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and IMATI-CNR, Pavia, Italy
E-mail: alessandro.russo@unimib.it

The present review paper points to several directions. As a first target it is meant
to give a first idea of the general features of Virtual Element Methods (VEMs), that
were introduced about a decade ago, in the field of Numerical Methods for Partial
Differential Equations, in order to allow decompositions of the computational domain
into polygons/polyhedra of a very general shape.

On the other hand, the paper is also addressed to people that already heard (and
possibly read) about VEMs, and are interested in having more precise information, in
particular concerning their application in specific subfields as: 𝐶1 approximations of
plate bending problems or approximations to problems in solid and fluid mechanics.

© The Author(s), 2023. Published by Cambridge University Press.



2

CONTENTS
1 Introduction 2
2 Preliminaries 4
3 𝐻1-conforming approximations 7
4 𝐻1-nonconforming approximations 22
5 𝐻2-conforming approximations 26
6 𝐻(div), 𝐻(rot), and 𝐻(curl)-conforming approxima-

tions 31
7 The Elasticity problem 50
8 The Stokes and Navier-Stokes problems 60
References 74

1. Introduction
The Virtual Element Method (VEM) was introduced first in (Beirão da Veiga,
Brezzi, Cangiani, Manzini, Marini and Russo 2013b, Beirão da Veiga, Brezzi, Mar-
ini and Russo 2014), as an alternative way of looking at Mimetic Finite Differences
for the approximation of (systems of) Partial Differential Equations. The unknowns
of the discretized problem, originally nodal values, in the VEM formulation became
instead functions or, if convenient, vector-valued functions, individuated by a set of
degrees of freedom that included nodal values or moments on edges and/or inside
the element (referring to a two-dimensional problem). In Mimetic Finite Differ-
ences these values where used “as if they were related to a polynomial function”,
and the corresponding polynomial functions were used in the construction of the
final discrete formulation. All this was done on polygons/polyhedra of very general
shape, thus allowing the treatment of very general decompositions. The basic idea
of Virtual Elements was “to associate with every suitable subset of degrees of free-
dom a corresponding function”, and then write the discretized problem in terms of
the corresponding functions, their values, their averages, and so on. Obviously, one
could not expect to associate a polynomial function with every subset of degrees
of freedom. Hence, the new (Virtual Element) strategy was: with every “set of
degrees of freedom” we associate a function that is not necessarily a polynomial
but rather a smooth function, solution of a PDE problem inside the element. These
functions in general are not computable (one could not dream of solving a bunch of
PDE problems inside each element of the decomposition!) but one would compute
their projections onto polynomial spaces out of the degrees of freedom, and then
use them in formulating the discretized problem. With time, the internal PDE’s
problems shifted from a simple Laplacian to more complex operators or systems of
PDE’s, connected (but, in general, not coincident) with the system of PDE’s to be
solved on the whole domain. Needless to say, all these element-by-element PDE’s
systems (with polynomial data) are never solved explicitly, but in the code one uses
suitable projections of their solutions onto polynomial spaces.

The final outcome of this approach is a Galerkin method, having the same struc-
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ture of the Finite Element Method. Furthermore, the two methods (VEM and
FEM) are perfectly compatible, and can coexist on the same mesh. Moreover,
somehow unexpectedly, some of the new techniques and ideas developed for poly-
gonal elements proved to have some interest also on elements of classical shapes,
like triangles or quadrilaterals, as shown in (Brezzi and Marini 2021).

In summary, the “general structure” of a VEM discretization amounts to:

i) generate a decomposition of the computational domain in polygons/polyhedra;
ii) define, inside each polygon/polyhedron, a finite dimensional space of func-

tions, typically solutions of PDE problems with polynomial data (as for in-
stance, a polynomial trace on each edge and a polynomial Laplacian);

iii) define a suitable set of degrees of freedom;
iv) individuate suitable polynomials, explicitly computable from the degrees of

freedom, obtained by projecting each of the above functions onto polynomial
spaces.

The above approach applies to an enormous variety of different PDE models, such
as, for instance, Heat Diffusion, Elasticity, Plate Bending, Fluid Flows, Magnetic
fields, and so on.

In the last decade, and soon after the publication of the first paper in 2013, Virtual
Elements have seen an enormous growth of interest in the Applied Mathematics
and in the Engineering community, thanks to their great ductility that makes them
applicable to many different types of problems. The number of applications and
variants is such that it would be difficult, if not prohibitive, to provide an exhaustive
list. Here we decided to mention only few of them, chosen as samples among those
that, to the best of our knowledge, appear to be particularly attractive in terms of
number of papers and/or variety of groups of researchers. For each subject we will
cite a couple of the most recent publications, and we refer to the references therein;
more references are provided within each Section of the present paper.

For topology optimisation important contributions were given by G.H. Paulino
and his group (Gain, Paulino, Duarte and Menezes 2015, Chi, Pereira, Menezes
and Paulino 2020). Significant contributions to contact problems were given by P.
Wriggers, B.D. Reddy and their groups (Wriggers, Rust and Reddy 2016, Cihan,
Hudobivnik, Korelc and Wriggers 2022). For geophysical applications, and in par-
ticular for discrete fracture networks, S. Berrone and his group (Benedetto, Berrone,
Borio, Pieraccini and Scialò 2016, Berrone and Raeli 2022) are worth mentioning.
For Helmholtz problem we refer to I. Perugia & collaborators (Mascotto, Perugia
and Pichler 2019).

A key ingredient in all VEM applications is the integration on general polygons
and polyhedra; we refer to (Chin, Lasserre and Sukumar 2015, Chin and Sukumar
2021) for a detailed study of polytopal quadrature formulas.

For more methodology oriented papers we mention (Brenner, Guan and Sung
2017, Chen and Huang 2018) for results on a-priori estimates, (Mora, Rivera
and Rodriguez 2017, Gardini, Manzini and Vacca 2019) for eigenvalue problems,
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(Beirão da Veiga, Chernov, Mascotto and Russo 2016, Chernov, Marcati and
Mascotto 2021) for ℎ𝑝 formulations, (Cangiani, Georgoulis, Pryer and Sutton 2017,
Beirão da Veiga, Manzini and Mascotto 2019a) for a posteriori error analysis.

A “hot” subject regards the treatment of curved edges and faces, for which there
are some results, still not completely satisfactory in (Bertoluzza, Pennacchio and
Prada 2019, Beirão da Veiga, Russo and Vacca 2019c, Beirão da Veiga, Brezzi,
Marini and Russo 2020, Dassi, Fumagalli, Scotti and Vacca 2022).

An update on the VEM-literature could be obtained through a non-conventional,
although very effective, approach, consisting in looking (for instance in Google
Scholar) at the most recent papers citing the original paper (Beirão da Veiga et al.
2013b).

In the present paper, following somehow the evolution and growth of the method
and its applications, we will discuss the basic ideas, starting from the simplest
Poisson problem, and then giving an overview on more general problems, namely,
plate bending, elasticity, and fluid flows equations.

An outline of the whole presentation is as follows. After setting, in Section 2,
the notation and some assumptions that will be used in the whole paper, in Section
3 we describe, on a simple Poisson problem, the basic approach to construct 𝐶0-
conforming approximations, in two and three dimensions. Section 4 is devoted to
the 𝐶0-non-conforming approximation of the same model problem, while Section
5 deals with𝐶1-conforming approximations, taking, as a reference problem, a plate
bending problem. Section 6 is dedicated to the discretization of the spaces 𝐻(div),
𝐻(rot), and 𝐻(curl). Two and three dimensional Face and Edge Virtual Elements
are illustrated in detail, and are shown to form exact sequences. The last two
Sections deal with specific problems: linear and nonlinear Elasticity in Section 7,
Stokes and Navier-Stokes in Section 8. Suitable discrete spaces are presented and
discussed, together with convergence results.

2. Preliminaries
In this Section we will define some common notation and introduce general assump-
tions that will be used throughout the paper. Other definitions and assumptions
will be introduced as needed.

Computational domain and mesh

We will denote by Ω ⊂ R𝑑 , 𝑑 = 2 or 𝑑 = 3, the computational domain of the
differential problem under study. We assume that Ω can be decomposed into
polygons (in two dimensions) or into polyhedra (in three dimensions). A generic
polygon will be denoted by 𝐸 and a generic polyhedron by 𝑃. We will use the
general notation 𝐾 to indicate a polygon or a polyhedron. The letter e will denote
an edge (of a polygon or a polyhedron) and f a face (of a polyhedron).

The number of edges and vertices of a polygon or a polyhedron 𝐾 will be denoted
by 𝑁e(𝐾) and 𝑁𝑉 (𝐾) respectively; the “(𝐾)” will be omitted when no confusion
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can arise. Obviously for a polygon 𝑁e = 𝑁𝑉 . Similarly, 𝑁f(𝑃) will indicate the
number of faces of a polyhedron 𝑃.

The outward normal to 𝐾 will be denoted by 𝒏𝐾 , sometimes with the superscript
f or e to indicate that 𝒏𝐾 belongs to the face f or the edge e respectively. When no
confusion can arise, we will simply use the letter 𝒏. Similarly, in three dimensions
𝒏f will denote the outward normal to the face f lying in the plane of f, and 𝒏e

f will
be that related to edge e. Tangent unit vectors will be denoted by 𝒕; in particular,
for an edge e, 𝒕e will be a unit vector parallel to e.

The diameter of an element 𝐾 will be denoted by ℎ𝐾 ; a family of decompositions
of Ω will be denoted by {Tℎ}ℎ, with ℎ = max{ℎ𝐾 , 𝐾 ∈ Tℎ} being a measure of the
size of the decomposition Tℎ. On {Tℎ}ℎ we make the following assumption:

Assumption 2.1 (Mesh regularity). There exists a positive constant 𝜚 such that
for any 𝐾 ∈ {Tℎ}ℎ:

• 𝐾 is star-shaped with respect to a ball 𝐵𝐾 of radius ≥ 𝜚 ℎ𝐾 ;
• (in three dimensions only) every face f of 𝐾 is star-shaped with respect to a

disk 𝐵f of radius ≥ 𝜚 ℎ𝐾 ;
• any edge e of 𝐾 has length ≥ 𝜚 ℎ𝐾 .

We remark that the hypotheses above, though not too restrictive in many practical
cases, could possibly be further relaxed, combining the present analysis with the
studies in (Beirão da Veiga, Lovadina and Russo 2017b, Brenner et al. 2017,
Brenner and Sung 2018, Cao and Chen 2018).

Polynomials

Given an integer 𝑠 ≥ 0 and a domain O ⊂ R𝑑 (𝑑 = 1, 2, 3), P𝑠(O) will denote the
space of polynomials of degree ≤ 𝑠 restricted to O; as usual, P−1 = {0}. When no
confusion is likely to occur, we will often use simply P𝑠 instead of P𝑠(O). With a
common abuse of language, we will often say “polynomial of degree 𝑠” meaning
actually “polynomial of degree ≤ 𝑠”. If O = R𝑑 (𝑑 = 1, 2, 3), its dimension 𝜋𝑠,𝑑 is
given by:

𝜋𝑠,1 = 𝑠 + 1, 𝜋𝑠,2 =
(𝑠 + 1)(𝑠 + 2)

2
, 𝜋𝑠,3 =

(𝑠 + 1)(𝑠 + 2)(𝑠 + 3)
6

.

When no confusion can occur, we will use the simpler notation 𝜋𝑘 . For 𝑠 ≥ 1 we
define

P0
𝑠(O) :=

{
𝑞𝑠 ∈ P𝑠(O) such that

∫
O
𝑞𝑠 dO = 0

}
, (2.1)

and

Phom
𝑠 (O) := {homogeneous polynomials of degree 𝑠 in the variables (𝑥𝑖 − 𝑥𝑖)}

where 𝑥𝑖 are the coordinates of the barycenter of O. Next, for any non negative
integers 𝑚 ≤ 𝑛, we denote by P𝑛/𝑚 any subspace (fixed once and for all) of P𝑛 such
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that
P𝑛 = P𝑚 ⊕ P𝑛/𝑚. (2.2)

A common choice for P𝑛/𝑚 will be

P𝑛/𝑚 = Phom
𝑚+1 ⊕ · · · ⊕ Phom

𝑛 . (2.3)

Differential operators

With a usual notation the symbols ∇ and Δ denote the gradient and the Laplacian
for scalar functions, while div and curl are the divergence and the curl of a vector
function. We recall that, in two dimensions, the curl operator has two incarnations
(as ∇ and div) given by

rot(𝑣1, 𝑣2) := 𝜕𝑥𝑣2 − 𝜕𝑦𝑣1 rot(𝜑) := (𝜕𝑦𝜑,−𝜕𝑥𝜑).

We will sometimes use the notation grad instead of ∇. Finally, for a vector
𝒗 = (𝑣1, 𝑣2) we indicate by 𝒗⊥ the vector 𝒗⊥ = (𝑣2,−𝑣1).

For a face f of a polyhedron 𝑃, the tangential differential operators will be
denoted by the subscript 2, as in: div2, rot2, rot2, grad2, Δ2 and so on.

Functional spaces

Throughout the paper we will follow the common notation for Sobolev spaces,
scalar products, norms, and seminorms (see (Adams 1975)). For 𝑚 integer ≥ 0 we
define

𝐻𝑚(O) := {𝑣 such that 𝐷𝛼𝑣 ∈ 𝐿2(O), ∀|𝛼 | ≤ 𝑚},

where

𝐷𝛼𝑣 =
𝜕 |𝛼 |𝑣

𝜕𝑥
𝛼1
1 · · · 𝜕𝑥𝛼𝑛𝑛

, |𝛼 | = 𝛼1 + · · · 𝛼𝑛.

With (𝑣, 𝑤)0,O (sometimes, just (𝑣, 𝑤)0) and ∥𝑣∥0,O (sometimes, just ∥𝑣∥0) we will
denote the 𝐿2(O) scalar product and norm, whereas |𝑣 |𝑚,O (sometimes, just |𝑣 |𝑚)
and ∥𝑣∥𝑚,O (sometimes, just ∥𝑣∥𝑚) will denote, respectively, the 𝐻𝑚 semi-norm
and norm. In particular, we shall use 𝐻1(O) (O ⊂ R𝑑 , 𝑑 = 2, 3), 𝐻2(O) (O ⊂ R2).
Moreover, we will also need:

• For O ⊂ R2 :
𝐻(div,O) := {𝒗 ∈ [𝐿2(O)]2 such that div 𝒗 ∈ 𝐿2(O)},
𝐻(rot,O) := {𝒗 ∈ [𝐿2(O)]2 such that rot 𝒗 ∈ 𝐿2(O)}.

• For O ⊂ R3 :
𝐻(div,O) := {𝒗 ∈ [𝐿2(O)]3 such that div 𝒗 ∈ 𝐿2(O)},
𝐻(curl,O) := {𝒗 ∈ [𝐿2(O)]3 such that curl 𝒗 ∈ [𝐿2(O)]3}.

(2.4)
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Projections onto polynomial spaces

• 𝐿2-projection

On O we will denote by Π
0,O
𝑠 (or simply by Π0

𝑠 when no confusion can occur)
the 𝐿2(O)-orthogonal projection operator onto P𝑠(O), defined, as usual, for
every 𝜑 ∈ 𝐿2(O), by∫

O
(Π0,O
𝑠 𝜑) 𝑝𝑠 dO =

∫
O
𝜑 𝑝𝑠 dO ∀𝑝𝑠 ∈ P𝑠(O), (2.5)

with obvious extension for vector functions Π0,O
𝑠 : [𝐿2(O]𝑑 → [P𝑛(O)]𝑑 and

tensor functions 𝚷0,O
𝑠 : [𝐿2(O)]𝑑×𝑑 → [P𝑠(O)]𝑑×𝑑 .

• 𝐻1
0-projection: the Π

∇,O
𝑠 operator

For every 𝜑 ∈ 𝐻1(O) we denote by Π
∇,O
𝑠 𝜑 (or simply by Π∇

𝑠 𝜑 when no
confusion can occur) its projection onto the space P𝑠(O) with respect to the
scalar product of 𝐻1(O), defined as the solution, in P𝑠(O), of

∫
O
∇(Π∇,O

𝑠 𝜑) · ∇𝑞𝑠 dO =

∫
O
∇𝜑 · ∇𝑞𝑠 dO ∀𝑞𝑠 ∈ P𝑠(O),∫

𝜕O
Π∇,O
𝑠 𝜑 d𝑠 =

∫
𝜕O
𝜑 d𝑠.

(2.6)

Moreover, given a function 𝜓 ∈ 𝐿2(O) and an integer 𝑠 ≥ 0, we recall that the
moments of order ≤ 𝑠 of 𝜓 on O are defined as:∫

O
𝜓 𝑞𝑠 dO for 𝑞𝑠 ∈ P𝑠(O).

Hence to assign the moments of 𝜓 up to the order 𝑠 on O will amount to assign a
number of conditions equal to the dimension of P𝑠(O). Typically this will be used
when these moments are considered as degrees of freedom.

Remark 2.2. A quantity (depending on a function living in a discrete space with
given degrees of freedom) is said to be computable if it can be determined directly
out of information provided by the degrees of freedom. This would require to
compute integrals of polynomials on polygonal and polyhedral domains (see, e.g.,
(2.5), and (2.6)). Among the various quadrature techniques we refer for instance to
(Chin et al. 2015, Chin and Sukumar 2021).

3. 𝐻1-conforming approximations
We will describe in this section the original Virtual Element Method (VEM), as
first introduced in (Beirão da Veiga et al. 2013b). To fix ideas, we shall consider
the following model problem:

−Δ𝑢 = 𝑓 in Ω, 𝑢 = 0 on Γ𝐷 ,
𝜕𝑢

𝜕𝑛
= 𝑔 on Γ𝑁 . (3.1)
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In (3.1) Ω ⊂ R2 is a polygonal domain, with boundary 𝜕Ω = Γ𝐷 ∪ Γ𝑁 (Γ𝐷 ≠

∅, Γ̊𝐷 ∩ Γ̊𝑁 = ∅). The data 𝑓 , 𝑔 are given functions with 𝑓 ∈ 𝐿2(Ω), and 𝑔, say, in
𝐿2(Γ𝑁 ). Setting

𝐻1
0,Γ𝐷 (Ω) := {𝑣 ∈ 𝐻1(Ω) such that 𝑣 = 0 on Γ𝐷},

𝑎(𝑢, 𝑣) :=
∫
Ω

∇𝑢 · ∇𝑣 𝑑𝑥,

ℓ(𝑣) := ( 𝑓 , 𝑣)0,Ω + (𝑔, 𝑣)0,Γ𝑁
=

∫
Ω

𝑓 𝑣 𝑑𝑥 +
∫
Γ𝑁

𝑔 𝑣 d𝑠,

(3.2)

the variational formulation of (3.1) is

find 𝑢 ∈ 𝑉 := 𝐻1
0,Γ𝐷 (Ω) such that 𝑎(𝑢, 𝑣) = ℓ(𝑣) ∀𝑣 ∈ 𝑉. (3.3)

Problem (3.3) has a unique solution thanks to Lax-Milgram Lemma. In particular,
𝑎(·, ·) is a symmetric bilinear form, continuous and elliptic, i.e.,

∃ 𝑀 > 0 such that 𝑎(𝑣, 𝑤) ≤ 𝑀 ∥𝑣∥1,Ω∥𝑤∥1,Ω ∀𝑣, 𝑤 ∈ 𝑉, (3.4)

∃ 𝛼 > 0 such that 𝑎(𝑣, 𝑣) ≥ 𝛼∥𝑣∥2
1,Ω ∀𝑣 ∈ 𝑉, (3.5)

and ℓ(·) is a linear bounded functional, i.e.,

∃ 𝐶 > 0 such that |ℓ(𝑣)| ≤ 𝐶(∥ 𝑓 ∥0,Ω + ∥𝑔∥0,Γ𝑁
)∥𝑣∥1,Ω ∀𝑣 ∈ 𝑉. (3.6)

The Virtual Element Method, as all Galerkin methods, uses all the classical in-
gredients needed for approximating variational formulations: a decomposition Tℎ
of Ω into polygons 𝐸 , and then an associated finite dimensional space 𝑉ℎ ⊂ 𝑉 ,
a bilinear form 𝑎ℎ(·, ·), and a linear functional ℓℎ(·). Then, the discrete problem
reads

find 𝑢ℎ ∈ 𝑉ℎ such that 𝑎ℎ(𝑢ℎ, 𝑣ℎ) = ℓℎ(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ, (3.7)

and we have to define 𝑉ℎ, 𝑎ℎ(·, ·), and ℓℎ(·) in such a way that problem (3.7) has
a unique solution and optimal error estimates hold. This will be done in the next
subsections, following the original approach of (Beirão da Veiga et al. 2013b).

3.1. An abstract convergence result

Let us recall the assumptions needed to prove the abstract convergence theorem.
For every polygon 𝐸 ∈ Tℎ of diameter ℎ𝐸 we denote by 𝑉ℎ |𝐸 , 𝑎𝐸ℎ (·, ·), and 𝑎𝐸(·, ·),
respectively, the restriction to 𝐸 of 𝑉ℎ, 𝑎ℎ(·, ·), and 𝑎(·, ·), i.e.,

𝑎(𝑣, 𝑤) =
∑︁
𝐸∈Tℎ

𝑎𝐸(𝑣, 𝑤) ∀ 𝑣, 𝑤 ∈ 𝑉,

𝑎ℎ(𝑣ℎ, 𝑤ℎ) =
∑︁
𝐸∈Tℎ

𝑎𝐸ℎ (𝑣ℎ, 𝑤ℎ) ∀ 𝑣ℎ, 𝑤ℎ ∈ 𝑉ℎ .
(3.8)

On the bilinear form 𝑎𝐸
ℎ

(·, ·) we make the following assumption.
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Assumption 3.1. There exists an integer 𝑘 ≥ 1 (that will be the order of accuracy)
such that for all ℎ, and for all 𝐸 in Tℎ, we have P𝑘(𝐸) ⊂ 𝑉ℎ |𝐸 and

- 𝑘-consistency: for all 𝑝𝑘 ∈ P𝑘(𝐸) and for all 𝑣ℎ ∈ 𝑉ℎ |𝐸 ,

𝑎𝐸ℎ (𝑝𝑘 , 𝑣ℎ) = 𝑎𝐸(𝑝𝑘 , 𝑣ℎ) (3.9)

- stability: there exist two positive constants 𝛼∗ and 𝛼∗, independent of ℎ and
of 𝐸 , such that

∀𝑣ℎ ∈ 𝑉ℎ |𝐸 𝛼∗ 𝑎
𝐸(𝑣ℎ, 𝑣ℎ) ≤ 𝑎𝐸ℎ (𝑣ℎ, 𝑣ℎ) ≤ 𝛼∗ 𝑎𝐸(𝑣ℎ, 𝑣ℎ). (3.10)

We notice that the symmetry of 𝑎𝐸
ℎ

, property (3.10), and the definition of 𝑎𝐸 easily
imply the continuity of 𝑎𝐸

ℎ
with

𝑎𝐸ℎ (𝑢ℎ, 𝑣ℎ) ≤
(
𝑎𝐸ℎ (𝑢ℎ, 𝑢ℎ)

)1/2 (
𝑎𝐸ℎ (𝑣ℎ, 𝑣ℎ)

)1/2

≤ 𝛼∗
(
𝑎𝐸(𝑢ℎ, 𝑢ℎ)

)1/2 (
𝑎𝐸(𝑣ℎ, 𝑣ℎ)

)1/2

= 𝛼∗ ∥𝑢ℎ∥1,𝐸 ∥𝑣ℎ∥1,𝐸 for all 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ |𝐸 .

(3.11)

Theorem 3.2. Under Assumptions 3.1 the discrete problem (3.7) has a unique
solution 𝑢ℎ. Moreover, for every approximation 𝑢𝐼 ∈ 𝑉ℎ of 𝑢, and for every
approximation 𝑢𝜋 of 𝑢 that is piecewise in P𝑘 , we have

|𝑢 − 𝑢ℎ |1,Ω ≤ 𝐶
(
|𝑢 − 𝑢𝐼 |1,Ω + |𝑢 − 𝑢𝜋 |1,Tℎ

+ 𝔉ℎ

)
, (3.12)

where 𝐶 is a constant depending only on 𝛼∗ and 𝛼∗, | · |1,Tℎ
is the broken 𝐻1-norm,

and, for any ℎ, 𝔉ℎ is the smallest constant such that

ℓ(𝑣ℎ) − ℓℎ(𝑣ℎ) ≤ 𝔉ℎ |𝑣ℎ |1,Ω ∀ 𝑣ℎ ∈ 𝑉ℎ . (3.13)

Proof. Existence and uniqueness of the solution of (3.7) are a consequence of
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(3.10) and (3.5). Next, setting 𝛿ℎ := 𝑢ℎ − 𝑢𝐼 we have

𝛼∗ |𝛿ℎ |21 = 𝛼∗ 𝑎(𝛿ℎ, 𝛿ℎ) ≤ 𝑎ℎ(𝛿ℎ, 𝛿ℎ)

= 𝑎ℎ(𝑢ℎ, 𝛿ℎ) − 𝑎ℎ(𝑢𝐼 , 𝛿ℎ) (use (3.7) and (3.8))

= ℓℎ(𝛿ℎ) −
∑︁
𝐸

𝑎𝐸ℎ (𝑢𝐼 , 𝛿ℎ) (use ± 𝑢𝜋)

= ℓℎ(𝛿ℎ) −
∑︁
𝐸

(
𝑎𝐸ℎ (𝑢𝐼 − 𝑢𝜋 , 𝛿ℎ) + 𝑎𝐸ℎ (𝑢𝜋 , 𝛿ℎ)

)
(use (3.9))

= ℓℎ(𝛿ℎ) −
∑︁
𝐸

(
𝑎𝐸ℎ (𝑢𝐼 − 𝑢𝜋 , 𝛿ℎ) + 𝑎𝐸(𝑢𝜋 , 𝛿ℎ)

)
(add ±𝑢)

= ℓℎ(𝛿ℎ) −
∑︁
𝐸

(
𝑎𝐸ℎ (𝑢𝐼 − 𝑢𝜋 , 𝛿ℎ) + 𝑎𝐸(𝑢𝜋 − 𝑢, 𝛿ℎ)

)
− 𝑎(𝑢, 𝛿ℎ) (use (3.7))

= ℓℎ(𝛿ℎ) −
∑︁
𝐸

(
𝑎𝐸ℎ (𝑢𝐼 − 𝑢𝜋 , 𝛿ℎ) + 𝑎𝐸(𝑢𝜋 − 𝑢, 𝛿ℎ)

)
− ℓ(𝛿ℎ)

= ℓℎ(𝛿ℎ) − ℓ(𝛿ℎ)−
∑︁
𝐸

(
𝑎𝐸ℎ (𝑢𝐼 − 𝑢𝜋 , 𝛿ℎ) + 𝑎𝐸(𝑢𝜋 − 𝑢, 𝛿ℎ)

)
.

Now use (3.13), (3.11), and the continuity of each 𝑎𝐸 to obtain

|𝛿ℎ |21,Ω ≤ 𝐶

(
𝔉ℎ + |𝑢𝐼 − 𝑢𝜋 |1,Tℎ

+ |𝑢 − 𝑢𝜋 |1,Tℎ

)
|𝛿ℎ |1,Ω (3.14)

for some constant 𝐶 depending only on 𝛼∗ and 𝛼∗. Then the result follows easily
by the triangle inequality.

3.2. The local discrete spaces

We first recall the definition of the discrete spaces from (Beirão da Veiga et al.
2013b). Let 𝐸 be a generic polygon in Tℎ. For 𝑘 integer, 𝑘 ≥ 1, we define the local
space 𝑉ℎ |𝐸 as

𝑉𝑘(𝐸) := {𝑣 ∈ 𝐶0(𝐸) : 𝑣 |e ∈ P𝑘(e) ∀ edge e ⊂ 𝜕𝐸, Δ𝑣 ∈ P𝑘−2(𝐸)}. (3.15)

Denoting by 𝑁e the number of edges of 𝐸 , the dimension of 𝑉𝑘(𝐸) is given by

dim𝑉𝑘(𝐸) = 𝑘𝑁e + 𝑘(𝑘 − 1)/2.

We notice that the space (3.15) contains the space P𝑘(𝐸), but is not reduced to it,
except if 𝐸 is a triangle and 𝑘 = 1, as it can be seen by a simple dimensional count.
The degrees of freedom for 𝑣ℎ ∈ 𝑉𝑘(𝐸) are given by

(𝐷1) : the values of 𝑣ℎ at the vertices,

(𝐷2) : for 𝑘 ≥ 2 the moments
∫

e
𝑣ℎ𝑝𝑘−2 d𝑠, ∀𝑝𝑘−2 ∈ P𝑘−2(e),∀ edge e

(𝐷3) : for 𝑘 ≥ 2 the moments
∫
𝐸

𝑣ℎ𝑝𝑘−2 d𝐸 ∀𝑝𝑘−2 ∈ P𝑘−2(𝐸).

(3.16)

Clearly, instead of the moments (𝐷2) one could use the values at 𝑘 − 1 distinct
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points on each edge, more in the spirit of Finite Elements:

(𝐷′
2) : the value of 𝑣ℎ at 𝑘 − 1 distinct points on each edge e.

