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NG2 is a target gene of MLL-AF4 and underlies
glucocorticoid resistance in MLLr B-ALL by
regulating NR3C1 expression
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Spain; 4Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain; 5Fundación para la Investigación Biosanitaria de Asturias, Instituto
de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología de Asturias, Hospital Universitario Central de Asturias, Universidad de Oviedo,
Oviedo, Spain; 6Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Oviedo, Spain; 7Nanomaterials and Nanotechnology
Research Center, Universidad de Oviedo, Oviedo, Spain; 8Epigenetic Control of Hematopoiesis Group and 93D Chromatin Organization Group, Josep Carreras
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•NG2 is an
epigenetically
regulated direct target
gene of the leukemic
MLL-AF4 fusion
protein.

•NG2 negatively
regulates the
expression of the
glucocorticoid receptor
NR3C1, conferring
glucocorticoid
resistance to MLLr B-
ALL cells.
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B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-
term overall survival rates of ~85%. However, B-ALL harboring rearrangements of the MLL
gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is
associated with poor 5-year survival, relapses, and refractoriness to glucocorticoids (GCs).
GCs are an essential part of the treatment backbone for B-ALL, and GC resistance is a major
clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr B-
ALL is, therefore, critical to guide therapeutic strategies that deepen the response after
induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and
is minimally expressed in healthy hematopoietic cells. We recently reported that NG2
expression is associated with poor prognosis in MLLr B-ALL. Despite its contribution to
MLLr B-ALL pathogenesis, the role of NG2 in MLLr-mediated leukemogenesis/chemo-
resistance remains elusive. Here, we show that NG2 is an epigenetically regulated direct
target gene of the leukemic MLL-ALF transcription elongation factor 4 (AF4) fusion protein.
NG2 negatively regulates the expression of the GC receptor nuclear receptor subfamily 3
group C member 1 (NR3C1) and confers GC resistance to MLLr B-ALL cells. Mechanistically,
2024
NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and
downregulation of NR3C1 via activating protein-1 (AP-1)–mediated transrepression. Collectively, our study elucidates
the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1–mediated downregulation of NR3C1, providing
novel therapeutic avenues for MLLr B-ALL.
Introduction
B-cell acute lymphoblastic leukemia (B-ALL) is the most com-
mon childhood cancer1 and is typically treated with regimens
4 | VOLUME 144, NUMBER 19
based on glucocorticoids (GCs), L-asparaginase (L-Asp), and
other cytostatic agents, such as vincristine (VCR). These pro-
tocols have greatly improved outcomes, achieving complete
remission rates of >95% and 5-year disease-free survival rates of
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~85% in pediatric B-ALL.2 However, infant B-ALL (iB-ALL; <1
year of age) is associated with limited response to therapy and
poor outcome.3 Chromosomal rearrangements involving the
MLL gene (also known as KMT2A) account for ~80% of iB-ALL
cases,4 and the prognosis of infants with mixed lineage leuke-
mia (MLL)-rearranged (MLLr) B-ALL, particularly t(4;11)/MLL-AF4
(KMT2A-AFF1), is dismal.5,6

GC resistance is the most important factor contributing to poor
outcome in patients with MLLr B-ALL.7-9 GCs, such as dexa-
methasone (DX) and prednisolone, are part of the chemo-
therapy backbone for B-ALL because of their strong
proapoptotic activity against lymphoid blasts, which is medi-
ated through engagement with the GC receptor (GCR)
NR3C1.3,10 NR3C1, a nuclear receptor and transcription factor,
triggers gene transcription, including its own, via GC-
responsive elements on GC binding.11-13 However, activated
NR3C1 can be inhibited by other transcription factors, such as
activating protein-1 (AP-1) or nuclear factor-ĸB.14 As GCs are
indispensable in the treatment of MLLr B-ALL, understanding
the mechanisms of GC resistance is crucial. Although pharma-
cologic strategies targeting genetic aberrations, such as phos-
phatidylinositol 3-kinase (PI3K)15,16 or FLT317,18 inhibitors, have
been proposed to overcome GC resistance in ALL, the precise
mechanism of resistance in MLLr B-ALL remains elusive.

Chondroitin sulfate proteoglycan-4, also known as neuron-glial
antigen-2 (NG2), is a transmembrane proteoglycan that is
minimally expressed in healthy hematopoietic cells,19,20 but is
expressed in ~90% of patients with MLLr B-ALL.19,21-24 This
feature has been listed as common but not specific in diag-
nostic algorithms for routine leukemia immunophenotyping
because of its predictive value in MLLr leukemias.23,24 We have
previously reported that NG2 expression correlates with relapse
rates and poor prognosis in MLLr B-ALL19-21,25; however,
despite its contribution to the pathogenesis of MLLr B-ALL and
its association with chemoresistance in solid tumors,26 its role in
chemoresistance in MLLr B-ALL remains unstudied. Under-
standing these mechanisms may lead to innovative therapies for
this high-risk leukemia.

Here, we show that NG2 is a direct target gene of the leukemic
MLL-AF4 fusion protein, is epigenetically regulated, and is
associated with GC resistance. NG2 negatively regulates
NR3C1, thereby conferring GC resistance in MLLr iB-ALL cells
by disrupting GC-induced apoptosis. Mechanistically, NG2
interacts with the receptor tyrosine kinase FLT3, leading to
ligand-independent activation of FLT3 signaling (a hallmark
pathogenic feature of MLLr B-ALL)27,28 and subsequent down-
regulation of NR3C1 through the AP-1 complex, an established
transrepressor downstream of FLT3. Our study establishes a
new MLL-AF4 target gene and elucidates a novel mechanism of
GC resistance, opening the way to new therapeutic targets for
MLLr B-ALL.

