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Abstract Non-perturbative scale-dependent renormaliza-
tion problems are ubiquitous in lattice QCD as they enter
many relevant phenomenological applications. They require
solving non-perturbatively the renormalization group equa-
tions for the QCD parameters and matrix elements of inter-
est in order to relate their non-perturbative determinations at
low energy to their high-energy counterparts needed for phe-
nomenology. Bridging the large energy separation between
the hadronic and perturbative regimes of QCD, however, is a
notoriously difficult task. In this contribution we focus on the
case of the QCD coupling. We critically address the common
challenges that state-of-the-art lattice determinations have to
face in order to be significantly improved. In addition, we
review a novel strategy that has been recently put forward
in order to solve this non-perturbative renormalization prob-
lem and discuss its implications for future precision deter-
minations. The new ideas exploit the decoupling of heavy
quarks to match N¢-flavor QCD and the pure Yang—Mills
theory. Through this matching the computation of the non-
perturbative running of the coupling in QCD can be shifted
to the computationally much easier to solve pure-gauge the-
ory. We shall present results for the determination of the
A-parameter of Ny = 3-flavor QCD where this strategy has
been applied and proven successful. The results demonstrate
that these techniques have the potential to unlock unprece-
dented precision determinations of the QCD coupling from
the lattice. The ideas are moreover quite general and can be
considered to solve other non-perturbative renormalization
problems.

Affiliation with institutions 1 and 2 ended on 31/10/2020.

 e-mail: mattia.dallabrida@unimib.it (corresponding author)

1 Introduction

Renormalization is a fundamental step in order to extract
(meaningful) phenomenologically relevant results from lat-
tice QCD calculations. For the lattice theorist it is natu-
ral to renormalize the bare parameters of the lattice QCD
Lagrangian and the composite operators of interest in terms
of some hadronic renormalization schemes (cf. Refs. [1,2]).
In order to make the determinations accessible to phenome-
nologists, however, itis often necessary to translate the results
obtained in the chosen hadronic schemes to results in the
(perturbative) schemes and at the scales commonly consid-
ered in phenomenology. In practice, this requires the deter-
mination of the non-perturbative renormalization group (RG)
running of the renormalized QCD parameters and operators
in some convenient intermediate scheme, from the hadronic
scales where they were originally defined, up to some high-
energy scale, where perturbation theory eventually applies
and a matching to phenomenological schemes can be per-
formed.

Over the last decade or so, lattice QCD has entered a pre-
cision era for an increasingly large set of quantities (cf. Ref.
[3]). Renormalization is a relevant part of many of these
computations where it can significantly impact the quality
of the final results. Hence, as we are forced to become more
aware of all possible sources of uncertainties in the determi-
nation of the bare lattice quantities, the same care must be
reserved to their renormalization. In particular, as any other
lattice calculation, besides the statistical errors the determi-
nations of renormalized parameters and operators have their
systematics to deal with, i.e. discretization effects, finite-
volume effects, quark-mass effects, and, when a matching
to phenomenological schemes is necessary, also perturbative
uncertainties. It is therefore important that the development
in strategies to compute (bare) lattice quantities is accompa-
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nied with new ideas to improve their renormalization, so to
guarantee a precise and robust end result.

An extreme example of this situation, if we can call it
this way, is the determination of the QCD parameters. In
this case we can say that the problem is entirely a renormal-
ization problem, which, however, has very important phe-
nomenological applications. On the lattice, the QCD cou-
pling and quark masses are renormalized in terms of hadronic
masses and decay constants, while in phenomenology the
QCD parameters are needed at energies of the order of a hun-
dred GeV and above. One would thus think that lattice QCD
is not the right tool for providing this information given the
very high energies involved. It appears more natural indeed
to obtain these parameters directly from high-energy quan-
tities, rather than from the hadronic spectrum. As we shall
recall later in this contribution, this is actually not the case,
as lattice techniques offer an ideal framework for these com-
putations.

For the last 10-15 years, lattice QCD has consistently
delivered some of the most precise determinations for the
QCD parameters, as in particular for the QCD coupling «;
(see e.g. Refs. [3-5]).! The current world average for the
QCD coupling evaluated for reference at the Z-boson pole
mass Mz is as(Mz) = 0.1179(10) [5], and has a preci-
sion of about 0.8%. The lattice determinations alone give
as(Mz) = 0.1182(8) [3], and are the most precise subcate-
gory of those considered by the PDG. Besides the high pre-
cision of the individual state-of-the-art determinations, it is
important to emphasize also their overall consistency. This
is a rather non-trivial result considering the fact that even
though all lattice determinations share some common sys-
tematics, these are probed quite differently by considering
very different strategies [3]. It is fair to say that such a vari-
ety of approaches within a PDG subcategory is in fact unique
[5].

Despite the tremendous efforts on and off the lattice, how-
ever, the current uncertainty on «j is still large. It is one of
the largest sources of uncertainty in several key processes,
particularly so within the Higgs sector, and it is expected to
be a limiting factor in many high-precision studies at future
colliders (see e.g. Refs. [4,6]). An uncertainty on os(Mz)
comfortably below the percent level is desired for precision
applications. For these reasons, there are plans for future phe-
nomenological determinations of «s(Mz) aiming at reach-
ing the extremely competitive accuracy of 0.2% using high-
luminosity high-energy data (see e.g. Refs. [7-10]). The lat-
tice community needs to meet the challenge.

I We here adopt the common notation a5 (1) = a%(u,), where a%(u)

is the QCD coupling of the 5-flavor theory renormalized in the MS-
scheme (see e.g. Ref. [5]). Note that for the ease of notation we often
omit to write explicitly the p-dependence of the coupling.

@ Springer

Reducing the current uncertainties on lattice determina-
tions of ag by such an important factor is not easy. Simi-
larly to several phenomenological determinations most lat-
tice determinations of «g are currently limited by systematic
uncertainties related to the use of perturbation theory at rela-
tively low scales [3]. The issue is due to the fact that reaching
high energy on the lattice requires small lattice spacings to be
simulated and this is in general difficult without a dedicated
strategy.

A way around this has been known since a long time and
it is based on the concepts of finite-volume renormalization
schemes and finite-size scaling (or step-scaling) techniques
[11,12]. The methods have been recently applied for obtain-
ing one of the most precise determinations of «g [13]. The
key feature of the approach is that it allows for reaching high
energy with all systematics under control. This puts the lat-
tice determinations in the privileged position of being able
to reach in a clean and controlled way high energies fully
non-perturbatively. The systematics due to the application
of perturbation theory, in particular, can be entirely avoided
at the expenses of the statistical errors accumulated in run-
ning from low up to high-enough energy. The net advantage
of this situation is that differently from systematic uncer-
tainties, statistical errors can be straightforwardly reduced.
Nonetheless, a reduction of the current uncertainties on g by
an important factor is yet a computationally expensive task,
even employing a step-scaling strategy (cf. Ref. [13]).

In this contribution we want to review the recent proposal
made in Ref. [14] which may allow for such error reduction in
a substantially cheaper way. The key feature of this proposal
is that one can replace the computation of the RG running of
the coupling in N¢-flavor QCD with that in the pure-gauge
theory. It is clear that, regardless of the chosen strategy, this
allows for a substantial simplification of the problem.

In short, the idea is built on three main steps and exploits
the decoupling of heavy quarks in a couple of ways. In the first
step, heavy-quark decoupling is used to connect a low-energy
scale gec in Ne-flavor QCD with the corresponding scale in
the pure-gauge theory. This is achieved through the compu-
tation of a massive renormalized coupling in an (unphysi-
cal) theory with Nf heavy quarks of mass M > pgec. In
a second step, by computing the non-perturbative RG run-
ning in the pure Yang-Mills theory of a convenient coupling
one obtains the pure-gauge A-parameter in units of figec,

AL=0 / dec- Finally, perturbative decoupling relations
are invoked at a scale @ &~ M to estimate the ratio of A-
parameters in the N¢-flavor and pure Yang-Mills theory, that
is, A%zo) /Al(v%f). Putting these steps together, one obtains
A%) / dec» and given the physical value of j1gec finds A%).
Considering Ny = 3 or 4, once ALD is determined one
proceeds as usual and applies perturbative decoupling rela-
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tions at the charm and/or bottom quark-mass scale to estimate
A%ZS) and from it ag(M7y).

The strategy has already been proven successful in the
determination of A%:3) [14]. The ideas presented in
this reference are however general and may be applied to
solve other non-perturbative scale-dependent renormaliza-
tion problems that face analogous challenges.

The outline of this contribution is the following.