We observe that it is convenient to scale the degrees of freedom so that they all
have the same order of magnitude. The reason for this will be clear in the next
subsection; here, however, we do not enter the details of this issue, and we refer to
(Beirão da Veiga et al. 2014) for a more detailed discussion.

Remark 3.3. The classical definition of “degree of freedom” for a generic local
finite element space 𝑉𝑘(𝐾) (as given for instance in Ciarlet (1978)), says that a
degree of freedom is a linear functional 𝐿 : 𝑉𝑘(𝐾) → R, and a (finite) set {𝐿𝑖}
of degrees of freedom is unisolvent if the set of linear equations 𝐿𝑖(𝑣) = 𝑏𝑖 has
a unique solution for any choice of the 𝑏′

𝑖
s. Given a set of unisolvent degrees of

freedom in 𝑉𝑘(𝐾), we can immediately define the corresponding dual basis {𝜑𝑖}
for 𝑉𝑘(𝐾) by requiring 𝐿𝑖(𝜑 𝑗) = 𝛿𝑖 𝑗 .

Here and in the rest of the paper we will associate with a polynomial space a set
of degrees of freedom, in the sense that statements like (𝐷3) in (3.16) will mean
that, in practice, one has to choose a basis {𝑚𝑖} for P𝑘−2(𝐾) and then define the
degrees of freedom

𝐿𝑖(𝑣ℎ) :=
∫
𝐾

𝑣ℎ 𝑚𝑖 d𝐾, 𝑣ℎ ∈ 𝑉𝑘(𝐾). (3.17)

These bases are typically chosen as shifted and scaled monomials (see for instance
(Beirão da Veiga et al. 2014, Dassi and Vacca 2020)) or, for a better condition num-
ber behavior, in particular for high values of 𝑘 , as suitable orthonormal polynomials
(Chernov et al. 2021, Beirão da Veiga, Chernov, Mascotto and Russo 2016e).

Lemma 3.4. The degrees of freedom (3.16) are unisolvent for 𝑉𝑘(𝐸).

Proof. Since the number of dofs equals the dimension of 𝑉𝑘(𝐸), it is enough to
show that a function 𝑣ℎ having all the dofs vanishing is identically zero. Since 𝑣ℎ
is a polynomial of degree 𝑘 on each edge, (𝐷1) = 0 and (𝐷2) = 0 imply that 𝑣ℎ ≡ 0
on 𝜕𝐸 . This, together with (𝐷3) = 0, gives∫

𝐸

|∇𝑣ℎ |2 d𝐸 = −
∫
𝐸

𝑣ℎ Δ𝑣ℎ d𝐸 +
∫
𝜕𝐸

𝑣ℎ
𝜕𝑣ℎ

𝜕𝑛
d𝑠 = 0

since Δ𝑣ℎ ∈ P𝑘−2. Hence, ∇𝑣ℎ ≡ 0, i.e., 𝑣ℎ = constant = 0 (since 𝑣ℎ = 0 on the
boundary Γ𝐷).

3.3. Construction of a computable discrete bilinear form

From the definition (3.15) we see that the functions of 𝑉𝑘(𝐸) are known on the
boundary of 𝜕𝐸 but not inside, unless we are willing to solve a PDE on each
element 𝐸 , something that we do not want to do, not even in an approximate way.
Then, in order to approximate 𝑎𝐸(·, ·) we use a projection onto P𝑘(𝐸). We consider
the operator Π∇

𝑘
defined in (2.6), for which we have the following Lemma.
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Lemma 3.5. The operatorΠ∇
𝑘

is computable out of the degrees of freedom (3.16).

Proof. The left-hand side of (2.6) is a product of polynomials, and it is obviously
computable. Integrating by parts the right-hand side we have∫

𝐸

∇𝑣ℎ · ∇𝑞𝑘 d𝐸 = −
∫
𝐸

𝑣ℎ Δ𝑞𝑘 d𝐸 +
∫
𝜕𝐸

𝑣ℎ
𝜕𝑞𝑘

𝜕𝑛
d𝑠, (3.18)

and the two integrals are both computable from the degrees of freedom (3.16).

Then, a discrete bilinear form can be constructed, in each element 𝐸 , and for
𝑣ℎ, 𝑤ℎ ∈𝑉𝑘(𝐸), as

𝑎𝐸ℎ (𝑣ℎ, 𝑤ℎ) := 𝑎𝐸
(
Π∇
𝑘 𝑣ℎ,Π

∇
𝑘 𝑤ℎ

)
+ S𝐸

(
(𝐼 − Π∇

𝑘 )𝑣ℎ, (𝐼 − Π∇
𝑘 )𝑤ℎ

)
, (3.19)

where S𝐸 is any symmetric bilinear form to be chosen in such a way that it scales
like 𝑎𝐸(·, ·), and is positive on the kernel of Π∇

𝑘
, i.e., there exist two positive

constant 𝑐1, 𝑐2 such that

𝑐1𝑎
𝐸(𝑣ℎ, 𝑣ℎ) ≤ S𝐸(𝑣ℎ, 𝑣ℎ) ≤ 𝑐2𝑎

𝐸(𝑣ℎ, 𝑣ℎ) ∀𝑣ℎ such that Π∇
𝑘 𝑣ℎ = 0. (3.20)

There are various recipes for S𝐸 , the most commonly used being the so-called
dofi-dofi:

S𝐸(𝑣ℎ, 𝑤ℎ) :=
#dofs∑︁
𝑖=1

dof𝑖(𝑣ℎ) dof𝑖(𝑤ℎ), (3.21)

where dof𝑖 is the 𝑖th degree of freedom. As we already anticipated, for condition
(3.20) to be satisfied, the degrees of freedom (3.16) must be properly scaled. Other
choices can be convenient, for example,

S𝐸(𝑣ℎ, 𝑤ℎ) := ℎ−1
𝐸

∫
𝜕𝐸

𝑣ℎ 𝑤ℎ d𝑠, (3.22)

(where ℎ𝐸 is still the diameter of the element 𝐸), or

S𝐸(𝑣ℎ, 𝑤ℎ) := ℎ𝐸
∫
𝜕𝐸

𝜕𝑣ℎ

𝜕𝑡

𝜕𝑤ℎ

𝜕𝑡
d𝑠, (3.23)

where 𝜕/𝜕𝑡 denotes the tangential derivative.

Lemma 3.6. The discrete bilinear form (3.19) is 𝑘-consistent and stable.

Proof. To prove consistency we observe that Π∇
𝑘
𝑝𝑘 ≡ 𝑝𝑘 since Π∇

𝑘
is a projection.

Hence, S𝐸
(
(𝐼 −Π∇

𝑘
)𝑣ℎ, (𝐼 −Π∇

𝑘
)𝑝𝑘
)
≡ 0,∀𝑣ℎ ∈ 𝑉𝑘(𝐸) and ∀𝑝𝑘 ∈ P𝑘 . Then, using

the definition (2.6) of Π∇
𝑘

we immediately have

𝑎𝐸ℎ (𝑣ℎ, 𝑝𝑘) = 𝑎𝐸(Π∇
𝑘 𝑣ℎ, 𝑝𝑘) = 𝑎

𝐸(𝑣ℎ, 𝑝𝑘). (3.24)
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To prove stability we use (3.20) and the definition (2.6) of Π∇
𝑘

to obtain

𝑎𝐸ℎ (𝑣ℎ, 𝑣ℎ) ≥ 𝑎𝐸(Π∇
𝑘 𝑣ℎ,Π

∇
𝑘 𝑣ℎ) + 𝑐1𝑎

𝐸(𝑣ℎ − Π∇
𝑘 𝑣ℎ, 𝑣ℎ − Π∇

𝑘 𝑣ℎ)
= 𝑎𝐸(𝑣ℎ,Π∇

𝑘 𝑣ℎ) + 𝑐1𝑎
𝐸(𝑣ℎ − Π∇

𝑘 𝑣ℎ, 𝑣ℎ)
≥ min{1, 𝑐1}(𝑎𝐸(𝑣ℎ,Π∇

𝑘 𝑣ℎ) + 𝑎𝐸(𝑣ℎ − Π∇
𝑘 𝑣ℎ, 𝑣ℎ)) = 𝛼∗𝑎𝐸(𝑣ℎ, 𝑣ℎ).

Similarly,

𝑎𝐸ℎ (𝑣ℎ, 𝑣ℎ) ≤ 𝑎𝐸(Π∇
𝑘 𝑣ℎ,Π

∇
𝑘 𝑣ℎ) + 𝑐2𝑎

𝐸(𝑣ℎ − Π∇
𝑘 𝑣ℎ, 𝑣ℎ − Π∇

𝑘 𝑣ℎ)
= 𝑎𝐸(𝑣ℎ,Π∇

𝑘 𝑣ℎ) + 𝑐2𝑎
𝐸(𝑣ℎ − Π∇

𝑘 𝑣ℎ, 𝑣ℎ)
≤ max{1, 𝑐2}(𝑎𝐸(𝑣ℎ,Π∇

𝑘 𝑣ℎ) + 𝑎𝐸(𝑣ℎ − Π∇
𝑘 𝑣ℎ, 𝑣ℎ)) = 𝛼∗𝑎𝐸(𝑣ℎ, 𝑣ℎ).

As a consequence of Lemma 3.6 we have that the abstract estimate (3.12) holds.

3.4. Construction of a computable right-hand side

We begin by recalling here the original approximation of the right-hand side, as
introduced in (Beirão da Veiga et al. 2013b). In Section 3.7 we will present an
alternative approach.

For the first integral in ℓ(𝑣ℎ) (see (3.2)) we can define an approximation 𝑓ℎ of 𝑓
directly computable from the degrees of freedom (𝐷1)-(𝐷3) as follows. Denoting
by {𝑉𝑖} the 𝑁𝑉 vertices of 𝐸 , and recalling that Π0

𝑠 is the 𝐿2-projection onto P𝑠,
we set:

( 𝑓ℎ, 𝑣ℎ)0,𝐸 =


for 𝑘 = 1

∫
𝐸

(Π0
0 𝑓 ) 𝑣ℎ d𝐸, with 𝑣ℎ =

∑
𝑖 𝑣ℎ(𝑉𝑖)
𝑁𝑉

,

for 𝑘 ≥ 2
∫
𝐸

(Π0
𝑘−2 𝑓 ) 𝑣ℎ d𝐸.

(3.25)

The case 𝑘 = 1 needs a special treatment since in this case we do not have internal
moments among the dofs to be used as for 𝑘 ≥ 2.

With the choice (3.25) optimal error estimates are guaranteed. For 𝑘 = 1 we
have, adding and subtracting 𝑓 𝑣ℎ, and using the definition of the 𝐿2-projection and
standard approximation estimates:

( 𝑓 , 𝑣ℎ)0,𝐸 − ( 𝑓ℎ, 𝑣ℎ)0,𝐸 =

∫
𝐸

( 𝑓 𝑣ℎ − 𝑓 𝑣ℎ + 𝑓 𝑣ℎ − Π0
0 𝑓 𝑣ℎ) d𝐸

=

∫
𝐸

( 𝑓 𝑣ℎ − 𝑓 𝑣ℎ) d𝐸 ≤ 𝐶ℎ𝐸 ∥ 𝑓 ∥0,𝐸 |𝑣ℎ |1,𝐸 .
(3.26)

For 𝑘 ≥ 2, using again the definition of the 𝐿2-projection, and standard approxim-
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ation properties we have

( 𝑓 , 𝑣ℎ)0,𝐸 − ( 𝑓ℎ, 𝑣ℎ)0,𝐸 =

∫
𝐸

( 𝑓 𝑣ℎ − Π0
𝑘−2 𝑓 𝑣ℎ) d𝐸

=

∫
𝐸

( 𝑓 − Π0
𝑘−2 𝑓 )(𝑣ℎ − Π0

𝑘−2𝑣ℎ) d𝐸

≤ 𝐶ℎ𝑘−1
𝐸 ∥ 𝑓 ∥𝑘−1,𝐸 ℎ𝐸 |𝑣ℎ |1,𝐸

≤ 𝐶ℎ𝑘𝐸 ∥ 𝑓 ∥𝑘−1,𝐸 |𝑣ℎ |1,𝐸 .

(3.27)

The boundary integral poses no problems, since our functions are polynomials on
each edge in Γ𝑁 , and we might assume that we can compute the integrals to any
chosen accuracy.

3.5. The global problem - Error estimates

The global space 𝑉ℎ is obviously defined as a patchwork of the spaces (3.15):

𝑉ℎ := {𝑣ℎ ∈ 𝐻1
0,Γ𝐷 (Ω) : 𝑣ℎ |𝐸 ∈ 𝑉𝑘(𝐸) ∀𝐸 ∈ Tℎ}. (3.28)

The degrees of freedom in 𝑉ℎ are the natural extension of those defined in (3.16).
The global bilinear form and right-hand side are defined, as in FEM, by summing
over the elements of Tℎ:

𝑎ℎ(𝑣ℎ, 𝑤ℎ) :=
∑︁
𝐸∈Tℎ

𝑎𝐸ℎ (𝑣ℎ, 𝑤ℎ),

ℓℎ(𝑣ℎ) :=
∑︁
𝐸∈Tℎ

( 𝑓ℎ, 𝑣ℎ)0,𝐸 +
∑︁

e⊂Γ𝑁

(𝑔, 𝑣ℎ)0,e,
(3.29)

with 𝑎𝐸
ℎ

(𝑣ℎ, 𝑤ℎ) defined in (3.19), and ( 𝑓ℎ, 𝑣ℎ)0,𝐸 in (3.25). The discrete problem
is then

Find 𝑢ℎ ∈ 𝑉ℎ such that 𝑎ℎ(𝑢ℎ, 𝑣ℎ) = ℓℎ(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ . (3.30)

With these choices the assumptions of Theorem 3.2 are satisfied, so that (3.12)
holds. In terms of order of convergence, the expected optimal order 𝑘 holds, and
we have the following Theorem.

Theorem 3.7. Let 𝑢 be the solution of (3.3), and let 𝑢ℎ be the solution of (3.30).
Under Assumptions 2.1 on the mesh it holds:

|𝑢 − 𝑢ℎ |1,Ω ≤ 𝐶ℎ𝑘 |𝑢 |𝑘+1,Ω. (3.31)

Proof. From (3.26)-(3.27) we have

ℓ(𝑣ℎ)−ℓℎ(𝑣ℎ) =
∑︁
𝐸∈Tℎ

( 𝑓 − 𝑓ℎ, 𝑣ℎ)0,𝐸 ≤ 𝐶 ℎ𝑘 ∥ 𝑓 ∥𝑘−1,Ω ∥𝑣ℎ∥1,Ω ∀𝑣ℎ ∈ 𝑉ℎ . (3.32)

For every element 𝐸 , let 𝑢𝜋 ∈ P𝑘(𝐸) be defined as the 𝐿2-projection of 𝑢 onto



The Virtual Element Method 15

P𝑘(𝐸):

𝑢𝜋 ∈ P𝑘(𝐸) :
∫
𝐸

(𝑢 − 𝑢𝜋) 𝑝𝑘 d𝐸 = 0, ∀𝐸 ∈ Tℎ, ∀𝑝𝑘 ∈ P𝑘(𝐸). (3.33)

Standard approximation properties (see (Brenner and Scott 2008)) give

∥𝑢 − 𝑢𝜋 ∥1,Tℎ
≤ 𝐶 ℎ𝑘 |𝑢 |𝑘+1,Ω. (3.34)

Let now 𝑢𝐼 ∈ 𝑉ℎ be the interpolant of 𝑢, defined locally through the degrees of
freedom (3.16):

𝑢𝐼 = 𝑢 at the vertices,

for 𝑘 ≥ 2
∫

e
(𝑢 − 𝑢𝐼 )𝑝𝑘−2 de = 0 ∀𝑝𝑘−2 ∈ P𝑘−2(e), ∀ edge e

for 𝑘 ≥ 2
∫
𝐸

(𝑢 − 𝑢𝐼 )𝑝𝑘−2 d𝐸 = 0 ∀𝑝𝑘−2 ∈ P𝑘−2(𝐸).

(3.35)

The following interpolation estimate was proved (see (Mora, Rivera and Rodrı́guez
2015), (Brenner et al. 2017), and (Chen and Huang 2018)):

∥𝑢 − 𝑢𝐼 ∥1,Ω ≤ 𝐶ℎ𝑘 |𝑢 |𝑘+1,Ω. (3.36)

Collecting (3.32), (3.34), and (3.36), from (3.12) we obtain the result.

3.6. Enhanced and Serendipity Virtual Elements

A comparison with Finite Elements, in terms of number of degrees of freedom,
and for a given degree 𝑘 , shows that the boundary dofs are exactly the same, both
on triangles and on quadrilaterals, as expected, since they have to guarantee the
global continuity. Looking at (3.16) we see that the internal degrees of freedom for
VEM are as many as the dimension of P𝑘−2 for any polygon. Instead, the internal
dofs for FEM are equal to the dimension of P𝑘−3 on triangles, and to that of Q𝑘−3
on quads, where we recall that Q𝑠 are the polynomials of degree 𝑠 separately in
each variable. Hence, on triangles VEM use 𝑘 − 1 dofs more than FEM, while
on quads FEM use (𝑘 − 1)(𝑘 − 2)/2 dofs more than VEM (see Figs. 3.1 and 3.2).
The ideal situation would be to have the minimum number of necessary degrees of
freedom, and hence it is desirable to eliminate as many as possible internal dofs.
In this respect triangular FEM are already optimal, and quadrilateral FEM have
been optimised through the serendipity procedure (see for instance (Arnold and
Awanou 2011)). Following (Ahmad, Alsaedi, Brezzi, Marini and Russo 2013),
and (Beirão da Veiga, Brezzi, Marini and Russo 2016c), in order to eliminate as
many internal dofs as possible, and, at the same time, to allow the computation of
all the moments of order ≤ 𝑘 , we first define the local space

𝑉𝑘(𝐸) := {𝑣ℎ ∈ 𝐶0(𝐸) : 𝑣ℎ |e ∈ P𝑘(e) ∀e ⊂ 𝜕𝐸, Δ𝑣ℎ ∈ P𝑘(𝐸)}, (3.37)
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with the degrees of freedom

(𝐷1) − (𝐷2) (the same as in (3.16), plus

the moments of order up to 𝑘 :
∫
𝐸

𝑣ℎ 𝑝𝑘 d𝐸, ∀𝑝𝑘 ∈ P𝑘(𝐸).
(3.38)

Clearly the space (3.37) is bigger than (3.15), apparently in contradiction with
our first aim, but now, thanks to the additional dofs in (3.38), the 𝐿2-orthogonal
projection onto P𝑘 is directly available from the internal dofs. Then we begin by

VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Figure 3.1. Triangles: dofs for FEM and original VEM

VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Figure 3.2. Quads: dofs for FEM and original VEM
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defining locally a projection operator Π𝑘 : 𝐻1(𝐸) → P𝑘(𝐸) as follows:

Π𝑘𝑣 ∈ P𝑘(𝐸) :
∫
𝜕𝐸

(Π𝑘𝑣 − 𝑣)𝑞𝑘 d𝑠 = 0 ∀𝑞𝑘 ∈ P𝑘(𝐸). (3.39)

Clearly, system (3.39) has a unique solution unless P𝑘(𝐸) contains polynomials
that are identically zero on the boundary, i.e., unless P𝑘(𝐸) contains bubbles. This
happens for 𝑘 ≥ 3 on triangles (𝑏3 = product of the equations of the three edges)
and for 𝑘 ≥ 4 on “true” quads (𝑏4 = product of the equations of the four edges). In
these cases we need to add internal conditions, namely:∫
𝐸

(Π𝑘𝑣 − 𝑣)𝑞𝑠 d𝐸 = 0 ∀𝑞𝑠 ∈ P𝑘−3︸                                        ︷︷                                        ︸ or
∫
𝐸

(Π𝑘𝑣 − 𝑣)𝑞𝑠 d𝐸 = 0 ∀𝑞𝑠 ∈ P𝑘−4,︸                                         ︷︷                                         ︸
on triangles on quads

(3.40)

and then solve the system (3.39)-(3.40) in the least-squares sense. Once the polyno-
mial Π𝑘𝑣 has been computed, we define the new space by “copying” its moments.
Namely, setting 𝑁 = maximum degree of internal moments used to define Π𝑘 (and
clearly 𝑁 = −1 in absence of internal moments), we introduce the new space

𝑉𝑆𝑘 (𝐸) =
{
𝑣ℎ ∈𝑉𝑘(𝐸) s. t.

∫
𝐸

(𝑣ℎ−Π𝑘𝑣ℎ) 𝑝𝑠 d𝐸 =0∀𝑝𝑠 ∈ Phom
𝑠 , 𝑁 < 𝑠 ≤ 𝑘

}
. (3.41)

The degrees of freedom in (3.41) will be

(𝐷1) − (𝐷2) (the same as in (3.16)), plus

the moments
∫
𝐸

𝑣ℎ 𝑝 d𝐸 ∀𝑝 ∈ P𝑁 (𝐸).

Fig. 3.3 shows that, on triangles, serendipity VEM have the same number of dofs

VEMS k=3

FEM k=2FEM k=1 FEM k=3

VEMS k=1 VEMS k=2

Figure 3.3. Triangles: dofs for serendipity VEM

as FEM (and actually the two spaces coincide), while Fig. 3.4 compares the dofs of
serendipity VEM and FEM (see (Arnold and Awanou 2011)). The number is again
the same, although serendipity FEM are known to suffer from element distortion
(see (Arnold, Boffi and Falk 2002)), while VEM do not, as shown in (Beirão da
Veiga et al. 2016c).
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VEMS k=4

FEMS k=1 FEMS k=2 FEMS k=3 FEMS k=4

VEMS k=1 VEMS k=2 VEMS k=3

Figure 3.4. Quads: dofs for serendipity FEM and VEM

• • •

•

𝑄

• • • •

•

𝑃

Figure 3.5. Fake triangles: a quad on the left, a pentagon on the right.

Remark 3.8. From the above discussion one might think that the number of
internal moments necessary to define Π𝑘 depends on 𝑘 and on the number of edges:
3 for a triangle, 4 for a quad. This is true on real triangles and real quads. With the
VEM approach the same geometrical entity (say, a triangle), might be considered
as a polygon, a quad, or a pentagon or a hexagon, according to the number of
points on its boundary that we consider as vertices (and then considering as edge
the portion of the boundary between two consecutive vertices). See Fig. 3.5.

In the VEM terminology 𝑄 is a quad, while 𝑃 is a pentagon, but the set of
bubbles is the same, equal to that on triangles: 𝐵𝑘 = 𝑏3𝑝𝑘−3. What really counts is
not the number of edges, but rather the number 𝜂 of straight lines needed to cover
the boundary (here 𝜂 = 3 in both cases). Hence, the internal conditions necessary
to compute Π𝑘 , to be added to (3.39), are∫

𝐸

(Π𝑘𝑣 − 𝑣)𝑞𝑠 d𝐸 = 0 ∀𝑞𝑠 ∈ P𝑘−𝜂(𝐸).

Remark 3.9. One might argue that static condensation could be a simpler pro-
cedure to reduce the number of internal degrees of freedom. This is true in two
dimensional problems, but it is not anymore the case for three dimensional prob-
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lems, where the reduction of dofs on faces is important. Static condensation on
faces might turn into a nightmare, while the serendipity approach works very well.

A typical variant of this procedure can be identified in the original enhancement
trick as designed first in (Ahmad et al. 2013). We consider again the space (3.37),
with the degrees of freedom (3.38). Then, using the boundary dofs and the moments
up to 𝑘 − 2 only, we construct the Π

∇,𝐸
𝑘

operator as in (2.6), and use it (mimicking
(3.41), with Π

∇,𝐸
𝑘

instead of Π𝑘) to define the moments of 𝑣ℎ of order 𝑘 − 1 and 𝑘 .
Thus, the new space is

𝑉enh
𝑘 (𝐸) :=

{
𝑣ℎ ∈𝑉𝑘(𝐸) :

∫
𝐸

(𝑣ℎ −Π∇
𝑘𝑣ℎ)𝑝𝑠 d𝐸 = 0 ∀𝑝𝑠 ∈ Phom

𝑠 𝑠 = 𝑘 −1, 𝑘
}
. (3.42)

Remark 3.10. We observe that both Serendipity and Enhancement approach al-
low to compute the 𝐿2-projection onto P𝑘 . This can be used to compute an
approximation of the right-hand side simpler than the original one described in
(3.25). Setting 𝑓ℎ := Π0

𝑘−1 𝑓 we have

( 𝑓 − 𝑓ℎ, 𝑣ℎ)0,𝐸 =

∫
𝐸

( 𝑓 − Π0
𝑘−1 𝑓 )𝑣ℎ d𝐸 =

∫
𝐸

( 𝑓 − Π0
𝑘−1 𝑓 )(𝑣ℎ − Π0

0𝑣ℎ)d𝐸

≤ 𝐶ℎ𝑘−1
𝐸 ∥ 𝑓 ∥𝑘−1,𝐸ℎ𝐸 |𝑣ℎ |1,𝐸 ≤ 𝐶ℎ𝑘𝐸 ∥ 𝑓 ∥𝑘−1,𝐸 |𝑣ℎ |1,𝐸 .

(3.43)

3.7. 𝐿2-projection of the gradient, and variable coefficients

From the degrees of freedom (3.16) we can compute, for any 𝑣ℎ ∈ 𝑉𝑘(𝐸), the
𝐿2-projection of ∇𝑣ℎ onto [P𝑘−1(𝐸)]2, defined as∫

𝐸

Π0
𝑘−1∇𝑣ℎ · q𝑘−1 d𝐸 =

∫
𝐸

∇𝑣ℎ · q𝑘−1 d𝐸 ∀q𝑘−1 ∈ [P𝑘−1(𝐸)]2. (3.44)

In fact, the left-hand side is an integral of polynomials, and the right-hand side
becomes, after integration by parts,∫

𝐸

∇𝑣ℎ · q𝑘−1 d𝐸 = −
∫
𝐸

𝑣ℎ div q𝑘−1 d𝐸 +
∫
𝜕𝐸

𝑣ℎ q𝑘−1 · 𝒏 d𝑠,

and both integrals on the right-hand side are computable.
As pointed out in (Beirão da Veiga, Brezzi, Marini and Russo 2016d), and exper-

imentally verified, in presence of variable coefficients the Π∇
𝑘

operator produces a
loss of order of convergence for 𝑘 ≥ 3. For this reason the consistency part of the
discrete bilinear form needs to be changed. More precisely, if the problem to be
approximated is − div(𝜅(𝑥)∇𝑢) = 𝑓 , we choose

𝑎𝐸ℎ (𝑣ℎ, 𝑤ℎ) =
∫
𝐸

𝜅(𝑥)Π0
𝑘−1∇𝑣ℎ · Π

0
𝑘−1∇𝑤ℎ d𝐸 + S𝐸((𝐼 − Π∇

𝑘 )𝑣ℎ, (𝐼 − Π∇
𝑘 )𝑤ℎ)

instead of (3.19). It can be easily seen that the two forms coincide for 𝑘 = 1, but
not for 𝑘 ≥ 2. In presence of variable coefficients the consistency property (3.9)
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cannot hold, but the consistency error can be controlled in terms of the right powers
of ℎ. In fact, from the properties of the 𝐿2-projection we have, for any 𝑣ℎ ∈ 𝑉𝑘(𝐸)
and 𝑝𝑘 ∈ P𝑘(𝐸),

𝑎𝐸ℎ (𝑣ℎ, 𝑝𝑘) − 𝑎𝐸(𝑣ℎ, 𝑝𝑘) =
∫
𝐸

𝜅(𝑥)(Π0
𝑘−1∇𝑣ℎ − ∇𝑣ℎ) · ∇𝑝𝑘 d𝐸

=

∫
𝐸

(Π0
𝑘−1∇𝑣ℎ − ∇𝑣ℎ) · (𝜅(𝑥)∇𝑝𝑘 − Π0

𝑘−1𝜅(𝑥)∇𝑝𝑘) d𝐸

≤ 𝐶ℎ𝑘𝐸 |𝜅∇𝑝𝑘 |𝑘,𝐸 |𝑣ℎ |1,𝐸 .

This result will be used in the abstract convergence Theorem 3.2 with 𝑝𝑘 = 𝑢𝜋 .
Consequently,

𝑎𝐸ℎ (𝑣ℎ, 𝑢𝜋) − 𝑎𝐸(𝑣ℎ, 𝑢𝜋) ≤ 𝐶ℎ𝑘𝐸 |𝜅∇𝑢𝜋 |𝑘,𝐸 |𝑣ℎ |1,𝐸 ≤ 𝐶𝜅ℎ𝑘𝐸 | |∇𝑢 | |𝑘,𝐸 |𝑣ℎ |1,𝐸 .

Hence, as shown in (Beirão da Veiga et al. 2016d), the optimal estimate (3.31)
holds true.

3.8. Extension to three dimensions

As a model problem, we take now the natural extension in three dimensions of
problem (3.1).

