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Abstract Non-perturbative scale-dependent renormaliza-
tion problems are ubiquitous in lattice QCD as they enter
many relevant phenomenological applications. They require
solving non-perturbatively the renormalization group equa-
tions for the QCD parameters and matrix elements of inter-
est in order to relate their non-perturbative determinations at
low energy to their high-energy counterparts needed for phe-
nomenology. Bridging the large energy separation between
the hadronic and perturbative regimes of QCD, however, is a
notoriously difficult task. In this contribution we focus on the
case of the QCD coupling. We critically address the common
challenges that state-of-the-art lattice determinations have to
face in order to be significantly improved. In addition, we
review a novel strategy that has been recently put forward
in order to solve this non-perturbative renormalization prob-
lem and discuss its implications for future precision deter-
minations. The new ideas exploit the decoupling of heavy
quarks to match Nf -flavor QCD and the pure Yang–Mills
theory. Through this matching the computation of the non-
perturbative running of the coupling in QCD can be shifted
to the computationally much easier to solve pure-gauge the-
ory. We shall present results for the determination of the
Λ-parameter of Nf = 3-flavor QCD where this strategy has
been applied and proven successful. The results demonstrate
that these techniques have the potential to unlock unprece-
dented precision determinations of the QCD coupling from
the lattice. The ideas are moreover quite general and can be
considered to solve other non-perturbative renormalization
problems.

Affiliation with institutions 1 and 2 ended on 31/10/2020.
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1 Introduction

Renormalization is a fundamental step in order to extract
(meaningful) phenomenologically relevant results from lat-
tice QCD calculations. For the lattice theorist it is natu-
ral to renormalize the bare parameters of the lattice QCD
Lagrangian and the composite operators of interest in terms
of some hadronic renormalization schemes (cf. Refs. [1,2]).
In order to make the determinations accessible to phenome-
nologists, however, it is often necessary to translate the results
obtained in the chosen hadronic schemes to results in the
(perturbative) schemes and at the scales commonly consid-
ered in phenomenology. In practice, this requires the deter-
mination of the non-perturbative renormalization group (RG)
running of the renormalized QCD parameters and operators
in some convenient intermediate scheme, from the hadronic
scales where they were originally defined, up to some high-
energy scale, where perturbation theory eventually applies
and a matching to phenomenological schemes can be per-
formed.

Over the last decade or so, lattice QCD has entered a pre-
cision era for an increasingly large set of quantities (cf. Ref.
[3]). Renormalization is a relevant part of many of these
computations where it can significantly impact the quality
of the final results. Hence, as we are forced to become more
aware of all possible sources of uncertainties in the determi-
nation of the bare lattice quantities, the same care must be
reserved to their renormalization. In particular, as any other
lattice calculation, besides the statistical errors the determi-
nations of renormalized parameters and operators have their
systematics to deal with, i.e. discretization effects, finite-
volume effects, quark-mass effects, and, when a matching
to phenomenological schemes is necessary, also perturbative
uncertainties. It is therefore important that the development
in strategies to compute (bare) lattice quantities is accompa-
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nied with new ideas to improve their renormalization, so to
guarantee a precise and robust end result.

An extreme example of this situation, if we can call it
this way, is the determination of the QCD parameters. In
this case we can say that the problem is entirely a renormal-
ization problem, which, however, has very important phe-
nomenological applications. On the lattice, the QCD cou-
pling and quark masses are renormalized in terms of hadronic
masses and decay constants, while in phenomenology the
QCD parameters are needed at energies of the order of a hun-
dred GeV and above. One would thus think that lattice QCD
is not the right tool for providing this information given the
very high energies involved. It appears more natural indeed
to obtain these parameters directly from high-energy quan-
tities, rather than from the hadronic spectrum. As we shall
recall later in this contribution, this is actually not the case,
as lattice techniques offer an ideal framework for these com-
putations.

For the last 10–15 years, lattice QCD has consistently
delivered some of the most precise determinations for the
QCD parameters, as in particular for the QCD coupling αs

(see e.g. Refs. [3–5]).1 The current world average for the
QCD coupling evaluated for reference at the Z -boson pole
mass MZ is αs(MZ ) = 0.1179(10) [5], and has a preci-
sion of about 0.8%. The lattice determinations alone give
αs(MZ ) = 0.1182(8) [3], and are the most precise subcate-
gory of those considered by the PDG. Besides the high pre-
cision of the individual state-of-the-art determinations, it is
important to emphasize also their overall consistency. This
is a rather non-trivial result considering the fact that even
though all lattice determinations share some common sys-
tematics, these are probed quite differently by considering
very different strategies [3]. It is fair to say that such a vari-
ety of approaches within a PDG subcategory is in fact unique
[5].

Despite the tremendous efforts on and off the lattice, how-
ever, the current uncertainty on αs is still large. It is one of
the largest sources of uncertainty in several key processes,
particularly so within the Higgs sector, and it is expected to
be a limiting factor in many high-precision studies at future
colliders (see e.g. Refs. [4,6]). An uncertainty on αs(MZ )

comfortably below the percent level is desired for precision
applications. For these reasons, there are plans for future phe-
nomenological determinations of αs(MZ ) aiming at reach-
ing the extremely competitive accuracy of 0.2% using high-
luminosity high-energy data (see e.g. Refs. [7–10]). The lat-
tice community needs to meet the challenge.

1 We here adopt the common notation αs(μ) ≡ α
(5)

MS
(μ), where α

(5)

MS
(μ)

is the QCD coupling of the 5-flavor theory renormalized in the MS-
scheme (see e.g. Ref. [5]). Note that for the ease of notation we often
omit to write explicitly the μ-dependence of the coupling.

Reducing the current uncertainties on lattice determina-
tions of αs by such an important factor is not easy. Simi-
larly to several phenomenological determinations most lat-
tice determinations of αs are currently limited by systematic
uncertainties related to the use of perturbation theory at rela-
tively low scales [3]. The issue is due to the fact that reaching
high energy on the lattice requires small lattice spacings to be
simulated and this is in general difficult without a dedicated
strategy.

A way around this has been known since a long time and
it is based on the concepts of finite-volume renormalization
schemes and finite-size scaling (or step-scaling) techniques
[11,12]. The methods have been recently applied for obtain-
ing one of the most precise determinations of αs [13]. The
key feature of the approach is that it allows for reaching high
energy with all systematics under control. This puts the lat-
tice determinations in the privileged position of being able
to reach in a clean and controlled way high energies fully
non-perturbatively. The systematics due to the application
of perturbation theory, in particular, can be entirely avoided
at the expenses of the statistical errors accumulated in run-
ning from low up to high-enough energy. The net advantage
of this situation is that differently from systematic uncer-
tainties, statistical errors can be straightforwardly reduced.
Nonetheless, a reduction of the current uncertainties on αs by
an important factor is yet a computationally expensive task,
even employing a step-scaling strategy (cf. Ref. [13]).

In this contribution we want to review the recent proposal
made in Ref. [14] which may allow for such error reduction in
a substantially cheaper way. The key feature of this proposal
is that one can replace the computation of the RG running of
the coupling in Nf -flavor QCD with that in the pure-gauge
theory. It is clear that, regardless of the chosen strategy, this
allows for a substantial simplification of the problem.

In short, the idea is built on three main steps and exploits
the decoupling of heavy quarks in a couple of ways. In the first
step, heavy-quark decoupling is used to connect a low-energy
scale μdec in Nf -flavor QCD with the corresponding scale in
the pure-gauge theory. This is achieved through the compu-
tation of a massive renormalized coupling in an (unphysi-
cal) theory with Nf heavy quarks of mass M � μdec. In
a second step, by computing the non-perturbative RG run-
ning in the pure Yang-Mills theory of a convenient coupling
one obtains the pure-gauge Λ-parameter in units of μdec,
i.e. Λ

(Nf=0)

MS
/μdec. Finally, perturbative decoupling relations

are invoked at a scale μ ≈ M to estimate the ratio of Λ-
parameters in the Nf -flavor and pure Yang-Mills theory, that
is, Λ

(Nf=0)

MS
/Λ

(Nf )

MS
. Putting these steps together, one obtains

Λ
(Nf )

MS
/μdec, and given the physical value of μdec finds Λ

(Nf )

MS
.

Considering Nf = 3 or 4, once Λ
(Nf )

MS
is determined one

proceeds as usual and applies perturbative decoupling rela-
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tions at the charm and/or bottom quark-mass scale to estimate
Λ

(Nf=5)

MS
and from it αs(MZ ).

The strategy has already been proven successful in the
determination of Λ

(Nf=3)

MS
[14]. The ideas presented in

this reference are however general and may be applied to
solve other non-perturbative scale-dependent renormaliza-
tion problems that face analogous challenges.

The outline of this contribution is the following.
We begin in Sect. 2 by recalling the main challenges in

solving scale-dependent renormalization problems on the lat-
tice. The emphasis will be on the determination of the QCD
coupling. Besides introducing important concepts for later
sections, the presentation gives us the opportunity to discuss
some recent interesting determinations. These clearly illus-
trate the difficulties that state-of-the-art computations of the
coupling have to face in order to be significantly improved.

In Sect. 3, we introduce the theory of heavy-quark decou-
pling and present the results of several recent studies that
systematically assessed the size of non-perturbative effects
induced by heavy quarks. More precisely, the accuracy of
using perturbative decoupling relations to match the Λ-
parameters of different Nf -flavor theories is investigated, as
well as the corrections due to the heavy quarks in low-energy
quantities. These studies not only set the foundation for the
renormalization strategy based on decoupling, but also estab-
lish the precision at which αs can be obtained from results in
Nf = 3 QCD.

In Sect. 4, the application of heavy-quark decoupling to the
determination of the Nf -flavor QCD coupling is described in
detail and the results of Ref. [14] for Λ

(Nf=3)

MS
are presented.

We conclude in Sect. 5 with some comments on the future
prospects for αs determinations in view of this new strategy.

We care to note that it is not the aim of the present contribu-
tion to discuss in detail the many different lattice approaches
that are currently considered to determine the QCD coupling.
In particular, we do not provide a complete account of all
recent determinations. For such a discussion, we refer the
interested reader to the comprehensive work of FLAG [3] and
to other interesting recent reviews (see e.g. Refs. [15,16]).

2 Precision determinations: the case of αs

Before presenting the renormalization ideas based on decou-
pling, we believe it is important to put these into context.
The aim of these strategies, in fact, is not simply that of
providing alternative ways to solve non-perturbative scale-
dependent renormalization problems. The goal is to develop
a framework that will allow us to improve significantly our
control over the current most relevant uncertainties. In this
section, we thus want to recall what the main challenges are
in solving this class of problems and which are the common
approaches that are used to tackle them. Many of the con-

cepts and observations that will be presented are for the most
part well known. However, these issues are now more current
than ever given the high precision that lattice QCD calcula-
tions have achieved, in particular in the determination of the
QCD parameters. For this reason, we think it is important
to address them also here. This gives us the opportunity to
discuss some new insight that has been gathered from sev-
eral recent high-precision studies, as well as introducing key
concepts for later sections.

As anticipated, the discussion will focus on the case of the
QCD coupling αs. This allow us to analyze in easier terms the
main challenges that we need to face in high-precision non-
perturbative determinations of RG runnings while capturing
all the relevant issues. Moreover, lattice determinations of
the strong coupling are a distinct case of competitive calcu-
lations which have the potential to deliver unprecedentedly
precise results for a very relevant and fundamental quantity.
Making a significant progress over the present state-of-the-
art determinations by mere brute force, however, is extremely
demanding from the computational point of view. It is there-
fore mandatory to develop new strategies with the clear scope
of improving our control on all sources of uncertainty.

2.1 Determinations of αs on and off the lattice

As already mentioned, since more than a decade lattice QCD
is providing the Particle Physics community with the most
accurate determinations of αs (see Refs. [3–5]). The reason
behind this is that, as we shall recall, lattice determinations
have some important advantages over their phenomenologi-
cal counterparts (see e.g. Refs. [2,6,15] for some reviews).

Any determination of αs, whether on the lattice or not,
relies on the following basic strategy. One considers a short-
distance observable O(q) which depends on a characteristic
energy scale q. In the limit where q → ∞, this observable
is compared with its theoretical prediction, Oth(q), in terms
of a perturbative expansion2

Oth(q)=
N∑

n=0

kn(s)α
n
s (μ)+O(αN+1

s )+O

(
Λp

q p

)
, μ= q

s
.

(1)

The functions kn(s) appearing in this equation are the coef-
ficient functions defining the perturbative series. They are
known up to some order N and depend on the scale factor,
s > 0, that relates the renormalization scale μ at which αs is
extracted with the scale q. The basic difference between phe-

2 Note that in general the couplingαs to be considered here should be the
QCD coupling of the relevant Nf -flavor theory, i.e. αs(μ) ≡ α

(Nf )

MS
(μ),

from which α
(5)

MS
(MZ ) can eventually be extracted (cf. e.g. Ref. [3] and

Sect. 3.1.2). At this stage, however, we prefer to keep the discussion
simple. We shall return to this point later in detail.
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nomenological and lattice determinations of αs is the choice
of the observable O(q).

Requiring Oth(q) = O(q) for some finite q, clearly fixes
the value of αs(μ) only up to some error. This error comes
from several different sources, many of which are common
to all types of determinations. First of all, there is the pre-
cision δO(q) to which the observable O(q) is known. This
of course depends on the relevant statistical and systematic
uncertainties associated with the determination ofO(q). Sec-
ondly, there is the effect of the truncation of the perturbative
series to a given order, i.e. the size of the O(αN+1

s ) terms in
Eq. (1). In addition to these there are contaminations from
“non-perturbative contributions”. These are represented in
Eq. (1) by power corrections to the perturbative expansion of
O(Λp/q p), where p > 0 and Λ is some characteristic non-
perturbative scale of QCD.3 Thus, regardless of the chosen
strategy, an accurate determination of αs needs to have, at
least, these general sources of error under control. Note that
for the most part these are systematic in nature.

Lattice determinations of αs are in principle favored in
several ways in succeeding at this task. Firstly, on the lattice
the QCD parameters are first renormalized in terms of some
precisely measured hadronic quantities (e.g. hadron masses,
decay constants, etc.), for which experimental uncertainties
typically contribute only marginally to the end result. Once
these are fixed, one has lots of freedom in choosing an observ-
able O(q) as the getaway to extract αs. One can therefore
devise convenient observables which have small statistical
and systematic uncertainties; in particular there is no need for
these quantities to be accessible in experiments. Phenomeno-
logical determinations of αs, instead, rely on experimental
data for the observable O(q). It is the typical situation that
when q becomes large, and therefore many sources of sys-
tematic uncertainty in Eq. (1) become small, the experimental
errors δO(q) become large. It is thus difficult to find in gen-
eral a single experimental quantity O(q) that allows one to
accurately follow its scale dependence over a wide range of
q-values. On the lattice, on the other hand, if carefully cho-
sen, O(q) can be computed precisely from low- up to very
high-energy scales. This gives a unique handle on control-
ling non-perturbative corrections and the contribution of the
missing perturbative orders in Eq. (1).

Another advantage for the lattice theorist is that O is
defined within QCD alone. Consequently, the theoretical
description Oth of Eq. (1) does not need to include contribu-
tions besides those from QCD. In addition, no modeling of
hadronization is needed when comparing the observable O

3 Our knowledge of the form of non-perturbative effects is in fact rather
limited. In addition, strictly speaking, perturbative and non-perturbative
contributions cannot really be separated due to the asymptotic nature
of the series (see e.g. Ref. [17]). However, as the discussion is at this
point qualitative we simply adopt the simplistic representation of non-
perturbative effects as power corrections to the perturbative expansion.

with its perturbative predictionOth. Different is again the sit-
uation for phenomenological determinations. In these cases,
other Standard Model (SM) contributions may be needed in
order to extract αs and some modeling of hadronization is
necessary. Depending on the process, these are known only
up to some accuracy and typically depend on the value of
other SM parameters as well. The precision one can aim
for αs can therefore be limited by these factors.4 Of course,
lattice QCD determinations are not entirely exempted from
this issue. In this case, however, the problem of disentan-
gling the QCD contributions from “the rest” is confined to
the hadronic quantities entering the renormalization of the
theory, rather than to the observable O itself. As mentioned
earlier, the uncertainties on the hadronic quantities have, at
present, limited impact on the results for αs.

All current lattice QCD determinations of αs, on the other
hand, have to deal with the fact that their calculations are
performed with an unphysical number of quark flavors. The
bottom and typically also the charm quark are in fact not
included in the simulations. This brings up the issue of having
to account for their missing contributions. We shall leave this
very important discussion aside for the moment and come
back to it in detail in the following (see Sect. 3).

2.2 The challenge of reaching high energy

Having for the most part presented the pros that lattice deter-
minations of αs in principle have, we now address what the
main difficulties are in practice.

As any lattice QCD observable, besides the statistical
uncertainties, O(q) is affected by several systematics that
need to be controlled. These include general ones, i.e. dis-
cretization errors, finite-volume effects, an unphysical num-
ber of quarks, and quark-mass effects, as well as others which
depend on the specific choice of O and set-up that we make
(e.g. excited-state contaminations, finite-temperature effects,
Gribov copies, topology freezing, etc.). Finite quark-mass
effects are typically not a relevant issue in determinations of
the QCD coupling [3]. As anticipated, we then leave the prob-
lem of having an unphysical quark-content for later. We also
ignore observable specific issues. Here we focus instead on
discretization and finite-volume effects. The combination of
having the two under control, in fact, can severely restrict the
accessible range of q-values, if the renormalization strategy
is not carefully chosen.

In particular, if one is determined in resolving within the
same lattice simulation both the hadronic energy scales rel-
evant for the renormalization of the lattice theory, and the
energy scale q at which αs is extracted, then one is necessar-

4 Experimental observables are in principle sensitive also to any New
Physics. How this affects the extracted value of αs, however, is some-
thing hard to assess.
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ily limited by the simultaneous constraints:

L−1 � Λ and Λ � q � a−1 . (2)

The first inequality expresses the fact that finite-volume
effects must be under control in hadronic quantities. The
infrared cutoff set by the finite extent L of the lattice must
be smaller than the typical non-perturbative scales of QCD,
denoted here by Λ. The second inequality, instead, encodes
two separate requirements. On the one hand, the scale q must
be much lower than the ultraviolet cutoff set by the lattice
spacing a. In this way, discretization errors in O(q) are kept
under control, and O(q) can be obtained in the continuum
limit with controlled errors.5 On the other hand, q needs to be
much larger than the scales Λ. Only in this situation perturba-
tion theory can reliably be applied to extract αs by comparing
O(q) with Eq. (1).

The typical lattices that are simulated today have sizes
L/a � 100. Taking for definiteness mπ L = 4, with mπ =
140 MeV, the first condition in Eq. (2) implies that for such
ensembles q � a−1 ≈ 3.5 GeV. Of course this is a crude
estimate and somewhat higher energies might be achieved by
compromising at different stages of the calculation (e.g. con-
sidering heavier pion masses or smaller volumes in order to
reach smaller values of a, or taking aq � 1). Nonetheless,
it is clear that although convenient in practice, considering
lattices devised for studying hadronic physics to compute
short-distance quantities necessarily poses severe challenges
on the feasibility of the approach, as the accessible energies
q are quite limited.

As a concrete example of this situation, we can point to the
recent determination of αs of Ref. [19]. For their computation
the authors employ state-of-the-art large-volume simulations
by the CLS initiative [20,21]. The two-point functions of both
axial and vector currents at short-distances are used to extract
αs. Given the range of lattice spacings at their disposal, a ≈
0.04−0.08 fm, the accessible energies for which continuum
limit extrapolations could be performed in a controlled way
are limited to q � 2 GeV.

As we shall see below with explicit examples, a limited
range of low q-values unavoidably implies a limited attain-
able precision for αs as perturbative truncation errors become
a major issue.

