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Abstract
We introduce the centred and the uncentred triangular
maximal operators  and , respectively, on any locally
finite tree in which each vertex has at least three neigh-
bours. We prove that both  and  are bounded on 𝐿𝑝

for every 𝑝 in (1,∞], that  is also bounded on 𝐿1(𝔗),
and that  is not of weak type (1, 1) on homogeneous
trees. Our proof of the 𝐿𝑝 boundedness of  hinges on
the geometric approach of Córdoba and Fefferman. We
also establish 𝐿𝑝 bounds for some relatedmaximal oper-
ators. Our results are in sharp contrast with the fact that
the centred and the uncentred Hardy–Littlewood max-
imal operators (on balls) may be unbounded on 𝐿𝑝 for
every 𝑝 < ∞ even on some trees where the number of
neighbours is uniformly bounded.

MSC 2020
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1 INTRODUCTION

The centred and the uncentred Hardy–Littlewood maximal operators on a metric measure space
(𝑋, 𝑑, 𝜇) are defined by

𝑓(𝑥) ∶= sup
𝑟>0

1

𝜇(𝐵𝑟(𝑥)) ∫𝐵𝑟(𝑥)|𝑓| d𝜇 and 𝑓(𝑥) ∶= sup
𝐵∋𝑥

1

𝜇(𝐵) ∫𝐵 |𝑓| d𝜇, (1.1)

© 2024 The Authors. Mathematika is copyright © University College London and published by the London Mathematical Soci-
ety on behalf of University College London. This is an open access article under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the
use is non-commercial and no modifications or adaptations are made.

Mathematika 2024;70:e12253. wileyonlinelibrary.com/journal/mtk 1 of 17
https://doi.org/10.1112/mtk.12253

https://orcid.org/0000-0003-4685-9956
mailto:f.santagati@unsw.edu.au
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/mtk
https://doi.org/10.1112/mtk.12253
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fmtk.12253&domain=pdf&date_stamp=2024-05-15


2 of 17 MEDA and SANTAGATI

respectively; here 𝐵𝑟(𝑥) denotes the ball with centre 𝑥 and radius 𝑟, and 𝐵 is any ball in 𝑋
containing 𝑥.
It is well known that if the measure 𝜇 is doubling, that is, if there exists a constant 𝐷 such that

𝜇(𝐵2𝑟(𝑥)) ⩽ 𝐷 𝜇(𝐵𝑟(𝑥)) (1.2)

for every 𝑥 in 𝑋 and for all 𝑟 > 0, then and are of weak type (1, 1) and bounded on 𝐿𝑝(𝑋)
for every 𝑝 in (1,∞] (see, for instance, [13, Chapter 1]).
If, instead, 𝜇 is nondoubling, viz. the condition (1.2) fails, then a variety of situations can occur.

For instance, on symmetric spaces of the noncompact type Strömberg [14] proved that  is
bounded on 𝐿𝑝 for all 𝑝 > 1 and it is of weak type (1, 1), and Ionescu [4] showed that is bounded
on 𝐿𝑝 if and only if 𝑝 > 2.
These results have been complemented by Li [8] who showed that given 𝑝0 in (1, 2), there is a

nondoubling Riemannianmanifold, which is a generalisation of the hyperbolic space, where is
bounded on 𝐿𝑝 if and only if 𝑝 belongs to the interval (𝑝0,∞]. Furthermore there are Riemannian
manifolds of the same type where is bounded on 𝐿𝑝 if and only if 𝑝 = ∞. Similar results for
are contained in [9]. See also [5] and the references therein for simple examples of nondoubling
metric measure spaces where and have similar boundedness properties on 𝐿𝑝 spaces.
In this paper we focus on trees:𝔗will denote a tree in which every vertex 𝑥 has a finite number

𝜈(𝑥) ⩾ 3 of neighbours. We emphasise that the function 𝜈may be unbounded on𝔗, in which case
we say that the locally finite tree𝔗 has unbounded geometry. We endow𝔗with the natural graph
distance 𝑑 and the set of its vertices with the counting measure 𝜇. For notational convenience, we
write |𝐸| instead of 𝜇(𝐸) for any subset 𝐸 of𝔗.
The metric measure space (𝔗, 𝑑, 𝜇) has exponential volume growth. If 𝜈 is bounded, then 𝜇 is

locally, but not globally, doubling; if 𝜈 is unbounded, then𝔗 is not even locally doubling.
In this context, various authors have considered the problem of establishing 𝐿𝑝 bounds for

and . Note that the definition of is usually modified as follows:

𝑓(𝑥) ∶= sup
𝑟∈ℕ

1|𝐵𝑟(𝑥)| ∫𝐵𝑟(𝑥) |𝑓| d𝜇;
here 𝐵𝑟(𝑥) ∶= {𝑦 ∈ 𝔗 ∶ 𝑑(𝑥, 𝑦) ⩽ 𝑟}. Examples show that the range of 𝑝 s where either or
are bounded on 𝐿𝑝(𝔗)may depend on the bounds of 𝜈.
Here is a brief account of some relevant contributions in the literature concerning the𝐿𝑝 bound-

edness of and . Recall that a tree where 𝜈 is constant is called homogeneous: we denote by𝔗𝑏
the tree for which 𝜈 = 𝑏 + 1 for some 𝑏 ⩾ 2. Naor and Tao [10, Theorem 1.5] and, independently,
Cowling, Meda and Setti [3, Theorem 3.1] proved that is bounded on 𝐿𝑝(𝔗𝑏), 1 < 𝑝 ⩽ ∞, and
of weak type (1, 1) (see also [11]). Veca [15, Theorem 5.1] proved that  is bounded on 𝐿𝑝(𝔗𝑏),
2 < 𝑝 ⩽ ∞, and of restricted weak type (2, 2) (see also the recent work [7] for results concerning
related maximal operators).
Generalisations of these results to trees 𝔗 where 𝜈 is bounded, but not constant, have been

the object of the investigations in [6]. In particular, it is shown that if 3 ⩽ 𝑎 + 1 ⩽ 𝜈 ⩽ 𝑏 + 1 and
𝑏 ⩽ 𝑎2, then the precise form of the Kunze–Stein phenomenon on 𝔗𝑏 (see [2]) implies that is
bounded on 𝐿𝑝(𝔗), 𝜏 < 𝑝 ⩽ ∞, where 𝜏 = log𝑎 𝑏, and it is of restricted weak type (𝜏, 𝜏), and the
result is sharp. If, instead, 𝑏 > 𝑎2, then there are examples of trees in this class for which  is
unbounded on 𝐿𝑝 for every 𝑝 < ∞. Even more strikingly, whenever 𝑏 > 𝑎 there are trees in this
class for which is unbounded on 𝐿𝑝 for every 𝑝 < ∞.
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TRIANGULARMAXIMAL OPERATORS 3 of 17

Extensions of some of these results to graphs are contained in [12].We refer the interested reader
to the introduction of the paper [6] for additional comments on related works in the literature.
The abovementioned results concerning the boundedness of and on trees raise the ques-

tion whether there are natural “geometric” maximal operators on locally finite trees with possibly
unbounded geometry that possess stable 𝐿𝑝 boundedness properties, in the sense that the range
of 𝑝’s for which they are bounded on 𝐿𝑝 do not depend on the specific assumptions on 𝜈, besides
the condition 𝜈 ⩾ 3.
In this paper we answer in the affirmative to this question and propose to investigate the 𝐿𝑝

boundedness of the centred and uncentred maximal operators on triangles.
Their definition requires a bit of notation, which we now introduce. We fix a geodesic ray 𝜔 =

{𝑥𝑚 ∶ 𝑚 ∈ ℕ} in𝔗, and consider the associated height function ℎ𝜔, which is the discrete analogue
of the Busemann function in Riemannian geometry, defined by

ℎ𝜔(𝑥) = lim
𝑚→∞

(𝑚 − 𝑑(𝑥, 𝑥𝑚)).