Materials and methods
Patient samples and primary CD34+ cells
Leukemic samples from 7 infants with t(4;11)/MLL-AF4+ B-ALL,
confirmed by complete immunophenotypic and molecular/
cytogenetic diagnosis, were available. Mononuclear cells
with >87% MLLr blasts were isolated by density gradient
NG2 UNDERLIES GLUCOCORTICOID RESISTANCE
centrifugation (Ficoll-Hypaque; Amersham Biosciences,
Uppsala, Sweden) and immunophenotyped using the mono-
clonal antibodies CD45–fluorescein isothiocyanate (FITC),
CD19-allophycocyanin (APC) (BD Biosciences, San Jose, CA),
and NG2-phycoerythrin (Beckman, Barcelona, Spain). NG2POS

and NG2NEG blast populations were isolated by fluorescence-
activated cell sorting (FACS) using a FACSAria Fusion cell
sorter (BD Biosciences). Healthy CD34+ cells were isolated from
both human fetal liver and cord blood samples using the CD34
MicroBead Kit (Miltenyi Biotec, Bergisch Gladbach, Ger-
many).29-31 An independent cohort of 47 infants with MLLr
B-ALL, all treated according to the International Collaborative
Treatment Protocol for the Infants Under One Year with Acute
Lymphoblastic (INTERFANT) treatment protocols, was included
to validate the impact of NG2 on GC resistance.

Genome-edited SEM cells and CD34+ cells and
lentiviral overexpression
The SEM cell line was purchased from the DSMZ (Braun-
schweig, Germany). NG2WT SEM cells stably expressing
dTomato-Luciferase were generated using the lentiviral pUltra-
Chili-Luc backbone (Addgene, number 48688).32 NG2KO cells
were generated by CRISPR-mediated genome editing (single-
guide RNAs are listed in supplemental Table 1 [available on the
Blood website]). SEM cells stably overexpressing NG2 (NG2OE)
were generated using lentivirus Lenti-NG2 in NG2WT cells with
the Lenti-Cas9-Blast vector (Addgene, number 52962) as the
backbone. AP-1KO SEM cells and MLL-AF4–expressing CD34+

cells were generated by CRISPR-mediated genome editing.28,33

Cytotoxicity and apoptosis assays
Cytotoxicity of drugs against MLLr B-ALL cells was assessed
using the Cell Proliferation Reagent WST-1 (Roche Diagnostics,
Manheim, Germany).34,35 In total, 5 × 104 NG2POS and NG2NEG

sorted MLLr B-ALL blasts were plated in a 96-well plate and
incubated with increasing concentrations of the corresponding
drugs for 48 hours.25,36 Also, cell viability was measured using
the Annexin-V/7-AAD Apoptosis Detection Kit (BD Biosciences)
on a FACS Canto-II cytometer.25,34,37

Ex vivo response of MLLr-B-ALL primary cells to
prednisolone
The ex vivo response to prednisolone was assessed by MTT
assay (Roche Diagnostics) in 47 diagnostic samples from
patients with MLLr-B-ALL uniformly treated with the INTER-
FANT protocol.38 Results were considered evaluable only if the
mean control optical density on day 4 exceeded 0.05 arbitrary
units after background correction. Prednisolone (Bufa, Uitgeest,
The Netherlands) was tested in the range 0.08 to 250 μg/ml.
Cutoff lethal concentration 50 (LC50) values were applied to
define prednisolone sensitivity, as described.39

Cell lines and patient-derived xenografts
Eight- to 14-week-old NOD-Cg-Prkdcscid Il2rgtm1Wjl/SzJ
(NSG) mice (The Jackson Laboratory, Bar Harbor, ME) were
housed under pathogen-free conditions at the animal facility of
the Barcelona Biomedical Research Park. Mice (n = 30) were
intravenously transplanted with 2.5 × 105 Luc-GFP-NG2WT or
NG2KO SEM cells, and tumor burden was monitored by weekly
analysis of peripheral blood (PB). Human grafts were immuno-
phenotyped by flow cytometry using HLA-ABC-FITC (clone
7 NOVEMBER 2024 | VOLUME 144, NUMBER 19 2003
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G46-2.6), CD45-FITC (clone HI30), and CD19-APC (clone
HIB19) antibodies (all from BD Biosciences). When engraftment
was ~2% to 5% in PB (between weeks 3 and 4, depending on
the engraftment kinetics of NG2WT or NG2KO SEM cells), mice
were homogeneously divided into the following treatment
groups: (i) control, (ii) VXL (VCR/DX/L-Asp)–based standard
induction, and (iii) DX alone. Treatment schedules were as fol-
lows: VCR (0.15 mg/kg) once weekly intraperitoneally (i.p.) for 2
weeks and DX (5 mg/kg) and L-Asp (1000 U/kg) once daily i.p.
for 5 days/week for 2 weeks. Mice were sacrificed at the end of
the induction treatment (day 13), and the percentage of SEM
cells in PB was analyzed by FACS.