We begin in Sect. 2 by recalling the main challenges in
solving scale-dependent renormalization problems on the lat-
tice. The emphasis will be on the determination of the QCD
coupling. Besides introducing important concepts for later
sections, the presentation gives us the opportunity to discuss
some recent interesting determinations. These clearly illus-
trate the difficulties that state-of-the-art computations of the
coupling have to face in order to be significantly improved.

In Sect. 3, we introduce the theory of heavy-quark decou-
pling and present the results of several recent studies that
systematically assessed the size of non-perturbative effects
induced by heavy quarks. More precisely, the accuracy of
using perturbative decoupling relations to match the A-
parameters of different N¢-flavor theories is investigated, as
well as the corrections due to the heavy quarks in low-energy
quantities. These studies not only set the foundation for the
renormalization strategy based on decoupling, but also estab-
lish the precision at which o can be obtained from results in
Nr =3 QCD.

In Sect. 4, the application of heavy-quark decoupling to the
determination of the N¢-flavor QCD coupling is described in
detail and the results of Ref. [14] for A%Z3) are presented.
We conclude in Sect. 5 with some comments on the future
prospects for g determinations in view of this new strategy.

We care to note that it is not the aim of the present contribu-
tion to discuss in detail the many different lattice approaches
that are currently considered to determine the QCD coupling.
In particular, we do not provide a complete account of all
recent determinations. For such a discussion, we refer the
interested reader to the comprehensive work of FLAG [3] and
to other interesting recent reviews (see e.g. Refs. [15,16]).

2 Precision determinations: the case of oy

Before presenting the renormalization ideas based on decou-
pling, we believe it is important to put these into context.
The aim of these strategies, in fact, is not simply that of
providing alternative ways to solve non-perturbative scale-
dependent renormalization problems. The goal is to develop
a framework that will allow us to improve significantly our
control over the current most relevant uncertainties. In this
section, we thus want to recall what the main challenges are
in solving this class of problems and which are the common
approaches that are used to tackle them. Many of the con-

cepts and observations that will be presented are for the most
part well known. However, these issues are now more current
than ever given the high precision that lattice QCD calcula-
tions have achieved, in particular in the determination of the
QCD parameters. For this reason, we think it is important
to address them also here. This gives us the opportunity to
discuss some new insight that has been gathered from sev-
eral recent high-precision studies, as well as introducing key
concepts for later sections.

As anticipated, the discussion will focus on the case of the
QCD coupling «. This allow us to analyze in easier terms the
main challenges that we need to face in high-precision non-
perturbative determinations of RG runnings while capturing
all the relevant issues. Moreover, lattice determinations of
the strong coupling are a distinct case of competitive calcu-
lations which have the potential to deliver unprecedentedly
precise results for a very relevant and fundamental quantity.
Making a significant progress over the present state-of-the-
art determinations by mere brute force, however, is extremely
demanding from the computational point of view. It is there-
fore mandatory to develop new strategies with the clear scope
of improving our control on all sources of uncertainty.

2.1 Determinations of «s on and off the lattice

As already mentioned, since more than a decade lattice QCD
is providing the Particle Physics community with the most
accurate determinations of o (see Refs. [3-5]). The reason
behind this is that, as we shall recall, lattice determinations
have some important advantages over their phenomenologi-
cal counterparts (see e.g. Refs. [2,6,15] for some reviews).

Any determination of o, whether on the lattice or not,
relies on the following basic strategy. One considers a short-
distance observable O(q) which depends on a characteristic
energy scale g. In the limit where ¢ — o0, this observable
is compared with its theoretical prediction, Oy, (q), in terms
of a perturbative expansion®

N AP g
Oth(q>=Zkn(s>a:<u>+0(a§+‘>+o(—), ==,
n=0 qﬂ §

ey

The functions k, (s) appearing in this equation are the coef-
ficient functions defining the perturbative series. They are
known up to some order N and depend on the scale factor,
s > 0, that relates the renormalization scale u at which oy is
extracted with the scale g. The basic difference between phe-

2 Note that in general the coupling o to be considered here should be the
QCD coupling of the relevant N¢-flavor theory, i.e. ag(pn) = a%) (),
from which a%(M 7) can eventually be extracted (cf. e.g. Ref. [3] and
Sect. 3.1.2). X[t this stage, however, we prefer to keep the discussion

simple. We shall return to this point later in detail.
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nomenological and lattice determinations of oy is the choice
of the observable O(q).

Requiring Oy, (g) = O(gq) for some finite g, clearly fixes
the value of «os(w) only up to some error. This error comes
from several different sources, many of which are common
to all types of determinations. First of all, there is the pre-
cision 8O(q) to which the observable O(g) is known. This
of course depends on the relevant statistical and systematic
uncertainties associated with the determination of O(g). Sec-
ondly, there is the effect of the truncation of the perturbative
series to a given order, i.e. the size of the O(ozév +1) terms in
Eq. (1). In addition to these there are contaminations from
“non-perturbative contributions”. These are represented in
Eq. (1) by power corrections to the perturbative expansion of
O(A?/qP), where p > 0 and A is some characteristic non-
perturbative scale of QCD.3 Thus, regardless of the chosen
strategy, an accurate determination of o needs to have, at
least, these general sources of error under control. Note that
for the most part these are systematic in nature.

Lattice determinations of oy are in principle favored in
several ways in succeeding at this task. Firstly, on the lattice
the QCD parameters are first renormalized in terms of some
precisely measured hadronic quantities (e.g. hadron masses,
decay constants, etc.), for which experimental uncertainties
typically contribute only marginally to the end result. Once
these are fixed, one has lots of freedom in choosing an observ-
able O(q) as the getaway to extract ag. One can therefore
devise convenient observables which have small statistical
and systematic uncertainties; in particular there is no need for
these quantities to be accessible in experiments. Phenomeno-
logical determinations of o, instead, rely on experimental
data for the observable O(g). It is the typical situation that
when g becomes large, and therefore many sources of sys-
tematic uncertainty in Eq. (1) become small, the experimental
errors §O(q) become large. It is thus difficult to find in gen-
eral a single experimental quantity O(g) that allows one to
accurately follow its scale dependence over a wide range of
g-values. On the lattice, on the other hand, if carefully cho-
sen, O(g) can be computed precisely from low- up to very
high-energy scales. This gives a unique handle on control-
ling non-perturbative corrections and the contribution of the
missing perturbative orders in Eq. (1).

Another advantage for the lattice theorist is that O is
defined within QCD alone. Consequently, the theoretical
description Oy, of Eq. (1) does not need to include contribu-
tions besides those from QCD. In addition, no modeling of
hadronization is needed when comparing the observable O

3 Our knowledge of the form of non-perturbative effects is in fact rather
limited. In addition, strictly speaking, perturbative and non-perturbative
contributions cannot really be separated due to the asymptotic nature
of the series (see e.g. Ref. [17]). However, as the discussion is at this
point qualitative we simply adopt the simplistic representation of non-
perturbative effects as power corrections to the perturbative expansion.

@ Springer

with its perturbative prediction Oy,. Different is again the sit-
uation for phenomenological determinations. In these cases,
other Standard Model (SM) contributions may be needed in
order to extract oy and some modeling of hadronization is
necessary. Depending on the process, these are known only
up to some accuracy and typically depend on the value of
other SM parameters as well. The precision one can aim
for ag can therefore be limited by these factors.* Of course,
lattice QCD determinations are not entirely exempted from
this issue. In this case, however, the problem of disentan-
gling the QCD contributions from “the rest” is confined to
the hadronic quantities entering the renormalization of the
theory, rather than to the observable O itself. As mentioned
earlier, the uncertainties on the hadronic quantities have, at
present, limited impact on the results for o.

All current lattice QCD determinations of o, on the other
hand, have to deal with the fact that their calculations are
performed with an unphysical number of quark flavors. The
bottom and typically also the charm quark are in fact not
included in the simulations. This brings up the issue of having
to account for their missing contributions. We shall leave this
very important discussion aside for the moment and come
back to it in detail in the following (see Sect. 3).

2.2 The challenge of reaching high energy

Having for the most part presented the pros that lattice deter-
minations of «g in principle have, we now address what the
main difficulties are in practice.

As any lattice QCD observable, besides the statistical
uncertainties, O(q) is affected by several systematics that
need to be controlled. These include general ones, i.e. dis-
cretization errors, finite-volume effects, an unphysical num-
ber of quarks, and quark-mass effects, as well as others which
depend on the specific choice of O and set-up that we make
(e.g. excited-state contaminations, finite-temperature effects,
Gribov copies, topology freezing, etc.). Finite quark-mass
effects are typically not a relevant issue in determinations of
the QCD coupling [3]. As anticipated, we then leave the prob-
lem of having an unphysical quark-content for later. We also
ignore observable specific issues. Here we focus instead on
discretization and finite-volume effects. The combination of
having the two under control, in fact, can severely restrict the
accessible range of g-values, if the renormalization strategy
is not carefully chosen.

