi. The
fact that the right-hand side of the crossing and unitarity equations tend to the AdS2 ones was known
from [18], but here we show that the dressing factors of [18, 19] solving such conditions are also precisely
the asymptotic limits of the De Martino - Moriconi dressing factor.

Our results open a new direction, which consists of obtaining predictions for the AdS2 form factors
as limits of the Fendley form factors, by-passing the limitations intrinsic to massless AdS2. The AdS2

S-matrix in the massless case is not braiding unitary, but rather satisfies a combined condition between
the so-called solutions 3 and 5. This prevents to apply even the Mussardo method for the form factors,
which is the very reason why we have taken a detour via the better-behaved Fendley S-matrix. We end
the paper with some future directions and an appendix with a few of the mathematical proofs.

2 Form Factors Recap

2.1 Form factors

Form factors [32, 33] are an extremely important part of the bootstrap programme, which leads to
the complete solution of an integrable quantum field theory. The bootstrap programme starts with
determining the exact S-matrix and the Hilbert space of quantum states, and then proceeds with the
finite-volume analysis and finally establishing the array of all the form factors for the operators in the
theory. Using the explicit expressions of the form factors one can then ultimately reconstruct all the n-
point correlation functions. The formulas which one reaches at the end are then typically tested against
the perturbative Feynman-graph expansion - for a review, see [34, 35] and references therein.

In a relativistic setting the n-particle form factor, which one associates with a local operator O(x, t),
is defined to be the matrix element

FOα1...αn(θ1, ..., θn) = 〈0|O(0)|θ1, ..., θn〉α1...αn (2.1)

(the position is taken to be the origin, and time is suppressed) with θi being the rapidity of the i-th
particle in the in state, i.e. the ket in (2.1), and αi denote any other internal degree of freedom. We will
focus in this paper on a relativistic dispersion relation, with massless right-movers, the internal degree
of freedom being a boson vs fermion label:

pi = Ei = eθi , αi ∈ {b, f}, b = boson, f = fermion. (2.2)

We have left implicit a mass parameter M in the dispersion, as it will play no role. The scattering theory
which we will treat describes a conformal field theory, and the mass or length scale only features when
one puts the theory on a finite circle to setup the thermodynamic Bethe ansatz [17].

The computation of form factors proceeds axiomatically by requiring that they satisfy a set of con-
straints, see for instance [35] and [36]. The spirit is to by-pass perturbation theory in the first instance,
and to directly guess the solution based on these axioms. We list here for convenience those axioms
which are relevant to our massless situation.
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• Permutation

FOα1...αj−1 βj βj+1 αj+2...αn(θ1, ..., θj−1, θj , θj+1, θj+2, ...θn) = (2.3)

FOα1...αj−1 αj αj+1 αj+2...αn(θ1, ..., θj−1, θj+1, θj , θj+2, ...θn)Sαjαj+1
βjβj+1

(θj − θj+1).

The entries of the S-matrix feature in this axiom as

S : V1 ⊗ V2 −→ V2 ⊗ V1, S|vα(θ1)〉 ⊗ |vβ(θ2)〉 = Sρσαβ(θ1 − θ2)|vρ(θ2)〉 ⊗ |vσ(θ1)〉. (2.4)

It is often convenient to define an R-matrix associated with the S-matrix as

S = Π ◦R, R : V1 ⊗ V2 −→ V1 ⊗ V2. (2.5)

Π being the graded permutation on the quantum states:

Π|a〉 ⊗ |b〉 = (−)σ |b〉 ⊗ |a〉. (2.6)

The parity σ equals 1 only when both states are fermions, and it equals 0 in all the other cases.

• Periodicity

FOα1 α2...αn−1 αn(θ1 + 2iπ, θ2, ...θn−1, θn) = (−)σ FOα2 α3...αn α1
(θ2, θ3, ...θn, θ1). (2.7)

We have denoted by σ an appropriate statistical factor which involves the mutual statistics of the
operator and the first particle appearing in the in state.

• Lorentz boost

FOα1 α2...αn−1 αn(θ1 + Λ, θ2 + Λ, ...θn−1 + Λ, θn + Λ) = esΛFOα1 α2...αn−1 αn(θ1, θ2, ...θn−1, θn). (2.8)

We have denoted by s the Lorentz spin of the operator O.

• Residue at the kinematical singularities

The idea is always to complexify and utilise the power of analyticity. The form factors have to be
meromorphic functions in all of the complex variables θi, and may admit a series of poles. They
have bound state poles, which do not concern us in the massless case (see also [37]), and kinematical
poles. All these poles are simple. The kinematical poles generate the additional constraint

− i2 Resθ1=θ2+iπF
O
ᾱ2 α2...αn−1 αn(θ1, θ2, ...θn−1, θn) = (2.9)

Cᾱ2β2

[
1− (−)σSβnβ2

αnρn−3
(θ2 − θn)...Sβ3ρ1

α3α2
(θ2 − θ3)

]
FOβ3 β4...βn−1 βn(θ3, ...θn).

