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Abstract The aim of this note is to extend the results in [NV] to the case of approximate
harmonic maps. More precisely, we will proved that the singular strata Sk(u) of an approx-
imate harmonic map are k-rectifiable, and we will show effect bounds on the quantitative
strata. In the process we will simplify many of the arguments from [NV], and in particular
we produce a new main covering lemmas which vastly simplifies the older argument.
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1 Introduction

In this note, we will work with maps between two compact Riemannian manifolds M and N
such that

| secB2(p) | ≤ KM , inj(B2(p)) ≥ K−1
M ,

∂N = ∅, | secN | ≤ KN , inj(N) ≥ K−1
N , diam(N) ≤ KN , (1.1)

dim(M) = m, dim(N) ≤ n .

Moreover, we will always assume that N is isometrically embedded into Rn.
A harmonic map u ∈ H1(M,N) is a critical point of the Dirichlet energy for fixed bound-

ary values. This map satisfies the Euler-Lagrange equation

∆u + A(u)(∇u,∇u) = 0 , (1.2)

where A is the second fundamental form of N ⊂ Rn. An important object in the study of
harmonic maps is the normalized energy

θ(x, r) = r2−m
∫

Br(x)
|∇u|2 . (1.3)

This quantity turns out to be (almost) monotone for stationary harmonic maps. Combined
with an ε-regularity theorem, this immediately yields the partial regularity of such maps.

Loosely speaking, approximate harmonic maps are solutions to

∆u + A(u)(∇u,∇u) = f , (1.4)

where f in an L2 function. Such a map is called stationary if it also satisfies

∇i
(
|∇u|2 gi j − 2

〈
∇iu,∇ ju

〉)
+ 2

〈
∇ ju, f

〉
= 0 . (1.5)

As for harmonic maps, one defines the singular set of the map u as the set of points in
the domain which are not continuous:

S(u) =
{
x ∈ M s.t. ∃r > 0 s.t. u|Br(x) is continuous

}C . (1.6)

By elliptic regularity, it is easy to see that around a regular point almost harmonic maps are
C0,α continuous, where α = α(m,KM ,N, p) > 0, but in general higher regularity depends on
the regularity of f .

As for standard harmonic maps, one can define stationary almost harmonic maps and
prove that the normalized energy θ(x, ·) is almost monotone, in the sense that has bounded
variation at every point. Using only this property, and an ε-regularity theorem, one shows
that S(u) has zero m − 2-Hausdorff measure and that each of these maps has a (possibly
non-unique) tangent map at every point.

By looking at the symmetries of these tangents, see Section 1.2 for precision, one can
define a stratification Sk(u) for S(u) by setting

Sk(u) =
{
x ∈ B1 (0) s.t. no tangent map at x is k-symmetric

}
. (1.7)
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The aim of this note is to prove that the results obtained in [NV] for stationary harmonic
maps continue to hold in this setting, and in particular the strata Sk(u) are all k-rectifiable.
Our full collection of main theorems is listed in Section 3, after some preliminaries are
introduced, however we begin by stating the main structure result for the stratification itself:

Theorem 1 Let u : B3(p) ⊆ M → N be a stationary approximately harmonic map, where
M and N satisfy (1.1), and f ∈ Lp for p > m

2 . Then for each k we have that S k(u) is
k-rectifiable.

In fact, in Section 3 we will weaken slightly the assumptions on f . Moreover, we will
also prove in Section 3 uniform volume bounds for the quantitative strata Sk

ε,r, which will be
introduced in the next section.

There are three key elements in the proof of these estimates: an estimate on the β2-
Jones’ numbers for the singular strata derived using the monotonicity formula and the L2-
best subspace approximation theorem, a Reifenberg-type theorem which allows us to turn
these estimates into volume bounds and rectifiability for the singular strata, and an inductive
covering argument which guarantees the applicability of this Reifenberg theorem on the
strata. While all the results and their proofs are essentially the same as in [NV], albeit done
in slightly more generality, it is worth noticing that the proof inductive covering argument
has been simplified here.

1.1 Domains with curvature

For the sake of simplicity, throughout the rest of this note we will assume that M = Ω ⊆ Rm.
Assuming that the domain M is flat simplifies the technicalities involved in the computa-
tions, but involves no fundamental changes in comparison to the general case - primarily,
one obtains errors from the almost aspect of the monotonicity formula which simply need
to be accounted for in a standard manner. Thus, all the results described in this note carry
over to the general case, up to minor technical differences. In particular, all the constants
involved in the bounds would also depend on the manifold M, and actually just on a lower
bound on its injectivity radius and an upper bound on the sectional curvature. Moreover, the
normalized energy θ, and its adapted version for the almost harmonic case θ̂, would need to
be slightly changed as described in Remark 13.

1.2 Quantitative stratification for general maps

In this section, we introduce in detail the quantitative stratification of the singular set S(u).
As mentioned in the introduction, the idea behind the quantitative stratification is to group
all points in the domain of the map u according to the number of approximate symmetries of
u at some scale, as opposed to the standard stratification which looks at the exact symmetries
of the set of tangent maps.
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A first version of the quantitative stratification can be found in Almgren’s big regularity
paper (see [Alm00, section 2.25]), and it was reintroduced in [CN13a,CN13b] to provide
the first effective regularity results. In particular, in [CN13a,CN13b] the authors use the
quantitative stratification to prove estimates on noncollapsed manifolds with Ricci curvature
bounds, and on the singular set of stationary and minimizing harmonic maps. As a corol-
lary of the estimates, in [CN13b] the authors obtain uniform W1,p bounds for minimizing
harmonic maps for all p < 3. This technique has since been used in [CHN13b], [CHN13a],
[CNV15], [FMS15], [BL15] to prove similar results in the areas of mean curvature flow,
critical sets of elliptic equations, harmonic map flow, and biharmonic maps.

A significant improvement on these techniques has been obtained in [NV], where the
authors use sharp estimates on the Jones’ β2 numbers (called distortion in [NV]) in terms of
the normalized energy to prove sharp volume bounds and rectifiability for the singular strata
of harmonic maps. As mentioned in the introduction, the aim of this note is to extend these
results to the case of approximately harmonic maps, but perhaps more importantly to give
somewhat simplified proofs of the main arguments of [NV].

In order to define precisely the quantitative stratification, we need to introduce the con-
cept of k-symmetric maps.

Definition 2 Given a map h ∈ H1(Rm,N), we say that

1. h is homogeneous wrt the point p if h(p + λv) = h(p + v) for all λ > 0 and v ∈ Rm.
Equivalently, ∂rp h = 0, where rp is the radial direction wrt p,

2. h is k-symmetric if it is homogeneous wrt the origin and it has an invariant k-subspace,
i.e., if there exists a linear subspace V ⊆ Rm of dimension k such that

h(x + v) = h(x) ∀x ∈ Rm ∀v ∈ V . (1.8)

As a notation, we say that h is 0-symmetric iff it is homogeneous wrt the origin. In the
definition, we insist that a k-symmetric map be both homogeneous and k-invariant.

Example 3 It is very easy to produce examples of these maps by taking maps defined on
S m−1 and extending them by homogeneity on the whole Rm. Note that necessarily if a map
is homogeneous, then it is continuous only if it is constant.

The first nonconstant explicit example is the map h : Rm → S m−1 given by

h(x) =
x
|x|
, (1.9)

which is a H1 map for m ≥ 3 (and actually a minimizing harmonic map in these cases,
see [Lin87,CG89]). We can easily build from this example a k-symmetric map by defining
g : Rm ×Rk → S m−1 as g(x, y) = h(x).

The quantitative stratification is based on how close a map is to some k-symmetric map
at different scales.
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Definition 4 Given a map g ∈ H1(Ω,N), we say that Br (x) ⊂ Ω is (k, ε)-symmetric for g if
there exists some k-symmetric function h such that?

Br(x)
|g(y) − h(y − x)|2 ≡

1
ωmrm

∫
Br(x)
|g(y) − h(y − x)|2 ≤ ε . (1.10)

An equivalent definition may be given in terms of the blow-up map T g
x,r, defined by

T g
x,r(y) = g(x + ry) . (1.11)

Indeed, since h is homogeneous by assumption, we have?
Br(x)
|g(y) − h(y − x)|2 =

?
B1(0)

∣∣∣T g
x,r(y) − h(y)

∣∣∣2 . (1.12)

Given this definition of approximate symmetry, we can define the quantitative stratifi-
cation by classifying the points in the domain according to how close they look at different
scales to something which is k-symmetric.

Definition 5 Given u ∈ H1(Ω,N), r, ε > 0 and k ∈ {0, 1, · · · ,m}, we define

Sk
ε,r(u) ≡

{
x ∈ Ω s.t. for no r ≤ s < 1, Bs (x) is (k + 1, ε)-symmetric wrt u

}
. (1.13)

Note that these sets have some immediate inclusion properties coming from their definition.
In particular, if k′ ≤ k, ε′ ≥ ε and r′ ≤ r, we have

Sk′
ε′ ,r′ (u) ⊆ Sk

ε,r(u) . (1.14)

Given this, one can construct the sets

Sk
ε (u) =

⋂
r>0

Sk
ε,r(u) , Sk(u) =

⋃
ε>0

Sk
ε (u) . (1.15)

Remark 6 Note that, for an approximate harmonic map, the set Sk(u) has another character-
ization:

Sk(u) =
{
x ∈ Ω s.t. no tangent maps at x is k + 1 − symmetric

}
. (1.16)

For a precise statement, see Lemma 26.

Example 7 It is interesting to study these sets with an example. In particular, consider the
map g : R3 → S 2 given by g(x) = x/ |x|. Since the map g is 0-homogeneous but not 1-
symmetric, it is clear that 0 ∈ S0

ε,r for all r and ε < ε0 sufficiently small. In particular, ε0 can
be taken to be the L2(B1 (0)) distance from g to all 1-symmetric maps h, which is easily seen
to be positive.

Now given any x ∈ Rn \ {0}, since g is continuous at x, for all ε > 0 there exists a radius
r(ε) such that ?

Br|x|(x)
|g(y) − g(x)|2 ≤ ε . (1.17)
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Thus every point x , 0 will eventually be almost 3-symmetric, if we consider a small enough
radius. However, for r sufficiently big, g|Br(x) and g|Br(0) are close in the L2 norm. Thus, for
r ≥ s(|x| , ε) sufficiently large we have that x will belong to S0

ε,r. Summing up, we obtain that

S0
ε,r(g) = Bs(r,ε) (0) where s(r, ε) is increasing in r and decreasing in ε . (1.18)

Moreover, for ε < ε0, we have s(0, ε) = limr→0 s(0, ε) = 0. Up to different constants, the sets
S1
ε,r(g) and S2

ε,r(g) also behave in a similar way, while evidently S3
ε,r(g) = R3 (but this last

statement has clearly no meaning).

2 Approximate harmonic maps: definition and monotonicity

Before moving to approximate harmonic maps, we briefly recall the most important aspects
of the regularity theory for harmonic maps.

2.1 Stationary harmonic maps: regularity

Loosely speaking, harmonic maps are critical points of the Dirichlet energy, in particular
with respect to compact variations in the target space and in the domain space, in the case
of stationary harmonic maps. The definition of these object is standard in literature, here we
briefly recall it.

Given a compact C2 Riemannian manifold N, we define the Sobolev space H1(M,N) by
isometrically embedding N into a Euclidean space Rn, and considering

H1(Ω,N) =
{

f ∈ H1(Ω,Rn) s.t. for a.e. x ∈ M , f (x) ∈ N
}
. (2.1)

Let Ω ⊂ Rm be a domain. A stationary harmonic map u ∈ H1(Ω,N) is a critical point
for this Dirichlet energy. In particular, let v : M → Rn and w : Ω → Rm be smooth vector
fields, both with compact support in Ω. Then if u is a stationary harmonic map we have

d
dt

∣∣∣∣∣
t0

∫
Ω

|∇ (ΠN(u + tv))|2 = 0 and
d
dt

∣∣∣∣∣
t0

∫
Ω

|∇ (u(x + tw))|2 = 0 , (2.2)

where ΠN is the nearest point projection from Rn onto N, a map which is well-defined and
C1 on a small neighborhood of N.

By standard computations (see for example [Xin96,Mos05]), the first condition gives
the Euler-Lagrange equation

∆u + A(u)(∇u,∇u) = 0 . (2.3)

This is an equation satisfied by u : Ω → Rn in the weak H1 sense, and A(u) is the second
fundamental form of the embedding N ↪→ Rn evaluated at u(x). Maps satisfying only this
equation are called weakly harmonic.
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The second condition gives rise to a separate Euler-Lagrange equation. In particular, we
see that for all i = 1, · · · ,m we have

divj

(
|∇u|2 δi j − 2

〈
∇iu,∇ ju

〉)
= 0 . (2.4)

Also this equation is to be interpreted in the weak sense, in particular we have that for all
smooth vector fields with compact support ξ : Ω→ Rm∫

Ω

(
|∇u|2 δi j − 2∂iu∂ ju

)
∂iξ j = 0 . (2.5)

Note that a map u ∈ C2(Ω,Rn) satisfying (2.3) will automatically satisfy also (2.5). How-
ever, in general this is not the case if u ∈ H1 only. Maps satisfying both (2.3) and (2.5) are
called stationary harmonic maps.

An important consequence of (2.5) is the monotonicity of the normalized energy θ de-
fined by

θ(x, r) = r2−m
∫

Br(x)
|∇u|2 . (2.6)

Lemma 8 For a stationary harmonic map u ∈ H1(Ω,Rn), and for almost all x, r such that
Br (x) ⊂ Ω, we have the monotonicity identity

θ′(x, r) = 2r−m
∫
∂Br(x)

|(y − x) · ∇u|2 dS (y) ≥ 0 . (2.7)

This in particular implies that θ(x, r) is a monotone function in r, and it also gives quanti-
tative estimates for the integral of the radial part of the energy. Indeed, as a corollary we
obtain that for all 0 ≤ s ≤ r:

2
∫

Br(x)\Bs(x)

|(y − x) · ∇u|2

|y − x|m
= θ(x, r) − θ(x, s) . (2.8)

Proof This identity is obtained by plugging in the vector field ξi = χBr(x) · xi in (2.5) (or
better, a sequence of smooth approximations of this field).