In particular, if one is determined in resolving within the
same lattice simulation both the hadronic energy scales rel-
evant for the renormalization of the lattice theory, and the
energy scale g at which o« is extracted, then one is necessar-

4 Experimental observables are in principle sensitive also to any New
Physics. How this affects the extracted value of o, however, is some-
thing hard to assess.
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ily limited by the simultaneous constraints:
L'« A and A<g<a . )

The first inequality expresses the fact that finite-volume
effects must be under control in hadronic quantities. The
infrared cutoff set by the finite extent L of the lattice must
be smaller than the typical non-perturbative scales of QCD,
denoted here by A. The second inequality, instead, encodes
two separate requirements. On the one hand, the scale ¢ must
be much lower than the ultraviolet cutoff set by the lattice
spacing a. In this way, discretization errors in O(g) are kept
under control, and O(g) can be obtained in the continuum
limit with controlled errors.> On the other hand, g needs to be
much larger than the scales A. Only in this situation perturba-
tion theory can reliably be applied to extract og by comparing
O(q) with Eq. (1).

The typical lattices that are simulated today have sizes
L/a < 100. Taking for definiteness m, L = 4, with m, =
140 MeV, the first condition in Eq. (2) implies that for such
ensembles ¢ < a~! ~ 3.5GeV. Of course this is a crude
estimate and somewhat higher energies might be achieved by
compromising at different stages of the calculation (e.g. con-
sidering heavier pion masses or smaller volumes in order to
reach smaller values of a, or taking ag < 1). Nonetheless,
it is clear that although convenient in practice, considering
lattices devised for studying hadronic physics to compute
short-distance quantities necessarily poses severe challenges
on the feasibility of the approach, as the accessible energies
q are quite limited.

As a concrete example of this situation, we can point to the
recent determination of g of Ref. [19]. For their computation
the authors employ state-of-the-art large-volume simulations
by the CLS initiative [20,21]. The two-point functions of both
axial and vector currents at short-distances are used to extract
as. Given the range of lattice spacings at their disposal, a ~
0.04 — 0.08 fm, the accessible energies for which continuum
limit extrapolations could be performed in a controlled way
are limited to ¢ < 2GeV.

As we shall see below with explicit examples, a limited
range of low g-values unavoidably implies a limited attain-
able precision for o as perturbative truncation errors become
a major issue.

5 Here and in the following we assume that O(q) is a properly renor-
malized lattice quantity with a well-defined continuum limit and free
from infrared divergences. Alternative strategies extract g from bare
lattice quantities by taking ¢ o< a~! and expressing their expansion in
lattice perturbation theory in terms of oy (see e.g. Ref. [18]). In these
cases, discretization errors and scale dependence of O(q) are entangled.
Addressing systematic uncertainties becomes more subtle and requires
a separate discussion (see Ref. [3]).

2.2.1 The finite volume is your friend

In order to reach high precision we must tailor the lattice
simulations to the problem at hand. Going back to Eq. (2),
there is in fact no reason to try to satisfy simultaneously
the two conditions as these belong to separate problems. On
the one hand, there is the determination of the low-energy
quantities used for the hadronic renormalization of the lattice
theory, while, on the other hand, there is the determination
of O(q) for large q.

A more natural strategy is therefore to split the problem
over several sets of lattice simulations, each one covering
a different range of energy scales. In this way, systematic
effects can be more easily kept under control, as the rele-
vant conditions will be milder for each individual set of sim-
ulations. The way to effectively achieve this in practice is
to employ what are known as finite-volume renormalization
schemes [11]. In this case, the scale ¢ at which the observ-
able O(q) is evaluated is identified with the inverse linear
extent of the finite volume, i.e. ¢ = L™!. One may say that,
in fact, the observable O considered is a finite-volume effect.
With this choice, one computes the non-perturbative RG run-
ning of O(L~") by simulating lattices with different physical
extent L. This strategy goes under the name of finite-size (or
step-)scaling [11,12] (see Ref. [2] for a recent account).

More precisely, having fixed the bare QCD parameters
through some hadronic quantities, one computes (’)(Lgah)
at a low-energy scale gpag = L;ah ~ A, and deter-
mines Lp,g in physical units. This is achieved by computing
limg—g(amnad) (Lhad/a) = O(1), where mp,q is a known
low-energy scale. No large scale separations are involved in
this step, and at common bare parameters one can satisfy the
conditions Lpag/a > 1 and ampaq < 1, as well as having
finite-volume effects in mp,q under control.

Secondly, one computes in the continuum limit the change
in O(L_l) as L is varied by a known factor, say, L — L/2.
This step is repeated a number of times n, going from each
new L to the next one. Once the energy scale reached, g, =
2" [ Lnag, 1s large compared to the hadronic scales, perturba-
tion theory can safely be applied to extract os(ipt = gn/5)
from the value of O(g,) (cf. Eq. (1)).

It is important to emphasize that, if carefully chosen, the
only source of systematic errors that affect the determination
of O(L™") are discretization effects. In particular, no matter
what the scale g = L~ is, discretization effects are under
control once L™! = ¢ « a~!,i.e. L/a > 1. This approach
elegantly exploits the freedom that we have in lattice QCD
in choosing the observable O(g) to completely circumvent
the issue of necessarily having a finite volume. In particu-
lar, within this strategy the computational power is entirely
invested into controlling a single systematic uncertainty.

@ Springer
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In principle there is quite some freedom in choosing the
finite-volume observable O(q). For the strategy to be suc-
cessful in practice, however, this should have a number of
desirable properties (see e.g. Ref. [2]). First of all, it should
be easily and precisely measurable in Monte Carlo simula-
tions. It should be computable in perturbation theory to a suf-
ficiently high-loop order in order to guarantee good precision
in extracting o through Eq. (1). It should preferably be gauge
invariant, in order to avoid issues with Gribov copies once
studied non-perturbatively, and also be directly measurable
for zero quark masses (see below). Finally, it should have, in
general, small lattice artifacts. In fact, it is not straightforward
to find a single observable that has all these nice features for
any range of g-values. This, however, is not a real issue as
different observables may be accurately combined in order to
cover all the relevant range of scales g. We shall see explicit
examples of good complementary observables in forthcom-
ing sections.

2.2.2 A-parameters, B-functions, and all that

As we leave the general discussion for entering a more quan-
titative analysis of the challenges of extracting o, we find
convenient to reformulate the problem in slightly different
terms. First of all, it is useful to associate with the observable
O arenormalized coupling go through the relation:

_ 8o _ O — ko uooo

o) = P A = as(w)
k
F e (W) + 3)
ki
where the coefficients k; = k;(1) are those appearing in

the perturbative expansion, Eq. (1). This simple procedure
defines a non-perturbative, regularization-independent, QCD
coupling. In terms of these couplings, the extraction of o is
interpreted as the perturbative matching between o and oy,
where different observables O define different renormaliza-
tion schemes. The common normalization allows us to com-
pare the value of the couplings in different schemes as they
approach the high-energy limit. This is useful in assessing
the regime of applicability of the perturbative matching as
the latter can be characterized by the value that ¢ should
reach.

We recall at this point that the non-perturbative couplings
studied within lattice QCD are implicitly defined for a given
number of quark flavors, Nf. A more proper notation to use
for the couplings is therefore agvf) (n) = [gg"f)(u)]Z/(M),
which emphasizes the fact that ggv v () must be considered
as a coupling within the N¢-flavor theory. For ease of nota-
tion, however, in this section we will often take the liberty
of dropping the superscripts Ny and leave these understood,

@ Springer

unless they are needed to avoid any confusion or for later
reference.

Having this noticed, a particularly convenient class of
schemes to consider are mass-independent (or simply mass-
less) renormalization schemes [22]. These are defined in
terms of observables O evaluated for vanishing quark masses.
As aresult, the RG running of these couplings is decoupled
from that of the renormalized quark masses and therefore
simpler to solve. On the other hand, differently from the phys-
ical case of massive schemes, quarks do not decouple in the
RG running of massless schemes [23,24]. Hence, in the N¢-
flavor theory the latter is characterized by a fixed number of
active flavors corresponding to Ny.