5 Here and in the following we assume that O(q) is a properly renor-
malized lattice quantity with a well-defined continuum limit and free
from infrared divergences. Alternative strategies extract αs from bare
lattice quantities by taking q ∝ a−1 and expressing their expansion in
lattice perturbation theory in terms of αs (see e.g. Ref. [18]). In these
cases, discretization errors and scale dependence ofO(q) are entangled.
Addressing systematic uncertainties becomes more subtle and requires
a separate discussion (see Ref. [3]).

2.2.1 The finite volume is your friend

In order to reach high precision we must tailor the lattice
simulations to the problem at hand. Going back to Eq. (2),
there is in fact no reason to try to satisfy simultaneously
the two conditions as these belong to separate problems. On
the one hand, there is the determination of the low-energy
quantities used for the hadronic renormalization of the lattice
theory, while, on the other hand, there is the determination
of O(q) for large q.

A more natural strategy is therefore to split the problem
over several sets of lattice simulations, each one covering
a different range of energy scales. In this way, systematic
effects can be more easily kept under control, as the rele-
vant conditions will be milder for each individual set of sim-
ulations. The way to effectively achieve this in practice is
to employ what are known as finite-volume renormalization
schemes [11]. In this case, the scale q at which the observ-
able O(q) is evaluated is identified with the inverse linear
extent of the finite volume, i.e. q = L−1. One may say that,
in fact, the observable O considered is a finite-volume effect.
With this choice, one computes the non-perturbative RG run-
ning ofO(L−1) by simulating lattices with different physical
extent L . This strategy goes under the name of finite-size (or
step-)scaling [11,12] (see Ref. [2] for a recent account).

More precisely, having fixed the bare QCD parameters
through some hadronic quantities, one computes O(L−1

had)

at a low-energy scale qhad ≡ L−1
had ≈ Λ, and deter-

mines Lhad in physical units. This is achieved by computing
lima→0(amhad)(Lhad/a) = O(1), where mhad is a known
low-energy scale. No large scale separations are involved in
this step, and at common bare parameters one can satisfy the
conditions Lhad/a � 1 and amhad � 1, as well as having
finite-volume effects in mhad under control.

Secondly, one computes in the continuum limit the change
in O(L−1) as L is varied by a known factor, say, L → L/2.
This step is repeated a number of times n, going from each
new L to the next one. Once the energy scale reached, qn =
2n/Lhad, is large compared to the hadronic scales, perturba-
tion theory can safely be applied to extract αs(μPT = qn/s)
from the value of O(qn) (cf. Eq. (1)).

It is important to emphasize that, if carefully chosen, the
only source of systematic errors that affect the determination
of O(L−1) are discretization effects. In particular, no matter
what the scale q = L−1 is, discretization effects are under
control once L−1 = q � a−1, i.e. L/a � 1. This approach
elegantly exploits the freedom that we have in lattice QCD
in choosing the observable O(q) to completely circumvent
the issue of necessarily having a finite volume. In particu-
lar, within this strategy the computational power is entirely
invested into controlling a single systematic uncertainty.
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In principle there is quite some freedom in choosing the
finite-volume observable O(q). For the strategy to be suc-
cessful in practice, however, this should have a number of
desirable properties (see e.g. Ref. [2]). First of all, it should
be easily and precisely measurable in Monte Carlo simula-
tions. It should be computable in perturbation theory to a suf-
ficiently high-loop order in order to guarantee good precision
in extracting αs through Eq. (1). It should preferably be gauge
invariant, in order to avoid issues with Gribov copies once
studied non-perturbatively, and also be directly measurable
for zero quark masses (see below). Finally, it should have, in
general, small lattice artifacts. In fact, it is not straightforward
to find a single observable that has all these nice features for
any range of q-values. This, however, is not a real issue as
different observables may be accurately combined in order to
cover all the relevant range of scales q. We shall see explicit
examples of good complementary observables in forthcom-
ing sections.

2.2.2 Λ-parameters, β-functions, and all that

As we leave the general discussion for entering a more quan-
titative analysis of the challenges of extracting αs, we find
convenient to reformulate the problem in slightly different
terms. First of all, it is useful to associate with the observable
O a renormalized coupling ḡO through the relation:

αO(μ) ≡ ḡ2
O(μ)

4π
≡ O(μ) − k0

k1

μ→∞= αs(μ)

+k2

k1
α2

s (μ) + . . . , (3)

where the coefficients ki ≡ ki (1) are those appearing in
the perturbative expansion, Eq. (1). This simple procedure
defines a non-perturbative, regularization-independent, QCD
coupling. In terms of these couplings, the extraction of αs is
interpreted as the perturbative matching between αO and αs,
where different observables O define different renormaliza-
tion schemes. The common normalization allows us to com-
pare the value of the couplings in different schemes as they
approach the high-energy limit. This is useful in assessing
the regime of applicability of the perturbative matching as
the latter can be characterized by the value that αO should
reach.

We recall at this point that the non-perturbative couplings
studied within lattice QCD are implicitly defined for a given
number of quark flavors, Nf . A more proper notation to use
for the couplings is therefore α

(Nf )

O (μ) ≡ [ḡ(Nf )

O (μ)]2/(4π),

which emphasizes the fact that ḡ(Nf )

O (μ) must be considered
as a coupling within the Nf -flavor theory. For ease of nota-
tion, however, in this section we will often take the liberty
of dropping the superscripts Nf and leave these understood,

unless they are needed to avoid any confusion or for later
reference.

Having this noticed, a particularly convenient class of
schemes to consider are mass-independent (or simply mass-
less) renormalization schemes [22]. These are defined in
terms of observablesO evaluated for vanishing quark masses.
As a result, the RG running of these couplings is decoupled
from that of the renormalized quark masses and therefore
simpler to solve. On the other hand, differently from the phys-
ical case of massive schemes, quarks do not decouple in the
RG running of massless schemes [23,24]. Hence, in the Nf -
flavor theory the latter is characterized by a fixed number of
active flavors corresponding to Nf .6

To the coupling ḡ(Nf )

O in a given mass-independent scheme
we can associate a quark-mass independent Λ-parameter,
Λ

(Nf )

O , defined as,

Λ
(Nf )

O = μϕ
(Nf )

g,O (ḡ(Nf )

O (μ)) ,

ϕ
(Nf )

g,O (ḡ) = (b0(Nf)ḡ
2)

− b1(Nf )

2b0(Nf )2 e
− 1

2b0(Nf )ḡ2 ×

× exp

{
−

∫ ḡ

0
dg

[
1

β
(Nf )

O (g)
+ 1

b0(Nf)g3 − b1(Nf)

b0(Nf)2g

]}
.

(4)

Through this relation, the value of the coupling ḡ(Nf )

O (μ) at
any renormalization scale μ is in one-to-one correspondence
with Λ

(Nf )

O , provided that the β-function,

β
(Nf )

O (ḡ) ≡ μ
dḡ(Nf )

O (μ)

dμ

∣∣∣∣
ḡ
, (5)

is known. The β-function describes the dependence of the
coupling on the renormalization scale. In perturbation theory,
it has an expansion which at the N -loop order reads:

β
(Nf ) PT
O (ḡ) ≡ −ḡ3

N−1∑

k=0

bk(Nf) ḡ
2k , (6)

with

b0(Nf) = 1

(4π)2

(
11 − 2

3
Nf

)
,

b1(Nf) = 1

(4π)4

(
102 − 38

3
Nf

)
. (7)

The coefficients b0(Nf), b1(Nf) are universal and shared by
all mass-independent renormalization schemes. The scheme
dependence only enters through the higher-order coefficients,
bi (Nf) ≡ bOi (Nf), with i ≥ 2.

A first compelling property of Λ-parameters is that, differ-
ently from the case of couplings, their scheme dependence is
in fact trivial. Leaving the Nf -dependence implicit and tak-
ing the Λ-parameter in the MS-scheme, ΛMS, as reference,

6 We shall return on these points in more detail in Sect. 3.
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we have that any other Λ-parameter ΛO is exactly related to
ΛMS by the relation:

ΛMS

ΛO
= exp

{
c1(1)

2b0

}
. (8)

In this equation c1(1) is the 1-loop coefficient of the perturba-
tive matching relation between the corresponding couplings,
which at M-loop order reads,

ḡ2
MS

(sμ) = ḡ2
O(μ)

(
1 +

M∑

k=1

ck(s)ḡ
2k
O (μ)

)
, s > 0 . (9)

It is clear that the Λ-parameters are non-perturbatively
defined once the corresponding couplings and β-functions
are.7 In addition, they are exact solutions of the Callan-
Symanzik equations [25–27], and therefore RG invariants,
i.e. dΛO/dμ = 0. From a non-perturbative perspective this
makes the Λ-parameters natural quantities to compute, as
they provide reference scales for both the low- and high-
energy regimes of QCD. We finally stress that, as their corre-
sponding couplings, the Λ-parameters are defined for a given
number of quark flavors, Nf (cf. Eq. (4)). Each Nf -flavor the-
ory therefore has its own Λ-parameters.

2.2.3 Systematic uncertainties in extracting Λ
(Nf )

MS

Once the overall energy scale of the given Nf -flavor theory
has been set,8 the non-perturbative value of the coupling,
ḡPT ≡ ḡO(μPT), in any scheme, at some high-energy scale
μPT, allows for estimating Λ

(Nf )

MS
. Below we present two com-

monly employed strategies.

Strategy 1. Using Eq. (4) we first get an asymptotic estimate
for ΛO/μPT as,

ΛO
μPT

= ϕg,O(ḡPT)
ḡPT→0≈ ϕPT

g,O(ḡPT) + O
(
ḡ2N−2

PT

)
. (10)

In this relation, ϕPT
g,O is defined analogously to ϕg,O of Eq. (4)

but with the replacement βO → βPT
O , with βPT

O the pertur-
bative β-function of Eq. (6). From the estimate of ΛO/μPT,
ΛMS/μPT is obtained, with no further approximation, using
Eq. (8). Finally, the knowledge of μPT in physical units gives
us ΛMS.

As anticipated by Eq. (10), due to the truncation of βO
to N -loop order in the evaluation of ΛO/μPT, our esti-
mate for ΛMS/μPT, comes with a systematic uncertainty of
O

(
ḡ2N−2

PT

)
. It is important to stress that Eq. (10) is in fact only

asymptotic. Similarly to what we discussed about Eq. (1), our

7 Interestingly, Eq. (8) provides an indirect non-perturbative definition
of ΛMS through the Λ-parameter of any non-perturbative scheme.
8 The issue of fixing the scale of a theory with an unphysical value of
Nf will be addressed in Sect. 3.

estimate for ΛMS/μPT is in principle also affected by “non-
perturbative corrections”, if the coupling ḡPT is not small
enough for perturbation theory to be in the regime of appli-
cability. We shall come back to this issue shortly.

Strategy 2. A second possibility to estimate ΛMS is to first
obtain from the non-perturbative value of ḡPT an estimate for
ḡMS(sμPT) using the M-loop relation, Eq. (9). Given this, we
can estimate ΛMS/(sμPT) using Eq. (4) and the perturbative
expression for the β-function, Eq. (6), in the MS-scheme. As
before, the knowledge of μPT in physical units then gives us
ΛMS.

In order to establish the perturbative uncertainties associ-
ated with this second approach, we first recall that the β-
function in the MS-scheme is currently known to 5-loop
order [28–30]. This introduces a systematic uncertainty in
the determination of ΛMS/μPT of O

(
ḡ8

MS
(sμPT)

) ≈ O
(
ḡ8

PT

)

(cf. Eqs. (10) and (9)). Secondly, using Eq. (4) it is easy to
show that the perturbative matching at M-loop order between
ḡPT and ḡMS(sμPT) translates into a systematic uncertainty
in ΛMS/μPT of O

(
ḡ2M

PT

)
.

For all schemes ḡO used in lattice QCD determinations
of ΛMS we have that M ≤ 3 (see e.g. Ref. [3]). The system-
atic errors coming from the matching between couplings is
therefore parametrically larger than the one from the trun-
cation of βMS. Moreover, note that for all these schemes we
have that M = N − 1, where N is the loop order at which
the corresponding perturbative β-function, βPT

O , is known
(cf. Eq. (6)).9 This means that, for the schemes ḡO com-
monly used, Strategy 1. and 2. result in the same parametric
uncertainties of O

(
ḡ2N−2

PT

)
. Clearly, although parametrically

the same, the actual size of the corrections might be differ-
ent. In this second strategy, in particular, when matching the
couplings we have the freedom to choose the parameter s
(cf. Eq. (9)). Different choices can result in different pertur-
bative corrections to ΛMS/μPT.

Devising different strategies like the ones above and com-
paring their outcome can help us assessing the systematic
uncertainties in ΛMS coming from the use of perturbation
theory at μPT. A truly systematic study, however, requires
to compare the determination of ΛMS/μref , where μref is a
common reference scale, for several different values of ḡPT

as ḡPT → 0. Only if agreement is found among all determi-
nations, possibly including different strategies, one may be
reassured that O

(
ḡ2N−2

PT

)
terms, as well as non-analytic terms

in the coupling, are negligible within the statistical uncer-
tainties. In the case where, instead, the results for ΛMS/μref

show a clear dependence on ḡPT, one should first confirm
that this is actually compatible with the expected O

(
ḡ2N−2

PT

)

9 This is the case because for all these schemes the N -loop β-function,
βPT
O , has been inferred from βPT

MS
at N -loops using the matching relation

Eq. (9) and βPT
O at (N − 1)-loop order.
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corrections. If this is the case, one may be confident that the
asymptotic regime of the perturbative expansion is reached,
no “non-perturbative corrections” are relevant, and one can
therefore take as final estimate for ΛMS/μref the extrapolated
result for ḡPT → 0.

Clearly, the program above is ambitious. The running
of the coupling ḡPT at high energies is only logarithmic
in μPT/ΛO. Reducing the size of the perturbative trunca-
tion errors by a given factor hence requires an exponentially
larger change in the energy scale μPT. In order to accurately
estimate the systematic uncertainties coming from the use
of perturbation theory one therefore needs to cover, non-
perturbatively, a wide range of energies, reaching up to very
high scales.

If the chosen strategy to determine ΛMS does not allow for
this and the accessible range of ḡPT is quite limited, one might
be tempted to estimate the uncertainties due to the application
of perturbation theory in more simplistic ways. For example,
one might opt for simply adding to the final result an uncer-
tainty δΛMS/ΛMS = k ḡ2N−2

PT , where k is estimated in some
way from the available perturbative information. Alterna-
tively, one might estimate these uncertainties based on the
spread of the results obtained at the smallest available ḡPT

from different strategies (e.g. Strategy 1. vs Strategy 2.).
Given the asymptotic nature of the perturbative expansion,
however, these practices cannot be considered reliable in gen-
eral. From the very definition of asymptotic series the only
reliable way to assess its accuracy is to compare the series
with the full function as ḡPT → 0.10 In order to do so, the
coupling ḡPT must be varied by a sensible amount reaching
down to small values.

For the same reasons, it is not advisable to estimate the
size of “non-perturbative corrections” using some model
assumption, or use some model to extrapolate the results
for ΛMS/μref to ḡPT → 0. Our knowledge of the form
of non-perturbative effects is rather limited and the separa-
tion between what is perturbative and non-perturbative is all
but well defined. Hence, it is always debatable whether any
model that tries to capture non-analytic terms in the coupling
is really adequate to describe the data within the given accu-
racy. Moreover, if the coupling ḡPT cannot be varied much,
it is difficult to really distinguish, e.g. a power correction,
from some higher-order term in ḡPT, when statistical errors
and other uncertainties are present. A more reliable practice
is thus to avoid regions of large ḡPT where the O

(
ḡ2N−2

PT

)

behavior has not clearly set in.

10 We recall that a series is said to be asymptotic to the function f (λ),

λ ∈ R, if: | f (λ) − ∑N
j=0 a jλ

j
∣∣ λ→0→ O(λN+1), ∀N . Note in particular

that at fixed λ, larger N does not necessarily imply a better approxima-
tion of the series to the function.
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Fig. 1 Determination of Λ
(3)

MS
in units of μref = L−1

0 for different
values of αPT [32]. The extraction in different SFν -schemes (ν =
−0.5, 0, 0.3) is shown, as well as a comparison with the final result
Λ

(3)

MS
/μref = 0.0791(19) [32]. As the reader can see, when the extrac-

tion is performed at high-enough energies (αPT ≈ 0.1), all schemes
nicely agree

2.3 The accuracy of perturbation theory at high energy

In this section we want to review some recent determinations
of ΛMS which paid particular attention to the issue of the
accuracy of perturbation theory in extracting ΛMS [31–35].
As we shall see, the concerns exposed in the previous sections
are legitimate once the precision goals become competitive.
A robust analysis of perturbative truncation errors is essential
to reach high accuracy.

2.3.1 The high-energy regime of Nf = 3 QCD

We begin with the high-energy studies of Refs. [31,32]
in Nf = 3 QCD. In Fig. 1, we show the results from these
references for L0Λ

(Nf=3)

MS
as a function of α2

PT ≡ ḡ4
PT/(4π)2.

In this plot, μref ≡ L−1
0 ≈ 4.3 GeV, is a convenient

high-energy reference scale and, as in previous sections,
ḡPT ≡ ḡO(μPT) is the value of the coupling in the given
scheme at which perturbation theory is applied to extract
Λ

(3)

MS
/μref . The ratio Λ

(3)

MS
/μref is obtained following Strat-

egy 1. of Sect. 2.2.3. The scales at which perturbation theory
is used correspond to μPT = 2nμref , with n = 0, . . . , 5,
and range from about 4 GeV to 140 GeV. The couplings
considered in this study, ḡO(μ) = ḡSFν (L

−1), belong to
a family of finite-volume renormalization schemes based
on the QCD Schrödinger functional (SF) [36–38]. Different
schemes within the family are identified by different values
of the parameter ν. The precise definition of the schemes is
not important and can be found in Refs. [31,32,39].11

In order to estimate Λ
(3)

MS
/μref the 3-loop approxima-

tion to the relevant β-functions, βSFν , is used. The results
for Λ

(3)

MS
/μref are therefore expected to show corrections of

O(α2
PT) as αPT → 0. It is important to note at this point

11 Traditionally only the ν = 0 scheme has been considered in appli-
cations, see e.g. Refs. [40–45] for some important examples.
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that the 3-loop coefficients of the β-functions in the different
SFν-schemes are given for Nf = 3 by [32,42,43] 12:

(4π)3bSFν

2 = −(0.064(27) + ν × 1.259(10)) . (11)

Hence, from the perturbative point of view all schemes with
|ν| � 1 appear to be on similar footing and the perturbative
expansion of their β-functions is well behaved.

From this observation, one might naively expect that
the O(α2

PT) corrections to Λ
(3)

MS
/μref obtained from differ-

ent intermediate schemes are similar too. Going back to
Fig. 1, we see that in all cases the results are well described
by a O(α2

PT) dependence over the whole range of inves-
tigated couplings. This is compatible with the expectation
from the known leading non-analytic term in the expan-
sion which is expected to be quite small at these couplings,
i.e. O(e−2.6/α) [32]. However, we clearly see a substantial
difference in the size of the O(α2

PT) corrections depending
on the SFν-scheme that is considered. While one can find
cases (ν = 0.3) where the O(α2

PT) corrections are insignif-
icant within errors, other schemes (ν = −0.5) show signif-
icant corrections. The results for ν = −0.5 at αPT ≈ 0.12,
for instance, show a 7−8% deviation from the final result
Λ

(3)

MS
/μref = 0.0791(19) quoted in Ref. [32], which corre-

sponds to the gray band in the plot.
As the value of the coupling at which perturbation theory

is applied becomes smaller, any significant difference among
the different determinations of Λ

(3)

MS
/μref steadily fades

away. In particular, once αPT ≈ 0.1 is reached, any difference
is well below the statistical uncertainties on Λ

(3)

MS
/μref , which

at these couplings are at the level of 2−3%. A robust estimate
for Λ

(3)

MS
/μref can therefore be obtained by taking its value at

αPT ≈ 0.1 from one of the schemes that show milder pertur-
bative corrections. The result Λ(3)

MS
/μref = 0.0791(19) given

above, for instance, corresponds to μPT = 24μref ≈ 70 GeV
from the ν = 0 scheme (cf. ν = 0 (fit C) in Fig. 1) [32].