Note that ℎ𝜔 is integer valued. Its level sets, called horocycles associated to 𝜔, are then defined, for
𝑗 in ℤ, by

ℌ𝜔𝑗 ∶=
{
𝑥 ∈ 𝔗 ∶ ℎ𝜔(𝑥) = 𝑗

}
,

and 𝔗 =
⋃
𝑗∈ℤ ℌ

𝜔
𝑗
(disjoint union). Note that if 𝑥 ∈ ℌ𝜔

𝑗
, then 𝜈(𝑥) − 1 neighbours of 𝑥, called

successors of 𝑥, belong toℌ𝜔
𝑗−1

. We denote by 𝑠1𝜔(𝑥) the set of successors of 𝑥, define 𝑠
0
𝜔(𝑥) ∶= {𝑥},

and

𝑠𝑘𝜔(𝑥) ∶=
⋃

𝑦∈𝑠𝑘−1𝜔 (𝑥)

𝑠1𝜔(𝑦), 𝑘 ⩾ 2.

For every nonnegative integer 𝑅, we call 𝑇𝜔
𝑅
(𝑥) ∶=

⋃𝑅
𝑗=0 𝑠

𝑗
𝜔(𝑥) the triangle with vertex 𝑥 and

height 𝑅. The centred and uncentred triangular maximal operators  𝜔 and  𝜔 are then defined
by

 𝜔𝑓(𝑥) ∶= sup
𝑅⩾0

1|𝑇𝜔
𝑅
(𝑥)| ∫𝑇𝜔

𝑅
(𝑥)

|𝑓| d𝜇 and  𝜔𝑓(𝑥) ∶= sup
𝑇∋𝑥

1||𝑇|| ∫𝑇
||𝑓|| d𝜇,

respectively, where 𝑇 is any triangle in 𝔗. The triangular centred operator may be thought of as
“directional” or “one sided” with respect to the height function ℎ𝜔. Note that 𝑇𝜔𝑅 (𝑥) is the set
of the points in 𝐵𝑅(𝑥) that can be reached by geodesics of length ⩽ 𝑅 starting at 𝑥 that point
“downwards.” Our main result states that if 𝔗 is a locally finite tree with 𝜈 ⩾ 3, then  𝜔 and 𝜔

are bounded on 𝐿𝑝(𝔗) for every 𝑝 in [1,∞] and for every 𝑝 in (1,∞], respectively. Furthermore,
 𝜔 is not of weak type (1, 1) on the homogeneous tree𝔗𝑏, 𝑏 ⩾ 2.
The operators  𝜔 and  𝜔 depend on 𝜔. However, in all our results either the conclusion is

the same for all possible choices of 𝜔 or we consider a specific example of tree where 𝜔 is clearly
specified (see𝔖𝑎,𝑏 in Section 5). Thus, for simplicity, in the sequel we shall omit the superscripts
and write  and instead of  𝜔 and 𝜔.
The proof of the 𝐿𝑝 boundedness of  is not hard, and can be found in Section 3, where we also

study the related centred and noncentred maximal functions  and 𝑢.
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4 of 17 MEDA and SANTAGATI

Our approach to the problem of determining the range of 𝑝 s where  is bounded is much in
the spirit of the work of Córdoba and Fefferman [1]. In Section 4 we show that for every 𝑟 in [1,∞)
there exists a constant 𝐴𝑟 such that for any finite collection  of triangles in 𝔗 that are maximal
with respect to inclusion the following holds:

‖‖‖∑
𝑇∈

𝟏𝑇
‖‖‖𝑟 ⩽ 𝐴𝑟 ‖‖𝟏𝐺‖‖𝑟 , (1.3)

where𝐺 denotes the union of all 𝑇 in . Loosely speaking, this estimate says that the triangles in 
have “finite overlapping in the 𝐿𝑟 norm.” Wemention that Ionescu [4] has used a similar strategy
to obtain bounds for the uncentredHLmaximal operator on symmetric spaces of the noncompact
type and rank ⩾ 2.
In Section 5 we show that (1.3) fails for every 𝑟 in (1,∞) if we replace the family  above with a

family′ ofmodifiedmaximal triangles𝑇′, where𝑇′ is the union of a triangle𝑇 of height ℎ and the
ℎth ancestor of the vertex of 𝑇. This implies that the uncentred HLmaximal operator associated to
the family of all modified triangles is unbounded on 𝐿𝑝(𝔗) for every 𝑝 < ∞. The reason for which
(1.3) fails lies in the fact that a point 𝑥 can be the ℎth ancestor of the vertices of a lot of mutually
disjoint triangles of height ℎ, which makes the left-hand side, but not the right-hand side, of (1.3)
big. See the observation after Remark 5.4 for the details.

2 PRELIMINARIES

Let𝔗 be a locally finite tree, that is, a connected graph with no loops, in which every vertex 𝑥 has
a finite number 𝜈(𝑥) ⩾ 3 of neighbours; we call 𝜈(𝑥) the valence of 𝑥.
Between any two points 𝑥 and 𝑦 in 𝔗, such that 𝑑(𝑥, 𝑦) = 𝑛, there is a unique geodesic path

of the form 𝑥0, 𝑥1, … , 𝑥𝑛, where 𝑥0 = 𝑥, 𝑥𝑛 = 𝑦, and 𝑑(𝑥𝑖, 𝑥𝑗) = |𝑖 − 𝑗| whenever 0 ⩽ 𝑖, 𝑗 ⩽ 𝑛. A
geodesic ray 𝛾 in𝔗 is a one-sided sequence {𝛾𝑛 ∶ 𝑛 ∈ ℕ} of points of𝔗 such that 𝑑(𝛾𝑖, 𝛾𝑗) = |𝑖 − 𝑗|
for all nonnegative integers 𝑖 and 𝑗. We say that 𝑥 lies on 𝛾, and write 𝑥 ∈ 𝛾, if 𝑥 = 𝛾𝑛 for some
𝑛 in ℕ. Given a point 𝑦, denote by 𝑦 ∧ 𝜔 the point on 𝜔 closest to 𝑦 (𝜔 is as in the Introduction).
Suppose that 𝑦 ∧ 𝜔 = 𝑥𝑘, and denote by 𝛾𝑦 the geodesic ray [𝑦, 𝑥𝑘] ∪ [𝑥𝑘, 𝑥𝑘+1, …]. Given another
point 𝑥 in 𝔗, we say that 𝑥 lies above 𝑦, and write 𝑥 ⪰ 𝑦, if 𝑥 ∈ 𝛾𝑦 . If 𝑥 ⪰ 𝑦 and 𝑥 ≠ 𝑦, then we
write 𝑥 ≻ 𝑦.
Given a tree 𝔗, we implicitly assume that we have chosen a geodesic ray 𝜔 in 𝔗. Many objects

on 𝔗 depend on 𝜔. However, in order to simplify the notation, we do not stress this dependence,
and write ℎ, 𝑇𝑅(𝑥), 𝑠𝑘(𝑥),  and in place of ℎ𝜔, 𝑇𝜔𝑅 (𝑥), 𝑠

𝑘
𝜔(𝑥),  𝜔 and 𝜔.