To the coupling ggv Yina given mass-independent scheme
we can associate a quark-mass independent A-parameter,
Agvf), defined as,

N; Nt) , = (N;
45" = nelE @ W),

by (Np)

B S B
o0 (@ = (Bo(NFD) O ¢ TR x @
xexp{—/gdg[ ! + ! - D) ]}

o Lpd0(e) boNg'  boNPg ]

Through this relation, the value of the coupling gg’ f)(u) at

any renormalization scale w is in one-to-one correspondence
with Agf), provided that the B-function,

d—(Nf)( )
W sy 980 M 5
Bo (g)—u—du . (5

is known. The B-function describes the dependence of the
coupling on the renormalization scale. In perturbation theory,
it has an expansion which at the N-loop order reads:

N-1

BT (@) =22 () ©6)
k=0
with
bo(Ne) = #<11 - 3Nf) ,
(4m)? 3
b1 (Nf) = L <102 - ﬁm) . (7
(4m)4 3

The coefficients bo(Nr), b1 (Nr) are universal and shared by
all mass-independent renormalization schemes. The scheme
dependence only enters through the higher-order coefficients,
bi(Nr) = b (Np), with i > 2.

A first compelling property of A-parameters is that, differ-
ently from the case of couplings, their scheme dependence is
in fact trivial. Leaving the N¢-dependence implicit and tak-
ing the A-parameter in the MS-scheme, Ayfss as reference,

6 We shall return on these points in more detail in Sect. 3.
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we have that any other A-parameter A is exactly related to
Ay by the relation:

s ci ()
Frad e °

In this equation ¢ (1) is the 1-loop coefficient of the perturba-
tive matching relation between the corresponding couplings,
which at M-loop order reads,

M
S (sm) = ééw(l +) )3y (u)) L s>0. (9
k=1

It is clear that the A-parameters are non-perturbatively
defined once the corresponding couplings and B-functions
are.” In addition, they are exact solutions of the Callan-
Symanzik equations [25-27], and therefore RG invariants,
i.e. dAp/du = 0. From a non-perturbative perspective this
makes the A-parameters natural quantities to compute, as
they provide reference scales for both the low- and high-
energy regimes of QCD. We finally stress that, as their corre-
sponding couplings, the A-parameters are defined for a given
number of quark flavors, N¢ (cf. Eq. (4)). Each N¢-flavor the-
ory therefore has its own A-parameters.

2.2.3 Systematic uncertainties in extracting A%)

Once the overall energy scale of the given N¢-flavor theory
has been set,® the non-perturbative value of the coupling,
gprT = go(upT), in any scheme, at some high-energy scale
pT, allows for estimating A%) . Below we present two com-
monly employed strategies.

Strategy 1. Using Eq. (4) we first get an asymptotic estimate
for Ao/upr as,

Ap _ grr—0 _ N
Pl TGO eeo@er) +0(237 7). (10)

In this relation, (pgTO is defined analogously to s © of Eq. (4)

but with the replacement Sp — ﬂ(%T, with /BgT the pertur-
bative B-function of Eq. (6). From the estimate of Ao /upT,
Aggs/ mpr is obtained, with no further approximation, using
Eq. (8). Finally, the knowledge of ypt in physical units gives
us Ayg

As anticipated by Eq. (10), due to the truncation of Sp
to N-loop order in the evaluation of Ap/upr, our esti-
mate for Agjg/mpr, comes with a systematic uncertainty of
O(gngV _2). Itis important to stress that Eq. (10) is in fact only
asymptotic. Similarly to what we discussed about Eq. (1), our

7 Interestingly, Eq. (8) provides an indirect non-perturbative definition
of Aggg through the A-parameter of any non-perturbative scheme.

8 The issue of fixing the scale of a theory with an unphysical value of
Nt will be addressed in Sect. 3.

estimate for Aygg/upr is in principle also affected by “non-
perturbative corrections”, if the coupling gpr is not small
enough for perturbation theory to be in the regime of appli-
cability. We shall come back to this issue shortly.

Strategy 2. A second possibility to estimate Agzg is to first
obtain from the non-perturbative value of gpr an estimate for
8wis (s upr) using the M-loop relation, Eq. (9). Given this, we
can estimate Aggg/(supr) using Eq. (4) and the perturbative
expression for the S-function, Eq. (6), in the MS-scheme. As
before, the knowledge of wpr in physical units then gives us
Ayis-

In order to establish the perturbative uncertainties associ-
ated with this second approach, we first recall that the 8-
function in the MS-scheme is currently known to 5-loop
order [28-30]. This introduces a systematic uncertainty in
the determination of Aggg/spr of O(gETS(s mpr)) ~ O(gS:)
(cf. Egs. (10) and (9)). Secondly, using Eq. (4) it is easy to
show that the perturbative matching at M -loop order between
gpr and gy (supr) translates into a systematic uncertainty
in Agzg/per of O(g3).

For all schemes g used in lattice QCD determinations
of Agzg we have that M < 3 (see e.g. Ref. [3]). The system-
atic errors coming from the matching between couplings is
therefore parametrically larger than the one from the trun-
cation of Byjg. Moreover, note that for all these schemes we
have that M = N — 1, where N is the loop order at which
the corresponding perturbative S-function, ,BE/)T, is known
(cf. Eq. (6)). This means that, for the schemes go com-
monly used, Strategy 1. and 2. result in the same parametric
uncertainties of O(gngV _2). Clearly, although parametrically
the same, the actual size of the corrections might be differ-
ent. In this second strategy, in particular, when matching the
couplings we have the freedom to choose the parameter s
(cf. Eq. (9)). Different choices can result in different pertur-
bative corrections to Agg/UpT.

Devising different strategies like the ones above and com-
paring their outcome can help us assessing the systematic
uncertainties in Ay coming from the use of perturbation
theory at upr. A truly systematic study, however, requires
to compare the determination of Agygg/firef, Where firef is a
common reference scale, for several different values of gpr
as gpr — 0. Only if agreement is found among all determi-
nations, possibly including different strategies, one may be
reassured that O(g%ITV 72) terms, as well as non-analytic terms
in the coupling, are negligible within the statistical uncer-
tainties. In the case where, instead, the results for Aggg/ itref
show a clear dependence on gpr, one should first confirm

that this is actually compatible with the expected o(g§1TV _2)

9 This is the case because for all these schemes the N -loop B-function,
ﬂgr, has been inferred from ﬁ% at N-loops using the matching relation

Eq. (9) and /S%T at (N — 1)-loop order.
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corrections. If this is the case, one may be confident that the
asymptotic regime of the perturbative expansion is reached,
no “non-perturbative corrections” are relevant, and one can
therefore take as final estimate for Agzg/ et the extrapolated
result for gpt — 0.

Clearly, the program above is ambitious. The running
of the coupling gpr at high energies is only logarithmic
in upr/Ae. Reducing the size of the perturbative trunca-
tion errors by a given factor hence requires an exponentially
larger change in the energy scale upr. In order to accurately
estimate the systematic uncertainties coming from the use
of perturbation theory one therefore needs to cover, non-
perturbatively, a wide range of energies, reaching up to very
high scales.

If the chosen strategy to determine Az does not allow for
this and the accessible range of gpr is quite limited, one might
be tempted to estimate the uncertainties due to the application
of perturbation theory in more simplistic ways. For example,
one might opt for simply adding to the final result an uncer-
tainty 8 Ayg/Ays = k géQ’ ~2, where k is estimated in some
way from the available perturbative information. Alterna-
tively, one might estimate these uncertainties based on the
spread of the results obtained at the smallest available gpr
from different strategies (e.g. Strategy 1. vs Strategy 2.).
Given the asymptotic nature of the perturbative expansion,
however, these practices cannot be considered reliable in gen-
eral. From the very definition of asymptotic series the only
reliable way to assess its accuracy is to compare the series
with the full function as gpr — 0.10 Tn order to do so, the
coupling gpr must be varied by a sensible amount reaching
down to small values.

For the same reasons, it is not advisable to estimate the
size of “non-perturbative corrections” using some model
assumption, or use some model to extrapolate the results
for Ajgg/Mret to gpr — 0. Our knowledge of the form
of non-perturbative effects is rather limited and the separa-
tion between what is perturbative and non-perturbative is all
but well defined. Hence, it is always debatable whether any
model that tries to capture non-analytic terms in the coupling
is really adequate to describe the data within the given accu-
racy. Moreover, if the coupling gpt cannot be varied much,
it is difficult to really distinguish, e.g. a power correction,
from some higher-order term in gpt, when statistical errors
and other uncertainties are present. A more reliable practice
is thus to avoid regions of large gpr where the O(ggy )
behavior has not clearly set in.