The first important message from this study is that it is in
fact impossible to predict the actual size of perturbative trun-
cation errors only from the available perturbative informa-
tion. To reliably assess these errors, perturbation theory must
be tested against non-perturbative data over a wide range of
energy scales. From the study we presented, in particular,
we conclude that in order to be able to quote in full confi-
dence the competitive precision of 2−3% on Λ

(3)

MS
/μref , one

must reach non-perturbatively αPT ≈ 0.1. At these couplings
perturbative truncation errors are fully under control and the
error on Λ

(3)

MS
/μref is entirely dominated by the statistical

uncertainties coming from the non-perturbative running of
the coupling.

It is now instructive to look at the result of the analysis of
the same data according to Strategy 2 of Sect. 2.2.3. The cor-

12 For comparison the 3-loop coefficient of βMS for Nf = 3 is

(4π)3bMS
2 = 0.324.

responding estimates for Λ
(3)

MS
/μref are shown in Fig. 2 for

the two cases, ν = 0,−0.5 [32]. The different determinations
in each plot are obtained by varying the parameter s entering
the perturbative matching between the MS-coupling and the
SFν-couplings (cf. Eq. (9)). The values of s considered vary
by about a factor 2 − 3 around the value of fastest apparent
convergence, s∗. 13 In phenomenological determinations of
the QCD coupling the spread of the results obtained by vary-
ing s around some “optimal” value, typically by a factor 2
or so, is commonly used to get an estimate of perturbative
truncation errors (see e.g. Ref. [5]). Our intention is to test
how this approach works in the present case.

As one can see from Fig. 2, for all choices of s the data
show the expected O(α2

PT) scaling. The slope of the data,
however, can vary significantly depending on the choice of
the parameter s. As expected, the significance of these dif-
ferences is reduced as αPT → 0, and the different determi-
nations come together once αPT � 0.1.

What is clear from the results of Fig. 2 is that the procedure
of assigning a systematic error based on the spread of the
results with s at some fixed coupling is not always reliable.
In the case of the ν = 0 scheme (left panel), the spread in the
results between, say, s∗/2 and 2s∗, encloses the final estimate
(gray band in the plot) for all coupling values in the range. If
this uncertainly was added to the statistical errors, it would
give a conservative estimate for the total uncertainly. On the
other hand, in the case of the ν = −0.5 scheme (right panel),
the procedure significantly underestimates the actual size of
the O(α2

PT) corrections. Again αPT ≈ 0.1 has to be reached
for the perturbative uncertainties to be small compared to the
statistical ones.

From this second analysis we reaffirm the conclusion that
it is very difficult to reliably estimate perturbative truncation
errors if the coupling αPT cannot be varied much, and if this
is confined to values significantly larger than αPT ≈ 0.1.

2.3.2 The case of the pure Yang-Mills theory

Finite-volume schemes. The second example that we
consider is taken from the recent study of Ref. [35] in the
pure Yang–Mills (YM) theory. This work presents an inde-
pendent analysis of the results from a previous study [33],
using novel techniques. Before entering the discussion, we
care to stress that the case of the pure Yang–Mills theory
is not just a curious example. As we shall see in the fol-

13 The scale factor s∗ is defined by (cf. Eq. (8)):

s∗ = ΛMS

ΛO
= exp

{
c1(1)

2b0

}
.

where b0 is the 1-loop coefficient of the β-function in Eq. (7), and
c1(1) is the 1-loop coefficient of the matching relation between the
MS-coupling ḡ2

MS
(μ) and the coupling of interest ḡ2

O(μ) (cf. Eq. (9)).
With the choice s = s∗, the k = 1 term in Eq. (9) vanishes.
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Fig. 2 Determination of
L0Λ

(3)

MS
= Λ

(3)

MS
/μref at

different values of α ≡ αPT, and
using different renormalization
scales (values of s) to match
with the MS-scheme [32]. The
left (right) panel uses the
SFν -scheme with ν = 0
(ν = −0.5), cf. text

Fig. 3 The dimensionless
product

√
8t0Λ

(0)

MS
as a function

of αPT [35]. The empty symbols
represent the data at the given
αPT, while the filled symbols are
extrapolations to αPT → 0
(shifted for better readability) of
the different approaches to the
perturbative matching (see text
for more details). The gray band
is the result of Ref. [33], while
the data point labeled FlowQCD
is the result of Ref. [46]

lowing section, through the strategy of renormalization by
decoupling precise results for Λ

(5)

MS
can be obtained from the

accurate knowledge of Λ
(0)

MS
. From this perspective, a robust

determination of the Λ-parameter of the pure YM theory is
very relevant.

In Fig. 3 we show the results for
√

8t0Λ
(0)

MS
from Ref. [35]

as a function of α2
PT. The scale μhad = 1/

√
8t0 is defined in

terms of the flow time t0 [47], while αPT is once again the
value of the relevant coupling at the renormalization scale
μPT where perturbation theory is applied. Similarly to the
case of Nf = 3 QCD discussed above, different schemes and
strategies have been considered in order to extract Λ(0)

MS
/μhad

and study the perturbative truncation errors. In all cases,
the non-perturbative RG running from μhad up to μPT is
obtained using a finite-volume scheme based on the YM gra-
dient flow (GF) [47–50]. The interested reader can find more
details about the scheme in the main Refs. [33,35] (see also
Sect. 4.3).

Once μPT is reached, Λ(0)

MS
/μhad is estimated in a number

of ways. For the case labeled as (GF) in the plot, Strategy 1.
of Sect. 2.2.3 is employed using the 3-loop β-function in the
GF-scheme of choice [51]. In the other cases, the GF-scheme
is first non-perturbatively matched to the SFν=0-scheme
introduced in the previous section. Perturbation theory is then
applied either following Strategy 1. based on the SFν=0-
scheme (SF label in the plot), or by following Strategy 2.
and matching the SFν=0- and MS-coupling (MS(s = 1, 2)

in the figure). In the latter case, two values of the s-parameter,
s = 1, 2, are studied; note that s∗ ≈ 2 in this case. In all cases,

the leading parametric uncertainties in Λ
(0)

MS
/μhad from the

truncation of the perturbative expansion are of O(α2
PT).

Going back to Fig. 3 we see how two out of the four strate-
gies ((SF) and MS(s = 2))) give results which are essentially
independent on αPT over the whole range of couplings con-
sidered for the extraction of Λ

(0)

MS
/μhad. Note that in going

from the largest to the smallest couplings the energy scale
varies by a factor 32 while αPT changes by about a factor
2. On the other hand, the other two types of determinations
((GF) and MS(s = 1))) show a significant αPT dependence,
roughly compatible with the expected O(α2

PT) scaling. What
is remarkable is that even considering values of αPT ≈ 0.08
the different strategies give estimates for Λ

(0)

MS
/μhad which

vary up to ≈ 3%. This is about twice as large as the statistical
errors on the points (cf. Table 3 of Ref. [35]). In the case of
the (GF) and (MS(s = 1)) determinations, it is clear that a
trustworthy estimate for Λ

(0)

MS
/μhad can be quoted only by

extrapolating the results for αPT → 0. In general, perturba-
tive truncation errors are large also in the pure YM theory
given the precision one can reach.

The results above show us once again the importance of
an explicit non-perturbative calculation of the running of the
coupling over a significant range of values, reaching down
to small couplings, in order to assess the actual size of the
perturbative corrections. We join the authors of Ref. [35] and
conclude that only by studying non-perturbatively the limit
αPT → 0 one can avoid the dangerous game of estimating
perturbative uncertainties at some finite (potentially large)
value of αPT. Without studying this limit, the determinations
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can easily be affected by perturbative truncation errors, even
at surprisingly small values of the coupling.

Large-volume schemes. A precise determination of the Λ-
parameter in the pure YM theory is certainly very much facil-
itated from the computational point of view with respect to
the case of QCD. However, as we have seen in the previous
example, it is yet a non-trivial challenge to control pertur-
bative truncation errors once a 1−2% precision in ΛMS is
reached.

The disagreement among some recent determinations of
Λ

(0)

MS
is a clear signal that these difficulties should not be

underestimated. The issue is well illustrated in Fig. 3, where
the very precise results labeled (FlowQCD) from Ref. [46]
show a net tension with the determinations of Refs. [33,35].
We recall that the former result is based on extracting
Λ

(0)

MS
/μhad from the plaquette expectation value calculated in

large-volume simulations. Bare lattice perturbation theory at
couplings αPT ≈ 0.095−0.12 is used, with parametric uncer-
tainties of O(α2

PT). We refer the reader to the given reference
for the details. Here we just note that all the above determina-
tions satisfy the most stringent criteria set by FLAG (cf. Ref.
[3]). Yet, one or more of these results have underestimated
uncertainties.

Other groups have recently engaged in a precision deter-
mination of Λ

(0)

MS
, also with the intent of resolving the dis-

agreement above. The recent results of Ref. [34] based on the
qq-coupling, αqq, defined from the static potential [52], are
particularly interesting in this respect.14 We report them in
Fig. 4. In the case of αqq the corresponding β-function, βqq,
is known up to 4-loop order, and some partial information is
available also at 5-loops (see e.g. Ref. [55]). Determinations
of Λ

(0)

MS
/μhad from αqq are hence expected to have asymp-

totically O(α3
qq) corrections. In the plot, αqq refers to the

coupling at which perturbation theory is used according to
Strategy 1. of Sect. 2.2.3, i.e. it corresponds to αPT in our
previous discussions.

Despite the accurate perturbative knowledge there are a
few challenges when using the qq-scheme for precision deter-
minations of Λ

(0)

MS
[34]. The most relevant ones for our dis-

cussion are, first of all, that the scheme is conventionally
defined in an infinite space-time volume. In order to measure
the coupling at small lattice spacings one therefore needs
large lattice sizes to maintain the physical extent of the lat-
tice large. In the computation of Ref. [34] lattice spacings
down to a ≈ 0.01 fm are reached while keeping the lattice
extent L ≈ 2 fm. This means simulating lattices with up to
L/a ≈ 200. Secondly, the perturbative expansion of αqq dis-

14 A similar earlier study on the challenges of extracting ΛMS in both
Nf = 2 QCD and the pure-gauge theory using the qq-coupling can
be found in Ref. [53]. For a recent application of this scheme for the
computation of αs and a detailed account of the most recent results and
developments see Refs. [16,54].

Fig. 4 Λ
(0)

MS
in units of

√
8t0 determined at various values of αqq ≡ αPT

[34]. The results using different orders of perturbation theory for βqq
are shown, as well as a comparison with the determinations of Refs.
[33] and [46]. (The reference numbers in the plot are those of Ref. [34]
from which the plot is taken.)

plays some infrared divergences starting at 3-loop order in
βqq. When resummed these give rise to terms of the form,
αn

qq log(αqq)
m , n ≥ 3, 1 ≤ m ≤ n − 2, which are enhanced

at small couplings (cf. Ref. [34]).
Figure 4 shows the results for Λ

(0)

MS
/μhad as a func-

tion of α3
qq. The range of couplings covered by the data is

αqq ≈ 0.16 − 0.35. As we can see from the plot, for cou-

plings αqq � 0.21 the results for Λ
(0)

MS
/μhad have good pre-

cision, but perturbative uncertainties are large. This can be
seen by looking at the difference between the 3-loop and
4-loop results (or analogously between the 4-loop and 4-
loop + 5-loop log-terms results). At these large couplings,
the perturbative expansion seems to have reached its limit of
applicability. This severely limits the precision one can aim
at for Λ

(0)

MS
/μhad if one is restricted to this range of couplings.

For couplings αqq � 0.21, the different orders of perturba-
tion theory seem to start converging. On the other hand, the
errors on the data become large. This is due to the difficulties
in extrapolating the results to the continuum limit [34]. In
fact, the errors are too large to make definite conclusions for
the relevant limit αqq → 0.

All in all, we see from this last example that a precise
determination of Λ

(0)

MS
is a challenge. Finite-volume renor-

malization schemes allow us to cover a wide range of cou-
plings, reaching down to rather small values. Yet, having
control on perturbative truncation errors requires care. When
using large-volume schemes the situation is further compli-
cated by controlling continuum limit extrapolations at the
smallest (most relevant) couplings. Small couplings require
small lattice spacings, which require large lattice sizes in
order to keep the physical volume large. As a result, even
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in the computationally simpler case of the pure YM theory,
one might have precise data confined for the most part to a
region of couplings too large to have perturbative uncertain-
ties fully under control, while at smaller couplings the data
is not precise enough for a competitive determination of Λ.

2.4 The tricky business of continuum extrapolations

Having discussed the difficulties of estimating perturba-
tive truncation errors in precision determinations of the Λ-
parameters, we now want to touch on the issue of systematic
uncertainties related to the continuum limit extrapolations of
the relevant couplings.

To give the reader a feeling of the pitfalls that these contin-
uum extrapolations can conceal, we first consider the Nf = 3
results of Ref. [50]. The relevant quantity to look at in this
case is the step-scaling function (SSF) of the finite-volume
GF-coupling ḡ2

GF(μ) with SF boundary conditions (see Refs.
[49,50] and Eq. (53) for the definition of this scheme). We
recall that the SSF, σ(u), encodes the change in the coupling
u when the renormalization scale is varied by a factor of 2
[11]. Specifically, having set μ = L−1,

σ(u) ≡ ḡ2
GF(μ/2)|ḡ2

GF(μ)=u, σ (u) = lim
a/L→0

Σ(a/L , u) .

(12)

It is clear from its definition that the SSF is a discrete version
of the β-function. The latter can in fact be obtained once the
SSF is known in a range of couplings (cf. Ref. [50]).

On the lattice, the SSF is determined by extrapolating to
the continuum limit its discrete approximations, Σ(a/L , u).
In order to compute the latter one must first identify a set of
lattice sizes L/a and corresponding values of the bare cou-
pling g0 for which ḡ2

GF(L−1) = u, with u a specific value.
The lattice SSFs Σ(a/L , u) are then given by the couplings
ḡ2

GF((2L)−1) measured at the values of g0 previously deter-
mined but on lattices with sizes 2L/a.

The results for the lattice SSFs of the GF-coupling of Ref.
[50] are shown in Fig. 5. They correspond to 9 values of the
coupling ui ∈ [2.1, 6.5], i = 1, . . . , 9. As one can see from
the figure, the lattice data are very precise. On the other hand,
discretization effects are in general large, particularly so at
the largest couplings. The results for Σ(u, a/L) vary in fact
by up to 20% in the range of L/a considered, which is quite
a significant change compared to the statistical errors on the
points.

Given the results in Fig. 5, we may expect that a simple fit
of the data linear in (a/L)2 is all that is needed to extrapolate
these to the continuum limit. In particular, we may consider
individual continuum extrapolations for each ui value using
the functional form

Σ(ui , a/L) = σ
(A)
i + r (A)

i × (a/L)2 (fit A) , (13)

where σ
(A)
i , r (A)

i are fit parameters. Within the uncertainties,
linearly in (a/L)2 is in fact excellent and the above fits are
very good (χ2/dof ≈ 0.7). One is thus tempted to take the
precise values for σ

(A)
i as estimates for the continuum SSF.

The continuum results so obtained are well described by
the simple relation: Δσ

(A)
i ≡ 1/σ

(A)
i −1/ui ≈ −0.082. Note

that this is the functional form expected from the perturba-
tive expansion of σ(u) at 1-loop order, although the coeffi-
cient predicted by perturbation theory is slightly different,
i.e. ≈ −0.079. 15 This observation suggests us to perform
alternative fits to the data in Fig. 5 considering the functional
form

1/Σ(ui , a/L) = 1/σ
(B)
i + r (B)

i × (a/L)2 (fit B) , (14)

with σ
(B)
i , r (B)

i new fit parameters. The quality of these fits is
as good as for the fits A of Eq. (13). Distinguishing between
the two fit forms would require significantly higher statistical
precision than the present one.

It is important to note at this point that any functional
form that we consider for the continuum extrapolations,
necessarily comes with assumptions. Both fits A and B
above, for instance, assume discretization errors of O(an),
n ≥ 3, to be negligible. Moreover, even focusing only on
the leading O(a2) effects, we know from Symanzik effec-
tive theory (SymEFT) [56–58] that these are not simply
given by a “classical” term ∝ (a/L)2. They are in fact a
non-trivial combination of different terms which in the limit
a/L → 0 are asymptotically ∝ (a/L)2 ln(L/a)−Γi , or rather
∝ (a/L)2[ḡ2(a−1)]Γi , where Γi ∈ R, i = 1, 2, . . . , and
ḡ2(a−1) is the given renormalized coupling of the effective
theory evaluated at a scale μ = a−1 (cf. Refs. [59–62]).

If terms of higher order than a2 as well as logarithmic cor-
rections to pure a2 scaling were completely negligible in the
data, the fit parameters σ

(A)
i and σ

(B)
i should perfectly agree.

From the results in Fig. 5 we see that there is in fact agree-
ment within one standard deviation. However, the difference
between the results from the two fits is clearly systematic,
with the results from fit B being always larger than those
from fit A.

The issue becomes more evident if one tries to obtain a
smooth parameterization for the continuum SSF from the fit-
ted continuum values σi . As noticed earlier, a fit of Δσi =
1/σi − 1/ui to a constant Δσ provides a good description of
the continuum data σi in the whole range of u ∈ [2.1, 6.5];
this is the case for both Δσ

(A)
i and Δσ

(B)
i (χ2/dof < 1).

15 Perturbation theory predicts: σ(u)
u→0≈ u + s0u2 + O(u3), with

s0 = 2b0(Nf ) ln(2), where b0(Nf ) is the universal 1-loop coefficient of
the β-function, Eq. (7) (see e.g. Ref. [32]). The close agreement between
the non-perturbative data for σ(u) and 1-loop perturbation theory is
quite peculiar, considering the fact that it holds up to σ(u) = O(10).
We refer the interested reader to Ref. [50] for a detailed discussion about
this point.
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Fig. 5 Continuum extrapolations of Σ(a/L , u)/u for 9 different val-
ues of u ∈ [2.1, 6.5] and 3 lattice sizes L/a = 8, 12, 16

Given the 9 independent values of Δσi for each fit, the
results for the corresponding Δσ are 3 times more precise
than the individual Δσi . The systematic effect then becomes
clearly noticeable as one finds: Δσ(A) = −0.0823(4) and
Δσ(B) = −0.0832(4), for the constant fits to Δσ

(A)
i and

Δσ
(B)
i , respectively.
The previous considerations show that the description of

discretization errors as pure (a/L)2 effects is in this case
not accurate enough for the level of precision claimed in the
continuum limit. Even though the different functional forms
in Eqs. (13) and (14) fit the data well and perfectly agree with
each other at finite L/a, the corresponding extrapolations for
a/L → 0 are clearly affected by some systematics. In Ref.
[50], more conservative error estimates and robust central
values for the continuum results are eventually obtained by
carefully accounting as systematic uncertainties in the data
the not entirely negligible effects of the higher-order terms
neglected in Eqs. (13) and (14) (cf. Ref. [50] for the details).

The example above might not seem too pessimistic. How-
ever, it should come as a warning for the more general situa-
tion. Estimating properly the systematic uncertainties related
to continuum limit extrapolations of high-precision data can
easily become a challenge, particularly so if discretization
errors are not small.

As recalled earlier, the leading asymptotic dependence
of renormalized lattice quantities on the lattice spacing as
a → 0 is given by a combination of terms ∝ an[ḡ2(a−1)]Γi ,
where the number and values of the Γi , as well as n, depend
on the chosen discretization and set-up. The Γi are in fact
inferred from the anomalous dimensions of the fields defin-
ing the O(an) counterterms in the SymEFT, and the order
of perturbative improvement that has been possibly imple-
mented (cf. Ref. [61]). Hence, when one considers a pure
an dependence for the discretization errors, one is implicitly
assuming that all Γi ≈ 0. This, however, cannot be taken for
granted.