The last ingredient needed for a very basic regularity theory for stationary harmonic
maps is the ε-regularity theorem by Bethuel (see [Bet93]).

Theorem 9 (ε-regularity theorem) Let u ∈ H1 be a stationary harmonic map. There exists
an ε = ε(m,N) > 0 such that θ(x, r) ≤ ε implies that u is smooth on Br/2 (x) with∣∣∣∇ku(y)

∣∣∣ ≤ C(m, k,N)r−kθ(x, r) . (2.9)

for all k = 1, · · · ,∞ and y ∈ Br/2 (x).

With these two theorems and a simple covering argument (see [Bet93]), it is easy to see
that

Hn−2(S(u)) = 0 . (2.10)

Note that in general this is not the case for weakly harmonic maps.
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2.2 Monotonicity and ε-regularity

Following the natural approach of [Mos05], here we introduce approximately harmonic
maps. In this note, approximately harmonic maps will always mean stationary approxi-
mately harmonic maps.

Basically, we say that a map is approximately harmonic if it satisfies equations (2.3) and
(2.4) up to a controlled error.

Definition 10 A map u ∈ H1(Ω,N) is said to be approximately harmonic if the following
are satisfied in the sense of distributions

∆(u) + A(u)(∇u,∇u) = f , (W)

divj

(
|∇u|2 δi j − 2

〈
∇iu,∇ ju

〉)
+ 2 〈∇iu, f 〉 = 0 , (S)

for some f ∈ L2(Ω). In order to obtain almost monotonicity for the normalized energy of
the solution u, we assume that there exists F, γ > 0 such that for all Br (x) ⊂ Ω:

r4−m
∫

Br(x)
| f |2 ≤ Frγ , (f)

where γ > 0, and F and γ are independent of x. One can interpret ( f ) as saying some
weighted maximal function of f is uniformly bounded. Although this assumption might
sound extremely technical or unnatural, it is easy to see that any f ∈ Lp(Ω) with p > m/2
satisfies this condition. Indeed, by Hölder inequality we have

r4−m
∫

Br(x)
| f |2 ≤ r4−m

(∫
Br(x)
| f |p

) 2
p

(ωmrm)
p−2

p ≤ c(m, p) ‖ f ‖2Lp(Ω) r
2
p (2p−m) . (2.11)

Remark 11 Note that the condition (S) is quite natural, since it would be satisfied automat-
ically by a smooth map u solving (W). However, in general an H1 solution to (W) will not
satisfy also (S).

The reason why we insist on (S) is that with this relation we can prove an almost mono-
tonicity formula for approximately harmonic maps, which is essential for the estimates we
need. The following lemma is taken from [Mos05, lemma 4.1], however the quantities ana-
lyzed are slightly different. For the reader’s convenience, we sketch a proof here.

Lemma 12 For m ≥ 3, let u ∈ H1(B3 (0) ,N) be an approximately harmonic map satisfying
(W) and (S) with (f). Suppose also that

θ(0, 3) = 32−m
∫

B3(0)
|∇u|2 ≤ Λ . (2.12)

Define the function

θ̂u(x, r) ≡ θ̂(x, r) = θ(x, r) −
2

m − 2
r2−m

∫
Br(x)

〈
(y − x) · ∇u|y, f (y)

〉
dVol(y) +

1
(m − 2)2

∫
Br(x)

| f |2

|y − x|m−4 dVol(y) .

(2.13)
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Then for all Bs (x) ⊆ Br (x) with r ≤ 1 and x ∈ B1 (0) we have θ̂(x, r) ≥ 0 and

0 ≤
∫

Br(x)\Bs(x)

|(y − x) · ∇u|2

|y − x|m
≤ θ̂(x, r) − θ̂(x, s) . (2.14)

Moreover, for all a > 0 we have the bounds

(1 − a)θ̂(x, r) −
c(m, γ)F

a
rγ ≤ θ(x, r) ≤ (1 + a)θ̂(x, r) +

c(m, γ)F
a

rγ , (2.15)

and the uniform bounds

θ(x, r) + θ̂(x, r) ≤ c(m)Λ + c(m, γ)Frγ . (2.16)

Proof For convenience, we assume x = 0. First of all, we prove that, under condition (f),
the function θ̂ is finite. For m = 3, 4, this is obvious since f ∈ L2, and (f) is not needed. For
m ≥ 5, by integration by parts we have∫ r

0
s4−m

∫
∂Bs(0)

| f |2 dθds =
[
s4−m

∫
Bs(0)
| f |2

]r

0
+

∫ r

0
s3−mdt

∫
Bt(0)
| f |2 ≤ (2.17)

≤ Frγ + (m − 4)F
∫ r

s
t3−mtm−4+γdt ≤ F

(
1 +

m − 4
γ

)
rγ . (2.18)

As for the monotonicity of θ̂, the proof is a simple application of the stationary equation
(S). Indeed, let φ be any Lipschitz radial cutoff function with φ(0) = 1 and φ(r) = 0, and
consider the vector field ξ(y) = φ(|y|)y. By testing (S) with ξ, we get∫

Ω

φ
(
(m − 2) |∇u|2 − 2 〈y · ∇u, f 〉

)
=

∫
Ω

(
−φ′

)
|y|

(
|∇u|2 − 2 |r̂ · ∇u|2

)
(2.19)

where r̂ = |y|−1 y is the unit norm radial vector. By letting φ converge to χBr(0), we prove that
for almost all r∫

Br(0)

(
(m − 2) |∇u|2 − 2 〈y · ∇u, f 〉

)
= r

∫
∂Br(0)

(
|∇u|2 − 2 |r̂ · ∇u|2

)
. (2.20)

The derivative of θ̂ is, at least a.e. in r,

θ̂(0, r)′ =
2 − m

r
θ(0, r) + r2−m

∫
∂Br(0)

|∇u|2 + 2r2−m
∫

Br(0)
〈y · ∇u, f 〉+ (2.21)

−
2

m − 2
r2−m

∫
∂Br(0)

〈y · ∇u, f 〉 +
1

(m − 2)2 r4−m
∫
∂Br(0)

| f |2 . (2.22)

By plugging in (2.20), we obtain for a.e. r

θ̂(0, r)′ = r−m
(
2
∫
∂Br(0)

|y · ∇u|2 −
2

m − 2
r2

∫
∂Br(0)

〈y · ∇u, f 〉 +
1

(m − 2)2 r4
∫
∂Br(0)

| f |2
)
≥

(2.23)

≥ r−m
∫
∂Br(0)

|y · ∇u|2 . (2.24)
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where the last estimate is a simple application of Young’s inequality. By integrating this
relation over [s, r], we obtain (2.14).

As for (2.15), this follows immediately from Young’s inequality applied to the rhs of
(2.13) and (2.18). Indeed:∣∣∣∣∣∣ 2

m − 2
r2−m

∫
Br(x)

〈
(y − x) · ∇u|y, f (y)

〉∣∣∣∣∣∣ ≤ a θ(x, r) +
r4−m

(m − 2)2 a

∫
Br(x)
| f |2 . (2.25)

We conclude by noticing that since θ̂ is monotone in r, and since by (2.18) and (2.25):

θ̂(x, 1)≤2θ(x, 1) + F + c(m, γ)F ≤ c(m)Λ + c(m, γ)F , (2.26)

then the bounds on θ̂ are obvious. The uniform bounds on θ are then a consequence of the
previous estimate (2.15).

Remark 13 In case the domain space is a Riemannian manifold M, the definition of θ̂ would
need to be changed a little. We refer the reader to [Xin96, section 2.2] for more details on
this. We just mention that the changes arise from the fact that the Hessian of the distance
function r is a little different than in the Euclidean case. This is related to the derivatives of
the radial vector field ξ used in the proof of the monotonicity formula.

For approximate harmonic maps, it is also possible to prove an ε-regularity theorem as
for stationary harmonic maps. The underlying techniques are basically the same, up to minor
technical details. Here we quote the ε-regularity theorem in [Mos05, proposition 4.1].

Theorem 14 Let u solve (W) and (S) with (f). Then there exists ε0, α > 0 depending only
on m,N, γ such that

θ(x, r) ≤ ε0 =⇒ u ∈ C0,α(Br/2 (x)) with ‖u‖C0,α ≤ C(m,N,F, γ) . (2.27)

Proof The proof is based on a polynomial decay (in r) for the normalized energy θ(x, r)
which is very similar to the proof of the ε-regularity theorem for stationary harmonic maps.
For the details, we refer the reader to [Mos05, proposition 4.1].

As a corollary, we obtain a similar statement for θ̂.

Corollary 15 Let u be as above. Then there exists ε0, r0, α > 0 depending only on m,N, γ
such that

θ̂(x, r) ≤ ε0 and r ≤ r0 =⇒ u ∈ C0,α(Br/2 (x)) with ‖u‖C0,α ≤ C(m,N,F, γ) . (2.28)

Proof This corollary follows immediately from the estimates in (2.15) and the previous
proposition.

As with stationary harmonic maps, this ε-regularity theorem and a simple covering ar-
gument imply that

Hn−2(S(u)) = 0 . (2.29)
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Invariance by scale As it is well-known, for stationary harmonic map the normalized
energy θ is scale-invariant, in the sense that if we consider the map

T u
x,r(y) ≡ u(x + ry) , (2.30)

then θT (0, 1) = θu(x, r), without any scaling factors. This is an essential property of the
normalized energy.

In the case of approximate harmonic maps, the quantity θ̂ satisfies similar properties.
However, some scaling factors are inevitably present on the zero order term f . Indeed, the
map T ≡ T u

x,r in this case will be an approximate harmonic map satisfying

∆(T ) + A(T )(∇T,∇T ) = f̃ , (2.31)

div
(
|∇T |2 ei − 2

〈
∇ei T,∇T

〉)
+ 2

〈
∇ei T, f̃

〉
= 0 , (2.32)

f̃ (y) ≡ r2 f (x + ry) . (2.33)

Thus, we obtain that θ̂u(x, r) = θ̂T (0, 1) if we replace f with f̃ in the definition of θ̂T . Note
also that if (f) is satisfied, then for all Br (x) ⊂ B2 (0) we have∫

B1(0)

∣∣∣ f̃ ∣∣∣2 = r4
∫

B1(0)
| f (x + ry)|2 = r4−m

∫
Br(x)
| f (y)|2 ≤ Frγ . (2.34)

2.3 Weak convergence

In this section, we recall a standard result about the convergence of almost harmonic maps.
In particular, we want to show that given a sequence of approximate harmonic maps with
bounded energy and such that fi → 0, their weak sub-limit is a weakly harmonic map.
This result is an easy adaptation of standard estimates in literature, see for example [TW95,
theorem 4] or [Sch84, corollary 2.3].

Proposition 16 Let ui solve (W) and (S), where fi ∈ L2(B3 (0)) satisfies (f) with F and γ
independent of i. Assume that

∫
B3(0) |∇ui|

2 ≤ C and that fi ⇀∗ 0 in weak L2. Then there exists
a subsequence (which will still be denoted by ui) such that

1. ui converges in the weak H1 sense to some u
2. there exists a close set Σ with finite n − 2 packing content such that the sequence ui

converges strongly in H1
loc(B1 (0) \ Σ) ∩ C0,α/2

loc (B1 (0) \ Σ) to u, which is a smooth map
on B1 (0) \ Σ.

3. u is weakly-harmonic (but not necessarily stationary harmonic)
4. u enjoys the unique continuation property, in the sense that if there exists another weakly

harmonic map v such that u = v a.e. on an open set, and v is smooth away from a set of
Σ′ with finite n − 2 packing content, then u = v

Remark 17 Note that even if ui are stationary harmonic (i.e. if fi = 0 for all i), their limit
might not be stationary. An interesting example of this is given in [DLL03].
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Remark 18 As a corollary of this theorem, we obtain the following. Consider the measure
|∇ui|

2 dVol on B1 (0). Then in the weak sense of measures we have

|∇ui|
2 dVol ⇀∗ |∇u|2 dVol + ν , (2.35)

where ν is a nonnegative measure by Fatou’s lemma, which is supported on the set Σ de-
scribed in the previous theorem. In particular, the support of ν has finite n − 2 packing
content. For stationary harmonic maps, this measure is called defect measure, and it has
been extensively studied in [Lin99].

Before stating this result, we need a technical lemma about weak H1 convergence in the
ε-regularity region.

Lemma 19 Let ui solve (W) and (S), where fi ∈ L2(B3 (0)) satisfies (f) with F and γ inde-
pendent of i. Assume that

1. θui (0, 2) ≤ ε0, where ε0 is the parameter in theorem 14,
2. ui ⇀

∗ u in the weak H1(B3 (0)) sense,
3. fi ⇀∗ f in the weak L2 sense.

Then ui converges to u in the strong H1(B1 (0)) sense and on B1 (0) the map u solves

∆(u) = A(u)(∇u,∇u) + f (2.36)

in the sense of distributions.

Proof The proof relies on standard techniques, but for the sake of completeness we outline
it here. Note that by the ε-regularity theorem in theorem 14, we have that ‖ui‖C0,α(B1(0)) ≤ C,
with a uniform bound independent of i. Since N is a compact manifold, we also have that
‖ui‖L∞(B3(0)) is uniformly bounded. Thus ui converges to u in the strong C0,α/2(B1 (0)) sense.