Here, ᾱ is used to indicate the anti-particle of α and Cαβ represents the charge-conjugation matrix.
One has again to allow for a statistical factor (−)σ in (2.9), depending on the mutual statistics of
the operator and the first scattering particle.

See [43] for a discussion on the conformal case. Some essential references can be found in [33, 38].
The form factor programme has been at the centre of great progress in AdS/CFT , starting with

AdS5/CFT4, where the complications of the model have led to the creation of a completely new and
tailored hexagon approach [39] - see also [40]. The hexagon approach has been extended to AdS3 [41].
The more traditional approach, not based on the hexagon but rather on the relativistic form-factor axioms
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which we have discussed above, was instead originally followed in [42], where it had to be generalised
to the non-relativistic setting. In [43] the traditional relativistic bootstrap programme was applied to
massless AdS3, where difference form is restored thanks to the change of variable introduced in [19] - see
also [44] - and one can proceed to conjecture exact solutions. In this paper we attack the AdS2/CFT1

case, which also displays difference form via the same change of variables [19] and is therefore amenable
to the more traditional axiomatic approach.

3 Fendley S-matrix And Two-Particle Form Factors

In order to gain some understanding of the AdS2 case it is convenient to first look at a more regular
case, although slightly more complicated. This is the Fendley S-matrix [20] - this S-matrix is much more
nicely-behaved than the AdS2 one, and it tends to the various versions of the massless AdS2 S-matrix
in precise limits. It can be considered therefore as a sort of parent model from which we can learn a
number of lessons.

Let us focus here on the Fendley p = 1
2 S-matrix, by displaying the associated R-matrix:

R = ΦF (θ)
[
E11 ⊗ E11 − E22 ⊗ E22 − tanh θ(E11 ⊗ E22 − E22 ⊗ E11) +

sechθ cosh θ2(−E12 ⊗ E21 + E21 ⊗ E12)− sechθ sinh θ2(−E12 ⊗ E12 + E21 ⊗ E21)
]
. (3.1)

The matrices Eij are 2 × 2 matrices with all zeroes, except 1 in row i, column j. They form a basis of
2× 2 matrices and act on the states |φ〉 ≡ |b〉 ≡ |1〉 (bosonic excitation) and |ψ〉 ≡ |f〉 ≡ |2〉 (fermionic
excitation) as

Eij |k〉 = δjk|i〉. (3.2)

We have also set θ ≡ θ1 − θ2. ΦF (θ) is the dressing factor, satisfying the crossing equation

ΦF (θ)ΦF (θ + iπ) = 1
1 + sinh2 θ

2
cosh2 θ

. (3.3)

This descends from imposing crossing symmetry:[
C−1 ⊗ 1

]
Rstr1(θ + iπ)

[
C ⊗ 1

]
R(θ) = 1⊗ 1, (3.4)

where str1 denote supertransposition in the first factor of the tensor product, and C is the charge
conjugation matrix:

C =
(
i 0
0 1

)
. (3.5)

An explicit solution is given by [20]

ΦF (θ) = 4
[

1
2 −

θ

πi

]2 ∞∏
j=1

(
j − 1

2

) ∏3
k=1

(
3j + 1

2 − k
)

(
2j − 1

2

)2(
2j + 1

2

)2

(
4j2 −

[1
2 −

θ

πi

]2)2

×
Γ
(

3j − 5
2 + 3

2
θ
πi

)
Γ
(

3j − 1− 3
2
θ
πi

)
Γ
(

3j − 1 + 3
2
θ
πi

)
Γ
(

3j + 1
2 −

3
2
θ
πi

) Γ
(
j − 1

2 + θ
2πi

)
Γ
(
j − θ

2πi

)
Γ
(
j + 1

2 −
θ

2πi

)
Γ
(
j + θ

2πi

) . (3.6)

This dressing factor also satisfies quite remarkably

ΦF (−θ)ΦF (θ) = 1
1 + sinh2 θ

2
cosh2 θ

, (3.7)
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which ensures both the braiding and the physical unitarity of the Fendley R-matrix:

R21(−θ)R(θ) = 1⊗ 1 (3.8)

and

R†(θ)R(θ) = 1⊗ 1 θ ∈ R, (3.9)

respectively. The latter property is indeed guaranteed by

ΦF (θ)Φ∗F (θ) = 1
1 + sinh2 θ

2
cosh2 θ

, θ ∈ R, (3.10)

which reduces to (3.7) upon inspection of the explicit formula for ΦF .
It is clear that in the large (positive and negative) rapidity limit one recovers the relativistic AdS2

crossing equation:

ΦF (θ)ΦF (θ + iπ)→ e±
θ
2

2 cosh θ
2
, θ → ±∞. (3.11)

An improved phase was found by De Martino - Moriconi, formulas (3.6) - (3.8) of [45]:

ΦDM (θ) = 2 sinh2
( iπ

4 + θ

2

) ∞∏
j=0

Γ( 3
2 + j)Γ( 1

2 + j − iθ
2π )Γ(1 + j + iθ

2π )
Γ( 1

2 + j)Γ( 3
2 + j + iθ

2π )Γ(1 + j − iθ
2π )

×
Γ( 1

2 + 2qj + 2q)Γ( 1
2 + 2qj − iqθ

π )Γ( 1
2 + 2qj + q + iqθ

π )
Γ( 1

2 + 2qj)Γ( 1
2 + 2qj + 2q + iqθ

π )Γ( 1
2 + 2qj + q − iqθ

π )
, (3.12)

where

q = 1 + |p| = 3
2 , (3.13)

with an integral representation given by

ΦDM (θ) = exp
[
−
∫ ∞

0

dt

t
h(t) sin tθ sin t(iπ − θ)

cosh πt

]
, h(t) = 2

sinh πt −
1

sinh 2πt −
1

sinh πt
q

. (3.14)

In the Appendix A we prove that

ΦDM (θ)ΦDM (θ + iπ) = ΦDM (−θ)ΦDM (θ) = 1
1 + sinh2 θ

2
cosh2 θ

(3.15)

and

ΦDM (θ)Φ∗DM (θ) = 1
1 + sinh2 θ

2
cosh2 θ

, θ ∈ R. (3.16)

It is clear that the crossing equation is the same as for ΦF , hence one recovers AdS2 in the limit (3.11).
The function ΦDM (θ) is meromorphic with poles and zeroes lying on the imaginary axis given as

follows:

• Poles

Poles of the dressing factor ΦDM are given by the poles of gamma functions in the numerator.

θ = −(2m− 1)πi, m = 1, 2, 3, . . . 2mth order pole

θ = 2mπi, m = 1, 2, 3, . . . 2mth order pole

θ = −2πi
3 (m+ 1

2), m = 0, 2, 3, 5, . . . (bm/3c+ 1)th order pole

θ = 2πi
3 (m+ 2), m = 0, 2, 3, 5, . . . (bm/3c+ 1)th order pole (3.17)
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where b c is the floor function and in third and fourth lines we exclude the values of m when m

mod 3 = 1. We exclude these values of m because, for m mod 3 = 1, the poles obtained from
θ = − 2πi

3 (m+ 1
2 ) coincide with those of θ = −(2m−1)πi and the poles obtained from θ = 2πi

3 (m+2)
coincide with those of θ = 2mπi, hence increasing the order of these poles from m to 2m.

• Zeroes

Zeroes of the dressing factor ΦDM are given by the poles of gamma functions in the denominator
and zeroes of the prefactor. Hence we have,

θ = (2m+ 1)πi, m = 1, 2, 3, . . . 2mth order zero

θ = −2mπi, m = 1, 2, 3, . . . 2mth order zero

θ = −2πi
3 (m+ 2), m = 0, 2, 3, 5, . . . (bm/3c+ 1)th order zero

θ = 2πi
3 (m+ 7

2), m = 0, 2, 3, 5, . . . (bm/3c+ 1)th order zero

θ = (2m− 1
2)πi, m ∈ Z double zeroes (3.18)

where b c is the floor function and again in third and fourth lines we exclude the values of m when
m mod 3 = 1. We do this again not because there are no zeroes at these values of m but because
the zeroes obtained from θ = − 2πi

3 (m + 2) coincide with those of θ = −2mπi and the zeroes
obtained from θ = 2πi

3 (m+ 7
2 ) coincide with those of θ = (2m+ 1)πi, hence increasing the order of

these zeroes from m to 2m. The last set of zeroes are the zeroes of the prefactor sinh2
(
iπ
4 + θ

2

)
.

The poles and zeroes associated to the Fendley dressing phase ΦF (θ) are same as that of ΦDM (θ),
except the zeroes coming from prefactor to the gamma functions. ΦF (θ) instead has double zeroes at
θ = −(2m− 1

2 )πi, m ∈ Z. This means that ΦF (θ) has a zero at θ = πi/2 which lies in the physical strip
Im(θ) ∈ [0, π], which is not the case for ΦDM (θ).

The braiding unitarity condition also tends to AdS2. In fact, as shown in [19], there is a combined
braiding-unitarity condition that links the so-called solutions 3 and 5 of massless AdS2. If one calls Ω3

and Ω5 the respective AdS2 dressing factors, one finds

Ω5(−θ)Ω3(θ) = 1
1 + e−θ

= e
θ
2

2 cosh θ
2
. (3.19)

This is precisely what descends from the condition

Φ(−θ)Φ(θ) = 1
1 + sinh2 θ

2
cosh2 θ

, (3.20)

common to both ΦF and ΦDM , in the limit θ →∞. In fact, we have to consider that for θ →∞ (and,
consequently, −θ → −∞) one should expect that

ΦA(θ)→ Ω3(θ), ΦA(−θ)→ Ω5(−θ), A = F,DM. (3.21)

Finally, physical unitarity works as well in the AdS2 limit for both ΦF and ΦDM , simply by considering
(B.23) in [19].