For most cases of interest, the leading discretization
effects have n = 2, i.e. they are of O(a2).16 The results
of Refs. [61,62] then show that in the case of QCD we
have O(10) different terms that contribute in general, and
Γi ≈ [−0.1, 3] for several common discretizations and val-
ues of Nf = 2 − 4. 17 18 Having all Γi � 0 is certainly posi-
tive. In particular, the contributions relevant in the massless
theory all have Γi > 0, which implies a faster approach to the
continuum limit with respect to pure a2 terms. However, the
large number of terms contributing makes for a complicated
pattern of discretization errors in the general case, with no
clear contribution(s) dominating. As a result, it may be diffi-
cult in practice to identify the terms that are actually relevant.
Moreover, terms of the form a2[ḡ2(a−1)]Γi with Γi ≈ 2 − 3
can be hard to distinguish from a3 or a4 terms in a limited
range of lattice spacings when statistical uncertainties are
present. 19 The continuum estimates obtained by including
different contributions, on the other hand, may vary appre-
ciably. In this situation, precise and robust final estimates are
not easily achieved.

We stress that it is particularly important to take these
considerations into account when aiming for precise deter-
minations of short-distance quantities like the couplings. As
discussed in previous sections, in the most interesting region
of high energy, μ � Λ, aμ may not be so small. Continuum
extrapolations are thus likely to be difficult and require spe-
cial attention. Following the lines of Refs. [61,62] one should
take the non-trivial a-dependence predicted by SymEFT into
account, provided the information is available. If this is not
the case, one should try at least to estimate the uncertainties
associated with neglecting logarithmic corrections to classi-

16 A relevant exception is the case of the SF, for which the leading dis-
cretization errors are parametrically of O(a) (cf. Sect. 4.2.3). In appli-
cations, however, the O(a) effects are subdominant with respect to the
O(a2) effects, and often also compared to the statistical errors. The pre-
cision studies of Refs. [32,33,50] thus opt for treating the O(a) effects
as (small) systematic uncertainties in the data, and perform continuum
extrapolations assuming leading O(a2) effects. In this respect, we note
that in Refs. [61,62] the Γi relevant for the O(a) effects in the (pure-
gauge) SF have been computed. The results support the treatment of
O(a) effects pursued in Refs. [32,33,50] (cf. the given references for
the details).
17 The results refer to the contributions to discretization effects coming
from the lattice action, considering several popular options (cf. Ref.
[62]). If the relevant observable is not a spectral quantity, additional
effects originating from the lattice fields that define it are present. These
depend on the specific observable and choice of discretization (see,
e.g. Refs. [61,62]).
18 In the case of the pure-gauge theory only two terms from the lattice
action contribute to the O(a2) effects. The Γi for different options can
be found in Ref. [61]. In all cases, Γi � 0.6.
19 It is clear that even though the SymEFT can predict the form of the
leading asymptotic discretization errors, it cannot predict the region
where these dominate over formally suppressed contributions. In prac-
tice, it may thus be difficult to establish the regime of applicability of
the results from SymEFT.
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cal scaling, e.g. by considering terms ∝ a2[ḡ2(a−1)]Γi , with
Γi ≈ 1 − 3, in the fit ansätze. Ideally, one would like to be
in the situation where within the uncertainties the continuum
estimates do not sensibly depend on whether these terms are
considered or not.

Given the observations above, we want to bring the
reader’s attention to a recent study where the non-trivial a-
dependence of discretization effects was found to be a rel-
evant issue. Specifically, we consider the computations of
Refs. [51,63] of the GF-coupling in the pure Yang-Mills
theory using Numerical Stochastic Perturbation Theory. 20

In this framework, the lattice theory is numerically solved
through a Monte Carlo simulation up to a finite order in the
bare coupling g0 [64,65]. From expectation values in this
“truncated theory” one can obtain the perturbative coeffi-
cients of the expansion of lattice quantities in g0.

In Refs. [51,63], the GF-coupling with SF boundary con-
ditions ḡ2

GF(μ) has been computed up to two-loop order in
g2

0. Using the relation between α0 ≡ g2
0/(4π) and αMS ≡

α
(Nf=0)

MS
[66,67], one can thus infer the relation

αGF(μ) = αMS(μ) + k1(a/L)α2
MS

(μ)

+k2(a/L)α3
MS

(μ) + . . . . (15)

The coefficients k1(a/L), k2(a/L) are functions of the res-
olution a/L considered for the lattice. In order to obtain the
matching relation between the couplings in the continuum
limit the coefficients must be extrapolated for a/L → 0.
Focusing on the 1-loop coefficient, k1(a/L), from SymEFT
we expect that (see Refs. [51,63])

k1(a/L)
a/L→0∼ k1(0) +

∞∑

m=2

1∑

n=0

rmn(a/L)m ln(L/a)n , (16)

with rmn some constants. Note that the coefficient r21 of the
leading term ∝ ln(L/a) implicitly depends on the Γi pre-
dicted by SymEFT (cf. Sect. 5.2. of Ref. [61] and also Ref.
[62]). Compared to the case of the full theory, the results from
the truncated theory have a simpler (yet non-trivial) cutoff
dependence. Given the high precision reached in these cal-
culations, this allows for a clean illustration of the difficulties
in continuum extrapolations.

In Fig. 6 we show the results from Ref. [63] for k1(a/L)

for two different values of the parameter c, 0.3 and 0.4, that
specifies the GF-scheme (cf. Refs. [51,63] and Eq. (53)).
Two different discretizations of the observable defining the

20 A recently expanded discussion in Ref. [35] provides another clear
illustration of the difficulties of continuum limit extrapolations of pre-
cise coupling data using results from the pure-gauge theory (cf. Figs. 6
and 7 of this reference and related discussion). We strongly recommend
the interest reader to consult this reference. We moreover refer to the
important pioneering studies of Refs. [59,60] in the non-linear σ -model
in two dimensions.

coupling (Eclov
mag, Eplaq

mag ) are also considered. The simulated
lattices have sizes L/a = 10 − 32.

Starting from the results for c = 0.3 (left panel of Fig. 6),
we see how the data is very precise but discretization effects
are sizable. In the plot we then show two types of extrapola-
tions to the continuum limit. For the first type (solid lines),
lattices with L/a = 12−32 are fitted to the asymptotic form,
Eq. (16), considering the leading terms m = 2, n = 0, 1.
The fits are good, χ2/dof ∼ 1, and the extrapolated results
for the two discretizations agree well. The m = 2, n = 1,
term is in fact crucial to obtain good fits. For the second set
of extrapolations (dashed lines), we consider instead lattices
with L/a = 12 − 24. In this case the data can be very well
described by a pure (a/L)2 term (m = 2, n = 0) over the
whole range of lattice sizes. The continuum extrapolated val-
ues obtained from these fits have significantly smaller statis-
tical errors than the ones from the previous fits, and yet there
is perfect agreement between the two discretizations. On the
other hand, the results deviate from the previous estimates
by several of their standard deviations.

The results for c = 0.4 exhibit qualitatively the same
features, although the statistical errors on k1(a/L) are about
a factor 2 larger and the two discretizations now show rather
different lattice artifacts. On the other hand, cutoff effects
are generally smaller than for c = 0.3, and we thus include
L/a = 10 in the fits. It is clear that in both cases, c =
0.3, 0.4, a reliable continuum extrapolation for k1(a/L) is
challenging due to the non-trivial a-dependence of the data.
In particular, larger lattices than the ones considered here are
clearly needed in order to obtain accurate continuum results
(cf. Ref. [51] for the final determination).

In conclusion, through these examples we saw how assess-
ing the systematics related to the continuum limit extrapola-
tions of couplings can be challenging. This is especially true
when one wants to maintain the high precision reached on
the lattice data also in the continuum limit, but discretization
errors are large. It then becomes hard to avoid systematic
biases in the final determinations. To this end, it is crucial
to test all the assumptions that enter the functional forms
chosen for the extrapolations. In particular, we must keep in
mind that good fits do not necessarily mean good results for
parameters, especially for extrapolations outside the range
covered by the data.

3 Heavy-quark decoupling

So far we focused on the main challenges that stand on the
way of a precise determination of Λ

(Nf )

MS
and discussed in

detail the cases of Nf = 0, 3. The interesting quantity for
phenomenology, however, is Λ

(5)

MS
. At present, lattice esti-

mates of Λ
(5)

MS
are for the most part based on determinations
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Fig. 6 Continuum extrapolations for k1(a/L). Results for c = 0.3 (left panel) and c = 0.4 (right panel) are shown, for two different discretizations
of the relevant observable. Different fits to the data are considered, cf. text

of Λ
(3)

MS
, while just a handful are obtained from Λ

(4)

MS
(cf. Ref.

[3]). As we shall recall in the next subsection, the most com-
mon strategy to obtain Λ

(5)

MS
is in fact to non-perturbatively

compute Λ
(3)

MS
through simulations of the Nf = 3 theory and

then rely on perturbative decoupling relations for the heavy
quarks to estimate the ratios Λ

(4)

MS
/Λ

(3)

MS
and Λ

(5)

MS
/Λ

(4)

MS
(see

e.g. Ref. [3]).
The main reason for this is because, as is well-known,

simulating the charm quark dynamically is at present chal-
lenging, let alone the case of the bottom quark. While the
inclusion of the charm quark in the computation of the run-
ning of the QCD coupling may be only moderately challeng-
ing with a suitable strategy (see e.g. Ref. [68]), it does pose
important difficulties in large-volume hadronic simulations.
Besides the increased computational cost in simulating an
additional quark with respect to Nf = 2 + 1 simulations,
and the more complicated tuning of the bare QCD parame-
ters necessary to define proper lines of constant physics, dis-
cretization effects are a serious source of concern. Given the
currently most accessible lattice spacings in hadronic sim-
ulations, say a � 0.05 fm, we have that amc � 0.3 and
amb � 1, where for definiteness we took mc ≈ 1.27 GeV
and mb ≈ 4.2 GeV. In the hadronic regime it is therefore a
real challenge to control the discretization effects induced by
including the charm quark in simulations, and unrealistic for
the case of the bottom quark. This is particularly true for the
case of Wilson quarks where the charm quark can potentially
introduce large O(amc) effects, unless a complete Symanzik
O(a) improvement programme is carried out, which is cer-
tainly no simple task (see e.g. Ref. [69]).

In this situation, it is mandatory to assess the reliability of
the strategy presented above for the determination of Λ

(5)

MS
. To

this end, in the following we shall recall the general theory of
decoupling of heavy quarks and critically address its applica-
tion in lattice determinations of Λ

(5)

MS
. This includes both the

usage of perturbation theory for the inclusion of heavy-quark
loops in the running of the QCD coupling, that is to estimate

the ratios Λ
(4)

MS
/Λ

(3)

MS
, Λ

(5)

MS
/Λ

(4)

MS
, as well as the determina-

tion of the physical units of Λ
(5)

MS
from scale setting in the

Nf = 2 + 1 theory. As we shall see, given the current preci-
sion on Λ

(3)

MS
, accounting for heavy-quark effects by means

of perturbation theory in the running of the QCD coupling is
remarkably accurate, even for the case of the charm quark. In
addition, charm-quark effects in (dimensionless) low-energy
quantities are found to be quite small, supporting the fact
that Nf = 2 + 1 QCD is accurate enough for establishing
the physical scale. As a result, competitive determinations of
Λ

(5)

MS
are possible from results in the Nf = 3 flavor theory.

3.1 The effective theory for heavy-quark decoupling and
the QCD couplings

In this subsection we introduce the effective theory of heavy
quarks and recall how this is conventionally applied in the
determination of Λ

(5)

MS
. We refer the reader to Refs. [70,71]

for a more detailed presentation.

3.1.1 The effective theory for heavy-quark decoupling

We begin by considering QCD with Nf flavors of quarks,
which in short we denote QCDNf . Of these, N� are consid-
ered to be light, while the other Nh ≡ Nf − N� are heavy.
For simplicity, we assume that the light quarks are degenerate
with mass m, while the heavy quarks are also degenerate but
with a mass M � Λ. The effective theory associated with the
decoupling of the heavy quarks is formally obtained by inte-
grating out in the functional integral the fields associated with
the heavy quarks [72]. The field theory that results is charac-
terized by having an infinite number of non-renormalizable
interactions, which are suppressed at low energies by neg-
ative powers of the heavy-quark masses M . The couplings
of the effective theory can be fixed order by order in M−1

by requiring that, at each given order, a finite number of
observables is equal to the corresponding ones in the funda-
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mental theory. Once the couplings are fixed up to a certain
order M−n , the effective theory is said to be matched to the
fundamental one at this order, and can be used to describe
the effects of the heavy quarks at low energies up to correc-
tions of O(M−n−1). In this sense, we say that as M → ∞
the heavy quarks decouple from low-energy physics as their
effects eventually fade away [73].

In formulas, the Lagrangian of the effective theory is of
the general form (see e.g. Ref. [71])

Ldec = L0 + 1

M
L1 + 1

M2 L2 + . . . , (17)

where the leading order corresponds to the Lagrangian of
QCD with N� light quarks, i.e. L0 = LQCDN�

, while the
correctionsLk , k ≥ 1, consist of linear combinations of local
fields of mass dimension 4 + k, i.e.

Lk =
∑

i

ω
(k)
i Φ

(k)
i , [Φ(k)

i ] = 4 + k , (18)

with ω
(k)
i dimensionless couplings. The fields Φ

(k)
i are built

from the light-quark and gluon fields, and include possible
powers of the light-quark masses. They must respect the sym-
metries of the fundamental QCDNf theory, as in particular
gauge invariance, Euclidean (or Lorentz) symmetry, and chi-
ral symmetry.

In the case where the light quarks are massless, the
leading-order effective theory, QCDN�

, has a single param-
eter: the gauge coupling ḡ(N�)(μ). The effective and funda-
mental theory are therefore matched at leading order in M−1

once ḡ(N�)(μ) is matched. This requires that ḡ(N�)(μ) is prop-
erly prescribed at a given renormalization scale in a given
renormalization scheme in terms of the coupling ḡ(Nf )(μ) of
the fundamental theory and the heavy-quark masses M . 21 In
addition, provided that the fundamental theory is defined on
a manifold without boundaries, 22 it is possible to show that
L1 = 0 and therefore O(M−1) corrections are absent [71].23

In this situation, the leading-order corrections induced by the
heavy quarks are suppressed as M−2 at low energy.

In the case where the light quarks have a non-vanishing
mass, the only mass-dimension 5 fields allowed in L1 are
given by the fields of the leading-order Lagrangian LQCDN�

multiplied by the light-quark masses m [71]. Their effect
can be reabsorbed into a redefinition of the gauge coupling
and light-quark masses of O(m/M). Of course, in the case of

21 For ease of notation we do not use any symbol to indicate the generic
scheme of renormalized couplings. We however assume that, unless oth-
erwise stated, the couplings are defined in a mass-independent scheme.
22 This means that the theory lives in infinite space-time or in a finite
volume with (some variant of) periodic boundary conditions. The spe-
cial but relevant case of a finite volume with boundaries will be consid-
ered in Sect. 4.2.3.
23 Note that for the sake of argument we exclude the uninteresting case
of N� = 1, for which a proof of this result is to our knowledge missing.

massive light quarks the matching of the effective and funda-
mental theory at leading order also requires the matching of
the light-quark masses. In addition, the couplings ω

(k)
i of the

corrections Lk≥2 will depend in general on the light-quark
masses, too.

3.1.2 The effective theories and their couplings

The application of the effective theory for heavy quarks in
the determination of the QCD couplings was first advocated
by Weinberg in his seminal paper on effective field theories
[72]. The idea is based on the observation that for mass-
independent renormalization schemes the RG equations of
the renormalizable couplings of the effective theory com-
pletely decouple from the others. This means that the cou-
plings of the non-renormalizable interactions can be com-
pletely ignored when determining the variation of the run-
ning coupling ḡ(N�)(μ) of the effective theory with the energy
scale μ. The heavy quarks affect the value of the coupling
of the effective theory only through the matching with the
coupling of the fundamental theory, ḡ(Nf )(μ).

The matching relation between ḡ(N�)(μ) and ḡ(Nf )(μ) can
in principle be established in perturbation theory. This is best
done at a scale μmatch ≈ M [23,72]. Assuming the validity
of perturbation theory at this scale, if the running coupling
ḡ(N�)(μmatch) in the effective theory is known, one can turn
tables and obtain ḡ(Nf )(μmatch) from inverting the matching
conditions.

In phenomenological applications of this strategy (see
e.g. Ref. [5]), the value of ḡ(N�)(μmatch) is extracted from the
value of the coupling ḡ(N�)(μlow) at some lower energy scale,
μlow � M . The latter is obtained by comparing the pertur-
bative expansion for some process O(q) with characteristic
energy scale q ≈ μlow, with its experimental results. The
effects of the heavy quarks in O(q) are expected to be sup-
pressed as O((q/M)2) (cf. Sect. 3.1.1). Hence, assuming that
these effects can be neglected, the perturbative expansion of
O(q) can be considered in the N�-flavor theory, which allows
the coupling ḡ(N�)(μlow) to be extracted. As observed above,
the determination of the running of the effective coupling in
the N�-flavor theory does not require any input from the fun-
damental theory: one can thus readily obtain ḡ(N�)(μmatch)

from ḡ(N�)(μlow). Clearly, for this strategy to work in prac-
tice the energy scale μlow � M must be yet sufficiently high
for perturbation theory to apply.

In non-perturbative applications on the lattice, the strategy
presented above is realized in the following way (see e.g. Ref.
[3]). Firstly, as discussed in Sect. 2.2.3, through the study of
the non-perturbative running of a given massless coupling
within the effective N�-flavor theory, one determines the
ratio Λ

(N�)

MS
/μhad, where μhad is a convenient (not necessar-

ily physical) low-energy scale. Assuming that the effects of
the heavy quarks can be neglected in the ratio of low-energy
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scales μhad/μphys, where μphys is an experimentally accessi-
ble hadronic quantity, this can also be computed within N�-
flavor QCD. The physical units of μhad and therefore Λ

(N�)

MS
can then be established by taking μphys from experiments. As
a second step, as we shall see in detail in the following sub-
section, the matching relation between the couplings of the
effective and fundamental theory is expressed as a relation
between their Λ-parameters. The ratio Λ

(Nf )

MS
/Λ

(N�)

MS
is thus

estimated using perturbation theory at a scale μ ≈ M . From
this estimate and the results for Λ

(N�)

MS
, Λ

(Nf )

MS
is obtained.

It is important to note that in extracting Λ
(N�)

MS
from the

running of the chosen non-perturbative scheme, perturbation
theory can be applied at arbitrarily large energy scales. The
perturbative matching between the effective and fundamental
theory, instead, is best performed at a scale μ ≈ M , where M
is set by the mass of the given heavy quarks that decouple.
Whether perturbation theory is accurate in this step hence
depends on how heavy these quarks are. As we shall see,
in the MS-scheme the perturbative matching is remarkably
accurate already for masses M close to that of the charm
quark.

In the next subsection we describe in detail the pertur-
bative matching of the QCD couplings. We follow the lines
of the presentation in Ref. [71], and start by reformulating
this matching in terms of Λ-parameters [23]. After doing
so, we investigate the accuracy of a perturbative matching
within perturbation theory itself, and later present a discus-
sion on the typical size of non-perturbative corrections one
can expect in these relations.

3.2 Perturbative decoupling

3.2.1 Definitions

As we are interested only in the QCD coupling we assume for
simplicity that the relevant effective theory is given by mass-
less QCDN�

. As discussed above, at leading order in M−1

the only parameter of the effective theory that needs to be
fixed is therefore the running coupling ḡ(N�)(μ). The effec-
tive theory hence predicts any observable once the coupling
in the chosen scheme is specified at some scale.