The first attempt that comes to mind, given a polyhedron 𝑃 and an integer 𝑘 ≥ 1,
is to extend what we did in the two-dimensional case. Let Tℎ be a decomposition
of Ω into polyhedra 𝑃. To begin with, we define the local spaces:

𝑉𝑘(𝑃) :={𝑣ℎ ∈ 𝐶0(𝑃) : 𝑣ℎ |e ∈ P𝑘(e) ∀ edge e ⊂ 𝜕𝑃,

Δ2𝑣ℎ |f ∈ P𝑘−2(f)∀ face f ⊂ 𝜕𝑃, Δ3𝑣ℎ ∈ P𝑘−2(𝑃)},
(3.45)

with the degrees of freedom

(𝐷1) : the values of 𝑣ℎ at the vertices,

(𝐷2) : for 𝑘 ≥ 2 the moments
∫

e
𝑣ℎ 𝑝𝑘−2 d𝑠, ∀𝑝𝑘−2 ∈ P𝑘−2(e),∀ edge e,

(𝐷3) : for 𝑘 ≥ 2 the moments
∫

f
𝑣ℎ 𝑝𝑘−2 df, ∀𝑝𝑘−2 ∈ P𝑘−2(f),∀ face f,

(𝐷4) : for 𝑘 ≥ 2 the moments
∫
𝑃

𝑣ℎ 𝑝𝑘−2 d𝑃, ∀𝑝𝑘−2 ∈ P𝑘−2(𝑃).

(3.46)

Then, following the 2-dimensional path, for each 𝑃 ∈ Tℎ and for each virtual
element function 𝑣ℎ we can define its 𝐻1

0(𝑃)-projection Π
∇,𝑃
𝑘

𝑣ℎ as in (2.6), that is,
as the unique solution (up to a constant that can be easily fixed) in P𝑘(𝑃) of∫

𝑃

∇(Π∇,𝑃
𝑘

𝑣ℎ) · ∇𝑝𝑘 d𝑃 =

∫
𝑃

∇𝑣ℎ · ∇𝑝𝑘 d𝑃 ∀𝑝𝑘 ∈ P𝑘(𝑃). (3.47)

Unfortunately, when we attempt to compute the right-hand side of (3.47) using the
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degrees of freedom (3.46), we have∫
𝑃

∇𝑣ℎ · ∇𝑝𝑘 d𝑃 =

∫
𝜕𝑃

𝑣ℎ
𝜕𝑝𝑘

𝜕𝑛
d𝑆 −

∫
𝑃

𝑣ℎ Δ𝑝𝑘 d𝑃. (3.48)

Now, the second term in the right-hand side of (3.48) does not cause any trouble:
for 𝑝𝑘 in P𝑘 we have that Δ𝑝𝑘 ∈ P𝑘−2 and the term can be computed using the
degrees of freedom (𝐷4) in (3.46). But for the first term in the right-hand side of
(3.48) we would need to know the moments of 𝑣ℎ on each face up to the order 𝑘 −1
(the degree of 𝜕𝑝𝑘

𝜕𝑛
), while in (3.46) we have the moments only up to 𝑘 − 2. The

way-out, as presented first in (Ahmad et al. 2013), is:

split
𝜕𝑝𝑘

𝜕𝑛
as

𝜕𝑝𝑘

𝜕𝑛
= 𝑝𝑘−2 + 𝑝hom

𝑘−1, 𝑝𝑘−2 ∈ P𝑘−2, 𝑝
hom
𝑘−1 ∈ Phom

𝑘−1,

and replace
∫

f
𝑣ℎ
𝜕𝑝𝑘

𝜕𝑛
df with

∫
f
𝑣𝑝𝑘−2 df +

∫
f
(Π∇,f

𝑘
𝑣ℎ)𝑝hom

𝑘−1 df.
(3.49)

In (3.49), Π∇,f
𝑘
𝑣ℎ is the two-dimensional projection of 𝑣ℎ, as defined in (2.6), whose

computation, in turn, on each face f requires the moments of 𝑣ℎ on f only up to the
order 𝑘 − 2. One might consider this as a typical use of the approach described
in subsection 3.6, the so-called enhancement trick, which allows to have all the
moments up to the order 𝑘 , and consequently the 𝐿2-projection onto P𝑘 . More
precisely, the enhancement trick is the following.

• For each face f we consider the space𝑉𝑘(f) defined in (3.37), with the degrees
of freedom (3.38);

• In 𝑉𝑘(f) we can construct the operator Π∇,f
𝑘

, for which only the moments of
degree up to 𝑘 − 2 are needed, and use its moments of degree 𝑘 − 1 and 𝑘 to
define the enhanced space 𝑉enh

𝑘
(f) on each face as in (3.42);

• Finally, the enhanced space on the polyhedron 𝑃 is given by

𝑉enh
𝑘 (𝑃) := {𝑣ℎ ∈ 𝐶0(𝑃) : 𝑣ℎ |f ∈ 𝑉enh

𝑘 (f) ∀ face f, Δ3𝑣ℎ ∈ P𝑘−2(𝑃)}. (3.50)

Once the operator Π∇,𝑃
𝑘

has been computed, the local bilinear form can be defined,
for each 𝑃 ∈ Tℎ and for each 𝑣ℎ, 𝑤ℎ ∈ 𝑉enh

𝑘
(𝑃), exactly as in (3.19):

𝑎𝑃ℎ (𝑣ℎ, 𝑤ℎ) := 𝑎𝑃(Π∇,𝑃
𝑘

𝑣ℎ,Π
∇,𝑃
𝑘

𝑤ℎ)+𝑆𝑃((𝐼 − Π
∇,𝑃
𝑘

)𝑣ℎ, (𝐼 − Π
∇,𝑃
𝑘

)𝑤ℎ). (3.51)

Let us turn to the right-hand side. The first term in ℓ(𝑣ℎ) (see (3.2)) is treated
exactly as in (3.25), just by replacing the polygon 𝐸 with the polyhedron 𝑃. Instead
the treatment of the boundary term needs some care, since now the functions in
𝑉enh
𝑘

(𝑃) are not known on the faces. Thanks to the enhancement trick we know their
projections onto polynomials, in particular of degree 𝑘 − 1, on each face. Hence,∫

f
𝑔𝑣ℎ df can be replaced by

∫
f
𝑔Π0

𝑘−1𝑣ℎ df, ∀face f ⊂ Γ𝑁 . (3.52)

Here too, like in the 2D-case, we assume that the integrals to the right of (3.52) can
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be computed exactly. Then, adding and subtracting Π0
𝑘−1𝑔, and using the properties

of the 𝐿2-projection and classical estimates we obtain∫
f
𝑔𝑣ℎ df −

∫
f
𝑔Π0

𝑘−1𝑣ℎ df

=

∫
f
(𝑔 − Π0

𝑘−1𝑔)𝑣ℎ df +
∫

f
((Π0

𝑘−1𝑔) 𝑣ℎ − 𝑔Π0
𝑘−1𝑣ℎ) df

=

∫
f
(𝑔 − Π0

𝑘−1𝑔)(𝑣ℎ − Π0
𝑘−1𝑣ℎ) df + 0

≤ 𝐶 ℎ𝑘−1/2 |𝑔 |𝑘−1/2,f ℎ
1/2 |𝑣ℎ |1/2,f ≤ 𝐶 ℎ𝑘 |𝑔 |𝑘−1/2,f∥𝑣ℎ∥1,𝑃 .

(3.53)

Finally, the global quantities are defined by collecting the local ones.

𝑉ℎ := {𝑣ℎ ∈ 𝐻1
0,Γ𝐷 (Ω) such that 𝑣ℎ |𝑃 ∈ 𝑉enh

𝑘 (𝑃) ∀𝑃 ∈ Tℎ},

𝑎ℎ(𝑣ℎ, 𝑤ℎ) :=
∑︁
𝑃∈Tℎ

𝑎𝑃ℎ (𝑣ℎ, 𝑤ℎ) ∀𝑣ℎ, 𝑤ℎ ∈ 𝑉ℎ,

ℓℎ(𝑣ℎ) :=
∑︁
𝑃∈Tℎ

( 𝑓ℎ, 𝑣ℎ)0,𝑃 +
∑︁

f⊂Γ𝑁

(𝑔,Π0
𝑘−1𝑣ℎ)0,f ∀𝑣ℎ ∈ 𝑉ℎ .

(3.54)

4. 𝐻1-nonconforming approximations
Nonconforming approximations for 𝐻1 were first introduced and analyzed in (Ay-
uso de Dios, Lipnikov and Manzini 2016). In this section we will recall their
approach, applied always to the continuous model problem (3.1), with some modi-
fications in the treatment of the right-hand side. As for nonconforming Finite
Element approximations, the discrete spaces that we are going to introduce are
not subspaces of 𝐻1(Ω), as they are made of functions which are only weakly
continuous at the interelement boundaries. Therefore we need some preliminary
notations. Let Tℎ be a decomposition of Ω into polygons 𝐸 , and let

𝐻1(Tℎ) :=
∏
𝐸∈Tℎ

𝐻1(𝐸).

Let Eℎ be the set of edges of Tℎ, E𝑜
ℎ

the set of internal edges, and E𝜕
ℎ

the set of
boundary edges. For a function 𝑣 ∈ 𝐻1(Tℎ) (or a vector v ∈ [𝐻1(Tℎ)]2) we define
its averages and jumps on the edges as (see e.g. (Arnold, Brezzi, Cockburn and
Marini 2001))

{𝑣} |e :=
𝑣+ + 𝑣−

2
on e ∈ E𝑜ℎ , {𝑣} |e := 𝑣 on e ∈ E𝜕ℎ ,

[[ 𝑣 ]] |e := 𝑣+𝒏+ + 𝑣−𝒏− on e ∈ E𝑜ℎ , [[ 𝑣 ]] |e := 𝑣𝒏 on e ∈ E𝜕ℎ ,
(4.1)

where 𝑣± is the restriction of 𝑣 to the elements 𝐸± having the edge e in common,
and 𝒏± is the outward unit normal to 𝐸±. For an edge on the boundary, 𝒏 is the
outward unit normal to 𝜕Ω. With these definitions the following useful formula
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holds for 𝑣 and 𝑤 in 𝐻1(Tℎ) (see always (Arnold et al. 2001)):∑︁
𝐸∈Tℎ

∫
𝜕𝐸

𝜕𝑤

𝜕𝑛
𝑣 d𝑠 =

∑︁
e∈E𝑜

ℎ

∫
e
[[ ∇𝑤 ]] · {𝑣} de +

∑︁
e∈Eℎ

∫
e
[[ 𝑣 ]] · {∇𝑤} de. (4.2)

Let 𝑢 be the solution of (3.1). By integrating by parts and applying (4.2), taking
into account that [[ ∇𝑢 ]] |e = 0 on e ∈ E𝑜

ℎ
we deduce, for all 𝑣 ∈ 𝐻1(Tℎ):

𝑎(𝑢, 𝑣) =
∑︁
𝐸∈Tℎ

𝑎𝐸(𝑢, 𝑣) =
∑︁
𝐸∈Tℎ

(∫
𝐸

−Δ𝑢 𝑣 d𝐸 +
∫
𝜕𝐸

𝜕𝑢

𝜕𝑛
𝑣 d𝑠

)
= ( 𝑓 , 𝑣)0,Ω +

∑︁
e

∫
e
[[ 𝑣 ]] · {∇𝑢} de

= ( 𝑓 , 𝑣)0,Ω +
∑︁

e⊂Γ𝑁

∫
e
𝑔 𝑣 de +

∑︁
e⊄Γ𝑁

∫
e
[[ 𝑣 ]] · {∇𝑢} de

= ℓ(𝑣) +
∑︁

e⊄Γ𝑁

∫
e
[[ 𝑣 ]] · {∇𝑢} de.

(4.3)

The term

Nℎ(𝑢, 𝑣) :=
∑︁

e⊄Γ𝑁

∫
e
[[ 𝑣 ]] · {∇𝑢} d𝑠 (4.4)

is a measure of the nonconformity and needs to be estimated. To this end, we anti-
cipate that the discrete VEM-spaces that we are going to build, made of functions
weakly continuous at the interelements, will be subspaces of

𝐻1,nc(Tℎ) := {𝑣 ∈ 𝐻1(Tℎ) s. t.
∫

e
[[ 𝑣 ]]·𝒏 𝑝𝑘−1 d𝑠 = 0∀e ⊄ Γ𝑁 , ∀𝑝𝑘−1 ∈ P𝑘−1(e)}.

We can prove now the following Lemma.

Lemma 4.1. Let 𝑢 be the solution of problem (3.1). There exists a constant 𝐶
independent of ℎ such that the following estimate holds:

Nℎ(𝑢, 𝑣ℎ) ≤ 𝐶 ℎ𝑘 ∥𝑢∥𝑘+1,Ω∥𝑣ℎ∥1,Tℎ
, ∀𝑣ℎ ∈ 𝐻1,nc(Tℎ). (4.5)

Proof. We briefly sketch the proof, which is the same as for nonconforming Finite
Elements. Using the properties of the 𝐿2-projection and the definition of 𝐻1,nc(Tℎ)
we have

Nℎ(𝑢, 𝑣ℎ) :=
∑︁

e⊄Γ𝑁

∫
e
{∇𝑢} · [[ 𝑣ℎ ]] de =

∑︁
e⊄Γ𝑁

∫
e

(
{∇𝑢} − {Π0

𝑘−1∇𝑢}
)
· [[ 𝑣ℎ ]] de

=
∑︁

e⊄Γ𝑁

∫
e

(
{∇𝑢} − {Π0

𝑘−1∇𝑢}
)
·
(
[[ 𝑣ℎ ]] − Π

0,e
0 ([[ 𝑣ℎ ]])

)
de

≤
∑︁

e⊄Γ𝑁

∥{∇𝑢} − {Π0
𝑘−1∇𝑢}∥0,e · ∥ [[ 𝑣ℎ ]] − Π

0,e
0 ([[ 𝑣ℎ ]])∥0,e
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where {Π0
𝑘−1∇𝑢} on an edge e is obtained by taking the average of Π0,𝐸±

𝑘−1 ∇𝑢 with
𝐸± being the two elements having e as common edge.

Then, the trace inequality and standard approximation properties give the result.

We are now ready to introduce the nonconforming approximation of (3.1).

4.1. The local discrete spaces and bilinear forms

Let again 𝐸 be a generic polygon in Tℎ, and let 𝒏 be, as usual, the unit outward
normal to each edge, in the clockwise orientation of the boundary. For 𝑘 ≥ 1 we
define

𝑉nc
𝑘 (𝐸) := {𝑣ℎ ∈ 𝐶0(𝐸) :

𝜕𝑣ℎ

𝜕𝑛 |e
∈ P𝑘−1(e) ∀ edge e ⊂ 𝜕𝐸, Δ𝑣ℎ ∈ P𝑘−2(𝐸)}, (4.6)

with the degrees of freedom given by

(𝐷1) : the moments
∫

e
𝑣ℎ𝑝𝑘−1 de ∀𝑝𝑘−1 ∈ P𝑘−1(e), ∀ edge e

(𝐷2) : for 𝑘 ≥ 2 the moments
∫
𝐸

𝑣ℎ𝑝𝑘−2 d𝐸 ∀𝑝𝑘−2 ∈ P𝑘−2(𝐸).
(4.7)

We underline that from the definition (4.6) it is clear that P𝑘(𝐸) ⊂ 𝑉nc
𝑘

(𝐸).

Lemma 4.2. The degrees of freedom (4.7) are unisolvent for 𝑉nc
𝑘

(𝐸).

Proof. Since the number of dofs equals the dimension of 𝑉nc
𝑘

(𝐸), it is enough to
show that a function 𝑣ℎ having all the dofs vanishing is identically zero. Let then
𝑣ℎ ∈ 𝑉nc

𝑘
(𝐸) such that∫

e
𝑣ℎ𝑝𝑘−1 de = 0∀𝑝𝑘−1 ∈ P𝑘−1(e)∀ edge e, and

∫
𝐸

𝑣ℎ𝑝𝑘−2 d𝐸 = 0∀𝑝𝑘−2 ∈ P𝑘−2(𝐸).

Since Δ𝑣ℎ ∈ P𝑘−2(𝐸), and 𝜕𝑣ℎ
𝜕𝑛 |e ∈ P𝑘−1(e) ∀e, integration by parts gives∫

𝐸

|∇𝑣ℎ |2 d𝐸 = −
∫
𝐸

𝑣ℎ Δ𝑣ℎ d𝐸 +
∫
𝜕𝐸

𝑣ℎ
𝜕𝑣ℎ

𝜕𝑛
d𝑠 = 0.

Hence, 𝑣ℎ = constant which, together with (𝐷1) = 0, implies 𝑣ℎ ≡ 0.

Remark 4.3. The space (4.6) was the original space defined in (Ayuso de Dios
et al. 2016). Here we will use instead an enhanced space, that simplifies signi-
ficantly the treatment of the right-hand side. Without repeating the details of the
enhancement trick, exactly the same to what we did in the previous section, we
define the space

𝑉nc
𝑘 (𝐸) := {𝑣ℎ ∈ 𝐶0(𝐸) :

𝜕𝑣ℎ

𝜕𝑛 |e
∈ P𝑘−1(e) ∀ edge e ⊂ 𝜕𝐸, Δ𝑣ℎ ∈ P𝑘(𝐸)}, (4.8)

with the degrees of freedom (4.7) plus the moments of order 𝑘 − 1 and 𝑘 . After
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computing the Π∇
𝑘

operator as in (2.6) using only the degrees of freedom (4.7), we
define the enhanced space as

𝑉
nc,enh
𝑘

(𝐸) :=
{
𝑣ℎ ∈𝑉nc

𝑘 (𝐸) :
∫
𝐸

(𝑣ℎ − Π∇
𝑘 𝑣ℎ)𝑝𝑠 d𝐸 = 0

∀𝑝𝑠 ∈ Phom
𝑠 𝑠 = 𝑘 − 1, 𝑘

}
.

(4.9)

Once the local spaces 𝑉nc,enh
𝑘

(𝐸) have been defined, we follow the same path of the
previous section in order to write the discrete problem. The local bilinear forms
are constructed as in (3.19)–(3.21):

𝑎𝐸ℎ (𝑣ℎ, 𝑤ℎ) := 𝑎𝐸(Π∇
𝑘 𝑣ℎ,Π

∇
𝑘 𝑤ℎ)+𝑆𝐸((𝐼 − Π∇

𝑘 )𝑣ℎ, (𝐼 − Π∇
𝑘 )𝑤ℎ).

𝑘−Consistency and stability hold with the same arguments as in Lemma 3.6.

4.2. Construction of a computable right-hand side

Thanks to the enhancement procedure of Remark 4.3 the approximation of the
volume term in the right-hand side simplifies significantly with respect to the
original one, and goes exactly as in (3.43) of Remark 3.10. Thus, with 𝑓ℎ = Π0

𝑘−1 𝑓 ,

( 𝑓 , 𝑣ℎ)0,𝐸 − ( 𝑓ℎ, 𝑣ℎ)0,𝐸 ≤ 𝐶ℎ𝑘𝐸 ∥ 𝑓 ∥𝑘,𝐸 |𝑣ℎ |1,𝐸 . (4.10)

For the term on the Neumann boundary, denoting by Π0
𝑘−1𝑔 the 𝐿2-projection

of 𝑔 onto P𝑘−1(e) for each edge e ⊂ Γ𝑁 , and setting

𝑔ℎ |e = Π0
𝑘−1𝑔 ∀e ⊂ Γ𝑁 , (4.11)

we obtain∫
e
𝑔𝑣ℎ de −

∫
e
Π0
𝑘−1𝑔𝑣ℎ de =

∫
e
(𝑔 − Π0

𝑘−1𝑔)(𝑣ℎ − Π0
𝑘−1𝑣ℎ) de

≤ 𝐶 ℎ𝑘−1/2 |𝑔 |𝑘−1/2,e ℎ
1/2 |𝑣ℎ |1/2,e ≤ 𝐶 ℎ𝑘 |𝑔 |𝑘−1/2,e∥𝑣ℎ∥1,𝐸 .

(4.12)

4.3. The global problem - Error estimates

The global space is defined as a patchwork of the spaces (4.6), with the addition of
a weak continuity condition at the interelements:

𝑉nc
ℎ : = {𝑣ℎ ∈ 𝐻1(Tℎ) : 𝑣ℎ |𝐸 ∈ 𝑉nc,enh

𝑘
(𝐸) ∀𝐸 ∈ Tℎ, and∫

e
[[ 𝑣ℎ ]] · 𝒏 𝑝𝑘−1 de = 0 ∀e ⊄ Γ𝑁 , ∀𝑝𝑘−1 ∈ P𝑘−1(e)}.

(4.13)

The global bilinear form and right-hand side are defined, as usual, by summing
over the elements of Tℎ:

𝑎ℎ(𝑣ℎ, 𝑤ℎ) :=
∑︁
𝐸∈Tℎ

𝑎𝐸ℎ (𝑣ℎ, 𝑤ℎ),

ℓℎ(𝑣ℎ) :=
∑︁
𝐸∈Tℎ

( 𝑓ℎ, 𝑣ℎ)0,𝐸 +
∑︁

e⊂Γ𝑁

(𝑔ℎ, 𝑣ℎ)0,e,
(4.14)
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and the discrete problems is:

Find 𝑢ℎ ∈ 𝑉nc
ℎ such that 𝑎ℎ(𝑢ℎ, 𝑣ℎ) = ℓℎ(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉nc

ℎ . (4.15)

Theorem 4.4. The discrete problem (4.15) has a unique solution 𝑢ℎ ∈ 𝑉nc
ℎ

.
Moreover, under Assumptions 2.1 on the mesh it holds:

∥𝑢 − 𝑢ℎ∥1,Tℎ
≤ 𝐶ℎ𝑘 |𝑢 |𝑘+1,Ω. (4.16)

Proof. Since Assumptions 3.1 holds (the bilinear form is 𝑘-consistent and stable),
problem (4.15) has a unique solution 𝑢ℎ. Moreover, an abstract estimate similar to
(3.12) holds: for every approximation 𝑢𝐼 ∈ 𝑉nc

ℎ
of 𝑢 and for every approximation

𝑢𝜋 of 𝑢 that is piecewise in P𝑘 , we have

|𝑢 − 𝑢ℎ |1,Tℎ
≤ 𝐶

(
|𝑢 − 𝑢𝐼 |1,Tℎ

+ |𝑢 − 𝑢𝜋 |1,Tℎ
+ 𝔉ℎ +𝔑ℎ

)
, (4.17)

where 𝐶 is a constant independent of ℎ, | · |1,Tℎ
is the broken 𝐻1-norm, and, for

any ℎ, 𝔉ℎ and 𝔑ℎ are, respectively, the smallest constants such that

|ℓ(𝑣ℎ)− ℓℎ(𝑣ℎ)| ≤ 𝔉ℎ |𝑣ℎ |1,Tℎ
, |Nℎ(𝑢, 𝑣ℎ)| ≤ 𝔑ℎ |𝑣ℎ |1,Tℎ

∀ 𝑣ℎ ∈ 𝑉nc
ℎ . (4.18)

The proof of (4.17) goes like that of Theorem 3.2, with the addition of the non-
conformity term (4.4). Setting 𝛿ℎ = 𝑢ℎ − 𝑢𝐼 , without repeating all the steps of the
proof, and using (4.3) we obtain

𝛼∗ |𝛿ℎ |21,Tℎ
≤ ℓℎ(𝛿ℎ) − ℓ(𝛿ℎ)−

∑︁
𝐸

(
𝑎𝐸ℎ (𝑢𝐼 − 𝑢𝜋 , 𝛿ℎ) + 𝑎𝐸(𝑢𝜋 − 𝑢, 𝛿ℎ)

)
−Nℎ(𝑢, 𝛿ℎ)

≤ 𝐶

(
𝔉ℎ +𝔑ℎ + |𝑢𝐼 − 𝑢𝜋 |1,Tℎ

+ |𝑢 − 𝑢𝜋 |1,Tℎ

)
|𝛿ℎ |1,Tℎ

,

and (4.17) follows by the triangle inequality. For the right-hand side we have, from
(4.10)-(4.12),

ℓ(𝑣ℎ) − ℓℎ(𝑣ℎ) =
∑︁
𝐸∈Tℎ

( 𝑓 − 𝑓ℎ, 𝑣ℎ)0,𝐸 +
∑︁

e⊂Γ𝑁

(𝑔 − 𝑔ℎ, 𝑣ℎ)e

≤ 𝐶 ℎ𝑘
(
∥ 𝑓 ∥𝑘,Ω + ∥𝑔∥𝑘−1/2,Γ𝑁

)
|𝑣ℎ |1,Tℎ

∀𝑣ℎ ∈ 𝑉nc
ℎ .

(4.19)

From (4.5), (4.19), and classical approximation results (see, e.g., (Brenner and
Scott 2008)) in (4.17) we finally have the optimal estimate (4.16).

5. 𝐻2-conforming approximations
With Virtual Elements it is quite easy to construct high-regularity approximations.
Here we shall deal with𝐶1 approximations, having in mind, as an example of fourth
order problem, a plate bending problem, in the Kirchoff-Love model:

𝐷Δ2𝑤 = 𝑓 in Ω, 𝑤 =
𝜕𝑤

𝜕𝑛
= 0 on 𝜕Ω, (5.1)
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where 𝐷 = 𝐸𝑡3/12(1 − 𝜇2) is the bending rigidity, 𝐸 the Young’s modulus, 𝑡 the
thickness, 𝜇 is the Poisson’s ratio, and we assumed that the plate is clamped all-over
the boundary. In order to write the variational formulation of (5.1) we define

𝑎(𝑣, 𝑤) = 𝐷

[
(1−𝜇)

∫
Ω

𝑤/𝑖 𝑗𝑣/𝑖 𝑗 d𝑥+𝜇
∫
Ω

Δ𝑤Δ𝑣 d𝑥
]
, < 𝑓 , 𝑣 >=

∫
Ω

𝑓 𝑣 d𝑥. (5.2)

In (5.2), 𝑣/𝑖 = 𝜕𝑣/𝜕𝑥𝑖 , 𝑖 = 1, 2, and we used the summation convention of repeated
indices. Throughout this section 𝑤/𝑛 will denote the normal derivative, 𝑤/𝑡 the
tangential derivative in the counterclockwise orientation of the boundary, and so
on. When no confusion occurs we might also use 𝑤𝑛, 𝑤𝑡 ...

The variational formulation of (5.1) is then:{
Find 𝑤 ∈ 𝑉 := 𝐻2

0(Ω) such that
𝑎(𝑤, 𝑣) =< 𝑓 , 𝑣 > ∀𝑣 ∈ 𝑉.

(5.3)

In the following subsections we recall the discretization of (5.3) presented in
(Brezzi and Marini 2013) and (Chinosi and Marini 2016). For other approaches we
refer to (Zhao, Chen and Zhang 2016) and (Antonietti, Manzini and Verani 2018)
for nonconforming approximations, to (Antonietti, Beirão da Veiga, Scacchi and
Verani 2016) for application to Cahn-Hilliard equation, to (Brenner, Sung and Tan
2021) for optimal control problems, and to (Wang and Zhao 2021) for conforming
and nonconforming approximations of contact problems.

5.1. The local VEM-spaces

Let 𝐸 be a polygon in Tℎ. The local spaces will depend on three integer indices
(𝑟, 𝑠, 𝑚), related to the degree of accuracy 𝑘 ≥ 2 by:

𝑟 = max{3, 𝑘}, 𝑠 = 𝑘 − 1, 𝑚 = 𝑘 − 4. (5.4)

We set

𝑊𝑟 ,𝑠,𝑚(𝐸) := {𝑤 ∈𝐻2(𝐸):𝑤 |e ∈P𝑟 (e), 𝑤𝑛 |e ∈P𝑠(e) ∀ edge e, Δ2𝑤 ∈P𝑚(𝐸)}. (5.5)

The degrees of freedom in𝑊𝑟 ,𝑠,𝑚(𝐸) are:

(𝐷0) the values of 𝑤, 𝑤/1 and 𝑤/2 at the vertices,

(𝐷1) for 𝑟 ≥ 4,the moments
∫

e
𝑤 𝑞𝑟−4 de ∀𝑞𝑟−4 ∈ P𝑟−4(e), ∀e ⊂ 𝜕𝐸,

(𝐷2) for 𝑠 ≥ 2, the moments
∫

e
𝑤/𝑛 𝑞𝑠−2 de ∀𝑞𝑠−2 ∈ P𝑠−2(e), ∀e ⊂ 𝜕𝐸,

(𝐷3) for 𝑚 ≥ 0, the moments
∫
𝐸

𝑤 𝑞𝑚 d𝐸 ∀𝑞𝑚 ∈ P𝑚(𝐸).

(5.6)

We note that the VEM space𝑊𝑟 ,𝑠,𝑚(𝐸) will contain all polynomials P𝑘 with

𝑘 = min{𝑟, 𝑠 + 1, 𝑚 + 4} ≥ 2,
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which will be the order of precision. We point out once more that the above degrees
of freedom need to be properly scaled in such a way that they all have the same
dimension. For a discussion and details on this issue we refer to (Brezzi and Marini
2013).

Lemma 5.1. The degrees of freedom (5.6) are unisolvent for𝑊𝑟 ,𝑠,𝑚(𝐸).