We agree that the triangle with vertex 𝑥 and height 0 is just the point 𝑥. If 𝑇 is any triangle,
then we denote by 𝑣(𝑇), ℎ(𝑇) and 𝛽(𝑇) its vertex, its height and its base, respectively. Note that
𝛽(𝑇) = 𝑠ℎ(𝑇) (𝑣(𝑇)).
Let 𝑥 be a vertex in 𝔗. We denote by 𝑝(𝑥) the predecessor of 𝑥, viz. the unique neighbour of 𝑥

with height ℎ(𝑥) + 1. Note that 𝑝(𝑥) depends on the choice of 𝜔: in order to simplify the notation,
we do not stress this dependence. Note that𝑝 (𝑝(𝑥)), also denoted𝑝2(𝑥), is just a vertex inℌℎ(𝑥)+2.
The 𝑘th ancestor of 𝑥 is the point 𝑝𝑘(𝑥) ∶= 𝑝

(
𝑝𝑘−1(𝑥)

)
. For any subset 𝐸 of𝔗 and every positive

integer 𝑘, 𝑝𝑘(𝐸) will be short for
⋃
𝑦∈𝐸 𝑝

𝑘(𝑦).
The next lemma contains an elementary inequality relating the area of any triangle in 𝔗 and

the length of its base. Such inequality can also be deduced fromCheeger’s isoperimetric inequality
on trees, for which we refer the reader to [11, Lemma 13; 16, Theorem 4.2.2].
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TRIANGULARMAXIMAL OPERATORS 5 of 17

Lemma 2.1. Suppose that𝔗 is a locally finite tree with 𝜈 ⩾ 3, and let𝑇 be a triangle in𝔗with height
ℎ. The following hold:

(i) 2𝑘 ||𝑝𝑘 (𝛽(𝑇))|| ⩽ |𝛽(𝑇)| for every 𝑘 in {0, … , ℎ};
(ii) |𝑇| ⩽ 2 ||𝛽(𝑇)||.
Proof. Since every point in 𝑝𝑘 (𝛽(𝑇)) has at least two successors,

||𝑝𝑘−1(𝛽(𝑇))|| ⩾ 2 ||𝑝𝑘(𝛽(𝑇))||.
Then (i) follows by iterating this estimate.
Next,

|𝑇| = ℎ(𝑇)∑
𝑘=0

||𝑝𝑘(𝛽(𝑇))|| ⩽
ℎ(𝑇)∑
𝑘=0

2−𝑘 ||𝛽(𝑇)|| ⩽ 2 ||𝛽(𝑇)||,
and (ii) follows. □

3 THE CENTRED TRIANGULARMAXIMAL OPERATOR

In this section we study the centred triangular maximal operator  defined in the Introduction,
and some related maximal operators.

Theorem3.1 (Centred triangularmaximal function). Suppose that𝔗 is a tree such that 𝜈 ⩾ 3. Then
 is bounded on 𝐿𝑝(𝔗) for every 𝑝 in [1,∞].

Proof. Define the function 𝜏 ∶ 𝔗 × 𝔗 → [0,∞) by

𝜏(𝑥, 𝑦) ∶=
1||𝑇𝑑(𝑥,𝑦)(𝑥)|| 𝟏𝐸(𝑥, 𝑦),

where 𝐸 ∶=
{
(𝑥, 𝑦) ∈ 𝔗 × 𝔗 ∶ 𝑥 ⪰ 𝑦

}
. Observe that

 𝑓(𝑥) ⩽ ∫𝔗 sup𝑅∈ℕ

𝟏𝑇𝑅(𝑥)||𝑇𝑅(𝑥)|| |𝑓| d𝜇 ⩽ ∫𝔗 𝜏(𝑥, ⋅) |𝑓| d𝜇.
Therefore,

‖‖ 𝑓‖‖1 ⩽ ∫𝔗 d𝜇(𝑥)∫𝔗 𝜏(𝑥, 𝑦)
||𝑓(𝑦)|| d𝜇(𝑦) ⩽ 𝐴‖‖𝑓‖‖1 ,

where 𝐴 ∶= sup𝑦∈𝔗 ∫𝔗 𝜏(𝑥, 𝑦) d𝜇(𝑥). Now, given 𝑦 in 𝔗, the points 𝑥 for which 𝜏(𝑥, 𝑦) ≠ 0 are
just the points on the geodesic [𝑦, 𝜔), that is, the points 𝑦, 𝑝(𝑦), 𝑝2(𝑦), … Thus

𝐴 = sup
𝑦∈𝔗

∞∑
𝑘=0

1||𝑇𝑘(𝑝𝑘(𝑦))|| ⩽
∞∑
𝑘=0

2−𝑘 = 2.
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6 of 17 MEDA and SANTAGATI

This proves that |||||| ||||||1;1 ⩽ 2. Since  is obviously bounded on 𝐿∞(𝔗), the Marcinkiewicz
interpolation theorem implies that  is bounded on 𝐿𝑝(𝔗) for every 𝑝 in [1,∞]. □

An examination of the proof above shows that the assumption 𝜈 ⩾ 3 can be substantially
relaxed. In fact, it suffices to assume that 𝜈 ⩾ 2, and that sup𝑦∈𝔗

∑∞
𝑘=0

1||𝑇𝑘(𝑝𝑘(𝑦))|| is finite.
For each function 𝑓 on𝔗, define the centred and the uncentredmaximal functions𝑓 and𝑢𝑓

by

𝑓(𝑥) ∶= sup
𝑟∈ℕ

1|𝑠𝑟(𝑥)| ∫𝑠𝑟(𝑥)|𝑓| d𝜇 and 𝑢𝑓(𝑥) ∶= sup
𝑇∋𝑥

1||𝛽(𝑇)|| ∫𝛽(𝑇)
||𝑓|| d𝜇.

Clearly 𝑓 ⩽ 𝑢𝑓. By Lemma 2.1(ii), applied to 𝑇𝑟(𝑥), 𝑟 ⩾ 0,

𝑓(𝑥) ⩽ sup
𝑇∶𝑣(𝑇)=𝑥

2|𝑇| ∫𝑇 |𝑓| d𝜇 ⩽ 2 𝑓(𝑥). (3.1)

The boundedness properties of  and 𝑢 are grouped together in the next result.
Theorem 3.2. The following hold:

(i) if 𝔗 is a tree with 𝜈 ⩾ 3, then  is bounded on 𝐿𝑝(𝔗) for every 𝑝 in [1,∞], and 𝑢 is bounded
on 𝐿𝑝(𝔗) for every 𝑝 in (1,∞], and satisfies the weak type estimate

||{𝑥 ∈ 𝔗 ∶ 𝑢𝑓(𝑥) > 𝛼}|| ⩽ 2

𝛼
‖‖𝑓‖‖1 ∀𝛼 > 0;

(ii) for every 𝑏 ⩾ 2, the operator 𝑢 is unbounded on 𝐿1(𝔗𝑏).
Proof. Suppose that 𝛼 > 0, and consider, for every 𝑓 in 𝐿1(𝔗), the level set

𝐸𝑢𝑓(𝛼) ∶=
{
𝑥 ∈ 𝔗 ∶ 𝑢𝑓(𝑥) > 𝛼}.