To test the efficacy of the pharmacologic inhibition of both
FLT3 and AP-1 in sensitizing to DX and standard induction
therapy in vivo, MLL-AF4+ patient-derived xenografts or pri-
mary samples were transplanted intratibially into sublethally
irradiated (2.25 Gy) NSG mice, as described.21,25,28 When
human engraftment was >1% in PB, mice were homogeneously
distributed into different groups for treatment initiation (day 0).
Treatment included DX alone, the FLT3 inhibitors sorafenib
(30 mg/kg, oral daily administration for 2 weeks) or midostaurin
(50 mg/kg oral daily administration for 2 weeks) alone, the AP-1
inhibitor T5224 (100 mg/kg i.p. daily for 2 weeks) alone, com-
binations of DX with sorafenib, midostaurin, or T5224, VXL, and
VXL in combination with sorafenib. Mice were sacrificed at the
end of treatment (day 13 or 20), and human engraftment in PB
or BM was analyzed by FACS.

Statistical analyses
Data are expressed as mean ± standard error of the mean of
several independent experiments unless otherwise specified.
Statistical comparisons were made using the unpaired Student
t-test. Differences between treatments along the days in cyto-
toxicity assays were performed using a multiple t-test. Statistical
analyses, normality test (Shapiro-Wilk), 50% inhibitory concen-
tration, and area under the curve measurements were
performed using GraphPad Prism version 6.0 (GraphPad Soft-
ware Inc, San Diego, CA). Statistical significance was defined as
P < .05.

Detailed technical information on immunofluorescence, reverse
transcription polymerase chain reaction (PCR), real-time quan-
titative PCR, immunoblotting, DNA methylation editing,
immunoprecipitation and mass spectrometry (MS), in silico
NG2-FLT3 modeling, ImageStream imaging flow cytometry,
single-cell RNA sequencing (scRNA-Seq), and data availability
can be found in the supplemental Material/Methods.

Study approval
The study was conducted in accordance with the Declaration
of Helsinki. Human samples were collected on informed con-
sent and approval by the Barcelona Clinic Hospital Research
Ethics Committee, and the study was approved by the same
committee (HCB/2021/0095). Human embryonic and fetal
material was provided by the Joint Medical Research Council/
Wellcome Trust (grant number MR/R006237/1) Human
Developmental Biology Resource (http://hdbr.org). All animal
procedures were performed in compliance with the Institu-
tional Animal Care Committee of the Barcelona Biomedical
Research Park (HRH-17-0045-P2).
2004 7 NOVEMBER 2024 | VOLUME 144, NUMBER 19
Results
NG2 expression is regulated by direct binding of
the MLL-AF4 fusion protein
NG2 expression is a hallmark of MLLr B-ALL,19,21-24 but little is
known about its role in leukemogenesis and how its expression is
regulated. We analyzed NG2 expression in scRNA-Seq data from
2 independent studies.40,41 In contrast to other known hemato-
poietic differentiation markers, NG2 was not expressed at any
stage during normal B-cell differentiation (Figure 1A;
supplemental Figure 1). We next evaluated NG2 expression in
healthy B-cell progenitors and B cells, and in MLL germ line B-ALL
(non-MLLr) and MLLr B-ALL (MLL-AF9 and MLL-AF4) patient
samples by RNA-seq,29 finding higher expression in the context of
MLLr leukemias, particularly MLL-AF4+ (Figure 1B). Orthogonal
validations confirmed this result (Figure 1C), in line with published
data.19-21,25 NG2 expression was also evaluated in nonleukemic
cell lines (293T, U87, and HeLa), acute myeloid leukemia cell lines
with MLL-AF9 and MLL-AF4, or without MLLr (MOLM13, MV4;11,
and HL60, respectively), and MLL-AF4+ B-ALL cell lines (RS4;11
and SEM), which revealed high and specific expression of NG2 in
MLL-AF4+ B-ALL cells (supplemental Figure 2). In addition, we
generated the t(4;11)/MLL-AF4 fusion in healthy fetal liver– and
cord blood–derived CD34+ cells using CRISPR/Cas9 editing.33

Quantitative reverse transcription PCR and RNA-seq analysis
showed that NG2 expression was specifically and massively
upregulated in MLL-translocated cells (Figure 1D; supplemental
Figure 2), in line with a recent independent study.47

To explore the link between NG2 and MLL-AF4, we performed
DNA methylation analysis in the vicinity of NG2. CpG sites
located in the indicated differentially methylated regions of NG2,
including the CpGs C066 and C1 (cg07235066), were specifically
hypomethylated in MLL-AF4+ B-ALL samples (Figure 1E;
supplemental Figure 2), with a significant negative correlation
with NG2 expression (Figure 1F). We also used an epigenetic
editing approach in MLL-AF4+ SEM cells with the catalytically
inactivated CRISPR-associated protein 9 (dCas9) fused with DNA
methyltransferase 3 alpha (DNMT3A); [dCas9-DNMT3A])–based
system (Figure 1G). Cells transfected with single-guide RNAs
targeting the indicated NG2 loci were significantly hyper-
methylated and correlated well with a decrease in NG2 expres-
sion in the context of the wild-type dCas9-DNMT3A construct
(Figure 1H), but not the mutant form (Figure 1I). These results
were reproducible in MLL-translocated CD34+ hematopoietic
stem and progenitor cells (HSPCs), revealing a reduction in
methylation following t(4;11) induction (Figure 1J; supplemental
Figure 2), in line with the molecular changes in patients
(Figure 1D) in the absence of additional genetic insults.