10 We recall that a series is said to be asymptotic to the function f (%),

reRif: [ f(L) — Z;V:o ajM| 230 ON*1), VN. Note in particular
that at fixed A, larger N does not necessarily imply a better approxima-
tion of the series to the function.
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Fig. 1 Determination of A% in units of et = L ! for different
values of apr [32]. The extraction in different SF,-schemes (v =
—0.5,0,0.3) is shown, as well as a comparison with the final result
A%/ Href = 0.0791(19) [32]. As the reader can see, when the extrac-
tion is performed at high-enough energies (apt ~ 0.1), all schemes
nicely agree

2.3 The accuracy of perturbation theory at high energy

In this section we want to review some recent determinations
of Ay which paid particular attention to the issue of the
accuracy of perturbation theory in extracting Ay [31-35].
As we shall see, the concerns exposed in the previous sections
are legitimate once the precision goals become competitive.
A robust analysis of perturbative truncation errors is essential
to reach high accuracy.

2.3.1 The high-energy regime of Ny = 3 QCD

We begin with the high-energy studies of Refs. [31,32]
in Ny = 3 QCD. In Fig. 1, we show the results from these
references for LOA%:3) as a function of apy = gpp/(47)>%.
In this plot, uet = Ly '~ 43 GeV, is a convenient
high-energy reference scale and, as in previous sections,
grr = go(upr) is the value of the coupling in the given
scheme at which perturbation theory is applied to extract
A%/ Iref. The ratio A%/ WUref 18 obtained following Strat-
egy 1. of Sect. 2.2.3. The scales at which perturbation theory
is used correspond to upt = 2" pref, withn = 0,...,5,
and range from about 4 GeV to 140GeV. The couplings
considered in this study, go(u) = gsF, (L1, belong to
a family of finite-volume renormalization schemes based
on the QCD Schrodinger functional (SF) [36-38]. Different
schemes within the family are identified by different values
of the parameter v. The precise definition of the schemes is
not important and can be found in Refs. [31,32,39].11

In order to estimate A%/ Uref the 3-loop approxima-
tion to the relevant B-functions, Ssg,, is used. The results
for A%/ WUref are therefore expected to show corrections of

O(a%T) as apr — 0. It is important to note at this point

I Traditionally only the v = 0 scheme has been considered in appli-
cations, see e.g. Refs. [40-45] for some important examples.
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that the 3-loop coefficients of the S-functions in the different
SF, -schemes are given for Ny = 3 by [32,42,43] 12.

(47)*b5F = —(0.064(27) + v x 1.259(10)). (11)

Hence, from the perturbative point of view all schemes with
[v] < 1 appear to be on similar footing and the perturbative
expansion of their S-functions is well behaved.

From this observation, one might naively expect that
the O(afz,T) corrections to A%/ WUrer Obtained from differ-
ent intermediate schemes are similar too. Going back to
Fig. 1, we see that in all cases the results are well described
by a O(oc%,T) dependence over the whole range of inves-
tigated couplings. This is compatible with the expectation
from the known leading non-analytic term in the expan-
sion which is expected to be quite small at these couplings,
i.e. O(e29/@) [32]. However, we clearly see a substantial
difference in the size of the O(af,T) corrections depending
on the SF,-scheme that is considered. While one can find
cases (v = 0.3) where the O(af,T) corrections are insignif-
icant within errors, other schemes (v = —0.5) show signif-
icant corrections. The results for v = —0.5 at apt ~ 0.12,
for instance, show a 7—8% deviation from the final result
A%/Mref = 0.0791(19) quoted in Ref. [32], which corre-
sponds to the gray band in the plot.

As the value of the coupling at which perturbation theory
is applied becomes smaller, any significant difference among
the different determinations of A%/ Uret steadily fades
away. In particular, once apt ~ 0.1 isreached, any difference
is well below the statistical uncertainties on A% / Iref, Which
atthese couplings are at the level of 2—3%. A robust estimate
for A%/ WUret can therefore be obtained by taking its value at
apt ~ 0.1 from one of the schemes that show milder pertur-
bative corrections. The result A%/ Uref = 0.0791(19) given

above, for instance, corresponds to upt = 24,lLref ~ 70 GeV
from the v = 0 scheme (cf. v = 0 (fit C) in Fig. 1) [32].

The first important message from this study is that it is in
fact impossible to predict the actual size of perturbative trun-
cation errors only from the available perturbative informa-
tion. To reliably assess these errors, perturbation theory must
be tested against non-perturbative data over a wide range of
energy scales. From the study we presented, in particular,
we conclude that in order to be able to quote in full confi-
dence the competitive precision of 2 —3% on AST)S/ WUref, ONE
must reach non-perturbatively apt & 0.1. At these couplings
perturbative truncation errors are fully under control and the
error on A%/ WUret 1s entirely dominated by the statistical
uncertainties coming from the non-perturbative running of
the coupling.

It is now instructive to look at the result of the analysis of
the same data according to Strategy 2 of Sect. 2.2.3. The cor-

12 For comparison the 3-loop coefficient of Brs for N = 3 is
(A4m)3p)S = 0.324.

responding estimates for A%/ WUref are shown in Fig. 2 for
the two cases, v = 0, —0.5 [32]. The different determinations
in each plot are obtained by varying the parameter s entering
the perturbative matching between the MS-coupling and the
SF,-couplings (cf. Eq. (9)). The values of s considered vary
by about a factor 2 — 3 around the value of fastest apparent
convergence, s*. '3 In phenomenological determinations of
the QCD coupling the spread of the results obtained by vary-
ing s around some “optimal” value, typically by a factor 2
or so, is commonly used to get an estimate of perturbative
truncation errors (see e.g. Ref. [5]). Our intention is to test
how this approach works in the present case.

As one can see from Fig. 2, for all choices of s the data
show the expected O(otl%T) scaling. The slope of the data,
however, can vary significantly depending on the choice of
the parameter s. As expected, the significance of these dif-
ferences is reduced as apr — 0, and the different determi-
nations come together once apr < 0.1.

Whatis clear from the results of Fig. 2 is that the procedure
of assigning a systematic error based on the spread of the
results with s at some fixed coupling is not always reliable.
In the case of the v = 0 scheme (left panel), the spread in the
results between, say, s*/2 and 2s*, encloses the final estimate
(gray band in the plot) for all coupling values in the range. If
this uncertainly was added to the statistical errors, it would
give a conservative estimate for the total uncertainly. On the
other hand, in the case of the v = —0.5 scheme (right panel),
the procedure significantly underestimates the actual size of
the O(agT) corrections. Again apr &~ 0.1 has to be reached
for the perturbative uncertainties to be small compared to the
statistical ones.

From this second analysis we reaffirm the conclusion that
it is very difficult to reliably estimate perturbative truncation
errors if the coupling apr cannot be varied much, and if this
is confined to values significantly larger than apy ~ 0.1.

2.3.2 The case of the pure Yang-Mills theory

Finite-volume schemes. The second example that we
consider is taken from the recent study of Ref. [35] in the
pure Yang—Mills (YM) theory. This work presents an inde-
pendent analysis of the results from a previous study [33],
using novel techniques. Before entering the discussion, we
care to stress that the case of the pure Yang—Mills theory
is not just a curious example. As we shall see in the fol-

13 The scale factor s* is defined by (cf. Eq. (8)):

s* = —ANTS = exp a .
Ao 2bg

where by is the 1-loop coefficient of the S-function in Eq. (7), and
c1(1) is the 1-loop coefficient of the matching relation between the
MS-coupling giTS(u) and the coupling of interest gé (n) (cf. Eq. (9)).
With the choice s = s*, the k = 1 term in Eq. (9) vanishes.

@ Springer
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lowing section, through the strategy of renormalization by
decoupling precise results for A% can be obtained from the

accurate knowledge of A%. From this perspective, a robust
determination of the A-parameter of the pure YM theory is
very relevant.

In Fig. 3 we show the results for \/%A% from Ref. [35]

as a function of a3y The scale jtnag = 1/+/81g is defined in
terms of the flow time #y [47], while apr is once again the
value of the relevant coupling at the renormalization scale
wpt where perturbation theory is applied. Similarly to the
case of Ny = 3 QCD discussed above, different schemes and
strategies have been considered in order to extract A%/ Mhad
and study the perturbative truncation errors. In all cases,
the non-perturbative RG running from ppag up to upr is
obtained using a finite-volume scheme based on the YM gra-
dient flow (GF) [47-50]. The interested reader can find more
details about the scheme in the main Refs. [33,35] (see also
Sect. 4.3).

Once upr is reached, A%/ Ihad 1S estimated in a number
of ways. For the case labeled as (GF) in the plot, Strategy 1.
of Sect. 2.2.3 is employed using the 3-loop B-function in the
GF-scheme of choice [51]. In the other cases, the GF-scheme
is first non-perturbatively matched to the SF,—(-scheme
introduced in the previous section. Perturbation theory is then
applied either following Strategy 1. based on the SF,—-
scheme (SF label in the plot), or by following Strategy 2.
and matching the SF,_¢- and m-coupling (MS(s = 1,2)
in the figure). In the latter case, two values of the s-parameter,
s = 1, 2, are studied; note that s* &~ 2 in this case. In all cases,

@ Springer

aby = g/ (47)?

the leading parametric uncertainties in A%/ had from the

truncation of the perturbative expansion are of O(a%T).