First of all, we prove that ∇ui converges to ∇u in the strong L2(B1 (0)) sense. For this
purpose, it is sufficient to show that for all φ ∈ C∞C (B1 (0)),∫

B1(0)
|∇(ui − u)|2 φ→ 0 . (2.37)

We can split this integral as∫
|∇(ui − u)|2 φ =

∫
〈∇(ui − u),∇(ui − u)〉 φ =

∫
〈∇(ui − u),∇ui〉 φ −

∫
〈∇(ui − u),∇u〉 φ .

(2.38)

By weak convergence, the second integral tends to 0 with i. As for the first, we have

−

∫
〈∇(ui − u),∇ui〉 φ =

∫
〈ui − u, ∆ui〉 φ +

∫
〈ui − u,∇ui · ∇φ〉 = (2.39)

=

∫
〈ui − u, A(ui)(∇ui,∇ui) + fi〉 φ +

∫
〈ui − u,∇ui · ∇φ〉 . (2.40)

Since ‖ui − u‖L∞(B1(0)) → 0, it is easy to see that this integral converges to 0 as well. This
completes the proof of the strong H1 convergence.



Stratification for the singular set of approximate harmonic maps 13

As for the equation solved by u, we have for all smooth test functions φ ∈ C∞C (B1 (0)):

−

∫
φ∆(u) =

∫
〈∇u,∇φ〉 = lim

i

∫
〈∇ui,∇φ〉 = lim

i

∫
φ∆(ui) = (2.41)

= lim
i

∫
φ
[
A(ui)(∇ui,∇ui) + fi

]
=

∫
φ f + lim

i

∫
φA(ui)(∇ui,∇ui) . (2.42)

Since A is continuous, and since ui → u in Cα/2(B1 (0)), we have |A(ui) − A(u)| → 0. Here
we interpret A(·) as a continuous function on N which takes Rm ×Rm into Rm in a bilinear
way. Moreover, the strong convergence of ∇ui to ∇u allow us to estimate∫

φA(ui)(∇ui,∇ui) =
∫

φ {[A(ui) − A(u)] (∇ui,∇ui) + A(u)(∇ui,∇ui) − A(u)(∇u,∇u) + A(u)(∇u,∇u)} =

(2.43)

=

∫
φA(u)(∇u,∇u) + ‖A(ui) − A(u)‖∞

∫
φ |∇ui|

2 +

∫
φ [A(u)(∇(ui − u),∇ui) + A(u)(∇u,∇(ui − u))] .

(2.44)

The strong convergence of ∇ui to ∇u implies the thesis.

Now we are in a position to prove the original proposition.

Proof (Proof of Proposition 16) The proof is based on the monotonicity formula for ui and
the ε-regularity theorem.

Define the set

Σ =
⋂
r>0

{
x ∈ B1 (0) s.t. lim inf

i→∞
θui (x, r) ≥ ε0

}
, (2.45)

where ε0 is taken from theorem 14. It is easy to see that this set is closed. Let Br j (xi) be
a sequence of disjoint balls contained in B3 (0) such that x j ∈ Σ. For each j, there exists a
subsequence of ui (still denoted with the same indexes for the sake of simplicity) such that

θui (x j, r j) ≥ ε0 > 0 . (2.46)

By a diagonal procedure, it is possible to find a subsequence of ui such that (2.46) is valid
for all i and j. This implies immediately that∫

B3(0)
|∇ui|

2 ≥
∑

j

rn−2
j θui (x j, r j) ≥ ε0

∑
j

rn−2
j , (2.47)

as desired. Note that evidently this uniform packing estimate implies upper estimates on the
n − 2 Minkowski content and Hausdorff measure.

For all x < Σ, we can apply Lemma 19, and obtain that u is a Hölder continuous function
in a neighborhood of x solving ∆u = A(u)(∇u,∇u). By standard estimates on continuous
harmonic maps (see for example [Mos05, theorem 3.1]), u is smooth in a neighborhood of
x.

The last thing to check is that u is globally weakly harmonic, and this is a consequence
of the fact that u is smooth and harmonic on ΣC , and Σ has bounded n−2 packing estimates.
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This fact implies that Σ has 2-capacity zero, and in particular for all compact sets K b B1 (0),
there exists a sequence of smooth functions φi such that

φi(x) = 1 for x in a neighborhood of Σ ∩ K , φi(x) = 0 if d(x, Σ ∩ K) > i−1 , lim
i→∞

∫
B3(0)
|∇φi|

2 = 0 .

(2.48)

Since u is smooth on ΣC , we can write for all ψ ∈ C∞C (B1 (0)) that∫
ψ∆(u) =

∫
ψφi∆(u) +

∫
ψ(1 − φi)∆(u) =

∫
ψφi∆(u) +

∫
ψ(1 − φi)A(u)(∇u,∇u) .

(2.49)

As i converges to∞, φi converges to 1 a.e. in B3 (0). Thus by dominated convergence

lim
i→∞

∫
ψ(1 − φi)A(u)(∇u,∇u) =

∫
ψA(u)(∇u,∇u) . (2.50)

Moreover, we have

lim sup
i→∞

∣∣∣∣∣∫ ψφi∆(u)
∣∣∣∣∣ ≤ lim sup

i→∞

[∫
φi |∇ψ · ∇u| +

∫
ψ |∇ψi · ∇u|

]
= 0 . (2.51)

We are left to prove the unique continuation property. Note that if u and v are smooth,
then unique continuation follows because ∆(u) = A(u)(∇u,∇u) = A(u)(∇u)[∇u] can be
viewed as a linear equation on u with smooth first order coefficient A(u)(∇u).

Since u and v are assumed to be smooth outside the close set Σ ∪Σ′, and this close set is
n− 2 dimensional and thus non-disconnecting, we easily obtain that u = v a.e. on (Σ ∪Σ′)C ,
and thus on the whole domain.

3 Main theorems

Now we are in a position to state precisely the main results we intend to obtain. The main
theorem we want to prove is

Theorem 20 Let u : B3 (0) ⊆ Rm → N an approximately harmonic mapping solving
(W) and (S) with (f) such that 32−m

∫
B3(0) |∇u|2 ≤ Λ. Then for each ε > 0 there exists

Cε(m,N, Λ,F, γ, ε) such that for all r ∈ (0, 1]:

Vol
(
Br

(
Sk
ε,r(u)

)
∩ B1 (0)

)
≤ Cεrn−k . (3.1)

As a corollary, we can estimate for all r ∈ (0, 1]:

Vol
(
Br

(
Sk
ε (u)

)
∩ B1 (0)

)
≤ Cεrn−k , (3.2)

moreover Sk
ε is k-rectifiable.

As a corollary of this theorem we obtain the rectifiability of the strata.
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Theorem 21 Let u : B3 (0) ⊆ Rm → N an approximately harmonic mapping solving (W)
and (S) with (f). Then for all k the strata Sk(u) are k-rectifiable.

It is worth noticing that simple adaptation of the proofs described here allow to obtain
a slightly better result. In particular, we can obtain uniform packing estimates instead of
Minkowski estimates. Since the proof of this result requires no additional idea, but would
make the exposition more technical and confusing, we state the result here and leave the
details to the reader.

Theorem 22 Let u : B3 (0) ⊆ Rm → N an approximately harmonic mapping solving (W)
and (S) with (f) such that 32−m

∫
B3(0) |∇u|2 ≤ Λ. Let

{
Brx (x)

}
x∈C be a collection of pair-

wise disjoint balls with rx ∈ (0, 1] and for all x, x ∈ Sk
ε,rx

. Then there exists a constant
Cε(m,N, Λ,F, γ, ε) such that ∑

x∈C

rn
x ≤ Cε . (3.3)

In the following sections, we will develop all the techniques needed for the proof of these
results. First of all, we will give a quantitative link between 0-symmetry (and higher order
symmetries) and the properties θ̂. We will then briefly recall without proof the Reifenberg
theorems which we will use, and then we will turn to the L2-best subspace approximation
theorem and the covering arguments needed to complete the proofs.

4 Quantitative ε-regularity theorems

The aim of this section is to show that there’s a quantitative link between θ̂ and the almost
symmetries of the map u. First, we are going to show an adaptation of [CN13b, theorem
3.3]. In particular, we will show that if θ̂(x, ·) is sufficiently pinched on two consecutive
scales (i.e., if θ̂(x, r) − θ̂(x, r/2) is small enough), then Br (x) will be (0, δ)-symmetric.

We will then turn our attention to higher order symmetries. We will show a very natural
sufficient condition for Br (x) to be (k, δ)-symmetric based on the geometry of the “pinched
points” y ∈ Br (x) such that θ̂(y, r)− θ̂(y, r/2) is small. Note that while a single pinched point
is enough to guarantee 0-symmetries, we will ask the set of pinched points to “effectively
span” some k-dimensional affine subspace in order to guarantee higher order symmetry.

4.1 Quantitative homogeneity

It is easy to see that if u is stationary harmonic and θ̂(0, 1) = θ̂(0, 1/2), then u must be 0-
symmetric. This is a direct consequence of (2.7) and the unique continuation property for
harmonic maps. By an easy compactness argument, we can see that this characterization
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of 0-symmetric map has a rigidity property, in the sense that if θ̂(0, 1) − θ̂(0, 1/2) is small
enough, then u is close to a 0-symmetric map. In the case of an approximately harmonic
map, this statement remains true up to focusing on a small enough scale, so that the error
coming from f becomes small enough.

Remark 23 Throughout this section, we will assume that u ∈ H1(B3 (0) ,N) is an approx-
imately harmonic map satisfying (W) and (S) with (f). Moreover, we will also assume the
uniform energy bound θ̂(0, 3) ≤ Λ.

Proposition 24 Let u ∈ H1(B3 (0)) be a solution to (W) and (S) with (f) and θ̂(0, 3) ≤ Λ.
Then for all δ1 > 0, there exist δ2 = δ2(m, Λ, γ, δ1) > 0 such that if F ≤ δ2 and for some
x ∈ B1 (0)

θ̂(x, r) − θ̂(x, r/2) < δ2 , (4.1)

then Br (x) is (0, δ1)-symmetric.

Proof Consider by contradiction a sequence of maps ui and a sequence of balls Bri (xi) such
that θ̂(xi, ri) − θ̂(xi, ri/2) < i−1, F < i−1, but such that the balls Bri (xi) are not (0, δ1)-
symmetric. Let Ti(y) = u(xi + ri(y)) be their blow-up maps, and recall that θ̂Ti (0, s) =
θ̂ui (xi, sr). By (2.16), Ti have uniform H1 bounds, and so there exists a weakly convergence
subsequence, for convenience denoted with the same index. Note that Ti are approximately
harmonic maps solving

∆(Ti) = A(Ti)(∇Ti,∇Ti) + f̃i , f̃i(y) = r2
i fi(xi + riy) . (4.2)

By (f), we have
∫

B1(0)

∣∣∣ f̃i∣∣∣2 = r4−m
∫

Bri (xi)
| f |2 ≤ i−1rγi → 0. Thus T is weakly harmonic by

Proposition 16 and smooth away from a close set Σ of dimension n − 2.
Moreover, by (2.14), we have the estimate∫

B1(0)\B1/2(0)
|y · ∇Ti|

2 ≤ c(m)
[
θ̂Ti (0, 1) − θ̂Ti (0, 1/2)

]
→ 0 . (4.3)

Thus T is radially invariant on B1 (0) \ B1/2 (0), and by unique continuation it is homo-
geneous. Indeed, let T ′ be the homogeneous continuation of T over the whole B1 (0). It is
easily seen that both maps are weakly harmonic and smooth away from an n−2 dimensional
set, thus we can apply point (4) of proposition 16 and prove that T = T ′. Since Ti converges
weakly in H1 to T , and strongly in the L2 norm, we have reached a contradiction.

Note that, as a corollary of the proof, we obtain a characterization of all tangent maps
for approximate harmonic function.

Corollary 25 Let u be as above, then all of its tangent maps are weakly harmonic homo-
geneous maps. In particular, for all x ∈ B1 (0), and for all sequences ri → 0, there exists
a subsequence ri j such that T j = T u

x,ri j
converges in the weak H1

loc(Rm,N) sense to a 0-
symmetric weakly harmonic map which is smooth on an open, dense, connected subset.

We close this section with the characterization of Sk(u) promised above.
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Lemma 26 Let u be an approximate harmonic map with (f). Then

Sk(u) =
⋃
ε>0

Sk
ε =

⋃
ε>0

⋂
r>0

Sk
ε,r = {x ∈ Ω s.t. no tangent maps at x is k + 1 − symmetric} .

(4.4)

Proof Let x ∈ Ω. We now know that for all x, there exists at least one (possibly more)
tangent map T , and all tangent maps are 0-symmetric.

Suppose that at x ∈ Sk
ε for some ε > 0. Then since for all r > 0, T u

x,r is at least ε-apart in
the L2 sense from all k + 1-symmetric maps, then also any tangent map T = limi T u

x,ri
must

be ε-apart from all k + 1 symmetric maps. Thus⋃
ε>0

Sk
ε ⊆

{
x ∈ Ω s.t. no tangent maps at x is k + 1 − symmetric

}
. (4.5)

Now if x <
⋃
ε>0 S

k
ε , by definition for all i > 0, there exists some ri > 0 and some k + 1-

symmetric map Ti such that ∫
B1(0)

∣∣∣T u
x,ri
− Ti

∣∣∣2 ≤ i−1 . (4.6)

By passing to a subsequence Ti → T which is k + 1-symmetric, we see also that T u
x,ri

⇀∗ T .
If there’s a subsequence of ri converging to 0, then T is by definition a tangent map, and it
is also k + 1-symmetric. If ri is bounded away from 0, then u = T on a ball of positive size
around x, and in particular all tangent maps of u at x are equal to T . In either case, we have
proved the claim.

4.2 Quantitative higher order symmetries

In order to have higher order symmetries, one point where θ̂ is pinched is not enough. How-
ever, if we have more points where θ̂ is pinched, and these points span in some sense a
k-dimensional space, this is enough to guarantee higher order symmetries.