We further analyzed the chromatin immunoprecipitation–
sequencing data sets of Godfrey et al42 using MLL-N binding as a
proxy forMLL-AF4 fusion protein binding.MLL-AF4was specifically
bound to the gene body of NG2 in both primary leukemic blasts
and primografts harboringMLL-AF4, but not in healthy CD34+ cells
(Figure 1K). Similar results were observed inMLLr cell lines (KOPN8,
RS4;11, and SEM) vs an MLL germline cell line (CCRF)
(supplemental Figure 3). Strikingly, we observed a region marked
with H3K27ac and H3K4me1 within the NG2 gene body in SEM
cells (Figure S3), which are the histone modifications found at high
levels at MLL-AF4 targets.28,48 Modulation of MLL-AF4 levels by
shRNAnegatively affected bothMLLbinding andH3K27ac levels in
LOPEZ-MILLAN et al
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Figure 1. NG2 is a direct target of MLL-AF4 fusion protein in iB-ALL. (A) scRNA-seq heat map depicting the expression of various B-cell differentiation markers and NG2
in the indicated populations across human fetal B-cell differentiation (data from O’Byrne et al40). (B) Box plots showing NG2 expression in the indicated normal or leukemic B
cells (n = 44 patients, data from Agraz-Doblas et al29). (C) Quantitative PCR (qPCR) analysis comparing NG2 expression in leukemic cells from patients with B-ALL with MLL
germ line or MLL-AF4 (n = 6). (D) qPCR analysis of NG2 expression in MLL-AF4+ genome-edited fetal live (FL) and cord blood (CB) CD34+ cells. (E) Methylation levels (β value)
across NG2 in normal B-cell progenitors (BCPs) and MLL germ line and MLL-AF4 leukemic cells, inferred from whole-genome bisulfite sequencing (WGB-seq) data (data from
Tejedor et al28). Bar plots depict the average DNA methylation level of the differentially methylated regions (DMRs) or differentially methylated promoters (DMPS) observed in
the indicated conditions. (F) Scatter plot showing the correlation between DNA methylation and gene expression of NG2. (G) Experimental design of the dCas9-DNMT3A
methylation editing approach. (H) DNA methylation levels at the indicated CpG residues (C066 and C1) in dCas9-DNMT3AWT-targeted SEM cells (WT + sg) and nontargeted
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these regions (supplemental Figure 3), suggesting that epigenetic
modulation mediated by MLL-AF4 binding may generate a new
alternative promoter responsible for NG2 activation.

NG2 expression is involved in GC resistance in
MLLr B-ALL
GCs are essential in the standard front-line treatment for B-ALL,
particularly in cases involving MLLr.7-9,49 Considering its associ-
ation with chemoresistance in solid tumors26 and its function as a
target gene of the MLL-AF4 fusion in MLLr B-ALL, we investi-
gated the potential role of NG2 in therapy resistance. Cytotox-
icity assays on NG2POS and NG2NEG FACS-sorted blasts from
patients with MLLr B-ALL revealed that NG2POS blasts exhibited
greater resistance to standard VXL induction therapy, particularly
DX (Figure 2A). The increased sensitivity to DX was confirmed in
CRISPR-Cas9–edited NG2KO MLL-AF4+ SEM cells (Figure 2B).

In vivo studies with NSG mice transplanted with NG2KO or
NG2WT MLL-AF4+ SEM cells (Figure 2C) corroborated these
findings, demonstrating a more pronounced reduction in
leukemic burden in NG2KO mice treated with DX alone or VXL
(Figure 2D). Specifically, VXL treatment of mice transplanted with
NG2KO cells resulted in a sixfold more pronounced decrease in
leukemic burden compared with controls (4.6% ± 0.9% vs
27.4% ± 1.8%, in VXL and control groups, respectively) than that
2006 7 NOVEMBER 2024 | VOLUME 144, NUMBER 19
observed in mice transplanted with NG2WT cells (Figure 2D).
Furthermore, DX alone caused a significant (threefold) decrease
in leukemic burden in NG2KO-transplanted mice (10.7% ± 2.8%
vs 27.4% ± 1.8%, in DX and control groups, respectively), in
contrast to what was observed in NG2WT-transplanted mice.
Overall, these findings demonstrate that NG2 expression confers
GC resistance to MLL-AF4+ B-ALL cells, supporting its potential
as a novel target for preventing GC therapy resistance.

NG2 mediates GC resistance in MLLr B-ALL by
downregulating the expression of the GCR NR3C1
To gain insight into the mechanisms by which NG2 confers GC
resistance to MLLr B-ALL cells, we first analyzed the Gene Set
Enrichment Analysis data set for GC resistance50 in NG2POS and
NG2NEG primary blasts FACS sorted from patients with MLLr
B-ALL.21 Notably, NG2POS blasts exhibited enrichment of the
GC resistance signature (Figure 3A), with significantly lower
expression of NR3C1 compared with NG2NEG blasts
(Figure 3B). This was confirmed by quantitative PCR, immuno-
blotting, and immunofluorescence analyses in both MLL-AF4+