Going back to Fig. 3 we see how two out of the four strate-
gies ((SF) and MS(s = 2))) give results which are essentially
independent on apt over the whole range of couplings con-
sidered for the extraction of A%/ Whad- Note that in going
from the largest to the smallest couplings the energy scale
varies by a factor 32 while apt changes by about a factor
2. On the other hand, the other two types of determinations
((GF) and MS(s = 1))) show a significant apr dependence,
roughly compatible with the expected O(ozfz,T) scaling. What
is remarkable is that even considering values of apr & 0.08
the different strategies give estimates for A%/ Uhad Which
vary up to & 3%. This is about twice as large as the statistical
errors on the points (cf. Table 3 of Ref. [35]). In the case of
the (GF) and (MS(s = 1)) determinations, it is clear that a
trustworthy estimate for A%/ [Lhad can be quoted only by
extrapolating the results for apt — 0. In general, perturba-
tive truncation errors are large also in the pure YM theory
given the precision one can reach.

The results above show us once again the importance of
an explicit non-perturbative calculation of the running of the
coupling over a significant range of values, reaching down
to small couplings, in order to assess the actual size of the
perturbative corrections. We join the authors of Ref. [35] and
conclude that only by studying non-perturbatively the limit
apr — 0 one can avoid the dangerous game of estimating
perturbative uncertainties at some finite (potentially large)
value of apr. Without studying this limit, the determinations
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can easily be affected by perturbative truncation errors, even
at surprisingly small values of the coupling.

Large-volume schemes. A precise determination of the A-
parameter in the pure YM theory is certainly very much facil-
itated from the computational point of view with respect to
the case of QCD. However, as we have seen in the previous
example, it is yet a non-trivial challenge to control pertur-
bative truncation errors once a 1—2% precision in Agyg is
reached.

The disagreement among some recent determinations of
A% is a clear signal that these difficulties should not be
underestimated. The issue is well illustrated in Fig. 3, where
the very precise results labeled (FlowQCD) from Ref. [46]
show a net tension with the determinations of Refs. [33,35].
We recall that the former result is based on extracting
Al(\%/ Ithad from the plaquette expectation value calculated in
large-volume simulations. Bare lattice perturbation theory at
couplings apt ~ 0.095—0.12is used, with parametric uncer-
tainties of O(a}%T). We refer the reader to the given reference
for the details. Here we just note that all the above determina-
tions satisfy the most stringent criteria set by FLAG (cf. Ref.
[3]). Yet, one or more of these results have underestimated
uncertainties.

Other groups have recently engaged in a precision deter-
mination of Al(\?[)S’ also with the intent of resolving the dis-
agreement above. The recent results of Ref. [34] based on the
qg-coupling, aqq, defined from the static potential [52], are
particularly interesting in this respect.!* We report them in
Fig. 4. In the case of aqq the corresponding B-function, Byq,
is known up to 4-loop order, and some partial information is
available also at 5-loops (see e.g. Ref. [55]). Determinations
of A%/ Mhad from ogq are hence expected to have asymp-

totically O(agq) corrections. In the plot, agq refers to the
coupling at which perturbation theory is used according to
Strategy 1. of Sect. 2.2.3, i.e. it corresponds to ap in our
previous discussions.

Despite the accurate perturbative knowledge there are a
few challenges when using the qg-scheme for precision deter-
minations of A% [34]. The most relevant ones for our dis-
cussion are, first of all, that the scheme is conventionally
defined in an infinite space-time volume. In order to measure
the coupling at small lattice spacings one therefore needs
large lattice sizes to maintain the physical extent of the lat-
tice large. In the computation of Ref. [34] lattice spacings
down to a ~ 0.01 fm are reached while keeping the lattice
extent L ~ 2 fm. This means simulating lattices with up to
L/a =~ 200. Secondly, the perturbative expansion of ctgq dis-

14" A similar earlier study on the challenges of extracting Agjs in both
Nt = 2 QCD and the pure-gauge theory using the qq-coupling can
be found in Ref. [53]. For a recent application of this scheme for the
computation of «s and a detailed account of the most recent results and
developments see Refs. [16,54].

SR
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Kitazawa et al. [9]
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0.56 - 4-loop + by, + byrr terms
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Fig. 4 A% in units of v/8fo determined at various values of agq = apr
[34]. The results using different orders of perturbation theory for fqq
are shown, as well as a comparison with the determinations of Refs.
[33] and [46]. (The reference numbers in the plot are those of Ref. [34]
from which the plot is taken.)

plays some infrared divergences starting at 3-loop order in
Bqq- When resummed these give rise to terms of the form,
oc(’]’q log(aqq)™, n > 3,1 <m < n — 2, which are enhanced
at small couplings (cf. Ref. [34]).

Figure 4 shows the results for A%/ had as a func-
tion of agq. The range of couplings covered by the data is
agq ~ 0.16 — 0.35. As we can see from the plot, for cou-
plings aqq 2 0.21 the results for A%/ Ihad have good pre-
cision, but perturbative uncertainties are large. This can be
seen by looking at the difference between the 3-loop and
4-loop results (or analogously between the 4-loop and 4-
loop + 5-loop log-terms results). At these large couplings,
the perturbative expansion seems to have reached its limit of
applicability. This severely limits the precision one can aim
at for A%/ Ihad if one is restricted to this range of couplings.
For couplings aqq < 0.21, the different orders of perturba-
tion theory seem to start converging. On the other hand, the
errors on the data become large. This is due to the difficulties
in extrapolating the results to the continuum limit [34]. In
fact, the errors are too large to make definite conclusions for
the relevant limit aqq — 0.

All in all, we see from this last example that a precise
determination of A% is a challenge. Finite-volume renor-
malization schemes allow us to cover a wide range of cou-
plings, reaching down to rather small values. Yet, having
control on perturbative truncation errors requires care. When
using large-volume schemes the situation is further compli-
cated by controlling continuum limit extrapolations at the
smallest (most relevant) couplings. Small couplings require
small lattice spacings, which require large lattice sizes in
order to keep the physical volume large. As a result, even
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in the computationally simpler case of the pure YM theory,
one might have precise data confined for the most part to a
region of couplings too large to have perturbative uncertain-
ties fully under control, while at smaller couplings the data
is not precise enough for a competitive determination of A.

2.4 The tricky business of continuum extrapolations

Having discussed the difficulties of estimating perturba-
tive truncation errors in precision determinations of the A-
parameters, we now want to touch on the issue of systematic
uncertainties related to the continuum limit extrapolations of
the relevant couplings.

To give the reader a feeling of the pitfalls that these contin-
uum extrapolations can conceal, we first consider the Ny = 3
results of Ref. [50]. The relevant quantity to look at in this
case is the step-scaling function (SSF) of the finite-volume
GF-coupling géF (u) with SF boundary conditions (see Refs.
[49,50] and Eq. (53) for the definition of this scheme). We
recall that the SSF, o (u), encodes the change in the coupling
u when the renormalization scale is varied by a factor of 2
[11]. Specifically, having set u = L™,

o) = Zor /Dl —r OW = lim Tla/L.uw).
(12)

It is clear from its definition that the SSF is a discrete version
of the B-function. The latter can in fact be obtained once the
SSF is known in a range of couplings (cf. Ref. [50]).

On the lattice, the SSF is determined by extrapolating to
the continuum limit its discrete approximations, X' (a/L, u).
In order to compute the latter one must first identify a set of
lattice sizes L/a and corresponding values of the bare cou-
pling go for which g2r(L~!) = u, with u a specific value.
The lattice SSFs ¥ (a/L, u) are then given by the couplings
gép((2L)’1) measured at the values of gg previously deter-
mined but on lattices with sizes 2L /a.

The results for the lattice SSFs of the GF-coupling of Ref.
[50] are shown in Fig. 5. They correspond to 9 values of the
coupling u; € [2.1,6.5],i = 1,...,9. As one can see from
the figure, the lattice data are very precise. On the other hand,
discretization effects are in general large, particularly so at
the largest couplings. The results for X' (u, a/L) vary in fact
by up to 20% in the range of L /a considered, which is quite
a significant change compared to the statistical errors on the
points.

Given the results in Fig. 5, we may expect that a simple fit
of the data linear in (a/ L)? is all that is needed to extrapolate
these to the continuum limit. In particular, we may consider
individual continuum extrapolations for each u; value using
the functional form

Swi,a/L) =0 +r™ x (a/L)? (fitA), (13)
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where al.(A), ri(A) are fit parameters. Within the uncertainties,

linearly in (a/L)? is in fact excellent and the above fits are
very good (x2/dof A 0.7). One is thus tempted to take the
precise values for oi(A) as estimates for the continuum SSF.