Example 27 As a guiding example, consider again the case of a stationary harmonic map. If
for two distinct points x1, x2 we have θ(xi, 1) − θ(xi, 1/2) = 0, then the map is homogeneous
with respect to x and homogeneous with respect to y, which immediately implies that this
map is invariant with respect to the line L joining x and y.

Moreover, note also the following. If we take any z < L, then at z two distinct directional
derivatives of u are null, one in the L direction, and another in the direction joining z and x
(or y). Now consider a small enough ball Br (z). On this ball, two directional derivatives are
null, and if r is small enough this ball is almost 0-symmetric by monotonicity of θ(z, ·). Thus
this ball will be almost 2-symmetric.

In the next lemmas, we will prove in detail quantitative versions of these observations.
Before doing that, let us record the definition of a quantitative version of linear indepen-
dence, which will be used throughout the rest of this section.
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Definition 28 Let y0, · · · , yk ⊂ B1 (0) ⊂ Rm. We say that these points ρ-effectively span a
k-dimensional affine subspace if for all i = 1, · · · , k,

yi < B2ρ
(
y0 + span(y1 − y0, · · · , yi−1 − y0)

)
. (4.7)

As an immediate consequence, we obtain that {yi} are effectively linear independent, in the
sense that for all

x ∈
{
y0 + span(y1 − y0, · · · , yk − y0)

}
, (4.8)

there exists a unique set of numbers {αi}
k
i=1 such that

x = y0 +

k∑
i=1

αi(yi − y0) , |αi| ≤ C(m, ρ) ‖x − y0‖ . (4.9)

Moreover, note that this property is preserved under limits, as opposed to the property of

being simply linearly independent. Indeed, if we have a sequence
{
yi, j

}k

i=0
such that for all

j,
{
yi, j

}k

i=0
ρ-effectively span a k-dimensional space, and if lim j yi, j = ȳi, then also {ȳi}

k
i=0

ρ-effectively spans a k-dimensional space.

Definition 29 Given F ⊂ B1 (0), we say that F ρ-effectively spans a k-dimensional subspace
if there exist {y0, · · · , yk} ⊆ F that ρ-effectively spans a k-dimensional subspace according
to the previous definition.

With this concept in mind, we can extend Proposition 24 to the case where we have k+1
distinct points of pinching for θ̂. Note that we will not actually use this proposition, indeed
we will need the more refined version of this statement, which is the main focus of Section
6.1. However, we think it is reasonable to record this proposition in order to give the reader
a better understanding of the direction that our argument is taking.

Proposition 30 Let u ∈ H1(B3 (0)) be a solution to (W) and (S) with (f) and θ(0, 3) ≤ Λ.
Then for all ε, ρ > 0, there exist δ(m, Λ, γ, ε, ρ) such that if F < δ and for some {xi}

k
i=0 ⊂

B1 (0) we have

1. {xi} ρ-effectively spans a k-dimensional affine subspace V,
2. θ̂(xi, r) − θ̂(xi, r/2) < δ for all i,

then Br (x) is (k, ε)-symmetric.

Proof The proof is a simple adaptation of Proposition 24.

The next proposition shows that in case when the set of points with pinching effectively
spans a k-dimensional plane V , then Sk

ε,r is contained in a tube around V .

Proposition 31 Let ρ, ε > 0 be fixed. There exists δ3(m, Λ,N, γ, ρ, ε) > 0 such that the fol-
lowing holds. Let F =

{
y ∈ B2 (0) s.t. θ̂(y, 1) − θ̂(y, ρ) < δ3

}
. If F ≤ δ3 and F ρ-effectively

spans a k-dimensional subspace V, then

Sk
ε,δ3
⊆ B2ρ (V) . (4.10)
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We split the proof of this proposition into two parts, the first of which is contained in the
following technical lemma.

Lemma 32 Let u be as above. There exits a δ4(m, Λ,N, γ, ρ, ε) > 0 such that if F < δ4 and∫
B1(0)
|P · ∇u|2 < δ4 , (4.11)

for some k + 1 dimensional linear subspace P, then Sk
ε,r̄ ∩ B1/2 (0) = ∅, where r̄ = δ

1
2(m−2)

4 .

Remark 33 Notationally we define |P · ∇u|2 ≡
∑
|∇ei u|

2, where ei is an orthonormal basis of
P.

Proof We want to show by contradiction that for all x ∈ B1/2 (0), there exists an rx ∈ [r̄, 1/2]
such that Brx (x) is (k+1, ε)-symmetric. Note that, by monotonicity, for all x ∈ B1/2 (0) there
exists an rx ∈ [r̄, 1/2] such that

θ̂(x, rx) − θ̂(x, rx/2) <
C1(m, γ)Λ
− log(δ4)

. (4.12)

Indeed, otherwise we would have

c(m, γ)(Λ + δ4)
(2.16)
≥ θ̂(x, 1/2) =

− log(r̄)+1∑
i=1

(
θ̂(x, 2−i) − θ̂(x, 2−i−1)

) (2.15)
≥ c(m)C1(m, γ)Λ ,

(4.13)

which is impossible if we set C1(m, γ) = 2c(m, γ)c(m)−1. Moreover, note that

r2−n
x

∫
Brx (x)

|P · ∇u|2 ≤ δ4r2−n
x ≤ δ1/2

4 (4.14)

by definition of rx. Thus consider a contradicting sequence ui with δ4,i → 0 such that there
exists xi ∈ B1/2 (0) and ri ∈ [r̄, 1] such that Bri (xi) is not (k + 1, ε)-symmetric but such that
(4.12) and (4.14) are valid. By a simple rotation, we can assume that the k + 1 dimensional
subspace P is fixed throughout the sequence. Consider the maps Ti = T ui

xi ,ri . Their weak limit
converges to some weakly harmonic T which is 0-symmetric by unique continuation, (4.12)
and Proposition 24. Moreover, T is also invariant wrt the k+1-dimensional P by (4.14). This
clearly is a contradiction.

Now we turn to the proof of the main proposition.

Proof (Proof of Proposition 31) Let {y0, · · · , yk} ⊆ F ρ-effectively span the k-dimensional
subspace V , and consider any x ∈ B2 (0) \ B2ρ (V). Note that for all i = 0, · · · , k, we have

Bρ (x) ⊂ B2 (yi) \ Bρ (yi) . (4.15)

By (2.14), we obtain that for all i = 0, · · · , k:∫
Bρ(x)
|(z − yi) · ∇u|2 (z) ≤ c(m)

[
θ̂(yi, 1) − θ̂(yi, ρ)

]
. (4.16)
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Let w be any norm 1-vector in V̂ , the linear subspace associated to the affine V . By definition
of {yi}, there exists {αi}

k
i=1 such that

w =
∑

i

αi(yi − y0) |αi| ≤ c(m, ρ) . (4.17)

Thus we also have∫
Bρ(x)
|w · ∇u|2 (z) ≤ C(m, ρ)

∑
i

∫
Bρ(x)
|[(yi − z) + (z − y0)] · ∇u|2 (z) ≤ (4.18)

≤ c(m, ρ)
∑

i

[
θ̂(yi, 1) − θ̂(yi, ρ)

]
≤ c(m, ρ, γ)δ3 . (4.19)

This in particular implies ∫
Bρ(x)
|V · ∇u|2 ≤ c(m, ρ, γ)δ3 . (4.20)

In order to gain one more independent direction along which the energy is small, set for all
z ∈ B1 (0) \ V

h(z) =
z − πV (z)
‖z − πV (z)‖

. (4.21)

By an argument similar to the one above, we obtain also∫
Bρ(x)
|h(z) · ∇u|2 (z) ≤ c(m, ρ, γ)δ3 . (4.22)

By a geometric argument, it is easy to see that if d(z,V) ≥ ρ, then |h(z) − h(x)| ≤ C(m) |x − z| ρ−1.
This implies that for all r ≤ ρ, we have

1
2

∫
Br(x)
|h(x) · ∇u|2 (z) ≤

∫
Br(x)
|h(z) · ∇u|2 (z) +

∫
Br(x)
|h(x) − h(z)|2 |∇u|2 (z) ≤ c(m, ρ, γ)δ3 + c(m, ρ, γ, Λ)rm ,

(4.23)

where in the last line we have used the uniform bound θ(x, r) ≤ c(m, γ)(Λ + 1) for all
x ∈ B2 (0) and r ∈ [0, 1] (see the estimates in (2.16)).

For the k + 1-dimensional linear subspace P = L̂ ⊕ h(x), and for all r ≤ ρ, we get the
estimate

r2−m
∫

Br(x)
|P · ∇u|2 ≤ c(m, ρ, γ)δ3r2−m +C(m, ρ, γ, Λ)r2 . (4.24)

Now we can choose r and subsequently 0 < δ3 << δ4 small enough in order to apply Lemma
32 to Br (x), and we obtain the thesis.

We close this section by observing that if Br (x) is not (k+1, ε)-symmetric, but it is almost
0-symmetric, then necessarily u must have some energy on any k + 1 distinct directions on
Br (x). Actually, part of this energy must be concentrated on the annulus Br (x) \ Br/2 (x).
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Lemma 34 Let u be as above. Then for each ε > 0 there exists δ5(m,N, Λ, γ, ε) > 0 such
that if F < δ5, and B1 (0) is (0, δ5)-symmetric but is not (k + 1, ε)-symmetric, then for every
k + 1 linear subspace P we have ∫

A3/8,1/2(0)
|P · ∇u|2 ≥ δ5 , (4.25)

where A3/8,1/2(0) ≡ B1/2 (0) \ B3/8 (0).

Proof Also this proof is based on a simple contradiction argument which hinges on the H1
weak

compactness given by the uniform energy bounds. Thus let ui be a contradicting sequence.
In particular, let ui be approximately harmonic maps with Fi ≤ i−1 such that B1 (0) is (0, i−1)-
symmetric but not (k + 1, ε)-symmetric. Moreover, let P be a k + 1-dimensional subspace
such that for all i ?

A3/8,1/2(0)
|P · ∇ui|

2 ≤ i−1 → 0 . (4.26)

Note that we can assume that P is not changing with i simply by making a rotation in the
domain space. After passing to a subsequence, ui ⇀

∗ u in the weak H1 sense, with u being
a weakly harmonic map. Now (4.26) and the H1

weak convergence guarantee that∫
A3/8,1/2(0)

|P · ∇u|2 = 0 . (4.27)

Moreover, u will be 0-homogeneous by unique continuation and the pinching assumption.
Thus, we obtain that ∫

B1(0)
|P · ∇u|2 = 0 , (4.28)

and this implies that u is k+ 1-symmetric. Since ui converges strongly to u in L2(B1 (0)), we
obtain a contradiction.

4.3 Uniformity of the energy and of the non-symmetry

One moral to be taken from the previous section, in particular from Proposition 30, is that
if we have a lot of pinched points which span something k-dimensional, then the map u is
almost constant along these k-directions.

Here we prove another two important variations of this general philosophical point. First
of all, we will show that in the situation described above, u is almost constant also in some
H1 sense, not just in an L2 sense. In particular θ̂ remains almost constant on all pinched
points.

Lemma 35 Let u : B3 (0)→ N be a solution to (W) and (S) with (f). Let ρ > 0 and η > 0 be
fixed, and assume that for all y ∈ B1 (0), θ̂(y, 1) ≤ E, then there exists δ6 = δ6(m, Λ,N, ρ, γ, η)
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such that if F ≤ δ6, the following holds. Let F(u, δ6) ⊆
{
y ∈ B1 (0) s.t. θ̂(y, ρ) > E − δ6

}
. If

F ρ-effectively spans a k-dimensional subspace L, then for all x ∈ L ∩ B2 (0), we have

θ̂(x, ρ) > E − η . (4.29)

Moreover, if k ≥ m − 1, then E ≤ η.

Proof We prove this statement by contradiction. Fix any η > 0, and let ui be a contradicting
sequence. In particular, ui will be approximately harmonic maps on B3 (0) with θui (y, 1) ≤ E
for all i, and such that Fi = F(ui, i−1) ρ-effectively spans a k-dimensional subspace L. Up to
translations and rotations, we can assume that L is fixed for all i.

Moreover, we assume by contradiction that there exists some xi ∈ L such that θ̂ui (xi, ρ) ≤
E − ε. Note that, evidently, we can assume that L has dimension at least 1, otherwise there’s
nothing to prove.

By weak compactness, we can pass to a subsequence and have ui ⇀
∗ u, where u is a

weakly harmonic map, and

|∇ui|
2 dVol ⇀∗ µ ≡ |∇u|2 dVol + ν , (4.30)

where the convergence is in the weak sense of measures, and ν is the defect measure, which
is nonnegative by Fatou’s lemma. Set by definition θµ(y, r) = r2−nµ(Br (y)), and note that θµ
is monotone in r for all y fixed. Indeed, let 0 < r1 < r2, and consider that

θµ(y, r2) − θµ(y, r1) = lim
i→∞

[
θui (y, r2) − θui (y, r1)

] (2.15)
= lim

i→∞

[
θ̂ui (y, r) − θ̂ui (y, r1)

]
≥0 (4.31)

Now let
{
yi, j

}k

j=0
⊂ Fi be a set of points which ρ-effectively spans L. By passing to a subse-

quence, we can assume that xi → x ∈ L and limi→∞ yi, j = ȳ j, where
{
ȳ j

}
ρ-effectively spans

L.
For all j and r > 0, we have that(

r − |yi − y|
r

)n−2

θui (yi, r − |yi − y|) ≤ θui (y, r) ≤
(

r
r + |yi − y|

)n−2

θui (yi, r + |yi − y|) , (4.32)

thus by taking the limit on i, we can conclude that for all j:

θµ(y j, 1) − θµ(y j, ρ) = 0 . (4.33)

By an easy adaptation of [Lin99, lemma 1.7] (in particular, by the proof of point ii in
this lemma, carried out at pages 797–800), this implies that µ, ν and u are radially invariant
on B1

(
y j

)
\ Bρ

(
y j

)
for all j. Since y j ρ-effectively span L, as an immediate consequence we

have that u, ν and µ are invariant wrt L on the whole B2 (0).
Thus θµ(y, ρ) = E for all y ∈ L, in particular θµ(x, ρ) = E. Since xi → x and ρ > 0, we

obtain our contradiction by (4.32).