For notational simplicity, for the duration of this proof we write 𝐸(𝛼) in place of 𝐸𝑢𝑓(𝛼).
First we prove (i). The statement concerning  follows from Theorem 3.1 and the pointwise

bound (3.1).
Next we consider 𝑢. If 𝑧 ∈ 𝐸(𝛼), then there exists a triangle 𝑇𝑧, containing 𝑧, such that

1||𝛽(𝑇𝑧)|| ∫𝛽(𝑇𝑧)
||𝑓|| d𝜇 > 𝛼. (3.2)

Now, if 𝑤 and 𝑧 belong to 𝐸(𝛼) and 𝛽(𝑇𝑤) ∩ 𝛽(𝑇𝑧) ≠ ∅, then either 𝛽(𝑇𝑤) ⊆ 𝛽(𝑇𝑧) or 𝛽(𝑇𝑤) ⊇
𝛽(𝑇𝑧). Indeed, 𝛽(𝑇𝑤) and 𝛽(𝑇𝑧) are both subsets of the same horocycle, and if 𝑦 belongs to their
intersection, then both 𝑣(𝑇𝑤) and 𝑣(𝑇𝑧) (the vertices of 𝑇𝑤 and 𝑇𝑧, respectively) must belong to
the infinite geodesic [𝑦, 𝜔). Thus, either 𝑣(𝑇𝑧) ⪰ 𝑣(𝑇𝑤) or 𝑣(𝑇𝑤) ⪰ 𝑣(𝑇𝑧).
In the first case 𝑇𝑧 ⊇ 𝑇𝑤, hence 𝛽(𝑇𝑧) ⊇ 𝛽(𝑇𝑤), and in the second 𝑇𝑧 ⊆ 𝑇𝑤, hence 𝛽(𝑇𝑧) ⊆

𝛽(𝑇𝑤).
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TRIANGULARMAXIMAL OPERATORS 7 of 17

Clearly 𝐸(𝛼) is a union of triangles because if 𝐸(𝛼) contains 𝑥, then it contains 𝑇𝑥, where 𝑇𝑥 is
such that 1||𝛽(𝑇𝑥)|| ∫𝛽(𝑇𝑥)||𝑓|| d𝜇 > 𝛼. Their size is uniformly bounded, for if 𝑇 is one such triangle,
then Lemma 2.1(ii) and (3.2) imply that

|𝑇| ⩽ 2 |𝛽(𝑇)| < 2

𝛼 ∫𝛽(𝑇)
||𝑓|| d𝜇 ⩽ 2 ‖𝑓‖1𝛼 . (3.3)

Thus, 𝐸(𝛼) is the union of a finite number of triangles 𝑇1, … , 𝑇𝑁 , where, of course,𝑁 depends on
𝛼. In view of the observation above, we may assume that 𝛽(𝑇1), … , 𝛽(𝑇𝑁) are mutually disjoint.
Then

||𝐸(𝛼)|| =
𝑁∑
𝑗=0

||𝐸(𝛼) ∩ 𝑇𝑗|| ⩽
𝑁∑
𝑗=0

||𝑇𝑗||.
These estimates, (3.3) and the disjointness of 𝛽(𝑇1), … , 𝛽(𝑇𝑁), imply that

||𝐸(𝛼)|| < 2

𝛼

𝑁∑
𝑗=0

∫𝛽(𝑇𝑗)
||𝑓|| d𝜇 ⩽ 2

𝛼
‖‖𝑓‖‖1 ∀𝛼 > 0,

as required to prove that 𝑢 is of weak type (1, 1).
Clearly 𝑢 is bounded on 𝐿∞(𝔗). Then the Marcinkiewicz interpolation theorem implies that

𝑢 is bounded on 𝐿𝑝(𝔗) for all 𝑝 in (1,∞), as required.
Next we prove (ii). Consider a point 𝑜 in ℌ0, and the function 𝛿𝑜, which is equal to 1 at 𝑜 and

vanishes elsewhere. For 𝑥 in 𝔗, denote by |𝑥| the distance between 𝑜 and 𝑥. If 𝑥 ∈ ℌ0, then the
smallest triangle that contains both 𝑥 and 𝑜 is 𝑇|ℎ(𝑜∧𝑥)|(𝑜 ∧ 𝑥), where 𝑜 ∧ 𝑥 denotes the confluent
of 𝑜 and 𝑥, viz. the point of least height that is a predecessor of both 𝑜 and 𝑥. Note that 2 ℎ(𝑜 ∧ 𝑥) =|𝑥|. Thus,

𝑢𝛿𝑜(𝑥) = 1

𝛽
(
𝑇|ℎ(𝑜∧𝑥)|(𝑜 ∧ 𝑥)) = 𝑏−|𝑥|∕2.

Observe that the number of points in ℌ0 at distance 𝑘 from 𝑜 is equal to 1 if 𝑘 = 0, and to (𝑏 −
1) 𝑏𝑘∕2−1 if 𝑘 is even. Therefore,

∫ℌ0 
𝑢𝛿𝑜 d𝜇 = ∫ℌ0 𝑏

−|𝑥|∕2 d𝜇(𝑥) = 1 + 𝑏 − 1
𝑏

∑
𝑘⩾2,𝑘even

𝑏−𝑘∕2 𝑏𝑘∕2 = ∞.

This proves (ii), and concludes the proof of the theorem. □

4 THE UNCENTRED TRIANGULARMAXIMAL OPERATOR

Suppose that  is a family of triangles in𝔗. A triangle 𝑇 in  ismaximal in  if 𝑇′ ∈  and 𝑇 ≠ 𝑇′
imply that 𝑇′ ∩ 𝑇 ≠ 𝑇. In other words, 𝑇 is maximal in  with respect to the partial ordering
induced by ⊆.
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8 of 17 MEDA and SANTAGATI

Our proof of the 𝐿𝑝 boundedness of  for 1 < 𝑝 < ∞ is based on the following “geometric”
lemma.

Lemma 4.1. Suppose that  is a finite collection of maximal triangles in a locally finite tree𝔗, with
𝜈 ⩾ 3, and set 𝐺 ∶=

⋃
𝑇∈ 𝑇. Then for every 𝑟 in [1,∞)

‖‖‖∑
𝑇∈

𝟏𝑇
‖‖‖𝑟 ⩽ 𝐴𝑟 ‖‖𝟏𝐺‖‖𝑟 , (4.1)

where 𝐴𝑟𝑟 ∶= 4
∑∞
𝑘=1 𝑘

𝑟 2−𝑘 .

Proof. Define the overlapping number Ω of the family  by
Ω(𝑥) ∶= ♯ {𝑇 ∈  ∶ 𝑇 ∋ 𝑥} ∀𝑥 ∈ 𝔗.

For 𝑥 in 𝐺, denote by 𝑇1, … , 𝑇Ω(𝑥) the (distinct) triangles in  that contain 𝑥, and by 𝑣1, … , 𝑣Ω(𝑥)
their vertices. By possibly relabelling the triangles, we can assume that the height of the vertices
is a nonincreasing sequence, that is, ℎ(𝑣𝑗) ⩾ ℎ(𝑣𝑗+1), 𝑗 = 1,… ,Ω(𝑥) − 1. In fact, this sequence
is strictly decreasing. Indeed, if ℎ(𝑣𝑗) = ℎ(𝑣𝑗+1) for some 𝑗, then either 𝑇𝑗 ⊆ 𝑇𝑗+1 or 𝑇𝑗+1 ⊆ 𝑇𝑗 ,
which would contradict the maximality of either 𝑇𝑗 or 𝑇𝑗+1. Thus, 𝑣1 ≻⋯ ≻ 𝑣Ω(𝑥).
A similar argument shows that 𝑏1 > … > 𝑏Ω(𝑥), where 𝑏𝑗 denotes the height (with respect to

the point at infinity 𝜔) of the points in 𝛽(𝑇𝑗). Hence 𝑇1, … , 𝑇Ω(𝑥) form a chain of triangles such
that

ℎ(𝑣1) > … > ℎ(𝑣Ω(𝑥)) ⩾ ℎ(𝑥) ⩾ 𝑏1 > … > 𝑏Ω(𝑥).