The general form of the relation between the couplings
of the leading-order effective theory ḡ(N�) and of the funda-
mental theory ḡ(Nf ), reads [23,24,72]

[ḡ(N�)(μ/Λ(N�))]2 = FO
([ḡ(Nf )(μ/Λ(Nf ))]2, M/μ

)
, (19)

where for later convenience we explicitly wrote the depen-
dence of the couplings on their corresponding Λ-parameter.
The function FO depends in principle on the specific observ-
able O that is used to establish the matching between the
two theories. The dependence on the observable, however, is
suppressed by powers of M−1. In perturbation theory, these

power corrections can be uniquely isolated from the logarith-
mic terms in M and can therefore be dropped. This is con-
sistent with matching the theories at leading order in M−1.
In doing so, the relation between the couplings becomes uni-
versal, i.e independent on the specific matching condition. It
only depends on the renormalization schemes chosen for the
couplings.

In the MS-scheme the matching relation (also referred to
as decoupling relation) is known up to 4-loop order. Below,
we consider this only for the convenient choice of matching
scale μ = m∗, wherem∗ is implicitly defined by the equation
mMS(m∗) = m∗, where mMS(μ) ≡ m(Nf )

MS
(μ/Λ

(Nf )

MS
) are the

running masses of the heavy quarks in the fundamental theory
in the MS-scheme. Given this choice, the matching relation
reads:
[
ḡ(N�)

MS
(m∗/Λ(N�)

MS
)
]2 =g2∗C(g∗), g∗ ≡ ḡ(Nf )

MS
(m∗/Λ(Nf )

MS
) ,

C(g∗) = 1 + h2g
4∗ + h3g

6∗ + h4g
8∗ + . . . , (20)

where the hi are pure numbers that depend on both Nh

and N� [74–78]. As explained in these references, the par-
ticular choice of matching scale makes all contributions
∝ log(mMS(μ)/μ) appearing in the matching relation van-
ish, and it is considered to be optimal. This implies in particu-
lar that the g2∗ term inC(g∗) is absent. In the general case, the
scales mMS(μ) and μ should anyway not be chosen too sepa-
rated. Large coefficients otherwise appear in the perturbative
matching relation which can compromise its applicability.

As anticipated, from the perspective of lattice applications
it is compelling to recast the matching relation, Eq. (20),
in terms of RG-invariant (RGI) quantities. Specifically, this
means the Λ-parameter of the effective theory, Λ(N�)

MS
, that of

the fundamental theory Λ
(Nf )

MS
, and the RGI quark-mass M of

the heavy quarks. The latter can be defined as

M ≡ m(Nf )

MS
(μ)ϕ

(Nf )

m,MS
(ḡ(Nf )

MS
(μ)) ,

ϕ
(Nf )

m,MS
(ḡ) ≡ (2b0(Nf)ḡ

2)
− d0

2b0(Nf ) ×

× exp

{
−

∫ ḡ

0
dg

[
τ

(Nf )

MS
(g)

β
(Nf )

MS
(g)

− d0

b0(Nf)g

}
, (21)

where b0(Nf) is the 1-loop coefficient of the β-function,
Eq. (7), and the function

τ
(Nf )

MS
(ḡ) ≡ μ

m(Nf )

MS
(μ)

dm(Nf )

MS
(μ)

dμ

∣∣∣∣
ḡ

(22)

encodes the scale-dependence of the quark masses in the
Nf -flavor theory (in the MS-scheme). It has a perturbative
expansion

τ
(Nf )

MS
(ḡ)

ḡ→0≈ −ḡ2{d0 + ḡ2d1 + . . .} , d0 = 8/(4π)2 , (23)
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known up to 5-loops [79–82], where the actual scheme and
Nf -dependence start from di , i ≥ 1. Note that even though in
Eq. (21) we conveniently defined the RGI mass M through
the MS-scheme, its value is in fact scheme independent, as
long as mass-independent schemes are considered for the
quark masses. This means in particular that M can be non-
perturbatively defined through any non-perturbative (mass-
less) renormalization scheme.

Using the above definitions, together with the definitions
in Eq. (4), and the matching relation Eq. (20), it is immediate
to conclude that [70,71]

P�,f(M/Λ
(Nf )

MS
) ≡ Λ

(N�)

MS

Λ
(Nf )

MS

∣∣∣∣
matched

=
ϕ

(N�)

g,MS
(g∗

√
C(g∗))

ϕ
(Nf )

g,MS
(g∗)

.

(24)

As anticipated by our notation, P�,f can be considered as
a function of M/Λ

(Nf )

MS
, since the value of the coupling g∗

can be expressed in terms of the RGI parameters through the
relation

M

Λ
(Nf )

MS

=
ϕ

(Nf )

m,MS
(g∗)

ϕ
(Nf )

g,MS
(g∗)

, g∗ = ḡ(Nf )

MS
(M/Λ

(Nf )

MS
). (25)

In the limit where M/Λ
(Nf )

MS
→ ∞, the coupling g∗ goes to

zero and the function P�,f admits an asymptotic perturbative
expansion in terms of g2∗ .

3.2.2 Perturbative uncertainties

We now want to study the behavior of the perturbative expan-
sion of P�,f(M/Λ). We shall focus our attention on the func-
tions P3,4 and P4,5, which are the relevant ones for estimating
Λ

(5)

MS
given Λ

(3)

MS
.

In Fig. 7 we present the results taken from Ref. [71] for
the relative deviation

(P�,f − P(1)
�,f )

P(1)
�,f

(26)

of P3,4 (left plot) and P4,5 (right plot), from their unsystem-
atic 1-loop approximation P(1)

�,f (M/Λ) = (M/Λ)η0 , where

η0 = 2Nh/(33 − 2N�) [71]. 24 The results are shown as
a function of M/Λ and for different orders of perturbation
theory. The order in perturbation theory refers to the order

24 The unsystematic approximation P(1)
�,f obtained in Ref. [71] happens

to be quite close to the different orders of the perturbative expansion of
P�,f for the values of Nf and N� considered and M/Λ � 30. For this
reason it is used here to get the overall magnitude of the function P�,f .
On the other hand, the different orders of perturbation theory are not
expected to converge to P(1)

�,f as M/Λ → ∞ since this approximation
does not have the correct asymptotic limit [71].

at which the β-functions entering Eqs. (24)–(25) are consid-
ered. The τ -function, Eq. (23), as well as the matching func-
tion C(g∗) of Eq. (20) are considered to a consistent order
in the expansion (see Ref. [71] for the details). The values
of the RGI masses of the charm and bottom quarks (Mc and
Mb, respectively) in units of the relevant Λ-parameter are
also shown. These are inferred from the results of the PDG
[5].

Starting from the case of P4,5, we see how the difference
between the 3-loop and 2-loop results is around 2% at the b-
quark mass. The 4- and 5-loop results then differ only by very
tiny corrections from the 3-loop approximation. Looking at
the behavior of the perturbative series alone, the perturbative
prediction for the decoupling of the b-quark appears to be
very reliable and accurate. Similar conclusions can be drawn
for the decoupling of the charm quark. Also in the case of
P3,4, the difference between the 3- and 2-loop results is about
2% at the charm-quark mass, and higher-order corrections are
all much smaller.

In conclusion, the perturbative results suggest that a per-
turbative treatment of the matching between the relevant
effective and fundamental theories introduces only errors at
the sub-percent level in the functions P�,f , and therefore in
the connection of their Λ-parameters.

3.3 Non-perturbative decoupling

3.3.1 Definitions

Judging from perturbation theory alone, the perturbative
description of the decoupling of heavy quarks seems to
work remarkably well. The rapid convergence of the differ-
ent orders of the expansion of P�,f at the values of both the
charm- and bottom-quark masses, seems to suggest that the
series is well within its regime of applicability and higher-
order corrections are small. On the other hand, the pertur-
bative expansion cannot tell us anything about the size of
non-perturbative corrections to the decoupling relations and
whether perturbation theory actually applies at all. Whether
non-perturbative effects are significant within the target pre-
cision at the relevant quark masses can only be established
through a non-perturbative investigation.

In order to set the grounds for estimating the error that
one makes when using a perturbative approximation for P�,f

to extract Λ
(Nf )

MS
from Λ

(N�)

MS
, let us begin by recasting the

matching of the effective and fundamental theory in more
non-perturbative terms. 25

The leading-order effective theory describes the funda-
mental theory at low energy only when the corresponding
Λ-parameter Λ(N�) is a properly chosen function of the scale

25 For simplicity we consider also here the case where the light quarks
are massless.
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Fig. 7 Relative differences from the “1-loop approximation”
P(1)

�,f (M/Λ) = (M/Λ)η0 , η0 = 2Nh/(33 − 2N�), for different orders
of the perturbative expansion of P�,f (M/Λ) as a function of M/Λ [71].

The results for N� = 3, Nf = 4 (N� = 4, Nf = 5) are given in the
left (right) panel. The values for the RGI charm (Mc) and bottom (Mb)
quark masses in units of the proper Λ-parameters are marked by vertical
lines

Λ(Nf ) of the fundamental theory and of the RGI mass M of
the heavy quarks. To be more precise, consider a low-energy
mass-scale S � M . This could be, for instance, a hadronic
mass or any of the popular technical scales, t−1/2

0 , r−1
0 , w−1

0
[47,52,83]. Matching then means fixing the scale Λ(N�)

through the condition [71]

Λ(N�)

S(N�)
= PS

�,f(M/Λ(Nf ))
Λ(Nf )

S(Nf )(M)
. (27)

In these equations S(N�) and S(Nf )(M) refer to the given
low-energy scale computed in the effective and fundamen-
tal theory, respectively. Note in particular that the matching
function PS

�,f(M/Λ(Nf )) depends on the scale S that is con-
sidered in the matching relation. We also stress again that
while the value of Λ(Nf ) does not depend on M the one of
Λ(N�) does depend through the matching condition.

Once Λ(N�) is properly fixed through Eq. (27) in terms of
S, for any other low-energy quantity S ′ we expect that

S ′(N�) = S ′(Nf )(M) + O
((

Λ(Nf )/M
)2)

. (28)

Note that ratios of low-energy scales, instead, do not depend
on the value of the Λ-parameters and are therefore insensitive
to their matching. For these, it readily holds that

S(N�)

S ′(N�)
= S(Nf )(M)

S ′(Nf )(M)
+ O

((
Λ(Nf )/M

)2)
, (29)

with S and S ′ any two low-energy scales. Given this obser-
vation, from Eq. (27) we conclude that

PS
�,f = PS ′

�,f + O((Λ(Nf )/M)2) . (30)

In other words, at the non-perturbative level the function PS
�,f

intrinsically comes with O(M−2) ambiguities. For this reason
we shall often simply write it as P�,f , keeping the dependence
on S and the related ambiguities understood.

An interesting consequence of the above relations follows
from multiplying Eq. (27) byS(Nf )(0)/Λ(Nf ), whereS(Nf )(0)

stands for the low-energy quantity S computed in the chiral
limit of the Nf -flavor theory. Through this simple manipula-
tion we find that [70,71]

S(Nf )(M)

S(Nf )(0)
= QS

�,f × PS
�,f (M/Λ(Nf ))

= QS
�,f × P�,f (M/Λ(Nf )) + O

((
Λ(Nf )/M

)2)
,

(31)

where the factor

QS
�,f ≡ S(N�)/Λ(N�)

S(Nf )(0)/Λ(Nf )
, (32)

is defined in terms of the massless Nf - and N�-flavor theo-
ries. The interesting aspect of Eq. (31) is that the ratio on the
l.h.s. can be computed within the fundamental theory, while
the r.h.s. is a consequence of the decoupling of the heavy
quarks. In particular, we see how the mass dependence of the
ratio S(Nf )(M)/S(Nf )(0) is expressed in terms of the func-
tion PS

�,f , while the factor QS
�,f is just an overall constant. In

the limit of large mass M , the mass dependence of this ratio
is therefore expected to be universal and described by pertur-
bation theory. As a result, this relation allows us to put at test
the perturbative expansion of P�,f and estimate the typical
size of non-perturbative corrections.

To this end, it is convenient in practice to introduce the
mass-scaling function [71]

η
M,S
�,f (M) ≡ M

PS
�,f

∂PS
�,f

∂M

∣∣∣∣
Λ(Nf )

. (33)
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Considering Eq. (31), this can be computed from the mass
dependence of any hadronic quantity as 26

η
M,S
�,f (M) = M

S(Nf )(M)

∂S(Nf )(M)

∂M

∣∣∣∣
Λ(Nf )

, (34)

with no need for determining S(Nf )(0) or Q�,f . As for the
functions PS

�,f , the η
M,S
�,f obtained from different low-energy

quantities S are expected to differ by O((Λ(Nf )/M)2) con-
tributions. In the limit M/Λ(Nf ) → ∞, however, the mass-
scaling function becomes universal and can asymptotically
be estimated in perturbation theory [71]. In the following
we shall see how by studying the mass-scaling function we
will be able to obtain valuable insight on the applicability of
perturbation theory in computing P�,f .

3.3.2 Non-perturbative corrections to decoupling

Non-perturbative effects in the decoupling of heavy quarks
have been systematically investigated in a series of recent
papers [70,71,84–87], which focus on the relevant case of
the charm. The main question that these works contribute to
answer is how good of an approximation Nf = 2 + 1 QCD
is to the Nf = 2 + 1 + 1 flavor theory. From our perspective,
we are particularly interested in understanding how precisely
we can expect to obtain Λ

(4)

MS
(and consequently Λ

(5)

MS
) from

results in Nf = 2 + 1 QCD. As already mentioned, the first
issue is to understand how accurately we can estimate Λ

(4)

MS

from Λ
(3)

MS
by relying on a perturbative approximation for

P3,4(Mc/Λ
(4)

MS
). Secondly, we must question how much we

can rely on setting the physical units of the theory using
Nf = 2 + 1 QCD.

Studying the decoupling of the charm quark through sim-
ulations of Nf = 2+1+1 and Nf = 2+1 QCD is very chal-
lenging from the computational point of view. As a result, the
physical effects one is after can easily end up being masked
by the final uncertainties. For this reason, the authors of Refs.
[70,71,84] have investigated non-perturbatively a model sys-
tem given by QCD with Nf = 2 degenerate heavy quarks.
When the mass of the doublet of quarks becomes large the
heavy quarks eventually decouple, and the theory is expected
to be described at low energy by the pure Yang-Mills the-
ory, i.e. N� = 0 flavor QCD. Studying this model rather
than the realistic case, avoids the complications of simulat-
ing light quarks. This allows one to reach much finer lattice
spacings than typically possible in large-volume simulations
with light quarks, because the volumes are similar to those in
pure-gauge theory. Fine lattice spacings are essential to have

26 Note that the number of light quarks on the r.h.s. of this equation is
implicitly given by the difference between Nf and the number Nh of
heavy quarks of which the mass is varied.

Fig. 8 Mass dependence of the mass-scaling functions η
M,S
0,2 obtained

from the hadronic scales S = t−1/2
0 , t−1/2

c , w−1
0 [71]. The data for a

given mass M are slightly displaced horizontally for better clarity. The
non-perturbative results are compared to the perturbative estimates at 1-
and 4-loop order. The dash-dotted lines are fits to the data for S = t−1/2

c
and w−1

0 used to estimate the size of the non-perturbative corrections to

η
M,S
0,2 [71]. The vertical dotted lines mark the values of the quark mass
Mc, Mc/2, and Mc/4

discretization errors under control in the presence of quarks
with masses close to that of the charm.

By studying this model one expects to be able to reliably
estimate the typical size of the effects induced by the charm
in low-energy physics. In particular, the absence of the light
quarks is not expected to change the picture very much and
their effect is likely more than compensated by the additional
heavy quark present in the model. In fact, as we shall report
below, some first results have been recently obtained for the
more realistic situation where a single charm quark decouples
in the presence of 3 mass-degenerate lighter quarks [87]. The
results collected so far confirm the findings of the model
study.

Ratios of Λ-parameters The first set of results that we want
to discuss are from Ref. [71] and are shown in Fig. 8. They
correspond to the determination of the mass-scaling func-
tions η

M,S
0,2 based on the gluonic low-energy scales S =

t−1/2
0 , t−1/2

c , w−1
0 (cf. Eq. (34)). The precise definition of

these scales can be found in the given reference. The results
refer to the continuum limit of the model system introduced
above, i.e. Nf = 2 QCD with two heavy quarks. The RGI
mass M of the heavy quarks is varied from about Mc/8 to
1.2Mc, where Mc is the RGI mass of the charm quark. 27 The
plot also includes the results for ηM

0,2 at 1- and 4-loop order
in perturbation theory [71].

As one can see from the figure, the results for the mass-
scaling functions corresponding to different low-energy
observables significantly differ at the smaller values of M in
the range. As expected, however, they consistently approach

27 The value of the charm-quark mass in simulations is set by targeting
Mc/Λ

(2)

MS
= 4.87, which is obtained using Λ

(2)

MS
= 310 MeV from Ref.

[88] and Mc = 1510 MeV from Ref. [89] (cf. Ref. [71] for the details).
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Fig. 9 Continuum extrapolated values for
√
tc/t0 (left) and

√
t0/w0

(right) as a function of Λ/M [84]. The line in the blue band is the
leading-order effective theory prediction: R(M) = R(∞) + kR ×
Λ2/M2, R = √

tc/t0,
√
t0/w0, with kR a free parameter, fitted through

points from M = ∞ down to M/Λ = 2.5. The line in the green band is

instead a fit linear in Λ/M . For comparison the dashed lines represent
the quadratic (blue) and linear (green) fit through points from M = ∞
down to M/Λ = 1.28. Also shown by the dashed-dotted red line is a
fit in this range adding to the leading-order prediction a next-to-leading
term proportional to Λ4/M4

each other as M → ∞. In particular, for values of the mass
close to the charm-quark mass all determinations well agree
within errors, indicating the smallness of the O(M−2

c ) cor-
rections.

The results for ηM
0,2 are about 1/10 for M ≈ Mc, both

in perturbation theory and non-perturbatively. In fact, within
the uncertainties of roughly 10% the perturbative and non-
perturbative results perfectly agree. Note that even though
the relative precision on ηM

0,2 might not seem impressive, it

corresponds to an absolute error on ηM
0,2 of about 0.01. This

means, in particular, that it is reasonable to assume that the
difference, ΔηM

0,2, between the non-perturbative ηM
0,2 and its

(4-loop) perturbative approximation is bounded by this error
for masses M � Mc. The scaling of the non-perturbative
corrections ΔηM

0,2 to ηM
0,2 as a function of M can then be

assessed by studying the M-dependence seen in Fig. 8 and
comparing the results for the different observables S [71].

Putting all this information together, the authors of Ref.
[71] obtain a conservative estimate for the size of the non-
perturbative contributions ΔP0,2 to P0,2. We shall not report
their detailed discussion here and refer the interested reader to
Ref. [71]. 28 Summarizing their conclusions, given the results

28 The deviation Δ log(P0,2) of the full function log(P0,2) from its per-
turbative approximation is obtained by integrating ΔηM

0,2 in log(M/Λ)

for ΔηM
0,2 obtained in the model, one can safely state that the

non-perturbative contributions to P0,2(Mc/Λ
(2)

MS
) are at most

2% and quite likely at the level of 0.4%. This translates into at
least a 2% precision of perturbation theory in the conversion
of Λ-parameters for the investigated case.

What can we conclude from this about the phenomeno-
logically interesting case of P3,4(Mc/Λ

(4)

MS
)? We first note

that the dependence in perturbation theory of ηM
�,f on N� at

fixed Nh is very mild. At leading order it amounts to about
a 20% effect in going from N� = 0 to N� = 3 [71]. For
this reason, the authors of Ref. [71] include an additional
50% contribution to their estimate for the non-perturbative
corrections ΔηM

0,2 to account for the missing light-quark
effects. Secondly, our intuition from both perturbative and
non-perturbative considerations suggests that most likely the
effects of the decoupling of a single charm quark are about
half of those of two quarks. From these observations, one con-
cludes that one can safely neglect non-perturbative effects in

from the value of M/Λ of interest up to M/Λ = ∞ (cf. Eq. (34) and Ref.
[71]). In order to translate to P0,2 the estimate for the non-perturbative
corrections to ηM

0,2 made for M � Mc, one therefore needs to make some
assumptions on how these approach the limit M/Λ → ∞. Depending
on the assumptions, more or less conservative estimates are obtained.
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connecting Λ
(3)

MS
and Λ

(4)

MS
down to a precision of 1.5% or

better [71].