primary B-ALL cells and in NG2WT and NG2KO SEM cells
(Figure 3C-E), highlighting a link between NG2 expression and
NR3C1 downregulation. We therefore hypothesized that the
low levels of the canonical NR3C1 in NG2POS cells result in a
failure to respond to GCs.
LOPEZ-MILLAN et al
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To further investigate this, we performed scRNA-seq on
NG2POS and NG2NEG FACS-sorted primary blasts (Figure 3F).
Gene Set Enrichment Analysis revealed differential expression
of genes associated with the PI3K/AKT/mammalian target of
rapamycin (mTOR) pathways between NG2POS and NG2NEG

cells (Figure 3G). Key genes, including PTEN, AKT, RPTOR, and
GSK3B, showed the most significant differential expression
(Figure 3H). Additionally, NG2POS cells exhibited upregulation
of the antiapoptotic gene BCL2 and downregulation of the
proapoptotic gene BCL11A (Figure 3I), suggesting a potential
role of the PI3K pathway in NG2-mediated GC resistance.
NG2 UNDERLIES GLUCOCORTICOID RESISTANCE
Indeed, previous studies have shown that GC leads to a sig-
nificant decrease in PI3K/AKT pathway activation and down-
stream apoptotic proteins, such as B-cell lymphoma (BCL)11/
BIM and BCL2/BCL extra large (XL) (Figure 4A).51-53 The low
levels of NR3C1 and the enrichment of PI3K-related features in
NG2POS cells prompted us to investigate the impact of GC on
PI3K signaling in NG2-mediated GC resistance in MLLr B-ALL.

We first investigated a well-known and rapid (cytoplasmic)
consequence of activated GCR on PI3K signaling and apoptotic
protein regulation in response to GC treatment.52-54 PI3K
7 NOVEMBER 2024 | VOLUME 144, NUMBER 19 2007



B

D

C

F G

H I

E

A

En
ric

hm
en

t s
co

re

−0.25

0.00

0.25

0 5000 10000 15000

Rank

Glucocorticoid resistance
 (Autry RJ et al. 2020)

Adjusted P-value = .002; ES = −0.451

NG2
PO

S

NG2
NEG

10.5

8

9.5

10

8.5

9

NR3C1

Va
lu

e

0

5

10

15

**

MLLr B-ALL blasts

NR3C1

GAPDH

NG2
PO

S

NG2
NEG

NG2
PO

S

NG2
NEG

NR
3C

1 
m

RN
A 

fo
ld

 ch
an

ge

0

1

2

3
****

SEM cells

NR3C1

GAPDH

NG2
W

T

NG2
KO

NR
3C

1 
m

RN
A 

fo
ld

 ch
an

ge

NG2
W

T

NG2
KO

0

5000

10000

15000

20000 *

NR3C1

NR3C1

NR
3C

1 
m

ea
n 

in
te

ns
ity

NG2
W

T

N
G

2
W

T
N

G
2

K
O

NG2
KO

NG2POS

NG2NEG

UM
AP

 2

UMAP 1

NG2POS

(978)
NG2NEG

(755)

GeneRatio

p.adjust

0.04
0.08

0.16
0.12

0.04
0.03

0.01
0.02

HALLMARK MYC TARGETS V1
HALLMARK OXIDATIVE PHOSPHORILATION

HALLMARK ADIPOGENESIS

HALLMARK MTORC1 SIGNALING
HALLMARK DNA REPAIR

HALLMARK E2F TRAGETS
HALLMARK UNFOLDED PROTEIN RESPONSE

HALLMARK MYC TARGETS V2
HALLMARK REACTIVE OXYGEN SPECIES PATHWAY

HALLMARK MITOTIC SPINDLE

HALLMARK FATTY ACID METABOLISM
HALLMARK G2M CHECKPOINT

HALLMARK APOPTOSIS

HALLMARK PROTEIN SECRETION
HALLMARK TGF BETA SIGNALING

HALLMARK UV RESPONSE DN
HALLMARK ANDROGEN RESPONSE

HALLMARK HEME METABOLISM
HALLMARK PI3K AKT MTOR SIGNALING

Log2(fold change)

300

200

100

0

–6 –4 –2 0 2

RIPK1 RPTOR

-lo
g1

0(
P-

va
lu

e)

NG2POS/NG2NEG

Percent Expressed

Avarage Expression

25

75
50

0.4

–0.4
0.0

BCL11A

BCL2

NG2POS NG2NEG

Figure 3.

2008 7 NOVEMBER 2024 | VOLUME 144, NUMBER 19 LOPEZ-MILLAN et al

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/144/19/2002/2312167/blood_bld-2023-022050-m

ain.pdf by G
iovanni C

azzaniga on 08 N
ovem

ber 2024



D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/144/19/2002/2312167/blood_bld-2023-022050-m

ain.pdf by G
iovanni C

az
pathway phosphorylation in NG2WT and NG2KO MLL-AF4+ SEM
cells (Figure 4B) and in NG2-sorted patient blasts (Figure 4C) was
examined in response to DX treatment as an indicator of GCR
activity. NG2KO cells, but not NG2WT cells, exhibited decreased
phosphorylation of the PI3K downstream targets AKT, forkhead
box O1 (FOXO1), and P70S6K, suggesting correct GCR function
and consequent sensitization against DX (Figure 4B,C). Subse-
quently, we assessed the levels of downstream antiapoptotic and
proapoptotic proteins in response to DX treatment in MLLr
B-ALL cells, finding a greater decrease in expression of the
antiapoptotic proteins BCL2 and BCLXL in NG2KO cells (38% vs
21% for BCL2 and 31% vs 9% for BCLXL in NG2KO and NG2WT

cells, respectively) accompanied by increased levels of proapo-
ptotic BIM on DX treatment (71% vs 58%) (Figure 4D).