Proof. The proof follows the usual path. Since the number of dofs equals the
dimension of𝑊𝑟 ,𝑠,𝑚(𝐸), it is enough to show that a function 𝑤 having all the dofs
vanishing is identically zero. We first observe that (𝐷0) = 0 implies that 𝑤 and ∇𝑤
vanish at the vertices of 𝐸 . Therefore, on each edge, 𝑤 is a polynomial of degree 𝑟
vanishing at the two endpoints with its tangential derivative. Hence, denoting by 𝑡
the edge variable and by 𝑡1 and 𝑡2 the coordinates of the endpoints, 𝑤 will have the
expression 𝑤 = (𝑡 − 𝑡1)2(𝑡 − 𝑡2)2𝑞𝑟−4. Then, from the vanishing of dofs (𝐷1) we
deduce that 𝑤 ≡ 0 on each edge. Similarly, from the vanishing of (𝐷0) and (𝐷2)
we deduce that 𝑤/𝑛 vanishes identically on each edge. Indeed, on each edge 𝑤/𝑛
is a polynomial of degree 𝑠 vanishing at the two endpoints. Its expression is then
𝑤/𝑛 = (𝑡 − 𝑡1)(𝑡 − 𝑡2)𝑞𝑠−2 which, together with (𝐷2) = 0, implies 𝑤/𝑛 ≡ 0 on each
edge. Consequently,

𝑤 ≡ 0 𝑤/𝑛 ≡ 0 on 𝜕𝐸.

Finally, this, together with (𝐷3) = 0 and integration by parts twice give∫
𝐸

(Δ𝑤)2 d𝐸 = −
∫
𝐸

∇𝑤 · ∇Δ𝑤 d𝐸 +
∫
𝜕𝐸

𝜕𝑤

𝜕𝑛
Δ𝑤 d𝑠

=

∫
𝐸

𝑤 Δ2𝑤 d𝐸 −
∫
𝜕𝐸

𝑤
𝜕Δ𝑤

𝜕𝑛
d𝑠 +

∫
𝜕𝐸

𝜕𝑤

𝜕𝑛
Δ𝑤 d𝑠 = 0

since Δ2𝑤 ∈ P𝑚(𝐸). Then it follows that Δ𝑤 = 0, and since 𝑤 = 0 on the boundary
we deduce that 𝑤 ≡ 0 in 𝐸 .

5.2. Construction of a computable discrete bilinear form

Like we did in Section 3 we begin by defining, for 𝑘 ≥ 2, an operator ΠΔ
𝑘

:
𝑊𝑟 ,𝑠,𝑚(𝐸) −→ P𝑘(𝐸) ⊂ 𝑊𝑟 ,𝑠,𝑚(𝐸) defined as the solution of

𝑎𝐸(ΠΔ
𝑘𝜓, 𝑞) = 𝑎𝐸(𝜓, 𝑞) ∀𝜓 ∈ 𝑊𝑟 ,𝑠,𝑚(𝐸), ∀𝑞 ∈ P𝑘(𝐸)∫

𝜕𝐸

(ΠΔ
𝑘𝜓 − 𝜓) d𝑠 = 0,

∫
𝜕𝐸

∇(ΠΔ
𝑘𝜓 − 𝜓) d𝑠 = 0.

(5.7)

We note that for 𝑣 ∈ P𝑘(𝐸) the first equation in (5.7) implies (ΠΔ
𝑘
𝑣)/𝑖 𝑗 = 𝑣/𝑖 𝑗 for

𝑖, 𝑗 = 1, 2, that joined with the second equation gives easily

ΠΔ
𝑘 𝑣 = 𝑣 ∀𝑣 ∈ P𝑘(𝐸). (5.8)

Hence, ΠΔ
𝑘

is a projector operator onto P𝑘(𝐸). We also observe that ΠΔ
𝑘

is comput-
able from the degrees of freedom (𝐷0)-(𝐷3), as it can be easily seen upon integration
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by parts twice of the term 𝑎𝐸(𝜓, 𝑞). Choosing 𝑎𝐸
ℎ

(𝑣, 𝑤) = 𝑎𝐸(ΠΔ
𝑘
𝑣,ΠΔ

𝑘
𝑤) would

guarantee consistency, but not stability. Then, like we did in the previous section,
we add a stabilizing term, and set

𝑎𝐸ℎ (𝑣, 𝑤) := 𝑎𝐸(ΠΔ
𝑘 𝑣,Π

Δ
𝑘𝑤) + S𝐸((𝐼 − ΠΔ

𝑘 )𝑣, (𝐼 − ΠΔ
𝑘 )𝑤), (5.9)

where S𝐸 is any symmetric bilinear form to be chosen in such a way that it scales
like 𝑎𝐸(·, ·) and is positive on the kernel of ΠΔ

𝑘
, i.e., there exist two positive constant

𝑐1, 𝑐2 such that

𝑐1𝑎
𝐸(𝑣, 𝑣) ≤ S𝐸(𝑣, 𝑣) ≤ 𝑐2𝑎

𝐸(𝑣, 𝑣) ∀𝑣 such that ΠΔ
𝑘 𝑣 = 0.

Assuming, for example, that the degrees of freedom (5.6) are all scaled like the
vertex values, we can take

S𝐸(𝑣, 𝑤) := ℎ−2
𝐸

#dofs∑︁
𝑖=1

dof𝑖(𝑣) dof𝑖(𝑤). (5.10)

Lemma 5.2. The discrete bilinear form (5.9) is 𝑘-consistent and stable.

Proof. The proof goes exactly as that of Lemma 3.6, and we do not repeat it.

5.3. Construction of the right-hand side

In order to build an approximation of the term < 𝑓 , 𝑣 > in a simple and easy way
it is convenient to have internal degrees of freedom in 𝑊𝑟 ,𝑠,𝑚(𝐸), and this means,
according to (5.4), that 𝑘 ≥ 4 is needed. In (Brezzi and Marini 2013) suitable
choices were made for different values of 𝑘 , enough to guarantee the proper order
of convergence in 𝐻2. Here we report the choice made in (Chinosi and Marini
2016) which makes use once more of the enhancement trick of (Ahmad et al. 2013).
For that, we modify the definition (5.5). For 𝑘 ≥ 2, and 𝑟 and 𝑠 related to 𝑘 by
(5.4), let𝑊𝑘(𝐸) be the new local space, given by

𝑊𝑘(𝐸) := {𝑣 ∈ 𝐻2(𝐸) : 𝑣 |e ∈ P𝑟 (e), 𝑣𝑛 |e ∈ P𝑠(e) ∀e ⊂ 𝜕𝐸, Δ2𝑣 ∈ P𝑘−2(𝐸)}.

The degrees of freedom in𝑊𝑘(𝐸) would be (5.6), plus the moments of degree 𝑘 −3
and 𝑘−2, but for the construction of the operator ΠΔ

𝑘
only the dofs (5.6) are needed.

Once ΠΔ
𝑘

has been constructed, we copy its moments. More precisely, we define:

for 𝑘 = 2 𝑊2(𝐸) = {𝑣 ∈ 𝑊2(𝐸), and
∫
𝐸

𝑣 d𝐸 =

∫
𝐸

ΠΔ
2 𝑣 d𝐸}, (5.11)

for 𝑘 ≥ 3 𝑊𝑘(𝐸) = {𝑣 ∈ 𝑊𝑘(𝐸), and
∫
𝐸

𝑣𝑝𝛼 d𝐸 =

∫
𝐸

ΠΔ
𝑘 𝑣 𝑝𝛼 d𝐸,

𝑝𝛼 ∈ Phom
𝛼 , 𝛼 = 𝑘 − 3, 𝑘 − 2}.

(5.12)

It can be checked that the dofs (5.6) are the same, but the added conditions on the
moments allow now to compute the 𝐿2−projection of any 𝑣 ∈ 𝑊𝑘 onto P𝑘−2(𝐸),
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and not only onto P𝑘−4(𝐸) as before. Taking then, in each element, 𝑓ℎ as the
𝐿2−projection of 𝑓 onto the space of polynomials of degree 𝑘 − 2, i.e.,

𝑓ℎ |𝐸 = Π0
𝑘−2 𝑓 ∀𝐸 ∈ Tℎ,

we obtain

< 𝑓 , 𝑣 >𝐸 − < 𝑓ℎ, 𝑣 >𝐸=

∫
𝐸

( 𝑓 − Π0
𝑘−2 𝑓 )𝑣 d𝐸 ≤ 𝐶ℎ𝑘−1

𝐸 | 𝑓 |𝑘−1,𝐸 ∥𝑣∥2,𝐸 . (5.13)

We are now ready to write the discrete problem.

5.4. The global problem - Error estimates

Let Tℎ be a decomposition of Ω into polygons, satisfying the Assumptions 2.1. The
global space𝑊ℎ is defined as a patchwork of the spaces (5.11) or (5.12), depending
on the value of 𝑘:

𝑊ℎ := {𝑣 ∈ 𝐻2
0(Ω) : 𝑣 |𝐸 ∈ 𝑊𝑘(𝐸) ∀𝐸 ∈ Tℎ}. (5.14)

The global bilinear form and right-hand side are defined by summing over the
elements of Tℎ:

𝑎ℎ(𝑣ℎ, 𝑤ℎ) :=
∑︁
𝐸∈Tℎ

𝑎𝐸ℎ (𝑣ℎ, 𝑤ℎ), < 𝑓ℎ, 𝑣ℎ >:=
∑︁
𝐸∈Tℎ

(Π0
𝑘−2 𝑓 , 𝑣ℎ)0,𝐸 , (5.15)

and the discrete problem is

find 𝑤ℎ ∈ 𝑊ℎ such that 𝑎ℎ(𝑤ℎ, 𝑣ℎ) =< 𝑓ℎ, 𝑣ℎ > ∀𝑣ℎ ∈ 𝑊ℎ . (5.16)

We have the analog of Theorem 3.2.

Theorem 5.3. Under Assumptions 3.1 the discrete problem (5.16) has a unique
solution 𝑤ℎ. Moreover, for every approximation 𝑤𝐼 of 𝑤 in 𝑊ℎ and for every
approximation 𝑤𝜋 of 𝑤 that is piecewise in P𝑘 , we have

|𝑤 − 𝑤ℎ |2,Ω ≤ 𝐶
(
|𝑤 − 𝑤𝐼 |2,Ω + |𝑤 − 𝑤𝜋 |2,Tℎ

+ ∥ 𝑓 − 𝑓ℎ∥𝑊 ′
ℎ

)
, (5.17)

where 𝐶 is a constant independent of ℎ, ∥ · ∥2,Tℎ
is the broken 𝐻2-norm, and

∥ 𝑓 − 𝑓ℎ∥𝑊 ′
ℎ

:= sup
𝑣ℎ∈𝑊ℎ

< 𝑓 − 𝑓ℎ, 𝑣ℎ >

|𝑣ℎ |2,Ω
. (5.18)

Proof. Assumption 3.1 is satisfied thanks to Lemma 5.2. Following step by step
the proof of the abstract Theorem 3.2 the result (5.17) follows easily.

If 𝑤𝐼 is the interpolant of 𝑤 in 𝑊ℎ, defined through the degrees of freedom (5.6),
thanks to the Assumptions 2.1 on the mesh we have

∥𝑤 − 𝑤𝐼 ∥2,Ω ≤ 𝐶 ℎ𝑘−1∥𝑤∥𝑘+1,Ω. (5.19)

Similarly,
∥𝑤 − 𝑤𝜋 ∥2,Tℎ

≤ 𝐶 ℎ𝑘−1∥𝑤∥𝑘+1,Ω. (5.20)
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Finally the following convergence Theorem hold.

Theorem 5.4. Let 𝑤 be the solution of problem (5.3), and let 𝑤ℎ be the solution
of the discrete problem (5.16). The following holds true

for 𝑘 ≥ 2, ∥𝑤 − 𝑤ℎ∥2,Ω ≤ 𝐶 ℎ𝑘−1 |𝑤 |𝑘+1,Ω. (5.21)

Proof. Using (5.19), (5.20), and (5.13) in (5.17) the result (5.21) follows.

We conclude this section with a couple of remarks.

Remark 5.5. The lowest-order element of our family, corresponding to the choice
𝑟 = 3, 𝑠 = 1, 𝑚 = −2, can be seen as the extension to polygons of the finite
element composite triangle known as reduced Hsieh-Clough-Tocher element. On
a triangle they have the same degrees of freedom (𝑤, 𝑤/𝑥 , 𝑤/𝑦 at the vertices),
they both contain P2 and share the same order of accuracy, 𝑘 = 2. Similar
considerations apply to the next-to-the-lowest element of the family (corresponding
to 𝑟 = 3, 𝑠 = 2, 𝑚 = −1), that can be seen as the extension to polygons of the well
known finite element composite Hsieh-Clough-Tocher triangle. On a triangle,
the degrees of freedom are the same (𝑤, 𝑤/𝑥 , 𝑤/𝑦 at the vertices and 𝑤/𝑛 at the
midpoints of the edges), P3 is included in the local spaces, and thus the order of
precision is 𝑘 = 3 for both.

6. 𝐻(div), 𝐻(rot), and 𝐻(curl)-conforming approximations
In a number of applicative problems, like for instance electromagnetism or diffusion
problems in mixed form, spaces like 𝐿2, 𝐻1 or 𝐻2 cannot be used alone. They
must be suitably coupled with other functional spaces, like 𝐻(div), 𝐻(rot), and
𝐻(curl). In the present section we will show how to design VEM-discretizations
of such spaces.

Virtual Element spaces of 𝐻(div) type were initially introduced in (Brezzi, Falk
and Marini 2014) and later improved in (Beirão da Veiga, Brezzi, Marini and Russo
2016b). Within the large literature involved in the application of such spaces to
advanced diffusion problems we here mention (Benedetto, Borio and Scialò 2017,
Benedetto, Borio, Kyburg, Mollica and Scialò 2022).

Afterwards, 𝐻(div) and 𝐻(curl) VEM spaces in two and three dimensions were
introduced in (Beirão da Veiga, Brezzi, Marini and Russo 2016a) and then improved
in a series of papers (Beirão da Veiga, Brezzi, Dassi, Marini and Russo 2017a,
2018b,a), also dealing with the magneto-static equations as a model problem.
Among the papers dealing with the application and extension of such spaces for
more advanced problems we here mention (Dassi, Di Barba and Russo 2020a),
(Beirão da Veiga, Dassi, Manzini and Mascotto 2022b,a) and (Cao, Chen, Guo and
Lin 2022b, Cao, Chen and Guo 2022a).

Let us begin by introducing some further notation and definitions which will be
useful in the sequel.
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6.1. Polynomial spaces and exact sequences

In the following we will denote by 𝑖 the mapping that to every real number 𝑐
associates the constant function (zero-degree polynomial) identically equal to 𝑐,
and by 𝑜 the mapping that to every function (polynomial) associates the number 0.

Then we recall that we have the exactness of the following sequences:

• In dimension two:

R
𝑖−−−−−→ P𝑟

grad
−−−−−→ [P𝑟−1]2 rot−−−−−→ P𝑟−2

𝑜−−−−−→ R (6.1)

or equivalently:

R
𝑖−−−−−→ P𝑟

rot−−−−−→ [P𝑟−1]2 div−−−−−→ P𝑟−2
𝑜−−−−−→ R (6.2)

are exact sequences.
• In dimension three:

R
𝑖−−−−−→ P𝑟

grad
−−−−−→ [P𝑟−1]3 curl−−−−−→ [P𝑟−2]3 div−−−−−→ P𝑟−3

𝑜−−−−−→ R
(6.3)

is an exact sequence.

We recall that exact means that the image of every operator coincides with the
kernel of the following one. To better explain the consequences of these statements
we introduce some additional notation. Given an integer 𝑠, we define the following
polynomial spaces:

• in dimension two:

G𝑠 := grad(P𝑠+1) ⊆ [P𝑠]2, R𝑠 := rot(P𝑠+1) ⊆ [P𝑠]2, (6.4)

• in dimension three:

G𝑠 := grad(P𝑠+1) ⊆ [P𝑠]3, R𝑠 := curl([P𝑠+1]3) ⊆ [P𝑠]3. (6.5)

We then set:
Gc
𝑠 := a complement of G𝑠 in [P𝑠]𝑑

Rc
𝑠 := a complement of R𝑠 in [P𝑠]𝑑 .

(6.6)

In the original paper (Beirão da Veiga et al. 2016a) we chose Gc
𝑠 and Rc

𝑠 as the
𝐿2-orthogonal complements of G𝑠 and R𝑠, respectively. A more modern choice,
described in (Beirão da Veiga et al. 2018a), is the following:

• in two dimensions:

Gc
𝑠 := {𝒙⊥P𝑠−1}, Rc

𝑠 := {𝒙P𝑠−1}, (6.7)

• in three dimensions:

Gc
𝑠 := {𝒙 ∧ [P𝑠−1]3}, Rc

𝑠 := {𝒙P𝑠−1}. (6.8)
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The choices (6.7), (6.8) are much easier to handle from the computational point of
view. Finally, we recall (see (2.1)) that P0

𝑠 are the polynomials of P𝑠 having zero
mean value.

The following properties are consequences of the exact sequences above.

• In two dimensions: (6.1) implies that for all integer 𝑠:

(i) grad is an isomorphism from P0
𝑠 to G𝑠−1

(ii) 𝒗 ∈ [P𝑠]2 =⇒ rot 𝒗 = 0 if and only if 𝒗 ∈ G𝑠
(iii) rot is an isomorphism from Gc

𝑠 to the whole P𝑠−1,

(6.9)

and equivalently (6.2) implies that

(i) rot is an isomorphism from P0
𝑠 to R𝑠−1

(ii) 𝒗 ∈ [P𝑠]2 =⇒ div 𝒗 = 0 if and only if 𝒗 ∈ R𝑠

(iii) div is an isomorphism from Rc
𝑠 to the whole P𝑠−1.

(6.10)

• In three dimensions: (6.3) implies that

(i) 𝒗 ∈ [P𝑠]3 =⇒ curl 𝒗 = 0 if and only if 𝒗 ∈ G𝑠
(ii) 𝒗 ∈ [P𝑠]3 =⇒ div 𝒗 = 0 if and only if 𝒗 ∈ R𝑠

(iii) grad is an isomorphism from P0
𝑠 to G𝑠−1

(iv) curl is an isomorphism from Gc
𝑠 to R𝑠−1

(v) div is an isomorphism from Rc
𝑠 to the whole P𝑠−1.

(6.11)

Properties (ii) of (6.9) and (ii) of (6.10), as well as properties (i) and (ii) of (6.11),
are just particular cases of well known results in Calculus.

From the definitions above (see also (Beirão da Veiga et al. 2016a)), we can
easily deduce that

• in two dimensions:

dimG𝑘 = dimR𝑘 = 𝜋𝑘+1,2 − 1, dimGc
𝑘 = dimRc

𝑘 = 𝜋𝑘−1,2 (6.12)

• in three dimensions:
dimG𝑘 = 𝜋𝑘+1,3 − 1, dimR𝑘 = 3 𝜋𝑘+1,3 − 𝜋𝑘+2,3 + 1,
dimGc

𝑘 = dimR𝑘−1 = 3 𝜋𝑘,3 − 𝜋𝑘+1,3 + 1, dimRc
𝑘 = 𝜋𝑘−1,3

(6.13)

For the sake of clarity we define 𝛾𝑘,𝑑 := dimG𝑘 and 𝜚𝑘,𝑑 := dimR𝑘 .

6.2. Spaces 𝐻(div), 𝐻(rot), and 𝐻(curl)

The elements of our local Virtual Element spaces will be the solutions, within each
element, of suitable div-curl systems. In view of that, it will be convenient to recall
the compatibility conditions (between the data inside the element and those at the
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boundary) that are required in order to have a solution. We recall the spaces defined
in (2.4), for a polygon 𝐸

𝐻(div; 𝐸) := {𝒗 ∈ [𝐿2(𝐸)]2 such that div 𝒗 ∈ 𝐿2(𝐸)}, (6.14)
𝐻(rot; 𝐸) := {𝒗 ∈ [𝐿2(𝐸)]2 such that rot 𝒗 ∈ 𝐿2(𝐸)}, (6.15)

and for a polyhedron 𝑃

𝐻(div; 𝑃) := {𝒗 ∈ [𝐿2(𝑃)]3 such that div 𝒗 ∈ 𝐿2(𝑃)}, (6.16)
𝐻(curl; 𝑃) := {𝒗 ∈ [𝐿2(𝑃)]3 such that curl 𝒗 ∈ [𝐿2(𝑃)]3}. (6.17)

We now assume that we are given, on a simply connected polygon 𝐸 , two smooth
functions 𝑓𝑑 and 𝑓𝑟 , and, on the boundary 𝜕𝐸 , two edge-wise smooth functions 𝑔𝑛
and 𝑔𝑡 . We recall that the problem:

find 𝒗 ∈ 𝐻(div; 𝐸) ∩ 𝐻(rot; 𝐸) such that:
div 𝒗 = 𝑓𝑑 , rot 𝒗 = 𝑓𝑟 in 𝐸
𝒗 · 𝒏 = 𝑔𝑛 on 𝜕𝐸

(6.18)

has a unique solution if and only if∫
𝐸

div 𝒗 d𝐸 =

∫
𝜕𝐸

𝑔𝑛 d𝑠. (6.19)

Similarly the problem:
find 𝒗 ∈ 𝐻(div; 𝐸) ∩ 𝐻(rot; 𝐸) such that:
div 𝒗 = 𝑓𝑑 , rot 𝒗 = 𝑓𝑟 in 𝐸
𝒗 · 𝒕 = 𝑔𝑡 on 𝜕𝐸

(6.20)

has a unique solution if and only if∫
𝐸

rot 𝒗 d𝐸 =

∫
𝜕𝐸

𝑔𝑡 d𝑠. (6.21)

In three dimensions, on a simply connected polyhedron 𝑃 we assume that we are
given a smooth scalar function 𝑓𝑑 and a smooth vector valued function 𝒇𝑟 with
div 𝒇𝑟 = 0. On the boundary 𝜕𝑃 we assume that we are given a face-wise smooth
scalar function 𝑔𝑛 and a face-wise smooth tangent vector field 𝒈𝑡 whose tangential
components are continuous at the edges of 𝜕𝑃. Then we recall that the problem

find 𝒗 ∈ 𝐻(div; 𝑃) ∩ 𝐻(curl; 𝑃) such that:
div 𝒗 = 𝑓𝑑 , curl 𝒗 = 𝒇𝑟 in 𝑃
𝒗 · 𝒏 = 𝑔𝑛 on 𝜕𝑃

(6.22)

has a unique solution if and only if∫
𝑃

div 𝒗 d𝑃 =

∫
𝜕𝑃

𝑔𝑛 d𝑠, (6.23)
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and similarly the problem:
find 𝒗 ∈ 𝐻(div; 𝑃) ∩ 𝐻(curl; 𝑃) such that:
div 𝒗 = 𝑓𝑑 , curl 𝒗 = 𝒇𝑟 in 𝑃
𝒗𝑡 = 𝒈𝑡 on 𝜕𝑃

(6.24)

has a unique solution if and only if

𝒇𝑟 · 𝒏 = rot2 𝒈𝑡 on 𝜕𝑃. (6.25)

For more details concerning the solutions of the div-curl system we refer, for
instance, to Auchmuty and Alexander (2001, 2005) and the references therein.

6.3. Two-dimensional face elements

These spaces are the same of Brezzi et al. (2014), although here we propose a
different set of degrees of freedom.

On a polygon 𝐸 , for 𝑘 integer ≥ 1, we set:

𝑉 face
2,𝑘 (𝐸) := {𝒗 ∈ 𝐻(div; 𝐸) ∩ 𝐻(rot; 𝐸) such that:

𝒗 · 𝒏 |e ∈ P𝑘(e) for each edge e of 𝐸,
div 𝒗 ∈ P𝑘−1(𝐸), and rot 𝒗 ∈ P𝑘−1(𝐸)}.

(6.26)

We recall from Subsection 6.2 that, given:

• a function 𝑔 defined on 𝜕𝐸 such that 𝑔 |e ∈ P𝑘(e) for all e ∈ 𝜕𝐸 ,

• a polynomial 𝑓𝑑 ∈ P𝑘−1(𝐸) such that∫
𝐸

𝑓𝑑 d𝐸 =

∫
𝜕𝐸

𝑔 d𝑠, (6.27)

• a polynomial 𝑓𝑟 ∈ P𝑘−1(𝐸),

we can find a unique vector 𝒗 ∈ 𝑉 face
2,𝑘 (𝐸) such that

𝒗 · 𝒏 = 𝑔 on 𝜕𝐸, div 𝒗 = 𝑓𝑑 in 𝐸, rot 𝒗 = 𝑓𝑟 in 𝐸. (6.28)

The dimension of 𝑉 face
2,𝑘 (𝐸) is given by:

dim𝑉 face
2,𝑘 (𝐸) = 𝑁e dimP𝑘(e) + (dimP𝑘−1(𝐸) − 1) + dimP𝑘−1(𝐸)

= 𝑁e𝜋𝑘,1 + 𝜋𝑘−1,2 − 1 + 𝜋𝑘−1,2

= 𝑁e𝜋𝑘,1 + 2𝜋𝑘−1,2 − 1.
(6.29)
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A convenient set of degrees of freedom for functions 𝒗 in 𝑉 face
2,𝑘 (𝐸) will be:

(𝐷1) :
∫

e
𝒗 · 𝒏 𝑝𝑘 de for all edges e, for all 𝑝𝑘 ∈ P𝑘(e),

(𝐷2) :
∫
𝐸

𝒗 · 𝒈𝑘−2 d𝐸 for all 𝒈𝑘−2 ∈ G𝑘−2,

(𝐷3) :
∫
𝐸

𝒗 · 𝒈c
𝑘 d𝐸 for all 𝒈c

𝑘 ∈ Gc
𝑘 .

(6.30)

Recalling (6.12) we easily see that the number of degrees of freedom (6.30) equals
the dimension of 𝑉 face

2,𝑘 (𝐸) as given in (6.29).

Theorem 6.1. The degrees of freedom (6.30) are unisolvent for 𝑉 face
2,𝑘 (𝐸).

Proof. Since the number of degrees of freedom (6.30) equals the dimension of
𝑉 face

2,𝑘 (𝐸), to prove unisolvence we just need to show that if for a given 𝒗 in 𝑉 face
2,𝑘 (𝐸)

all the degrees of freedom (6.30) are zero, that is if∫
e
𝒗 · 𝒏 𝑝𝑘 de = 0 for all edges e, for all 𝑝𝑘 ∈ P𝑘(e), (6.31)∫

𝐸

𝒗 · 𝒈𝑘−2 d𝐸 = 0 for all 𝒈𝑘−2 ∈ G𝑘−2, (6.32)∫
𝐸

𝒗 · 𝒈c
𝑘 d𝐸 = 0 for all 𝒈c

𝑘 ∈ Gc
𝑘 , (6.33)

then we must have 𝒗 = 0. Assume that for a certain 𝒗 ∈ 𝑉 face
2,𝑘 (𝐸) we have (6.31)–

(6.33). Since 𝒗 · 𝒏 |e ∈ P𝑘(e) ∀e, (6.31) imply that 𝒗 · 𝒏 ≡ 0 on 𝜕𝐸 . Using the fact
that div 𝒗 ∈ P𝑘−1 and setting 𝑞𝑘−1 := div 𝒗 we have from (6.32)∫

𝐸

| div 𝒗 |2 d𝐸 =

∫
𝐸

div 𝒗 𝑞𝑘−1 d𝐸

=

∫
𝜕𝐸

𝒗 · 𝒏𝑞𝑘−1 d𝑠 −
∫
𝐸

𝒗 · grad 𝑞𝑘−1 d𝐸 = 0. (6.34)

Hence we have that div 𝒗 = 0 which, together with 𝒗 · 𝒏 ≡ 0 on 𝜕𝐸 , gives∫
𝐸

𝒗 · grad 𝜑 d𝐸 = 0 for all 𝜑 ∈ 𝐻1(𝐸) (6.35)

after an integration by parts. According to the definition of (6.26), rot 𝒗 ∈ P𝑘−1.
Looking at (6.9; (iii)) we have then that rot 𝒗 = rot 𝒒c

𝑘
for some 𝒒c

𝑘
∈ Gc

𝑘
. Now the

difference 𝒗 − 𝒒c
𝑘

satisfies rot(𝒗 − 𝒒c
𝑘
) = 0, and as 𝐸 is simply connected, it follows

that 𝒗 = 𝒒c
𝑘
+ grad 𝜑 for some 𝒒c

𝑘
∈ Gc

𝑘
and some 𝜑 ∈ 𝐻1(𝐸). Then∫

𝐸

|𝒗 |2 d𝐸 =

∫
𝐸

𝒗 · (𝒒c
𝑘 + grad 𝜑) d𝐸 = 0 (6.36)

since the first term is zero by (6.33) and the second term is zero by (6.35).
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Remark 6.2. The degrees of freedom (𝐷1) in (6.30) are pretty obvious. A natural
variant would be to use, on each edge e, the values of 𝒗 · 𝒏 at 𝑘 + 1 suitable points
on e. Moreover, the degrees of freedom (𝐷2) in (6.30) could be replaced, after
integration by parts, by∫

𝐸

div 𝒗 𝑞𝑘−1 d𝐸 for all 𝑞𝑘−1 ∈ P0
𝑘−1. (6.37)

Finally, the degrees of freedom (𝐷3) in (6.30) could be replaced by∫
𝐸

rot 𝒗 𝑞𝑘−1 d𝐸 for all 𝑞𝑘−1 ∈ P𝑘−1 (6.38)

as we had in the original work Brezzi et al. (2014).