Amoment’s reflection then shows that 𝑑
(
𝑥, 𝛽(𝑇Ω(𝑥))

)
⩾ Ω(𝑥) − 1, and that ℎ(𝑇𝑗) ⩾ Ω(𝑥) − 1, 𝑗 =

1,… ,Ω(𝑥).
For every positive integer 𝑘 setΩ𝑘 ∶=

{
𝑥 ∈ 𝐺 ∶ Ω(𝑥) = 𝑘

}
. If 𝑥 ∈ Ω𝑘, then 𝑥 belongs to exactly

𝑘 triangles in 𝐺. By the considerations above, the height of such triangles is ⩾ 𝑘 − 1, and there
exists at least one of them, 𝑇𝑥 say, such that 𝑑 (𝑥, 𝛽(𝑇𝑥)) ⩾ 𝑘 − 1. In other words, 𝑥 belongs to

ℎ(𝑇𝑥)⋃
𝑚⩾𝑘−1

𝑝𝑚(𝛽(𝑇𝑥)).

Now, we let 𝑥 vary in Ω𝑘, and obtain

Ω𝑘 ⊆
⋃

𝑇∈∶ℎ(𝑇)⩾𝑘−1

ℎ(𝑇)⋃
𝑚⩾𝑘−1

𝑝𝑚(𝛽(𝑇)).

Note that Lemma 2.1 yields

|||
ℎ(𝑇)⋃
𝑚⩾𝑘−1

𝑝𝑚(𝛽(𝑇))
||| ⩽

ℎ(𝑇)∑
𝑚=𝑘−1

2−𝑚 ||𝛽(𝑇)|| ⩽ 22−𝑘 ||𝛽(𝑇)||.
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TRIANGULARMAXIMAL OPERATORS 9 of 17

Hence

||Ω𝑘|| ⩽ 22−𝑘 ∑
𝑇∈

||𝛽(𝑇)||.
Since the triangles in  are maximal, their bases are disjoint. Therefore,

∑
𝑇∈

||𝛽(𝑇)|| = |||⋃
𝑇∈

𝛽(𝑇)
||| ⩽ |𝐺|.

Thus,

||Ω𝑘|| ⩽ 22−𝑘 |𝐺|. (4.2)

Consequently,

∫𝐺 Ω(𝑥)
𝑟 d𝜇(𝑥) =

∞∑
𝑘=1

𝑘𝑟 ||Ω𝑘|| ⩽ 4
∞∑
𝑘=1

𝑘𝑟 2−𝑘 |𝐺|
which is equivalent to the required estimate. □

For notational convenience, for every 𝛼 > 0 we shall denote the level set 𝐸 𝑓(𝛼) also by 𝐸(𝛼).

Remark 4.2. Observe that if 𝑥 ∈ 𝐸(𝛼), then there exists a triangle 𝑇 containing 𝑥 such that

1||𝑇|| ∫𝑇
||𝑓|| d𝜇 > 𝛼. (4.3)

Then𝑇 ⊆ 𝐸(𝛼). This entails that𝐸(𝛼) can bewritten as a union of triangles𝑇 for which (5.1) holds.
Furthermore, if 𝑇 is one of these triangles and if 𝑓 ∈ 𝐿𝑝(𝔗) for some 𝑝 in (1,∞), then (5.1) and
Hölder’s inequality imply that

|𝑇| < ‖‖𝑓‖‖𝑝𝑝
𝛼𝑝

. (4.4)

Now,

|𝑇| = ℎ(𝑇)∑
𝑗=0

||𝑠𝑗(𝑣(𝑇))|| ⩾
ℎ(𝑇)∑
𝑗=0

2𝑗 ⩾ 2ℎ(𝑇);

the first inequality above follows from the assumption 𝜈 ⩾ 3. Therefore,

ℎ(𝑇) ⩽ log2 |𝑇| ⩽ log2 ‖𝑓‖
𝑝
𝑝

𝛼𝑝
. (4.5)

Note that diam(𝑇) = 2ℎ(𝑇) for every triangle 𝑇; thus, if it has nonempty intersection with 𝐵𝑅(𝑜),
then 𝑇 is contained in the ball 𝐵𝑅+2ℎ(𝑇)(𝑜). If, in addition, 𝑇 satisfies (4.4), then 𝑇 is contained in
the ball with centre 𝑜 and radius 𝑅(𝛼) ∶= 𝑅 + 2 log2

(‖𝑓‖𝑝𝑝∕𝛼𝑝).
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10 of 17 MEDA and SANTAGATI

In particular, if 𝑓 belongs to 𝐿𝑝(𝔗) for some 𝑝 < ∞, then 𝐸(𝛼) can be written as a union of a
finite number of triangles.

Theorem 4.3 (Uncentred triangular maximal function). Suppose that 𝔗 is a tree such that 𝜈 ⩾ 3.
The following hold:

(i) the uncentred triangular maximal operator is bounded on 𝐿𝑝(𝔗) for every 𝑝 in (1,∞];
(ii) if 𝑏 ⩾ 2, then is not of weak type (1, 1) on the homogeneous tree𝔗𝑏.

Proof. First we prove (i). We shall show that for every 𝑝 in (1,∞)

||{𝑥 ∈ 𝔗 ∶  𝑓(𝑥) > 𝛼}|| ⩽ 𝐴𝑝𝑝′ ‖𝑓‖
𝑝
𝑝

𝛼𝑝
∀𝛼 > 0 ∀𝑓 ∈ 𝐿𝑝(𝔗), (4.6)

where𝐴𝑝′ =
∑∞
𝑘=1 𝑘

𝑝′ 2−𝑘. The required result then follows from theMarcinkiewicz interpolation
theorem by interpolating (4.6) with the trivial 𝐿∞ bound.
Preliminarily observe that if 𝛼 ⩾ ‖𝑓‖𝑝 and ∅ ≠ 𝑇 ⊆ 𝐸(𝛼), then (4.4) implies |𝑇| = 0, which is

absurd. Therefore, 𝐸(𝛼) is empty for all 𝛼 ⩾ ‖𝑓‖𝑝.
Thus, we assume henceforth that 𝛼 < ‖𝑓‖𝑝. By Remark 4.2, 𝐸(𝛼) can be written as a union

of a finite number of triangles. Denote by (𝛼) the collection of all triangles 𝑇 that are maxi-
mal in 𝐸(𝛼), that is, that are not properly contained in any larger triangle in 𝐸(𝛼); thus, 𝐸(𝛼) =⋃
𝑇∈(𝛼) 𝑇.
We prove (4.6). Much as in the proof of [1, Proposition 1], observe that

||𝐸(𝛼)|| ⩽ ∑
𝑇∈(𝛼)

|𝑇| ⩽ 1

𝛼

∑
𝑇∈(𝛼) ∫𝑇

|𝑓| d𝜇 ⩽ 1

𝛼 ∫𝔗 |𝑓| ∑
𝑇∈(𝛼)

𝟏𝑇 d𝜇.

Now Hölder’s inequality and (4.1) (with 𝑝′ in place of 𝑟) and Lemma 4.1 (with (𝛼) in place of 
and 𝐸(𝛼) in place of 𝐺) yield

||𝐸(𝛼)|| ⩽ ‖𝑓‖𝑝
𝛼

‖‖‖ ∑
𝑇∈(𝛼)

𝟏𝑇
‖‖‖𝑝′ ⩽ 𝐴𝑝′ ‖𝑓‖𝑝𝛼 ‖‖𝟏𝐸(𝛼)‖‖𝑝′ .