These limiting considerations apply to the equations satisfied by the dressing factors. It is an inter-
esting question whether either ΦF or the new dressing phase of [45] really do tend as functions to the
proposed AdS2 dressing phase Ω(θ) - formula (3.8) of [18] and appendix B of [19]. We will answer this
question in the affirmative in a later section.

8



4 Minimal Two-Particle Form Factors

Let us now use the knowledge of the S-matrix data to construct solutions to the form-factor axioms,
focusing on the two-particle case.

If we recall that the S-matrix is related to the R-matrix as

S = Π ◦R (4.1)

with Π the graded permutation, we can easily obtain the S-matrix entries. Let us start with the processes
involving in-states (indices a, b in Scdab) and out-states (indices c, d in Scdab) such that a + b = c + d = 0
(mod 2). This means that the in- and out- states have total fermion number zero, and so can only be bb
or ff :

Sbbbb = ΦF (θ) = Sffff , Sffbb = −Sbbff = ΦF (θ)sechθ sinh θ2 . (4.2)

We also recall that any S-matrix will preserve the total fermion number mod 2.
A useful strategy for how to proceed, if we are interested for instance in the two-particle minimal form

factors, can be found in the paper [46]. The first thing to do is to (flavour-)diagonalise the S-matrix.
One can check that the (un-normalised) bosonic (flavour-)eigenstates are given by

|b±〉 = |b〉 ⊗ |b〉 ± i|f〉 ⊗ |f〉, (4.3)

with eigenvalues

ΦF (θ)λ±(θ) = ΦF (θ)
(

1∓ i sechθ sinh θ2

)
, (4.4)

respectively. We remind that the tensor product is graded, hence

A⊗B|i〉 ⊗ |j〉 = (−)|B||i|A|i〉 ⊗B|j〉, (4.5)

and that |b ≡ 1| = 0, |f ≡ 2| = 1, |Eij | = |i|+ |j| mod 2. Likewise, using the fact that

Sfbbf = −Sbffb = −ΦF (θ) tanh θ, Sbfbf = Sfbfb = ΦF (θ)sechθ cosh θ2 , (4.6)

we find that the (un-normalised) fermionic (flavour-)eigenstates are given by

|f±〉 = |b〉 ⊗ |f〉 ± i|f〉 ⊗ |b〉, (4.7)

with eigenvalues

ΦF (θ)µ±(θ) = ΦF (θ)
(

sechθ cosh θ2 ± i tanh θ
)
, (4.8)

respectively. For later convenience, let us divide the contributions to the S matrix into a redefined
dressing phase for the fermionic block:

Φn(θ) ≡ µ+(θ)ΦF (θ), σcdab ≡
Scdab

Φn(θ) , (4.9)

and try to solve the permutation axiom separately for the new dressing part Φn and the non-dressing
part σcdab. Let us begin with the latter and consider the case of 2-particle form factors. The S-matrix is
of course diagonal on the eigenstates. Therefore, we define the form factors

Btot± ≡ 〈0|Ob|b±〉, F tot± ≡ 〈0|Of |f±〉, (4.10)
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with Ob being a bosonic operator and Of being a fermionic operator, both operators though of spin 0
for simplicity (for the fermion, this is the case for instance of the fictitious operator introduced in [46],
around formula (6.13) and the preceding discussion). We first focus on the fermionic form factors, then
the permutation axiom just becomes (for the non-dressing part)

F+(θ) = F+(−θ), F−(θ) = µ−(θ)
µ+(θ)F−(−θ), (4.11)

while the periodicity axiom just reads

F+(θ + 2πi) = −iF+(−θ), F−(θ + 2πi) = iF−(−θ). (4.12)

The purely difference form with θ = θ1 − θ2 (θ1 being the rapidity of the first particle in the ket in
(4.10), and θ2 the rapidity of the second, since |b±〉 and |f±〉 are two-particle states) is due to Lorentz
invariance (with the caveat of the spin being zero for both the bosonic and the fermionic operator, see
comment above). This form of periodicity descends from the fact that cycling the states we get

|f±〉 = |b〉 ⊗ |f〉 ± i|f〉 ⊗ |b〉| → (cycling)→ |f〉 ⊗ |b〉 ∓ i|b〉 ⊗ |f〉 = ∓i|f±〉. (4.13)

There is a caveat: this is of course assuming that the statistical factor is just ±1, while we know that it
might be more complicated (semi-locality index). This means that we are at this moment searching for
a solution where the statistical factors are the standard ones.