Ratios of hadronic quantities The second important cate-
gory of effects that we address are non-perturbative contri-
butions from heavy quarks to dimensionless ratios of low-
energy quantities. For us these are relevant in the context of
setting the physical scale of the theory (see e.g. Ref. [90]).
As well-known, in fact, besides the technical difficulties of
computing the relevant ratios, an important issue that one
faces in setting the scale in lattice QCD is the fact that one
never really simulates the “real world”, where experiments
are conducted. Hence, when comparing the lattice results
with experiments in order to set the scale of the theory, one
must “correct” the experimental quantities for effects that are
not taken into account in the lattice simulations, or at least
verify that these are not relevant once compared with the rest
of the uncertainties. The most common examples of effects
to be considered are the difference in the u- and d-quark
masses, electromagnetic effects, and the unphysical number
of quark flavors.

In the following we focus on the issue of estimating the
effects of the charm quark in low-energy quantities, and to
which extent this can be omitted in lattice simulations. From
the point of view of determining Λ

(4)

MS
from the results of

Λ
(3)

MS
, thus, the relevant question is how accurate the deter-

mination of the physical scale is from simulations in the 3-
flavor theory. This amounts to quantify how accurate it is to
compute in Nf = 2 + 1 rather than Nf = 2 + 1 + 1 QCD,
the ratios of low-energy quantities that are used to set the
physical scale.

As presented in Eq. (29), the effects of heavy quarks in
dimensionless ratios of low-energy quantities are expected
to be of O(M−2), provided that the mass of the heavy quarks
is large enough compared to the energy scales of the observ-
ables considered. In Ref. [84] a systematic study was con-
ducted in order to assess the range of heavy-quark masses
for which the O(M−2) scaling of the heavy-quark effects
predicted by the effective theory actually sets in. In addition,
the authors estimated the typical size of these contributions
when M ≈ Mc. For their computations, they considered
the very same model of QCD with two degenerate heavy
quarks previously introduced, and the same range of masses,
M ≈ Mc/8 − 1.2Mc. The results for several different ratios
of low-energy quantities obtained in the fundamental Nf = 2
QCD theory and in the effective pure-gauge theory were com-
pared. Note that since the effective theory is purely gluonic
only gluonic quantities were considered. These, however, are
all relevant observables entering realistic scale-setting deter-
minations.

In Fig. 9 we show two examples given by the ratios
√
tc/t0

(left panel) and
√
t0/w0 (right panel), evaluated in the con-

tinuum limit. The results from Nf = 2 QCD for different

values of the heavy-quark masses M � Mc/4 are shown, as
well as those from the effective pure-gauge theory which
correspond to M = ∞. Several fits to the data are pro-
posed. Let us focus first on the quadratic (blue) and linear
(green) fits in Λ/M . Among these four fit types, the data
seem to favor the leading-order effective theory predictions:
R(M) = R(∞) + kR × Λ2/M2, R = √

tc/t0,
√
t0/w0,

with kR free parameters, restricted to masses M/Λ � 2.5,
i.e. M � Mc/2 (blue bands). Both linear fits in Λ/M , either
excluding (green bands) or including (green dashed lines) the
point at M ≈ Mc/4 have significantly larger χ2 per degree
of freedom than the previous fits (cf. Table 3 in Ref. [84]).
The pure (Λ/M)2 fits which include the M ≈ Mc/4 results
(blue dashed lines), instead, are clearly off.

Although the results do not completely exclude a lin-
ear Λ/M dependence, the fits obtained by adding to the
leading-order prediction a next-to-leading term ∝ (Λ/M)4

and including data down to M ≈ Mc/4 (red dashed lines),
further support the findings from the previous fits. Indeed,
the close agreement for M � Mc/2 of these fits and the
leading-order predictions restricted to this range, reinforce
the conclusion that the O(M−2) scaling sets in for masses
M � Mc/2, while for smaller masses higher-order contri-
butions become relevant, or the expansion has broken down
entirely.

In general the corrections induced by the heavy quarks
are small. They amount to 2 − 3% at the smallest masses
in the plot, around Mc/4, but they are reduced significantly
below the percent level, to about 0.4%, once M ≈ Mc. As
discussed above, we expect that this result provides a reliable
estimate for the magnitude of these effects in the realistic case
of the decoupling of the charm quark in Nf = 2+1+1 QCD.
The simultaneous decoupling of two charm-like quarks rather
than just one, likely compensates the missing effects from
the light quarks; this at least in the purely gluonic quantities
under consideration.

These expectations are confirmed by the recent results of
Ref. [87]. In Fig. 10 we show their continuum limit extrap-
olations for different discretizations of the ratios

√
t0/tc

and
√
t0/w0. In this case, the results from Nf = 3 and

Nf = 3 + 1 QCD are compared. Both simulations include
3 mass-degenerate quarks with a mass around the physical
average mass of the u-, d- and s-quarks. The Nf = 3 + 1
simulations include in addition a fourth quark with a mass
set to the physical value of the charm. By comparing the
results of the two set of simulations one can directly test
decoupling in a close-to-real situation. As one can see from
the figure, the differences in these very precise ratios of low-
energy gluonic quantities are far below the percent level and
of the order of magnitude found in the model. Interestingly,
the ensembles generated in Ref. [87] open the possibility to
study systematically the effects of the charm quark also in
fermionic low-energy observables.
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Fig. 10 Comparison of continuum limit extrapolations of
√
t0/tc (bot-

tom) and
√
t0/w0 (top) of the Nf = 3+1 data from Ref. [87] (right) with

corresponding Nf = 3 CLS results (left) from Refs. [20,91] including
the finest ensemble J500, cf. Ref. [92]

ConclusionsLet us summarize what we have learned from
the studies above. 1) The ratio Λ

(4)

MS
/Λ

(3)

MS
can be safely com-

puted in perturbation theory with a precision of at least 1.5%,
and realistically much better. In fact, it is important to stress
that the estimate for non-perturbative corrections to the func-
tion P3,4(Mc/Λ

(4)

MS
) is very conservative and the actual size

of these effects is much likely quite smaller, i.e. at the level
of 0.3% or so [71]. 2) Power corrections of O(M−2

c ) in low-
energy observables are also found to be very small, i.e. well-
below the percent level [84]. All in all, this means that Λ

(5)

MS

can be accurately predicted at the 1–2% level from Λ
(3)

MS
. In

this respect, we note that the competitive precision of about
0.7% on the αs(MZ ) determination of Ref. [13] (to be dis-
cussed below), corresponds to an uncertainty of 3.5% on
Λ

(3)

MS
. This uncertainty is also conservative. In conclusions,

there is plenty of room for improvement within Nf = 3 QCD.

4 Renormalization by decoupling

4.1 The QCD coupling from Nf = 3 QCD

In the previous section we established that by relying on
perturbative decoupling relations for the charm and bottom
quarks, precise determinations of Λ

(5)

MS
are possible from

results in the Nf = 3 flavor theory. In order to be able to make
this statement the systematic studies on the non-perturbative
effects induced by the charm quark in low-energy quantities
have been instrumental.

Having this settled, as discussed in detail in Sect. 2, the
main challenges for an accurate determination of αs on the
lattice are: (1) controlling discretization errors in contin-
uum limit extrapolations of the chosen non-perturbative cou-

pling(s), and (2) estimating the uncertainties associated with
the use of perturbation theory in extracting the Λ-parameter.
In this respect, the combined application of finite-volume
renormalization schemes and finite-size scaling techniques
has proven to be extremely effective in dealing with these dif-
ficulties, paving the way for robust and precise lattice deter-
minations of the QCD coupling.

The determination of Ref. [13], in particular, relies on
these techniques to compute Λ

(3)

MS
. The calculation reaches a

final precision on Λ
(3)

MS
of about 3.5%, which translates into a

0.7% uncertainty on αs(MZ ). The strength of this result lies
in the fact that all systematic uncertainties are carefully kept
under control at this competitive level of accuracy. The calcu-
lation is therefore a prominent example of the current state-
of-the-art determinations of αs from the lattice [3]. Below we
want to briefly recall the main steps that led to this result in
order to understand what the challenges are in improving on
it. For a more detailed presentation we refer the interested
reader to the original references [13,31,32,50] and reviews
[93–97].

The Λ
(3)

MS
determination of Ref. [13] was obtained from

the study of the non-perturbative running of some conve-
nient finite-volume schemes from a scale of about 0.2 GeV
to roughly 70 GeV. The very high energies reached non-
perturbatively allowed for a systematic and robust assessment
of the uncertainties related to the application of perturbation
theory. This study has been presented in Sect. 2.3.1, where
the high-energy end of the running in the SF-schemes and
the result for Λ

(3)

MS
/μ0 with μ0 ≈ 4.3 GeV, have been dis-

cussed in detail. The rest of the determination is built on the
following steps.

Firstly, we have the computation of the lower end of
the running and corresponding determination of the ratio of
finite-volume scales μ0/μhad with μhad ≈ 200 MeV [50].
For this step, a novel finite-volume coupling defined in terms
of the Yang-Mills gradient flow was employed. This allowed
for reaching much greater precision than otherwise possi-
ble using the schemes considered at high energy [98]. Note
that a non-perturbative matching between the finite-volume
schemes at μ0 was performed in order to continue the running
at lower energies. For illustration, we show in Fig. 11 the non-
perturbative running of the finite-volume couplings over the
energy range covered, together with the results for the cou-
pling in the MS-scheme obtained from the corresponding
determination of Λ

(3)

MS
(see below).

In a second step, the relation μhad/ fπK was established
passing through the intermediate technical scale μ∗

ref =
1/

√
8t∗0 [13]. Here, fπK ≡ 1

3 (2 fK + fπ ) is a convenient
combination of the pion and kaon decay constants, while the
scale μ∗

ref is given in terms of the flow time t∗0 defined in
the SU(3) flavor-symmetric limit [91]. This step involved a
combination of small-volume and large-volume simulations
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Fig. 11 Running couplings of Nf = 3 QCD from integrating the non-
perturbative β-functions in the SF- and GF-schemes [31,50]. They are
matched non-perturbatively at the scale μ0 defined by ḡ2

SFν=0
(μ0) =

2.012 by computing ḡ2
GF(μ0/2) = 2.6723(64) [50]. The scales μPT =

16μ0 and μhad defined by ḡ2
GF(μhad) = 11.31 are also shown, as well

as the perturbative prediction for the SFν=0-coupling for μ > μPT
using the 3-loop β-function. The red curves correspond to the results
for α

(3)

MS
(μ) obtained from Λ

(3)

MS
= 341(12) MeV [13], considering dif-

ferent perturbative orders for the β-function in the MS-scheme

in the hadronic regime [13]. From the experimental value of
fπK the precise physical units for μhad could be inferred and
hence those of Λ

(3)

MS
. Finally, perturbation theory was used for

the functions P3,4(Mc/Λ
(4)

MS
) and P4,5(Mb/Λ

(5)

MS
) to obtain

Λ
(5)

MS
and from this αs(MZ ). Splitting the determination of

Λ
(5)

MS
over the above steps was the key to keep all systematic

errors under control. With the proper choice of observables
and techniques the hard multi-scale problem of relating the
low- and high-energy sectors of QCD could be solved in full
confidence.

It is now instructive to look at the error budget of this
αs determination. This is given in Fig. 12 which shows the
contribution in percentage to the relative error squared on
αs(MZ ) from the different steps described above [93]. As it
is clear from the figure, the main source of uncertainty comes
from the determination of the non-perturbative running from
μhad ≈ 0.2 GeV up to μPT ≈ 70 GeV, where perturbation
theory is applied to extract Λ

(3)

MS
/μPT (cf. Sect. 2.3.1). In

particular, the error accumulated by running from μ0 to μPT

(labeled as Λ
(Nf=3)

MS
/μ0 in the plot) contributes roughly 60%

of the total budget.
It is important to recall at this point that the error com-

ing from the running is completely dominated by statistical
uncertainties. In particular, thanks to the fact that μPT ≈
70 GeV was reached non-perturbatively, the uncertainties
due to the use of perturbation theory are well below the sta-
tistical errors (cf. Sect. 2.3.1). In this respect, we want to
stress the important difference between this and the major-
ity of other lattice determination of Λ

(3)

MS
, where perturbation

theory is applied at scales μPT � 2 − 3 GeV. In these cases,

Fig. 12 Contribution in percentage to the relative error squared of
αs(MZ ) from the different steps of the determination of Ref. [13] (cf. text
for more details). As the reader can see, the dominant source of uncer-
tainty is the non-perturbative running at high energy μ ≈ 4 − 70 GeV
(Λ(Nf =3)

MS
/μ0) [31,32], followed by the running at low energy μ ≈

0.2 − 4 GeV (μ0/μhad) [50], and by scale setting (μ∗
ref ) [91]. Note that

the error from decoupling (Λ(5)

MS
/Λ

(3)

MS
) is only perturbative. However,

even adding the very conservative uncertainty estimated in Sect. 3.3.2
for the non-perturbative contributions to the decoupling of the charm
quark, the total error is still dominated by the one from the running

a large fraction of the final error comes from the system-
atic uncertainties related to the truncation of the perturbative
series and possible remnants of non-perturbative contribu-
tions (cf. Ref. [3]). As we have seen, estimating these system-
atics reliably is very challenging, particularly so when preci-
sion is desired but the accessible range of scales is limited to
low energy. In this situation, a reduction of the final uncer-
tainties is highly non-trivial, and can eventually come only
from reaching significantly higher energy scales. Without a
step-scaling approach this is in practice extremely demand-
ing in QCD given the present computational and algorithmic
capabilities.29

In the case of the step-scaling method, on the other hand,
reducing the uncertainties on the current αs(MZ ) determi-
nation is a question of reducing the statistical uncertainties
coming from the running of the coupling(s) in Nf = 3 QCD.
This is in principle a straightforward task. However, reducing
the total error by an important factor, say a factor 2 or so, is
yet a non-trivial challenge from the computational point of
view.

Rather than following a brute force approach for the reduc-
tion of the error in the computation of the running in Nf = 3
QCD, in the following we shall discuss a novel strategy which
promises the desired error reduction in a significantly cheaper
way [14]. It is based on the ideas presented in the previ-
ous section on heavy-quark decoupling. The distinct feature
of the approach is that one can replace the non-perturbative

29 We recall that with the current state-of-the-art algorithms, the cost
of QCD simulations for reducing the lattice spacing a at fixed phys-
ical volume and number of independent configurations scales ∝ a−7

(cf. e.g. Ref. [99]). Hence, reducing the lattice spacing by a factor 2 or
so requires a factor of O(100) in the cost.
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computation of the running in Nf = 3 QCD needed to deter-
mine Λ

(3)

MS
with the running in the pure Yang–Mills theory.30

4.2 The coupling from decoupling

4.2.1 General strategy and master formula

Let us begin by considering QCD with Nf flavors of heavy
quarks of RGI mass M . In this theory all quarks are mas-
sive and there are no light quarks. As we have seen in
Sect. 3.1.1, as the mass M becomes larger and larger this
theory is expected to be approximated better and better by
an effective theory given by the pure Yang-Mills theory. In
particular, once the Λ-parameters of the fundamental and
effective theory are properly matched, dimensionless low-
energy observables can be computed in the effective theory
up to corrections of O(M−n), where, in general, n = 2 if the
theories are matched at leading order.

The decoupling of heavy quarks is also valid for the inter-
esting case of couplings defined in massive renormalization
schemes [23,73]. This is a direct consequence of the fact
that such couplings are defined in terms of dimensionless
observables in the massive theory. Following the notation
of Sect. 2.2.2, we indicate the generic renormalized massive
coupling in the Nf -flavor theory as ḡ(Nf )

O (μ, M), where O
denotes the short-distance observable used to define the cou-
pling (cf. Eq. (3)), while μ is the renormalization scale. From
the decoupling of heavy quarks applied to the observable O
it follows that,

ḡ(Nf )

O (μ, M) = ḡ(0)

O (μ) + O(M−2) , (35)

where ḡ(0)

O (μ) refers to the corresponding coupling in
the pure Yang-Mills theory evaluated at the same physi-
cal scale μ. Note that here and below we shall loosely
denote as O(M−k) terms, contributions that contain terms
of O((Λ/M)k) as well as O((μ/M)k).

The decoupling relation, Eq. (35), can be equivalently
recast in terms of the renormalization scales μ implicitly
defined by the couplings. Specifically, given a numerical
value for the coupling gM , we define the scales μ

(Nf )
dec and

μ
(0)
dec through

ḡ(Nf )

O (μ
(Nf )
dec , M) = gM = ḡ(0)

O (μ
(0)
dec) . (36)

From the theory of decoupling it then follows that

μ
(0)
dec = μ

(Nf )
dec + O(M−2) . (37)

We stress again that we assume that the Λ-parameters in the
two theories are properly matched.

30 We take the opportunity to point out the study of Ref. [100] where
ideas based on heavy-quark decoupling are considered in order to
address other RG-related problems in the context of Beyond the Stan-
dard Model Physics.

From this basic observation the master formula proposed
in Ref. [14] follows. We start by considering the relation in
Eq. (27), and take for the low-energy scaleS the renormaliza-
tion scale μdec defined above in terms of the given couplings.
In formulas,

Λ
(0)

MS

μ
(0)
dec

= P0,f(M/Λ
(Nf )

MS
)
Λ

(Nf )

MS

μ
(Nf )
dec

+ O(M−2) , (38)

where for later convenience we took the Λ-parameters in
the MS-scheme.31 Now, rather than interpreting the above
equation as a matching relation for the Λ-parameters that
defines the function P0,f , we shall turn tables and use it to
predict the ratio Λ

(Nf )

MS
/μ

(Nf )
dec in terms of Λ

(0)

MS
/μ

(0)
dec.

To this end, we first replace the function P0,f with its
perturbative expansion PPT

0,f in the MS-scheme to some order
n (cf. Eqs. (24), (10) and Sects. 3.2.2, 3.3.1),

P0,f(M/Λ
(Nf )

MS
) = PPT

0,f (M/Λ
(Nf )

MS
) + O(g2n−2∗ , M−2) . (39)

We therefore have that,

Λ
(Nf )

MS

μ
(Nf )
dec

PPT
0,f (M/Λ

(Nf )

MS
) = Λ

(0)

MS

μ
(0)
dec

+ O(g2n−2∗ , M−2). (40)

As a second step, using Eq. (4) and the definition in Eq. (36)
we write,

Λ
(0)

MS

μ
(0)
dec

= Λ
(0)

MS

Λ
(0)

O
ϕ

(0)

g,O(gM ) , (41)

which only involves quantities in the pure-gauge theory.
We recall that O appearing here is the observable used to
calculate the coupling in Eq. (36). Moreover, as discussed
in Sect. 2.2.2, the change of scheme given by the ratio
Λ

(0)

MS
/Λ

(0)

O can be computed exactly through a 1-loop cal-
culation (cf. Eq. (8)).

Finally, introducing the dimensionless variables,

ρ ≡ Λ
(Nf )

MS
/μ

(Nf )
dec , z ≡ M/μ

(Nf )
dec , (42)

using Eqs. (40) and (41) we arrive at the master equation,

ρ PPT
0,f (z/ρ) = Λ

(0)

MS

Λ
(0)

O
ϕ

(0)

g,O(gM ) + O(g2n−2∗ , M−2), (43)

which can be solved for ρ once the pure-gauge function
ϕ

(0)

g,O(gM ) is known. As promised, the master formula allows
us to replace the non-perturbative computation of the running
of the coupling from the low-energy scale μdec up to infinite
energy in Nf -flavor QCD with the corresponding running in
the pure-gauge theory. A few remarks are in order at this
point.