Finally, note that ‖‖𝟏𝐸(𝛼)‖‖𝑝′ = ||𝐸(𝛼)||1∕𝑝′ , so that the last inequality may be rewritten as
||𝐸(𝛼)|| ⩽ 𝐴𝑝𝑝′ 𝛼−𝑝 ‖‖𝑓‖‖𝑝𝑝 ,

as claimed.
Next we prove (ii). Suppose that 𝑇 is a triangle in 𝔗𝑏 with vertex 𝑥 and height ℎ. Note the

following relation between ℎ and the volume of 𝑇:

||𝑇|| =
ℎ∑
𝑗=0

||𝑠𝑗(𝑥)|| = 𝑏ℎ+1 − 1

𝑏 − 1
. (4.7)

Consider the unit point mass 𝛿𝑜 at the point 𝑜. We shall show that 𝛿𝑜 does not belong to weak
𝐿1(𝔗𝑏). Let 𝛼 > 0. Clearly 𝐸𝛿𝑜 (𝛼) can be written as the union of maximal triangles on which the
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TRIANGULARMAXIMAL OPERATORS 11 of 17

average of 𝛿𝑜 exceeds 𝛼. Each such triangle 𝑇 satisfies

1

(𝑏 + 1)𝛼
⩽ |𝑇| < 1

𝛼
. (4.8)

Indeed, the right-hand inequality is a direct consequence of the fact that the average of 𝛿𝑜 on
𝑇 exceeds 𝛼. As to the left inequality, let 𝑥 and ℎ be the vertex and the height of 𝑇, respec-
tively, and consider the triangle 𝑇 with vertex 𝑥 and height ℎ + 1. Since 𝑇 is maximal, 𝑇 is not
contained in 𝐸𝛿𝑜 (𝛼), when 1∕||𝑇|| ⩽ 𝛼. Furthermore, (4.7) implies that ||𝑇|| ⩽ (𝑏 + 1) ||𝑇||. The
left-hand inequality in (4.8) follows by combining these two inequalities.
Denote by ℎ𝛼 the largest integer such that a triangle 𝑇 in 𝔗𝑏 with height ℎ𝛼 satisfies the right-

hand inequality in (4.8). If 𝑇 contains 𝑜, then 𝑇 is a maximal triangle in 𝐸𝛿𝑜 (𝛼) and therefore it
satisfies also the left-hand inequality in (4.8). A simple calculation then shows that 𝑏ℎ𝛼 ⩾ 1∕(3𝑏𝛼).
It is straightforward to see that the triangles with vertices 𝑜, 𝑝(𝑜), … , 𝑝ℎ𝛼 (𝑜) and of height ℎ𝛼

are contained in 𝐸 𝛿𝑜 (𝛼). Thus,

𝐸 𝛿𝑜 (𝛼) ⊃ 𝑇ℎ𝛼 (𝑜) ∪
ℎ𝛼⋃
𝑘=1

(
𝑇ℎ𝛼 (𝑝

𝑘(𝑜)) ⧵ 𝑇ℎ𝛼 (𝑝
𝑘−1(𝑜))

)
.

Note that

||𝑇ℎ𝛼 (𝑝𝑘(𝑜)) ⧵ 𝑇ℎ𝛼 (𝑝𝑘−1(𝑜))|| = 1 + (𝑏 − 1)
ℎ𝛼−1∑
𝑗=0

𝑏𝑗 = 𝑏ℎ𝛼 .

Therefore, if 𝛼 belongs to (0, 1∕(3𝑏)), then

||𝐸 𝛿𝑜 (𝛼)|| ⩾ 𝑏ℎ𝛼+1 − 1𝑏 − 1
+

ℎ𝛼∑
𝑘=1

𝑏ℎ𝛼 ⩾ ℎ𝛼 𝑏
ℎ𝛼 ⩾

1

3𝑏𝛼
log𝑏

1

3𝑏𝛼
. (4.9)

Letting 𝛼 → 0, we see that 𝛿𝑜 does not belong to weak 𝐿1, as required. □

5 FURTHER COMMENTS AND EXOTICMAXIMAL OPERATORS

Theorem 4.3 raises the question of finding an endpoint result for  when 𝑝 = 1. We can prove
the following estimate on the homogeneous tree𝔗𝑏, 𝑏 ⩾ 2.

Theorem 5.1. There exists a constant 𝐶 such that

||𝐸 𝑓(𝛼)|| ⩽ 𝐶 ‖𝑓‖1
𝛼

log𝑏

(
1 +

‖𝑓‖1
𝛼

)
∀𝛼 > 0 ∀𝑓 ∈ 𝐿1(𝔗𝑏).

Proof. For simplicity we write 𝐸(𝛼) instead of 𝐸 𝑓(𝛼) for short.
Much as in the proof of Theorem 4.3(i), observe that if 𝛼 ⩾ ‖‖𝑓‖‖1, then 𝐸(𝛼) is empty, so that we

can assume that 𝛼 < ‖‖𝑓‖‖1.
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12 of 17 MEDA and SANTAGATI

A slight variant of the argument in Remark 4.2 shows that 𝐸(𝛼) can be written as union of a
finite number of triangles 𝑇 such that

1||𝑇|| ∫𝑇
||𝑓|| d𝜇 > 𝛼. (5.1)

Denote by (𝛼) the collection of all triangles 𝑇 that are maximal in 𝐸(𝛼), that is, that are not
properly contained in any larger triangle in 𝐸(𝛼); thus, 𝐸(𝛼) =

⋃
𝑇∈(𝛼) 𝑇. Observe that

||𝐸(𝛼)|| ⩽ ∑
𝑇∈(𝛼)

|𝑇| ⩽ 1

𝛼

∑
𝑇∈(𝛼) ∫𝑇

|𝑓| d𝜇 ⩽ 1

𝛼 ∫𝔗 |𝑓| ∑
𝑇∈(𝛼)

𝟏𝑇 d𝜇. (5.2)

We adopt the notation introduced in the proof of Lemma 4.1, and for each 𝑥 in
⋃
𝑇∈(𝛼) 𝑇 we

denote by Ω(𝑥) the overlapping number at 𝑥 of the family (𝛼). In the proof of Lemma 4.1 it is
shown that Ω(𝑥) ⩽ ℎ(𝑇) + 1 for each triangle 𝑇 in (𝛼) that contains 𝑥. Now,

|𝑇| = ℎ(𝑇)∑
𝑗=0

||𝑠𝑗(𝑣(𝑇))|| =
ℎ(𝑇)∑
𝑗=0

𝑏𝑗 ⩾ 𝑏ℎ(𝑇).

Therefore,

ℎ(𝑇) ⩽ log𝑏 |𝑇| ⩽ log𝑏 ‖𝑓‖1𝛼 . (5.3)

Hence Ω(𝑥) ⩽ 1 + log𝑏
‖𝑓‖1
𝛼
. By combining this and (5.2) we see that

||𝐸(𝛼)|| ⩽ ‖𝑓‖1
𝛼

(
1 + log𝑏

‖𝑓‖1
𝛼

)
∀𝛼 < ‖𝑓‖1.