It is important to note that the splitting (4.9) is crucial if we want to solve separately the dressing
and non-dressing parts of the form factor axioms. In fact, thanks to this choice, we have that (4.11) is
not manifestly inconsistent: iterating it produces

F+(−θ) = F+(θ) = F+(−θ),

F−(−θ) = µ−(−θ)
µ+(−θ)F−(θ) = µ−(−θ)

µ+(−θ)
µ−(θ)
µ+(θ)F−(−θ), (4.14)

which is consistent because, by inspection, we have

µ±(θ) = µ∓(−θ). (4.15)

This means that we can hope to solve the non-dressing part (formulated in terms of the eigenstates) and
the dressing part separately. The form factor pertaining to the dressing phase will solve

F dr(θ) = Φn(θ)F dr(−θ), F dr(θ + 2πi) = F dr(−θ), (4.16)

such that

F tot± (θ) = F dr(θ)F±(θ) (4.17)

is a solution to the axioms of a two-particle form factor. If we require this object to have the least
possible number of singularities, we can claim that we have found the minimal two-particle form factor.
Notice that (4.16) is not immediately inconsistent either, since it implies

Φn(−θ) = F dr(−θ)
F dr(θ) = 1

Φn(θ) , (4.18)

which is true. In fact, from the properties of µ± and the braiding unitarity property of ΦF , we have

Φn(−θ) = µ+(−θ)ΦF (−θ) = µ−(θ)
ΦF (θ)

[
1 + sinh2 θ

2
cosh2 θ

] = 1
ΦF (θ)µ+(θ) = 1

Φn(θ) , (4.19)
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where the second to last step just involves identities of hyperbolic functions.
The equation for the B± form factors are in a way simpler. In fact periodicity implies that cycling a

bosonic operator gives

|b±〉 = |b〉 ⊗ |b〉 ± i|f〉 ⊗ |f〉| → (cycling)→ |b〉 ⊗ |b〉 ± i|f〉 ⊗ |f〉 = |b±〉. (4.20)

In order to have once again a consistent splitting between dressing and non-dressing parts (the latter
being again given in terms of the eigenbasis), we make a different choice in the bosonic vs. the fermionic
block:

|b+〉 |b−〉 |f+〉 |f−〉

S =


[ΦF (θ)λ+(θ)]× 1 0 0 0

0 [ΦF (θ)λ+(θ)]× λ−(θ)
λ+(θ) 0 0

0 0 [ΦF (θ)µ+(θ)]× 1 0
0 0 0 [ΦF (θ)µ+(θ)]× µ−(θ)

µ+(θ)

 .

This splitting is consistent since it produces

B+(θ) = B+(−θ), B−(θ) = λ−(θ)
λ+(θ)B−(−θ), (4.21)

from permutation, with λ±(θ) = λ∓(−θ), while the periodicity axiom reads

B+(θ + 2πi) = B+(−θ), B−(θ + 2πi) = B−(−θ). (4.22)

The form factor pertaining to the dressing phase in the bosonic block will solve

Bdr(θ) = Φm(θ)Bdr(−θ), Bdr(θ + 2πi) = Bdr(−θ), Φm(θ) ≡ ΦF (θ)λ+(θ), (4.23)

such that

Btot± (θ) = Bdr(θ)B±(θ) (4.24)

is a solution to the axioms of a two-particle form factor (which can again be chosen to be minimal).
The first relation in (4.23) is also not manifestly inconsistent: one can repeat the same argument as in
(4.19), with λ replacing µ everywhere, and it will still work. Since these considerations only rely on the
braiding unitarity equation, they in fact hold both for ΦF and for ΦDM .

4.1 Solution for the dressing phase

We shall solve the equations for the dressing factor by resorting to the Karowski-Weisz theorem [32] - see
also footnote 1 in [43]. This can be applied irrespectively to the Fendley or the De Martino - Moriconi
dressing phase, as it only relies on the property (4.19):

Φn(−θ) = 1
Φn(θ) . (4.25)

The idea is to recast the dressing factor as

Φn(θ) = exp
∫ ∞

0
dt f(t) sinh θt

iπ
. (4.26)

We can try to solve (ignoring issues of branches for the moment)

log Φn(θ) =
∫ ∞

0
dt f(t) sinh θt

iπ
= −1

2

∫ ∞
0

dt f(t) e iθtπ + 1
2

∫ ∞
0

dt f(t) e− iθtπ . (4.27)

11



We now make a working assumption, which will need to be verified at the very end by looking at the
solution which we will find, that

f(t) = −f(−t). (4.28)

This allows us to change variable in the second integral and to rewrite the rhs of (4.27) as a single
integral:

log Φn(θ) = −1
2

∫ ∞
−∞

dtf(t) e iθtπ . (4.29)

This is simply a statement of Fourier transforms:

log Φn(θ) = −
√
π

2 f̃
( θ
π

)
, f̃(k) = 1√

2π

∫ ∞
−∞

dtf(t) eikt. (4.30)

We can simply invert the transform and extract f(t), by writing

f(t) = 1√
2π

∫ ∞
−∞

dk f̃(k) e−ikt = − 1
π

∫ ∞
−∞

dθ log Φn(πθ) e−iθt. (4.31)