Inhibition of the PI3K/AKT/mTOR axis has been proposed to
reverse GC resistance in ALL cells, suggesting that the inhibitors
LY294002 (PI3K paninhibitor), MK-2206 (Akt inhibitor), or
rapamycin (mTOR inhibitor) may act as GC sensitizers.16,55 We
therefore combined DX with each of these inhibitors to sensitize
NG2WT cells. The titration curves and specificities of inhibitors
are shown in supplemental Figure 4. In NG2WT cells, the com-
bination of DX with LY294002, MK-2206, or rapamycin sensi-
tized cells to DX treatment, resembling the responses of NG2KO

cells (Figure 4E-G, left panels). Area under the curve analysis
revealed a dose-dependent effect in NG2WT cells, with greater
DX sensitization with increasing concentrations of PI3K inhibi-
tors (Figure 4E-G, right panels). By contrast, these combinations
elicited a weaker and non–dose-dependent effect in NG2KO

cells (Figure 4E-G), indicating that the increased levels of GCR
per se were sufficient to inhibit this pathway in response to DX.
Similar results were observed in primary blasts from patients
with MLLr B-ALL (Figure 4H,I). The MEK inhibitor PD98059 had
no effect (Figure 4J), supporting the involvement of the PI3K
pathway.

We next examined the levels of antiapoptotic and proapoptotic
proteins after treating cells with PI3K inhibitors alone and in
combination with DX (Figure 4K). We found decreased levels of
BCL2 and BCLXL and increased levels of BIM when PI3K
inhibitors were combined with DX in NG2WT cells. This suggests
that NG2 expression reduces NR3C1 levels, and impairs its
ability to inhibit antiapoptotic pathways, thereby contributing to
GC resistance.
zaniga on 08 N
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NG2 interacts with FLT3 to trigger ligand-
independent activation of FLT3 signaling and
downregulation of NR3C1 by the AP-1 complex
To understand how NG2 downregulates NR3C1, we used NG2
immunoprecipitation followed by MS analysis in NG2OE and
Figure 3. NG2 expression reduces the levels of the GCR NR3C1 and deregulates th
Gene Set Enrichment Analysis (GSEA) for GC-resistance signature (Autry et al50) in FA
microarray data showing NR3C1 expression in FACS-sorted primary NG2POS and NG2NEG

panel) and protein expression by immunoblot (right panel) in FACS-sorted primary NG2
NG2KO MLL-AF4+ SEM cells (D). (E) Representative immunofluorescence image of NR3C
fication of the mean fluorescence intensity (left panel). (F) Uniform manifold approximati
scRNAseq in FACS-sorted MLLr B-ALL blasts. Each point on the UMAP plot represents an
Database (MSigDB). Each dot represents a specific hallmark gene set, the size correspond
Volcano plot depicting the most differentially expressed genes between NG2POS and
NG2POS population, and vice versa. Genes relevant in the PIK3/AKT/mTOR signaling pat
NG2POS and NG2NEG cells. The size and the color of the circles correspond to the percent

NG2 UNDERLIES GLUCOCORTICOID RESISTANCE
NG2KO MLL-AF4+ SEM cells to explore potential candidates
that interact with NG2 (Figure 5A). Among the NG2 interactors
identified by MS, we focused on those peptides with a log fold
change above that for NG2. The top scoring protein was
ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting
(ATP2A2), a sarcoplasmic/endoplasmic reticulum–resident
pump central to Ca2+ transport. Alterations in calcium trans-
port have been implicated in GC resistance mechanisms in
MLLr ALL.56,57 The tyrosine kinase receptor FLT3 was in second
place, with a value of 20 log fold change (Figure 5B). FLT3 is
known to be upregulated and hyperactivated in patients with
MLLr B-ALL.27,28 To understand the interaction between FLT3
and NG2, we used a well-established prediction algorithm for
protein-protein interactions, the iFrag prediction method.58 An
interaction between FLT3 and NG2 was predicted in the
extracellular region involving the third immunoglobulin domain
of FLT3 and a laminin domain of NG2 (Figure 5C), an interaction
pattern frequently observed among membrane proteins.59

Immunoprecipitation of FLT3, followed by NG2 blotting,
confirmed this interaction (Figure 5D), and ImageStream anal-
ysis revealed colocalization of NG2 and FLT3 at the cell mem-
brane of MLLr B-ALL cells, with a similarity bright detail score
close to 2 (Figure 5E; supplemental Figure 5).