Since 1 + log𝑏 𝑠 ⩽ 𝐶 log𝑏(1 + 𝑠) for all 𝑠 ⩾ 1 and 𝐶 large enough, we conclude that

||𝐸(𝛼)|| ⩽ 𝐶 ‖𝑓‖1
𝛼

log𝑏

(
1 +

‖𝑓‖1
𝛼

)
∀𝛼 > 0,

as required. □

We believe that this estimate is not very interesting, for it seems not strong enough to imply the
boundedness of on 𝐿𝑝(𝔗𝑏) for 𝑝 > 1.
Observe that an estimate of the form

||𝐸 𝑓(𝛼)|| ⩽ 𝐶 ‖𝑓‖1
𝛼

log𝑏

(
1 +

1

𝛼

)
∀𝛼 > 0 ∀𝑓 ∈ 𝐿1(𝔗𝑏),

which would imply the boundedness of on 𝐿𝑝(𝔗𝑏) for 𝑝 > 1, fails.
Indeed, let 𝑜 be a point in 𝔗𝑏, and consider 𝑛𝛿𝑜, where 𝑛 is a positive integer. Observe that

𝐸 (𝑛𝛿𝑜)(𝛼) = 𝐸 (𝛿𝑜)(𝛼∕𝑛). If the above estimate held, we would have

||𝐸 𝛿𝑜 (𝛼∕𝑛)|| ⩽ 𝐶 𝑛𝛼 log𝑏
(
1 +

1

𝛼

)
.
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TRIANGULARMAXIMAL OPERATORS 13 of 17

By (4.9), the left-hand side is bounded below by 𝑐 (𝑛∕𝛼) log𝑏 (𝑛∕𝛼), at least for 𝛼 small and fixed,
which is clearly incompatible with the upper bound above when 𝑛 tends to infinity.
Recall that a fairly common strategy to prove weak type (1, 1) estimates for the “global part”

of the HL maximal operator on manifolds with exponential volume growth is to majorise the
maximal function with an appropriate integral operator, and prove that the latter is of weak type
(1, 1). See, for instance, [14], where this strategy is shown to be effective in the study of the cen-
tred HL maximal function on symmetric spaces of the noncompact type, and [3] for the case of
homogeneous trees.
We shall prove that a similar approach fails for the uncentred triangular maximal operator 

on the homogeneous tree𝔗𝑏, 𝑏 ⩾ 2. Consider the kernel

𝜅(𝑥, 𝑦) ∶= sup
𝑇∋𝑥

𝟏𝑇(𝑦)|𝑇| ∀𝑥, 𝑦 ∈ 𝔗𝑏, (5.4)

and denote by the corresponding integral operator, defined by

𝑓(𝑥) ∶= ∫𝔗𝑏 𝜅(𝑥, 𝑦) 𝑓(𝑦) d𝜇(𝑦) ∀𝑥 ∈ 𝔗𝑏,

where 𝑓 is any reasonable function on 𝔗𝑏. Note that  𝑓 ⩽ |𝑓|. The following result implies
that and have a quite different boundedness properties as operators acting on 𝐿𝑝(𝔗𝑏).

Proposition 5.2. The operator is unbounded on 𝐿𝑝(𝔗𝑏) for every 𝑝 in [1,∞] and for every 𝑏 ⩾ 2.

Proof. It is straightforward to check that the smallest triangle that contains two points 𝑥 and 𝑦 is
the triangle with vertex 𝑥 ∧ 𝑦 (see the proof of Theorem 3.2(ii) for the notation) and height

𝜂(𝑥, 𝑦) ∶= max (𝑑(𝑥, 𝑥 ∧ 𝑦), 𝑑(𝑦, 𝑥 ∧ 𝑦)).

Clearly 𝜂(𝑥, 𝑦) = 1

2
[𝑑(𝑥, 𝑦) + |ℎ(𝑥) − ℎ(𝑦)|]. From the definition of 𝜅 (see (5.4)) and

Lemma 2.1(ii) we deduce that

𝜅(𝑥, 𝑦) =
1||𝑇𝑥,𝑦|| ⩾

1

2 ||𝛽(𝑇𝑥,𝑦)|| ⩾
1

2
𝑏−𝜂(𝑥,𝑦) ∀𝑥, 𝑦 ∈ 𝔗𝑏.

Suppose that 𝑜 is a point inℌ0, and consider, for each positive integer 𝑛, the set 𝐸𝑛 ∶= 𝑠𝑛(𝑝𝑛(𝑜)),
which is the base of the triangle with vertex 𝑝𝑛(𝑜) and height 𝑛. Observe that for every 𝑥 and 𝑦 in
𝐸𝑛 we have 𝜂(𝑥, 𝑦) = 𝑑(𝑥, 𝑦)∕2, so that

𝟏𝐸𝑛(𝑥) ⩾ 12 ∫𝐸𝑛 𝑏
−𝑑(𝑥,𝑦)∕2 d𝜇(𝑦).

Note that for every positive integer 𝑗 ⩽ 𝑛 there are exactly (𝑏 − 1) 𝑏𝑗−1 points in 𝐸𝑛 at distance 2𝑗
from 𝑥. Therefore, the last integral can be rewritten as

1 +
𝑏 − 1

𝑏

𝑛∑
𝑗=1

𝑏−𝑗 𝑏𝑗 = 1 +
𝑏 − 1

𝑏
𝑛.
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14 of 17 MEDA and SANTAGATI

Altogether

𝟏𝐸𝑛(𝑥) ⩾ 𝑏 − 12𝑏
𝑛 ∀𝑥 ∈ 𝐸𝑛,

from which the desired result for 𝑝 = ∞ follows directly.
Now, set 𝐶𝑏 ∶= (𝑏 − 1)∕(2𝑏), and observe that if 𝑝 < ∞, then for every positive integer 𝑛 the

previous inequality yields

‖‖𝟏𝐸𝑛‖‖𝑝𝑝 ⩾ 𝐶𝑝𝑏 𝑛𝑝 |𝐸𝑛| = 𝐶𝑝𝑏 𝑛𝑝 ‖‖𝟏𝐸𝑛‖‖𝑝𝑝 ,
which implies that is unbounded on 𝐿𝑝(𝔗𝑏), as required. □

It is worth observing that replacing triangles with appropriate slightly larger sets in the def-
inition of  and  may yield significant modifications of the boundedness properties of the
corresponding maximal operators, as we presently show. This is a further example that illus-
trates how sensitive are maximal operators to the shape of the sets with respect to which we
take averages.
For every nonnegative integer 𝑟 consider themodified triangle 𝑇′𝑟(𝑥) ∶= 𝑇𝑟(𝑥) ∪ 𝑝

𝑟(𝑥), and the
corresponding centred and uncentred maximal operators

 ′𝑓(𝑥) = sup
𝑟∈ℕ

1|𝑇′𝑟(𝑥)| ∫𝑇′𝑟(𝑥) |𝑓| d𝜇 and  ′𝑓(𝑥) = sup
𝑇′∋𝑥

1|𝑇′| ∫𝑇′ |𝑓| d𝜇,
where 𝑇′ is any modified triangle containing 𝑥. We emphasise that 𝑇′ is obtained from a
triangle 𝑇 by adjoining just a point at distance ℎ(𝑇) from the vertex of 𝑇. Observe that if
there exists a positive constant 𝐶 such that ||𝑇𝑟(𝑥)|| ⩾ 𝐶 ||𝐵𝑟(𝑥)|| for every triangle 𝑇𝑟(𝑥) in 𝔗,
then

 ′ ⩽ 𝐶 and  ′ ⩽ 𝐶 . (5.5)

For instance, this happens if 𝔗 = 𝔗𝑏, or 𝔗 = 𝔖𝑎,𝑏 and 𝑎 ⩽ 𝑏 < 𝑎2: here 𝔖𝑎,𝑏 denotes the tree
such that each vertex has either 𝑎 + 1 or 𝑏 + 1 neighbours according to the fact that its height is
< 1 or ⩾ 1. We refer the reader to [6] for more on𝔖𝑎,𝑏. For each pair 𝑎, 𝑏 of positive integers, we
denote the number log𝑎 𝑏 by 𝜏. In the next proposition we show that there are trees where  ′ and
 ′ have different boundedness properties than  and , respectively.