We now need to check the consistency of our working assumption, which involved f(t) being odd. Indeed,
this relies on (4.19), since

f(−t) = − 1
π

∫ ∞
−∞

dθ log[Φn(πθ)] eiθt = − 1
π

∫ ∞
−∞

dθ log[Φn(−πθ)] e−iθt

= 1
π

∫ ∞
−∞

dθ log[Φn(πθ)] e−iθt = −f(t)
(4.32)

where we have changed variable at the second step, and used (4.19) at the third step.
This means that we can simply apply the Karowski-Weisz theorem, which says that one solution to

(4.16) is given by

F dr(θ) = exp 1
2

∫ ∞
−∞

dt f(t)
sin2 [ t(iπ−θ)2π ]

sinh t , (4.33)

with f(t) given by (4.31), and where we have extended the integral using the even parity of f(t)
sinh t . Notice

that we could also multiply F dr(θ) by an arbitrary constant and it would still be a solution.
A completely analogous argument works for the solution to (4.23), by simply replacing Φn by Φm

everywhere it appears, and F with B. We shall comment later on the applicability of this particular way
of solving the minimal conditions, as it appears rather universal but also rather formal at the moment.

4.2 Eigenvalues part

In fact, one can go further: the same method solves the equations for B− in (4.21) and (4.22), given that

λ−(θ)
λ+(θ) ≡ Λ(θ) (4.34)

again satisfies the key relation which will ensure the consistency of the procedure:

Λ(−θ) = 1
Λ(θ) . (4.35)

Hence the formal solution for B− is, by the very same argument outlined in the previous section,

B−(θ) = exp 1
2

∫ ∞
−∞

dt g−(t)
sin2 [ t(iπ−θ)2π ]

sinh t , (4.36)
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with

g−(t) = − 1
π

∫ ∞
−∞

dθ log Λ(πθ) e−iθt. (4.37)

Of course a consistent solution for B+ is just a constant solution B+(θ) = const., as one can see from
(4.21) and (4.22). The method introduced in the previous section would also produce this solution via
a log 1 = 0 as the function f .

In the case of F+, from (4.11) and (4.12) we see that we can adopt the method above, with a slight
refinement first. Let us take the equation

F+(θ + 2πi) = −i F+(−θ) = −i F+(θ), (4.38)

where we have combined the two conditions on F+. Let us simply define

F̃+(θ) ≡ e θ4 F+(θ), (4.39)

for which we get

F̃+(θ + 2πi) = F̃+(θ). (4.40)

Moreover, we also get

F̃+(−θ) = e−
θ
4 F+(−θ) = e−

θ
4 F+(θ) = e−

θ
2 F̃+(θ). (4.41)

It is clear that now (4.40) and (4.41) are of the same form as the problem which we do know how to
solve using the Karowski-Weisz theorem (it is also clear that the function e−

θ
2 goes into its reciprocal

under a change of sign of θ). One could actually realise that in this case it is easiest to just guess the
solution by simple inspection:

F̃+(θ) = Ae
θ
4 +i θ2

8π , (4.42)

with A any constant. From this we can easily reconstruct F using (4.39). However notice that, although
in a slightly unorthodox way, our method does work in this case very explicitly. In fact, we would then
simply say

F̃+(θ) = exp 1
2

∫ ∞
−∞

dt g+(t)
sin2 [ t(iπ−θ)2π ]

sinh t , (4.43)

with

g+(t) = − 1
π

∫ ∞
−∞

dθ log [eπθ2 ] e−iθt = −πi d
dt
δ(t). (4.44)

This implies

F̃+(θ) = exp
[
− iπ2

∫ ∞
0

dt
d

dt
δ(t)

sin2 [ t(iπ−θ)2π ]
sinh t

]
= exp iπ2

[
d

dt

sin2 [ t(iπ−θ)2π ]
sinh t

]
t=0

= exp
[
− i

8 + θ

4 + i
θ2

8π

]
.

Considering that a constant can be fixed arbitrarily, we get exactly the solution which we guessed by
inspection in (4.42).

Finally, we can do the more complicated case of F− with a slightly more elaborated trick, which
reduces the problem, once more, to the same structure. Consider (4.11) and (4.12), and define

G−(θ) ≡ µ+(θ)F−(θ). (4.45)
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Using the fact that µ±(θ) = µ∓(−θ) we can recast the second equation in (4.11) as

µ+(θ)F−(θ) = µ+(−θ)F−(−θ), namely G−(θ) = G−(−θ). (4.46)

The second equation in (4.12) then implies

G(θ + 2πi) = µ+(θ + 2πi)F−(θ + 2πi) = −µ+(−θ) i F−(−θ) = −iG−(−θ). (4.47)

In this derivation we have also used the fact that µ+(θ+ 2πi) = −µ+(−θ). This means that G− satisfies
the exact same system of equations as F+, therefore we can take the solution which we have found earlier:

G−(θ) = B e−
θ
4 e

θ
4 +i θ2

8π = B ei
θ2
8π , (4.48)

with B any constant. From here we can easily reconstruct F− by using (4.45).
With the explicit example we have therefore derived a lesson, concerning the applicability of our tech-

nique. That is, the convergence of the integral involved might have to be understood in the distributional
sense. If one accepts that, as we have seen, this seems to produce a finite result, which one can then
check in those cases where an explicit solution is otherwise available.