As a last point, if we assume that L has dimension at least m − 1, then we know that
both ν and u are invariant wrt an m − 1 dimensional affine subspace. However, by point 2 in
Proposition 16, the support of νmust have finite m−2 dimensional Hausdorff measure. Thus,
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we see that ν = 0, which means that ui converges strongly in H1 to u, which is an m − 1-
invariant weakly harmonic map. In other words, u is a weakly harmonic map depending
only on 1 variable, and by standard Sobolev embeddings those maps are well-known to be
continuous. Since u is also 0-symmetric wrt y0, it is a constant map. This proves the last
claim.

We close this section with the last technical result we need. In particular, we prove that
almost symmetry (or lack thereof) is preserved under some suitable pinching condition.

Lemma 36 Let u : B8 (0) → N be a solution to (W) and (S) with (f). Let ρ > 0 and ε > 0
be fixed. There exists δ7 = δ7(m, Λ,N, ρ, γ, ε) such that if F ≤ δ7, then the following holds. If
θ̂(0, 1) − θ̂(0, 1/2) < δ7 and there exists a point y ∈ B3 (0) with

1. θ̂(y, 1) − θ̂(y, 1/2) < δ7,
2. for some r ∈ [ρ, 2], Br (y) is not (k + 1, ε)-symmetric

Then Br (0) is not (k + 1, ε/2)-symmetric.

Remark 37 Note that we do not assume that |y − 0| ≥ ρ, and thus we cannot obtain in general
that u will be invariant on the line joining 0 and y.

Proof Consider again a contradicting sequence. In particular, ui will be a sequence of maps
with θ̂(0, 1)− θ̂(0, 1/2) ≤ i−1, and for some yi ∈ B3 (0) we will have θ̂(yi, 2)− θ̂(yi, 1/2) ≤ i−1.
Moreover, Br (yi) is not (k + 1, ε)-symmetric, but Br (0) is (k + 1, ε/2)-symmetric.

Thus, for all i, there exists an hi : B10 (0)→ N which is k + 1-symmetric such that?
Br(0)
|ui − hi|

2 ≤ ε/2 . (4.34)

By passing to a subsequence if necessary, we obtain yi → y ∈ B3 (0), ui ⇀
∗ u in

H1(B8 (0)) and thus ui → u in the strong L2(B8 (0)) sense, with u weakly harmonic and
homogeneous wrt 0 and y. Moreover, hi ⇀

∗ h in L2, where h is a k + 1-symmetric map with?
Br(0)
|u − h|2 ≤ lim sup

i→∞

?
Br(0)
|u − hi|

2 ≤ 2ε/3 . (4.35)

If y = 0, then obviously we obtain a contradiction. Indeed, since N is compact, we have

lim
i→∞

?
Br(yi)
|ui − h|2 =

?
Br(0)
|u − h|2 ≤ 2ε/3 . (4.36)

In a similar way, if y , 0, then u is invariant wrt the line joining 0 and y, and we get

lim
i→∞

(?
Br(0)
|ui(yi + z) − h(z)|2 dz

)1/2

≤ lim
i→∞

(?
Br(0)
|ui(yi + z) − u(y + z)|2 dz

)1/2

+ (2ε/3)1/2 = (2ε/3)1/2 .

(4.37)



24 Aaron Naber, Daniele Valtorta

5 Reifenberg theorem

In this section, we quote without proof the appropriate Reifenberg results from [NV] that
are needed in this paper. These results have since been extended and improved upon, with
simplified proofs, in [ENV16]. Before doing that, we write a brief introduction to these
results, and state the necessary definitions.

5.1 Reifenberg theorem in literature

The Reifenberg topological disk theorem, introduced in [Rei60], states that if a subset S ⊂
Rn is sufficiently close in the Hausdorff sense at all scales to a k-dimensional plane, then S
is C0,α-homeomorphic to a disk.

This theorem has been improved during the years, with the objective of obtaining some
C0,1 information on S . For example, Toro proves in [Tor95] that the correspondence is C0,1

under some summability assumption on Jones’ β2 numbers for the set S . More general
results along the same line are available in [DS93,DT12].

It is worth mentioning that just by working with β2-numbers, without the Reifenberg-
type techniques, rectifiability results for sets and measures similar to the ones discussed have
been obtained very recently in [AT15,Tol15].

In [NV] and [ENV16], effective estimates in the form of upper Ahlfor’s regularity and
rectifiability are obtained for sets and measures under the appropriate Dini conditions on
the β2-numbers. These results play a key role in the finiteness and structure theorems of this
paper. Here we quote these theorems, and refer the reader to [NV] and [ENV16] for their
proofs.

5.2 Definitions

Here we define the so-called Jones’ β2 numbers.

Definition 38 Let µ be a nonnegative Radon measure on B3 (0), and fix any r > 0 and
k ∈ N. We define the k-dimensional Jones’ β number by

βk
2,µ(x, r)2 = min

V⊆Rn

∫
Br(x)

d2(y,V)
r2

dµ(y)
rk , (5.1)

where the minimum is taken over all affine subspaces V of dimension k.

It is clear that β2 is suitable to quantify how close the support of µ is to a k-dimensional
subspace. Note that the scaling factor r−2−k in the definition of µ is chosen to make β2 “scale
invariant” in some sense. Indeed, r−2 takes care of the scaling properties of d(x,V)2, and
since we expect µ to behave like a k-dimensional measure, r−kµ(Br (x)) is the right scale
invariant quantity to consider. This is the case if, for example, µ if k-Ahlfors regular, in the
sense that for all x ∈ supp (µ) ∩ B1 (0) and r ≤ 1

C−1rk ≤ µ(Br (x)) ≤ Crk , (5.2)
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or if µ is the k-dimensional Hausdorff measure on any set S . It is worth recording two basic
properties of β.

Lemma 39 β2
2 is monotone in µ, in the sense that if µ ≤ ν, then for all x, r

βk
2,µ(x, r)2 ≤ βk

2,ν(x, r)2 . (5.3)

Moreover, if |x − y| ≤ r, then

βk
2,µ(x, r)2 ≤ 2k+2βk

2,µ(y, 2r)2 . (5.4)

Proof Both these properties are immediate consequences of the definition of β.

5.3 Generalized Reifenberg Theorems

Now we are ready to state the two versions of the quantitative Reifenberg theorems from
[NV] that we will use to prove the uniform volume bounds on Sk

ε,r.

Theorem 40 [NV, theorem 3.4] For some constants δR(m) and CR(m) depending only on
the dimension m, the following holds. Let {Brx/5 (x)}x∈C ⊆ B3 (0) ⊂ Rm be a collection
of pairwise disjoint balls with their centers x ∈ B1 (0), and let µ ≡

∑
x∈C ωkrk

xδx be the
associated measure. Assume that for each Br(x) ⊆ B2∫

Br(x))

(∫ r

0
βk

2,µ(y, s)2 ds
s

)
dµ(y) < δ2

Rrk . (5.5)

Then we have the uniform estimates ∑
x∈C

rk
x < CR(m) . (5.6)

Remark 41 See [ENV16] for a more recent generalization of the above.

This theorem will be used on some carefully chosen discrete approximation of the sin-
gular set of u. In order to guarantee the assumption (5.5), we will use the β2 estimates of
Section 6.1. The next result is the rectifiable Reifenberg from [NV], see also [ENV16]:

Theorem 42 [NV, theorem 3.3] There exists δR(m) > 0 such that the following holds. Let
S ⊆ B3 (0) ⊆ Rn be a λk-measurable subset, and assume for each Br (x) with x ∈ B1 (0) and
r ≤ 1 we have ∫

S∩Br(x)

(∫ r

0
βk

2,λk |S
(y, s)2 ds

s

)
dλk(y) <δ2

Rrk . (5.7)

Then S is k-rectifiable such that for each x ∈ S we have λk(Br(x)) < CRrk.

Remark 43 The basis for the ideas in the above are a technical refinement of a new W1,p-
Reifenberg which is proved by the authors in [NV]. Since we do not directly need this
W1,p-Reifenberg we do not state it here.

Remark 44 Note that [AT15, theorem 1.1] proved the above without the Ahlfor’s upper
bound. See also [ENV16] for a more recent generalization, which both applies to a much
more general class of measures, and does so under weaker assumptions.
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6 Proof of the main theorems

In order to be in a position to prove the main theorem, we need to obtain two important in-
gredients. First we will discuss estimates linking the β2 of a generic measure µ with support
contained in Sk

ε,r(u) and the monotone quantity θ̂, and later on we will describe a covering
argument that will allow us to split the covering of the set Sk

ε,r(u) into suitable pieces with
nice estimates.

6.1 L2 subspace approximation theorem

The aim of this section is to prove that the β2 defined in the previous sections can be con-
trolled using the monotone quantities θ and θ̂, and the parameters F and γ.

In order to ease the notation, we define for x ∈ B1 (0) and r > 0 the quantity

Wr(x) ≡ W8r,r(x) ≡
∫

B8r(x)\Br(x)

|(y − x) · ∇u(y)|2

|y − x|m
dVol(y) ≥ 0 . (6.1)

Note that for an approximate harmonic map, by (2.14) we have the bound

Wr(x) ≤ θ̂(x, 8r) − θ̂(x, r) . (6.2)

Note that, at least philosophically, bounds on Wr(x) and Wr(y), for |x − y| ≤ r, give
bounds on the scale-invariant L2 norm of (x − y) · ∇u in an annulus around x and y. This is
an easy consequence of the fact that for all z ∈ Rm, the vectors (z − y) and (z − x) always
span the vector (x − y). In this section, we will exploit this simple idea and some easy tricks
to prove β2 estimates in a very general setting.

The main estimate in this section is the following. Note that, up to minor technical
details, this theorem is similar to [NV, theorem 7.1].

Theorem 45 Let u be as above, and fix ε > 0, 0 < r ≤ 1 and x ∈ B1 (0). There exists a
constant C1(m,N, Λ, γ, ε) > 0 such that if F ≤ δ5 and B8r (x) is (0, δ5)-symmetric but not
(k + 1, ε)-symmetric, then for any nonnegative finite measure µ on Br (x) we can estimate

βk
2,µ(x, r)2 = inf

V
r−2−k

∫
Br(x)

d2(x,V) dµ(x) ≤ C1r−k
∫

Br(x)
Wr(x) dµ(x) , (6.3)

where the inf is taken over all k-dimensional affine subspaces V ⊆ Rm.

Remark 46 As it will be clear in the proof, δ5 here is the same as the one given by Lemma
34. Moreover, C1 = c(m)δ−1

5 .

Remark 47 Note that the quantity on the rhs of this theorem can be easily estimated in terms
of θ̂ by (2.14).

The proof of this theorem hinges on some manipulations over the eigenvalues and eigen-
vectors of the “inertia matrix” associated to every measure µ.
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6.1.1 Eigenvalue and eigenvectors of the matrix associated to a measure

Let us consider a probability measure µ with support in B1 (0), and let xcm be its center of
mass, i.e.:

xcm = xcm(µ) ≡
∫

x dµ(x) . (6.4)

Consider the bilinear quadratic form Q(v,w) defined by

Q(v,w) ≡
∫

[(x − xcm) · v] [(x − xcm) · w] dµ(x) . (6.5)

In this section, we study the eigenvalue and eigenvectors of Q and their relations with the β2

defined above.

Definition 48 Given a probability measure µ ∈ B1 (0), we set λ1(µ), · · · , λm(µ) to be the
eigenvalues of Q(µ) in decreasing order, and v1(µ), · · · , vm(µ) to be its eigenvectors. In case
one eigenvalue has higher multiplicity, we take any choice of orthonormal eigenvectors in-
side the eigenspace.

Note that by definition of eigenvectors, we have

Q(vk) = λkvk =

∫
[(x − xcm) · vk] (x − xcm) dµ(x) (6.6)

We also have a variational characterization of the eigenvalues given by

λ1 = λ1(µ) ≡ max
|v|2=1

∫
|(x − xcm) · v|2 dµ(x) . (6.7)

and v1 = v1(µ) is any of the norm 1 vectors obtaining this maximum. By induction, we also
have

λk+1 = λk+1(µ) ≡ max
{∫
|(x − xcm) · v|2 dµ(x) s.t. |v|2 = 1 and ∀i ≤ k , v · vi = 0

}
,

(6.8)

and vk+1 is a vector obtaining this maximum. Note that, by definition of vk, the subspace
Vk = xcm + span{v1, . . . , vk} is the k-dimensional affine subspace (or one of the subspaces)
achieving the minimum in the β2. In other words

min
V⊆Rm , dim(V)=k

∫
d2(x,V) dµ(x) =

∫
d2(x,Vk) dµ(x) = λk+1(µ) + · · · + λm(µ) . (6.9)

Remark 49 Note that evidently Vk must pass through the center of mass of µ. This is an
immediate corollary of Jensen’s inequality (or Steiner’s theorem).

By simple manipulations with λk and vk, we obtain the following important estimate:
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Proposition 50 Let u : B9 (0) → N be an H1 map, and let µ be a probability measure on
B1 (0) with λk(µ), vk(µ) defined as in Definition 48. Then there exists C(m) > 0 such that

λk

∫
A3,4(0)

|vk · ∇u(z)|2 dVol(z) ≤ C(m)
∫

W0(x) dµ(x) . (6.10)

Proof For simplicity, and without essential loss of generality, we assume that xcm(µ) = 0
(otherwise a simple translation will do the trick).