To elucidate the mechanisms underlying the role of NG2 in GC
resistance, we examined the NG2/FLT3/AP-1 complex and its
effects. FLT3 signaling is part of a proliferation and anti-
apoptosis program that includes the downstream transcription
factors STAT5 and AP-1 (Figure 5F), and we have recently
demonstrated a role for the AP-1 complex in the aggressiveness
of MLL-AF4+ B-ALL.28 AP-1 is also a known transrepressor of
GCR that decreases the expression of its target genes,
including NR3C1.11-13 We found that phosphorylated (p)-FLT3
and p-STAT5 activation was greater in NG2WT cells than in
NG2KO cells (p-FLT3/FLT3 ratio of 0.9 vs 0.6, respectively; and
p-STAT5/STAT5 ratio of 1.6 vs 0.5, respectively) (Figure 5G),
indicating that the FLT3/NG2 interaction results in ligand-
independent activation of FLT3. On the basis of this, we
explored the therapeutic potential of the FLT3 inhibitors sor-
afenib and midostaurin in overcoming NG2-induced GC resis-
tance. The titration curves of FLT3 inhibitors and their specificity
in inhibiting the pathway are shown in supplemental Figure 6.
The combination of DX with FLT3 inhibitors significantly
increased the sensitivity to GC treatment in NG2WT cells, mir-
roring the response observed in NG2KO cells (Figure 5H). We
also observed increased GC sensitivity on deletion of AP-1 (AP-
1KO SEM cells)28 in NG2WT cells, comparable with that of
NG2KO SEM cells (Figure 5I), and highlighting the importance
of the NG2/FLT3/AP-1 axis in mediating GC resistance.
Notably, inhibition of FLT3 or AP-1 resulted in upregulated
expression of NR3C1 (Figure 5J,K). Overall, these data reveal
e downstream antiapoptotic PI3K/AKT/mTOR pathway in MLLr B-ALL cells. (A)
CS-sorted primary NG2POS and NG2NEG MLLr B-ALL blasts. (B) Gene expression
blasts from patients with MLLr B-ALL (n = 3). (C,D) NR3C1 expression by qPCR (left
POS and NG2NEG blasts from patients with MLLr B-ALL (n = 3) (C) and NG2WT and
1 expression in NG2WT and NG2KO MLL-AF4+ SEM cells (right panel) and quanti-

on and projection (UMAP) representation of NG2POS and NG2NEG cells analyzed by
individual cell. (G) GSEA for hallmark signaling pathways from Molecular Signatures
s to the gene ratio, and the color represents the significance of each comparison. (H)
NG2NEG cells. A positive fold change corresponds to genes overexpressed in the
hways are indicated in purple. (I) Representation of BCL2 and BCL11A expression in
age of cells expressing the indicated gene and the average expression, respectively.
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that NG2 activates the FLT3 pathway in a ligand-independent
manner, resulting in GC resistance mediated by the down-
regulation of NR3C1 through AP-1.

To validate the in vivo efficacy of FLT3 inhibitors in overcoming
GC resistance, NSG mice were transplanted with an MLL-AF4+

patient-derived xenograft and subsequently treated with sor-
afenib or DX independently or in combination after leukemia
engraftment was detected in the PB (day 0). Leukemic cells were
quantified at the end of the treatment period (day 13) (Figure 5L).
Only mice treated with sorafenib + DX showed a significant
decrease in tumor burden (15.1% ± 2.3% at day 0 vs 8% ± 1.7%
at day 13) (Figure 5L). Similar results were observed with mid-
ostaurin or T5224 (AP-1 inhibitor) treatment in combination with
DX (supplemental Figure 7), confirming the role of the NG2/
FLT3/AP-1 complex in GC resistance in MLLr B-ALL. Addition-
ally, synergistic effects were observed when FLT3 inhibitors were
combined with VXL standard induction therapy (Figure 5M). The
level of B-ALL engraftment in BM at the end of treatment was
approximately fourfold lower when sorafenib was coadminis-
tered with VXL (0.49% vs 1.89%, respectively). Consequently, the
rate of animals achieving complete remission (minimal residual
disease ≤0.5% leukemic cells in BM) increased approximately
twofold in the combination group (75% vs 43%) (Figure 5M).

Finally, our clinical observations in a cohort of infants diagnosed
with MLLr-B-ALL underscored the relevance of NG2 in GC
resistance, with prednisolone-resistant patients showing
elevated NG2 expression levels. Furthermore, a positive cor-
relation between NG2 and FLT3 expression validated the
functional significance of the NG2-FLT3 molecular axis in GC
resistance (Figure 6A,B).
NG2 UNDERLIES GLUCOCORTICOID RESISTANCE
Discussion
Treatment protocols for pediatric B-ALL involving intensive
regimens with GCs, L-Asp, and cytostatic agents have led to
high long-term survival rates (>85%). However, survivors often
experience severe lifelong adverse effects because of
treatment-related toxicities, and ≈20% of patients experience
disease refractoriness and relapse, particularly those with MLLr.
This subtype, prevalent in infants aged <1 year, is characterized
by high relapse rates, treatment refractoriness, and a 5-year
disease-free survival of <30%.2,3,60-62 Significantly, poor
response to initial GC treatment predicts treatment failure,
highlighting the challenge of GC resistance.63 Immunother-
apies, such as blinatumomab (a bispecific T-cell engager), have
been proposed to improve outcomes in infants with MLLr
ALL.64 Blinatumomab is often added to chemotherapy regi-
mens after induction with DX, underscoring the importance of
overcoming GC resistance, which remains a challenge in high-
risk patients. Understanding the mechanisms underlying GC
resistance is critical to identify agents that can sensitize
leukemic cells to GCs and to develop novel therapeutic
strategies.