The continuum results so obtained are well described by
the simple relation: Aol.(A) = /oi(A)—l/ui ~ —0.082. Note
that this is the functional form expected from the perturba-
tive expansion of o (1) at 1-loop order, although the coeffi-
cient predicted by perturbation theory is slightly different,
i.e. & —0.079. 1> This observation suggests us to perform
alternative fits to the data in Fig. 5 considering the functional
form

/X, a/L) =1/c®

1

+r® x (@/L)? (itB), (14

with oi(B), rl.(B) new fit parameters. The quality of these fits is
as good as for the fits A of Eq. (13). Distinguishing between
the two fit forms would require significantly higher statistical
precision than the present one.

It is important to note at this point that any functional
form that we consider for the continuum extrapolations,
necessarily comes with assumptions. Both fits A and B
above, for instance, assume discretization errors of O(a”),
n > 3, to be negligible. Moreover, even focusing only on
the leading O(az) effects, we know from Symanzik effec-
tive theory (SymEFT) [56-58] that these are not simply
given by a “classical” term o< (a/L)?. They are in fact a
non-trivial combination of different terms which in the limit
a/L — 0are asymptotically (a/L)*In(L/a)~"%, orrather
« (a/L)*[g*(a 1", where I} € R, i = 1,2,..., and
g%(a~") is the given renormalized coupling of the effective
theory evaluated at a scale u = a1 (cf. Refs. [59-62]).

If terms of higher order than a? as well as logarithmic cor-
rections to pure a? scaling were completely negligible in the
data, the fit parameters oi(A) and al.(B) should perfectly agree.
From the results in Fig. 5 we see that there is in fact agree-
ment within one standard deviation. However, the difference
between the results from the two fits is clearly systematic,
with the results from fit B being always larger than those
from fit A.

The issue becomes more evident if one tries to obtain a
smooth parameterization for the continuum SSF from the fit-
ted continuum values o;. As noticed earlier, a fit of Ag; =
1/0; — 1/u; to a constant Ao provides a good description of
the continuum data o; in the whole range of u € [2.1, 6.5];

this is the case for both Ao and Aoi(B) (x%/dof < 1).

1

15 Perturbation theory predicts: o (u) u;() u + sou® + O@?), with
so = 2bo(Nr) In(2), where bo(Ny) is the universal 1-loop coefficient of
the S-function, Eq. (7) (see e.g. Ref. [32]). The close agreement between
the non-perturbative data for o (1) and 1-loop perturbation theory is
quite peculiar, considering the fact that it holds up to o (1) = O(10).
‘We refer the interested reader to Ref. [50] for a detailed discussion about
this point.
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Fig. 5 Continuum extrapolations of X'(a/L, u)/u for 9 different val-
ues of u € [2.1, 6.5] and 3 lattice sizes L/a = §, 12, 16

Given the 9 independent values of Ao; for each fit, the
results for the corresponding Ao are 3 times more precise
than the individual Ao;. The systematic effect then becomes
clearly noticeable as one finds: Ac‘4 = —0.0823(4) and
Ac®) = —0.0832(4), for the constant fits to Aai(A) and
Aoi(B), respectively.

The previous considerations show that the description of
discretization errors as pure (a/L)? effects is in this case
not accurate enough for the level of precision claimed in the
continuum limit. Even though the different functional forms
in Eqgs. (13) and (14) fit the data well and perfectly agree with
each other at finite L /a, the corresponding extrapolations for
a/L — 0 are clearly affected by some systematics. In Ref.
[50], more conservative error estimates and robust central
values for the continuum results are eventually obtained by
carefully accounting as systematic uncertainties in the data
the not entirely negligible effects of the higher-order terms
neglected in Egs. (13) and (14) (cf. Ref. [50] for the details).

The example above might not seem too pessimistic. How-
ever, it should come as a warning for the more general situa-
tion. Estimating properly the systematic uncertainties related
to continuum limit extrapolations of high-precision data can
easily become a challenge, particularly so if discretization
errors are not small.

As recalled earlier, the leading asymptotic dependence
of renormalized lattice quantities on the lattice spacing as
a — (s given by a combination of terms a”[gz(a’l)]”,
where the number and values of the I3, as well as n, depend
on the chosen discretization and set-up. The I are in fact
inferred from the anomalous dimensions of the fields defin-
ing the O(a") counterterms in the SymEFT, and the order
of perturbative improvement that has been possibly imple-
mented (cf. Ref. [61]). Hence, when one considers a pure
a" dependence for the discretization errors, one is implicitly
assuming that all I; &~ 0. This, however, cannot be taken for
granted.

For most cases of interest, the leading discretization
effects have n = 2, i.e. they are of 0(a?).1° The results
of Refs. [61,62] then show that in the case of QCD we
have O(10) different terms that contribute in general, and
I'; ~ [—0.1, 3] for several common discretizations and val-
ues of Ny = 2 — 4. '7 18 Having all I; > 0 is certainly posi-
tive. In particular, the contributions relevant in the massless
theory all have I'; > 0, which implies a faster approach to the
continuum limit with respect to pure a? terms. However, the
large number of terms contributing makes for a complicated
pattern of discretization errors in the general case, with no
clear contribution(s) dominating. As a result, it may be diffi-
cultin practice to identify the terms that are actually relevant.
Moreover, terms of the form az[g2 (@H)iwith I ~2-3
can be hard to distinguish from a> or a* terms in a limited
range of lattice spacings when statistical uncertainties are
present. '° The continuum estimates obtained by including
different contributions, on the other hand, may vary appre-
ciably. In this situation, precise and robust final estimates are
not easily achieved.

We stress that it is particularly important to take these
considerations into account when aiming for precise deter-
minations of short-distance quantities like the couplings. As
discussed in previous sections, in the most interesting region
of high energy, 1 > A, ap may not be so small. Continuum
extrapolations are thus likely to be difficult and require spe-
cial attention. Following the lines of Refs. [61,62] one should
take the non-trivial a-dependence predicted by SymEFT into
account, provided the information is available. If this is not
the case, one should try at least to estimate the uncertainties
associated with neglecting logarithmic corrections to classi-

16" A relevant exception is the case of the SF, for which the leading dis-
cretization errors are parametrically of O(a) (cf. Sect. 4.2.3). In appli-
cations, however, the O(a) effects are subdominant with respect to the
O(a?) effects, and often also compared to the statistical errors. The pre-
cision studies of Refs. [32,33,50] thus opt for treating the O(a) effects
as (small) systematic uncertainties in the data, and perform continuum
extrapolations assuming leading O(a?) effects. In this respect, we note
that in Refs. [61,62] the I relevant for the O(a) effects in the (pure-
gauge) SF have been computed. The results support the treatment of
O(a) effects pursued in Refs. [32,33,50] (cf. the given references for
the details).

17 The results refer to the contributions to discretization effects coming
from the lattice action, considering several popular options (cf. Ref.
[62]). If the relevant observable is not a spectral quantity, additional
effects originating from the lattice fields that define it are present. These
depend on the specific observable and choice of discretization (see,
e.g. Refs. [61,62]).

18 In the case of the pure-gauge theory only two terms from the lattice
action contribute to the O(a?) effects. The I for different options can
be found in Ref. [61]. In all cases, I} = 0.6.

19 1t is clear that even though the SymEFT can predict the form of the
leading asymptotic discretization errors, it cannot predict the region
where these dominate over formally suppressed contributions. In prac-
tice, it may thus be difficult to establish the regime of applicability of
the results from SymEFT.

@ Springer



66 Page 14 of 37

Eur. Phys. J. A (2021) 57:66

cal scaling, e.g. by considering terms o< a?[g%(a~")]%, with
I = 1 — 3, in the fit ansitze. Ideally, one would like to be
in the situation where within the uncertainties the continuum
estimates do not sensibly depend on whether these terms are
considered or not.

Given the observations above, we want to bring the
reader’s attention to a recent study where the non-trivial a-
dependence of discretization effects was found to be a rel-
evant issue. Specifically, we consider the computations of
Refs. [51,63] of the GF-coupling in the pure Yang-Mills
theory using Numerical Stochastic Perturbation Theory. 2°
In this framework, the lattice theory is numerically solved
through a Monte Carlo simulation up to a finite order in the
bare coupling go [64,65]. From expectation values in this
“truncated theory” one can obtain the perturbative coeffi-
cients of the expansion of lattice quantities in go.