For any z ∈ A3,4 and k = 1, · · · ,m, we take the scalar product of (6.6) with ∇u(z), and
obtain

λk (vk · ∇u(z)) =
∫

(x · vk) (∇u(z) · x) dµ(x) , (6.11)

By definition of center of mass (see (6.4)), we have for all fixed z:∫
x · z dµ(x) = xcm · z = 0 . (6.12)

Thus we can re-write (6.11) in the form:

λk (∇u(z) · vk) =
∫

(x · vk) [∇u(z) · (x − z)] dµ(x) . (6.13)

A simple application of Hölder inequality tells us that for all fixed z:

λ2
k |∇u(z) · vk |

2 ≤ λk

∫
|∇u(z) · (x − z)|2 dµ(x) . (6.14)

Note that we can evidently assume λk > 0, otherwise there’s nothing to prove. By integrating
both sides of the previous inequality on A3,4(0), we get

λk

∫
A3,4(0)

|∇u(z) · vk |
2 dVol(z) ≤

∫ ∫
A3,4(0)

|∇u(z) · (x − z)|2 dVol(z) dµ(x) ≤ (6.15)

≤

∫ ∫
A3,4(0)

|∇u(z) · (x − z)|2

|x − z|m
|x − z|m dVol(z) dµ(x) ≤ (6.16)

≤ C(m)
∫ ∫

A1,8(x)

|∇u(z) · (x − z)|2

|x − z|m
dVol(z) dµ(x) ≤ C(m)

∫
W0(x) dµ(x) , (6.17)

as desired.

6.1.2 Proof of Theorem 45

We are now in a position to prove Theorem 45. By rescaling (6.3), we can assume for
convenience that µ(B1 (0)) = 1. Since we have ordered λk to be decreasing in value, and by
(6.9), we have

βk
2,µ(0, 1)2 = λk+1(µ) + · · · + λm(µ) ≤ (m − k)λk+1 . (6.18)
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By applying Proposition 50 to each j = 1, · · · , k + 1, we obtain

k+1∑
j=1

λ j

∫
A3,4(0)

∣∣∣∇u(z) · v j

∣∣∣2 dVol(z) ≤ (k + 1)C
∫

W0(x) dµ(x) . (6.19)

Let Vk+1 = span (v1, · · · , vk+1) be the linear part of the best k + 1-dimensional subspace of
µ. Given that λ j are decreasing in j (by definition), the last estimate leads to

λk+1

∫
A3,4(0)

∣∣∣Vk+1 · ∇u(z)
∣∣∣2 dVol(z) = λk+1

k+1∑
j=1

∫
A3,4(p)

∣∣∣∇u(z) · v j

∣∣∣2 dVol(z) ≤ C
∫

W0(x) dµ(x) .

(6.20)

By assumption, we know that B8 (0) is (0, δ5)-symmetric and not (k + 1, ε)-symmetric.
Thus, by Lemma 34, ∫

A3,4(p)

∣∣∣∇u(z) · Vk+1
∣∣∣2 dVol(z) ≥ 8m−2δ5 . (6.21)

This allows us to estimate

c(m)δ5λk+1 ≤ λk+1

∫
A3,4(0)

∣∣∣∇u(z) · Vk+1
∣∣∣2 dVol(z) ≤ C

∫
W0(x) dµ(x) . (6.22)

Since δ5 is a positive constant depending only on (m,N, Λ, γ, ε), and by (6.18), we can con-
clude

βk
2,µ(0, 1)2 ≤ C(m,N, Λ, γ, ε)

∫
W0(x) dµ(x) (6.23)

as desired.

�

6.2 Covering argument

In this subsection, we prove the inductive covering argument needed for the main theorem.
We split this covering argument into two lemmas: in the first one, we keep refining induc-
tively a covering by balls until all but a controlled amount of points in our balls have some
definite drop in θ̂, and in the second one we show that this controlled amount of points
without drop is small so that they can be “ignored”.

Lemma 51 (Covering Lemma I) Let u : B3 (0) → N be an approximately harmonic map
satisfying (W) and (S), with the conditions (f). Fix any ε > 0, 0 < ρ < ρ(m) ≤ 100−1, and
0 < r < R, 0 < R ≤ 1 arbitrary, set E = supx∈B2R(0)∩S θ̂1(x), and assume the uniform bound
E ≤ Λ. There exists δ = δ(m,N, Λ, γ, ρ, ε) > 0 and CV (m) such that the following is true.

If F < δ then for any subset S ⊆ Sk
ε,δr there exists a finite covering of S∩BR (0) such that

S ∩ BR (0) ⊆
⋃
x∈C

Brx (x) with rx ≥ r and
∑
x∈C

rk
x ≤ CV (m)Rk . (6.24)

Moreover, for each x ∈ C, one of the following is verified
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i) rx = r
ii) the set of points Fx ≡

{
y ∈ S ∩ B2rx (x) s.t. θ(y, ρrx/10) > E − δ

}
is contained in Bρrx/5 (Lx)∩

B2rx (x), where Lx is some k − 1 dimensional affine subspace.

Remark 52 By the scale-invariance properties of θ̂, it is clear that for simplicity we can
assume wlog that R = 1.

Remark 53 Note that the set Fx may be empty.

Remark 54 For convenience, and without any loss of generality, we will assume in the proof
that r is some (positive) power of ρ, and that ρ is some (negative) power of 2. In particular:

r = ρ j̄ and ρ = 2−a , with a, j̄ ∈ N . (6.25)

6.2.1 Proof of Lemma 51

The idea of the proof is the following. We are going to build inductively on i a covering of
the set Sk

ε,r by a family of balls of radius ri = ρ
i. In the inductive step, we will look at each

ball of radius ri and determine if this is a “good” or a “bad” ball according to how many
points inside this ball have θ̂(y, ρri/10) ≥ E − δ.

If this set of points “effectively span” some k-dimensional affine subspace V , then we
will apply Lemma 31 in order to see that the whole set Sk

ε,r ∩ Bri (x) is contained in small
neighborhood of V . Moreover, using Lemma 35, we will see that we can cover the whole
neighborhood of V by balls with uniform radius, and this covering will satisfy the assump-
tions of the discrete Reifenberg theorem. These balls are the good balls.

If this set of points is empty, or it does not “effectively span” something k-dimensional,
then we will stop refining our covering, because by definition condition (ii) is verified.

The uniform k-dimensional content estimates will follow from the discrete Reifenberg
theorem 40 applied to the natural measure associated with this covering. The β2 estimates
needed to apply the Reifenberg theorem are a consequence of Section 6.1.

6.2.2 Inductive covering: first step

Consider the map u : B3 (0)→ N, let S ⊆ Sk
ε,δr be an arbitrary subset and define the set

F =
{
y ∈ B2 (0) ∩ S s.t. θ̂(y, ρ/10) > E − δ

}
. (6.26)

If there exists a k − 1-dimensional subspace L such that F ⊂ Bρ/5 (L), then there’s nothing
to prove. In this case, we call B1 (0) a bad ball.

Otherwise, we say that B1 (0) is a good ball. In this second case, let V be a k-dimensional
subspace which is (ρ/10)-effectively spanned by the set F. Thus by definition there exists{
y j

}k

j=0
⊂ F that (ρ/10)-effectively span V . For δ sufficiently small, we can apply Lemma 31

to B1 (0), we obtain that

Sk
ε,δr ∩ B1 (0) ⊂ Bρ/5 (V) . (6.27)

Consider a finite covering of Bρ/5 (V) ∩ B1 by balls
{
Bρ (x)

}
x∈C

such that
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1. x ∈ V ∩ B1 (0)
2. if x , y, then Bρ/5 (x) ∩ Bρ/5 (y) = ∅

Note that, by Lemma 35, we have for all x ∈ C:

θ̂(x, ρ/10) ≥ E − η , (6.28)

as long as δ is sufficiently small. Under the same smallness assumption, Lemma 36 implies
that for all x we have x ∈ Sk

ρ,ε/2. We will need these two properties later on in order to apply
the discrete Reifenberg Theorem 40 to the measure associated to our final covering.

This completes the base step of the inductive covering we will be constructing in the
next subsection. Now we will consider any of the balls Bρ (x) in this covering and start over
the process.

6.2.3 Inductive step

We will build by induction a sequence of coverings

S ⊆
⋃
x∈C j

Br j
x
(x) =

⋃
x∈C j

b

Br j
x
(x) ∪

⋃
x∈C j

g

Br j
x
(x) ≡ Br j

x

(
C

j
b

)
∪ Br j

x

(
C

j
g

)
, (6.29)

where C
j
b will represent the centers of a collection of “bad balls” and C

j
g will represent the

centers of a collection of “good balls” such that

1. If x ∈ C
j
b then r j

x ≥ ρ j and the set Fx =
{
y ∈ S ∩ B2r j

x
(x) s.t. θ̂(y, ρr j

x/10) ≥ E − δ
}

is
contained in some Bρr j

x/5
(Lx), where Lx is a k − 1-dimensional affine subspace.

2. If x ∈ C
j
g then r j

x ≡ ρ j and the set Fx =
{
y ∈ S ∩ B2r j

x
(x) s.t. θ̂(y, ρr j

x/10) ≥ E − δ
}

(ρr j
x/10)-effectively spans a k-dimensional affine subspace Vx.

3. For all x , y ∈ C j we have Brx/5 (x) ∩ Bry/5 (y) = ∅.
4. For all x ∈ C j we have θ̂(x, rx) ≥ E − η.
5. For all x ∈ C j and for all s ∈ [rx, 1], Bs (x) is not (k + 1, ε/2)-symmetric.

Suppose that we have this covering for some j, and consider the set

R j = S \
⋃
x∈C j

b

Brx (x) = S \ Brx

(
C

j
b

)
. (6.30)

Note that by definition this set is contained in Bρ j

(
C

j
g

)
. For each x ∈ C

j
g, we know that Fx

[ρ j+1/10]-effectively spans a k-dimensional subspace Vx. As seen in the first inductive step,
by Proposition 31 we have that

Sk
ε,δr ∩ B2ρ j (x) ⊂ Bρ j+1/5 (Vx) (6.31)

for all x ∈ C j
g as long as

δ ≤ δ3(m, Λ,N, γ, ρ, ε) . (6.32)
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In order to build an open covering of R j, consider the set

A =
⋃
x∈C j

g

(
Bρ j (x) ∩ Vx

)
\ Brx/2

(
C

j
b

)
. (6.33)

By (6.30) and (6.31), and since ρ < 100−1, we have

R j ⊆ Bρ j+1/5 (A) . (6.34)

Now first note that by the definition of A and since ρ ≤ 100−1, all of these balls are disjoint
from Brx/10

(
C

j
b

)
. Moreover, by Lemma 35, if we choose δ sufficiently small, for all y ∈ A

we have

θ̂
(
y, ρ j+1/10

)
≥ E − η . (6.35)

In particular, we need

0 < δ ≤ δ6(m, Λ,N, ρ, γ, η) . (6.36)

Furthermore, if we choose δ small enough, by Lemma 36, we obtain that for all s ∈ [ρ, 1]
and for all y ∈ A

Bs (y) is not (k + 1, ε/2)-symmetric . (6.37)

In particular, we need

0 < η ≤ δ7(m, Λ,N, ρ, γ, ε) ⇐= 0 < δ ≤ min {δ7(m, Λ,N, ρ, γ, ε), δ6(m, Λ,N, ρ, γ, δ7)} .
(6.38)

Now consider a (finite) Vitali subcovering of this set given by

R j ⊆
⋃
x∈CA

Bρ j+1 (x) . (6.39)

We can classify all the balls in this covering into good and bad according to how spread their
set F is. In particular, for all x ∈ CA consider as above the set

Fx =
{
y ∈ S ∩ B2ρ j+1 (x) s.t. θ̂

(
y, ρ j+2/10

)
≥ E − δ

}
. (6.40)

If Fx [ρ j+2/10]-effectively spans a k dimensional subspace Vx, then we say that Bρ j+1 (xt) is
a good ball, and we put x ∈ CA

g . Otherwise, we say that Bρ j+1 (x) is a bad ball, and we put
x ∈ CA

b .
We define

C
j+1
b = C

j
b ∪ CA

b , C
j+1
g = CA

g . (6.41)

Note that the set of bad balls contains all the bad balls encountered at any previous step. On
the contrary, good balls get refined at each stage, and at each induction step the previous bad
balls disappear from the set Cg.

Now the induction is complete. Indeed, property 1 and 2 are a direct consequence of the
definition of Cg and Cb. Property 3 comes from the definition of A and the Vitali covering
lemma. Finally, property 4 is a consequence of (6.35) and property 5 comes from (6.37).
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6.2.4 Volume estimates

Now we are in a position to prove the desired volume estimates, and in particular∑
x∈C

rk
x ≤ CV (m) , (6.42)

where C = C j̄ for j̄ such that ρ j̄ = r.
We will prove this estimate by an induction on the radius. For convenience, we define

the measure

µ = ωk

∑
x∈C

rk
xδx . (6.43)

Upwards induction For all t ∈ (0, 1], set Ct = {x ∈ C s.t. rx ≤ t}, and define the measure

µt ≡ ωk

∑
x∈Ct

rk
xδx ≤ µ . (6.44)

Now we want to prove inductively on t = r, 2r, 22r, 23r, · · · , 1/8 that for some universal
constant CR(m), for all x ∈ B3 (0) and s ≥ r we have

µt(Bt (x)) ≡

 ∑
x∈C s.t. rx≤t

ωkrk
xδx

 (Bt (x)) ≤ CR(m)tk . (6.45)

Note that CR(m) is the constant in Theorem 40. Note also that µ1 = µ, so at the last step of
the induction we will have recovered an estimate for the whole µ, up to a covering of B1 (0)
by balls B1/8 (pi). In other words, we prove (6.42) with

CV (m) = c(m)CR(m) . (6.46)

Note that the base step is easily seen to be true for t = r. Indeed, at this stage we have

µr =
∑
x∈Cr

ωkrkδx , (6.47)

where all Br/5 (xi) are disjoint. Thus we immediately have µr(Br (x)) ≤ c(m)rk.