Computing the 𝐿2 projection

As already said, the virtual functions are not explicitly known inside the elements,
and their reconstruction is not straightforward. Hence, we use suitable projections
onto polynomials. Here we show how to construct the 𝐿2 projection onto [P𝑘(𝐸)]2,
which is possibly the most convenient, and surely the most commonly used. We
point out that, thanks to the definition of the space 𝑉 face

2,𝑘 (𝐸), and to the degrees of
freedom (𝐷3) in (6.30), the enhancement trick is not necessary here. Indeed, using
the same integration by parts applied in (6.34), the degrees of freedom (𝐷1) and
(𝐷2) in (6.30) allow us to compute

∫
𝐸

div 𝒗 𝑞𝑘−1 d𝐸 for all 𝑞𝑘−1 ∈ P𝑘−1(𝐸), and
since div 𝒗 ∈ P𝑘−1(𝐸), we can compute exactly the divergence of any 𝒗 ∈ 𝑉 face

2,𝑘 (𝐸).
In turn this implies, again by using an integration by parts and (𝐷1) in (6.30), that
we are able to compute also ∫

𝐸

𝒗 · 𝒈𝑘 d𝐸 ∀𝒈𝑘 ∈ G𝑘 , (6.39)

and actually ∫
𝐸

𝒗 · grad 𝜑 d𝐸 ∀𝜑 polynomial on 𝐸. (6.40)

The above property, combined with (𝐷3) in (6.30), allows to compute the integrals
against any 𝒒𝑘 ∈ [P𝑘(𝐸)]2 and thus yields the following important result:

Theorem 6.3. The 𝐿2(𝐸) projection operator

Π0
𝑘 : 𝑉 face

2,𝑘 (𝐸) −→ [P𝑘(𝐸)]2 (6.41)

is computable using the degrees of freedom (6.30).

The global two-dimensional face space

Given a polygonal domain Ω and a decomposition Tℎ of Ω into a finite number of
polygonal elements 𝐸 , we can now consider the global space

𝑉 face
2,𝑘 (Ω) := {𝒗 ∈ 𝐻(div;Ω) such that 𝒗 |𝐸 ∈ 𝑉 face

2,𝑘 (𝐸) ∀ element 𝐸 ∈ Tℎ}. (6.42)
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Note that in (6.42) we assumed that the elements 𝒗 of 𝑉 face
2,𝑘 (Ω) have a divergence

that is globally (and not just element-wise) in 𝐿2(Ω). Hence the normal component
of vectors 𝒗 ∈ 𝑉 face

2,𝑘 (Ω) will have to be “continuous” (with obvious meaning) at the
inter-element edges. The global degrees of freedom are the natural extension of
the local degrees of freedom (6.30). It follows immediately that the dimension of
𝑉 face

2,𝑘 (Ω) is given by

dim(𝑉 face
2,𝑘 (Ω)) = 𝜋𝑘,1 × {number of edges in Tℎ}+

(2𝜋𝑘−1,2 − 1) × {number of elements in Tℎ}.

6.4. Two-dimensional Edge Elements

The edge elements in 2D correspond exactly to the face elements, just rotating
everything by 𝜋/2. For the sake of completeness we just recall the definition of the
spaces and the corresponding degrees of freedom.

On a polygon 𝐸 we set

𝑉
edge
2,𝑘 (𝐸) := {𝒗 ∈ 𝐻(div; 𝐸) ∩ 𝐻(rot; 𝐸) such that:

𝒗 · 𝒕 |𝑒 ∈ P𝑘(e) for each edge e of 𝐸,
rot 𝒗 ∈ P𝑘−1(𝐸), and div 𝒗 ∈ P𝑘−1(𝐸)}.

(6.43)

A convenient set of degrees of freedom for elements 𝒗 ∈ 𝑉edge
2,𝑘 (𝐸) is:

(𝐷1) :
∫

e
𝒗 · 𝒕 𝑝𝑘 de for all edges e, for all 𝑝𝑘 ∈ P𝑘(e),

(𝐷2) :
∫
𝐸

𝒗 · 𝒓𝑘−2 d𝐸 for all 𝒓𝑘−2 ∈ R𝑘−2

(𝐷3) :
∫
𝐸

𝒗 · 𝒓c
𝑘 d𝐸 for all 𝒓c

𝑘 ∈ Rc
𝑘 .

(6.44)

Remark 6.4. Here too we could use alternative degrees of freedom, in analogy
with those discussed in Remark 6.2. In particular we point out that we can identify
uniquely an element 𝒗 of 𝑉edge

2,𝑘 (𝐸) by prescribing its tangential component 𝒗 · 𝒕 (in
P𝑘(e)) on every edge, its rotation rot 𝒗 (in P0

𝑘−1(𝐸)), and its divergence div 𝒗 (in
P𝑘−1(𝐸)).

Remark 6.5. Obviously, here too we can define the 𝐿2−projection onto P𝑘 , ex-
actly as we did before, with Rc

𝑘
taking the role of Gc

𝑘
.

Given a polygonal domain Ω and a decomposition Tℎ of Ω into a finite number of
polygonal elements 𝐸 , we can now consider the global space

𝑉
edge
2,𝑘 (Ω) := {𝒗 ∈ 𝐻(rot;Ω) such that 𝒗 |𝐸 ∈ 𝑉edge

2,𝑘 (𝐸) ∀ element 𝐸 ∈ Tℎ}. (6.45)
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Note that the tangential component of vectors 𝒗 ∈ 𝑉edge
2,𝑘 (Ω) will have to be “continu-

ous” (with obvious meaning) at the inter-element edges. The degrees of freedom
for 𝒗 ∈ 𝑉edge

2,𝑘 (Ω) are the obvious extension of the local degrees of freedom (6.44),
and the dimension of 𝑉edge

2,𝑘 (Ω) is

dim(𝑉edge
2,𝑘 (Ω)) = 𝜋𝑘,1 × {number of edges in Tℎ}+

(2𝜋𝑘−1,2 − 1) × {number of elements in Tℎ}.

6.5. Three-dimensional Face Elements

The three-dimensional 𝐻(div)-conforming spaces follow in a very natural way the
path of their two-dimensional companions.

On a polyhedron 𝑃 we set

𝑉 face
3,𝑘 (𝑃) := {𝒗 ∈ 𝐻(div; 𝑃) ∩ 𝐻(curl; 𝑃) such that:

𝒗 · 𝒏f
𝑃 ∈ P𝑘(f) for all faces f of 𝑃,

div 𝒗 ∈ P𝑘−1(𝑃), and curl 𝒗 ∈ R𝑘−1(𝑃)}.
(6.46)

The dimension of 𝑉 face
3,𝑘 (𝑃) is given by:

dim(𝑉 face
3,𝑘 (𝑃)) = 𝑁f 𝜋𝑘,2+dimG𝑘−2+dimR𝑘−1 = 𝑁f 𝜋𝑘,2+𝛾𝑘−2,3+ 𝜚𝑘−1,3. (6.47)

The local degrees of freedom will be:

(𝐷1) :
∫

f
𝒗 · 𝒏f

𝑃 𝑝𝑘 df for all faces f, for all 𝑝𝑘 ∈ P𝑘(f),

(𝐷2) :
∫
𝑃

𝒗 · 𝒈𝑘−2 d𝑃 for all 𝒈𝑘−2 ∈ G𝑘−2,

(𝐷3) :
∫
𝑃

𝒗 · 𝒈c
𝑘 d𝑃 for all 𝒈c

𝑘 ∈ Gc
𝑘 .

(6.48)

It is not difficult to check that the number of the above degrees of freedom is given
by

𝑁f 𝜋𝑘,2 + dimG𝑘−2 + dimGc
𝑘 (6.49)

which equals the dimension of 𝑉 face
3,𝑘 (𝑃) as given in (6.47).

Lemma 6.6. The degrees of freedom (6.48) are unisolvent for the space𝑉 face
3,𝑘 (𝑃).

Proof. The proof follows the same steps as in the two-dimensional case and is
therefore omitted.

Remark 6.7. We note that also in the three dimensional case there are alternative
choices of degrees of freedom, similarly as in Remark 6.2.

Remark 6.8. Obviously, here too we can compute the 𝐿2−projection onto P𝑘 ,
exactly as we did before (see Theorem 6.3).
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The global three-dimensional-face space

Having now a polyhedral domain Ω and a decomposition Tℎ of Ω into a finite
number of polyhedrons 𝑃, we can consider the global space:

𝑉 face
3,𝑘 (Ω) := {𝒗 ∈ 𝐻(div;Ω) such that 𝒗 |𝑃 ∈ 𝑉 face

3,𝑘 (𝑃) ∀ elements 𝑃 ∈ Tℎ}. (6.50)

As we did for the 2D case, we note that the normal component of the elements of
𝑉 face

3,𝑘 (Ω) will be “continuous” at the inter-element face. The degrees of freedom
for the global space 𝑉 face

3,𝑘 (Ω) are the obvious extension of the local ones already
described, and the dimension of 𝑉 face

3,𝑘 (Ω) is

dim(𝑉 face
3,𝑘 (Ω)) = 𝜋𝑘,2 × {number of faces in Tℎ}+

(𝛾𝑘−2,3 + 𝜚𝑘−1,3) × {number of elements in Tℎ}.

6.6. Three-dimensional Edge Elements

We begin by introducing some additional notation that will be useful in the sequel.
For a smooth three-dimensional field 𝝋 on 𝑃, and for a face f with normal 𝒏f

𝑃
, we

define the tangential component of 𝝋 as

𝝋f := 𝝋 − (𝝋 · 𝒏f
𝑃) 𝒏f

𝑃, (6.51)

while 𝝋𝒕 denotes the vector field defined on the boundary of 𝑃 whose restriction on
each face f is 𝝋f. Note that 𝝋f as defined in (6.51) is different from 𝝋∧ 𝒏f

𝑃
; indeed,

if for instance 𝒏f
𝑃
= (0, 0, 1) and 𝝋 = (𝜑1, 𝜑2, 𝜑3) then

𝝋f = (𝜑1, 𝜑2, 0) while 𝝋 ∧ 𝒏f
𝑃 = (𝜑2,−𝜑1, 0). (6.52)

Both fields 𝝋f and 𝝋 ∧ 𝒏f
𝑃

can be considered as two-dimensional vectors in the
plane of the face f.

We introduce moreover the following space.

Definition 6.9. We define the boundary spaceB(𝜕𝑃) as the space of 𝒗 in [𝐿2(𝜕𝑃)]3

such that 𝒗f ∈ 𝐻(div; f)∩𝐻(rot; f) on each face f of 𝑃, and such that on each edge e
(common to the faces f1 and f2), 𝒗f1 · 𝒕e and 𝒗f2 · 𝒕e (where 𝒕e is a unit tangential vector
to e) coincide. Then we define B𝑡 (𝜕𝑃) as the space of the tangential components
of the elements of B(𝜕𝑃).

Definition 6.10. We now define the boundary VEM space 𝐵edge
𝑘

(𝜕𝑃) as

𝐵
edge
𝑘

(𝜕𝑃) =
{
𝒗 ∈ B𝑡 (𝜕𝑃) such that 𝒗f ∈ 𝑉edge

2,𝑘 (f) on each face f ∈ 𝜕𝑃
}
. (6.53)

Recalling the previous discussion about the two-dimensional virtual elements
𝑉

edge
2,𝑘 (f), we can easily see that for a polyhedron with 𝑁e edges and 𝑁f faces

the dimension 𝛽𝑘 of 𝐵edge
𝑘

(𝜕𝑃) is given by

𝛽𝑘 = 𝑁e 𝜋𝑘,1 + 𝑁f (2𝜋𝑘−1,2 − 1). (6.54)
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The local spaces

On a polyhedron 𝑃 we set

𝑉
edge
3,𝑘 (𝑃) := {𝒗 | 𝒗𝑡 ∈ 𝐵edge

𝑘
(𝜕𝑃),

div 𝒗 ∈ P𝑘−1(𝑃), and curl curl 𝒗 ∈ R𝑘−2(𝑃)}. (6.55)

In order to compute the dimension of the space𝑉edge
3,𝑘 (𝑃) we first observe that, given

a vector 𝒈 in 𝐵edge
𝑘

(𝜕𝑃), a function f𝑑 in P𝑘−1, and a vector 𝒇𝑟 ∈ R𝑘−2(𝑃) we can
find a unique 𝒗 in 𝑉edge

3,𝑘 (𝑃) such that

𝒗𝒕 = 𝒈 on 𝜕𝑃, div 𝒗 = 𝑓𝑑 in 𝑃, and curl curl 𝒗 = 𝒇𝑟 in 𝑃. (6.56)

To prove it we consider the following auxiliary problems. The first is: find 𝑯 in
𝐻(div; 𝑃) ∩ 𝐻(curl; 𝑃) such that

curl 𝑯 = 𝒇 𝑟 in 𝑃, div 𝑯 = 0 in 𝑃, and 𝑯 · 𝒏 = rot2 𝒈 on 𝜕𝑃, (6.57)

that is uniquely solvable since ∫
𝜕𝑃

rot2 𝒈 d𝑆 = 0. (6.58)

The second is: find 𝝍 in 𝐻(div; 𝑃) ∩ 𝐻(curl; 𝑃) such that

curl𝝍 = 𝑯 in 𝑃, div𝝍 = 0 in 𝑃, and 𝝍𝑡 = 𝒈 on 𝜕𝑃, (6.59)

that is also uniquely solvable since

𝑯 · 𝒏 = rot2 𝒈. (6.60)

The third problem is: find 𝜑 ∈ 𝐻1
0(𝑃) such that:

Δ𝜑 = 𝑓𝑑 in 𝑃, (6.61)

that also has a unique solution. Then it is not difficult to see that the choice

𝒗 := 𝝍 + grad 𝜑 (6.62)

solves our problem. Indeed, it is clear that (grad 𝝋)𝒕 = 0, that div(grad 𝝋) = 𝑓𝑑
and that curl curl(grad 𝝋) = 0; all these, added to (6.57) and (6.59), produce the
right conditions. It is also clear that the solution 𝒗 of (6.56) is unique.

Hence we can conclude that the dimension of 𝑉edge
3,𝑘 (𝑃) is given by

dim𝑉
edge
3,𝑘 (𝑃) = 𝛽𝑘 + 𝜋𝑘−1,3 + 𝜚𝑘−2,3 (6.63)

where 𝛽𝑘 = dim 𝐵
edge
𝑘

(𝜕𝑃) is defined in (6.54).
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The local Degrees of Freedom

A possible set of degrees of freedom for the space 𝑉edge
3,𝑘 (𝑃) are the following:

• for every edge e:

(𝐷1) :
∫

e
𝒗 · 𝒕 𝑝𝑘 de for all 𝑝𝑘 ∈ P𝑘(e),

• for every face f:

(𝐷2) :
∫
𝑓

𝒗 · 𝒓c
𝑘 df for all 𝒓c

𝑘 ∈ Rc
𝑘(f),

(𝐷3) :
∫
𝑓

𝒗 · 𝒓𝑘−2 df for all 𝒓𝑘−2 ∈ R𝑘−2(f),

• and inside 𝑃:

(𝐷4) :
∫
𝑃

𝒗 · 𝒓c
𝑘 d𝑃 for all 𝒓c

𝑘 ∈ Rc
𝑘 ,

(𝐷5) :
∫
𝑃

𝒗 · 𝒓𝑘−2 d𝑃 for all 𝒓𝑘−2 ∈ R𝑘−2.



(6.64)

The total number of degrees of freedom (6.64) is clearly equal to 𝛽𝑘 as given in
(6.54) and the number of degrees of freedom (𝐷5) is equal to 𝜚𝑘−2,3. On the other
hand, using [6.11;v)] we see that the number of degrees of freedom (𝐷4) is equal to
𝜋𝑘−1,3, so that the total number of degrees of freedom (6.64) equals the dimension
of 𝑉edge

3,𝑘 (𝑃) as computed in (6.63).

Lemma 6.11. The degrees of freedom (6.64) are unisolvent for the space𝑉edge
3,𝑘 (𝑃).

Proof. Having seen that the number of degrees of freedom (6.64) equals the
dimension of 𝑉edge

3,𝑘 (𝑃), in order to see their unisolvence we only need to check that
a vector 𝒗 ∈ 𝑉edge

3,𝑘 (𝑃) that satisfies∫
e
𝒗 · 𝒕 𝑝𝑘 de = 0 ∀ edge e of 𝑃 and ∀ 𝑝𝑘 ∈ P𝑘(e), (6.65)∫
𝑓

𝒗 · 𝒓c
𝑘 df = 0 ∀ face f of 𝑃 and ∀ 𝒓c

𝑘 ∈ Rc
𝑘(f), (6.66)∫

𝑓

𝒗 · 𝒓𝑘−2 df = 0 ∀ face f of 𝑃 and ∀ 𝒓𝑘−2 ∈ R𝑘−2(f), (6.67)∫
𝑃

𝒗 · 𝒓c
𝑘 d𝑃 = 0 ∀ 𝒓c

𝑘 ∈ Rc
𝑘(𝑃), (6.68)∫

𝑃

𝒗 · 𝒓𝑘−2 d𝑃 = 0 ∀ 𝒓𝑘−2 ∈ R𝑘−2(𝑃), (6.69)

is necessarily equal to zero.
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Actually, recalling the results of Section 6.4, it is pretty obvious that (6.65)-(6.67)
imply that 𝒗𝒕 = 0 on 𝜕𝑃. Moreover, since curl curl 𝒗 ∈ R𝑘−2(𝑃), we are allowed to
take 𝒓𝑘−2 = curl curl 𝒗 as a test function in (6.69). An integration by parts (using
𝒗𝒕 = 0) gives

0 =

∫
𝑃

𝒗 · curl curl 𝒗 d𝑃 =

∫
𝑃

(curl 𝒗) · (curl 𝒗) d𝑃 (6.70)

and therefore we get curl 𝒗 = 0. Using this, and again 𝒗𝒕 = 0, we easily check,
integrating by parts, that∫

𝑃

𝒗 · curl 𝝋 d𝑃 = 0 ∀𝝋 ∈ 𝐻(curl; 𝑃). (6.71)

Now we recall that from the definition (6.55) of 𝑉edge
3,𝑘 (𝑃) we have that div 𝒗 is

in P𝑘−1. From (6.11); v) we then deduce that there exists a 𝒒c
𝑘

∈ Rc
𝑘

with
div 𝒒c

𝑘
= div 𝒗, so that the divergence of 𝒗 − 𝒒c

𝑘
is zero, and then (since 𝑃 is simply

connected)
𝒗 − 𝒒c

𝑘 = curl 𝝋 (6.72)

for some 𝝋 ∈ 𝐻(curl; 𝑃). At this point we can use (6.71) and (6.72) to conclude as
in (6.36)∫

𝑃

|𝒗 |2 d𝑃 =

∫
𝑃

𝒗 · (𝒒c
𝑘 + curl 𝝋) d𝑃 =

∫
𝑃

𝒗 · 𝒒c
𝑘 d𝑃 +

∫
𝑃

𝒗 · curl 𝝋 d𝑃 = 0.

Remark 6.12. As we did in the previous cases, we observe that the degrees of
freedom (6.64) are not the only possible choice. To start with, we can change the
degrees of freedom in each face, according to Remark 6.2. Moreover, in the spirit
of (6.56) we could assign, instead of (𝐷4) and/or (𝐷5) in (6.64), curl curl 𝒗 in
R𝑘−2(𝑃) and/or div 𝒗 in P𝑘−1(𝑃), respectively.

The global three-dimensional-edge space is defined as

𝑉
edge
3,𝑘 (Ω) := {𝒗 ∈ 𝐻(curl;Ω) s. t. 𝒗 |𝑃 ∈ 𝑉edge

3,𝑘 (𝑃) ∀ element 𝑃 ∈ Tℎ}. (6.73)

and the degrees of freedom are the natural extension of the local ones defined in
(6.64). The dimension of 𝑉edge

3,𝑘 (Ω) is

dim(𝑉edge
3,𝑘 (Ω)) = 𝜋𝑘,1 × {number of edges in Tℎ}

+ (2𝜋𝑘−1,2 − 1) × {number of faces in Tℎ}
+ (𝜋𝑘−1,3 + 𝜚𝑘−1,3) × {number of polyhedra in Tℎ}.

6.7. Virtual exact sequences

We show now that, for the obvious choices of the polynomial degrees, the set
of virtual spaces introduced in this Section constitutes an exact sequence. We
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start with the (simpler) two-dimensional case. Let 𝑉vert
2,𝑘 (Ω) denote the same 𝐻1

conforming space introduced in (3.28), and

𝑉elem
2,𝑘 (Ω) = {𝑣 ∈ 𝐿2(Ω) such that 𝑣 |𝐸 ∈ P𝑘(𝐸)∀ element 𝐸 ∈ Tℎ}. (6.74)

Then, we have the following theorem:

Theorem 6.13. Let 𝑘 ≥ 2, and assume that Ω is a simply connected polygon,
decomposed in a finite number of polygons 𝐸 . Then the sequences

R
𝑖−−−−−→ 𝑉vert

2,𝑘 (Ω)
grad
−−−−−→ 𝑉

edge
2,𝑘−1(Ω) rot−−−−−→ 𝑉elem

2,𝑘−2(Ω) 𝑜−−−−−→ 0 (6.75)

and

R
𝑖−−−−−→ 𝑉vert

2,𝑘 (Ω) rot−−−−−→ 𝑉 face
2,𝑘−1(Ω) div−−−−−→ 𝑉elem

2,𝑘−2(Ω) 𝑜−−−−−→ 0 (6.76)

are both exact sequences.

Proof. We note first that the two sequences are practically the same, up to a
rotation of 𝜋/2. Hence we will just show the exactness of the sequence (6.75).
Essentially, the only non-trivial part will be to show that

• a.1 for every 𝒗 ∈ 𝑉edge
2,𝑘−1(Ω) with rot 𝒗 = 0 there exists a 𝜑 ∈ 𝑉vert

2,𝑘 (Ω) such
that grad 𝜑 = 𝒗.

• a.2 for every 𝑞 ∈ 𝑉elem
2,𝑘−2(Ω) there exists a 𝒗 ∈ 𝑉edge

2,𝑘−1(Ω) such that rot 𝒗 = 𝑞.

We start with a.1. As Ω is simply connected, we have that the condition rot 𝒗 = 0
implies that there exists a function 𝜑 ∈ 𝐻1(Ω) such that grad 𝜑 = 𝒗 in Ω. On
every edge e of Tℎ such 𝜑 will obviously satisfy, as well:

𝜕𝜑

𝜕 𝒕e
= 𝒗 · 𝒕e ∈ P𝑘−1(e). (6.77)

Then the restriction of 𝜑 to each 𝐸 ∈ Tℎ verifies:

𝜑 |𝑒 ∈ P𝑘(e) ∀𝑒 ∈ 𝜕𝐸 ; Δ𝜑 ≡ div 𝒗 ∈ P𝑘−2(𝐸) (6.78)

so that clearly 𝜑 ∈ 𝑉vert
2,𝑘 (Ω).

To deal with a.2, we first construct a 𝝋 in [𝐻1(Ω)]2 such that rot 𝝋 = 𝑞 and

𝝋 · 𝒕 =
∫
Ω
𝑞 dΩ

|𝜕Ω| on 𝜕Ω, (6.79)

where 𝒕 is the unit counterclockwise tangent vector to 𝜕Ω and |𝜕Ω| is the length of
𝜕Ω. Then we consider the element 𝒗 ∈ 𝑉edge

2,𝑘−1(Ω) such that

𝒗 · 𝒕e := Π0
𝑘−1(𝝋 · 𝒕e) ∀ edge 𝑒 in Tℎ (6.80)

and, within each element 𝐸 :

rot 𝒗 = rot 𝝋 = 𝑞, div 𝒗 = 0. (6.81)
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Clearly such a 𝒗 solves the problem.

Remark 6.14. The construction in the proof of a.2 could also be done if the
two-dimensional domain Ω is a closed surface, obtained as union of polygons. To
fix the ideas, assume that we deal with the boundary 𝜕𝑃 of a polyhedron 𝑃, and
that we are given on every face f of 𝑃 a polynomial 𝑞f of degree 𝑘 − 2, in such a
way that ∑︁

f∈𝜕𝑃

∫
f
𝑞f df = 0. (6.82)

Then there exists an element 𝒗 ∈ 𝐵
edge
𝑘−1(𝜕𝑃) such that on each face f we have

rot2(𝒗 | 𝑓 ) = 𝑞f. To see that this is true, we define first, for each face f, the number

𝜏f :=
∫

f
𝑞f df.

Then we fix, on each edge e, an orientation 𝒕e, we orient each face f with the
outward normal, and we define, for each edge e of f, the counterclockwise tangent
unit vector 𝒕f𝑐. Then we consider the combinatorial problem (defined on the
topological decomposition Tℎ) of finding for each edge e a real number 𝜎e such
that for each face f ∑︁

e⊂𝜕f
𝜎e 𝒕e · 𝒕f𝑐 = 𝜏f. (6.83)

This could be solved using the same approach used in the above proof, applied on a
flat polygonal decomposition that is topologically equivalent to the decomposition
of 𝜕𝑃 without one face. The last face will fit automatically, due to (6.82). Then we
take 𝒗 such that on each edge 𝒗 · 𝒕 ∈ P𝑘−1 with

∫
e 𝒗 · 𝒕e de = 𝜎e, and for each face,

div 𝒗f = 0, rot 𝒗f = 𝑞f.

We are now ready to consider the three-dimensional case. Let 𝑉vert
3,𝑘 (Ω) denote

the 𝐻1-conforming space obtained by gluing together the local spaces introduced
in (3.45), and let

𝑉elem
3,𝑘 (Ω) := {𝑣 ∈ 𝐿2(Ω) such that 𝑣 |𝑃 ∈ P𝑘(𝑃)∀ element 𝑃 ∈ Tℎ}. (6.84)

Then, we have the following theorem:

Theorem 6.15. Let 𝑘 ≥ 3, and assume that Ω is a simply connected polyhedron,
decomposed in a finite number of polyhedra 𝑃. Then the sequence

R
𝑖−−−−−→ 𝑉vert

3,𝑘 (Ω)
grad
−−−−−→ 𝑉

edge
3,𝑘−1(Ω) curl−−−−−→ 𝑉 face

3,𝑘−2(Ω) div−−−−−→ 𝑉elem
3,𝑘−3(Ω) 𝑜−−−−−→ 0

(6.85)
is exact.

Proof. It is pretty much obvious, looking at the definitions of the spaces, that

• a constant function is in 𝑉vert
3,𝑘 (Ω) and has zero gradient,
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• the gradient of a function of 𝑉vert
3,𝑘 (Ω) is in 𝑉edge

3,𝑘−1(Ω) and has zero curl,
• the curl of a vector in 𝑉edge

3,𝑘−1(Ω) is in 𝑉 face
3,𝑘−2(Ω) and has zero divergence,

• the divergence of a vector of 𝑉 face
3,𝑘−2(Ω) is in 𝑉elem

3,𝑘−3(Ω).

Hence, essentially, we have to prove that:

• b.1 for every 𝒗 ∈ 𝑉edge
3,𝑘−1(Ω) with curl 𝒗 = 0 there exists a 𝜑 ∈ 𝑉vert

3,𝑘 (Ω) such
that grad 𝜑 = 𝒗.

• b.2 for every 𝝉 ∈ 𝑉 face
3,𝑘−2(Ω) with div 𝝉 = 0 there exists a 𝝋 ∈ 𝑉edge

3,𝑘−1(Ω) such
that curl 𝝋 = 𝝉

• b.3 for every 𝑞 ∈ 𝑉elem
3,𝑘−3(Ω) there exists a 𝝈 ∈ 𝑉 face

3,𝑘−2(Ω) such that div𝝈 = 𝑞.

The proof of b.1 is immediate, as in the two-dimensional case a.1: the function
(unique up to a constant) 𝜑 such that grad 𝜑 = 𝒗 will verify (6.77) on each edge.
Moreover, its restriction 𝝋f to each face f will satisfy grad2 𝝋f = 𝒗f, and so on.