Proposition 5.3. The following hold:

(i) the operator  ′ is bounded on 𝐿𝑝(𝔗𝑏) for every 𝑝 in (1,∞], and unbounded on 𝐿1(𝔗𝑏);
(ii) if 𝑎 < 𝑏 < 𝑎2, then  ′ is bounded 𝐿𝑝(𝔖𝑎,𝑏) for𝑝 > 𝜏 and it is unbounded on 𝐿𝑝(𝔖𝑎,𝑏) for𝑝 < 𝜏;
(ii) the operator ′ is bounded on 𝐿𝑝(𝔗𝑏) if and only if 𝑝 > 2.

Proof. The 𝐿𝑝 boundedness of  ′ and ′ in the ranges described in (i)–(iii) above follow from the
bounds (5.5) and the positive results for and proved in [3, 6, 10, 15].
Next we prove that  ′ is unbounded on 𝐿1(𝔗𝑏). Fix a point 𝑜 inℌ0, and consider the set 𝐸 ∶=

{𝑥 ∈ 𝔗𝑏 ∶ 𝑜 ⪰ 𝑥}. Clearly 𝐸 is the infinite triangle with vertex 𝑜. It is straightforward to check that
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TRIANGULARMAXIMAL OPERATORS 15 of 17

for each 𝑥 in 𝐸

 ′𝛿𝑜(𝑥) = 1||𝑇′|𝑥|(𝑥)|| .
By Lemma 2.1(ii), ||𝑇′|𝑥|(𝑥)|| = ||𝑇|𝑥|(𝑥)|| + 1 ⩽ 2 𝑏|𝑥| + 1, so that

‖‖ ′𝛿𝑜‖‖𝐿1(𝔗𝑏) ⩾ ∫𝐸 
′𝛿𝑜 d𝜇 ⩾

∞∑
𝑗=0

∫𝐸∩ℌ−𝑗
1

2𝑏𝑗 + 1
d𝜇.

Since ||𝐸 ∩ ℌ−𝑗|| = 𝑏𝑗 , the series above is not convergent, and the unboundedness of  ′ on 𝐿1(𝔗𝑏)
follows, thereby completing the proof of (i).
To complete the proof of (ii), fix a point 𝑜 inℌ0, and for each positive integer 𝑛 consider the set

𝐸𝑛 ∶= 𝑠
𝑛 (𝑝𝑛(𝑜)), which is a subset of the horocycle ℌ0 in 𝔖𝑎,𝑏. By Lemma 2.1 (ii), and the fact

that each vertex with nonpositive height has exactly 𝑎 successors,

 ′𝛿𝑝𝑛(𝑜)(𝑥) = 1|𝑇′𝑛(𝑥)| ⩾
1

2 𝑎𝑛 + 1
∀𝑥 ∈ 𝐸𝑛,

when, much as above,

‖‖ ′𝛿𝑝𝑛(𝑜)‖‖𝑝𝐿𝑝(𝔖𝑎,𝑏) ⩾ ∫𝐸𝑛
( ′𝛿𝑝𝑛(𝑜))𝑝 d𝜇 ⩾ ||𝐸𝑛||

(2𝑎𝑛 + 1)𝑝
.

Observe that ||𝐸𝑛|| = 𝑏𝑛 = 𝑎𝜏𝑛. Altogether, we see that
‖‖ ′𝛿𝑝𝑛(𝑜)‖‖𝑝𝐿𝑝(𝔖𝑎,𝑏) ⩾ 𝑎𝜏𝑛

(2𝑎𝑛 + 1)𝑝
.

Since, by assumption, 𝑝 < 𝜏, the right-hand side above cannot be bounded with respect to 𝑛, and
the desired result follows.
Finally we complete the proof of (iii) by showing that  ′ is unbounded on 𝐿𝑝(𝔗𝑏) for every

𝑝 ⩽ 2. Let 𝐸 ∶= {𝑥 ∈ 𝔗𝑏 ∶ 𝑜 ⪰ 𝑥}. If 𝑥 ∈ 𝐸 and 𝑑(𝑜, 𝑥) is even, then

 ′𝛿𝑜(𝑥) =
1||𝑇′|𝑥|∕2(𝑝|𝑥|∕2(𝑥))|| ,

and Lemma 2.1(ii) implies that ||𝑇′|𝑥|∕2 (𝑝|𝑥|∕2(𝑥))|| ⩽ 2 𝑏|𝑥|∕2 + 1. Thus,
‖‖ ′𝛿𝑜‖‖𝑝𝐿𝑝(𝔗𝑏) ⩾

∞∑
𝑗=0

∫𝐸𝑛∩ℌ−2𝑗(2𝑏
𝑗 + 1)

−𝑝 d𝜇 =
∞∑
𝑗=0

𝑏2𝑗 (2𝑏𝑗 + 1)
−𝑝
.

The required conclusion follows from the fact that for every 𝑝 ⩽ 2 the series above is not
convergent. □

Remark 5.4. Finally, we present an example of a tree𝔗with unbounded geometry where  ′, and
a fortiori ′, is unbounded on 𝐿𝑝 for every 𝑝 < ∞.
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16 of 17 MEDA and SANTAGATI

Let 𝔗 be the tree characterised by the property that each vertex off ℌ0 has three neighbours,
and 𝜈(𝑥𝑗) = 𝑗 + 2 where {𝑥𝑗 ∶ 𝑗 ⩾ 1} is an enumeration of the points ofℌ0.
Note that for every 𝑗 ⩾ 1

 ′𝛿𝑥𝑗 (𝑦) = 1|𝑇′
1
(𝑦)| = 1

4
∀𝑦 ∈ 𝑠1(𝑥𝑗).

Therefore,

‖‖ ′𝛿𝑥𝑗‖‖𝑝𝑝 ⩾ ∑
𝑦∈𝑠1(𝑥𝑗)

 ′𝛿𝑥𝑗 (𝑦)𝑝 = 1

4𝑝
|𝑠1(𝑥𝑗)| = 𝑗 + 2

4𝑝
.

Since ‖𝛿𝑥𝑗‖𝑝 = 1, the operator norm of  ′ on 𝐿𝑝(𝔗) is at least (𝑗 + 2)1∕𝑝∕4. By letting 𝑗 vary we
obtain the required conclusion.
Since ′ ⩾  ′ pointwise, ′ is unbounded on 𝐿𝑝(𝔗) for every 𝑝 ∈ [1,∞).

It is straightforward to check that for each 𝑟 > 1 there is no constant 𝐶 such that

‖‖‖ ∑
𝑇′∈′

𝟏𝑇′
‖‖‖𝑟 ⩽ 𝐶 ‖‖𝟏𝐺′‖‖𝑟 (5.6)

for every finite family ′ of maximal modified triangles in𝔗. Here 𝐺′ is the union of the modified
triangles in ′.
Indeed, it suffices to consider, for every positive integer 𝑗, the family ′

𝑗
of themodified triangles

{𝑇′
1
(𝑦) ∶ 𝑦 ∈ 𝑠1(𝑥𝑗)}. Then the 𝑟th power of the right-hand side of (5.6) is equal to𝐶𝑟 (3(𝑗 + 2) + 1),

whereas the 𝑟th power of left-hand side is equal to 3(𝑗 + 2) + (𝑗 + 2)𝑟. Thus, (5.6) fails for large
values of 𝑗.
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