Now, suppose that we have proven (6.45) for t ≤ 2 jr, we will show that (6.45) holds
also for t = 2 j+1r.

Rough estimate First of all, we note that by a very bad estimate we have for all x ∈ B1 (0):

µ2r̄(B2r̄ (x)) ≤ c(m)CR(m)(2r̄)k , (6.48)

where for convenience we have set r̄ = 2 jr. Indeed, we can split µ2r̄ into

µ2r̄ = µr̄ + µ̃2r̄ ≡
∑
x∈Cr̄

ωkrk
xδx +

∑
x∈C s.t. rx∈(r̄,2r̄]

ωkrk
xδx . (6.49)
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Take a covering of B2r̄ (x) by balls Br̄ (yi) such that Br̄/2 (yi) are disjoint. The number of these
balls has a universal bound c(m), and by induction we have

µr̄(B2r̄ (x)) ≤
∑

i

µr̄(Br̄ (yi)) ≤ c(m)CR(m)r̄k . (6.50)

As for the other part of µ, by definition of this measure all the balls Brx/5 (x) are pairwise
disjoint, and so we get immediately

µ̃2r̄(B2r̄ (x)) ≤ c(m)(2r̄)k . (6.51)

Reifenberg estimates We will show inductively that we can apply Theorem 40 to the
measures µ2r̄ on each fixed B2r̄ (x). For convenience, we set

µ̄ = µ2r̄ |B2r̄(x) . (6.52)

Note that for all x ∈ supp (µ), and all s ∈ [rx, 1], we have θ̂(x, s) − θ̂(x, s/2) < η because
θ̂(xi, s) ≤ E by monotonicity of θ̂ and by definition of E, and θ̂(xi, s/2) ≥ E − η by condition
(4) of our constructed covering. Now we can choose η small enough so that for all x ∈
supp (µ) and 0 < s ≤ 1 we have the β2 estimate

β2,µ̄(x, s)2 thm.45
≤ C1s−k

∫
Bs(x)

Ŵs(y) dµ̄(y) , (6.53)

where we have set for all x ∈ supp (µ):

Ŵs(x) =

Ws(xi) if s > rx ,

0 if s ≤ rx .
(6.54)

Indeed, for s ≤ rx, supp (µ) ∩ Bs (x) = {x}, and there’s nothing to prove. If s ≥ rx, then
for all y ∈ Brx (x), ry < s by construction of µ.

Now for rx ≤ s ≤ 1/8, the ball B8s (x) is not (k + 1, ε/2)-symmetric by (6.37). Let
δ5(m,N, Λ, γ, ε) be the parameter found in Lemma 34 and Theorem 45. By Proposition 24,
we can choose a threshold

η0(m,N, Λ, γ, ε) = δ1(m,N, Λ, γ, ε, δ5) > 0 (6.55)

such that θ̂(x, 8s) − θ̂(x, 4s) < η with η ≤ η0 implies that B8s (xi) is (0, δ5)-symmetric. Thus
all the assumptions of Theorem 45 are satisfied, and we have the estimate (6.53) as desired.

Now we can prove that for all y ∈ B2r̄ (x), and r ≤ 2r̄, we have∫
Br(y)

(∫ r

0
βk

2,µ̄(z, s)2 ds
s

)
dµ̄(z) < c(m)C1C2

Rηrk . (6.56)

Indeed, by (6.53) we can estimate for all s ≤ r:∫
Br(y)

βk
2,µ̄(z, s)2 dµ̄(z) ≤ C1s−k

∫
Br(y)

[∫
Bs(z)

Ŵs(t) dµ̄(t)
]

dµ̄(z) . (6.57)



Stratification for the singular set of approximate harmonic maps 35

Now, on Bs (z), either µ̄ = µs|B2r̄(x), or there exists an x ∈ supp (µ) ∩ Bs (z) with rx > s. Since
z ∈ supp (µ) as well, by construction we have z = x = supp (µ)∩ Bs (z), and Ŵs(z) = 0. Thus
in either case we have∫

Br(y)
βk

2,µ̄(z, s)2 dµ̄(z) ≤ C1s−k
∫

Br(y)∩B2r̄(x)

[∫
Bs(z)∩B2r̄(x)

Ŵs(t) dµs(t)
]

dµs(z) . (6.58)

By induction, and by the rough estimates in (6.48), for all s ∈ (0, 2r̄] and z ∈ B1 (0) we can
estimate

µs(Bs (z)) ≤ c(m)CRsk . (6.59)

Thus we obtain∫
Br(y)

βk
2,µ̄(z, s)2 dµ̄(z) ≤ c(m)C1CR

∫
Br+s(y)∩B2r̄(x)

Ŵs(z)dµs(z) = c(m)C1CR

∫
Br+s(y)

Ŵs(z)dµ̄(z) .

(6.60)

This yields

∫
Br(y)

(∫ r

0
βk

2,µ̄(z, s)2 ds
s

)
dµ̄(z) ≤ c(m)C1CR

∫
B2r(y)

[∫ r

0
Ŵs(z)

ds
s

]
dµ̄(z) . (6.61)

Note that for all x ∈ supp (µ) and r ≤ 2r̄ ≤ 1/8, we have

∫ r

0
Ŵs(x)

ds
s
=

∫ r

rx

Ŵs(x)
ds
s
≤

∫ 1/8

rx

Ŵs(x)
ds
s

(2.14)
≤ c

[
θ̂(x, 1) − θ̂(x, rx)

]
≤ cη . (6.62)

Thus, using again the induction hypothesis and the rough estimates (6.48), we prove (6.56).
If we choose η small enough, in particular

η ≤ η1(m,N, Λ, γ, ε) = c(m)
δ2

R

C1C2
R

, (6.63)

we can apply Theorem 40 to µ̄ and obtain (6.45) as wanted.

The only thing left to do is to choose δ = δ(m,N, Λ, γ, ρ, ε) > 0 in such a way that (6.35)
is satisfied with

η ≤ min {η0, η1, δ7} (6.64)

and also (6.32) is satisfied. Given (6.55) and (6.63), as noted above this is a simple applica-
tion of Lemmas 35 and 36. This finishes the proof of Lemma 51.

�
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6.2.5 Second covering lemma

By repeating this covering argument over bad balls, we obtain the following

Lemma 55 (Covering Lemma II) Let u : B3 (0) → N be an approximately harmonic
map satisfying (W) and (S), with the conditions (f). Fix any ε > 0 and 0 < r ≤ R , 0 <

R ≤ 1, set E = supx∈B2R(0)∩S θ̂1(x), and assume the uniform bound E ≤ Λ. There exists
δ = δ(m,N, Λ, γ, ε) > 0 and CF(m) such that the following is true.

If F < δ, for any subset S ⊆ Sk
ε,δr, there exists a finite covering of S ∩ BR (0) such that

S ∩ BR (0) ⊆
⋃
x∈C

Brx (x) , with rx ≥ r and
∑
x∈C

rk
x ≤ CF(m)Rk . (6.65)

Moreover, for each x ∈ C,

i) either rx = r
ii) or we have the following uniform energy drop

∀y ∈ Brx (x) ∩ S , θ̂(y, rx/10) ≤ E − δ . (6.66)

Remark 56 As for the previous covering lemma, also in this case we can assume for sim-
plicity and wlog that R = 1.

Proof We need to refine the covering of the previous lemma. Recall that by lemma 51 we
have a covering of S ∩ B1 (0) given by

S ∩ B1 (0) ⊆
⋃
x∈C

Br (x) ≡
⋃
x∈Cr

Br (x) ∪
⋃
x∈C+

Brx (x) with rx ≥ r and
∑

x∈Cr∪C+

rk
x ≤ CV (m) ,

(6.67)

where we have set

Cr = {x ∈ C s.t. rx = r} and C+ = {x ∈ C s.t. rx > r} , C = Cr ∪ C+ . (6.68)

We will of course keep Cr as part of our final covering, while we will refine the covering on
each of the balls

{
Brx (x)

}
x∈C+ in an inductive way. By item (ii) of lemma 51, for each x ∈ C+

the set Fx ≡
{
y ∈ S ∩ B2rx (x) s.t. θ(y, ρri/10) > E − δ

}
is close to a k−1-dimensional space.

Assuming that Fx = ∅, all we need to do in order to achieve (6.66) is to re-cover Brx (x) with
balls

{
Bρrx (y)

}
y∈C(1, f )

x
. These balls are the final covering we are looking for. Evidently, the

number of these balls is bounded by a constant C f (m, ρ).
If Fx , ∅, we need to exploit the fact that we still know Fx ⊆ Bρrx/5 (Lx) ∩ B2rx (x),

where Lx is at most k − 1 dimensional. Thus we can cover Brx (x) \ Bρrx (Fx) as above, and
cover Bρrx (Fx) separately by balls

{
Bρrx (y)

}
y∈C(1,b)

x
. On these “bad balls”, we will not be able

to obtain any information on the energy drop over these new balls in the covering. However,
their k-dimensional content is small since Fx behaves like a k − 1 dimensional set. This will
allow us to start over on each of these bad balls separately, and keep a uniform k-dimensional
estimate on the content of the final covering. More precisely:
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6.2.6 Re-covering of bad balls: Induction

In detail, we will build by induction on i a sequence of coverings of S ⊆ Sk
ε,δr ∩ B1 (0) such

that

1. For all i = 1, 2, · · ·

S ⊆
⋃

x∈C(i,r)

Br (x) ∪
⋃

x∈C(i, f )

Brx (x) ∪
⋃

x∈C(i,b)

Brx (x) . (6.69)

2. For all x ∈ C(i,r), rx = r. In other words, on these “r-balls” option (i) of our lemma is
verified,

3. For all x ∈ C(i, f ) and all z ∈ B2rx (x) we have θ̂(z, rx/10) ≤ E−δ. In other words, on these
“final balls” option (ii) of our lemma is verified,

4. for all x ∈ C(i,b), r < rx ≤ ρ
i. On these “bad balls”, none of the two stopping options is

verified, thus we need to refine our covering here.
5. For some constant CF(m), we have the estimates∑

x∈C(i,r)∪C(i, f )

rk
x ≤ CF(m)

 i∑
j=1

2− j

 , ∑
x∈C(i,b)

rk
x ≤ 2−i . (6.70)

Thus the estimates on r and final balls has uniform bounds, while our estimates on bad
balls has exponentially decreasing bounds.

6.2.7 Re-covering of bad balls: First step in the induction

For i = 1, consider the covering (6.67) given by the previous lemma. We keep the balls{
Brx (x)

}
x∈Cr

as they are, while for each x ∈ C+ consider two coverings of Bρrx (Fx) and its
complement

Brx (x) \ Bρrx (Fx) ⊆
⋃

y∈C(1, f )
x

Bρrx (y) , Brx (x) ∩ Bρrx (Fx) ⊆
⋃

y∈C(1,b)
x

Bρrx (y) , (6.71)

where Bρrx/2 (y) are pairwise disjoint in both coverings.
By definition of Fx, for all y ∈ C(1, f )

x the energy drop condition (6.66) is satisfied. More-
over we have the trivial estimates∑

y∈C(1, f )
x

(ρrx)k = (ρrx)k #
{
y ∈ C(1, f )

x

}
≤ c(m)ρk−mrk

x ≡ C f (m, ρ)rk
x . (6.72)

Since the energy drop is verified on these balls, we define C(1, f ) to be the set of final balls at
the step i = 1 by

C(1, f ) =
⋃
x∈C+

C
(1, f )
x . (6.73)

For y ∈ C
(1,b)
x , the energy drop condition is not verified. However, since there exists a

k − 1 dimensional space Lx such that

Fx =
{
y ∈ S ∩ B2rx (x) s.t. θ̂(y, ρrx/10) ≥ E − δ

}
⊆ Bρrx/5 (Lx) , (6.74)
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then we can estimate∑
y∈C(1,b)

x

(ρrx)k = ρkrk
x#

{
C(1,b)

x

}
≤ c(m)ρ1−kρkrk

x ≡ Cc(m)ρrk
x . (6.75)

On these balls, we can either have the stopping condition ρrx = r, or we need to refine the
covering further. Thus we define

C(1,b) =
⋃

x∈C+ , ρrx>r

C(1,b)
x , C(1,r) = Cr ∪

⋃
x∈C+ , ρrx=r

C(1,b)
x . (6.76)

C(1,b) represents the set of “bad balls” where we need to refine our covering further.
By this and lemma 51, in particular by the estimates in (6.67), we obtain that∑

y∈C(1,b)

rk
y ≤ Cc(m)ρ

∑
x∈C+

rk
x ≤ CV (m)Cc(m)ρ . (6.77)

If we choose

0 < ρ(m) ≤ min
{

100−1,
1
2

CV (m)−1 ·Cc(k)−1
}
, (6.78)

we can rephrase the above estimates as ∑
y∈C(1,b)

rk
y ≤

1
2
. (6.79)

If we set

CF(m) = 2CV (m)
(
C f (m, ρ(m)) +Cc(m)

)
, (6.80)

the estimates on the final and r-balls are∑
y∈C(1,r)∪C(1, f )

rk
y = # {Cr} rk +

∑
x∈C+

rk
x

(
C f (m, ρ) +Cc(m, ρ)

)
≤ CV (m)

(
C f (m, ρ) +Cc(m)

)
=

1
2

CF(m) .

(6.81)

Note that clearly for all y ∈ C(1,b), we have ry ≤ ρ.

6.2.8 Re-covering of bad balls: Induction step

Suppose that we have obtained our covering for i. It is clear that we need to improve our
covering only on the balls

{
Brx (x)

}
x∈C(i,b) . In order to do so, we consider each of these balls

separately.
Since all the assumptions on lemma 51 are satisfied on each of the Brx (x), we can apply

again this lemma to each Brx (x), and obtain that for all x there exists a covering

S ∩ Brx (x) ⊆
⋃

y∈Ĉr,x

Br (y) ∪
⋃

y∈Ĉ+,x

Bry (y) with ry ≥ r and
∑

y∈Ĉr,x∪Ĉ+,x

rk
y ≤ CV (m)rk

x .