Let us therefore look at b.2. Given 𝝉 ∈ 𝑉 face
3,𝑘−2(Ω) with div 𝝉 = 0 we first consider

(as in Remark 6.14) the element 𝒈 ∈ 𝐵edge
𝑘−1(𝜕Ω) such that, on each face f ⊂ 𝜕Ω

rot2(𝒈 |f) = 𝝉 · 𝒏 (∈ P𝑘−2(f)). (6.86)

Note that ∑︁
f⊂𝜕Ω

∫
f
𝝉 · 𝒏f

Ω df =
∫
Ω

div 𝝉 dΩ = 0, (6.87)

so that the compatibility condition (6.82) is satisfied. Then we solve in Ω the
Div-Curl problem

div𝝍 = 0 and curl𝝍 = 𝝉 in Ω, with 𝝍𝑡 = 𝒈 on 𝜕Ω. (6.88)

The (unique) solution of (6.88) has enough regularity to take the trace of its
tangential component on each edge e, and therefore, after deciding an orientation
𝒕e for every edge e in Tℎ, we can take

𝜂e := Π0
𝑘−1(𝝍 · 𝒕e) on each edge e in Tℎ . (6.89)

At this point, for each element 𝑃 we construct 𝝋 ∈ 𝐵edge
𝑘−1(𝜕𝑃) by requiring that

𝝋 · 𝒕e = 𝜂e on each edge e,
rot2 𝝋f = 𝝉 · 𝒏f

𝑃 and div 𝝋f = 0 in each face f ⊂ 𝜕𝑃.
(6.90)

Then we can define 𝝋 inside each element by choosing, together with (6.90),

curl 𝝋 = 𝝉 and div 𝝋 = 0 in each element 𝑃. (6.91)

It is easy to see that the boundary conditions given in (6.90) are compatible with
the requirement curl 𝝋 = 𝝉, so that the solution of (6.91) exists. Moreover it is easy
to see that all the necessary orientations fit, in such a way that curl 𝝋 is globally in
[𝐿2(Ω)]3, so that actually 𝝋 ∈ 𝑉edge

3,𝑘−1(Ω).
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Finally, we have to prove b.3. The proof follows very closely the two dimensional
case: given 𝑞 ∈ 𝑉elem

3,𝑘−3(Ω), we first choose 𝜷 ∈ [𝐻1(Ω)]3 such that

div 𝜷 = 𝑞 in Ω and 𝜷 · 𝒏Ω =

∫
Ω
𝑞 dΩ

|𝜕Ω| (6.92)

where, now, |𝜕Ω| is obviously the area of 𝜕Ω. Then on each face f of Tℎ we take

𝝈 · 𝒏f
Ω = Π0

𝑘−2(𝜷 · 𝒏f
Ω) (6.93)

and inside each element 𝑃 we take div𝝈 = 𝑞 and curl𝝈 = 0. Note again
that condition div𝝈 = 𝑞 is compatible with the boundary conditions (6.93) and
the orientations will fit in such a way that actually div𝝈 ∈ 𝐿2(Ω), so that 𝝈 ∈
𝑉 face

3,𝑘−2(Ω).

Remark 6.16. Although here we are not dealing with applications, we point out
that, as is well known (see e.g. Bossavit (1988), Mattiussi (1997), Hiptmair (2001),
Arnold, Falk and Winther (2006b)), the exactness of the above sequences are of
paramount importance in proving several properties (as the various forms of inf-
sup, the ellipticity in the kernel, etc.) that are crucial in the study of convergence
of mixed formulations (see e.g. Boffi, Brezzi and Fortin (2013)).

6.8. A hint on more general cases

As already pointed out in the final part of Brezzi et al. (2014) for the particular
case of 2D face elements, we observe here that actually in all four cases considered
in this paper (face elements and edge elements in 2D and in 3D), we have at least
three parameters to play with in order to create variants of our elements.

For instance, considering the case of 3D face elements, we could choose three
different integers 𝑘𝑏, 𝑘𝑟 and 𝑘𝑑 (all ≥ −1) and consider, instead of (6.46) the spaces

𝑉 face
3,𝒌 (𝑃) := {𝒗 ∈ 𝐻(div; 𝑃) ∩ 𝐻(curl; 𝑃) such that

𝒗 · 𝒏f
𝑃 ∈ P𝑘𝑏 (f)∀ face f of 𝑃, div 𝒗 ∈ P𝑘𝑑 (𝑃), curl 𝒗 ∈ R𝑘𝑟 (𝑃)}, (6.94)

where obviously 𝒌 is given by 𝒌 := (𝑘𝑏, 𝑘𝑑 , 𝑘𝑟 ). Taking, for a given integer 𝑘 , the
three indices as 𝑘𝑏 = 𝑘 , 𝑘𝑑 = 𝑘 − 1, 𝑘𝑟 = 𝑘 − 1 we re-obtain the elements in (6.46),
that in turn are the natural extension of the BDM 𝐻(div)-conforming elements.
Taking instead 𝑘𝑏 = 𝑘 , 𝑘𝑑 = 𝑘 , 𝑘𝑟 = 𝑘 − 1, for 𝑘 ≥ 0 we would rather mimic the
Raviart-Thomas elements. In particular, on simplices and for 𝑘 = 0 we recover
exactly the RT0 element.

We also point out that if we know a priori that (say, in a mixed formulation) the
vector part of the solution of our problem will be a gradient, we could consider the
choice 𝑘𝑏 = 𝑘 , 𝑘𝑑 = 𝑘 − 1, 𝑘𝑟 = −1 obtaining a space that contains all polynomial
vectors in G𝑘 (that is: vectors that are gradients of some scalar polynomial of degree
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≤ 𝑘 + 1), a space that is rich enough to provide an optimal approximation of our
unknown.

Similarly, for the spaces in (6.55) one can consider the variants

𝑉
edge
3,𝒌 (𝑃) := {𝒗 | 𝒗𝑡 ∈ 𝐵edge

𝑘𝑏
(𝜕𝑃),

div 𝒗 ∈ P𝑘𝑑 (𝑃), and curl curl 𝒗 ∈ R𝑘𝑟−1(𝑃)}. (6.95)

On the other hand, for nodal VEMs we can play with two indices, say 𝑘𝑏 and 𝑘Δ,
to have

𝑉vert
3,𝒌 (𝑃) := {𝑣 | 𝑣 |𝜕𝑃 ∈ 𝐵vert

𝑘𝑏
(𝜕𝑃) and Δ𝑣 ∈ P𝑘Δ−2(𝑃)}, (6.96)

and, needless to say, in the definition of 𝐵vert
𝑘𝑏

(𝜕𝑃), the degree of Δ2 in each face
could be different from 𝑘𝑏.

6.9. Serendipity elements

Some of the discrete spaces appearing in the diagram (6.75) are not suitable for
practical computations. Indeed, as discussed in Section 3.8 for the space 𝑉vert

3,𝑘 (Ω),
the chosen set of degrees of freedom only allows to compute projections of sub-
optimal order. A simple way out would be to enlarge the spaces and add degrees
of freedom, in the spirit of (3.37), but this would result in high computational
costs. The best choice is instead to make use of Serendipity variants of the above
spaces, which allow to reduce the number of degrees of freedom and still be
able to compute projections of the required order. An example of this strategy
was shown in Section 3.6, but here we have the additional difficulty that the
involved Serendipity projections need to be compatible with the exact sequence
structure. Such Serendipity sequences constitute the current state of the art of
Virtual Elements discrete complexes, and we refer the reader to (Beirão da Veiga
et al. 2017a), (Beirão da Veiga et al. 2018b), (Beirão da Veiga et al. 2018a) for a
detailed description. Here we limit ourselves to show a brief example in the two
dimensional case, where the aim is to build the serendipity exact sequence (6.76).

In the following part we focus on a single sample element 𝐸 , the global version
following trivially. Furthermore, for simplicity of exposition we assume that 𝜂 > 𝑘 ,
so that no polynomial bubbles exist on the polygon 𝐸 (see Section 3.6).

For 𝑘 integer, 𝑘 ≥ 1, we begin by enlarging the original scalar VEM-space (3.15)
as we did in (3.37), that we recall here (with a different notation):

𝑊node
𝑘 (𝐸) :=

{
𝑣 ∈ 𝐶0(𝐸) : 𝑣 |e ∈ 𝑃𝑘(e) ∀e ⊂ 𝜕𝐸, Δ𝑣 ∈ 𝑃𝑘(𝐸)

}
, (6.97)



The Virtual Element Method 49

with the degrees of freedom
(𝐷1) : the values of 𝑣 at the vertices of 𝐸 ,

(𝐷2) : for each edge e, the moments
∫

e
𝑣 𝑝𝑘−2 d𝑠 ∀𝑝𝑘−2 ∈ P𝑘−2(e),

(𝐷3) :
∫
𝐸

(∇𝑣 · 𝒙) 𝑝𝑘 d𝐸 ∀𝑝𝑘 ∈ P𝑘(𝐸).

(6.98)

Note that, using an integration by parts, it is easy to check that the set of degrees
of freedom (6.98) is equivalent to the set (3.38), where the moments

∫
𝐸
𝑣𝑝𝑘 d𝐸

are assigned instead of (𝐷3). We associate with the above space the enlarged
edge-space𝑊edge

𝑘−1 (𝐸)

𝑊
edge
𝑘−1 (𝐸) :=

{
𝒗 ∈ [𝐿2(𝐸)]2 : div 𝒗 ∈ 𝑃𝑘(𝐸), rot 𝒗 ∈ 𝑃𝑘−1(𝐸),

𝒗 |e · 𝒕e ∈ 𝑃𝑘−1(e) ∀e ⊂ 𝜕𝐸

}
,

(6.99)

with the degrees of freedom

(𝐷1) : the moments
∫

e
(𝒗 · 𝒕e)𝑝𝑘−1 d𝑠 ∀𝑝𝑘−1 ∈ P𝑘−1(e), ∀ edge e,

(𝐷2) : the moments
∫
𝐸

𝒗 · 𝒙 𝑝𝑘 d𝐸 ∀𝑝𝑘 ∈ P𝑘(𝐸),

(𝐷3) :
∫
𝐸

rot 𝒗 𝑝0
𝑘−1 d𝐸 ∀𝑝0

𝑘−1 ∈ P0
𝑘−1(𝐸).

(6.100)

It can be easily checked that such spaces form an exact sequence

R
𝑖−−−−−→ 𝑊node

𝑘 (𝐸) ∇−−−−−→ 𝑊
edge
𝑘−1 (𝐸) rot−−−−−→ P𝑘−1(𝐸) 𝑜−−−−−→ 0. (6.101)

On the other hand,𝑊node
𝑘

(𝐸) and𝑊edge
𝑘−1 (𝐸) have a large number of internal degrees

of freedom, a particularly cumbersome situation when planning to use such spaces
on the faces of a polyhedron (in order to design their three dimensional counter-
parts). We therefore introduce the following Serendipity variants. Let us introduce
the projection operator Πnode

𝑆
: 𝑊node

𝑘
(𝐸) → P𝑘(𝐸), defined by

∫
𝜕𝐸

𝜕𝑡 (𝑞 − Πnode
𝑆 𝑞)𝜕𝑡 𝑝 d𝑠 = 0 ∀𝑝 ∈ P𝑘(𝐸),∫

𝜕𝐸

(𝒙 · 𝒏)(𝑞 − Πnode
𝑆 𝑞) d𝑠 = 0.

(6.102)

It can be proven, see (Beirão da Veiga et al. 2017a), that the above operator is well
defined. We can then introduce the Serendipity nodal space as:

𝑆𝑉node
𝑘 (𝐸) :=

{
𝑞 ∈ 𝑊node

𝑘 (𝐸) :
∫
𝐸

∇(𝑞 − Πnode
𝑆 𝑞) · 𝒙 𝑝𝑘 d𝐸 = 0∀𝑝𝑘 ∈ P𝑘

}
. (6.103)

Clearly, a set of degree of freedom for 𝑆𝑉node
𝑘

(𝐸) is given by (𝐷1)− (𝐷2) in (6.98);
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the set (𝐷3) is not needed anymore. Analogously, after defining the space

𝑆
edge
𝑘−1 := gradP𝑘 ⊕ 𝒙⊥P𝑘−1, (6.104)

we introduce the well defined operator Πedge
𝑆

: 𝑊edge
𝑘−1 (𝐸) → 𝑆

edge
𝑘−1 :∫

𝜕𝐸

[(𝒗 − Π
edge
𝑆

𝒗) · 𝒕] [∇𝑝 · 𝒕] d𝑠 = 0 ∀𝑝 ∈ P𝑘(𝐸), (6.105)∫
𝜕𝐸

(𝒗 − Π
edge
𝑆

𝒗) · 𝒕 d𝑠 = 0, (6.106)∫
𝐸

rot(𝒗 − Π
edge
𝑆

𝒗)𝑝0
𝑘−1 d𝐸 = 0 ∀𝑝0

𝑘−1 ∈ P0
𝑘−1(𝐸). (6.107)

We can now define the Serendipity edge space as:

𝑆𝑉
edge
𝑘−1 (𝐸) =

{
𝒗 ∈ 𝑊edge

𝑘−1 (𝐸) :
∫
𝐸

(𝒗 − Π
edge
𝑆

𝒗) · 𝒙 𝑝𝑘 d𝐸 = 0 ∀𝑝𝑘 ∈ P𝑘
}
. (6.108)

A set of dofs for 𝑆𝑉edge
𝑘−1 (𝐸) is given by (𝐷1) and (𝐷3) in (6.100). The above

projections have been carefully chosen so that the Serendipity spaces still form an
exact sequence:

R
𝑖−−−−−→ 𝑆𝑉node

𝑘 (𝐸) ∇−−−−−→ 𝑆𝑉
edge
𝑘−1 (𝐸) rot−−−−−→ P𝑘−1(𝐸) 𝑜−−−−−→ 0 (6.109)

When compared with their counterparts in (6.101), the above spaces are smaller
but allow the same computability in terms of projection operators and have the
same approximation properties. We finally observe that interpolation and stability
estimates for Serendipity edge and face VEM spaces can be found in (Beirão da
Veiga, Mascotto and Meng 2022) and (Beirão da Veiga and Mascotto 2022).

7. The Elasticity problem
In the present section we introduce the Virtual Element Method for linear and
nonlinear elasticity, with particular attention in dealing with almost-incompressible
materials. After the development of the 𝐻1-conforming VEM of order 𝑘 (Beirão da
Veiga et al. 2013b), it was immediately recognized that (for 𝑘 ≥ 2) such discrete
space was also suitable for building a simple and effective displacement/pressure
inf-sup stable pair for incompressible elasticity. This observation lead to the con-
tribution (Beirão da Veiga, Brezzi and Marini 2013a) where the authors introduced
a Virtual Element family for linear elasticity in primal form, robust in the incom-
pressible limit.

The main part of this section is indeed based on (Beirão da Veiga et al. 2013a),
but with a more modern viewpoint on many details, such as the construction used
in the bilinear forms and the adoption of enhanced VE spaces. In particular,
we also present a different viewpoint on the same method, which sets the basic
background for generalization to nonlinear problems. In the final part of this
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section (mainly inspired from (Beirão da Veiga, Lovadina and Mora 2015), see
also (Artioli, Beirão da Veiga, Lovadina and Sacco 2017b)) we describe the VE
discretization of nonlinear elasticity problems in small deformations and comment
briefly on more complex problems such as inelasticity and large deformations (Chi,
Beirao da Veiga and Paulino 2017).

The present section constitutes only a brief introduction to the very wide re-
search area of VEM for Solid Mechanics. The main motivations of the success of
VEM in the solid mechanics engineering community were (1) the ease of combin-
ing/embedding the method with existing FEM codes, (2) the robustness to large
mesh distortions, (3) the possibility to automatically handle hanging nodes, (4) the
simplicity and efficiency of the formulation for the lowest order (1-gauss-node-
per-element) case. Among the many advances in the literature, we here mention
(in addition to the above) only a few sample papers regarding topology optimiza-
tion (Gain et al. 2015, Chi et al. 2020), contact problems (Wriggers et al. 2016),
Hellinger-Reissner elasticity (Artioli, de Miranda, Lovadina and Patruno 2018,
Dassi, Lovadina and Visinoni 2020b), fracture and crack propagation (Hussein,
Aldakheel, Hudobivnik, Wriggers, Guidault and Allix 2019, Artioli, Marfia and
Sacco 2020), elastodynamics (Park, Chi and Paulino 2020), elasticity and plasticity
for finite deformations (Wriggers, Reddy, Rust and Hudobivnik 2017, Wriggers and
Hudobivnik 2017).

7.1. The linear elasticity problem

We consider the deformation problem of a linearly elastic body subjected to a
volume load and with given boundary conditions, under the hypothesis of small
deformations. In the main part of this section we will focus on the two-dimensional
case, while hints on the 3D (which is essentially analogous) will be given at the end.
Let Ω be a polygonal domain, and let Γ be its boundary. Let 𝜆 and 𝜇 be positive
coefficients (Lamé coefficients) and let 𝒇 be a vector valued function belonging to
[𝐿2(Ω)]2. For the sake of simplicity we will use (homogeneous) Dirichlet boundary
conditions. The strong form of the equations read

𝐴𝜆,𝜇𝒖 = 𝒇 in Ω and 𝒖 = 0 on Γ ,

where the linear elliptic operator 𝐴𝜆,𝜇 is given by

𝐴𝜆,𝜇𝒖 := −
(

2𝜇(𝑢1,𝑥𝑥 + 1
2 (𝑢1,𝑦𝑦 + 𝑢2,𝑥𝑦)) + 𝜆(𝑢1,𝑥𝑥 + 𝑢2,𝑦𝑥)

2𝜇( 1
2 (𝑢1,𝑦𝑥 + 𝑢2,𝑥𝑥) + 𝑢2,𝑦𝑦) + 𝜆(𝑢1,𝑥𝑦 + 𝑢2,𝑦𝑦)

)
.

In order to introduce the corresponding variational formulation, we consider the
space

𝑽 := [𝐻1
0(Ω)]2 (7.1)
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and the bilinear form

𝑎(𝒖, 𝒗) := 2𝜇
∫
Ω

𝜺(𝒖) : 𝜺(𝒗) dΩ + 𝜆
∫
Ω

div 𝒖 div 𝒗 dΩ ≡ 2𝜇𝑎𝜇(𝒖, 𝒗) + 𝜆𝑎𝜆(𝒖, 𝒗) ,
(7.2)

where 𝜺(𝒖) = (∇𝒖 + ∇𝑇𝒖)/2 represents as usual the symmetric gradient operator.
It is easy to see (possibly using Korn inequality in the presence of more general

boundary conditions) that there exist two constants, 𝑀 > 0 and 𝛼 > 0, depending
only on Ω, 𝜆 and 𝜇, such that

𝛼 ∥𝒗∥2
𝑽 ≤ 𝑎(𝒗, 𝒗) ≤ 𝑀 ∥𝒗∥2

𝑽 ∀ 𝒗 ∈ 𝑽 . (7.3)

We note that 𝒇 ∈ 𝑽′, and we denote by < 𝒇 , 𝒗 > the corresponding duality pairing
(that here coincides with the usual 𝐿2 inner product). Then the variational form of
the problem reads: {Find 𝒖 ∈ 𝑽 such that

𝑎(𝒖, 𝒗) =< 𝒇 , 𝒗 > ∀ 𝒗 ∈ 𝑽
(7.4)

that clearly has a unique solution, that belongs at least to [𝐻𝑠(Ω)]2 for some 𝑠 > 3/2
depending on the maximum angle in Γ.

Remark 7.1. As it is well known, when the parameter 𝜆 >> 𝜇, we fall into
the range of the so called “almost-incompressible” materials. In such case the
coercivity and continuity constants in (7.3) diverge. Unless specific care is taken
in the discretization, the accuracy of numerical methods will degenerate in such
situations; there is a large FEM literature in this respect (see for instance (Boffi
et al. 2013) and the references therein). The VEM scheme here proposed will be
robust also in the almost-incompressible limit.

7.2. The discrete spaces and problem

The method here described is taken from (Beirão da Veiga et al. 2013a) but with
a more modern viewpoint on some aspects. We refer also to (Artioli, Beirão da
Veiga, Lovadina and Sacco 2017a) for a more engineering oriented introduction.
In order to introduce the discrete VEM space for the displacement field, we start by
the same scalar “enhanced” spaces introduced in section 3.6, that we recall here.
For 𝑘 ≥ 1 we set

𝑉𝑘(𝐸) :={𝑣 ∈ 𝐶0(𝐸) such that 𝑣 |e ∈ P𝑘(e) ∀e ∈ 𝜕𝐸, Δ𝑣 ∈ P𝑘(𝐸),

and
∫
𝐸

(𝑣 − Π
∇,𝐸
𝑘

𝑣) 𝑝𝑠 d𝐸 = 0 ∀𝑝𝑠 ∈ Phom
𝑠 (𝐸), 𝑠 = 𝑘 − 1, 𝑘},

(7.5)

where the operator Π∇,𝐸
𝑘

has been defined in (2.6). Note that also the simpler space
(3.15) could be chosen, but at the price of a less accurate load approximation. The
local VEM displacement space is then simply

𝑽𝑘(𝐸) = [𝑉𝑘(𝐸)]2 , (7.6)
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with the corresponding degrees of freedom

(D1) : the values of 𝒗 at the vertexes of the polygon 𝐸 ;
(D2) : for 𝑘 ≥ 2, the moments

∫
e 𝒗 · 𝒑 de ∀𝒑 ∈ [P𝑘−2(e)]2 ∀e ⊂ 𝜕𝐸 ;

(D3) : for 𝑘 ≥ 2, the moments
∫
𝐸
𝒗 · 𝒑 d𝐸 ∀𝒑 ∈ [P𝑘−2(𝐸)]2.

(7.7)

It is easy to check that [P𝑘(𝐸)]2 ⊆ 𝑽𝑘(𝐸). Furthermore, by similar arguments as in
Section 3, we have that the following projection operators are computable in terms
of the dofs (7.7):

Π
∇,𝐸
𝑘

: 𝑽𝑘(𝐸) → [P𝑘(𝐸)]2 ,

Π
0,𝐸
𝑘

: 𝑽𝑘(𝐸) → [P𝑘(𝐸)]2 ,

𝚷0,𝐸
𝑘−1 : ∇𝑽𝑘(𝐸) → [P𝑘−1(𝐸)]2×2 ,

Π
0,𝐸
𝑘−1 : div𝑽𝑘(𝐸) → P𝑘−1(𝐸) .

(7.8)

The global discrete displacement space is given by

𝑽ℎ =
{
𝒗 ∈ 𝑽 such that 𝒗 |𝐸 ∈ 𝑽𝑘(𝐸) ∀𝐸 ∈ Tℎ

}
and the associated global dofs are trivially deduced from the local ones in the
standard FEM fashion.

We now define the local bilinear forms approximating the forms 𝑎𝜇(·, ·) and
𝑎𝜆(·, ·) in (7.2) at the element level. We will introduce such bilinear forms written in
the most explicit way, which makes it easier to understand the particular treatment
for the volumetric term and the ensuing robustness in the incompressible limit.
Later we will show a different description of the same forms which is better
suited for generalization to nonlinear problems and for the implementation in an
engineering perspective.

For all 𝐸 ∈ Tℎ and all 𝒗ℎ, 𝒘ℎ ∈ 𝑽𝑘(𝐸) we define

𝑎𝐸𝜇,ℎ(𝒗ℎ, 𝒘ℎ) := 2𝜇
∫
𝐸

𝚷0,𝐸
𝑘−1𝜺(𝒗ℎ) : 𝚷0,𝐸

𝑘−1𝜺(𝒘ℎ) d𝐸

+ 𝜇 S𝐸((𝐼 − Π
∇,𝐸
𝑘

)𝒗ℎ, (𝐼 − Π
∇,𝐸
𝑘

)𝒘ℎ) ,

𝑎𝐸𝜆,ℎ(𝒗ℎ, 𝒘ℎ) := 𝜆
∫
𝐸

Π
0,𝐸
𝑘−1(div 𝒗ℎ)Π0,𝐸

𝑘−1(div 𝒘ℎ) d𝐸,

(7.9)

where the stabilizing form S𝐸(·, ·) is any symmetric and computable bilinear form
on 𝑽𝑘(𝐸) that satisfies (cfr (3.20))

𝑐1 |𝒗ℎ |21,𝐸 ≤ S𝐸(𝒗ℎ, 𝒗ℎ) ≤ 𝑐2 |𝒗ℎ |21,𝐸 ∀𝒗ℎ ∈ 𝑽𝑘(𝐸) with Π
∇,𝐸
𝑘

𝒗ℎ = 0 (7.10)

uniformly in the mesh elements. The form S𝐸(·, ·) can be taken equal to the (vector
version of) the choices already discussed in Section 3 (see (3.21)–(3.23)) directly on
the (properly scaled) dofs or on some boundary integrals. We note that the absence
of a stabilizing term for the volumetric form 𝑎𝐸

𝜆,ℎ
(·, ·) is aimed to obtain a scheme

that is robust also in the incompressible limit. Indeed, such choice corresponds to
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a relaxation of the volumetric constraint when 𝜆 >> 𝜇, as it happens in PSRI Finite
Elements or mixed approaches to elasticity (Boffi et al. 2013). The global versions
of the above forms are obtained as usual: for all 𝒗ℎ, 𝒘ℎ in 𝑉ℎ

𝑎𝜇,ℎ(𝒗ℎ, 𝒘ℎ) :=
∑︁
𝐸∈Tℎ

𝑎𝐸𝜇,ℎ(𝒗ℎ, 𝒘ℎ), 𝑎𝜆,ℎ(𝒗ℎ, 𝒘ℎ) :=
∑︁
𝐸∈Tℎ

𝑎𝐸𝜆,ℎ(𝒗ℎ, 𝒘ℎ),

𝑎ℎ(𝒗ℎ, 𝒘ℎ) := 𝑎𝜇,ℎ(𝒗ℎ, 𝒘ℎ) + 𝑎𝜆,ℎ(𝒗ℎ, 𝒘ℎ).

Finally, the discrete loading term is defined by

< 𝒇 ℎ, 𝒗ℎ >:=
∑︁
𝐸∈Tℎ

∫
𝐸

Π
0,𝐸
𝑘

( 𝒇 ) · 𝒗ℎ d𝐸 =
∑︁
𝐸∈Tℎ

∫
𝐸

𝒇 · Π0,𝐸
𝑘

(𝒗ℎ) d𝐸. (7.11)

We are now able to present the VEM method for the linear elasticity problem{Find 𝒖ℎ ∈ 𝑽ℎ such that
𝑎ℎ(𝒖ℎ, 𝒗ℎ) =< 𝒇 ℎ, 𝒗ℎ > ∀ 𝒗ℎ ∈ 𝑽ℎ .

(7.12)

It is easy to check that the form 𝑎ℎ(·, ·) is coercive on 𝑽ℎ so that the above problem
has a unique solution.

Remark 7.2. An alternative form found in the literature (see, e.g. (Beirão da
Veiga et al. 2013a)) for 𝑎𝐸

𝜇,ℎ
(·, ·) is

𝑎𝐸𝜇,ℎ(𝒗ℎ, 𝒘ℎ) := 2𝜇
∫
𝐸

𝜺(Π∇,𝐸
𝑘

𝒗ℎ) : 𝜺(Π∇,𝐸
𝑘

𝒘ℎ) d𝐸

+ 𝜇 S𝐸((𝐼 − Π
∇,𝐸
𝑘

)𝒗ℎ, (𝐼 − Π
∇,𝐸
𝑘

)𝒘ℎ) .

The more modern choice (7.9) is more appropriate for generalizations (such as
variable coefficients or, as we will see below, nonlinear problems).

An equivalent form of the same scheme

As already anticipated, we here introduce a different description of the same bilinear
form 𝑎ℎ(·, ·) which is better suited for generalization to nonlinear problems and for
the implementation in an engineering perspective. In the following we will denote
the Cauchy stress (associated to the present linearly elastic constitutive law)

𝝈
(
𝜺(𝒗)

)
:= 2𝜇𝜺(𝒗) + 𝜆 tr 𝜺(𝒗)𝐼 ∀𝒗 ∈ 𝐻1(Ω) ,

and recall that the continuous bilinear form (7.2) can be written as

𝑎(𝒗, 𝒘) =
∫
Ω

𝝈
(
𝜺(𝒗)

)
: 𝜺(𝒘) dΩ. (7.13)

We consider the local elastic form (𝐸 ∈ Tℎ)

𝑎𝐸ℎ (𝒗ℎ, 𝒘ℎ) := 𝑎𝐸𝜇,ℎ(𝒗ℎ, 𝒘ℎ) + 𝑎𝐸𝜆,ℎ(𝒗ℎ, 𝒘ℎ), (7.14)
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see (7.9). By trivial calculations and definition of the 𝐿2 projection, for any
𝒗ℎ ∈ 𝑽𝑘(𝐸),

𝜆Π
0,𝐸
𝑘−1(div 𝒗ℎ) = 𝜆Π0,𝐸

𝑘−1
(
tr 𝜺(𝒗ℎ)

)
= 𝜆 tr𝚷0,𝐸

𝑘−1
(
𝜺(𝒗ℎ)

)
,

where tr denotes the trace operator. Furthermore, by identical arguments, for all
𝒗ℎ ∈ 𝑽𝑘(𝐸)

Π
0,𝐸
𝑘−1(div 𝒗ℎ) = tr𝚷0,𝐸

𝑘−1
(
𝜺(𝒗ℎ)

)
= 𝚷0,𝐸

𝑘−1
(
𝜺(𝒗ℎ)

)
: 𝐼 ,

with 𝐼 denoting the 2 × 2 identity tensor and 𝐴 : 𝐵 =
∑
𝑖, 𝑗 𝐴𝑖 𝑗𝐵𝑖 𝑗 for all square

matrixes 𝐴, 𝐵. We now combine the two above identities in the definition of
𝑎𝐸
𝜆,ℎ

(𝒗ℎ, 𝒘ℎ), cfr (7.9). With some simple manipulation we obtain

𝑎𝐸𝜆,ℎ(𝒗ℎ, 𝒘ℎ) =
∫
𝐸

𝜆Π
0,𝐸
𝑘−1(div 𝒗ℎ)Π0,𝐸

𝑘−1(div 𝒘ℎ) d𝐸

=

∫
𝐸

𝜆 tr𝚷0,𝐸
𝑘−1
(
𝜺(𝒗ℎ)

)
𝐼 : 𝚷0,𝐸

𝑘−1
(
𝜺(𝒘ℎ)

)
d𝐸 (7.15)

Therefore, the form (7.14) can be written as

𝑎𝐸ℎ (𝒗ℎ, 𝒘ℎ) =
∫
𝐸

(
2𝜇𝚷0,𝐸

𝑘−1
(
𝜺(𝒗ℎ)

)
+ 𝜆 tr𝚷0,𝐸

𝑘−1
(
𝜺(𝒗ℎ)

)
𝐼

)
: 𝚷0,𝐸

𝑘−1
(
𝜺(𝒘ℎ)

)
d𝐸

+ 𝜇 S𝐸((𝐼 − Π
∇,𝐸
𝑘

)𝒗ℎ, (𝐼 − Π
∇,𝐸
𝑘

)𝒘ℎ)

=

∫
𝐸

𝝈
(
𝚷0,𝐸
𝑘−1
(
𝜺(𝒗ℎ)

))
: 𝚷0,𝐸

𝑘−1
(
𝜺(𝒘ℎ)

)
d𝐸

+ 𝜇 S𝐸((𝐼 − Π
∇,𝐸
𝑘

)𝒗ℎ, (𝐼 − Π
∇,𝐸
𝑘

)𝒘ℎ).
(7.16)

The above form is to be compared with the local version of (7.13). The expres-
sion (7.16) is equivalent to the original discrete form of the previous section, but
underlines that the VEM discretization is obtained simply by projecting the strains
on a local polynomial space and then applying the constitutive law. The expression
(7.16) is therefore suitable to easily generalize the present construction to small
and large deformation nonlinear problems, as it suggests the following systematic
approach: project the strains on a polynomial space and then apply the (nonlinear)
constitutive law before integrating on the element. More details will be given in
Section 7.4.