Here, we demonstrate that the transmembrane proteoglycan
NG2 is not expressed in healthy hematopoietic cells but is
upregulated in patients with MLLr B-ALL, particularly MLL-AF4+

B-ALL. We show that MLL fusion proteins bind to NG2, sug-
gesting that MLLr is likely responsible for the expression of NG2
in MLLr leukemic cells. In support of this, previous studies have
shown a correlation between NG2 expression, poor prognosis,
aggressiveness, and relapse in MLLr B-ALL.19,21,25 Despite its
7 NOVEMBER 2024 | VOLUME 144, NUMBER 19 2011
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contribution to the pathogenesis of MLLr B-ALL, the relation-
ship between NG2 expression and MLL fusion proteins
remained unknown. Our present findings provide new insights
into the regulation and function of NG2.

We addressed whether NG2, as a direct target gene of MLLr, is
involved in GC resistance. Our results show that NG2 enables
resistance to GCs in MLLr B-ALL cells. Because of the importance
of GCs in ALL treatment, several mechanisms and molecules
have been proposed to explain GC resistance, such as alterations
in calcium transport,56 Src kinase induced phosphorylation of
annexin A2,57 or even overexpression of BCL-2 family mem-
bers.65 Mechanistically, DX activates NR3C1 in the cytoplasm,
leading to its translocation to the nucleus and subsequent
binding to GC response elements to regulate target gene
expression.66 Although most activities of NR3C1 occur in the
nucleus, rapid nongenomic GC-mediated effects also take place
in the cytoplasm, such as the inhibition of PI3K-related anti-
apoptotic pathways,51 suggesting that PI3K inhibitors may
sensitize B-ALL to GCs.15,16 Our data demonstrate that NG2-
induced GC resistance is due to the downregulation of NR3C1,
which fits well with data reported by Xiao et al,52 showing a
positive correlation between basal expression levels of NR3C1 in
ALL and sensitivity to GCs and clinical treatment outcomes.
Here, we show that NG2WT fails to inhibit the PI3K pathway in
response to DX, and the use of PI3K inhibitors can sensitize
otherwise resistant MLLr B-ALL cells to DX in vitro by decreasing
antiapoptotic proteins and increasing proapoptotic proteins.
These results strongly suggest that the low levels of NR3C1 in
NG2-expressing cells contribute to GC resistance by preventing
apoptosis. Thus, inhibition of antiapoptotic pathways may
potentially facilitate DX-induced death of MLLr B-ALL cells.

To elucidate the mechanisms by which NG2, a transmembrane
protein, downregulates NR3C1, we performed NG2 immuno-
precipitation/MS, which revealed an interaction between FLT3
and NG2 through laminin-immunoglobulin domains. High
expression of FLT3 has been associated with poor prognosis in
MLLr B-ALL because of constitutive activation of FLT3 in the
absence of ligand binding.27,53 Importantly, FLT3 activation has
been associated with GC resistance in B-ALL.54 Indeed, FLT3
has been proposed as a therapeutic target for B-ALL, with US
Food and Drug Administration–approved FLT3 inhibitors––such
2014 7 NOVEMBER 2024 | VOLUME 144, NUMBER 19
as sorafenib or midostaurin––as promising agents.67 Brown et al
have suggested that targeting FLT3 may improve outcomes in
newly diagnosed MLLr iB-ALL with elevated FLT3 expression,
based on the Children's Oncology Group (COG) ALL0631 trial.68

In this well-conducted study, the authors added FLT3 inhibitors
after induction therapy in a subset of patients. Although no
overall survival benefit was observed, retrospective analyses
suggested a potential benefit for some patients with in vitro
sensitivity. Our findings implicating FLT3 in GC resistance sug-
gest that FLT3 inhibitors should be explored upfront, especially
during the critical 7-day induction window, consistent with the
INTERFANT therapy protocol. Furthermore, the FLT3 inhibitor
landscape has evolved to include multiple generations of inhib-
itors, notably type I and type II inhibitors. Further understanding
of the conformation of the FLT3 receptor when bound to NG2 is
essential. Likewise, ongoing research is critical to refine our
understanding of the role of FLT3 and to optimize therapeutic
strategies, considering diverse inhibitor mechanisms. AP-1, a
downstream target of FLT3 signaling, inhibits the expression of
many GCR-target genes, including NR3C1 itself,12,13 through
direct sequestration.14 We therefore hypothesized that the NG2-
induced downregulation of NR3C1 could be the result of an
interaction between NG2 and FLT3, which activates the AP-1
complex. Indeed, inhibition of FLT3 or AP-1 sensitized MLLr B-
ALL cells to GCs by upregulating NR3C1 expression. Finally, in
our preclinical models, FLT3 and AP-1 inhibitors in combination
with DX significantly reduced leukemic burden, highlighting their
potential to overcome GC resistance.

Overall, our study establishes, for the first time to our knowl-
edge, the direct binding-based mechanism of NG2 expression
by MLL fusion proteins, conferring resistance to GC, a signifi-
cant clinical predictor of poor outcome in MLLr B-ALL. Our work
reconciles previous findings highlighting the contributions of
NG2, FLT3, and the AP-1 family to the pathogenesis of MLLr B-
ALL,27,28 and suggests novel therapeutic targets for this sub-
type of leukemia. Whether our observations extend to other
NG2+ tumors lacking MLLr, such as glioblastoma or melanoma,
requires further investigation and may pave the way for new
therapeutic strategies for these challenging-to-treat tumors.
Additional preclinical studies and phase 1 clinical trials will be
essential to determine the clinical efficacy of FLT3/NG2-based
therapies for MLLr B-ALL.
LOPEZ-MILLAN et al
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