31 Note that the relation is non-perturbatively valid at this point as
ΛMS can be expressed exactly in terms of any non-perturbative scheme
(cf. Sect. 2.2.2).
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First of all, it is important to stress the fact that Eq. (43)
is exact in the limit where M → ∞. In this limit
both the perturbative O(g2n−2∗ ) corrections and the non-
perturbative O(M−2) contributions vanish. The basic idea
that is applied in this strategy is in fact similar to when we
extract Λ

(4)

MS
from Λ

(3)

MS
by replacing the non-perturbative

function P3,4(Mc/Λ
(4)

MS
) with its perturbative approxima-

tion to some order, neglecting both higher-order terms and
non-perturbative corrections. The crucial difference in the
present case is that the approximation can be made system-
atically better by considering larger values of M , which,
at least in principle, is a free parameter of the strategy.
In this respect, note that the perturbative corrections to
P0,f(M/Λ

(Nf )

MS
) only depend on the value of M/Λ

(Nf )

MS
, while

the choice of scaleμ
(Nf )
dec does not matter. From the results pre-

sented in Sect. 3.2.2, we infer that the perturbative errors due
to the truncation of the perturbative series for P0,f (M/Λ

(Nf )

MS
)

are already small for M/Λ
(Nf )

MS
≈ 5, for the relevant values

of Nf . On the other hand, controlling the non-perturbative
O(M−2) terms requires to have both O((Λ(Nf )

MS
/M)2) and

O((μ(Nf )
dec /M)2) terms under control. Whether this is possible

in practice must be assessed by carefully studying the limit
M → ∞ with the accessible values of M .

In comparing Eqs. (27) and (38), the attentive reader might
have noticed that we omitted the M-dependence on the scale
μ

(Nf )
dec . This was intentional. As we shall see in the later sub-

section, in practice it is convenient in fact to define a single
scale, μ(Nf )

dec , common to all the Nf -flavor theories defined by
the different values of M .32 This means that, as anticipated
by our notation in Eq. (36), we will have different values for
gM depending on the value of M considered. The value of
gM is found by computing ḡ(Nf )

O (μ
(Nf )
dec , M) for the given M

at the common scale μ
(Nf )
dec . In lattice QCD, setting a com-

mon scale among the theories with different M values can be
achieved via the bare parameters. This amounts to consider
the very same lattice discretization and establish a line of con-
stant physics along which μ

(Nf )
dec is kept fixed. The massive

couplings are then evaluated at matching values of the bare
coupling along this line of constant physics for the different
bare quark masses corresponding to the target RGI masses.
From their continuum limit extrapolations we find the values
gM .

Finally, in order to extract Λ
(Nf )

MS
from the results for ρ

determined from Eq. (43) it is necessary to know the value of
μ

(Nf )
dec in physical units. This is obtained by establishing the

relation μ
(Nf )
dec /μ

(Nf )
phys, where μ

(Nf )
phys denotes a convenient low-

energy scale computed in Nf -flavor QCD at physical values
of the quark masses. The scale μ

(Nf )
phys can thus be related

32 The fact that we can set a unique scale for all theories with different
M values is a direct consequence of the fact that they all share the very
same Λ-parameter and this is M independent.

to its experimental counterpart. Of course, it goes without
saying that in order to be able to set the scale accurately
in terms of experimentally measurable quantities, as well as
to perturbatively match Λ

(Nf )

MS
and Λ

(5)

MS
, we must consider

Nf = 3 or 4.

4.2.2 Another hard multi-scale problem?

The general strategy presented above is certainly very com-
pelling. As any other strategy, though, in practical implemen-
tations it comes with its challenges. In particular, in order to
have all systematic effects under control, it is necessary to
carefully address how to accommodate in lattice simulations
the different scales that enter the problem. As we shall see, a
naive approach can easily end up facing severe limitations.

In the general situation, first of all, the space-time vol-
ume has to be large enough for finite-volume effects to be
under control in all relevant observables. This means that the
infrared cutoff set by the linear extent L of the lattice must
be much smaller than all other scales. Secondly, in order to
have small decoupling corrections in Eq. (43) we must have
that the heavy-quark mass M is larger than all other physical
scales, as in particular μ

(Nf )
dec and Λ

(Nf )

MS
. Note that although

μ
(Nf )
dec is in principle arbitrary, in practice it is not convenient

to take this scale to be much larger than Λ
(Nf )

MS
∼ μ

(Nf )
phys. Last

but not least, all scales have to be well below the ultraviolet
cutoff set by the lattice spacing. Putting all these constraints
together we find (cf. Eq. (2)),

L−1 � μ
(Nf )
phys ∼ Λ

(Nf )

MS
∼ μ

(Nf )
dec � M � a−1 . (44)

It is clear from this series of inequalities that having all these
scales comfortably resolved on a single lattice is challenging
and requires a very large L/a. Just to give an example, if
one attempts the calculations using a state-of-the-art large-
volume ensemble with, say, L/a = 100, mπ L = 4, mπ =
140 MeV, which results in a ≈ 0.056 fm, Eq. (44) translates
into M � 3.5 GeV.

4.2.3 Finite-volume couplings rescue us again

Some of the constraints encoded in Eq. (44) can be lifted
by considering for the coupling in Eq. (35) a finite-volume
scheme, i.e. ḡO(μ, M) ≡ ḡO(L−1, M) (cf. Sect. 2.2.1).
With this choice, the determination of ḡO(μ

(Nf )
dec , M) does

not require the physical volume to be large. Furthermore, if
the decoupling scale μ

(Nf )
dec is also defined in terms of a finite-

volume coupling, i.e. μ(Nf )
dec ≡ L−1

dec, one has some additional

freedom in the choice of the value of μ
(Nf )
dec . Any sizable

scale separation between μ
(Nf )
dec and the hadronic scale μ

(Nf )
phys

can in fact be bridged through step-scaling within the Nf -
flavor theory (cf. Sect. 2.2.1). Taking μ

(Nf )
dec larger at fixed
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z = M/μ
(Nf )
dec , allows us to reach larger values of M/Λ

(Nf )

MS
,

as well as to profit from simulating at smaller values of a. On
the other hand, the larger μ

(Nf )
dec is, the smaller is the range of

energy scales for which, through Eq. (43), the running of the
coupling in the Nf -flavor theory is replaced by that in pure-
gauge. In practice, choosing μ

(Nf )
dec = O(1 GeV) is a good

compromise.
By employing finite-volume couplings and scales the only

constraints that we have to meet are to have small decoupling
corrections in Eq. (43), and to keep discretization errors under
control. The first condition requires z = MLdec � 1, while
discretization effects are small once aM � 1 and a/Ldec �
1. Putting these inequalities together we find the conditions

Ldec/a � z � 1. (45)

If we take, say, μ
(Nf )
dec = 1 GeV and Ldec/a = 50, then

M � 50 GeV. In summary, using finite-volume schemes,
for a given set of lattice sizes L/a we can reach much finer
lattice spacings a, as the extent of the lattice L does not
have to be large in physical units. Smaller a values allow us
to consider larger M values, while having aM reasonably
small. Larger values of M make for a more precise approx-
imation PPT

0,f (M/Λ). Still, large z values have to be reached
in order to control non-perturbative decoupling corrections.

Heavy-quark decoupling in a finite volume As pointed out
for the case of computing the running through a step-scaling
procedure (cf. Sect. 2.2.1), the choice of finite-volume cou-
pling is dictated by several technical aspects, as for instance,
statistical precision and discretization errors. For the strat-
egy based on decoupling an additional factor becomes rel-
evant which is the size of non-perturbative contributions in
the decoupling of heavy quarks (cf. Eq. (35)). In a finite vol-
ume, the situation can be quite different from one coupling
definition to another, as even the leading power in M−1 may
be different.

Most finite-volume couplings that are used in practice are
based on the QCD Schrödinger functional (SF) [36–38]. In
the SF the quark and gluon fields satisfy Dirichlet boundary
conditions at the space-time boundaries located at x0 = 0 and
T , where T is the temporal extent of the space-time volume
(cf. Eqs. (47)–(48)). These boundary conditions guarantee
many compelling features [36,37]. However, they come with
the price of having, for instance, additional discretization
effects of O(a) [36,101]. Using Symanzik effective theory
these can be understood as dimension 4 counterterms local-
ized at the space-time boundaries [36,101]. In close analogy
with Symanzik effective theory an analysis of the effective
Lagrangian for heavy quarks in the presence of SF bound-
ary conditions shows that the same boundary fields appear as
O(M−1) counterterms. More precisely, considering the rel-
evant case N� = 0, the Lagrangian L1 in Eq. (17) has the

form (cf. Eq. (18))

L1 = ωb(g)
[B(0) + B(T )

]
,

B(x0) = − 1

g2

∫
dx tr{F0k(x)F0k(x)}|x0 , (46)

where Fμν(x) is the gluon-field strength tensor, while ωb is
a coefficient function that can be fixed by matching with
the fundamental Nf -flavor theory. Note that for simplic-
ity we listed the only gluonic operator that is relevant for
the class of the SF boundary conditions normally employed
(cf. Eq. (47)). As a result, if couplings based on the SF are
considered, the decoupling relations Eqs. (35), (43) must be
corrected to have leading O(M−1) corrections rather than
O(M−2) [14,41,102].33 On the other hand, finite-volume
couplings defined through some variant of periodic bound-
ary conditions, as for instance regular periodic [48] or twisted
[105,106] boundary conditions, have leading decoupling cor-
rections of O(M−2), as observables in infinite space-time.

There are several possibilities to deal with the issue of
O(M−1) corrections in SF-based couplings. A straightfor-
ward one is to consider a sufficiently large time extent T , and
take for the observable O that defines the couplings fields
which are localized in the middle of the space-time mani-
fold, i.e. at x0 = T/2. This maximizes the distance from the
boundaries and therefore the correlation between O and the
fields responsible for O(M−1) effects. In fact, at low energy
(i.e. relatively large physical L and T ) the O(M−1) contami-
nations are expected to be exponentially suppressed with the
distance of O from the boundaries.

More elegant solutions have been proposed which elimi-
nate entirely the issue. For example, one could consider for
the heavy quarks a twisted rather than a standard mass [107–
110]. In this case, one can show that L1 = 0 and the decou-
pling in the SF is realized with O(M−2

tw ) corrections, where
Mtw is the heavy twisted mass of the quarks [102]. Equivalent
in the continuum is the situation where the heavy quarks have
a standard mass but the SF boundary conditions are chirally
rotated [102,111,112] (see also Refs. [113–118]). The issue
with these solutions is that they require an even number of
flavors Nf . They are therefore a promising approach for the
case of Nf = 4 QCD. For Nf = 3, one may consider having a
doublet of twisted-mass quarks and a regular massive quark
(or equivalently a doublet of chirally rotated quarks and a

33 The list of O(M−1) counterterms for the more general case, includ-
ing the situation where the effective theory also contains light quarks,
can be inferred from the O(a) counterterms of the Symanzik effective
theory for the SF [101]. It should be clear that the analogy only refers to
the fields entering the counterterms and, in general, it does not extend to
their coefficient functions ωb. In particular, one expects different bases
of counterterm fields to appear at higher orders in the effective theo-
ries, as the two theories have different defining symmetries. From these
observations, one concludes that also finite-volume couplings based
on open-SF [103] or open [104] boundary conditions are affected by
O(M−1) corrections.
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regular SF quark (see e.g. Ref. [118])). This would reduce
the O(M−1) contributions to those of only a single flavor.

Another possibility that we want to mention, which is valid
for any choice of Nf , is to match the effective and funda-
mental theory at O(M−1) [119]. In other words, by equating
the results for some convenient observable in the effective
and fundamental theory one can determine the coefficient ωb

appearing in Eq. (46). Once this is determined, the O(M−1)
terms can be taken into account in the effective theory by
computing the insertion of the counterterm in Eq. (46) in
the relevant observables. This guarantees that the decoupling
corrections are of O(M−2).

4.3 Λ
(3)

MS
from the decoupling of heavy quarks

4.3.1 Definitions

In this subsection we present the results of Ref. [14] where
the master formula, Eq. (43), was first applied for the compu-
tation of Λ

(3)

MS
. The study considers Nf = 3 QCD which is set

on the lattice in terms of non-perturbatively O(a)-improved
Wilson quarks and the tree-level Symanzik O(a2)-improved
gauge action [120].34

The theory is defined in a finite volume with time extent
T and spatial size L . The quark fields ψ,ψ and the gauge
field Aμ satisfy Dirichlet boundary conditions in the time
direction, specifically P± ≡ 1

2 (1 ± γ0) [36,37,101],

P+ψ(x)|x0=0 = 0 = P−ψ(x)|x0=T ,

ψ(x)P−|x0=0 = 0 = ψ(x)P+|x0=T ,

Ak(x)|x0=0,T = 0 , (47)

k = 1, 2, 3, while in the spatial directions we have

ψ(x + k̂L) = e
i
2 ψ(x) , ψ(x + k̂L) = ψ(x)e

−i
2 ,

Aμ(x + k̂L) = Aμ(x) . (48)

The finite-volume couplings that we consider in the following
are constructed in terms of the gradient flow field Bμ(t, x)
which is defined by the equations [47,121],

∂t Bμ(t, x) = DνGνμ(t, x) , Bμ(0, x) = Aμ(x) , (49)

where t > 0 is the flow time and

Gμν = ∂μBν − ∂νBμ + [Bμ, Bν] , (50)

is the flow-field strength tensor. On the lattice several dis-
cretizations of the GF equations have been considered, here
we employ the Symanzik O(a2)-improved definition pro-
posed in Ref. [122], also known as Zeuthen flow.

34 For ease of presentation in the following we use continuum notation
to introduce the relevant definitions while referring to the literature for
the corresponding lattice expressions.

Gauge-invariant composite fields made out of the flow
field Bμ(t, x) are automatically finite [123], and are thus
ideal quantities to define renormalized couplings [47–49].
The definition to which we apply decoupling (cf. Eq. (35))
is the massive finite-volume scheme given by

[ḡ(3)
GFT(μ, M)]2 ≡ t2

N 〈Emag(t, x)〉SF,Q=0
∣∣x0=L ,μ=L−1,

√
8t=cL

T=2L , (51)

where N is a normalization constant [49] and

Emag(t, x) = −1

2
tr{Gkl(t, x)Gkl(t, x)} (52)

is the magnetic component of the energy density of the flow
field Bμ(t, x). On the lattice, we define Emag in terms of the
O(a2)-improved definition given in Ref. [122].

Note how in Eq. (51) the renormalization scale μ is set in
terms of the finite spatial extent L , as appropriate for a finite-
volume coupling. In order for the coupling to depend on a
single scale (apart from M), the flow time t is also linked to
L through the constant c [48,49]. The value of this constant
is in principle arbitrary, but experience suggests that c = 0.3
is a good compromise between statistical precision and dis-
cretization errors [49]. From the point of view of decoupling,
we note that the larger the value of c is, the more sensitive the
coupling is to the O(M−1) counterterms located at x0 = 0, T .
This is so because for larger values of t the footprint of the
flow field Bμ(t, x) extends closer to the boundaries.

In order to attenuate the sensitivity to the O(M−1) terms, in
Eq. (51) we consider a space-time volume with T = 2L , and
place the energy density Emag(t, x) at x0 = T/2, in order to
maximize the distance from the boundaries (cf. Sect. 4.2.3).
Taking only the magnetic part of the flow energy density also
helps in reducing the O(M−1) contaminations.35 Lastly, we
note that the expectation value 〈· · · 〉SF,Q=0 in Eq. (51) is
meant to be considered in the presence of the SF boundary
conditions, Eqs. (47)–(48), and restricted to gauge fields in
the trivial topological sector [50,124]. The latter constraint
is imposed in order to circumvent issues related to topology
freezing at small lattice spacings [125,126].

Having introduced the massive scheme of choice, we now
move to the definition of the decoupling scale μ

(3)
dec. We define

this in terms of a massless finite-volume coupling. Its defi-
nition slightly differs from that of Eq. (51). Specifically, we
take [49,50],

[ḡ(3)
GF(μ)]2 ≡ t2

N ′ 〈Emag(t, x)〉SF,Q=0
∣∣x0=L/2,μ=L−1,

√
8t=cL

T=L ,M=0 , (53)

where as before we set c = 0.3. The main differences with
respect to the definition in Eq. (51) are that the coupling is

35 These choices made for reducing O(M−1) effects are also effective
in reducing the sensitivity to the O(a) effects stemming from the space-
time boundaries (cf. Sect. 4.2.3).
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evaluated at vanishing (renormalized) quark masses and the
temporal extent is shorter, i.e. T = L . The reason for consid-
ering this specific definition is because its non-perturbative
running in the Nf = 3 theory is known very precisely in
the range of scales μ ≈ 0.2 − 4 GeV (see Ref. [50] and
Sect. 4.1). This gives us the freedom to choose for μ

(3)
dec the

most convenient value in this range. Its physical units can
in fact be inferred from combining the knowledge of the
non-perturbative β-function of ḡ(3)

GF(μ) [50] and the physical

scales μ
(3)
phys determined in large-volume hadronic simula-

tions [13,91].36

In this study, the decoupling scale is specified by the con-
dition

[ḡ(3)
GF(μ

(3)
dec)]2 = 3.95 ≡ u0 , (54)

which using the information mentioned above is found to
correspond to

μ
(3)
dec = 789(15) MeV ≡ L−1

dec. (55)

This scale is convenient in practice as, given our choice of
lattice resolutions (see below), it allows us to simulate at val-
ues of the lattice spacing sensibly smaller than those typically
accessible to large-volume simulations. As we shall see, this
enables us to simulate quark masses up to M ≈ 4Mc, while
having aM effects under good control. Additionally, we can
profit from some perturbative information in the treatment of
O(aM) effects, which is expected to be accurate enough at
the values of the bare coupling corresponding to the relevant
lattice spacings. Lastly, the value of μ

(3)
dec is low enough in

energy that only a very limited part of the running in Nf = 3
QCD is needed in order to connect it to the scales μ

(3)
phys and

set its physical units.

4.3.2 Determinations of the massive coupling

The next step in the strategy is to determine the value of the
coupling ḡ(3)

GFT(μ
(3)
dec, M) for some large quark masses. To

this end, we must evaluate the coupling ḡ(3)
GFT(μ

(3)
dec, M) for

several values of the lattice spacing at fixed μ
(3)
dec and given

M , and extrapolate it to the continuum limit.
The condition in Eq. (54) defines the line of constant

physics along which μ
(3)
dec is constant. Given a set of lattice

sizes L/a, by tuning the bare coupling g0 so that the massless
GF-coupling has the prescribed value u0, we can identify the
values of a for which L = Ldec is fixed in physical units
as a/L → 0. In this respect, note that in order to compute
the massive coupling ḡ(3)

GFT(μ
(3)
dec, M) and the massless cou-

pling ḡ(3)
GF(μ

(3)
dec) at matching values of the lattice spacing up

to O((aM)2) corrections, the two must be evaluated at the

36 The latter are given by a combination of pion and kaon decay con-
stants (cf. Refs. [13,91] and Sect. 4.1 for more details).

same value of the O(a)-improved bare coupling g̃0 [101].
The latter, we recall, is defined as [101],

g̃2
0 ≡ g2

0(1 + bg(g̃0)amq) , mq = m0 − mcr(g̃0) , (56)

where m0 is the bare quark mass, mcr is its critical value at
which the (renormalized) quark masses vanish, and bg(g̃0) is
a function of the bare coupling to be determined. In the mass-
less theory mq = 0, and the improved bare coupling coin-
cides with g0. The values of g0 determined from the condition
(54) in terms of the massless coupling therefore specify the
values of g̃0 at which the massive couplings should be evalu-
ated. According to the Symanzik improvement programme,
the coefficient bg(g̃0) can be tuned in order to remove O(amq)
effects in the matching between the massless and massive
renormalization schemes. At present, however, this is only
known to 1-loop order in lattice perturbation theory, where
bg(g0) = 0.012 g2

0 × Nf + O(g4
0) [41,101].