Finally, it is important to underline that the stabilization depends only on the
parameter 𝜇 (and is therefore unaffected by large values of 𝜆), which is what makes
the scheme robust in the incompressible limit. Also this idea is easily extendable
to more complex problems, by making the stabilizing form dependent only on the
deviatoric part of the stresses. See also, for instance, (Park, Chi and Paulino 2021).
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Extension to the 3D case

We here comment briefly on the three dimensional case. The extension of the
method here presented to 3D problems is quite straightforward, in light of the
previous developments for the scalar case. We simply replace the 2D scalar space
(7.5) with the scalar space described in Section 3.8, and then set

𝑽𝑘(𝑃) = [𝑉𝑘(𝑃)]3 (7.17)

for each polyhedron 𝑃 in the mesh Tℎ. The local degrees of freedom are the trivial
vector valued version of those in (3.46). By the same arguments, it can be checked
that the 3D analogs of the projections appearing in (7.8) are still computable.
The rest of the construction (global space and related dofs, discrete bilinear form,
load approximation) is essentially identical. Although many results of the next
sections apply also to the 3D case with minor modifications, in the following we
will continue to work in the bi-dimensional framework for ease of presentation.

7.3. Convergence and robustness in the incompressible limit

The interpolation estimates for the scalar space discussed in Section 3 (formulae
(3.34) and (3.36) immediately apply also to the vector valued version (7.6). Since
also (7.12) is a classical linear elliptic problem, deriving error estimates for the
method would, in principle, follow the same identical steps (and obtain analogous
results) as for the Laplace problem. On the other hand such approach would not
lead to error estimates that are robust in the incompressible limit, i.e. in which
the constant involved in the error does not depend on the parameter 𝜆. In order to
obtain such estimates, one needs to resort to a mixed interpretation of (7.12), in
which an important role is played by the pressure variable 𝑝 = 𝜆 div 𝒖.

We here show the main intermediate results leading to the final convergence
Corollary 7.7, and refer to (Beirão da Veiga et al. 2013a) for the proofs. In the rest
of the section we assume the same mesh assumption 2.1 already stated in Section
2, which could be relaxed following the ideas in (Beirão da Veiga et al. 2017b,
Brenner and Sung 2018).

Let the (piecewise polynomial) auxiliary space

𝑄ℎ :=
{
𝑞ℎ ∈ 𝐿2

0(Ω) such that 𝑞ℎ ∈ P𝑘−1(𝐸) ∀𝐸 ∈ Tℎ
}
.

We have the following inf-sup lemma.

Lemma 7.3. Let 𝑘 ≥ 2 and let the mesh assumptions 2.1 hold. Then there exists
a strictly positive constant 𝛽, independent of ℎ, such that

sup
𝒗ℎ∈𝑽 ℎ

∫
Ω

(div 𝒗ℎ)𝑞ℎ dΩ
∥𝒗ℎ∥1,Ω

≥ 𝛽∥𝑞ℎ∥0,Ω ∀𝑞ℎ ∈ 𝑄ℎ .

Remark 7.4. For the particular case 𝑘 = 1 the validity of the above inf-sup
condition is not assured and depends on the mesh family considered (for instance,
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for 𝑘 = 1 on a triangular mesh we obtain the famous pair P1/P0 which is well
known to fail in such respect). Positive results for a class of polygonal meshes can
be obtained by extending the ideas in (Beirao da Veiga and Lipnikov 2010). In
order to obtain inf-sup stability for any class of (shape-regular) meshes one would
need to add edge-bubbles, which would imply a simple modification of the space
with the addition of one degree of freedom per edge to the displacement space. We
do not dwell here on this variants, and assume in the following that 𝑘 ≥ 2.

By classical arguments borrowed from mixed FEM, cfr (Boffi et al. 2013),
Lemma (7.3) implies the existence of a Fortin-like operator, that is (in particular)
an optimal approximant in 𝐻1 which “preserves” the projected divergence.

Lemma 7.5. Let 𝑘 ≥ 2 and let the mesh assumptions 2.1 hold. Then there exists
a positive constant 𝐶, independent of ℎ, such that the following holds: For all 𝒗
in the broken Sobolev space [𝐻𝑠(Tℎ)]2, 1 ≤ 𝑠 ≤ 𝑘 + 1, there exists 𝒗𝐼 ∈ 𝑽ℎ that
satisfies

∥𝒗 − 𝒗𝐼 ∥1 ≤ 𝐶ℎ𝑠−1 |𝒗 |𝑠,Tℎ
,∫

Ω

(div 𝒗𝐼 )𝑞ℎ dΩ =

∫
Ω

(div 𝒗)𝑞ℎ dΩ ∀𝑞ℎ ∈ 𝑄ℎ ,

where by | · |𝑠,Tℎ
we denote the corresponding 𝐻𝑠 broken Sobolev semi-norm.

The following convergence result bounds the error 𝒖 − 𝒖ℎ in terms of the inter-
polation error 𝒖 − 𝒖𝐼 . There is also a load approximation term (which is typically
neglected in FEM analysis by assuming exact integration of the right hand side),
a polynomial approximation term (stemming from the VEM approximation of the
involved bilinear forms) and an explicit volumetric term.

Theorem 7.6. Let 𝑘 ≥ 2 and let the mesh assumptions 2.1 hold. Let 𝒖 be the
solution of problem (7.4) and 𝒖ℎ the solution of problem (7.12). Let 𝑝 = 𝜆 div 𝒖
and 𝑝𝐼 be its 𝐿2 projection in 𝑄ℎ. Let 𝒖𝐼 be as defined in Lemma 7.5, and let 𝑢𝜋
be any approximant of 𝒖 piecewise in [P𝑘]2. Then there exists a positive constant
𝐶, independent of ℎ and 𝜆, such that

∥𝒖 − 𝒖ℎ∥1 ≤ 𝐶
(
∥𝒖 − 𝒖𝐼 ∥1 + ∥𝒖 − 𝒖𝜋 ∥1,Tℎ

+ ∥𝑝 − 𝑝𝐼 ∥0 + ℎ∥ 𝒇 − 𝒇 ℎ∥0
)
.

By combining the above theorem with Lemma 7.5 and standard polynomial
approximation estimates, we obtain the following convergence result.

Corollary 7.7. Let the same assumptions as in Theorem 7.6 hold. Let further-
more 𝒖, 𝒇 be in the broken Sobolev space [𝐻𝑠(Tℎ)]2 and 𝑝 be in the the broken
Sobolev space 𝐻𝑠−1(Tℎ), 1 ≤ 𝑠 ≤ 𝑘 + 1. Then it exists a constant 𝐶, independent
of ℎ and 𝜆, such that

∥𝒖 − 𝒖ℎ∥1 ≤ 𝐶 ℎ𝑠−1 (|𝒖 |𝑠,Tℎ
+ ℎ2 | 𝒇 |𝑠,Tℎ

+ |𝑝 |𝑠−1,Tℎ

)
.

It is important to observe that also the auxiliary variable 𝑝 is uniformly bounded
independently of 𝜆 (see for instance Remark 3.1 in (Beirão da Veiga et al. 2013a)),
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therefore the above result is indeed robust in the volumetric limit. We refer to
Lemma 2.4 in (Beirão da Veiga et al. 2013a) for the corresponding error estimate
∥𝒖 − 𝒖ℎ∥0.

7.4. Nonlinear elasticity

In the present section we briefly present the extension of the previous ideas to the
nonlinear case, focusing on small deformation elasticity and providing references
on further extensions. The main results of this section are based on (Beirão da
Veiga et al. 2015), see also (Artioli et al. 2017b) for a more engineering oriented
approach. As in the previous part of this section we assume homogeneous Dirichlet
boundary conditions for simplicity of exposition, the extension to more general kind
of boundary conditions (and loading types) being trivial.

Assuming a regime of small deformations and an elastic material, we are now
given a (general) constitutive law for the material at every point 𝑥 ∈ Ω, relating
strains to stresses 𝝈, through the function

𝝈 = 𝝈(𝒙,∇𝒖(𝒙)) ∈ R𝑑×𝑑symm . (7.18)

Given the law (7.18), the deformation problem reads{ − div 𝝈 = 𝒇 in Ω,

𝒖 = 0 on 𝜕Ω .
(7.19)

Let now 𝑽 denote the space of admissible displacements, which will, in particular,
satisfy homogeneous Dirichlet boundary conditions on 𝜕Ω and be equal to the space
of its variations. The variational formulation of the elastic deformation problem
reads 

Find 𝒖 ∈ 𝑽 such that∫
Ω

𝝈(𝒙,∇𝒖(𝒙)) : ∇𝒗(𝒙) dΩ =

∫
Ω

𝒇 (𝒙) · 𝒗(𝒙) dΩ ∀𝒗 ∈ 𝑽
(7.20)

The VEM discretization of problem (7.20) follows the same approach discussed
previously for obtaining (7.16). We refer, for instance, to the book (Simo and
Hughes 2006) for a review on standard tools and terms in computational (small
deformation) solid mechanics. We here limit ourselves in recalling that typical
computational codes combine a finite element construction with a constitutive al-
gorithm, that is applied point-wise and, given the strains, computes the ensuing
stresses. Such algorithm also gives the constitutive tangent, which is the algorith-
mically consistent tangent 𝜕𝜎/𝜕∇𝒖 and is needed in the Newton iterations.

We consider the same space 𝑽ℎ in (7.6) of discrete displacements (or its 3D
variant) and write the discrete (nonlinear) problem

Find 𝒖ℎ ∈ 𝑽ℎ such that

𝑎𝜎,ℎ(𝒖ℎ; 𝒖ℎ, 𝒗ℎ) =
∫
Ω

𝒇 ℎ · 𝒗ℎ dΩ ∀𝒗ℎ ∈ 𝑽ℎ .
(7.21)
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where the loading term is approximated as in (7.11), and the form is given by

𝑎𝜎,ℎ(𝒘ℎ; 𝒖ℎ, 𝒗ℎ) :=
∑︁
𝐸∈Tℎ

∫
𝐸

𝝈
(
𝒙,𝚷0,𝐸

𝑘−1∇𝒖ℎ(𝒙)
)

: 𝚷0,𝐸
𝑘−1∇𝒗(𝒙) d𝐸

+ 𝛼𝐸(𝒘ℎ)S𝐸
(
(𝐼 − Π

∇,𝐸
𝑘

)
𝒖ℎ, (𝐼 − Π

∇,𝐸
𝑘

)𝒗ℎ)

for all 𝒘ℎ, 𝒖ℎ, 𝒗ℎ ∈ 𝑽ℎ, with S𝐸(·, ·) the same stabilization form used for the linear
case (7.10).

The scalar 𝛼𝐸(𝒘ℎ) > 0 is needed in order to introduce a scaling based on the
constitutive law also in the stabilization, and takes the role of the 𝜇 parameter in
(7.16). Here, since the problem is nonlinear and the constitutive tangent depends
on the displacement 𝒖ℎ, this parameter needs to depend on the displacements (but
as usual is not required to be accurate, the only purpose being a stabilizing effect).
Different choices can be taken for 𝛼𝐸(𝒘ℎ), for instance

𝛼𝐸(𝒘ℎ) =
 𝜕𝝈𝜕∇𝒖 (𝒙𝐸 ,𝚷0,𝐸

0 ∇𝒘ℎ
)

with 𝒙𝐸 denoting the barycenter of 𝐸 and ∥ · ∥ representing any norm on the fourth
order tensor space. We refer to the literature mentioned above and below for other
possible choices of 𝛼𝐸(𝒘ℎ).

In order to solve the nonlinear problem (7.21) a typical approach in the engin-
eering literature is using an incremental loading procedure combined with Newton
iterations. Such approach can also be applied here, we refer to equation (24) of
(Beirão da Veiga et al. 2015) for the details. Note moreover that the parameter
𝛼𝐸 can be made dependent on 𝒖ℎ at the previous loading step, thus avoiding the
calculation of the derivatives of 𝛼𝐸 in the Newton iterations.

It is important to observe that the methodology here described couples very
well with existing solid mechanics codes. For instance, given any “black-box”
constitutive algorithm for the constitutive law 𝝈 and the associated tangent matrix,
this can be embedded directly into the above method. This inherent simplicity was
one of the reasons for the wide success that VEM enjoyed in the solid mechanics
community. We close this section by mentioning some important generalizations,
and recall that a wider overview on the VEM literature in solid mechanics can be
found in the introduction to this section.
Almost incompressible materials. As already anticipated, simply by rendering the
coefficient 𝛼𝐸(𝒘ℎ) dependent only on the deviatoric part of the strains, the scheme
acquires robustness in the incompressible limit. Since such property is also related
to the inf-sup condition in Lemma 7.3, either 𝑘 ≥ 2 or certain restrictions on the
mesh are required (cfr the discussion in Section 7.3).
Inelastic materials. The extension to inelastic materials is trivial following the same
approach as for standard finite elements. One needs to keep track of the history
variables on each integration point during the incremental loading procedure and
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apply the inelastic constitutive law as a black-box algorithm. See for instance
(Beirão da Veiga et al. 2015, Artioli et al. 2017b) for more details.
Large deformations. The approach for the large deformation case follows the
same pattern, and is based on a projection of the displacement gradients followed
by application of the constitutive law. Nevertheless the more complex geometric
setting and the potential large variation of the involved variables requires some
additional care. This may call for ad-hoc approximations of the determinant 𝐽 of the
displacement mapping and for suitable rules for calculating the stability parameter
𝛼𝐸 . What makes VEM particularly valuable in large deformation analysis is the
robustness of the method to mesh deformations, which is a critical aspect for such
problems. We refer the reader to (Chi et al. 2017) for an introduction to VEM for
large deformation problems.

8. The Stokes and Navier-Stokes problems
In the present section we review some core results on divergence-free VEM for
incompressible fluid dynamics. The starting point is the construction introduced
in (Beirão da Veiga, Lovadina and Vacca 2017) (see also (Antonietti, Beirão da
Veiga, Mora and Verani 2014)) for the discretization of the Stokes problem.

In the above paper the authors propose a family of VEM velocity-pressure pairs
of general “polynomial” order which, in addition to being inf-sup stable, have
the important property that the discrete velocity space is contained in the discrete
pressure space. As a consequence it leads to a stable scheme that guarantees
a truly divergence-free velocity solution, as opposed to a relaxed divergence-free
condition as it happens in standard FEM. There are many advantages of divergence-
free schemes when compared to standard inf-sup stable ones, an example being
that the discrete velocity error is not polluted by the pressure. Although the above
VEM scheme is not pressure-robust (in the sense of (John, Linke, Merdon, Neilan
and Rebholz 2017)) it still retains many advantages when compared with standard
FEM (Boffi et al. 2013), in addition to the possibility of using general meshes.

Later, in (Vacca 2018, Beirão da Veiga, Lovadina and Vacca 2018b), the the
method was extended also to the Navier-Stokes and Brinkman equations. In
(Beirão da Veiga, Mora and Vacca 2019b, Beirão da Veiga, Dassi and Vacca
2018a), the authors investigated the discrete Stokes complex structure laying be-
hind the VEM spaces, both in 2D and 3D, leading also to alternative schemes (for a
glimpse at the related FEM literature we refer to (Arnold, Falk and Winther 2006a,
Falk and Neilan 2013)). Computational and implementation aspects where further
detailed and developed in (Dassi and Vacca 2020, Dassi and Scacchi 2020), while
in (Chernov et al. 2021) the authors studied the ℎ𝑝 version of the method. In (Liu,
Li and Nie 2020, Frerichs and Merdon 2022) some right-hand side modifications
were proposed to build a VEM scheme that is also pressure robust for the Stokes
problem. In (Beirão da Veiga, Canuto, Nochetto and Vacca 2021) a model fluid
interaction problem is analyzed using mesh cutting techniques in combination with
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the above VEM approach. There have been also other developments on VEM for
fluid mechanics problems outside the divergence-free framework, some examples
being non-conforming methods (Cangiani, Gyrya and Manzini 2016, Liu, Li and
Chen 2017, Zhao, Zhang, Mao and Chen 2020, Liu and Chen 2019, Liu, Li and
Chen 2019), non-standard mixed formulations (Cáceres, Gatica and Sequeira 2017,
Gatica, Munar and Sequeira 2018b, Cáceres and Gatica 2016, Munar and Sequeira
2020, Gatica, Munar and Sequeira 2018a, Cáceres, Gatica and Sequeira 2018) and
other derivations (Chen and Wang 2019, Wang, Wang and He 2020). Finally, a few
references about the application of other polytopal technologies (such as polygonal
FEM, polygonal DG, HHO, HDG) to fluid mechanic problems are (Natarajan
2020, Botti, Di Pietro and Droniou 2018, Di Pietro and Krell 2018, Aghili and
Di Pietro 2018, Castañón Quiroz and Di Pietro 2020, Lipnikov, Vassilev and Yotov
2014, Cockburn, Fu and Qiu 2017, Antonietti, Verani, Vergara and Zonca 2019,
Antonietti, Mascotto, Verani and Zonca 2022) while some references (among the
many) on FEM divergence-free and pressure robust methods are (Guzmán and
Scott 2019, Guzmán and Neilan 2018, Guzmán and Neilan 2014) and (Gauger,
Linke and Schroeder 2019, Linke and Merdon 2016b, John et al. 2017, Linke and
Merdon 2016a).

8.1. The Navier-Stokes equations

We here briefly review the steady Navier–Stokes equation on a polygonal simply
connected domain Ω ⊆ R𝑑 with 𝑑 = 2, 3 (for more details, see for instance (Girault
and Raviart 1979)). We search a velocity field 𝒖 and a pressure field 𝑝 that satisfy

− 𝜈 div(𝜺(𝒖)) + (∇𝒖) 𝒖 − ∇𝑝 = 𝒇 in Ω,
div 𝒖 = 0 in Ω,
𝒖 = 0 on 𝜕Ω,

(8.1)

where 𝜈 ∈ R, 𝜈 > 0 is the viscosity of the fluid and 𝒇 ∈ [𝐿2(Ω)]𝑑 represents the
volume source term. We here consider Dirichlet homogeneous boundary conditions
only for simplicity, the extension to different boundary conditions being trivial. Let
the continuous spaces

𝑽 :=
[
𝐻1

0(Ω)
]𝑑
, 𝑄 := 𝐿2

0(Ω) =
{
𝑞 ∈ 𝐿2(Ω) s.t.

∫
Ω

𝑞 dΩ = 0
}
.

The variational formulation of Problem (8.1) reads:
find (𝒖, 𝑝) ∈ 𝑽 ×𝑄, such that
𝜈 𝑎(𝒖, 𝒗) + 𝑐(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = ( 𝒇 , 𝒗) for all 𝒗 ∈ 𝑽,
𝑏(𝒖, 𝑞) = 0 for all 𝑞 ∈ 𝑄

(8.2)
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where the continuous forms are

𝑎(𝒖, 𝒗) :=
∫
Ω

𝜺(𝒖) : 𝜺(𝒗) dΩ , 𝑏(𝒗, 𝑞) :=
∫
Ω

𝑞 div 𝒗 dΩ ,

𝑐(𝒘; 𝒖, 𝒗) :=
∫
Ω

(∇𝒖) 𝒘 · 𝒗 dΩ ∀𝒖, 𝒗, 𝒘 ∈ 𝑽, 𝑞 ∈ 𝑄 .
(8.3)

By definition, the velocity solution 𝒖 lays in the kernel of the bilinear form 𝑏(·, ·),
that corresponds to the functions in 𝑽 with vanishing divergence

𝒁 := {𝒗 ∈ 𝑽 s.t. div 𝒗 = 0}. (8.4)

We can observe by a direct computation that, for a fixed 𝒘 ∈ 𝒁, the trilinear form
𝑐(𝒘; ·, ·) is skew symmetric, i.e.

for a fixed 𝒘 ∈ 𝒁 𝑐(𝒘; 𝒖, 𝒗) = −𝑐(𝒘; 𝒗, 𝒖) for all 𝒖, 𝒗 ∈ 𝑽.

Therefore, the trilinear form 𝑐(·; ·, ·), for 𝒘 ∈ 𝒁, is equal to its skew-symmetric
part, defined as:

𝑐skew(𝒘; 𝒖, 𝒗) :=
1
2
(
𝑐(𝒘; 𝒖, 𝒗) − 𝑐(𝒘; 𝒗, 𝒖)

)
for all 𝒖, 𝒗, 𝒘 ∈ 𝑽. (8.5)

It is well known that (see for instance (Girault and Raviart 1979, Boffi et al. 2013))
the problem (8.2) is well posed assuming suitable bounds on the external load 𝒇
and the viscosity 𝜈. Such “diffusion dominated” assumption requires

𝛾 :=
𝐶 ∥ 𝒇 ∥𝑍∗

𝜈2 < 1 , (8.6)

where 𝐶 denotes the continuity constant of 𝑐(·; ·, ·) on 𝑍 with respect to the 𝐻1-
norm. Note that the above assumption can be also stated by introducing the concept
of Helmholtz–Hodge projector (see for instance (John et al. 2017, Lemma 2.6) and
(Gauger et al. 2019, Theorem 3.3)).

Remark 8.1 (Stokes problem). The Stokes model is simply obtained by neglect-
ing the nonlinear convective term in (8.1).

We close this section recalling the following useful polynomial decompositions,
see also Section 6.1:

[P𝑛(O)]2 = ∇P𝑛+1(O) ⊕
(
𝒙⊥P𝑛−1(O)

)
if dim(O) = 2,

[P𝑛(O)]3 = ∇P𝑛+1(O) ⊕
(
𝒙 ∧ [P𝑛−1(O)]3) if dim(O) = 3,

(8.7)

where 𝒙⊥ = (𝑥2,−𝑥1).

8.2. Virtual Element Spaces in 2D

In the present section we outline an overview of the “divergence-free” Virtual
Element spaces in the 2D case. In order to ease the reader, we will start by the
simpler spaces introduced in (Beirão da Veiga et al. 2017), which are sufficient
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to treat the Stokes problem, and afterwards review the enhanced spaces of (Vacca
2018, Beirão da Veiga et al. 2018b), which are suitable also for more complex
problems such as Navier-Stokes and Brinkmann. We here work at the local level,
that is defining the local spaces and the associated Degrees of Freedom at the
element level.

Note that we here focus only on the velocity space; the simpler pressure space
will be introduced later, directly at the global level.

Basic Virtual Elements
Let 𝑘 ∈ N, 𝑘 ≥ 2 represent the degree of the method (for the “lowest order” case
𝑘 = 1, which is not part of the current family, we refer to (Antonietti et al. 2014)).
We consider on each polygon 𝐸 ∈ Tℎ the (local) discrete velocity virtual space

𝑽S
𝑘(𝐸) := {𝒗 ∈ [𝐶0(𝐸)]2 such that rot𝚫𝒗 ∈ P𝑘−3(𝐸), div 𝒗 ∈ P𝑘−1(𝐸) ,

𝒗 |e ∈ [P𝑘(e)]2 ∀e ⊂ 𝜕𝐸}
(8.8)

where as usual the operators above are to be interpreted in the distributional sense.
We note that, in standard VEM fashion, the definition of 𝑽S

𝑘
(𝐸) is associated to

a PDE within the element, in this case a Stokes-like variational problem on 𝐸 .
Indeed, using (8.7) it is easy to check that the condition rot𝚫𝒗 ∈ P𝑘−3 is equivalent
to the existence of 𝑞 ∈ P𝑘−3(𝐸) such that 𝚫𝒗 + ∇𝑠 = 𝒙⊥𝑞 for some 𝑠 ∈ 𝐿2

0(𝐸); such
equation, combined with the remaining conditions in (8.8), represents a Stokes
problem on the element.

It is immediate to check that [P𝑘(𝐸)]2 ⊆ 𝑽S
𝑘
(𝐸), which is important for the

approximation properties of the space, and that the dimension of𝑽S
ℎ
(𝐸) is (recalling

that 𝑁e denotes the number of edges of 𝐸),

dim(𝑽S
ℎ(𝐸)) = 2𝑘 𝑁e + (𝑘 − 1)(𝑘 − 2)/2 + 𝑘(𝑘 + 1)/2 − 1 = 2𝑘 𝑁e + 𝑘(𝑘 − 1)

where the correction by minus one is related to the data compatibility condition
ensuing from the Stokes theorem.

In 𝑽S
𝑘
(𝐸) we set the following degrees of freedom:

(D1) : the values of 𝒗 at the vertexes of the polygon 𝐸 ;

(D2) : the edge moments
∫

e
𝒗 · 𝒑 de ∀𝒑 ∈ [P𝑘−2(e)]2 ∀e ∈ 𝜕𝐸 ;

(D3) : the moments of div 𝒗

∫
𝐸

(div 𝒗)𝑝 d𝐸 ∀𝑝 ∈ P0
𝑘−1(𝐸);

(D4) : for 𝑘 ≥ 3, the moments of
∫
𝐸

𝒗 · 𝒙⊥𝑝 d𝐸 ∀𝑝 ∈ P𝑘−3(𝐸).

(8.9)

Lemma 8.2. The degrees of freedom (8.9) are unisolvent for 𝑽S
𝑘
(𝐸).

Proof. It is trivial to check that the number of the operators (8.9) is equal to the
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dimension of 𝑽S
𝑘
(𝐸). Therefore we only need to check that, if 𝒗 ∈ 𝑽S

ℎ
(𝐸) vanishes

on all (8.9) then 𝒗 = 0. Recalling (8.8) and since (D1) and (D2) in (8.9) vanish,
it follows immediately that 𝒗 |𝜕𝐸 = 0. Due to the Stokes theorem, such boundary
condition also implies

∫
𝐸

div 𝒗 d𝐸 = 0 which combined with div 𝒗 ∈ P𝑘−1(𝐸)
(check (8.8)) and the fact that (D3) vanish implies div 𝒗 = 0. As a consequence we
can write 𝒗 = rot𝜓 for some 𝜓 ∈ 𝐻1

0(𝐸). As a final preliminary result, we note
that, since rot𝚫𝒗 ∈ P𝑘−3 and due to (8.7), one can write

rot𝚫𝒗 = rot(𝒙⊥𝑞) , 𝑞 ∈ P𝑘−3(𝐸) . (8.10)

An integration by parts, 𝒗 |𝜕𝐸 = 0 and 𝒗 = rot𝜓 now yields∫
𝐸

∇𝒗 : ∇𝒗 = −
∫
𝐸

𝒗 · 𝚫𝒗 = −
∫
𝐸

rot𝜓 · 𝚫𝒗 ,

which, combined with integration by parts, 𝜓 |𝜕𝐸 = 0 and (8.10), yields∫
𝐸

∇𝒗 : ∇𝒗 =

∫
𝐸

𝜓 · rot𝚫𝒗 =

∫
𝐸

𝜓 · rot(𝒙⊥𝑞)

= −
∫
𝐸

rot𝜓 · (𝒙⊥𝑞) = −
∫
𝐸

𝒗 · (𝒙⊥𝑞) = 0,

where the last identity follows from the vanishing (D4) dofs. The above identity
clearly implies 𝜓 = 0 and the result follows recalling 𝒗 = rot𝜓.

Remark 8.3. We observe that the degrees of freedom (D1)-(D2) in (8.9) allow
to compute 𝒗 on the boundary of the element. Furthermore, the combination of
the Stokes theorem and (D3) allow to compute the polynomial div 𝒗 ∈ P𝑘−1(𝐸).
Therefore such two quantities are fully computable.