(6.82)
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Moreover, for each y ∈ Ĉ+,x, there exists a k − 1 dimensional subspace Ly such that

Fy ≡
{
z ∈ S ∩ B2ry (y) s.t. θ(z, ρry/10) > E − δ

}
⊆ Bρry/5

(
Ly

)
∩ B2ry (y) . (6.83)

By applying exactly the same procedure described in the first step of the induction to each of
the balls

{
Bry (y)

}
y∈Ĉ+,x

, we obtain the new desired covering. In particular, for each y ∈ Ĉ+,x

we can find a covering

Bry (y) \ Bρry

(
Fy

)
⊆

⋃
z∈Ĉ(i+1, f )

y

Bρry (z) , Bry (y) ∩ Bρry

(
Fy

)
⊆

⋃
z∈C(i+1,b)

y

Bρry (z) , (6.84)

where for all z ∈ Ĉ(i+1, f )
y and all p ∈ S∩ B2ρry (z), we have θ̂(p, ρry) ≤ E − δ, and we have the

estimates ∑
z∈Ĉ(i+1, f )

y

(ρry)k ≤ C f (m, ρ)rk
y ,

∑
z∈C(i+1,b)

y

(ρry)k ≤ Cc(m)ρrk
y . (6.85)

The new set C(i+1, f ) is now defined as the previous set of “final balls” C(i, f ) along with
the new final balls Ĉ(i+1, f ) obtained with this covering, thus making

Ĉ(i+1, f ) =
⋃

x∈C(i,b)

⋃
y∈Ĉ+,x

Ĉ
(i+1, f )
y , C(i+1, f ) = C(i, f ) ∪ Ĉ(i+1, f ) . (6.86)

In a similar way for the r-balls, we obtain

Ĉ(i+1,r) =
⋃

x∈C(i,b)

Ĉr,x ∪
⋃

y∈Ĉ+,x , ρry=r

C(i+1,b)
y

 , C(i+1,r) = C(i,r) ∪ Ĉ(i+1,r) . (6.87)

However, evidently the new set of “bad balls” does not contain the bad balls at the previous
scale, since those are the ones that were just re-covered. In particular

C(i+1,b) =
⋃

x∈C(i,b)

⋃
y∈C+,x , ρry>r

C(i+1,b)
y . (6.88)

The k-dimensional content estimate of our covering are obtained by iterating the esti-
mates obtained in the first step. In detail, by arguing as in (6.77) and (6.79), and by choosing
ρ according to (6.78), we obtain∑

z∈C(i+1,b)

rk
z ≤

∑
x∈C(i,b)

1
2

rk
x = 2−1−i . (6.89)

As for final and r-balls, arguing as in (6.81) we can estimate the contribution given by the
new r and final balls by ∑

z∈Ĉ(i+1,r)∪Ĉ(i+1, f )

rk
z ≤

(
1
2

CF(m)
) ∑

z∈C(i,b)

rk
z = 2−i−1CF(m) . (6.90)

This yields the desired result (6.70), and in turn concludes the proof of the lemma.
It is worth noticing that at the i-th step of the induction, the radius of the biggest ball in

the covering is smaller than ρi. Thus eventually ρi ≤ r and this induction will stop in a finite
number of steps.



40 Aaron Naber, Daniele Valtorta

6.2.9 Keeping track of the constants

For the reader’s convenience we record here how all the constants involved in the previous
two lemmas were chosen.

First of all, note that ε > 0 is arbitrary, as well as r > 0. However, it is of course
important that all the constants here are independent of r.

CR(m) is the constant coming from the Reifenberg theorem 40, and it depends only on
m. CV (m) is fixed in (6.46), and it is just a dimensional constant c(m) (coming from a rough
cover of B1 (0) by balls of radius 1/8) times CR(m). Thus CV (m) clearly depends only on m.
Cc(m) is fixed in (6.75), and is just another covering constant whose value depends only on
m.

The parameter ρ, which was a free parameter in the first covering, is fixed once and
for all in (6.78) as a constant depending only on m. For convenience, we can also pick a
ρ satisfying (6.25). Once this choice has been fixed, also the constant CF(m) introduced in
(6.80) depends only on m.

The parameter η > 0 is chosen according to (6.38), (6.55) and (6.63), as explained in
(6.64). At last, with this positive value of η fixed, we choose δ in such a way that (6.32),
(6.35) and (6.38) are all satisfied.

6.3 Proof of the main theorems

Before proving our main theorems, we provide an argument that justifies the assumption
F < δ which is present in all of our technical lemmas and covering arguments. The idea is
that by condition (f), we can focus on small enough scales r on which the value of F has
“decayed” by a factor rγ.

6.3.1 First covering by balls of small radius

In all the estimates we need, an important assumption is that the constant F in (f) is suffi-
ciently small, in other words our estimates apply if u is an approximate harmonic map and
the error f is small enough. This assumption is not too restrictive because (f) is better than
scale invariant in nature. Indeed, if we restrict ourselves to small enough scales r ≤ r0, the
rescaled maps T u

x,r : B3 (0) → N are approximate harmonic maps solving (2.31) and (2.32)
with (2.33), and the error function f̃ satisfies

s4−m
∫

By(s)

∣∣∣ f̃ ∣∣∣2 ≤ (Frγ0)sγ (6.91)

for all y ∈ B1 (0) and s ≤ 1. Thus, if we choose r0(m,F, γ, δ) in such a way that Frγ0 ≤ δ, we
can guarantee the smallness hypothesis F < δ on all smaller scales.

We can cover the original ball B1 (0) with balls Br0/2 (xi) such that Br0/4 (xi) are disjoint,
and then start over on each of this smaller balls. Evidently, we have∑

i

rk
0 ≤ C(m)rk−m

0 ≤ C0(m,F, γ, δ) . (6.92)
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Since we will pick the parameter δ from the covering Lemma 55, where we have δ =

δ(m,N, Λ, γ, ε), and since we are only doing this rough covering once on the first big ball,
the final estimates of Theorem 20 are not modified by this. Also the statements about the
rectifiability (which is stable under countable unions, let alone finite unions) is not effected
by this covering.

Now we are in a position to prove our main theorems. We start with the volume estimates
of Theorem 20.

6.3.2 Proof of Theorem 20

This proof is basically a corollary of the covering Lemma 55.
By the argument in Section 6.3.1, we can assume that F < δ throughout this proof.

Moreover, in a similar spirit, instead of the estimates of (3.1), we will prove the slightly less
powerful estimate

Vol
(
Br

(
Sk
ε,δr(u)

)
∩ B1 (0)

)
≤ C′εr

n−k , (6.93)

the difference being the δr in Sk
ε,δr. As above, since δ = δ(m,N, Λ, γ, ε), this does not affect

the final estimate in (3.1), if not by enlarging the constant C′ε to Cε .
Consider the set S = Sk

ε,δr(u) ∩ B1 (0). Note that by the monotonicity of θ̂ and the esti-
mates in Lemma 12, we have the uniform bounds

∀x ∈ B1 (0) , ∀r ∈ [0, 1] , θ̂(x, r) ≤ Λ′ = c(m)Λ + c(m, γ)F . (6.94)

Let E = supx∈S θ̂(x, 1) ≤ Λ′.

6.3.3 Induction on energy upper bounds

Using the covering Lemma 55, we will prove by induction on i = 0, 1, · · · , bδ−1Ec + 1 that
there exist coverings of S by balls

{
Brx (x)

}
x∈Ci such that

S ⊆
⋃
c∈Ci

Brx (x) ,
∑
x∈Ci

rk
x ≤ (c(m)CF(m))i . (6.95)

Moreover, for all i we have

rx ≤ r or ∀y ∈ S ∩ B2rx (x) , θ̂(y, rx) ≤ E − iδ . (6.96)

It is clear that if we pick i = bδ−1Ec+ 1, then the second condition cannot be true anywhere,
which means that the first condition must be true, which will complete the construction of
the covering.

Now it is clear that the estimate (6.93) is true with

C′ε(m,N, Λ,F, γ, ε) = 2k(c(m)CF(m))bδ
−1Ec+1 . (6.97)

So the only thing left to do is to prove the properties of this inductive covering in (6.95).
Note that this covering is trivial for i = 0, since S ⊆ B1 (0) does the trick at this stage.



42 Aaron Naber, Daniele Valtorta

By induction, suppose that (6.95) and (6.96) are true for i. Pick any x ∈ Ci, and consider
Brx (x). By the covering lemma 55 (or better, by an rx-rescaled version of this lemma), there
exists a covering Ĉx of S ∩ Brx (x) such that

S ∩ Brx (x) ⊆
⋃
y∈Ĉx

Bry (y) , ry ≤ ρrx ≤ ρ
i ,

∑
y∈Ĉx

rk
y ≤ CF(m)rk

x . (6.98)

Moreover, for all y ∈ Ĉx, we have

either ry = r or ∀z ∈ S ∩ B2ry (y) , θ̂(z, ρry/10) ≤ E − iδ − δ = E − (i + 1)δ . (6.99)

By covering each Bry (y) again by a minimal set of balls of radius ρ(m)ry ≤ ry/10, we obtain
a covering Cx such that

S ∩ Brx (x) ⊆
⋃
y∈Cx

Bry (y) , ry ≤ ρrx ≤ ρ
i ,

∑
y∈Cx

rk
y ≤ c(m)CF(m)rk

x . (6.100)

Moreover, for all y ∈ Cx, we have

either ry ≤ r or ∀z ∈ S ∩ B2ry (y) , θ̂(z, ρry) ≤ E − iδ − δ = E − (i + 1)δ . (6.101)

By summing all the contributions coming from balls
{
Brx (x)

}
x∈Ci , we obtain

Ci+1 =
⋃
x∈Ci

Cx ,
∑

y∈Ci+1

rk
y =

∑
x∈Ci

∑
y∈Cx

rk
y

 ≤ (c(m)CF(m))i+1 , (6.102)

as desired.

6.3.4 Proof of Theorem 21 and rectifiability of Sk
ε

By countable additivity, the rectifiability of Sk(u) is a corollary of the rectifiability of Sk
ε (u)

for all ε > 0.
By the volume estimates in (3.1), we have λk

(
Sk
ε ∩ B1 (0)

)
≤ Cε . By applying the same

estimates on any ball Br (x) with x ∈ B1 (0) and r ≤ 1, we obtain that

λk
(
Sk
ε ∩ Br (x)

)
≤ Cεrk , (6.103)

in other words, Sk
ε is upper-Ahlfors regular.

We will prove that for all measurable subsets S ⊆ Sk
ε∩B1 (0), there exists a k-measurable

subset E ⊂ S with λk(E) ≤ 7−1λk(S) such that S \ E is k-rectifiable. Since S is an arbitrary
measurable subset, this is enough to prove rectifiability by a standard density argument.

Consider any S ⊆ Sk
ε ∩ B1 (0). We can assume wlog that λk(S) > 0, otherwise there is

nothing to prove. Consider the function f (x, r) = θ̂(x, r) − θ̂(x, 0) on B1 (0). This function is
monotone nondecreasing in r, uniformly bounded for all x ∈ B1 (0) and r ≤ 1, and pointwise
converging to 0 as r → 0.

Thus, by dominated convergence, for all δ > 0, there exists a radius r̄ > 0 such that?
S

f (x, 10r̄)dλk(x) ≤ δ2 . (6.104)
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Let E ⊂ S be a measurable subset with λk(E) ≤ δλk(S) and such that f (x, 10r̄) ≤ δ for all
x ∈ F ≡ S \ E.

Now cover F by a finite number of balls Br̄ (xi) centered on F. We want to show that, if
δ is chosen small enough, then on each of these balls we can apply Theorem 42 to F∩Br̄ (xi)
for all i, and thus proving that F is k-rectifiable as desired.

Reifenberg estimates The estimates here are basically equivalent to the estimates carried
out in Section 6.2.4. Actually, since we already know that (6.103) holds, we do not even
need the upper induction part of that argument. For this reason, we will only sketch the main
passages in the estimates.

Fix any i, and consider the set F ∩ Br̄ (xi). For convenience, we rescale the ball Br̄ (xi) to
B1 (0). With an abuse of notation, we will keep denoting by u, θ̂, Sk

ε and F also the rescaled
objects.

By definition of F ⊂ Sk
ε , we have that θ̂(x, 10) − θ̂(x, 0) ≤ δ for all x ∈ F. By an estimate

analogous to (6.53), we have for all x ∈ F and s ≤ 1

β2,λk |F (x, s)2 ≤ C1s−k
∫

Bs(x)
Ws(y) dλk |F(y) (6.105)

By integrating, and by (6.103), we obtain for all x ∈ B1 (0) and s ≤ r ≤ 1:∫
Br(x)

β2,λk |F (z, s)2 dλk |F(z) ≤ C1s−k
∫

Br(y)

[∫
Bs(z)

Ws(t) dλk |F(t)
]

dλk |F(z) ≤ C1Cε

∫
Br+s(y)

Ws(z)dλk |F(z) .

(6.106)

Integrating again in s, we finally get for all x ∈ B1 (0) and r ≤ 1:∫
Br(x)

[∫ s

0
β2,λk |F (z, s)2 ds

s

]
dλk |F(z) ≤ C1Cε

∫
B2r(x)

[θ̂(x, 8r) − θ̂(x, 0)]dλk |F(z) ≤ c(m)C1C2
ε δr

k .

(6.107)

By choosing

δ ≤
δ2

R

c(m)C1C2
ε

, (6.108)

we can apply Theorem 42 to the set F ∩ B1 (0), thus proving that it is k-rectifiable. This
concludes the proof.
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