Together with the bare coupling, the bare quark masses
must be set in order to guarantee a given value for the RGI
mass M in the continuum limit. This is achieved by consider-
ing a value of z = MLdec, and by solving for a given lattice
size Ldec/a the following equation for the bare quark masses,

z = Ldec

a

M

m(3)
SF (μ

(3)
dec)

Zm(g̃0, a/Ldec)am̃q . (57)

In this equation,

m̃q = mq(1 + bm(g̃0)amq) , mq = m0 − mcr(g̃0) , (58)

is the O(a)-improved definition for the bare quark mass,
which replaces the regular bare mass mq in order to elim-
inate O(amq) effects in massive schemes [101]. To this end,
the function bm(g̃0) must be properly chosen. The func-
tion Zm(g̃0, a/L), instead, refers to the renormalization con-
stant that relates the bare quark mass to the renormalized
quark mass mSF(μ) in the SF-scheme of Refs. [127–130].
This, together with the improvement coefficient bm, and
the critical mass mcr, are known non-perturbatively for the
relevant parameters (see Ref. [14]). The matching factor
M/m(3)

SF (μ
(3)
dec) then allows us to convert the renormalized

quark mass in the SF-scheme at the scale μ
(3)
dec to the RGI

mass M . It can be obtained from the results of Ref. [130].
Once amq for the given z is known from Eq. (57) at the values
of g̃0 given by the condition Eq. (54), using the 1-loop results
for bg we can infer from Eq. (56) the values of g0 at which
the massive couplings must be computed in simulations [14].

Having set the bare parameters we can finally evaluate the
functions,

Ψ M (u0, z) = lim
a/Ldec→0

[
ḡ(3)

GFT(μ
(3)
dec, M)

]2∣∣[ḡ(3)
GF(μ

(3)
dec)]2=u0

.

(59)

In Fig. 13 the results for the extrapolations in Eq. (59) are
shown. Several values of z have been considered, ranging
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Fig. 13 Continuum limit
extrapolations of the massive
couplings Ψ M (u0, z) for
z = 1.972, 4.0, 6.0, 8.0
(cf. Eq (59)) [14]. Two cuts
(aM)2 < 1/8, 1/4 are applied
in order to estimate the
systematic uncertainties in the
extrapolations

from z ≈ 2 − 8, which correspond to RGI masses M ≈
1.6−6.3 GeV. The different values of z will allow us to assess
the size of the non-perturbative corrections to decoupling in
Eq. (43). The range of lattice sizes considered is L/a =
12 − 32.

As one can see from the figure, as expected, the con-
tinuum limit extrapolations become more challenging as z
becomes larger. However, at the smaller values of a/L , the
data seem to be well described by O(a2) discretization errors.
In order to assess systematic effects in the extrapolations, fits
with different cuts in aM have been considered, specifically
(aM)2 < 1/8, 1/4. The results from the different fits are
compatible, with the results for (aM)2 < 1/8 having signif-
icantly larger errors at large values of z, where fewer points
are left after the cut is imposed. We take as final results those
with cut (aM)2 < 1/8.

4.3.3 Results for Λ
(3)

MS

A last step separates us from applying Eq. (43) to com-
pute Λ

(3)

MS
. In order to use Eq. (43) directly in the GFT-

scheme of Eq. (51) the non-perturbative running of the corre-
sponding coupling in the pure-gauge theory, ḡ(0)

GFT(μ), should
be known. This, however, has never been computed. On
the other hand, the running of the pure-gauge coupling in
the GF-scheme, ḡ(0)

GF(μ), is known very precisely [33]. In
other to resolve the issue, all we have to do is to match
non-perturbatively the GFT- and GF-schemes in the pure
Yang-Mills theory. More precisely, we need to determine
the values of the coupling gM = ḡ(0)

GF(μ
(0)
dec) corresponding

to ḡ(0)
GFT(μ

(0)
dec) = √

Ψ M (u0, z) for the relevant values of z.
Given this relation we can compute,

Λ
(0)
GF

μ
(0)
dec

= ϕ
(0)
g,GF(gM ) = ϕ

(0)
g,GFT(

√
Ψ M ) , gM =

√
χ(Ψ M ) ,

(60)

where χ([ḡ(0)
GFT(μ)]2) = [ḡ(0)

GF(μ)]2. The function χ can eas-

ily be obtained in the relevant range of couplings [ḡ(0)
GFT]2 =

Ψ M (u0, z), by computing [ḡ(0)
GF]2 and [ḡ(0)

GFT]2 at several
matching values of L/a and g0 in this range, and extrap-
olating their relation to the continuum limit [14].

The results for ρ = Λ
(3)

MS
/μ

(3)
dec as obtained from Eq. (43)

for different values of z are shown in Fig. 14. For the estimates
the function PPT

0,3(M/Λ
(3)

MS
) is evaluated at 5-loop order. In

this respect we note that, as expected from the discussion
in Sect. 3.2.2, the perturbative uncertainties in ρ estimated
from the effect of the last known terms of PPT

0,3 are completely
negligible compared to the other sources of uncertainties (cf.
Table 2 of Ref. [14]). As one can see from the figure, exclud-
ing the point at z ≈ 2, the non-perturbative corrections to
decoupling are small. At larger z values they are compatible
with O(z−2) scaling, indicating that the O(z−1) corrections
due to the SF boundary conditions are subdominant. For val-
ues of M ≈ 6.3 GeV (i.e. z = 8) the estimated ρ agrees well
with the fully Nf = 3 flavor theory results for Λ

(3)

MS
/μ

(3)
dec,

where Λ
(3)

MS
is given by the FLAG average value [3] and μ

(3)
dec

is taken from Eq. (55). If one attempts a z → ∞ extrapolation
of the data the agreement becomes even better.

4.4 Summary and miscellaneous remarks

The results of Ref. [14] put on solid grounds the application
of the decoupling relation Eq. (43) as a novel strategy to deter-
mine the QCD coupling from lattice QCD. The remarkable
feature of this approach is that the non-perturbative running
of the coupling from the low-energy scale μdec up to high
energy is done entirely in the pure-gauge theory. This opens
up the possibility to significantly reduce the current error on
αs (cf. Sects. 5 and 4.1).

In order to translate the results for Λ
(0)

MS
/μ

(0)
dec into

Λ
(Nf )

MS
/μ

(Nf )
dec , the strategy relies on two crucial ingredients.

The first ingredient is the computation of a massive coupling
ḡ(Nf )

O (μ, M) at the low-energy scale μ
(Nf )
dec in an unphysi-

cal set-up with Nf -flavors of degenerate massive quarks of
mass M � μ

(Nf )
dec . Exploiting the decoupling of the massive

quarks, the scales μ
(Nf )
dec and μ

(0)
dec can be connected through

the massive coupling and so the fundamental Nf -flavor and
effective pure-gauge theories. The second ingredient is the
use of high-order perturbation theory for estimating the ratio
of the Λ-parameters of the two theories, Λ

(0)

MS
/Λ

(Nf )

MS
, given

by the function P0,f(M/Λ
(Nf )

MS
). Control on the determination
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Fig. 14 Values for ρ = Λ
(3)

MS
/μ

(3)
dec determined from the decoupling

relation, Eq. (43) [14]. As z = M/μ
(3)
dec gets larger, the results for

ρ approach the FLAG value Λ
(3)

MS
= 343(12) MeV [3] in units of

μ
(3)
dec = 789(15) MeV (cf. Eq. (55)). The filled symbols illustrate pos-

sible extrapolations for z → ∞. The results of the extrapolations
show significantly smaller statistical uncertainties than the FLAG result.

(Note that μ
(3)
dec gives a negligible contribution to the uncertainty of

Λ
(3)

MS
/μ

(3)
dec from FLAG.) The uncertainties on ρ may be further reduced

with modest computational effort by improving the determination of
Λ

(0)

MS
/μ

(0)
dec from Ref. [33]. The data both at finite z and the extrapo-

lations for z → ∞ have been slightly shifted horizontally for better
clarity

of the massive coupling can be achieved by employing a suit-
able finite-volume scheme. Thanks to the fact that the phys-
ical volume does not need to be large, small lattice spacings
can be simulated, and safe continuum limit extrapolations
of ḡ(Nf )

O (μ
(Nf )
dec , M) with μ

(Nf )
dec = O(1 GeV) can be taken

for quark masses up to a few GeV. At these large masses,
perturbation theory for the function P0,f(M/Λ

(Nf )

MS
) works

extremely well and non-perturbative O(M−2) corrections to
the decoupling relations are found to be small.

From the results of figure 14 we can appreciate how the
strategy based on decoupling promises great accuracy. The
z → ∞ extrapolations give in fact results for ρ which are
about a factor 2 more precise than those obtained using the
current FLAG estimate for Λ

(3)

MS
and μ

(3)
dec from Eq. (55). In

order to set this result on firmer grounds, however, a robust
z → ∞ extrapolation must be performed. To this end, it is
important that the continuum limit extrapolations for the mas-
sive couplings Ψ M (u0, z) are made more solid at the largest
(most relevant) z values by investing some additional compu-
tational effort. The lattices used for the computations enter-
ing Fig. 13 are in fact rather modest. The largest simulated
lattices have L/a = 32, T/a = 64. In addition, the large
quark masses make these simulations significantly cheaper
than the more common massless SF simulations. A factor two
finer lattices are hence within reach with affordable compu-
tational resources. These lattices will allow us to consider
larger quark masses too, and thus improve even further the
control on the z → ∞ extrapolations. All in all, we can
expect that after these improvements the final determination
for z → ∞ will be at least as precise as the results in Fig.
14 promise, but will include conservative estimates for all
systematics.

It is important to note at this point that a significant frac-
tion of the error on ρ at finite z comes from the uncertainty

on Λ
(0)

MS
/μ

(0)
dec from Ref. [33], which is about 1.5% (cf. Fig.

14). A reduction of this error down to 0.5% or so is desir-
able and in principle possible. Given the importance of the
result for the determination of Λ

(3)

MS
, however, it is crucial

that this error reduction is achieved robustly. As discussed in
Sect. 2.3.2, even though the determination of Λ in the pure
Yang–Mills theory is very much simplified from the compu-
tational point of view compared to QCD, the problem is yet
non-trivial and care must be taken, especially if such a high
precision is desired. For this reason, it is mandatory that the
results for Λ

(0)

MS
are corroborated by investigating different

strategies where the estimates of systematic uncertainties are
put to a stringent test. As we have seen, there is currently ten-
sion among different determinations of Λ

(0)

MS
, some of which

quote the desired sub-percent precision (cf. Sect. 2.3.2 and
Ref. [33]). Studies as the ones of Refs. [34,35] are hence
encouraged in order to set the actual accuracy at which we
currently know Λ

(0)

MS
.

This corroboration goes hand in hand with the exploration
of new strategies for the determination of Λ

(0)

MS
. In this respect

we point out the results of Ref. [35], where an alternative way
to do step-scaling for GF-based couplings was proposed and
tested. In short, the change of renormalization scale in the
coupling is first achieved by changing the flow time at fixed
physical volume and in a second step the physical volume
is changed at fixed flow time. This has to be compared with
the traditional situation where both flow time and spatial size
are changed at once. One of the interesting features of the
approach is that it amounts to a reanalysis of data gathered
from a traditional step-scaling study. However, the system-
atics to deal with are quite independent given the different
continuum limit extrapolations involved. By comparing the
two analysis one can stringently test the assumptions made
in one or the other approach.
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Furthermore, it would be interesting to employ other
definitions of finite-volume schemes based on either dif-
ferent observables and/or set-ups. For instance, the GF-
coupling with twisted boundary conditions explored in Refs.
[106,131–133] is promising. Differently from the SF case
it enjoys full translational invariance and yet its perturba-
tive expansion in finite volume appears feasible [134]. Of
course, standard periodic boundary conditions are also an
option [48] despite the difficulties with perturbation theory
in this set-up. In fact, in cases where the perturbative infor-
mation is limited or the relevant perturbative expansion is
poorly convergent, a viable option is to non-perturbatively
match the given finite-volume scheme to some other scheme
for which the perturbative β-function is known to high-loop
order and it is well behaved (see e.g. Refs. [33,50]). This
may allow for a significantly more precise determination of
Λ

(0)

MS
(cf. Sect. 2.3.2). In this respect, we note that a powerful

framework for automated numerical high-loop calculations
in finite volume has been recently developed and successfully
applied [51,135].

Another idea that may be interesting to consider is the
determination of Λ

(0)

MS
based on the infinite-volume β-

function of GF-based couplings, following the strategy of
Refs. [136–138] (see also Ref. [103]). In this approach, the
infinite-volume results are obtained by extrapolations from
small-volume simulations, which might already be at hand
from a conventional step-scaling study. If the (non-trivial)
infinite-volume extrapolations can be performed in a con-
trolled way and the convergence to the perturbative regime
of the chosen scheme is fast enough, this strategy may allow
for interesting crosschecks of the results from step-scaling. In
this case, the framework developed in Ref. [139] can be used
to obtain the necessary infinite-volume perturbative informa-
tion to high-loop order.

Besides applying different strategies for the calculation
of Λ

(0)

MS
, different techniques can be considered for the QCD

part of the decoupling strategy as well. A simple extension is
to consider different schemes for the massive finite-volume
coupling. In the case of Nf = 3 QCD, periodic and twisted
boundary conditions would avoid entirely the issue with
O(M−1) contaminations. For Nf = 4 QCD twisted boundary
conditions cannot be implemented [140], but twisted-mass
fermions with SF boundary conditions or regular massive
quarks with chirally rotated boundary conditions are avail-
able options (cf. Sect. 4.2.3).

A substantially different approach is to avoid entirely
finite-volume couplings and rely on heavy-quark decou-
pling in hadronic quantities. Particularly interesting observ-
ables to consider are the popular gluonic scales S =
t−1/2
0 , t−1/2

c , w−1
0 , r0 [47,52,71,83]. In this case, the decou-

pling relation is applied more directly in the form of Eq. (27),

specifically,

Λ
(Nf )

MS

S(Nf )(M)
PPT

0,f

(
M

Λ
(Nf )

MS

)
= Λ

(0)

MS

S(0)
+ O(g2n−2∗ , M−2). (61)

Once the right hand side is known from computing the run-
ning in pure-gauge theory, the perturbative approximation
PPT

0,f (M/Λ
(Nf )

MS
) to the ratio of Λ-parameters can be used to

solve the above equation for Λ
(Nf )

MS
/S(Nf )(M). All that is left

to do to determine Λ
(Nf )

MS
is then to fix the physical units of

the low-energy quantity S(Nf )(M) computed in a theory with
Nf heavy quarks of RGI mass M . This can be obtained by
relating S(Nf )(M) to some convenient physical scale μ

(Nf )
phys

evaluated at physical quark masses via the bare parameters.
As discussed in Sect. 4.2.2, it might be difficult to reach large
masses M with this approach, while having discretization
errors and finite-volume effects under control. Some com-
promises are likely necessary in order to reach high enough
M values to be able to control decoupling corrections. On the
other hand, the studies of Refs. [71,84] show that interesting
results may be obtained if masses close to that of the charm
can be reliably reached. This makes the strategy worth being
explored.

5 Conclusions

In this contribution we presented a novel strategy for the
determination of the QCD coupling using lattice QCD. It
exploits the decoupling of heavy quarks at low energy to
connect the pure Yang-Mills theory and QCD with Nf fla-
vors of quarks. The main result is that the computation of
the running of the coupling from a known low-energy scale
μdec = O(1 GeV) up to high energies can be done entirely
in the pure-gauge theory instead of Nf -flavor QCD. Consid-
ering Nf = 3 or 4, this paves the way for unprecedented
precision determinations of Λ

(Nf )

MS
from which Λ

(5)

MS
and αs

can be obtained. In Ref. [14] the potential of these methods
was successfully established in the determination of Λ

(3)

MS
.

We now want to put this result into context of a future preci-
sion αs extraction.

As presented in Sect. 4.3, the results for Λ
(3)

MS
/μ

(3)
dec from

decoupling have an uncertainty which is about half the one
obtained using the FLAG average Λ

(3)

MS
= 343(12) MeV [3]

and μ
(3)
dec = 789(15) MeV from Eq. (55) (cf. Fig. 14). As dis-

cussed in Sect. 4.4, by investing some modest computational
effort, this result can be set on very solid grounds by improv-
ing the continuum limits of the massive couplings (cf. Fig.
13) and performing a robust z → ∞ extrapolation (cf. Fig.
14). Considering lattices twice as large as the ones simulated
in Ref. [14] is in fact affordable. With such lattices we can
expect that the continuum limit extrapolations of Ψ M (u0, z)
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in Eq. (59) can be performed with confidence also at the
largest masses investigated so far (M ≈ 6 GeV). In addition,
we will be able to consider some larger z values, too.

The precision on Λ
(3)

MS
/μ

(3)
dec can be further improved sig-

nificantly by reducing the uncertainties coming from the
pure-gauge determination of Λ

(0)

MS
/μ

(0)
dec, which has the (con-

servative) error of 1.5% [33]. As noticed in Sect. 4.4, this
error can in principle be reduced by a substantial factor, e.g.
down to 0.5%. However, while it is certainly possible to reach
such a high precision in a given computation, it is crucial that
the results of different analysis and groups corroborate it. At
present, there is in fact tension among determinations of Λ

(0)

MS
involving results with sub-percent accuracy (cf. Sect. 2.3.2).
It is important to understand the origin of these differences.
We hope that the renovated interest in this quantity brought
by this new strategy motivates the community to resolve the
issue and contribute to a high-precision determination.

Once the above steps are achieved the precision on Λ
(3)

MS

will be limited by the present error on μ
(3)
dec, which is about

2%. A reduction of this error down to 1% is however fore-
seeable. It requires, first of all, to improve the results for the
running of the GF-coupling ḡ(3)

GF(μ) at energies μ < μdec

[50]. We recall that this is needed in order to connect μ
(3)
dec

with the hadronic scales μ
(3)
phys used to set the physical units

of the theory (cf. Sect. 4.3). Work in this direction has already
started as part of the HQET efforts by the ALPHA Collabora-
tion (cf. Ref. [141]). Secondly, the scale setting in terms of the
physical scales μ

(3)
phys must be improved as well. In practice,

this means to obtain a more precise determination for a conve-
nient low-energy reference scale in Nf = 3 QCD in physical
units, like for example, μ∗

ref = 1/
√

8t∗0 (cf. Ref. [91]). A
precision of 1% or better on this or similar scales is desir-
able. This is expected to be possible by exploiting the new
CLS ensembles close to the physical point [20,92,142]. Also
in this case, however, corroboration from different strategies
and groups is important.

Through all these steps a determination of Λ
(3)

MS
with a

final uncertainty of 1-2% appears feasible. As discussed
in Sect. 3.3.2, at this level of precision Λ

(5)

MS
can yet be

obtained from Λ
(3)

MS
by relying on the perturbative decoupling

of the charm quark, eventually including some conservative
estimate for the unaccounted non-perturbative corrections.
A determination of αs(MZ ) at the level of 0.4% is there-
fore within reach thanks to the novel techniques. To further
halve the error on αs(MZ ), on the other hand, requires sev-
eral issues to be reconsidered. Non-perturbative decoupling
effects might become relevant, and one might need to include
electromagnetic and mu �= md effects in the lattice computa-
tions in order to set the physical scale of the theory to a greater
level of accuracy (cf. Sect. 3.3.2 and see also discussion in
Ref. [15]).

Before concluding we want to note that even though our
emphasis was on the determination of Λ

(Nf )

MS
, the ideas pre-

sented can be extended to solve other RG problems. A clear
case is that of the quark masses, where one can replace their
running in Nf -flavor QCD with the one in the quenched
approximation. In Ref. [86] a similar application was in fact
explored in order to study the non-perturbative charm-quark
effects in the determination of the charm-quark mass itself.
More complicated composite operators, like for instance
four-quark operators, require more thought. First of all, a
study of the quality of their perturbative decoupling relations
is necessary in order to establish whether the strategy has any
chance to be applied in the first place. Then, an investigation
of the non-perturbative decoupling corrections must follow.

In conclusion, we can affirm that the decoupling of heavy
quarks enters at full right in the renormalization toolkit of the
lattice field theorist. Many more applications of these pow-
erful ideas in lattice QCD and lattice field theory in general
are likely to come.
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