5 Numerics Of The De Martino - Moriconi Dressing Factor

In this section we use a numerical approach to study the behaviour of the integral representation (3.14)
of the improved dressing phase proposed by De Martino and Moriconi, providing evidence for (3.21). To
study the limits θ → ±∞ of the DM and AdS2 dressing phases, we begin by rewriting them as

ΦDM (θ) = exp
[
−
∫ ∞

0
dt f(t, θ)

]
with f(t, θ) ≡ h(t) sin tθ sin [t(iπ − θ)]

t cosh πt ,

Ω3(θ) = e−i
π
8

√
2

exp
[
θ

4 + 1
2

∫ ∞
0

dx l(x, θ)
]

with l(x, θ) ≡
cosh [x(1− 2θ

iπ )]− cosh x
x cosh x sinh 2x ,

(5.1)

Ω5(θ) = 1
Ω3(−θ)

1
1 + eθ

, (5.2)

with h(t) defined in (3.14) and Ω3(θ),Ω5(θ) respectively given in equations (B.28) and (B.4) of [19].
In order to compare the two dressing factors for large positive and negative values of θ, one needs to
numerically approximate the integrals appearing in the exponentials and to this aim it is useful to perform
a preliminary study of the two integrands f(t, θ), l(x, θ), so as to identify an appropriate restriction for the
integration domains. For increasing positive and negative values of θ one finds the following behaviours
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θ=100

θ=1000

3 4
t
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0.1
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Figure 1: Real part of f(t, θ) for θ → +∞
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3 4
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Figure 2: Real part of f(t, θ) for θ → −∞
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Figure 3: Imaginary part of f(t, θ) for θ → +∞
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Figure 4: Imaginary part of f(t, θ) for θ → −∞
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Figure 5: Real part of l(x, θ) for θ → +∞
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Figure 6: Real part of l(x, θ) for θ → −∞
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Figure 7: Imaginary part of l(x, θ) for θ → +∞
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Figure 8: Imaginary part of l(x, θ) for θ → −∞

These plots highlight how both the real and imaginary parts of the integrands f(t, θ), l(x, θ) tend to
zero pretty fast in t and x for any value of θ. For the sake of clarity we restricted the plots at t, x = 4 but
the behaviour extends on the rest of the domain of integration. For l(x, θ) we also restricted the domain
shown on the y-axis, as both real and imaginary parts take huge values in the limit x → 0. Due to the
above results, in the following we shall proceed by truncating the integrals appearing in ΦDM and Ω3

at t, x = 10, as at this value the real and imaginary parts of the integrands f(t, θ), l(x, θ) are already of
the order ' 10−10 for any θ. As discussed around (3.21), the plot below shows how, in the limit θ →∞,
the function ΦDM (θ)→ Ω3(θ)
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Figure 9: Re[ΦDM (θ)]→ Re[Ω3(θ)] for θ → +∞
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Figure 10: Im[ΦDM (θ)]→ Im[Ω3(θ)] for θ → +∞

Given the limit Ω3(θ) → 1 for θ → ∞, observed in the above plots, and the relation (5.2), one
automatically has that Ω5(θ)→ 1 for θ → −∞. This implies that for ΦDM (θ) to be tending to Ω5(θ) in
the limit θ → −∞ one should find ΦDM (θ)→ 1. This is indeed the case, as shown by the plots below.
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Figure 11: Re[ΦDM (θ)]→ Re[Ω5(θ)] for θ → −∞
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Figure 12: Im[ΦDM (θ)]→ Im[Ω5(θ)] for θ → −∞

We thus conclude that the improved phase ΦDM (θ) proposed by De Martino and Moriconi in [45]
does indeed tend to Ω3(θ) for θ → +∞ and to Ω5(θ) for θ → −∞.

6 Conclusions

In this paper we have initiated the study of form factors for the massless AdS2 integrable scattering
problem. We have focused on the purely right-right and left-left sectors to begin with, as these sectors
describe a 2D CFT in the BMN limit. In the two-particle case, which is the target of our attention,
the functional form of the minimal solution, which we determine here, is expected to also extend to the
non-relativistic massless AdS2 scattering as well.

We first study the N = 1 supersymmetric S-matrix of Fendley’s [20], with the improved dressing
factor found by De Martino and Moriconi [45]. We provide explicit analytic checks of the crossing and
braiding/physical unitarity relations. For the first time we show numerically that the AdS2 dressing
factors conjectured in [18, 19] can be obtained as limits of the De Martino - Moriconi dressing factor.