We next make an important observation. The dofs (8.9) allow to compute exactly
(cf. (2.6) and (2.5) and Definition 2.2) the following projection operators:

Π
∇,𝐸
𝑘

: 𝑽S
𝑘(𝐸) → [P𝑘(𝐸)]2 ,

Π
0,𝐸
𝑘−2 : 𝑽S

𝑘(𝐸) → [P𝑘−2(𝐸)]2 ,

𝚷0,𝐸
𝑘−1 : ∇𝑽S

𝑘(𝐸) → [P𝑘−1(𝐸)]2×2 .

(8.11)

We show here only a proof for the first item, as the last two follow by analogous
arguments. Looking at the definition of the 𝐻1

0-projection (2.6) we see that, in
order to determine, for any 𝒗 ∈ 𝑽S

𝑘
(𝐸), the polynomial Π∇,𝐸

𝑘
𝒗 we need to compute∫

𝐸

∇𝒗 : ∇ 𝒑 for all 𝒑 ∈ [P𝑘(𝐸)]2. (8.12)

Employing the polynomial decomposition (8.7) for𝚫 𝒑 ∈ [P𝑘−2(𝐸)]2, we can write
𝚫 𝒑 = ∇𝑞𝑘−1 + 𝒙⊥𝑞𝑘−3 for some 𝑞𝑘−1 ∈ P𝑘−1(𝐸) and 𝑞𝑘−3 ∈ P𝑘−3(𝐸). Therefore,
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integrating by parts we deduce∫
𝐸

∇𝒗 : ∇ 𝒑 =

∫
𝜕𝐸

𝒗 · (∇ 𝒑)𝒏 −
∫
𝐸

𝒗 · 𝚫 𝒑

=

∫
𝜕𝐸

𝒗 · (∇ 𝒑)𝒏 −
∫
𝐸

𝒗 · (∇𝑞𝑘−1 + 𝒙⊥𝑞𝑘−3)

=

∫
𝜕𝐸

𝒗 · ((∇ 𝒑)𝒏 − 𝑞𝑘−1𝒏) +
∫
𝐸

div 𝒗 𝑞𝑘−1 −
∫
𝐸

𝒗 · 𝒙⊥𝑞𝑘−3.

Recalling Remark 8.3 and (D4) in (8.9), the above identity yields that (8.12) is a
computable expression.

We close this section mentioning a drawback of the above space. The properties
above show that the degrees of freedom (8.9) allow to compute exactly the 𝐿2-
projection Π

0,𝐸
𝑘−2 onto P𝑘−2, but not that onto P𝑘 .

Enhanced Virtual Elements
In this section we will apply the enhancement approach to define a new (velocity)
virtual space 𝑽𝑘(𝐸), to be used in place of the space 𝑽S

𝑘
(𝐸), in such a way that

the full projection Π
0,𝐸
𝑘

: 𝑽𝑘(𝐸) → [P𝑘(𝐸)]2 is computable from the dofs (8.9),
without increasing the dimension of the space nor spoiling other critical properties
such as [P𝑘(𝐸)]2 ⊆ 𝑽S

𝑘
(𝐸). Such “enhancement approach” was introduced in

(Vacca 2018, Beirão da Veiga et al. 2018b) taking inspiration from (Ahmad et al.
2013).

We preliminarily observe that in order to compute Π
0,𝐸
𝑘

𝒗 we obviously need to
compute ∫

𝐸

𝒗 · 𝒑𝑘 d𝐸 for any 𝒑𝑘 ∈ [P𝑘(𝐸)]2.

Using the polynomial decomposition (8.7), let 𝑞𝑘+1 ∈ P𝑘+1(𝐸) and 𝑞𝑘−1 ∈ P𝑘−1(𝐸)
be such that 𝒑𝑘 = ∇𝑞𝑘+1 + 𝒙⊥𝑞𝑘−1. Then, using this and integrating by parts we
have∫

𝐸

𝒗 · 𝒑𝑘 d𝐸 =

∫
𝐸

𝒗 · (∇𝑞𝑘+1 + 𝒙⊥𝑞𝑘−1) d𝐸

=

∫
𝜕𝐸

𝒗 · 𝒏 𝑞𝑘+1 d𝑠 −
∫
𝐸

div 𝒗 𝑞𝑘+1 d𝐸 +
∫
𝐸

𝒗 · 𝒙⊥𝑞𝑘−1 d𝐸.
(8.13)

The last integral is not computable, since the dofs (D4) in (8.9) allow to compute∫
𝐸
𝒗 · 𝒙⊥𝑞 only for polynomials 𝑞 ∈ P𝑘−3(𝐸) and not for 𝑞 ∈ P𝑘−1(𝐸).
Therefore, in order to construct 𝑽𝑘(𝐸) we proceed as in the previous sections

for the simpler Laplace problem: we first enlarge the space in order to have
the computability of the missing moments, and then we introduce the so-called
“enhanced constraints” to recover the right dimension of the space.
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We then first introduce, on each element 𝐸 ∈ Tℎ, the augmented space

𝑾𝑘(𝐸) :={𝒗 ∈ [𝐶0(𝐸)]2 such that rot𝚫𝒗 ∈ P𝑘−1(𝐸), div 𝒗 ∈ P𝑘−1(𝐸) ,
𝒗 |e ∈ [P𝑘(e)]2 ∀e ⊂ 𝜕𝐸}.

(8.14)

The degrees of freedom in 𝑾𝑘(𝐸) will be, referring to (8.9),

(D1) − (D2) − (D3) plus (D5) :
∫
𝐸

𝒗 · 𝒙⊥𝑝 d𝐸 ∀𝑝 ∈ P𝑘−1(𝐸). (8.15)

Although the space 𝑾𝑘(𝐸) has the right computability and approximation prop-
erties, it has too many degrees of freedom. We therefore reduce it and introduce
the “enhanced” VEM velocity space. We recall that, for any non negative integers
𝑚 ≤ 𝑛, we denoted by P𝑛/𝑚 any subspace (fixed once and for all) of P𝑛 such that

P𝑛 = P𝑚 ⊕ P𝑛/𝑚.

We define:

𝑽𝑘(𝐸) :={𝒗 ∈ [𝐶0(𝐸)]2 s. t. 𝒗 |e ∈ [P𝑘(e)]2 ∀e ⊂ 𝜕𝐸, rot𝚫𝒗 ∈ P𝑘−1(𝐸),

div 𝒗 ∈ P𝑘−1(𝐸),
∫
𝐸

(𝒗 − Π
∇,𝐸
𝑘

𝒗) · 𝒙⊥𝑝 d𝐸 = 0 ∀𝑝 ∈ P𝑘−1/𝑘−3(𝐸)}.
(8.16)

We point out that the important property

[P𝑘(𝐸)]2 ⊆ 𝑽𝑘(𝐸)

still holds.
Furthermore, we show that as dofs in 𝑽𝑘(𝐸) we can take the same dofs set (8.9)

introduced for 𝑽S
𝑘
(𝐸).

Property 8.4. The degrees of freedom (8.9) are unisolvent for 𝑽𝑘(𝐸).

Proof. A simple computation, following the same argument as in the previous
section, easily shows that

dim(𝑾𝑘(𝐸)) = 2𝑘 𝑁e+
𝑘(𝑘 + 1)

2
+ 𝑘(𝑘 + 1)

2
−1 = dim(𝑽S

𝑘(𝐸))+dim(P𝑘−1/𝑘−3(𝐸)).

Since 𝑽𝑘(𝐸) is obtained from 𝑾𝑘(𝐸) by enforcing dim(P𝑘−1/𝑘−3(𝐸)) linear con-
straints, from the above identity we immediately obtain

dim(𝑽ℎ(𝐸)) ≥ dim(𝑽S
𝑘(𝐸)).

Therefore, since the number of dofs in (8.9) is equal to dim(𝑽S
𝑘
(𝐸)), the proof is

concluded if we show that any 𝒗 ∈ 𝑽𝑘(𝐸) that vanishes on all dofs (8.9) must
satisfy 𝒗 = 0. A key observation is the fact that the operator

Π
∇,𝐸
𝑘

: 𝑾𝑘(𝐸) → [P𝑘(𝐸)]2 ,

only depends on (8.9); the proof is identical to that shown for 𝑽S
𝑘
(𝐸) at the end of
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the previous section. As a consequence, since 𝒗 vanishes on all linear operators
(8.9), it holds Π∇,𝐸

𝑘
(𝒗) = 0. Therefore, from the definition of 𝑽𝑘(𝐸), we also have∫
𝐸

𝒗 · 𝒙⊥𝑝 d𝐸 = 0 ∀𝑝 ∈ P𝑘−1/𝑘−3(𝐸).

The combination of the above equation and the fact that (D4) in (8.9) vanish for
𝒗 imply that the full enlarged operator set (8.15) vanishes for 𝒗. The proof is
concluded recalling that 𝒗 ∈ 𝑽ℎ(𝐸) ⊆ 𝑾𝑘(𝐸) and that (8.15) is a set of unisolvent
dofs for 𝑾𝑘(𝐸).

Finally, we have the following important result.

Property 8.5. The degrees of freedom (8.9) allow us to compute exactly (cf.
(2.5))

Π
0,𝐸
𝑘

: 𝑽𝑘(𝐸) → [P𝑘(𝐸)]2.

Proof. We start from equation (8.13) and observe that the first two terms on the
right hand side are computable thanks to Remark 8.3, which clearly holds also for
the new space 𝑽𝑘(𝐸). We therefore are left with the third term

∫
𝐸
𝒗 · 𝒙⊥𝑞𝑘−1 which

we split as ∫
𝐸

𝒗 · 𝒙⊥𝑞𝑘−1 d𝐸 =

∫
𝐸

𝒗 · 𝒙⊥𝑝𝑘−3 d𝐸 +
∫
𝐸

𝒗 · 𝒙⊥𝑝 d𝐸

with 𝑝𝑘−3 ∈ P𝑘−3(𝐸) and 𝑝 ∈ P𝑘−1/𝑘−3. The first term above is computable from
D4 and the second one follows from the property built in the definition of the space
(8.16): ∫

𝐸

𝒗 · 𝒙⊥𝑝 d𝐸 =

∫
𝐸

Π
∇,𝐸
𝑘

(𝒗) · 𝒙⊥𝑝 d𝐸.

8.3. Virtual Element Spaces in 3D

The aim of this section is to present the divergence-free Virtual Element spaces
in three dimensions. This is the natural extension of the 2D VEM of Section 3
combined with the ideas introduced for the 3D Laplace operators in Section 3.8.
We will keep our exposition rather brief and refer the reader to (Beirão da Veiga
et al. 2018a) for further details. As in the previous section, we here focus on the
velocity space and work locally on the element.

As in Section 3.8, in order to define the velocity VEM space in 3D we proceed
in two steps: we first introduce suitable VEM spaces related to the faces of the
element, then we define the local spaces defined on the polyhedron.

Let as before 𝑘 ∈ N, 𝑘 ≥ 2 (for the lowest order case 𝑘 = 1, that falls outside the
current family, we refer for instance to the velocity space introduced in (Beirão da
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Veiga et al. 2022a)). We define on each face f of an element 𝑃 ∈ Tℎ the (scalar)
face space

𝑉𝑘(f) :={𝑣 ∈ 𝐶0(f) such that Δ2𝑣 ∈ P𝑘+1(f), 𝑣 |e ∈ P𝑘(e) ∀e ⊂ 𝜕f∫
f
(𝑣 − Π

∇,f
𝑘
𝑣) 𝑝 df = 0 ∀𝑝 ∈ P𝑘+1/𝑘−2(f)}.

(8.17)

Note that the space 𝑉𝑘(f) is slightly different from that introduced in Section 3.8
for the Laplace problem, since the “enhancement” is here even more extreme; the
reason for this choice will be clear in what follows. One can easily see that 𝑉𝑘(f)
satisfies P𝑘(f) ⊆ 𝑉𝑘(f) and that a set of degrees of freedom for 𝑉𝑘(𝐹) is

(D1) : the values of 𝑣 at the vertexes of the face f;
(D2) : the edge moments

∫
e 𝑣𝑝 de ∀𝑝 ∈ P𝑘−2(e) ,∀e ⊂ 𝜕f;

(D3) : the moments
∫

f 𝑣𝑝 df ∀𝑝 ∈ P𝑘−2(f).
(8.18)

Furthermore, with arguments similar to those used in Section 3, one can check that
the 𝐿2 projection operator

Π
0,f
𝑘+1 : 𝑉𝑘(f) → P𝑘+1(f) (8.19)

is computable on the basis of the dofs (8.18). Note that thanks to the particular
definition of 𝑉𝑘(𝐹) we are able to compute the projection in the richer space
P𝑘+1(𝐹).

We are now able to present the 3D VEM “divergence-free” space for velocities;
we here present directly the more advanced space, suitable for both the Stokes and
the Navier-Stokes problems.

.

𝑽𝑘(𝑃) :={𝒗 ∈ [𝐶0(𝑃)]3 s. t. curl𝚫𝒗 ∈ [P𝑘−1(𝑃)]3, div 𝒗 ∈ P𝑘−1(𝑃),
𝒗 |f ⊂ [𝑉𝑘(f)]3 ∀f ∈ 𝜕𝑃,∫
𝑃

(𝒗 − Π
∇,𝑃
𝑘

𝒗) · (𝒙 ∧ 𝒑) d𝑃 = 0 ∀𝒑 ∈ [P𝑘−1/𝑘−3(𝑃)]3}.
(8.20)

The second line of (8.20) defines the space 𝑽𝑘(𝑃) on the boundary of the element.
The first line states that the virtual functions are obtained solving a Stokes-like
problem in the element. Indeed, recalling (8.7) it can be checked that the condition
curl𝚫𝒗 ∈ P𝑘−1 is equivalent to the existence of 𝒒 ∈ P𝑘−1(𝑃) such that𝚫𝒗+∇𝑠 = 𝒙∧
𝒒 for some 𝑠 ∈ 𝐿2

0(𝑃); such equation, combined with the condition div 𝒗 ∈ P𝑘−1(𝑃)
in (8.8), represents a Stokes-like problem on the element. Finally, the last condition
represents an “enhancement” constraint.

It is easy to check that [P𝑘(𝑃)]3 ⊆ 𝑽𝑘(𝑃). Furthermore, with arguments similar
to the previous sections, one can show that the following linear operators constitute
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a set of unisolvent degrees of freedom for the space 𝑽𝑘(𝑃):

(D1) : the values of 𝒗 at the vertexes of the polyhedron 𝑃;
(D2) : the moments

∫
e 𝒗 · 𝒑 de ∀𝒑 ∈ [P𝑘−2(e)]3 ∀ edge e ⊂ 𝜕𝑃;

(D3) : the face moments
∫

f 𝒗 · 𝒑 df ∀𝒑 ∈ [P𝑘−2(f)]3;
(D4) : the moments of div 𝒗 :

∫
𝑃

(div 𝒗)𝑝 d𝑃 ∀𝑝 ∈ P0
𝑘−1(𝑃) ;

(D5) : for 𝑘 ≥ 3, the “moments” of
∫
𝑃
𝒗 · (𝒙 ∧ 𝒑) d𝑃 ∀𝒑 ∈ [P𝑘−3(𝑃)]3 .

(8.21)

Another critical property is that the 3-dimensional versions of the projections in
(8.11) are computable on the space 𝑽𝑘(𝑃). We here show only the proof for

Π
0,𝑃
𝑘

: 𝑽𝑘(𝑃) → [P𝑘(𝑃)]3,

and observe that in order to compute Π
0,𝐸
𝑘

𝒗 we need to compute∫
𝑃

𝒗 · 𝒑 d𝑃 for any 𝒑 ∈ [P𝑘(𝑃)]3.

Using (8.7), let 𝑞𝑘+1 ∈ P𝑘+1(𝑃) and 𝒒𝑘−1 ∈ [P𝑘−1(𝑃)]3 be such that 𝒑 = ∇𝑞𝑘+1 +
𝒙 ∧ 𝒒𝑘−1. In turn, the polynomial 𝒒𝑘−1 can be split as 𝒒𝑘−1 = 𝒒𝑘−3 + �̃�𝑘−1, with
𝒒𝑘−3 ∈ [P𝑘−3(𝑃)]3 and �̃�𝑘−1 ∈ [P𝑘−1/𝑘−3(𝑃)]3. By an argument analog to that
used in the 2D case, it is easy to check that div 𝒗 ∈ P𝑘−1(𝑃) is computable using
the above dofs. Then, an integration by parts and trivial steps yield∫

𝑃

𝒗 · 𝒑𝑘𝑑𝑃 =

∫
𝑃

𝒗 · (∇𝑞𝑘+1 + 𝒙 ∧ 𝒒𝑘−1) d𝑃

=
∑︁

f⊂𝜕𝑃

∫
f
𝒗 · 𝒏 𝑞𝑘+1 df −

∫
𝑃

div 𝒗 𝑞𝑘+1 d𝑃 +
∫
𝑃

𝒗 · (𝒙 ∧ 𝒒𝑘−1) d𝑃

=
∑︁

f⊂𝜕𝑃

∫
f
Π

0,f
𝑘+1𝒗 · 𝒏 𝑞𝑘+1 df −

∫
𝑃

div 𝒗 𝑞𝑘+1 d𝑃

+
∫
𝑃

𝒗 · (𝒙 ∧ 𝒒𝑘−3) d𝑃 +
∫
𝑃

Π
∇,𝑃
𝑘

𝒗 · (𝒙 ∧ �̃�𝑘−1) d𝑃.
(8.22)

All the above terms are computable. The first one since Π
0,f
𝑘+1𝒗 is computable on

each face (see (8.19)), the second one since div 𝒗 is known and computable, the
third one using (D5) in (8.21) and the fourth one since Π

∇,𝑃
𝑘

𝒗 is computable. Note
that the first term motivates the need for the particular definition used in (8.17).

8.4. The discrete VEM problem

Let Tℎ be a decomposition of the domain Ω ⊂ R𝑑 with 𝑑 = 2, 3 into general
polytopal elements. In order to keep the same exposition in 2D and 3D, we will
here indicate the generic element with the letter 𝐸 (thus representing a polygon if
𝑑 = 2 and a polyhedron if 𝑑 = 3).
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For any 𝐸 ∈ Tℎ, let 𝑽𝑘(𝐸) denote one of the enhanced velocity VEM spaces
introduced in the previous sections ((8.16) in 2D, (8.20) in 3D, respectively). The
global velocity VEM space is defined by

𝑽ℎ := {𝒗 ∈ 𝑽 such that 𝒗 |𝐸 ∈ 𝑽𝑘(𝐸) for all 𝐸 ∈ Tℎ} , (8.23)

and the global dofs are given by standard dofs assembly as in FEM. The discrete
pressure space is given by the piecewise polynomial functions of degree 𝑘 − 1, i.e.,
the local and global pressure spaces are simply given by

𝑄ℎ(𝐸) := P𝑘−1(𝐸) ∀𝐸 ∈ Tℎ ,
𝑄ℎ := {𝑞 ∈ 𝑄 s.t. 𝑞 |𝐸 ∈ 𝑄ℎ(𝐸) for all 𝐸 ∈ Tℎ} .

(8.24)

We recall the following results stating some interpolation properties of the velocity
space (see Proposition 4.2. in (Beirão da Veiga et al. 2017) and Theorem 4.1 in
(Beirão da Veiga et al. 2018b)) and the inf-sup stability of the pair (𝑽ℎ, 𝑄ℎ) (see
Proposition 4.3 in (Beirão da Veiga et al. 2017)).

Proposition 8.6. Under the mesh assumption 2.1, let 𝒗 ∈ [𝐻𝑠(Tℎ)]𝑑 with 1 <

𝑠 ≤ 𝑘 + 1. Then there exists 𝒗ℎ ∈ 𝑽ℎ such that

∥𝒗 − 𝒗ℎ∥0 + ℎ∥∇𝒗 − ∇𝒗ℎ∥0 ≲ ℎ
𝑠 |𝒗 |𝑠,Tℎ

where the hidden constant depends only on 𝑘 and the shape regularity constant 𝜚.

Proposition 8.7. Given the discrete spaces𝑽ℎ and𝑄ℎ defined in (8.23) and (8.24)
respectively, there exists a positive constant 𝛽, independent of ℎ, such that

sup
𝒗ℎ∈𝑽 ℎ , 𝒗ℎ≠0

𝑏(𝒗ℎ, 𝑞ℎ)
∥∇𝒗ℎ∥0

≥ 𝛽 ∥𝑞ℎ∥0 for all 𝑞ℎ ∈ 𝑄ℎ.

We now define computable discrete local forms, following a construction similar
to that shown in Section 3.7:

𝑎𝐸ℎ (𝒖, 𝒗) :=
∫
𝐸

(
𝚷0,𝐸
𝑘−1𝜺(𝒖)

)
:
(
𝚷0,𝐸
𝑘−1𝜺(𝒗)

)
d𝐸 + S𝐸

(
(𝐼 − Π

0,𝐸
𝑘

)𝒖, (𝐼 − Π
0,𝐸
𝑘

)𝒗
)
,

(8.25)

𝑐
𝑜,𝐸

ℎ
(𝒘; 𝒖, 𝒗) :=

∫
𝐸

[(
𝚷0,𝐸
𝑘−1∇ 𝒖

)
Π

0,𝑃
𝑘

𝒘
]
· Π0,𝐸

𝑘
𝒗 d𝐸 , (8.26)

𝑐
skew,𝐸
ℎ

(𝒘; 𝒖, 𝒗) :=
1
2
(
𝑐
𝑜,𝐸

ℎ
(𝒘; 𝒖, 𝒗) − 𝑐𝑜,𝐸

ℎ
(𝒘; 𝒗, 𝒖)

)
, (8.27)

for all 𝒘, 𝒖, 𝒗 ∈ 𝑽ℎ(𝐸), where clearly

𝚷0,𝐸
𝑘

𝜺(𝒗) =
𝚷0,𝐸
𝑘

∇ 𝒗 + (𝚷0,𝐸
𝑘

∇ 𝒗)T

2
and the symmetric stabilizing form S𝐸 : 𝑽ℎ(𝐸) × 𝑽ℎ(𝐸) → R satisfies

∥∇𝒗∥2
0,𝐸 ≲ S𝐸(𝒗, 𝒗) ≲ ∥∇𝒗∥2

0,𝐸 for all 𝒗 ∈ 𝑽ℎ(𝐸) ∩ Ker(Π0,𝐸
𝑘

). (8.28)
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The condition above essentially requires the stabilizing term S𝐸(𝒗, 𝒗) to scale as
∥∇𝒗∥2

0,𝐸 . Possible choices for the stabilization are the same already discussed in
Section 3.3.

The global virtual forms are defined by simply summing the local contributions:

𝑎ℎ(𝒖, 𝒗) :=
∑︁
𝐸∈Tℎ

𝑎𝐸ℎ (𝒖, 𝒗) , 𝑐ℎ(𝒘; 𝒖, 𝒗) :=
∑︁
𝐸∈Tℎ

𝑐
skew,𝐸
ℎ

(𝒘; 𝒖, 𝒗) , (8.29)

for all 𝒘, 𝒖, 𝒗 ∈ 𝑽ℎ. We point out that
• the symmetry of 𝑎ℎ(·, ·) together with (8.28) easily implies that 𝑎ℎ(·, ·) is

continuous and coercive with respect to the 𝐻1-norm;
• the discrete trilinear form 𝑐ℎ(·; ·, ·) is skew-symmetric and is continuous with

respect to the 𝐻1-norm.

Finally the discrete right hand side is defined by the computable quantity

( 𝒇 ℎ, 𝒗) :=
∑︁
𝐸∈Tℎ

∫
𝐸

Π
0,𝐸
𝑘

𝒇 ·𝒗 d𝐸 =
∑︁
𝐸∈Tℎ

∫
𝐸

𝒇 ·Π0,𝐸
𝑘

𝒗 d𝐸 for all 𝒗 ∈ 𝑽ℎ . (8.30)

Referring to the discrete spaces (8.23), (8.24), the discrete forms (8.29), the 𝑏(·, ·)
form in (8.3) and the approximated load term (8.30), the virtual element approx-
imation of the Navier-Stokes equation is given by

find (𝒖ℎ, 𝑝ℎ) ∈ 𝑽ℎ ×𝑄ℎ, such that
𝜈 𝑎ℎ(𝒖ℎ, 𝒗ℎ) + 𝑐ℎ(𝒖ℎ; 𝒖ℎ, 𝒗ℎ) + 𝑏(𝒗ℎ, 𝑝ℎ) = ( 𝒇 ℎ, 𝒗ℎ) for all 𝒗ℎ ∈ 𝑽ℎ,
𝑏(𝒖ℎ, 𝑞ℎ) = 0 for all 𝑞ℎ ∈ 𝑄ℎ.

(8.31)
A crucial observation is that definitions (8.23) and (8.24), along with Proposition
8.7, imply that div 𝑽ℎ = 𝑄ℎ. Therefore the discrete kernel is a subspace of the
continuous kernel 𝒁 (cf. (8.4)):

𝒁ℎ := {𝒗ℎ ∈ 𝑽ℎ such that 𝑏(𝒗ℎ, 𝑞ℎ) = 0 for all 𝑞ℎ ∈ 𝑄ℎ} ⊆ 𝒁 . (8.32)

Consequently, the second equation of (8.31) implies that the discrete velocity
𝒖ℎ ∈ 𝑽ℎ is exactly divergence-free.

The well-posedness of the discrete problems is stated in the following theorem.

Theorem 8.8. Let𝐶 represent the continuity constant of the form 𝑐ℎ(·; ·, ·) in 𝑍ℎ.
Under the data assumption

�̂� :=
𝐶 ∥ 𝒇 ℎ∥𝒁 ′

ℎ

�̂�2𝜈2 < 1 , (8.33)

with the usual definition of dual norm, Problem (8.31) is well-posed.

8.5. Convergence results and exploring the divergence-free property

We here briefly underline the main benefits of the proposed VEM scheme, in
addition to the capability (shared by any VEM scheme) of using general polytopal
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meshes. The divergence-free property and the kernel inclusion (8.32) entail a range
of advantages:

• The error components partly decouple, as shown in the converge results
below. Namely the influence of the pressure in the velocity error is weaker
with respect to standard inf-sup stable elements (see (Beirão da Veiga et al.
2018b));

• the scheme in (8.31) is equivalent to a suitable reduced problem. The internal
divergence-moments dofs (D3 in (8.18) for 𝑑 = 2, D4 in (8.21) for 𝑑 = 3) and
the associated pressures dofs can be automatically ignored in the final linear
system (see (Beirão da Veiga et al. 2017));

• the proposed Virtual Element enjoys an underlying discrete Stokes complex
structure (see (Beirão da Veiga et al. 2019b, Beirão da Veiga et al. 2018a));

• the space 𝑽ℎ is uniformly stable also for the Darcy equation (see (Vacca
2018)).

We finally state a convergence result for the proposed Virtual Element scheme
(8.31). We refer to Theorem 4.6 in (Beirão da Veiga et al. 2018b) for the proof.

Proposition 8.9. Under the assumptions (8.6), (8.33) and 2.1, let (𝒖, 𝑝) ∈ 𝑽 ×𝑄
be the solution of Problem (8.2) and (𝒖ℎ, 𝑝ℎ) ∈ 𝑽ℎ×𝑄ℎ be the solution of Problem
(8.31). Assuming that 𝒖 and 𝒇 belong to [𝐻𝑘+1(Tℎ)]𝑑 and 𝑝 ∈ 𝐻𝑘(Tℎ) we have

∥𝒖 − 𝒖ℎ∥1 ≤ ℎ𝑘𝜒1(𝒖) + ℎ𝑘+2𝜒2( 𝒇 ) , (8.34)
∥𝑝 − 𝑝ℎ∥0 ≤ ℎ𝑘𝜒3(𝑝) + ℎ𝑘𝜒4(𝒖) + ℎ𝑘+2𝜒5( 𝒇 ) . (8.35)

where the 𝜒𝑖 , 𝑖 = 1, .., 5 are suitable functions independent of ℎ (but which may
depend on the material parameters, 𝑘 and 𝜚).

Note that the velocity error does not depend directly on the discrete pressures, but
only indirectly through the presence of the higher order loading term in (8.34).
Indeed, the velocity error of classical mixed FE methods would have an additional
term, of order 𝑂(ℎ𝑘), depending on the exact pressure 𝑝. In some situations the
partial decoupling of the errors stated in (8.34) induces a positive effect on the
velocity approximation.

Remark 8.10. In the context of the approximation of the Navier–Stokes equation,
a numerical method is said to be pressure-robust (see e.g. (John et al. 2017)) if
the discrete velocity solution depends only on the Helmholtz–Hodge projector of
the load 𝒇 (as it happens for the exact velocity field). For instance, if the load
is a gradient field then the continuous velocity vanishes, and the discrete velocity
computed with a pressure-robust method vanishes as well. Thus method (8.31) is
not pressure-robust, as it does not guarantee such property. On the other hand the
dependence on the full load is much weaker with respect to standard mixed schemes
thus leading, for instance, to a higher rate of convergence whenever the load is a
gradient. Modified schemes have been proposed in (Liu et al. 2020, Frerichs and
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Merdon 2022) in order to get a fully pressure-robust VEM scheme. Such approaches
have the drawback of requiring a suitable Raviart-Thomas interpolation of the test
functions with respect to a sub-triangulation of the mesh Tℎ.
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