In Refs. [51,63], the GF-coupling with SF boundary con-
ditions géF(u) has been computed up to two-loop order in

g%. Using the relation between ¢y = g(z) /(4m) and o =
(Nt=0)

MS [66,67], one can thus infer the relation

aGr(p) = ays(n) + ki(a/L)ag(i)
+ho(a/ Ly () + .. .. (15)

The coefficients ki (a/L), kp(a/L) are functions of the res-
olution a/L considered for the lattice. In order to obtain the
matching relation between the couplings in the continuum
limit the coefficients must be extrapolated for a/L — 0.
Focusing on the 1-loop coefficient, ki (a/L), from SymEFT
we expect that (see Refs. [51,63])

L

oo 1
ki@/L) 1 + 30 funla/L)" In(Lja)" , (16)

m=2n=0

with r,,,;, some constants. Note that the coefficient o of the
leading term o In(L/a) implicitly depends on the I pre-
dicted by SymEFT (cf. Sect. 5.2. of Ref. [61] and also Ref.
[62]). Compared to the case of the full theory, the results from
the truncated theory have a simpler (yet non-trivial) cutoff
dependence. Given the high precision reached in these cal-
culations, this allows for a clean illustration of the difficulties
in continuum extrapolations.

In Fig. 6 we show the results from Ref. [63] for k1 (a/L)
for two different values of the parameter ¢, 0.3 and 0.4, that
specifies the GF-scheme (cf. Refs. [51,63] and Eq. (53)).
Two different discretizations of the observable defining the

20 A recently expanded discussion in Ref. [35] provides another clear
illustration of the difficulties of continuum limit extrapolations of pre-
cise coupling data using results from the pure-gauge theory (cf. Figs. 6
and 7 of this reference and related discussion). We strongly recommend
the interest reader to consult this reference. We moreover refer to the
important pioneering studies of Refs. [59,60] in the non-linear o-model
in two dimensions.
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coupling (Eﬁ{gg, E,%lgg) are also considered. The simulated
lattices have sizes L/a = 10 — 32.

Starting from the results for ¢ = 0.3 (left panel of Fig. 6),
we see how the data is very precise but discretization effects
are sizable. In the plot we then show two types of extrapola-
tions to the continuum limit. For the first type (solid lines),
lattices with L /a = 12 —32 are fitted to the asymptotic form,
Eq. (16), considering the leading terms m = 2,n = 0, L.
The fits are good, x2/dof ~ 1, and the extrapolated results
for the two discretizations agree well. The m = 2,n = 1,
term is in fact crucial to obtain good fits. For the second set
of extrapolations (dashed lines), we consider instead lattices
with L/a = 12 — 24. In this case the data can be very well
described by a pure (a/L)? term (m = 2,n = 0) over the
whole range of lattice sizes. The continuum extrapolated val-
ues obtained from these fits have significantly smaller statis-
tical errors than the ones from the previous fits, and yet there
is perfect agreement between the two discretizations. On the
other hand, the results deviate from the previous estimates
by several of their standard deviations.

The results for ¢ = 0.4 exhibit qualitatively the same
features, although the statistical errors on kj(a/L) are about
a factor 2 larger and the two discretizations now show rather
different lattice artifacts. On the other hand, cutoff effects
are generally smaller than for ¢ = 0.3, and we thus include
L/a = 10 in the fits. It is clear that in both cases, ¢ =
0.3, 0.4, a reliable continuum extrapolation for ky(a/L) is
challenging due to the non-trivial a-dependence of the data.
In particular, larger lattices than the ones considered here are
clearly needed in order to obtain accurate continuum results
(cf. Ref. [51] for the final determination).

In conclusion, through these examples we saw how assess-
ing the systematics related to the continuum limit extrapola-
tions of couplings can be challenging. This is especially true
when one wants to maintain the high precision reached on
the lattice data also in the continuum limit, but discretization
errors are large. It then becomes hard to avoid systematic
biases in the final determinations. To this end, it is crucial
to test all the assumptions that enter the functional forms
chosen for the extrapolations. In particular, we must keep in
mind that good fits do not necessarily mean good results for
parameters, especially for extrapolations outside the range
covered by the data.

3 Heavy-quark decoupling

So far we focused on the main challenges that stand on the
way of a precise determination of A%) and discussed in
detail the cases of Ny = 0, 3. The interesting quantity for
phenomenology, however, is A%. At present, lattice esti-

mates of A% are for the most part based on determinations
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Fig. 6 Continuum extrapolations for kj(a/L). Results for ¢ = 0.3 (left panel) and ¢ = 0.4 (right panel) are shown, for two different discretizations

of the relevant observable. Different fits to the data are considered, cf. text

of A%, while just a handful are obtained from A% (cf. Ref.
[3]). As we shall recall in the next subsection, the most com-
mon strategy to obtain AST)S is in fact to non-perturbatively

compute A% through simulations of the Ny = 3 theory and
then rely on perturbative decoupling relations for the heavy
quarks to estimate the ratios A%/ A% and A%/A% (see
e.g. Ref. [3]).

The main reason for this is because, as is well-known,
simulating the charm quark dynamically is at present chal-
lenging, let alone the case of the bottom quark. While the
inclusion of the charm quark in the computation of the run-
ning of the QCD coupling may be only moderately challeng-
ing with a suitable strategy (see e.g. Ref. [68]), it does pose
important difficulties in large-volume hadronic simulations.
Besides the increased computational cost in simulating an
additional quark with respect to Ny = 2 + 1 simulations,
and the more complicated tuning of the bare QCD parame-
ters necessary to define proper lines of constant physics, dis-
cretization effects are a serious source of concern. Given the
currently most accessible lattice spacings in hadronic sim-
ulations, say ¢ 2 0.05fm, we have that am, 2 0.3 and
amyp 2 1, where for definiteness we took m, ~ 1.27 GeV
and mp ~ 4.2 GeV. In the hadronic regime it is therefore a
real challenge to control the discretization effects induced by
including the charm quark in simulations, and unrealistic for
the case of the bottom quark. This is particularly true for the
case of Wilson quarks where the charm quark can potentially
introduce large O(am.) effects, unless a complete Symanzik
O(a) improvement programme is carried out, which is cer-
tainly no simple task (see e.g. Ref. [69]).

In this situation, it is mandatory to assess the reliability of
the strategy presented above for the determination of A%. To
this end, in the following we shall recall the general theory of
decoupling of heavy quarks and critically address its applica-
tion in lattice determinations of A>). This includes both the
usage of perturbation theory for the inclusion of heavy-quark
loops in the running of the QCD coupling, that is to estimate

the ratios A%/A%, A%/A(4) as well as the determina-

MS’
tion of the physical units of A% from scale setting in the
Ny = 2 4 1 theory. As we shall see, given the current preci-
sion on A%, accounting for heavy-quark effects by means
of perturbation theory in the running of the QCD coupling is
remarkably accurate, even for the case of the charm quark. In
addition, charm-quark effects in (dimensionless) low-energy
quantities are found to be quite small, supporting the fact
that Ny = 2 + 1 QCD is accurate enough for establishing
the physical scale. As a result, competitive determinations of
Al(vsT)s are possible from results in the Ny = 3 flavor theory.

3.1 The effective theory for heavy-quark decoupling and
the QCD couplings

In this subsection we introduce the effective theory of heavy
quarks and recall how this is conventionally applied in the
determination of Al(\:jT)S' ‘We refer the reader to Refs. [70,71]
for a more detailed presentation.

3.1.1 The effective theory for heavy-quark decoupling

We begin by considering QCD with Ny flavors of quarks,
which in short we denote QCD N+ Of these, N, are consid-
ered to be light, while the other N, = Ny — N, are heavy.
For simplicity, we assume that the light quarks are degenerate
with mass m, while the heavy quarks are also degenerate but
withamass M > A. The effective theory associated with the
decoupling of the heavy quarks is formally obtained by inte-
grating out in the functional integral the fields associated with
the heavy quarks [72]. The field theory that results is charac-
terized by having an infinite number of non-renormalizable
interactions, which are suppressed at low energies by neg-
ative powers of the heavy-quark masses M. The couplings
of the effective theory can be fixed order by order in M~!
by requiring that, at each given order, a finite number of
observables is equal to the corresponding ones in the funda-

@ Springer



66 Page 16 of 37

Eur. Phys. J. A (2021) 57:66

mental theory. Once the couplings are fixed up to a certain
order M ™", the effective theory is said to be matched to the
fundamental one at this order, and can be used to describe
the effects of the heavy quarks at low energies up to correc-
tions of O(M ~"~1). In this sense, we say that as M — oo
the heavy quarks decouple from low-energy physics as their
effects eventually fade away [73].

In formulas, the Lagrangian of the effective theory is of
the general form (see e.g. Ref. [71])

1 1
Edec=£0+ﬁﬁ