We then follow [46] to diagonalise the S-matrix and determine the two-particle minimal form-factors.
We develop a method to obtain an integral representation of dressing factors and other quantities,
which are characterised by a specific integral exponential formula inspired by [32] and involving an
antisymmetric function. Our method applies quite generally, and has to possibly be understood in the
distributional sense.
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As in the case of the relativistic approach to AdS3 form factors [43], the main challenge is to find a
way to test the formulas which we have obtained. Since in the BMN limit the theory is at the conformal
point and presumably interactive, the scattering theory is completely non-perturbative and therefore
non-perturbative methods are needed to match our predictions. In AdS2, moreover, the S-matrix has
properties that are less-standard than in AdS3, and ordinary methods do not directly apply. This is
why we had to resort to the Fendley S-matrix which is better-behaved, and argue about AdS2 by taking
appropriate limits.

The next step is of course to study higher-point functions. Already for ordinary N = 1 S-matrices,
which are of 8-vertex type, this is rendered impervious by the absence of a pseudo-vacuum and the
consequent impossibility to apply the off-shell Bethe ansatz technique of [35, 36]. Once again we plan to
study multi-particle form factors for the Fendley S-matrix in the future, using the building blocks which
we have constructed in this paper. We hope that the known limits would then be well defined also for
these putative expressions, which would then constitute predictions for AdS2.

A Proofs Of Crossing And Unitarity

A.1 Integral method

As a further demonstration of the technique which we have devised in section 4.1, we can offer a neat
way of proving the crossing and unitarity equation for ΦDM . This proceeds as follows using the integral
representation (3.14).

First, we can use simple trigonometric identites to combine the two exponents which appear on the
respective l.h.s.s of the crossing and braiding-unitarity equation, which turn out to produce the exact
same expression:

ΦDM (θ)ΦDM (θ + iπ) = ΦDM (θ)ΦDM (−θ) = exp 2
∫ ∞

0
dt
h(t)
t

sin2 tθ ≡ exp g(θ). (A.1)

By taking a derivative we can reduce the integral to the familiar form (4.26):

dg(θ)
dθ

= 2
∫ ∞

0
dt h(t) sin 2tθ = i

π

∫ ∞
0

dt h
( t

2π

)
sinh tθ

iπ
. (A.2)

Since h(t) is an odd function, we are exactly in the situation of the assumption (4.28) which we made in
order for our method to work, therefore we can simply apply the result:

dg(θ)
dθ

= −
√
π

2 f̃
( θ
π

)
, f(t) = 1

2πih
( t

2π

)
. (A.3)

Mathematica knows how to do this Fourier transform:

dg(θ)
dθ

= 1
2

(
− tanh θ2 + 4 tanh θ − 3 tanh 3θ

2

)
, (A.4)

hence

g(θ) = − log cosh θ2 + 2 log cosh θ − log cosh 3θ
2 + c, (A.5)
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with c a constant. But this simply means that

exp g(θ) = ec cosh2 θ sechθ2 sech3θ
2 = 1

1 + sinh2 θ
2

cosh2 θ

, (A.6)

where we have adjusted the constant to be c = 0. This can be seen by the fact that exp g(0) must be
equal to 1 for the definition (A.1) to reproduce the crossing equation. We have therefore recovered (3.15)
and (3.16). In fact conjugating the integral expression (3.14) is the same as changing the sign of θ, and
braiding and physical unitarity effectively work the same way for this dressing factor.

A.2 Infinite product

Let us also recap how it is possible to prove that the infinite product representation (3.12) satisfies
crossing, braiding unitarity and physical unitarity - namely (3.15) and (3.16).

By simply multiplying the infinite product expression, times the same expression shifted θ + iπ, one
obtains a bigger infinite product. However, a lot of the gamma functions now cancel out. The remaining
gamma functions can also be made to cancel simply by repeated use of

Γ(z + 1) = zΓ(z). (A.7)

At the end of the massive cancellation one is left with an infinite product of the rational terms which
the repeated use of (A.7) has left behind. Such remnants end up being exactly the same for crossing and
for unitarity, and they read (assuming θ ∈ R)

ΦDM (θ)ΦDM (θ + iπ) = ΦDM (θ)ΦDM (−θ) = ΦDM (θ)ΦDM (θ)∗ = cosh2 θ ×
∞∏
j=0

( 1
2 + j)2( 5

2 + 3j)2( 3
2 + 3j)2( 1

2 + 3j)2

( 1
2 + j − t)( 1

2 + j + t)( 5
2 + 3j − 3t)( 5

2 + 3j + 3t)( 3
2 + 3j − 3t)( 3

2 + 3j + 3t)( 1
2 + 3j − 3t)( 1

2 + 3j + 3t)
,

where we have set

t ≡ iθ

2π (A.8)

(such that under crossing t → t − 1
2 , while under both braiding and physical unitarity t → −t). Once

again Mathematica can do this product and, once multiplied by the cosh2 θ in front, we obtain precisely
the expression

1
1 + sinh2 θ

2
cosh2 θ

(A.9)

which we need to complete the proofs.
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partially supported by Università degli studi di Milano-Bicocca, by the Italian Ministero dell’Università
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